-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtranscodeV2.py
300 lines (271 loc) · 14.5 KB
/
transcodeV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import sys
from collections import Counter
import collections
Danio_rerio = {'A':'GCT','R':'AGA','N':'AAC','D':'GAC','C':'TGT','Q':'CAG','E':'GAG',
'G':'GGA','H':'CAC','I':'ATC','L':'CTG','K':'AAG','M':'ATG','F':'TTC',
'P':'CCT','S':'AGC','T':'ACA','W':'TGG','Y':'TAC','V':'GTG','*':'TGA'}
Arabidopsis_thaliana = {'A':'GCT','R':'AGA','N':'AAT','D':'GAT','C':'TGT','Q':'CAA','E':'GAA',
'G':'GGA','H':'CAT','I':'ATT','L':'CTT','K':'AAG','M':'ATG','F':'TTT',
'P':'CCT','S':'TCT','T':'ACT','W':'TGG','Y':'TAT','V':'GTT','*':'TGA'}
Homo_sapiens = {'A':'GCC','R':'AGA','N':'AAC','D':'GAC','C':'TGC','Q':'CAG','E':'GAG',
'G':'GGC','H':'CAC','I':'ATC','L':'CTG','K':'AAG','M':'ATG','F':'TTC',
'P':'CCC','S':'AGC','T':'ACC','W':'TGG','Y':'TAC','V':'GTG','*':'TGA'}
Escherichia_coli = {'A':'GCG','R':'CGC','N':'AAC','D':'GAT','C':'TGC','Q':'CAG','E':'GAA',
'G':'GGC','H':'CAT','I':'ATT','L':'CTG','K':'AAA','M':'ATG','F':'TTT',
'P':'CCG','S':'AGC','T':'ACC','W':'TGG','Y':'TAT','V':'GTG','*':'TAA'}
Genetic_code = {'TTT':'F','TTC':'F','TTA':'L','TTG':'L','CTT':'L','CTC':'L','CTA':'L','CTG':'L','ATT':'I','ATC':'I','ATA':'I',
'ATG':'M','GTT':'V','GTC':'V','GTA':'V','GTG':'V','TCT':'S','TCC':'S','TCA':'S','TCG':'S','CCT':'P','CCC':'P','CCA':'P',
'CCG':'P','ACT':'T','ACC':'T','ACA':'T','ACG':'T','GCT':'A','GCC':'A','GCA':'A','GCG':'A','TAT':'Y','TAC':'Y','TAA':'*',
'TAG':'*','CAT':'H','CAC':'H','CAA':'Q','CAG':'Q','AAT':'N','AAC':'N','AAA':'K','AAG':'K','GAT':'D','GAC':'D','GAA':'E',
'GAG':'E','TGT':'C','TGC':'C','TGA':'*','TGG':'W','CGT':'R','CGC':'R','CGA':'R','CGG':'R','AGT':'S','AGC':'S','AGA':'R',
'AGG':'R','GGT':'G','GGC':'G','GGA':'G','GGG':'G',}
Re_genetic_code = {'A':['GCT','GCC','GCA','GCG'],'R':['CGT','CGC','CGA','CGG','AGA','AGG'],'N':['AAT','AAC'],
'D':['GAT','GAC'],'C':['TGT','TGC'],'Q':['CAA','CAG'],'E':['GAA','GAG'],'G':['GGT','GGC','GGA','GGG'],
'H':['CAT','CAC'],'I':['ATT','ATC','ATA'],'L':['TTA','TTG','CTT','CTC','CTA','CTG'],'K':['AAA','AAG'],
'M':['ATG'],'F':['TTT','TTC'],'P':['CCT','CCC','CCA','CCG'],'S':['TCT','TCC','TCA','TCG','AGT','AGC'],
'T':['ACT','ACC','ACA','ACG'],'W':['TGG'],'Y':['TAT','TAC'],'V':['GTT','GTC','GTA','GTG'],'*':['TAA','TGA','TAG']}
Re_genetic_code2 = ['GCT','GCC','GCA','GCG','CGT','CGC','CGA','CGG','AGA','AGG','AAT','AAC','GAT','GAC','TGT','TGC',
'CAA','CAG','GAA','GAG','GGT','GGC','GGA','GGG','CAT','CAC','ATT','ATC','ATA','TTA','TTG','CTT',
'CTC','CTA','CTG','AAA','AAG','ATG','TTT','TTC','CCT','CCC','CCA','CCG','TCT','TCC','TCA','TCG',
'AGT','AGC','ACT','ACC','ACA','ACG','TGG','TAT','TAC','GTT','GTC','GTA','GTG','TAA','TGA','TAG']
result_seq = []
result_protein = []
def parseFasta(filename): #seq_api
fas = {}
idlis = []
id = None
with open(filename, 'r') as fh:
for line in fh:
if line[0] == '>':
header = line[0:].rstrip()
id = header.split()[0]
idlis.append(id)
fas[id] = []
else:
fas[id].append(line.rstrip())
for id, seq in fas.items():
fas[id] = ''.join(seq)
return fas
def p2d(fasta,specie):
mydict = parseFasta(fasta)
mykey = list(mydict.keys())
for value in mydict.values(): #Loop through each sequence
new_value = '' #init new seq
if specie in ['FISH','fish']: #select specie
for i in value:
new_value += Danio_rerio[i.upper()]
result_seq.append(new_value) #collect all sequences
elif specie in ['plant','PLANT']:
for i in value:
new_value += Arabidopsis_thaliana[i.upper()]
result_seq.append(new_value)
elif specie in ['human','HUMAN']:
for i in value:
new_value += Homo_sapiens[i.upper()]
result_seq.append(new_value)
elif specie in ['bacterial','BACTERIAL']:
for i in value:
new_value += Escherichia_coli[i.upper()]
result_seq.append(new_value)
else:
print("Error! The species you entered is not found in the library\n(fish,plant,human,bacterial).")
break
result = zip(mykey,result_seq) #package file
return result
def d2p(fasta):
mydict = parseFasta(fasta)
mykey = list(mydict.keys())
for index,value in enumerate(mydict.values()): #Loop through each sequence
new_value = ''
value = [value[i:i+3] for i in range(0, len(value), 3)]
if len(value[-1]) < 3: #delete base that's less than 3
print("The length of {} is not a multiple of 3,delete the last 1 or 2 base.".format(mykey[index][1:])) #print seq name without >
value.pop()
for i in value:
new_value += Genetic_code[i.upper()]
result_protein.append(new_value)
result = zip(mykey,result_protein)
return result
def prediction_p2d(train_seq,test_seq):
train = parseFasta(train_seq)
train_value = list(train.values())[0]
train_value = [train_value[i:i+3] for i in range(0, len(train_value), 3)]
counter = dict(Counter(train_value))
new_counter = collections.defaultdict(int)
for key,value in counter.items():
new_counter[key]= value/len(train_value)
freq = []
for i in Re_genetic_code2: #sort by Re_genetic_code2
freq.append((i,new_counter[i]))
new_genetic_code = collections.defaultdict(int) #build a genetic code from the most frequent codons
new_counter_A = {'GCT':new_counter['GCT'],'GCC':new_counter['GCC'],'GCA':new_counter['GCA'],'GCG':new_counter['GCG']}
new_counter_A_tmp = []
for key,value in new_counter_A.items():
new_counter_A_tmp.append((key,value))
new_counter_A_tmp = sorted(new_counter_A_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['A'] = new_counter_A_tmp[0][0]
new_counter_R = {'CGT':new_counter['CGT'],'CGC':new_counter['CGC'],'CGA':new_counter['CGA'],
'CGG':new_counter['CGG'],'AGA':new_counter['AGA'],'AGG':new_counter['AGG']}
new_counter_R_tmp = []
for key,value in new_counter_R.items():
new_counter_R_tmp.append((key,value))
new_counter_R_tmp = sorted(new_counter_R_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['R'] = new_counter_R_tmp[0][0]
new_counter_N = {'AAT':new_counter['AAT'],'AAC':new_counter['AAC']}
new_counter_N_tmp = []
for key,value in new_counter_N.items():
new_counter_N_tmp.append((key,value))
new_counter_N_tmp = sorted(new_counter_N_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['N'] = new_counter_N_tmp[0][0]
new_counter_D = {'GAT':new_counter['GAT'],'GAC':new_counter['GAC']}
new_counter_D_tmp = []
for key,value in new_counter_D.items():
new_counter_D_tmp.append((key,value))
new_counter_D_tmp = sorted(new_counter_D_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['D'] = new_counter_D_tmp[0][0]
new_counter_C = {'TGT':new_counter['TGT'],'TGC':new_counter['TGC']}
new_counter_C_tmp = []
for key,value in new_counter_C.items():
new_counter_C_tmp.append((key,value))
new_counter_C_tmp = sorted(new_counter_C_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['C'] = new_counter_C_tmp[0][0]
new_counter_Q = {'CAA':new_counter['CAA'],'CAG':new_counter['CAG']}
new_counter_Q_tmp = []
for key,value in new_counter_Q.items():
new_counter_Q_tmp.append((key,value))
new_counter_Q_tmp = sorted(new_counter_Q_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['Q'] = new_counter_Q_tmp[0][0]
new_counter_E = {'GAA':new_counter['GAA'],'GAG':new_counter['GAG']}
new_counter_E_tmp = []
for key,value in new_counter_E.items():
new_counter_E_tmp.append((key,value))
new_counter_E_tmp = sorted(new_counter_E_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['E'] = new_counter_E_tmp[0][0]
new_counter_G = {'GGT':new_counter['GGT'],'GGC':new_counter['GGC'],'GGA':new_counter['GGA'],'GGG':new_counter['GGG']}
new_counter_G_tmp = []
for key,value in new_counter_G.items():
new_counter_G_tmp.append((key,value))
new_counter_G_tmp = sorted(new_counter_G_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['G'] = new_counter_G_tmp[0][0]
new_counter_H = {'CAT':new_counter['CAT'],'CAC':new_counter['CAC']}
new_counter_H_tmp = []
for key,value in new_counter_H.items():
new_counter_H_tmp.append((key,value))
new_counter_H_tmp = sorted(new_counter_H_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['H'] = new_counter_H_tmp[0][0]
new_counter_I = {'ATT':new_counter['ATT'],'ATC':new_counter['ATC'],'ATA':new_counter['ATA']}
new_counter_I_tmp = []
for key,value in new_counter_I.items():
new_counter_I_tmp.append((key,value))
new_counter_I_tmp = sorted(new_counter_I_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['I'] = new_counter_I_tmp[0][0]
new_counter_L = {'TTA':new_counter['TTA'],'TTG':new_counter['TTG'],'CTT':new_counter['CTT'],
'CTC':new_counter['CTC'],'CTA':new_counter['CTA'],'CTG':new_counter['CTG']}
new_counter_L_tmp = []
for key,value in new_counter_L.items():
new_counter_L_tmp.append((key,value))
new_counter_L_tmp = sorted(new_counter_L_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['L'] = new_counter_L_tmp[0][0]
new_counter_K = {'AAA':new_counter['AAA'],'AAG':new_counter['AAG']}
new_counter_K_tmp = []
for key,value in new_counter_K.items():
new_counter_K_tmp.append((key,value))
new_counter_K_tmp = sorted(new_counter_K_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['K'] = new_counter_K_tmp[0][0]
new_counter_M = {'ATG':new_counter['ATG']}
new_counter_M_tmp = []
for key,value in new_counter_M.items():
new_counter_M_tmp.append((key,value))
new_counter_M_tmp = sorted(new_counter_M_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['M'] = new_counter_M_tmp[0][0]
new_counter_F = {'TTT':new_counter['TTT'],'TTC':new_counter['TTC']}
new_counter_F_tmp = []
for key,value in new_counter_F.items():
new_counter_F_tmp.append((key,value))
new_counter_F_tmp = sorted(new_counter_F_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['F'] = new_counter_F_tmp[0][0]
new_counter_P = {'CCT':new_counter['CCT'],'CCC':new_counter['CCC'],'CCA':new_counter['CCA'],'CCG':new_counter['CCG']}
new_counter_P_tmp = []
for key,value in new_counter_P.items():
new_counter_P_tmp.append((key,value))
new_counter_P_tmp = sorted(new_counter_P_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['P'] = new_counter_P_tmp[0][0]
new_counter_S = {'TCT':new_counter['TCT'],'TCC':new_counter['TCC'],'TCA':new_counter['TCA'],
'TCG':new_counter['TCG'],'AGT':new_counter['AGT'],'AGC':new_counter['AGC']}
new_counter_S_tmp = []
for key,value in new_counter_S.items():
new_counter_S_tmp.append((key,value))
new_counter_S_tmp = sorted(new_counter_S_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['S'] = new_counter_S_tmp[0][0]
new_counter_T = {'ACT':new_counter['ACT'],'ACC':new_counter['ACC'],'ACA':new_counter['ACA'],'ACG':new_counter['ACG']}
new_counter_T_tmp = []
for key,value in new_counter_T.items():
new_counter_T_tmp.append((key,value))
new_counter_T_tmp = sorted(new_counter_T_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['T'] = new_counter_T_tmp[0][0]
new_counter_W = {'TGG':new_counter['TGG']}
new_counter_W_tmp = []
for key,value in new_counter_W.items():
new_counter_W_tmp.append((key,value))
new_counter_W_tmp = sorted(new_counter_W_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['W'] = new_counter_W_tmp[0][0]
new_counter_Y = {'TAT':new_counter['TAT'],'TAC':new_counter['TAC']}
new_counter_Y_tmp = []
for key,value in new_counter_Y.items():
new_counter_Y_tmp.append((key,value))
new_counter_Y_tmp = sorted(new_counter_Y_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['Y'] = new_counter_Y_tmp[0][0]
new_counter_V = {'GTT':new_counter['GTT'],'GTC':new_counter['GTC'],'GTA':new_counter['GTA'],'GTG':new_counter['GTG']}
new_counter_V_tmp = []
for key,value in new_counter_V.items():
new_counter_V_tmp.append((key,value))
new_counter_V_tmp = sorted(new_counter_V_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['V'] = new_counter_V_tmp[0][0]
new_counter_end = {'TAA':new_counter['TAA'],'TGA':new_counter['TGA'],'TAG':new_counter['TAG']}
new_counter_end_tmp = []
for key,value in new_counter_end.items():
new_counter_end_tmp.append((key,value))
new_counter_end_tmp = sorted(new_counter_end_tmp, key=lambda code: code[1], reverse=True)
new_genetic_code['*'] = new_counter_end_tmp[0][0]
test = parseFasta(test_seq)
mykey = list(test.keys())
for value in test.values(): #Loop through each sequence
new_value = '' #init new seq
for i in value:
new_value += new_genetic_code[i.upper()]
result_seq.append(new_value)
result = zip(mykey,result_seq)
return freq,new_genetic_code,result
if (len(sys.argv)==3 and 'd2p' in sys.argv): #the mode d2p
result = d2p(sys.argv[2])
with open('d2p_result.txt','w') as OUT:
for i in result:
OUT.write(i[0])
OUT.write("\n")
OUT.write(i[1])
OUT.write("\n")
elif(len(sys.argv)==4 and 'p2d' in sys.argv): #the mode p2d
result = p2d(sys.argv[2],sys.argv[3])
with open('p2d_result.txt','w') as OUT:
for i in result:
OUT.write(i[0])
OUT.write("\n")
OUT.write(i[1])
OUT.write("\n")
elif(len(sys.argv)==4 and 'pp2d' in sys.argv):
frequency,code,result = prediction_p2d(sys.argv[2],sys.argv[3])
with open('frequency_result.txt','w') as OUT1:
for i in frequency:
OUT1.write(i[0]+"\t"+str(i[1])+"\n")
with open('code_result.txt','w') as OUT2:
for key,value in code.items():
OUT2.write(key+" : "+value+"\n")
with open('pp2d_result.txt','w') as OUT:
for i in result:
OUT.write(i[0])
OUT.write("\n")
OUT.write(i[1])
OUT.write("\n")
else:
print("Usage: python transcode.py p2d protein.fa specie(fish,plant,human,bacterial). \
\npython transcode.py d2p dna.fa\npython transcode.py pp2d train.fa protein.fa")