-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmain.py
63 lines (50 loc) · 2.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import sys
import argparse
from load_images import *
from load_label import *
from extraction_preprocess import *
from training import *
##Note that the whole process will take a long time... please be patient
def main(config):
# Define the dataset and expression to spot
dataset_name = config.dataset_name
expression_type = config.expression_type
train = config.train
show_plot = config.show_plot
print(' ------ Spotting', dataset_name, expression_type, '-------')
# Load Images
print('\n ------ Croping Images ------')
#Can comment this out after completed on the dataset specified and intend to try on another expression_type
crop_images(dataset_name)
print("\n ------ Loading Images ------")
images, subjects, subjectsVideos = load_images(dataset_name)
#images = pickle.load( open( dataset_name + "_images_crop.pkl", "rb" ) )
# Load Ground Truth Label
print('\n ------ Loading Excel ------')
codeFinal = load_excel(dataset_name)
print('\n ------ Loading Ground Truth From Excel ------')
final_images, final_videos, final_subjects, final_samples = load_gt(dataset_name, expression_type, images, subjectsVideos, subjects, codeFinal)
print('\n ------ Computing k ------')
k = cal_k(dataset_name, expression_type, final_samples)
# Feature Extraction & Pre-processing
print('\n ------ Feature Extraction & Pre-processing ------')
dataset = extract_preprocess(final_images, k)
# Pseudo-labeling
print('\n ------ Pseudo-Labeling ------')
pseudo_y = pseudo_labeling(final_images, final_samples, k)
# LOSO
print('\n ------ Leave one Subject Out ------')
X, y, groupsLabel = loso(dataset, pseudo_y, final_images, final_samples, k)
# Model Training & Evaluation
print('\n ------ SOFTNet Training & Testing ------')
TP, FP, FN, metric_fn = training(X, y, groupsLabel, dataset_name, expression_type, final_samples, k, dataset, train, show_plot)
final_evaluation(TP, FP, FN, metric_fn)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--dataset_name', type=str, default='CASME_sq') # Specify CASME_sq or SAMMLV only
parser.add_argument('--expression_type', type=str, default='micro-expression') # Specify micro-expression or macro-expression only
parser.add_argument('--train', type=bool, default=False) #Train or use pre-trained weight for prediction
parser.add_argument('--show_plot', type=bool, default=False)
config = parser.parse_args()
main(config)