-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression.h
212 lines (187 loc) · 4.19 KB
/
linear_regression.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#ifndef LINEAR_REGRESSION
#define LINEAR_REGRESSION
double dot_product(double * vec1, double * vec2, int K)
{
double sum = 0;
for(int k=0;k<K;k++)
{
sum += vec1[k] * vec2[k];
}
return sum;
}
double sum_array(double * array, int N)
{
double sum = 0;
for(int n=0;n<N;n++)
{
sum += array[n];
}
return sum;
}
void reset_array(double * array, int N)
{
for(int n=0;n<N;n++)
{
array[n] = 0.0;
}
}
double gc(double * src_tseries, const int src_K, const int src_len,
double * tar_tseries, const int tar_K, const int tar_len,
const int W)
{
int iterations = 100;
double gamma, sse;
double alpha_0 = 0.0;
double * alpha = new double[W];
double * beta = new double[W];
for(int i = 0; i < W; i++)
{
alpha[i] = 0.0;
beta[i] = 0.0;
}
//first linear regression problem
double * tmp_vector = new double[tar_K];
for(int iter = 0; iter < iterations; iter++)
{
//estimate alpha_0
double tmp = 0;
double tmp1 = 0;
for(int t = W; t < tar_len; t++)
{
reset_array(tmp_vector, tar_K);
for(int k = 0; k < tar_K; k++)
{
tmp_vector[k] = tar_tseries[t * tar_K + k];
}
for(int i = 0; i < W; i++)
{
for(int k = 0; k < tar_K; k++)
{
tmp_vector[k] -= alpha[i] * tar_tseries[(t - 1 - i) * tar_K + k];
}
}
tmp += sum_array(tmp_vector, tar_K);
}
alpha_0 = tmp / ((tar_len - W) * tar_K);
//estimate alpha_n
for(int n = 0; n < W; n++)
{
tmp = 0;
for(int t = W; t < tar_len; t++)
{
reset_array(tmp_vector, tar_K);
for(int k = 0; k < tar_K; k++)
{
tmp_vector[k] = tar_tseries[t * tar_K + k] - alpha_0;
}
for(int i = 0; i < W; i++)
{
if(n != i)
{
for(int k = 0; k < tar_K; k++)
{
tmp_vector[k] -= alpha[i] * tar_tseries[(t - 1 - i) * tar_K + k];
}
}
}
tmp += dot_product( &tar_tseries[(t - 1 - n) * tar_K], tmp_vector, tar_K );
}
//sum the denominator
tmp1 = 0;
for(int t = W; t < tar_len; t++)
{
tmp1 += dot_product(&tar_tseries[(t - 1 - n) * tar_K],
&tar_tseries[(t - 1 - n) * tar_K], tar_K);
}
alpha[n] = tmp / tmp1;
}
}
//second linear regression
double * constants = new double[ (tar_len - W) * tar_K ];
//constants has to be a matrix
for(int t = W; t < tar_len; t++)
{
//t is a index for the column in x
//t - W is a index normalized to start from 0 for constants
for(int k = 0; k < tar_K; k++)
{
constants[(t - W) * tar_K + k] = tar_tseries[t * tar_K + k] - alpha_0;
}
for(int i = 0; i < W; i++)
{
for(int k = 0; k < tar_K; k++)
{
constants[(t - W) * tar_K + k] -= alpha[i] * tar_tseries[(t - 1 - i) * tar_K + k];
}
}
}
//double * tmp = new double[K];
for(int iter = 0; iter < iterations; iter++)
{
double tmp, tmp1;
//estimate beta_n
for(int n = 0; n < W; n++)
{
tmp = 0;
for(int t = W; t < tar_len; t++)
{
for(int k = 0; k < tar_K; k++)
{
tmp_vector[k] = constants[(t - W) * tar_K + k];
}
for(int i = 0; i < W; i++)
{
if(n != i)
{
for(int k = 0; k < src_K; k++)
{
tmp_vector[k] -= beta[i] * src_tseries[(t - 1 - i) * src_K + k];
}
}
}
tmp += dot_product(&src_tseries[(t - 1 - n) * src_K], tmp_vector, src_K);
}
//sum the denominator
tmp1 = 0;
for(int t = W; t < tar_len; t++)
{
tmp1 += dot_product(&src_tseries[(t - 1 - n) * src_K],
&src_tseries[(t - 1 - n) * src_K], src_K);
}
beta[n] = tmp / tmp1;
}
}
int N = tar_len + src_len;
//for computing the Sum-of-Squared errors (SSE)
double R2 = 0;
double R1 = 0;
for(int t = W; t < tar_len; t++)
{
for(int k = 0; k < tar_K; k++)
{
tmp_vector[k] = tar_tseries[t * tar_K + k] - alpha_0;
}
for(int i = 0; i < W; i++)
{
for(int k = 0; k < tar_K; k++)
{
tmp_vector[k] -= alpha[i] * tar_tseries[(t - 1 - i) * tar_K + k];
}
}
R2 += dot_product(tmp_vector, tmp_vector, tar_K);
for(int i = 0; i < W; i++)
{
for(int k = 0; k < src_K; k++)
{
tmp_vector[k] -= beta[i] * src_tseries[(t - 1 - i) * src_K + k];
}
}
R1 += dot_product(tmp_vector, tmp_vector, src_K);
}
delete [] constants;
delete [] tmp_vector;
delete [] beta;
delete [] alpha;
return ((R2 - R1) / R1) * (N - 2 * W - 1) / W ;
}
#endif