-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy patheval_moco_ins.py
487 lines (392 loc) · 17.8 KB
/
eval_moco_ins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
"""
evaluating MoCo and Instance Discrimination
InsDis: Unsupervised feature learning via non-parametric instance discrimination
MoCo: Momentum Contrast for Unsupervised Visual Representation Learning
"""
from __future__ import print_function
import os
import sys
import time
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import argparse
import socket
import torch.multiprocessing as mp
import torch.distributed as dist
import tensorboard_logger as tb_logger
from torchvision import transforms, datasets
from util import adjust_learning_rate, AverageMeter
from models.resnet import InsResNet50
from models.LinearModel import LinearClassifierResNet
def parse_option():
hostname = socket.gethostname()
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--tb_freq', type=int, default=500, help='tb frequency')
parser.add_argument('--save_freq', type=int, default=5, help='save frequency')
parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
parser.add_argument('--num_workers', type=int, default=32, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=60, help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.1, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='30,40,50', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.2, help='decay rate for learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=0, help='weight decay')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam')
# model definition
parser.add_argument('--model', type=str, default='resnet50', choices=['resnet50', 'resnet50x2', 'resnet50x4'])
parser.add_argument('--model_path', type=str, default=None, help='the model to test')
parser.add_argument('--layer', type=int, default=6, help='which layer to evaluate')
# crop
parser.add_argument('--crop', type=float, default=0.2, help='minimum crop')
# dataset
parser.add_argument('--dataset', type=str, default='imagenet100', choices=['imagenet100', 'imagenet'])
# resume
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# augmentation
parser.add_argument('--aug', type=str, default='CJ', choices=['NULL', 'CJ'])
# add BN
parser.add_argument('--bn', action='store_true', help='use parameter-free BN')
parser.add_argument('--cosine', action='store_true', help='use cosine annealing')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
# warmup
parser.add_argument('--warm', action='store_true', help='add warm-up setting')
parser.add_argument('--amp', action='store_true', help='using mixed precision')
parser.add_argument('--opt_level', type=str, default='O2', choices=['O1', 'O2'])
parser.add_argument('--syncBN', action='store_true', help='enable synchronized BN')
# GPU setting
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
opt = parser.parse_args()
# set the path according to the environment
if hostname.startswith('visiongpu'):
opt.data_folder = '/dev/shm/yonglong/{}'.format(opt.dataset)
opt.save_path = '/data/vision/phillip/rep-learn/Pedesis/CMC/{}_linear'.format(opt.dataset)
opt.tb_path = '/data/vision/phillip/rep-learn/Pedesis/CMC/{}_linear_tensorboard'.format(opt.dataset)
if opt.dataset == 'imagenet':
if 'alexnet' not in opt.model:
opt.crop = 0.08
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_name = opt.model_path.split('/')[-2]
opt.model_name = '{}_bsz_{}_lr_{}_decay_{}_crop_{}'.format(opt.model_name, opt.batch_size, opt.learning_rate,
opt.weight_decay, opt.crop)
if opt.amp:
opt.model_name = '{}_amp_{}'.format(opt.model_name, opt.opt_level)
opt.model_name = '{}_aug_{}'.format(opt.model_name, opt.aug)
if opt.bn:
opt.model_name = '{}_useBN'.format(opt.model_name)
if opt.adam:
opt.model_name = '{}_useAdam'.format(opt.model_name)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name + '_layer{}'.format(opt.layer))
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.save_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
if opt.dataset == 'imagenet100':
opt.n_label = 100
if opt.dataset == 'imagenet':
opt.n_label = 1000
return opt
def main():
global best_acc1
best_acc1 = 0
args = parse_option()
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# set the data loader
train_folder = os.path.join(args.data_folder, 'train')
val_folder = os.path.join(args.data_folder, 'val')
image_size = 224
crop_padding = 32
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
normalize = transforms.Normalize(mean=mean, std=std)
if args.aug == 'NULL':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(image_size, scale=(args.crop, 1.)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
elif args.aug == 'CJ':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(image_size, scale=(args.crop, 1.)),
transforms.RandomGrayscale(p=0.2),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
raise NotImplemented('augmentation not supported: {}'.format(args.aug))
train_dataset = datasets.ImageFolder(train_folder, train_transform)
val_dataset = datasets.ImageFolder(
val_folder,
transforms.Compose([
transforms.Resize(image_size + crop_padding),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
normalize,
])
)
print(len(train_dataset))
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.num_workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
# create model and optimizer
if args.model == 'resnet50':
model = InsResNet50()
classifier = LinearClassifierResNet(args.layer, args.n_label, 'avg', 1)
elif args.model == 'resnet50x2':
model = InsResNet50(width=2)
classifier = LinearClassifierResNet(args.layer, args.n_label, 'avg', 2)
elif args.model == 'resnet50x4':
model = InsResNet50(width=4)
classifier = LinearClassifierResNet(args.layer, args.n_label, 'avg', 4)
else:
raise NotImplementedError('model not supported {}'.format(args.model))
print('==> loading pre-trained model')
ckpt = torch.load(args.model_path)
model.load_state_dict(ckpt['model'])
print("==> loaded checkpoint '{}' (epoch {})".format(args.model_path, ckpt['epoch']))
print('==> done')
model = model.cuda()
classifier = classifier.cuda()
criterion = torch.nn.CrossEntropyLoss().cuda(args.gpu)
if not args.adam:
optimizer = torch.optim.SGD(classifier.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
else:
optimizer = torch.optim.Adam(classifier.parameters(),
lr=args.learning_rate,
betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay,
eps=1e-8)
model.eval()
cudnn.benchmark = True
# set mixed precision training
# if args.amp:
# model = amp.initialize(model, opt_level=args.opt_level)
# classifier, optimizer = amp.initialize(classifier, optimizer, opt_level=args.opt_level)
# optionally resume from a checkpoint
args.start_epoch = 1
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
# checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch'] + 1
classifier.load_state_dict(checkpoint['classifier'])
optimizer.load_state_dict(checkpoint['optimizer'])
best_acc1 = checkpoint['best_acc1']
best_acc1 = best_acc1.cuda()
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
if 'opt' in checkpoint.keys():
# resume optimization hyper-parameters
print('=> resume hyper parameters')
if 'bn' in vars(checkpoint['opt']):
print('using bn: ', checkpoint['opt'].bn)
if 'adam' in vars(checkpoint['opt']):
print('using adam: ', checkpoint['opt'].adam)
if 'cosine' in vars(checkpoint['opt']):
print('using cosine: ', checkpoint['opt'].cosine)
args.learning_rate = checkpoint['opt'].learning_rate
# args.lr_decay_epochs = checkpoint['opt'].lr_decay_epochs
args.lr_decay_rate = checkpoint['opt'].lr_decay_rate
args.momentum = checkpoint['opt'].momentum
args.weight_decay = checkpoint['opt'].weight_decay
args.beta1 = checkpoint['opt'].beta1
args.beta2 = checkpoint['opt'].beta2
del checkpoint
torch.cuda.empty_cache()
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# set cosine annealing scheduler
if args.cosine:
# last_epoch = args.start_epoch - 2
# eta_min = args.learning_rate * (args.lr_decay_rate ** 3) * 0.1
# scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min, last_epoch)
eta_min = args.learning_rate * (args.lr_decay_rate ** 3) * 0.1
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min, -1)
# dummy loop to catch up with current epoch
for i in range(1, args.start_epoch):
scheduler.step()
# tensorboard
logger = tb_logger.Logger(logdir=args.tb_folder, flush_secs=2)
# routine
for epoch in range(args.start_epoch, args.epochs + 1):
if args.cosine:
scheduler.step()
else:
adjust_learning_rate(epoch, args, optimizer)
print("==> training...")
time1 = time.time()
train_acc, train_acc5, train_loss = train(epoch, train_loader, model, classifier, criterion, optimizer, args)
time2 = time.time()
print('train epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
logger.log_value('train_acc', train_acc, epoch)
logger.log_value('train_acc5', train_acc5, epoch)
logger.log_value('train_loss', train_loss, epoch)
logger.log_value('learning_rate', optimizer.param_groups[0]['lr'], epoch)
print("==> testing...")
test_acc, test_acc5, test_loss = validate(val_loader, model, classifier, criterion, args)
logger.log_value('test_acc', test_acc, epoch)
logger.log_value('test_acc5', test_acc5, epoch)
logger.log_value('test_loss', test_loss, epoch)
# save the best model
if test_acc > best_acc1:
best_acc1 = test_acc
state = {
'opt': args,
'epoch': epoch,
'classifier': classifier.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}
save_name = '{}_layer{}.pth'.format(args.model, args.layer)
save_name = os.path.join(args.save_folder, save_name)
print('saving best model!')
torch.save(state, save_name)
# save model
if epoch % args.save_freq == 0:
print('==> Saving...')
state = {
'opt': args,
'epoch': epoch,
'classifier': classifier.state_dict(),
'best_acc1': test_acc,
'optimizer': optimizer.state_dict(),
}
save_name = 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch)
save_name = os.path.join(args.save_folder, save_name)
print('saving regular model!')
torch.save(state, save_name)
# tensorboard logger
pass
def set_lr(optimizer, lr):
"""
set the learning rate
"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(epoch, train_loader, model, classifier, criterion, optimizer, opt):
"""
one epoch training
"""
model.eval()
classifier.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for idx, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if opt.gpu is not None:
input = input.cuda(opt.gpu, non_blocking=True)
input = input.float()
target = target.cuda(opt.gpu, non_blocking=True)
# ===================forward=====================
with torch.no_grad():
feat = model(input, opt.layer)
feat = feat.detach()
output = classifier(feat)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# ===================backward=====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================meters=====================
batch_time.update(time.time() - end)
end = time.time()
# print info
if idx % opt.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, idx, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
sys.stdout.flush()
return top1.avg, top5.avg, losses.avg
def validate(val_loader, model, classifier, criterion, opt):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
classifier.eval()
with torch.no_grad():
end = time.time()
for idx, (input, target) in enumerate(val_loader):
input = input.float()
if opt.gpu is not None:
input = input.cuda(opt.gpu, non_blocking=True)
input = input.float()
target = target.cuda(opt.gpu, non_blocking=True)
# compute output
feat = model(input, opt.layer)
feat = feat.detach()
output = classifier(feat)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % opt.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
idx, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg, losses.avg
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
best_acc1 = 0
main()