-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_resnet.py
213 lines (182 loc) · 7.14 KB
/
train_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
from torch.autograd import Variable
from torch.utils.data import DataLoader
from rcn.resnet import ResnetGRU
from torchvision.models.resnet import *
import torchvision.transforms as transforms
from data import UCF101Folder
from data.selector import *
from data.transforms import ScaleJittering
from utils import *
import time
import os
# gloabl setting
use_gpu = torch.cuda.is_available()
use_multi_gpu = torch.cuda.device_count() > 1
mode = 'train'
batch_size = 50
seq_len = 8
epochs = 60
print_freq = 10
try_resume = True
half_tensor = True
latest_check = 'checkpoint/resnet50_latest.pth.tar'
best_check = 'checkpoint/resnet50_best.pth.tar'
# model
base_model = resnet50(pretrained=True)
modify_layers = [(1, 0), (2, 0), (3, 0), (4, 0)]
model = ResnetGRU(base_model, modify_layers, 101)
if use_multi_gpu:
model = nn.DataParallel(model)
# data loader
selector = FixedFrameSelector(seq_len)
traintrans = transforms.Compose([
transforms.ToPILImage(),
transforms.ColorJitter(),
ScaleJittering(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
train_dataset = UCF101Folder('/home/member/fuwang/data/UCF101/UCF-101',
'/home/member/fuwang/data/UCF101/ucfTrainTestlist',
'train', selector, transform=traintrans)
train_loader = DataLoader(train_dataset, batch_size, True, num_workers=8, pin_memory=use_gpu)
test_dataset = UCF101Folder('/home/member/fuwang/data/~UCF101/UCF-101',
'/home/member/fuwang/data/UCF101/ucfTrainTestlist',
'test', selector, transform=data_trans)
test_loader = DataLoader(test_dataset, batch_size, False, num_workers=8, pin_memory=use_gpu)
# optimizer
weight_decay = 0
lr = 0.001
momentum = 0.9
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, weight_decay=weight_decay, momentum=momentum)
lr_scheduler = lrs.ReduceLROnPlateau(optimizer, mode='min', factor=0.5)
# resume
best_prec1 = 0
start_epoch = 0
if try_resume:
path = latest_check if mode == 'train' else best_check
if os.path.isfile(path):
print("=> loading checkpoint '{}'".format(path))
checkpoint = torch.load(path)
start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
lr = checkpoint['lr']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(path, checkpoint['epoch']))
if mode == 'train':
for param_group in optimizer.param_groups:
param_group['lr'] = lr
else:
print("=> no checkpoint found at '{}'".format(path))
# OK, let's begin
if half_tensor:
model = model.half()
if use_gpu:
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
model = model.cuda()
criterion = criterion.cuda()
repeats = None
if mode == 'train':
repeats = range(start_epoch, epochs)
else:
repeats = range(start_epoch, start_epoch + 1)
for epoch in repeats:
# train
if mode == 'train':
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top3 = AverageMeter()
model.train()
end = time.time()
for i, (inp, target) in enumerate(train_loader):
data_time.update(time.time() - end)
if half_tensor:
inp = inp.half()
if use_gpu:
inp = inp.cuda(async=True)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(inp, volatile=False)
target_var = torch.autograd.Variable(target, volatile=False)
# compute output
print(input_var.size())
optimizer.zero_grad()
output = model(input_var)
print(output.size())
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec3 = accuracy(output.data, target, topk=(1, 3))
losses.update(loss.data[0], inp.size(0))
top1.update(prec1[0], inp.size(0))
top3.update(prec3[0], inp.size(0))
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@3 {top3.val:.3f} ({top3.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top3=top3))
print(' * Prec@1 {top1.avg:.3f} Prec@3 {top3.avg:.3f}'
.format(top1=top1, top3=top3))
lr_scheduler.step(losses.avg)
# test
batch_time = AverageMeter()
data_time = AverageMeter()
top1 = AverageMeter()
top3 = AverageMeter()
model.eval()
end = time.time()
for i, (inp, target) in enumerate(test_loader):
data_time.update(time.time() - end)
if half_tensor:
inp = inp.half()
if use_gpu:
inp = inp.cuda(async=True)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(inp, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
output = model(input_var)
# measure accuracy and record loss
prec1, prec3 = accuracy(output.data, target, topk=(1, 3))
top1.update(prec1[0], inp.size(0))
top3.update(prec3[0], inp.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if mode == 'test' and i % print_freq == 0:
print('Epoch: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@3 {top3.val:.3f} ({top3.avg:.3f})'.format(
i, len(test_loader), batch_time=batch_time,
data_time=data_time, top1=top1, top3=top3))
print(' * Prec@1 {top1.avg:.3f} Prec@3 {top3.avg:.3f}'
.format(top1=top1, top3=top3))
# remember best prec@1 and save checkpoint
if mode == 'train':
is_best = top1.avg > best_prec1
best_prec1 = max(top1.avg, best_prec1)
save_checkpoint(latest_check, best_check,
{
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'lr': optimizer.param_groups[0]['lr']
}, is_best)