Skip to content

Latest commit

 

History

History
36 lines (27 loc) · 1.15 KB

README.md

File metadata and controls

36 lines (27 loc) · 1.15 KB

InstRecognition Tool

An instrument recognition tool

  • Note: More details on dataset, concept and implementation are available in the Jupyter notebook file IRT.ipynb.

Instructions and prerequisites

Prerequisites
  • Anaconda 5.2.0 for Python 3.6 (py36_3)
  • conda 4.6.3 (py36_0)
  • Jupyter notebook 5.5.0
  • numpy 1.14.3
  • scikit-learn 0.19.1
  • glob2 0.6
  • librosa 0.6.3 from conda-forge
  • IRMAS dataset from https://www.upf.edu/web/mtg/irmas

Additionally, it is required that the extracted IRMAS datasets are placed in the following folder:

  • D:\College\Soft Computing\Data

The folder structure of Data folder should then look like:

  • \ IRMAS-TestingData-Part1 \ Part1 \ {.wav & .txt files}
  • \ IRMAS-TestingData-Part2 \ IRTestingData-Part2 \ {.wav & .txt files}
  • \ IRMAS-TestingData-Part3 \ Part3 \ {.wav & .txt files}
  • \ IRMAS-TrainingData \ {instrument label} \ {.wav files}
  • \ DEFENSE \ {.wav & .txt files}
Instructions
  1. Clone the project repository.
  2. Open the IRT.ipynb file in a Jupyter Notebook.
  3. From the toolbar, click on Cell, then on Run All.
  4. Enjoy the awesomeness that is this project.
  5. Grade generously.