-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
66 lines (56 loc) · 2.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import argparse
from numpy.random import RandomState
from model import *
from utils import *
# python3 train.py --train_path ./data/train_data --workdir ./data/ --model_type mobilenetV2
parser = argparse.ArgumentParser()
parser.add_argument('--train_path', type=str, required=True)
parser.add_argument('--workdir', type=str, required=True)
parser.add_argument('--model_type', default="mobilenetV2", type=str)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--max_lr', default=.5, type=float)
parser.add_argument('--loss_window', default=10, type=int)
parser.add_argument('--loss_growth_trsh', default=.5, type=float)
parser.add_argument('--alpha', default=.1, type=float)
parser.add_argument('--wd', default=0., type=float)
parser.add_argument('--freeze_encoder', default=False, type=bool)
parser.add_argument('--max_lr_decay', default=.8, type=float)
parser.add_argument('--epoch', default=200, type=int)
parser.add_argument('--learning_rate', default=1e-4, type=float)
parser.add_argument('--bce_loss_weight', default=.5, type=float)
parser.add_argument('--reduce_lr_patience', default=0, type=int)
parser.add_argument('--reduce_lr_factor', default=0, type=int)
parser.add_argument('--CLR', default=0, type=int)
args = parser.parse_args()
path_images = list(map(
lambda x: x.split('.')[0],
filter(lambda x: x.endswith('.jpg'), os.listdir(args["train_path"]))))
prng = RandomState(42)
path_images *= 3
prng.shuffle(path_images)
train_split = int(len(path_images)*.8)
train_images, val_images = path_images[:train_split], path_images[train_split:]
dataset = DatasetProcessor(
args["train_path"], train_images, as_torch_tensor=True, augmentations=True, mask_weight=True)
dataset_val = DatasetProcessor(
args["train_path"], val_images, as_torch_tensor=True, augmentations=True, mask_weight=True)
model_params = {
"directory":args["workdir"],
"model":args["model_type"],
"model_name":"%s_model" % (args["model_type"]),
"Dropout":.4,
"device_idx":0,
"pretrained":True,
"num_classes":1,
"num_filters":32,
"reset":True,
"ADAM":True
}
trainer = Trainer(**model_params)
if args["CLR"] != 0:
trainer.LR_finder(dataset, **args)
trainer.show_lr_finder_out(save_only=True)
trainer.fit(dataset, dataset_val, **args)
trainer.plot_trainer_history(mode="loss", save_only=True)
trainer.plot_trainer_history(mode="metric", save_only=True)