-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
69 lines (56 loc) · 2.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import json
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from text_summarizer import CentroidWordEmbeddingsSummarizer, GensimEmbeddingLoader, Zemberek
class DocLabelIterator(object):
def __init__(self, doc_list, labels_list):
self.labels_list = labels_list
self.doc_list = doc_list
def __iter__(self):
for idx, doc in enumerate(self.doc_list):
yield TaggedDocument(doc, [self.labels_list[idx]])
class SimilarityRatio():
def __init__(self, docs):
self.docs = docs
self.labels = [i for i in range(len(self.docs))]
def calculate(self):
documents = DocLabelIterator(self.docs, self.labels)
model = Doc2Vec(vector_size=100, min_count=1, alpha=0.025, min_alpha=0.025)
model.build_vocab(documents)
# training of model
for _ in range(10):
#print ('iteration '+str(epoch+1))
model.train(documents, total_examples=model.corpus_count, epochs=10)
model.alpha -= 0.002
model.min_alpha = model.alpha
#model.delete_temporary_training_data(keep_doctags_vectors=True, keep_inference=True)
for i in self.labels:
sims = model.docvecs.most_similar(positive = i, topn = 3)
print("### MOST SIMILAR TO {} ###".format(i))
print(sims)
print("\n")
if __name__ == "__main__":
data = None
with open('news.json') as json_file:
data = json.load(json_file)
full_articles = []
full_links = []
for src in data['newspapers']:
articles = data['newspapers'][src]['articles']
for article in articles:
tmp = article['title'] + "\n" + article['text']
full_articles.append(tmp)
full_links.append(article['link'])
comparator = SimilarityRatio(full_articles)
comparator.calculate()
zmbrk = Zemberek()
lines = zmbrk.stopwords()
#print(lines)
print(len(lines))
ge_loader = GensimEmbeddingLoader("word2vec_trwiki")
w2v_model = ge_loader.get_model()
summarizer = CentroidWordEmbeddingsSummarizer(w2v_model, debug=True)
summary = summarizer.summarize(full_articles[0])
print("###############")
print(full_articles[0])
print("###############")
print(summary)