forked from mindspore-lab/mindone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_textual_inversion.py
550 lines (508 loc) · 22 KB
/
train_textual_inversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import argparse
import logging
import os
import time
import yaml
from common import init_env
from ldm.data.dataset_textual_inversion import load_data
from ldm.modules.logger import set_logger
from ldm.modules.textual_inversion.manager import TextualInversionManager
from ldm.modules.train.ema import EMA
from ldm.modules.train.lr_schedule import create_scheduler
from ldm.modules.train.optim import build_optimizer
from ldm.modules.train.trainer import TrainOneStepWrapper
from ldm.util import count_params, instantiate_from_config, load_pretrained_model, str2bool
from utils.download import download_checkpoint
import mindspore as ms
from mindspore import Tensor
from mindspore.nn.wrap.loss_scale import FixedLossScaleUpdateCell
os.environ["HCCL_CONNECT_TIMEOUT"] = "6000"
logger = logging.getLogger(__name__)
_version_cfg = {
"2.1": ("sd_v2-1_base-7c8d09ce.ckpt", "v2-inference.yaml", 512),
"2.1-v": ("sd_v2-1_768_v-061732d1.ckpt", "v2-vpred-inference.yaml", 768),
"2.0": ("sd_v2_base-57526ee4.ckpt", "v2-inference.yaml", 512),
"2.0-v": ("sd_v2_768_v-e12e3a9b.ckpt", "v2-vpred-inference.yaml", 768),
"1.5": ("sd_v1.5-d0ab7146.ckpt", "v1-inference.yaml", 512),
"1.5-wukong": ("wukong-huahua-ms.ckpt", "v1-inference-chinese.yaml", 512),
}
_URL_PREFIX = "https://download.mindspore.cn/toolkits/mindone/stable_diffusion"
_MIN_CKPT_SIZE = 4.0 * 1e9
def read_template_file(template_file):
assert os.path.exists(template_file), f"{template_file} does not exist!"
with open(template_file, "r") as f:
lines = f.readlines()
lines = [line.strip() for line in lines]
return lines
def _check_cfgs_in_parser(cfgs: dict, parser: argparse.ArgumentParser):
actions_dest = [action.dest for action in parser._actions]
defaults_key = parser._defaults.keys()
for k in cfgs.keys():
if k not in actions_dest and k not in defaults_key:
raise KeyError(f"{k} does not exist in ArgumentParser!")
def parse_args():
parser = argparse.ArgumentParser(description="A training script for dreambooth.")
parser.add_argument("--mode", default=0, type=int, help="Specify the mode: 0 for graph mode, 1 for pynative mode")
parser.add_argument(
"-v",
"--version",
type=str,
nargs="?",
default="1.5",
help="Stable diffusion version. Options: '2.1', '2.1-v', '2.0', '2.0-v', '1.5', '1.5-wukong'",
)
parser.add_argument("--use_parallel", default=False, type=str2bool, help="Enable parallel processing")
parser.add_argument(
"--train_config",
default="configs/train/train_config_textual_inversion_v1.yaml",
type=str,
help="Specify the path to the train config file",
)
parser.add_argument(
"--model_config", default="configs/v1-train-textual-inversion.yaml", type=str, help="model config path"
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help="Specify the path to the training data directory",
)
parser.add_argument(
"--pretrained_model_path", default=None, type=str, help="Specify the directory of the pretrained model"
)
parser.add_argument(
"--pretrained_model_file",
default=None,
type=str,
help="Specify the filename of the pretrained model",
)
parser.add_argument(
"--output_path",
type=str,
default="output",
help="Specify the output directory where the model predictions and checkpoints will be written.",
)
#
parser.add_argument(
"--learnable_property",
type=str,
default="object",
choices=["object", "style"],
help="Choose between 'object' and 'style'",
)
parser.add_argument(
"--placeholder_token",
type=str,
default=None,
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--initializer_token",
type=str,
default=None,
help="A token to use as initializer word." " If None, the new embedding will be initialized randomly",
)
parser.add_argument(
"--num_vectors",
type=int,
default=1,
help="How many textual inversion vectors shall be used to learn the concept.",
)
parser.add_argument(
"--train_data_repeats",
type=int,
default=1,
help=("Repeat the train(finetune) images by N times"),
)
# image
parser.add_argument(
"--random_crop",
default=True,
type=str2bool,
help="Specify whether to use random crop. If set to False, center crop will be used.",
)
parser.add_argument("--filter_small_size", default=True, type=str2bool, help="filter small images")
parser.add_argument("--image_size", default=512, type=int, help="Specify the size of images.")
parser.add_argument("--image_filter_size", default=256, type=int, help="image filter size")
parser.add_argument(
"--replace_small_images",
default=True,
type=str2bool,
help="replace the small-size images with other training samples",
)
parser.add_argument("--enable_modelarts", default=False, type=str2bool, help="run codes in ModelArts platform")
parser.add_argument(
"--train_batch_size", default=1, type=int, help="Specify the batch size (per device) for training."
)
parser.add_argument("--callback_size", default=1, type=int, help="Specify the callback size.")
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Specify the batch size (per device) for sampling images."
)
parser.add_argument("--overflow_still_update", type=str2bool, default=True)
parser.add_argument(
"--ckpt_save_interval", default=600, type=int, help="Save checkpoint every this number of steps."
)
parser.add_argument("--log_interval", default=1, type=int, help="Save checkpoint every this number of steps.")
parser.add_argument(
"--gradient_accumulation_steps", default=4, type=int, help="Specify the gradient accumulation steps."
)
parser.add_argument("--warmup_steps", default=0, type=int, help="warmup steps")
parser.add_argument(
"--start_learning_rate", default=5e-5, type=float, help="Specify the initial learning rate for Adam."
)
parser.add_argument("--end_learning_rate", default=1e-7, type=float, help="The end learning rate for Adam.")
parser.add_argument("--decay_steps", default=0, type=int, help="lr decay steps.")
parser.add_argument("--scheduler", default="multi_step_decay", type=str, help="scheduler.")
parser.add_argument(
"--milestones", default=[200, 400, 800, 1600, 3200], type=list, help="milestones for multi_step_decay"
)
parser.add_argument("--decay_rate", default=0.9, help="the decay rate for multi-step decay lr scheduler")
parser.add_argument(
"--scale_lr",
default=False,
type=str2bool,
help="Specify whether to scale the learning rate based on the batch size, gradient accumulation steps, and n cards.",
)
parser.add_argument("--init_loss_scale", default=2048, type=float, help="Specify the initial loss scale.")
parser.add_argument("--loss_scale_factor", default=2, type=float, help="Specify the loss scale factor.")
parser.add_argument("--scale_window", default=200, type=float, help="Specify the scale window.")
parser.add_argument("--use_ema", default=False, type=str2bool, help="Specify whether to use EMA.")
parser.add_argument("--clip_grad", default=False, type=str2bool, help="Specify whether to apply gradient clipping.")
parser.add_argument(
"--max_grad_norm",
default=1.0,
type=float,
help="Specify the maximum gradient norm for clipping. This is effective when `clip_grad` is enabled.",
)
# optimizer
parser.add_argument(
"--optim", default="adamw", type=str, help="Specify the optimizer type. Options: ['adam', 'adamw']"
)
parser.add_argument(
"--betas", type=float, default=[0.9, 0.999], help="Specify the [beta1, beta2] parameter for the Adam optimizer."
)
parser.add_argument("--weight_decay", default=1e-2, type=float, help="Weight decay.")
parser.add_argument(
"--log_level",
type=str,
default="logging.INFO",
help="Specify the log level. Options: logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR",
)
parser.add_argument("--seed", type=int, default=3407, help="Specify a seed for reproducible training.")
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument(
"--max_steps",
type=int,
default=6000,
help="Specify the maximum number of steps to train. If set, args.epochs will not be applied.",
)
parser.add_argument(
"--template_file",
type=str,
default=None,
help=(
"the template file which provides a list of strings of templates, like `a photo of {{}}`."
" If `None`, it will use default templates for each `learnable_property`."
),
)
parser.add_argument("--num_workers", default=1, type=int, help="the number of modelarts workers")
parser.add_argument(
"--json_data_path",
default="mindone/examples/stable_diffusion_v2/ldm/data/num_samples_64_part.json",
type=str,
help="the path of num_samples.json containing a dictionary with 64 parts. "
"Each part is a large dictionary containing counts of samples of 533 tar packages.",
)
abs_path = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), ""))
default_args = parser.parse_args()
if default_args.train_config:
default_args.train_config = os.path.join(abs_path, default_args.train_config)
with open(default_args.train_config, "r") as f:
cfg = yaml.safe_load(f)
_check_cfgs_in_parser(cfg, parser)
parser.set_defaults(**cfg)
args = parser.parse_args()
args.model_config = os.path.join(abs_path, args.model_config)
if not args.train_data_dir:
raise ValueError("The training data directory must be specified.")
if args.num_vectors < 1:
raise ValueError(f"num_vectors has to be larger or equal to 1, but is {args.num_vectors}")
if args.max_steps is not None:
if args.max_steps < 1:
raise ValueError(f"max_steps has to be larger or equal to 1, but is {args.max_steps}")
if args.version:
if args.version not in _version_cfg:
raise ValueError(f"Unknown version: {args.version}. Supported SD versions are: {list(_version_cfg.keys())}")
if args.pretrained_model_path is None:
args.pretrained_model_path = "models/"
if args.pretrained_model_file is None:
ckpt_name = _version_cfg[args.version][0]
args.pretrained_model_file = ckpt_name
ckpt_path = os.path.join(args.pretrained_model_path, args.pretrained_model_file)
desire_size = _version_cfg[args.version][2]
if args.image_size != desire_size:
logger.warning(
f"The optimal H, W for SD {args.version} is ({desire_size}, {desire_size}) . But got ({args.image_size})."
)
# download if not exists or not complete
if os.path.exists(ckpt_path):
if os.path.getsize(ckpt_path) < _MIN_CKPT_SIZE:
logger.warning(
f"WARNING: The checkpoint size is too small {args.ckpt_path}. Please check and remove it if it is incomplete!"
)
if not os.path.exists(ckpt_path):
logger.info(f"Start downloading checkpoint {_version_cfg[args.version][0]} ...")
ckpt_name = _version_cfg[args.version][0]
download_checkpoint(os.path.join(_URL_PREFIX, ckpt_name), args.pretrained_model_path)
logger.info(args)
return args
def main(args):
# init
_, rank_id, device_num = init_env(
args.mode,
seed=args.seed,
distributed=args.use_parallel,
enable_modelarts=args.enable_modelarts,
num_workers=args.num_workers,
json_data_path=args.json_data_path,
)
set_logger(name="", output_dir=args.output_path, rank=rank_id, log_level=eval(args.log_level))
if args.scale_lr:
args.start_learning_rate = (
args.start_learning_rate * args.gradient_accumulation_steps * device_num * args.train_batch_size
)
logger.info(f"When scale_lr=True, the effective learning rate is {args.start_learning_rate}")
# 1. Load SD
latent_diffusion_with_loss = instantiate_from_config(args.model_config)
pretrained_ckpt = os.path.join(args.pretrained_model_path, args.pretrained_model_file)
load_pretrained_model(pretrained_ckpt, latent_diffusion_with_loss)
latent_diffusion_with_loss.set_train(False)
for _, p in latent_diffusion_with_loss.parameters_and_names():
p.requires_grad = False
# 2. Set Textual Inversion Manager to handle resize token embedding tables, etc.
manager = TextualInversionManager(latent_diffusion_with_loss, args.placeholder_token, args.num_vectors)
placeholder_tokens = manager.placeholder_tokens
latent_diffusion_with_loss = manager.initiate_textual_inversion_params()
tokenizer = manager.tokenizers[0]
placeholder_tokens = manager.placeholder_tokens
# build dataloader
train_dataloader = load_data(
args.train_data_dir,
args.train_batch_size,
tokenizer,
args.train_data_repeats,
learnable_property=args.learnable_property,
templates=None if args.template_file is None else read_template_file(args.template_file),
placeholder_token=(" ".join(placeholder_tokens)),
image_size=args.image_size,
image_filter_size=args.image_filter_size,
device_num=device_num,
rank_id=rank_id,
random_crop=args.random_crop,
filter_small_size=args.filter_small_size,
replace=args.replace_small_images,
enable_modelarts=args.enable_modelarts,
)
N_batches = len(train_dataloader)
if args.max_steps is not None:
args.epochs = args.max_steps // N_batches
logger.info(f"max_steps is set to {args.max_steps}, epochs is changed to {args.epochs}")
else:
assert args.epochs is not None, "At least one of `max_steps` and `epochs` should be set."
# all parameters in the ldm are frozen, except for the token embeddings in the text encoder.
manager.set_train_textual_inversion(True)
trainable_params = manager.get_textual_inversion_params()
for p in trainable_params:
p.requires_grad = True
assert (
len(latent_diffusion_with_loss.trainable_params()) == 1
), f"expect to train 1 parameter, but got {len(latent_diffusion_with_loss.trainable_params())} trainable params"
# build learning rate scheduler
dataset_size = train_dataloader.get_dataset_size()
if not args.decay_steps:
args.decay_steps = args.epochs * dataset_size - args.warmup_steps # fix lr scheduling
if args.decay_steps <= 0:
logger.warning(
f"decay_steps is {args.decay_steps}, please check epochs, dataset_size and warmup_steps. "
f"Will force decay_steps to be set to 1."
)
args.decay_steps = 1
lr = create_scheduler(
steps_per_epoch=dataset_size,
scheduler=args.scheduler,
lr=args.start_learning_rate,
min_lr=args.end_learning_rate,
warmup_steps=args.warmup_steps,
decay_steps=args.decay_steps,
milestones=args.milestones,
decay_rate=args.decay_rate,
num_epochs=args.epochs,
)
optimizer = build_optimizer(
model=latent_diffusion_with_loss,
name=args.optim,
betas=args.betas,
weight_decay=args.weight_decay,
lr=lr,
)
loss_scaler = FixedLossScaleUpdateCell(loss_scale_value=args.init_loss_scale)
start_epoch = 0
# trainer (standalone and distributed)
ema = (
EMA(
latent_diffusion_with_loss.model,
ema_decay=0.9999,
)
if args.use_ema
else None
)
net_with_grads = TrainOneStepWrapper(
latent_diffusion_with_loss,
optimizer=optimizer,
scale_sense=loss_scaler,
drop_overflow_update=not args.overflow_still_update,
gradient_accumulation_steps=args.gradient_accumulation_steps,
clip_grad=args.clip_grad,
clip_norm=args.max_grad_norm,
ema=ema,
)
# log
if rank_id == 0:
key_info = "Key Settings:\n" + "=" * 50 + "\n"
num_params, num_trainable_params = count_params(latent_diffusion_with_loss)
key_info += "\n".join(
[
f"MindSpore mode[GRAPH(0)/PYNATIVE(1)]: {args.mode}",
f"Distributed mode: {args.use_parallel}",
f"Model: StableDiffusion v{args.version}",
f"Precision: {latent_diffusion_with_loss.model.diffusion_model.dtype}",
f"Num params: {num_params}",
f"Num trainable params: {num_trainable_params}",
f"Learning rate: {args.start_learning_rate}",
f"Weight decay: {args.weight_decay}",
f"Batch size: {args.train_batch_size}",
f"Grad accumulation steps: {args.gradient_accumulation_steps}",
f"Num epochs: {args.epochs}",
f"Grad clipping: {args.clip_grad}",
f"Max grad norm: {args.max_grad_norm}",
f"EMA: {args.use_ema}",
f"Initial Loss Scale: {args.init_loss_scale}",
f"Placeholder token: {args.placeholder_token}",
f"Initializer token: {args.initializer_token}",
f"Number of vectors: {args.num_vectors}",
]
)
key_info += "\n" + "=" * 50
logger.info(key_info)
logger.info("Start training...")
train_txt2img(
args,
manager,
net_with_grads,
rank_id=rank_id,
start_epoch=start_epoch,
dataloader=train_dataloader,
optimizer=optimizer,
)
def replace_text_embeds(t, i, i_text_encoder=0, verbose=True):
assert i.shape[0] < t.shape[0]
num_no_updates = i.shape[0]
# check if the text embedding has been updated from the last training step
if ms.ops.Equal()(t[:num_no_updates], i).all() and verbose:
print("WARNING: No updates from the initial text embeds! This means the last update failed")
data_to_copy = ms.ops.concat([i, t[num_no_updates:].value()], axis=0)
ms.ops.Assign()(t, data_to_copy)
if verbose:
print(
f"Newly learned text embedding {i_text_encoder}: min {t[num_no_updates:].min()}, max {t[num_no_updates:].max()}, mean {t[num_no_updates:].mean()}"
)
def train_txt2img(
args,
manager,
train_step_fn,
dataloader,
rank_id,
start_epoch=0,
optimizer=None,
): # for print # for infer/ckpt
# 1. set training hyperparameters
total_step = len(dataloader) * args.epochs
text_encoders = manager.text_encoders
# 2. get initial text embedding data, which is used to reset old text embeddings during training
initial_text_embeds = [
ms.Tensor(t.get_input_embeddings().value().asnumpy()[: -args.num_vectors]) for t in text_encoders
]
# 3. training loop
if args.mode == 0:
logger.info(
"The first step will compile the graph, which may take longer time; " "You can come back later :)",
)
for i_epoch in range(start_epoch, args.epochs):
# 3.1 train one epoch
train_one_epoch(
i_epoch,
args,
manager,
train_step_fn,
dataloader,
optimizer,
initial_text_embeds,
total_step,
rank_id,
)
def train_one_epoch(
i_epoch,
args,
manager,
train_step_fn,
dataloader,
optimizer,
initial_text_embeds,
total_step,
rank_id,
):
s_time = time.time()
for i, data in enumerate(dataloader):
manager.set_train_textual_inversion(True)
i_step = i + i_epoch * len(dataloader) + 1
image, tokens = data
# Train a step
loss, overflow, _ = train_step_fn(image, tokens)
if overflow:
if args.overflow_still_update:
logger.info(f"Step {i_step}/{total_step}, overflow, still update.")
else:
logger.info(f"Step {i_step}/{total_step}, overflow, skip.")
# textual_inversion trainable parameters set_train(False) temporarily for logging purpose
manager.set_train_textual_inversion(False)
# reset the old text embedding table to its original value
text_encoders = manager.text_encoders
text_embedding_tables = [t.get_input_embeddings() for t in text_encoders]
i_text_encoder = 0
for text_embedding_table, initial_text_embedding_data in zip(text_embedding_tables, initial_text_embeds):
replace_text_embeds(text_embedding_table, initial_text_embedding_data, i_text_encoder, verbose=False)
i_text_encoder += 1
# Print meg
if i_step % args.log_interval == 0 and rank_id % 8 == 0:
if optimizer.dynamic_lr:
cur_lr = optimizer.learning_rate(Tensor(i_step - 1, ms.int32)).asnumpy().item()
else:
cur_lr = optimizer.learning_rate.asnumpy().item()
logger.info(
f"Step {i_step}/{total_step}, lr: {cur_lr}, loss: {loss.asnumpy():.6f}"
f", time cost: {(time.time()-s_time) * 1000 / args.log_interval:.2f} ms",
)
s_time = time.time()
# Save checkpoint
if i_step % args.ckpt_save_interval == 0 and rank_id % 8 == 0:
save_ckpt_dir = os.path.join(args.output_path, "weights")
if not os.path.exists(save_ckpt_dir):
os.makedirs(save_ckpt_dir)
save_filename = "SDv" + args.version + f"_textual_inversion_{i_step}.ckpt"
manager.save_checkpoint_textual_inversion(
os.path.join(save_ckpt_dir, save_filename), args.num_vectors, placeholder_token=args.placeholder_token
)
if __name__ == "__main__":
logger.debug("process id:", os.getpid())
args = parse_args()
main(args)