-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathaxisspec.sas
146 lines (130 loc) · 4.61 KB
/
axisspec.sas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/* SAS Macro AXISSPEC
In a DATA step, calculates the minima and maxima for a list of
variables, and at the last observation in the dataset, defines global
macro variables spec1,...,specp, where p is the number of variables
being processed. These macro variables define "nice" axis
specifications that are generally more pleasing than those derived by
PROC PLOT or PROC GPLOT. The specifications are of the form low TO
high BY inc. The user may specify the number of intervals to make
and may optionally specify the interval width (STEP). If
unspecified, this width will be computed. AXISSPEC uses the
algorithm of J. A. Nelder, Applied Statistics 25:94-7, 1976. The
default number of intervals is N=10.
Usage:
DATA ...; SET ... end=e;
%AXISSPEC(VAR=x y z); *Specify VAR (in quotes if >1) first call only;
%AXISSPEC; *Used if x,y,z values change more than once
for current observation;
%AXISSPEC(end=e,(N=),(STEP=)); *Issue once at end. e=1 if end of file;
PROC PLOT;PLOT y*x/HAXIS=&spec1 VAXIS=&spec2; *For example;
The %AXISSPEC command above without end=e is only issued when
variable values change within the current observation. This happens
for example when preparing for overlaying multiple curves on one
graph. Suppose for example that one wishes to plot a value v and
lower and upper confidence limits cl,cu on the same graph. One would
specify commands such as the following:
y=cl; %AXISSPEC(VAR=y); y=cu; %AXISSPEC(end=e);
PROC PLOT;PLOT v*x='*' cl*x='.' cu*x='.'/OVERLAY VAXIS=&spec1;
If variable values do not change within an observation, only one
AXISSPEC statement is needed: %AXISSPEC(VAR=x y z,end=e);
Author : Frank Harrell
Clinical Biostatistics, Duke University Medical Center
Takima West Corporation
Date : 16 Sep 86
Modified : 17 Sep 86
*/
%MACRO AXISSPEC(var=,end=,n=10,step=);
%let var=%SCAN(&var,1,'"''');
%if &var^= %then %do;
%LOCAL _nv_ i;
%let _nv_=0;
%do i=1 %TO 1000;
%if %SCAN(&var,&i)= %then %goto nomorev;
%let _nv_=%EVAL(&_nv_+1);
%end;
%nomorev:
DROP _rn_ _x_ _fmax_ _fmin_ _step_ _range_ _fact_ _omin_ _omax_
_j_ _ctf_ _unit_1-_unit_13 _tol_ _bias_ _xmin_ _xmax_
_k_ _min_1-_min_&_nv_ _max_1-_max_&_nv_;
RETAIN _unit_1 1 _unit_2 1.2 _unit_3 1.4 _unit_4 1.5 _unit_5 1.6
_unit_6 2 _unit_7 2.5 _unit_8 3 _unit_9 4 _unit_10 5 _unit_11 6
_unit_12 8 _unit_13 10
_tol_ 5E-6 _bias_ 1E-4
_min_1-_min_&_nv_ 1E30 _max_1-_max_&_nv_ -1E30;
ARRAY _unit_{13} _unit_1-_unit_13;
ARRAY _var_{*} &var;
ARRAY _min_{*} _min_1-_min_&_nv_;
ARRAY _max_{*} _max_1-_max_&_nv_;
%end;
do _k_=1 TO DIM(_var_);
_min_{_k_}=MIN(_var_{_k_},_min_{_k_});
_max_{_k_}=MAX(_var_{_k_},_max_{_k_});
end;
%if &end^= %then %do;
if &end then do _k_=1 TO DIM(_var_);
_RN_=&n;
_FMAX_=_max_{_k_};
_FMIN_=_min_{_k_};
_X_=ABS(_FMAX_);
_OMIN_=_FMIN_;
_OMAX_=_FMAX_;
_FACT_=1;
_CTF_=0;
if _X_=0 then _X_=1;
if (_FMAX_-_FMIN_)/_X_<=_TOL_ then do; %*VALUES EFFECTIVELY EQUAL;
if _FMAX_<0 then _FMAX_=0;
else if _FMAX_=0 then _FMAX_=1;
else _FMIN_=0;
end;
%if &step^= %then %do;
_step_=&step;
%goto SKIPSTEP;
%end;
DROP _s_ _i_;
TRYAGAIN:
_STEP_=(_FMAX_-_FMIN_)/_RN_*_FACT_;
_S_=_STEP_;
%*The factor 1+1/_rn_ is inserted in the Nelder algorithm to insure
that the resulting limits include all the data;
LOOP1:
if _S_>=1 then GO TO LOOP10;
_S_=_S_*10;
GO TO LOOP1;
LOOP10:
if _S_<10 then GO TO CALC;
_S_=_S_/10;
GO TO LOOP10;
CALC:_X_=_S_-_BIAS_;
do _I_=1 TO 13;
if _X_<=_UNIT_{_I_} then GO TO FOUND_U;
end;
FOUND_U:
_step_=_step_*_unit_{_i_}/_s_;
%SKIPSTEP:
_range_=_step_*_rn_;
%* MAKE FIRST ESTIMATE OF XMIN;
_X_=.5*(1+(_FMIN_+_FMAX_-_RANGE_)/_STEP_);
_J_=INT(_X_-_BIAS_);
if _X_<0 then _J_=_J_-1;
_XMIN_=_STEP_*_J_;
%* TEST if XMIN COULD BE ZERO;
if _FMIN_>=0 & _RANGE_>=_FMAX_ then _XMIN_=0;
_XMAX_=_XMIN_+_RANGE_;
%* TEST if XMAX COULD BE ZERO;
if _FMAX_<=0 & _RANGE_>=-_FMIN_ then do;
_XMAX_=0;
_XMIN_=-_RANGE_;
end;
%if &step= %then %do;
if _CTF_<4 & ((_XMAX_<_OMAX_)|(_XMIN_>_OMIN_)) then do;
_CTF_=_CTF_+1;
_FACT_=_FACT_*(1+1/_RN_);
GO TO TRYAGAIN;
end;
%end;
CALL SYMPUT("spec"||trim(left(_k_)),
trim(left(_xmin_))||" TO "||trim(left(_xmax_))
||" BY "||trim(left(_step_)));
end;
%end;
%MEND;