-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathimagenet_models.py
130 lines (116 loc) · 3.64 KB
/
imagenet_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import numpy
import os
import shutil
import time
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
class ConvNet(object):
"""ConvNet Model class"""
def __init__(self,
arch="resnet18",
ckp="/model/model_best.pth.tar",
train_dir="/input/train",
evalf="/eval"):
"""MNIST ConvNet Builder
Args:
ckp: path to model checkpoint file (to continue training).
evalf: path to evaluate sample.
"""
# Path to model weight
self._ckp = ckp
# Use CUDA?
self._cuda = torch.cuda.is_available()
try:
os.path.isfile(ckp)
self._ckp = ckp
except IOError as e:
# Does not exist OR no read permissions
print ("Unable to open ckp file")
self._evalf = evalf
self._arch = arch
# Size on model
if arch.startswith('inception'):
self._size = (299, 299)
else:
self._size = (224, 256)
# Get labels
self._labels = self._get_label(train_dir)
# Build the model loading the weights
def build_model(self):
# Create model from scratch or use a pretrained one
print("=> using model '{}'".format(self._arch))
self._model = models.__dict__[self._arch](num_classes=len(self._labels))
print("=> loading checkpoint '{}'".format(self._ckp))
if self._cuda:
checkpoint = torch.load(self._ckp)
else:
# Load GPU model on CPU
checkpoint = torch.load(self._ckp, map_location=lambda storage, loc: storage)
# Load weights
self._model.load_state_dict(checkpoint['state_dict'])
if self._cuda:
self._model.cuda()
else:
self._model.cpu()
# Preprocess Images to be ImageNet-compliant
def image_preprocessing(self):
"""Take images from args.evalf, process to be ImageNet compliant
and classify them with ImageNet ConvNet model chosen"""
# Normalize on RGB Value
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
def pil_loader(path):
"""Load images from /eval/ subfolder and resized it as squared"""
with open(path, 'rb') as f:
with Image.open(f) as img:
sqrWidth = numpy.ceil(numpy.sqrt(img.size[0]*img.size[1])).astype(int)
return img.resize((sqrWidth, sqrWidth))
self._test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(self._evalf, transforms.Compose([
transforms.Scale(self._size[1]), # 256
transforms.CenterCrop(self._size[0]), # 224 , 299
transforms.ToTensor(),
normalize,
]), loader=pil_loader),
batch_size=1, shuffle=False,
num_workers=1, pin_memory=False)
def _get_label(self, train_dir):
# Normalize on RGB Value
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
# Train -> Preprocessing -> Tensor
train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose([
transforms.RandomSizedCrop(self._size[0]), #224 , 299
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
# Get number of labels
return train_dataset.classes
def classify(self):
"""Classify the current test batch"""
self._model.eval()
for data, _ in self._test_loader:
if self._cuda:
data = data.cuda()
data = torch.autograd.Variable(data, volatile=True)
output = self._model(data)
# Take last layer output
if isinstance(output, tuple):
output = output[len(output)-1]
lab = self._labels[numpy.asscalar(output.data.max(1, keepdim=True)[1].cpu().numpy())]
print (self._labels, lab)
return lab