-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathFinetuning.py
158 lines (129 loc) · 5.14 KB
/
Finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#coding:utf-8
import gc
from keras.applications import *
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import numpy as np
from keras.optimizers import *
from keras.preprocessing.image import *
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.pooling import MaxPooling2D
from keras.layers import *
from keras.models import Model
from keras import optimizers
import math
from keras.callbacks import *
import matplotlib.pyplot as plt
from keras.layers.merge import Concatenate
from keras.layers.core import Lambda
import tensorflow as tf
import datetime
def make_parallel(model, gpu_count):
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat([ shape[:1] // parts, shape[1:] ],axis=0)
stride = tf.concat([ shape[:1] // parts, shape[1:]*0 ],axis=0)
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
for i in range(len(model.outputs)):
outputs_all.append([])
#Place a copy of the model on each GPU, each getting a slice of the batch
for i in range(gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
inputs = []
#Slice each input into a piece for processing on this GPU
for x in model.inputs:
input_shape = tuple(x.get_shape().as_list())[1:]
slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx':i,'parts':gpu_count})(x)
inputs.append(slice_n)
outputs = model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
#Save all the outputs for merging back together later
for l in range(len(outputs)):
outputs_all[l].append(outputs[l])
# merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs in outputs_all:
merged.append(Concatenate(axis=0)(outputs))
return Model(model.inputs, merged)
#VGG,ResNet图片预处理
def preprocess_input(x):
# 'RGB'->'BGR'
x = x[:, :, ::-1]
# Zero-center by mean pixel
x[:, :, 0] -= 103.939
x[:, :, 1] -= 116.779
x[:, :, 2] -= 123.68
return x
image_size=(299,299)#跑ResNet等时修改为(224,224)
ft_epoch=12 #微调迭代的epoch数
batch_size=32
np.random.seed(1000)
train_dir = ""
val_dir = ""
top_weights_file='bottleneck_fc_model.h5'#已经训练好的顶层模型权重
ft_weights_file='FineTurning/'#微调后,整个网络的权重文件保存目录
for freeze_layer in [133,165,197,229,249]:
input_tensor = Input(shape=(image_size[0],image_size[1],3))
x = input_tensor
x = Xception(weights='imagenet', include_top=False, input_tensor=x)#换网络时要修改的
x = GlobalAveragePooling2D()(x.output)
top_model_input=Input((int(x.shape[-1]),))
x2=top_model_input
x2=Dropout(0.5)(x2)
x2=Dense(256, activation='relu')(x2)
x2=Dropout(0.5)(x2)
prediction=Dense(100, activation='softmax')(x2)
top_model=Model(top_model_input,prediction)
top_model.load_weights(top_weights_file)
output_tensor = top_model(x)
# this is the model we will train
model = Model(inputs=input_tensor, outputs=output_tensor)
print(len(model.layers))
for layer in model.layers[:freeze_layer]:
layer.trainable = False
for layer in model.layers[freeze_layer:]:
layer.trainable = True
model.compile(optimizer=optimizers.SGD(lr=0.0001, momentum=0.9),loss='categorical_crossentropy',metrics=['accuracy'])
model_parallel = make_parallel(model, 2)
model_parallel.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
train_gen = ImageDataGenerator(
preprocessing_function=xception.preprocess_input
)
val_gen = ImageDataGenerator(
preprocessing_function=xception.preprocess_input
)
classes=list(range(100))
for i,c in zip(range(100),classes):
classes[i]=str(c)
train_generator = train_gen.flow_from_directory(
train_dir,
target_size=image_size,
batch_size=batch_size,
# shuffle=False,
classes=classes,
)
val_generator = val_gen.flow_from_directory(
val_dir,
target_size=image_size,
batch_size=batch_size,
# shuffle=False,
classes=classes
)
model_parallel.fit_generator(
#model.fit_generator(
train_generator,
steps_per_epoch= math.ceil(len(train_generator.filenames)/batch_size),
epochs=ft_epoch,
validation_data=val_generator,
validation_steps=math.ceil(len(val_generator.filenames)/batch_size)
)
now = datetime.datetime.now()
now = now.strftime('%m-%d-%H-%M')
model.save_weights(ft_weights_file+'/%s.h5' % (now+'_'+str(freeze_layer)))
gc.collect()