forked from martius-lab/hockey-env
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
executable file
·44 lines (32 loc) · 1.25 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 11 09:16:26 2021
@author: johannes
"""
from DQN import agent, training
from DQN.genetic_optimization import GeneticOptimization
import laserhockey.hockey_env as h_env
from laserhockey.gameplay import gameplay
from DDPG.ddpg_agent import DDPGAgent
from TD3.agent import TD3
from laserhockey.TrainingHall import TrainingHall2
from laserhockey.gameplay import Tournament
env = h_env.HockeyEnv()
td5 = TD3(pretrained='continuation')
td4 = TD3(pretrained='superagent')
td3 = TD3(pretrained='overfit')
td2 = TD3(pretrained='traininghall')
td1 = TD3(pretrained='td3')
strong_basic_opponent = h_env.BasicOpponent(weak=False)
weak_basic_opponent = h_env.BasicOpponent(weak=True)
# ddpg = DDPGAgent(pretrained="DDPG/weights/ddpg-checkpoint4")
# q_agent = agent.DQNAgent(env.observation_space, env.discrete_action_space,
# convert_func = env.discrete_to_continous_action,
# pretrained = 'DQN/weights/alg2')
# agents = [weak_basic_opponent, strong_basic_opponent, td5,ddpg,q_agent]
# tournament = Tournament(env, agents)
# tournament.run(100)
# tournament.print_scores()
# tournament.show_results()
gameplay(env, td4, strong_basic_opponent, N=10, show=True)