-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtrain.py
99 lines (82 loc) · 5.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""General-purpose training script for M3D-VTON.
This script works for various models (with option '--model': e.g., MTM, TFM, DRM) and different dataset mode (with option '--datamode': e.g., unaligned, aligned).
You need to specify the dataset ('--dataroot'), datamode ('--datamode'), datalist('--datalist'), experiment name ('--name'), and model ('--model').
It first creates model, dataset, and visualizer given the option.
It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models.
The script supports continue/resume training. Use '--continue_train' and reset '--epoch_count' to resume your previous training from the specified 'epoch_count'.
Option '--warproot' is required for training/testing TFM and DRM model, it is a root folder containing MTM warping results:
- warproot
- warp-cloth
- TO221E0E1-K12@12=cloth_front.jpg
- ...
- warp-cloth-sobel
- TO221E0E1-K12@12=cloth_front_cobelx.png
- TO221E0E1-K12@12=cloth_front_cobely.png
- ...
- warp-mask
- TO221E0E1-K12@12=cloth_front_mask.jpg
- ...
- initial-depth
- TO221E0E1-K12@12=person_initial_front_depth.npy
- TO221E0E1-K12@12=person_initial_back_depth.npy
- ...
- segmt
- TO221E0E1-K12@12=person_whole_segmt.png
- ...
See options/base_options.py and options/train_options.py for more training options.
"""
import time
import torch
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
if __name__ == '__main__':
train_start_time = time.time() # timer for training
opt = TrainOptions().parse() # get training options
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers (if any)
model.train()
total_iters = 0 # the total number of training iterations
for epoch in range(opt.epoch_count, opt.n_epochs_keep + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += 1
epoch_iter += 1
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters()
if total_iters % opt.print_freq == 0: # print & plot training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
visualizer.plot_current_losses(total_iters, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if epoch % opt.display_epoch_freq == 0: # display images on tensorboard
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, total_iters)
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, total iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
model.update_learning_rate() # update learning rates at the end of every epoch.
message = 'End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs_keep + opt.n_epochs_decay, time.time() - epoch_start_time)
print(message)
with open(visualizer.log_name, "a") as log_file:
log_file.write('%s\n' % message) # save the message
train_end_message = 'End of training \t Time Taken: %.3f hours' % ((time.time() - train_start_time)/3600.0)
print(train_end_message)
with open(visualizer.log_name, "a") as log_file:
log_file.write('%s\n' % train_end_message) # save the message