-
Notifications
You must be signed in to change notification settings - Fork 166
/
Copy pathwait_strategy.h
380 lines (309 loc) · 13.2 KB
/
wait_strategy.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
// Copyright (c) 2011-2015, Francois Saint-Jacques
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the disruptor-- nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL FRANCOIS SAINT-JACQUES BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef DISRUPTOR_WAITSTRATEGY_H_ // NOLINT
#define DISRUPTOR_WAITSTRATEGY_H_ // NOLINT
#include <sys/time.h>
#include <chrono>
#include <thread>
#include <condition_variable>
#include <vector>
#include "disruptor/sequence.h"
namespace disruptor {
/*
// Strategy employed for a {@link Consumer} to wait on the sequencer's
// cursor and a set of consumers' {@link Sequence}s.
//
class WaitStrategy {
public:
// Wait for the given sequence to be available for consumption.
//
// @param sequence to wait for.
// @param cursor sequencer's cursor.
// @param dependents
// @param alerted indicator of consumer alert.
//
// @return kAltertedSignal if the barrier signaled an alert, otherwise
// return the greatest available sequence which may be greater
// than requested.
int64_t WaitFor(const int64_t& sequence,
const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted);
// Wait for the given sequence to be available for consumption with a
// specified timeout.
//
// @param sequence to wait for.
// @param cursor sequencer maximal sequence.
// @param dependents further back the chain that must advance first.
// @param alerted indicator of consumer state.
// @param timeout indicator of consumer state.
//
// @return kAltertedSignal if the barrier signaled an alert,
// kTimeoutSignal if the the requested timeout was reached while
// waiting, otherwise return the greatest available sequence which
// may be greater than requested.
//
int64_t WaitFor(const int64_t& sequence,
const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& consumer_is_running,
const std::chrono::duration& timeout);
// Signal the strategy that the cursor as advanced. Some strategy depends
// on this behaviour to unblock.
void SignalAllWhenBlocking();
};
*/
// Busy Spin strategy that uses a busy spin loop waiting on a barrier.
// This strategy will use CPU resource to avoid syscalls which can introduce
// latency jitter. It is strongly recommended to pin threads on isolated
// CPU cores to minimize context switching and latency.
class BusySpinStrategy;
// Yielding strategy that uses a thread::yield() for waiting on a barrier.
// This strategy is a good compromise between performance and CPU resource.
template <int64_t S>
class YieldingStrategy;
// Sleeping strategy uses a progressive back off strategy by first spinning for
// S/2 loops, then yielding for S/2 loops, and finally sleeping for
// duration<D,DV> until ready to advance. This is a good strategy for burst
// traffic then quiet periods when latency is not critical.
template <int64_t S, typename D, int DV>
class SleepingStrategy;
// Blocking strategy that waits for the sequencer's cursor to advance on the
// requested sequence.
//
// The sequencer MUST call SignalAllWhenBlocking() to unblock the strategy
// when waiting on the cursor. Once the cursor is advanced, the strategy will
// busy spin on the dependents' sequences and can be cancelled by affecting the
// `alerted` atomic.
//
// The user can optionnaly provide a maximum timeout to the blocking operation,
// see std::condition_any::wait_for() documentation for limitations.
//
// This strategy uses a condition variable inside a lock to block the
// event procesor which saves CPU resource at the expense of lock
// contention. Publishers must explicitely call SignalAllWhenBlocking()
// to unblock consumers. This strategy should be used when performance and
// low-latency are not as important as CPU resource.
class BlockingStrategy;
// defaults
using kDefaultWaitStrategy = BusySpinStrategy;
constexpr int64_t kDefaultRetryLoops = 200L;
using kDefaultDuration = std::chrono::milliseconds;
constexpr int kDefaultDurationValue = 1;
// used internally
static inline std::function<int64_t()> buildMinSequenceFunction(
const Sequence& cursor, const std::vector<Sequence*>& dependents);
class BusySpinStrategy {
public:
BusySpinStrategy() {}
int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted) {
int64_t available_sequence = kInitialCursorValue;
const auto min_sequence = buildMinSequenceFunction(cursor, dependents);
while ((available_sequence = min_sequence()) < sequence) {
if (alerted.load()) return kAlertedSignal;
}
return available_sequence;
}
template <class R, class P>
int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted,
const std::chrono::duration<R, P>& timeout) {
int64_t available_sequence = kInitialCursorValue;
const auto start = std::chrono::system_clock::now();
const auto stop = start + timeout;
const auto min_sequence = buildMinSequenceFunction(cursor, dependents);
while ((available_sequence = min_sequence()) < sequence) {
if (alerted.load()) return kAlertedSignal;
if (stop <= std::chrono::system_clock::now()) return kTimeoutSignal;
}
return available_sequence;
}
virtual void SignalAllWhenBlocking() {}
DISALLOW_COPY_MOVE_AND_ASSIGN(BusySpinStrategy);
};
template <int64_t S = kDefaultRetryLoops>
class YieldingStrategy {
public:
YieldingStrategy() {}
int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted) {
int64_t available_sequence = kInitialCursorValue;
int counter = S;
const auto min_sequence = buildMinSequenceFunction(cursor, dependents);
while ((available_sequence = min_sequence()) < sequence) {
if (alerted.load()) return kAlertedSignal;
counter = ApplyWaitMethod(counter);
}
return available_sequence;
}
template <class R, class P>
int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted,
const std::chrono::duration<R, P>& timeout) {
int64_t available_sequence = kInitialCursorValue;
int64_t counter = S;
const auto start = std::chrono::system_clock::now();
const auto stop = start + timeout;
const auto min_sequence = buildMinSequenceFunction(cursor, dependents);
while ((available_sequence = min_sequence()) < sequence) {
if (alerted.load()) return kAlertedSignal;
counter = ApplyWaitMethod(counter);
if (stop <= std::chrono::system_clock::now()) return kTimeoutSignal;
}
return available_sequence;
}
virtual void SignalAllWhenBlocking() {}
private:
inline int64_t ApplyWaitMethod(int64_t counter) {
if (counter) {
return --counter;
}
std::this_thread::yield();
return counter;
}
DISALLOW_COPY_MOVE_AND_ASSIGN(YieldingStrategy);
};
template <int64_t S = kDefaultRetryLoops, typename D = kDefaultDuration,
int DV = kDefaultDurationValue>
class SleepingStrategy {
public:
SleepingStrategy() {}
int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted) {
int64_t available_sequence = kInitialCursorValue;
int counter = S;
const auto min_sequence = buildMinSequenceFunction(cursor, dependents);
while ((available_sequence = min_sequence()) < sequence) {
if (alerted.load()) return kAlertedSignal;
counter = ApplyWaitMethod(counter);
}
return available_sequence;
}
template <class R, class P>
int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted,
const std::chrono::duration<R, P>& timeout) {
int64_t available_sequence = kInitialCursorValue;
int64_t counter = S;
const auto start = std::chrono::system_clock::now();
const auto stop = start + timeout;
const auto min_sequence = buildMinSequenceFunction(cursor, dependents);
while ((available_sequence = min_sequence()) < sequence) {
if (alerted.load()) return kAlertedSignal;
counter = ApplyWaitMethod(counter);
if (stop <= std::chrono::system_clock::now()) return kTimeoutSignal;
}
return available_sequence;
}
void SignalAllWhenBlocking() {}
private:
inline int64_t ApplyWaitMethod(int64_t counter) {
if (counter > (S / 2)) {
--counter;
} else if (counter > 0) {
--counter;
std::this_thread::yield();
} else {
std::this_thread::sleep_for(D(DV));
}
return counter;
}
DISALLOW_COPY_MOVE_AND_ASSIGN(SleepingStrategy);
};
class BlockingStrategy {
public:
BlockingStrategy() {}
int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted) {
return WaitFor(sequence, cursor, dependents, alerted, [this](Lock& lock) {
consumer_notify_condition_.wait(lock);
return false;
});
}
template <class Rep, class Period>
int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted,
const std::chrono::duration<Rep, Period>& timeout) {
return WaitFor(sequence, cursor, dependents, alerted,
[this, timeout](Lock& lock) {
return std::cv_status::timeout ==
consumer_notify_condition_.wait_for(
lock, std::chrono::microseconds(timeout));
});
}
void SignalAllWhenBlocking() {
std::unique_lock<std::recursive_mutex> ulock(mutex_);
consumer_notify_condition_.notify_all();
}
private:
using Lock = std::unique_lock<std::recursive_mutex>;
using Waiter = std::function<bool(Lock&)>;
inline int64_t WaitFor(const int64_t& sequence, const Sequence& cursor,
const std::vector<Sequence*>& dependents,
const std::atomic<bool>& alerted,
const Waiter& locker) {
int64_t available_sequence = kInitialCursorValue;
// BlockingStrategy is a special case where the unblock signal comes from
// the sequencer. This is why we need to wait on the cursor first, and
// then on the dependents.
if ((available_sequence = cursor.sequence()) < sequence) {
std::unique_lock<std::recursive_mutex> ulock(mutex_);
while ((available_sequence = cursor.sequence()) < sequence) {
if (alerted) return kAlertedSignal;
// locker indicate if a timeout occured
if (locker(ulock)) return kTimeoutSignal;
}
}
// Now we wait on dependents.
if (dependents.size()) {
while ((available_sequence = GetMinimumSequence(dependents)) < sequence) {
if (alerted) return kAlertedSignal;
}
}
return available_sequence;
}
// members
std::recursive_mutex mutex_;
std::condition_variable_any consumer_notify_condition_;
DISALLOW_COPY_MOVE_AND_ASSIGN(BlockingStrategy);
};
static inline std::function<int64_t()> buildMinSequenceFunction(
const Sequence& cursor, const std::vector<Sequence*>& dependents) {
if (!dependents.size())
return [&cursor]() { return cursor.sequence(); };
else
return [&dependents]() { return GetMinimumSequence(dependents); };
}
}; // namespace disruptor
#endif // DISRUPTOR_WAITSTRATEGY_H_ NOLINT