-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug.Rmd
178 lines (139 loc) · 4.84 KB
/
debug.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
title: "ScrubletR"
output: html_document
date: "2024-02-02"
always_allow_html: true
editor_options:
chunk_output_type: console
---
## Installing scrubletR
You will need to have the devtools package installed...
```{r, eval=F}
devtools::install_github("furlan-lab/scrubletR")
```
## Load data
```{r, dpi=300, fig.height=4, fig.width = 6, warning=F, message=F}
suppressPackageStartupMessages({
library(viewmastRust)
library(Seurat)
library(scCustomize)
})
if(grepl("^gizmo", Sys.info()["nodename"])){
ROOT_DIR2<-"/fh/fast/furlan_s/grp/data/ddata/BM_data"
} else {
ROOT_DIR2<-"/Users/sfurlan/Library/CloudStorage/OneDrive-SharedLibraries-FredHutchinsonCancerCenter/Furlan_Lab - General/experiments/patient_marrows/aggr/cds/indy"
}
#query dataset
seuP<-readRDS(file.path(ROOT_DIR2, "220831_WC1.RDS"))
DimPlot_scCustom(seuP)
counts_matrix<-t(seuP@assays$RNA@counts[,1:2000])
counts_matrix<-t(seuP@assays$RNA@counts)
```
## Check Python Scrublet doublet scores
```{python}
import numpy as np
import scrublet as scr
scrub = scr.Scrublet(r.counts_matrix)
scrub._E_obs.data.shape
##set params
synthetic_doublet_umi_subsampling=1.0
use_approx_neighbors=True
distance_metric='euclidean'
get_doublet_neighbor_parents=False
min_counts=3
min_cells=3
min_gene_variability_pctl=85
log_transform=False
mean_center=True,
normalize_variance=True
n_prin_comps=30
svd_solver='arpack'
verbose=True
# doublet_scores, predicted_doublets = scrub.scrub_doublets()
scrub._E_sim = None
scrub._E_obs_norm = None
scrub._E_sim_norm = None
scrub._gene_filter = np.arange(scrub._E_obs.shape[1])
scr.pipeline_normalize(scrub)
r.py_E_obs_norm = scrub._E_obs_norm.data
scr.pipeline_get_gene_filter(scrub, min_counts=min_counts, min_cells=min_cells, min_gene_variability_pctl=min_gene_variability_pctl)
scrub._gene_filter.shape
pipeline_apply_gene_filter(scrub)
print_optional('Simulating doublets...', verbose)
scrub.simulate_doublets(sim_doublet_ratio=scrub.sim_doublet_ratio, synthetic_doublet_umi_subsampling=synthetic_doublet_umi_subsampling)
pipeline_normalize(scrub, postnorm_total=1e6)
if log_transform:
pipeline_log_transform(scrub)
if mean_center and normalize_variance:
pipeline_zscore(scrub)
elif mean_center:
pipeline_mean_center(scrub)
elif normalize_variance:
pipeline_normalize_variance(scrub)
if mean_center:
print_optional('Embedding transcriptomes using PCA...', verbose)
pipeline_pca(scrub, n_prin_comps=n_prin_comps, random_state=scrub.random_state, svd_solver=svd_solver)
else:
print_optional('Embedding transcriptomes using Truncated SVD...', verbose)
pipeline_truncated_svd(scrub, n_prin_comps=n_prin_comps, random_state=scrub.random_state, algorithm=svd_solver)
print_optional('Calculating doublet scores...', verbose)
scrub.calculate_doublet_scores(
use_approx_neighbors=use_approx_neighbors,
distance_metric=distance_metric,
get_doublet_neighbor_parents=get_doublet_neighbor_parents
)
scrub.call_doublets(verbose=verbose)
t1=time.time()
print_optional('Elapsed time: {:.1f} seconds'.format(t1 - t0), verbose)
```
## Check scrubletR
```{r}
scr<-Scrublet$new(counts_matrix = counts_matrix)
scr$pipeline_normalize()
ix<-sample(1:length(scr$E_obs_norm@x), 20000)
ggplot(data.frame(x=scr$E_obs_norm@x[ix], y = py_E_obs_norm[ix]), aes(x=x, y=y))+geom_point()
#debug(scr$pipeline_pca)
#debug(scr$scrub_doublets)
ds<-scr$scrub_doublets()
length(scr$gene_filter)
seuP$ds<-ds$doublet_scores
seuP$dsP <- dsP
seuP$dsPr <- dsPr
FeaturePlot_scCustom(seuP, features = "ds")
FeaturePlot_scCustom(seuP, features = "dsP")
DimPlot(seuP, group.by = "dsPr")
ggplot(data.frame(ds = seuP$dsP), aes(x=ds))+geom_density()
```
```{r}
library("mixtools")
#' Plot a Mixture Component
#'
#' @param x Input data
#' @param mu Mean of component
#' @param sigma Standard deviation of component
#' @param lam Mixture weight of component
plot_mix_comps <- function(x, mu, sigma, lam) {
lam * dnorm(x, mu, sigma)
}
set.seed(1)
wait <- seuP$dsP
mixmdl <- normalmixEM(wait, k = 2)
data.frame(x = mixmdl$x) %>%
ggplot() +
geom_histogram(aes(x, ..density..), binwidth = 0.01, colour = "black",
fill = "white") +
stat_function(geom = "line", fun = plot_mix_comps,
args = list(mixmdl$mu[1], mixmdl$sigma[1], lam = mixmdl$lambda[1]),
colour = "red", lwd = 1.5) +
stat_function(geom = "line", fun = plot_mix_comps,
args = list(mixmdl$mu[2], mixmdl$sigma[2], lam = mixmdl$lambda[2]),
colour = "blue", lwd = 1.5) +
ylab("Density")
seuP$dp_sf<-mixmdl$posterior[,2]>0.85 & mixmdl$posterior[,1]<0.15
DimPlot(seuP, group.by = "dp_sf")
```
## Appendix
```{r Appendix}
sessionInfo()
getwd()
```