From 3cedbfa673ee72a7f9a8225107a066dfa55c7a5e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20Dr=C3=B6nner?= Date: Wed, 29 Nov 2023 10:30:17 +0100 Subject: [PATCH] add onnx example --- ..._workflow_to_datasets_with_timeshift.ipynb | 2256 +-- ...flow_to_datasets_with_timeshift_onnx.ipynb | 13077 ++++++++++++++++ 2 files changed, 13151 insertions(+), 2182 deletions(-) create mode 100644 examples/s2_field_combination_extern_rf_train/nrw_crop_extern_s2_workflow_to_datasets_with_timeshift_onnx.ipynb diff --git a/examples/s2_field_combination_extern_rf_train/nrw_crop_extern_s2_workflow_to_datasets_with_timeshift.ipynb b/examples/s2_field_combination_extern_rf_train/nrw_crop_extern_s2_workflow_to_datasets_with_timeshift.ipynb index 23c92e3f..d6088183 100644 --- a/examples/s2_field_combination_extern_rf_train/nrw_crop_extern_s2_workflow_to_datasets_with_timeshift.ipynb +++ b/examples/s2_field_combination_extern_rf_train/nrw_crop_extern_s2_workflow_to_datasets_with_timeshift.ipynb @@ -77,7 +77,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -105,7 +105,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -114,23 +114,9 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Server: http://localhost:3030/api\n", - "User Id: d5328854-6190-4af9-ad69-4e74b0961ac9\n", - "Session Id: 4d1349c9-dda1-48e8-a594-dbd1d58fa672\n", - "Session valid until: 2023-08-10T10:30:52.645Z" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "session = ge.get_session()\n", "user_id = session.user_id\n", @@ -148,27 +134,9 @@ }, { "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "54806 46755\n" - ] - }, - { - "data": { - "text/plain": [ - "(421395, 5681078, 476201, 5727833)" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "[xmin, ymin, xmax, ymax] = [421395, 5681078, 476201, 5727833]\n", "size_x = xmax - xmin\n", @@ -190,24 +158,9 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'spatialBounds': {'upperLeftCoordinate': {'x': 421395, 'y': 5727833},\n", - " 'lowerRightCoordinate': {'x': 476201, 'y': 5681078}},\n", - " 'timeInterval': {'start': '2021-01-01T00:00:00.000+00:00',\n", - " 'end': '2022-01-01T00:00:00.000+00:00'},\n", - " 'spatialResolution': {'x': 10.0, 'y': 10.0}}" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "time_start = datetime(2021, 1, 1)\n", "time_end = datetime(2022, 1, 1)\n", @@ -215,7 +168,7 @@ "study_area = ge.api.RasterQueryRectangle(\n", " spatialBounds=ge.SpatialPartition2D(xmin, ymin, xmax, ymax).to_api_dict(),\n", " timeInterval=ge.TimeInterval(time_start, time_end).to_api_dict(),\n", - " spatialResolution=ge.SpatialResolution(10.0, 10.0).to_api_dict(),\n", + " spatialResolution=ge.SpatialResolution(100.0, 100.0).to_api_dict(),\n", ")\n", "study_area" ] @@ -254,7 +207,7 @@ "outputs": [], "source": [ "download_tasks = {}\n", - "s2_data_prefix = \"y_sentinel2_nrw_crop_10m_\"\n", + "s2_data_prefix = user_id + \":y_sentinel2_nrw_crop_10m_\"\n", "\n", "for b in [\"B02\", \"B03\", \"B04\", \"B08\", \"SCL\"]:\n", " sentinel2_band_workflow = ge.workflow_builder.blueprints.sentinel2_band(b)\n", @@ -285,11 +238,11 @@ "## Or just use the dataset names as defined in the download step:\n", "\n", "band_dataset_names = {\n", - " 'B02': 'y_sentinel2_nrw_crop_10m_B02',\n", - " 'B03': 'y_sentinel2_nrw_crop_10m_B03',\n", - " 'B04': 'y_sentinel2_nrw_crop_10m_B04',\n", - " 'B08': 'y_sentinel2_nrw_crop_10m_B08',\n", - " 'SCL': 'y_sentinel2_nrw_crop_10m_SCL'\n", + " 'B02': user_id + ':y_sentinel2_nrw_crop_10m_B02',\n", + " 'B03': user_id + ':y_sentinel2_nrw_crop_10m_B03',\n", + " 'B04': user_id + ':y_sentinel2_nrw_crop_10m_B04',\n", + " 'B08': user_id + ':y_sentinel2_nrw_crop_10m_B08',\n", + " 'SCL': user_id + ':y_sentinel2_nrw_crop_10m_SCL'\n", "}\n", "\n", "band_dataset_names" @@ -324,24 +277,9 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': }" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "monthly_cloud_free_workflows = {}\n", "\n", @@ -371,64 +309,9 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': },\n", - " -1: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': },\n", - " -2: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': },\n", - " -3: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': },\n", - " -4: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': },\n", - " -5: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': },\n", - " -6: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': },\n", - " -7: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': },\n", - " -8: {'B02': ,\n", - " 'B03': ,\n", - " 'B04': ,\n", - " 'B08': ,\n", - " 'NDVI': }}" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "monthly_cloud_free_workflows_shifted = {}\n", "\n", @@ -458,20 +341,9 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "d5328854-6190-4af9-ad69-4e74b0961ac9:60ecc06c-8274-4409-9d5e-5789f3f2e5e2" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "points_df = gpd.read_file(\"group_sample_frac1_inspireId_use_utm32n.gpkg\")\n", "points_dataset_name = ge.upload_dataframe(points_df, \"group_sample_frac1_inspireId\")\n", @@ -488,24 +360,9 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'type': 'Vector',\n", - " 'operator': {'type': 'OgrSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:60ecc06c-8274-4409-9d5e-5789f3f2e5e2',\n", - " 'attributeProjection': None,\n", - " 'attributeFilters': None}}}" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "points_source_operator = ge.workflow_builder.operators.OgrSource(points_dataset_name)\n", "points_source_operator.to_workflow_dict()" @@ -525,835 +382,9 @@ }, { "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'type': 'Vector',\n", - " 'operator': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_-8', 'B03_-8', 'B04_-8', 'B08_-8', 'NDVI_-8'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_-7', 'B03_-7', 'B04_-7', 'B08_-7', 'NDVI_-7'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_-6', 'B03_-6', 'B04_-6', 'B08_-6', 'NDVI_-6'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_-5',\n", - " 'B03_-5',\n", - " 'B04_-5',\n", - " 'B08_-5',\n", - " 'NDVI_-5'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_-4',\n", - " 'B03_-4',\n", - " 'B04_-4',\n", - " 'B08_-4',\n", - " 'NDVI_-4'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_-3',\n", - " 'B03_-3',\n", - " 'B04_-3',\n", - " 'B08_-3',\n", - " 'NDVI_-3'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_-2',\n", - " 'B03_-2',\n", - " 'B04_-2',\n", - " 'B08_-2',\n", - " 'NDVI_-2'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_-1',\n", - " 'B03_-1',\n", - " 'B04_-1',\n", - " 'B08_-1',\n", - " 'NDVI_-1'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", - " 'params': {'names': ['B02_0',\n", - " 'B03_0',\n", - " 'B04_0',\n", - " 'B08_0',\n", - " 'NDVI_0'],\n", - " 'temporalAggregation': 'none',\n", - " 'temporalAggregationIgnoreNoData': False,\n", - " 'featureAggregation': 'mean',\n", - " 'featureAggregationIgnoreNoData': False},\n", - " 'sources': {'vector': {'type': 'OgrSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:60ecc06c-8274-4409-9d5e-5789f3f2e5e2',\n", - " 'attributeProjection': None,\n", - " 'attributeFilters': None}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': 0},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': 0},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': 0},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': 0},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': 0},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -1},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -1},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -1},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -1},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -1},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -2},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -2},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -2},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -2},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -2},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -3},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -3},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -3},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -3},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -3},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -4},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -4},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -4},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -4},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -4},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean',\n", - " 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -5},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -5},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -5},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -5},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative',\n", - " 'granularity': 'months',\n", - " 'value': -5},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}},\n", - " 'rasters': [{'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:39154720-3850-4944-a866-a6e3937f79df'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:fa977d09-9b38-4f01-99c3-e4f8d12a4abf'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", - " 'outputType': 'U16',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}},\n", - " {'type': 'TimeShift',\n", - " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", - " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", - " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", - " 'window': {'granularity': 'months', 'step': 1},\n", - " 'outputType': 'F32'},\n", - " 'sources': {'raster': {'type': 'Expression',\n", - " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", - " 'outputType': 'F32',\n", - " 'mapNoData': False},\n", - " 'sources': {'a': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:e8ee9eb1-d06f-4bdb-8cd7-cd9908d4daf7'}},\n", - " 'b': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:89b472ab-229a-44ac-bbe8-a3fbf50e68fa'}},\n", - " 'c': {'type': 'GdalSource',\n", - " 'params': {'data': 'd5328854-6190-4af9-ad69-4e74b0961ac9:649ce525-fb26-4d33-ba17-393943ed09e7'}}}}}}}}]}}}" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "points_with_s2_cloud_free_shift = points_source_operator\n", "\n", @@ -1378,20 +409,9 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "86fb6cb0-7990-507d-a990-98479e9b2a2e" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "workflow = ge.register_workflow(points_with_s2_cloud_free_shift)\n", "workflow" @@ -1408,172 +428,9 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Data type: MultiPoint\n", - "Spatial Reference: EPSG:32632\n", - "Columns:\n", - " B04_-3:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_0:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B03_-1:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " USE_TXT:\n", - " Column Type: text\n", - " Measurement: unitless\n", - " B03_0:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B03_-3:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " USE_CODE:\n", - " Column Type: text\n", - " Measurement: unitless\n", - " B03_-4:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B04_-5:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_-1:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " ID:\n", - " Column Type: int\n", - " Measurement: unitless\n", - " B03_-7:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B03_-8:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_-1:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " NDVI_-3:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " NDVI_-6:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B04_-6:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B04_0:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_-6:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " NDVI_-2:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_-8:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_-4:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_0:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_-2:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_-7:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B03_-5:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " NDVI_-1:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B04_-1:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B03_-2:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_-3:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " INSPIRE_ID:\n", - " Column Type: text\n", - " Measurement: unitless\n", - " B03_-6:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B04_-8:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B04_-7:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_-3:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " index:\n", - " Column Type: int\n", - " Measurement: unitless\n", - " NDVI_-5:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " NDVI_-7:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_-5:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_-8:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B04_-2:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_-2:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " NDVI_-4:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_-6:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_-7:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B08_-4:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B02_-5:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " NDVI_0:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " B04_-4:\n", - " Column Type: float\n", - " Measurement: unitless\n", - " NDVI_-8:\n", - " Column Type: float\n", - " Measurement: unitless" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "workflow.get_result_descriptor()" ] @@ -1589,20 +446,9 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(datetime.datetime(2021, 10, 1, 0, 0), datetime.datetime(2021, 10, 1, 0, 0))" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "start_dt = datetime(2021, 10, 1, 0, 0, 0)\n", "end_dt = start_dt\n", @@ -1622,397 +468,9 @@ }, { "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
B03_-2NDVI_-2B04_-3IDB08_-6B08_-8B03_-1B08_-1B03_0B08_-4...B04_-1NDVI_-3B08_0B02_-4B02_-1B04_-5NDVI_-8geometrytime_starttime_end
01096.0000000.1182771017.00000004119.3334963041.5000001175.0000002098.666748906.5000004454.500000...1488.0000000.1510071831.750000661.166687860.6666871155.0000000.191842MULTIPOINT (428690.027 5711938.189)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
11602.0000000.0815401714.00000013597.0000003296.0000001174.6666262220.666748970.1666873485.399902...1261.0000000.1023643555.000000443.799988880.000000604.0000000.204141MULTIPOINT (427819.337 5710040.545)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
21501.0000000.120127870.00000022595.3332523262.0000001366.0000002161.0000001082.0000003989.333252...1696.0000000.1465392065.800049507.0000001010.500000NaN0.183905MULTIPOINT (427320.866 5710158.178)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
3453.2500000.199509310.12500031732.400024786.500000424.6000062130.399902299.2500003587.199951...404.0000000.2583601268.875000353.299988258.100006499.0000000.182570MULTIPOINT (431527.388 5693772.886)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
4573.0000000.227320416.50000042462.7143552622.857178649.0000004394.375000718.7999884795.375000...382.3750000.2639463661.300049368.000000366.500000572.0000000.208747MULTIPOINT (431535.193 5693614.690)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
..................................................................
49419896.3333130.146617659.875000494193194.6667482384.3332521006.2500002349.083252780.8889163652.500000...1309.1666260.2509442705.444336319.100006707.500000259.0000000.158985MULTIPOINT (472357.075 5696612.529)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49420823.3333130.340752415.125000494201822.0000001717.250000490.0000003446.000000457.4285582805.750000...451.5833440.3049433851.857178748.583313314.4166561437.5000000.107344MULTIPOINT (472016.875 5697690.039)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49421848.0000000.149664678.666687494212938.7143552196.0000001133.1666262554.833252777.1818244658.181641...1370.5000000.2143712457.545410660.636353787.000000452.8333440.120914MULTIPOINT (471981.413 5696219.338)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49422749.5000000.326076542.250000494221422.2500002851.000000474.0000003951.416748521.1428832643.375000...303.7500000.2695124185.571289884.375000285.1666561045.3333740.122793MULTIPOINT (471704.064 5697043.769)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49423609.5000000.269118430.000000494234889.3334964047.333252869.5000003668.000000701.2000123319.166748...786.2500000.3084715036.600098426.833344516.000000280.0000000.228884MULTIPOINT (472522.639 5708612.229)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
\n", - "

49424 rows × 53 columns

\n", - "
" - ], - "text/plain": [ - " B03_-2 NDVI_-2 B04_-3 ID B08_-6 B08_-8 \\\n", - "0 1096.000000 0.118277 1017.000000 0 4119.333496 3041.500000 \n", - "1 1602.000000 0.081540 1714.000000 1 3597.000000 3296.000000 \n", - "2 1501.000000 0.120127 870.000000 2 2595.333252 3262.000000 \n", - "3 453.250000 0.199509 310.125000 3 1732.400024 786.500000 \n", - "4 573.000000 0.227320 416.500000 4 2462.714355 2622.857178 \n", - "... ... ... ... ... ... ... \n", - "49419 896.333313 0.146617 659.875000 49419 3194.666748 2384.333252 \n", - "49420 823.333313 0.340752 415.125000 49420 1822.000000 1717.250000 \n", - "49421 848.000000 0.149664 678.666687 49421 2938.714355 2196.000000 \n", - "49422 749.500000 0.326076 542.250000 49422 1422.250000 2851.000000 \n", - "49423 609.500000 0.269118 430.000000 49423 4889.333496 4047.333252 \n", - "\n", - " B03_-1 B08_-1 B03_0 B08_-4 ... B04_-1 \\\n", - "0 1175.000000 2098.666748 906.500000 4454.500000 ... 1488.000000 \n", - "1 1174.666626 2220.666748 970.166687 3485.399902 ... 1261.000000 \n", - "2 1366.000000 2161.000000 1082.000000 3989.333252 ... 1696.000000 \n", - "3 424.600006 2130.399902 299.250000 3587.199951 ... 404.000000 \n", - "4 649.000000 4394.375000 718.799988 4795.375000 ... 382.375000 \n", - "... ... ... ... ... ... ... \n", - "49419 1006.250000 2349.083252 780.888916 3652.500000 ... 1309.166626 \n", - "49420 490.000000 3446.000000 457.428558 2805.750000 ... 451.583344 \n", - "49421 1133.166626 2554.833252 777.181824 4658.181641 ... 1370.500000 \n", - "49422 474.000000 3951.416748 521.142883 2643.375000 ... 303.750000 \n", - "49423 869.500000 3668.000000 701.200012 3319.166748 ... 786.250000 \n", - "\n", - " NDVI_-3 B08_0 B02_-4 B02_-1 B04_-5 NDVI_-8 \\\n", - "0 0.151007 1831.750000 661.166687 860.666687 1155.000000 0.191842 \n", - "1 0.102364 3555.000000 443.799988 880.000000 604.000000 0.204141 \n", - "2 0.146539 2065.800049 507.000000 1010.500000 NaN 0.183905 \n", - "3 0.258360 1268.875000 353.299988 258.100006 499.000000 0.182570 \n", - "4 0.263946 3661.300049 368.000000 366.500000 572.000000 0.208747 \n", - "... ... ... ... ... ... ... \n", - "49419 0.250944 2705.444336 319.100006 707.500000 259.000000 0.158985 \n", - "49420 0.304943 3851.857178 748.583313 314.416656 1437.500000 0.107344 \n", - "49421 0.214371 2457.545410 660.636353 787.000000 452.833344 0.120914 \n", - "49422 0.269512 4185.571289 884.375000 285.166656 1045.333374 0.122793 \n", - "49423 0.308471 5036.600098 426.833344 516.000000 280.000000 0.228884 \n", - "\n", - " geometry time_start \\\n", - "0 MULTIPOINT (428690.027 5711938.189) 2021-10-01 00:00:00+00:00 \n", - "1 MULTIPOINT (427819.337 5710040.545) 2021-10-01 00:00:00+00:00 \n", - "2 MULTIPOINT (427320.866 5710158.178) 2021-10-01 00:00:00+00:00 \n", - "3 MULTIPOINT (431527.388 5693772.886) 2021-10-01 00:00:00+00:00 \n", - "4 MULTIPOINT (431535.193 5693614.690) 2021-10-01 00:00:00+00:00 \n", - "... ... ... \n", - "49419 MULTIPOINT (472357.075 5696612.529) 2021-10-01 00:00:00+00:00 \n", - "49420 MULTIPOINT (472016.875 5697690.039) 2021-10-01 00:00:00+00:00 \n", - "49421 MULTIPOINT (471981.413 5696219.338) 2021-10-01 00:00:00+00:00 \n", - "49422 MULTIPOINT (471704.064 5697043.769) 2021-10-01 00:00:00+00:00 \n", - "49423 MULTIPOINT (472522.639 5708612.229) 2021-10-01 00:00:00+00:00 \n", - "\n", - " time_end \n", - "0 2021-11-01 00:00:00+00:00 \n", - "1 2021-11-01 00:00:00+00:00 \n", - "2 2021-11-01 00:00:00+00:00 \n", - "3 2021-11-01 00:00:00+00:00 \n", - "4 2021-11-01 00:00:00+00:00 \n", - "... ... \n", - "49419 2021-11-01 00:00:00+00:00 \n", - "49420 2021-11-01 00:00:00+00:00 \n", - "49421 2021-11-01 00:00:00+00:00 \n", - "49422 2021-11-01 00:00:00+00:00 \n", - "49423 2021-11-01 00:00:00+00:00 \n", - "\n", - "[49424 rows x 53 columns]" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "gp_res = await workflow.vector_stream_into_geopandas(\n", " ge.QueryRectangle(\n", @@ -2058,397 +516,9 @@ }, { "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
B03_-2NDVI_-2B04_-3IDB08_-6B08_-8B03_-1B08_-1B03_0B08_-4...B04_-1NDVI_-3B08_0B02_-4B02_-1B04_-5NDVI_-8geometrytime_starttime_end
01096.0000000.1182771017.00000004119.3334963041.5000001175.0000002098.666748906.5000004454.500000...1488.0000000.1510071831.750000661.166687860.6666871155.0000000.191842MULTIPOINT (428690.027 5711938.189)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
11602.0000000.0815401714.00000013597.0000003296.0000001174.6666262220.666748970.1666873485.399902...1261.0000000.1023643555.000000443.799988880.000000604.0000000.204141MULTIPOINT (427819.337 5710040.545)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
21501.0000000.120127870.00000022595.3332523262.0000001366.0000002161.0000001082.0000003989.333252...1696.0000000.1465392065.800049507.0000001010.5000000.0000000.183905MULTIPOINT (427320.866 5710158.178)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
3453.2500000.199509310.12500031732.400024786.500000424.6000062130.399902299.2500003587.199951...404.0000000.2583601268.875000353.299988258.100006499.0000000.182570MULTIPOINT (431527.388 5693772.886)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
4573.0000000.227320416.50000042462.7143552622.857178649.0000004394.375000718.7999884795.375000...382.3750000.2639463661.300049368.000000366.500000572.0000000.208747MULTIPOINT (431535.193 5693614.690)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
..................................................................
49419896.3333130.146617659.875000494193194.6667482384.3332521006.2500002349.083252780.8889163652.500000...1309.1666260.2509442705.444336319.100006707.500000259.0000000.158985MULTIPOINT (472357.075 5696612.529)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49420823.3333130.340752415.125000494201822.0000001717.250000490.0000003446.000000457.4285582805.750000...451.5833440.3049433851.857178748.583313314.4166561437.5000000.107344MULTIPOINT (472016.875 5697690.039)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49421848.0000000.149664678.666687494212938.7143552196.0000001133.1666262554.833252777.1818244658.181641...1370.5000000.2143712457.545410660.636353787.000000452.8333440.120914MULTIPOINT (471981.413 5696219.338)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49422749.5000000.326076542.250000494221422.2500002851.000000474.0000003951.416748521.1428832643.375000...303.7500000.2695124185.571289884.375000285.1666561045.3333740.122793MULTIPOINT (471704.064 5697043.769)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49423609.5000000.269118430.000000494234889.3334964047.333252869.5000003668.000000701.2000123319.166748...786.2500000.3084715036.600098426.833344516.000000280.0000000.228884MULTIPOINT (472522.639 5708612.229)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
\n", - "

49424 rows × 53 columns

\n", - "
" - ], - "text/plain": [ - " B03_-2 NDVI_-2 B04_-3 ID B08_-6 B08_-8 \\\n", - "0 1096.000000 0.118277 1017.000000 0 4119.333496 3041.500000 \n", - "1 1602.000000 0.081540 1714.000000 1 3597.000000 3296.000000 \n", - "2 1501.000000 0.120127 870.000000 2 2595.333252 3262.000000 \n", - "3 453.250000 0.199509 310.125000 3 1732.400024 786.500000 \n", - "4 573.000000 0.227320 416.500000 4 2462.714355 2622.857178 \n", - "... ... ... ... ... ... ... \n", - "49419 896.333313 0.146617 659.875000 49419 3194.666748 2384.333252 \n", - "49420 823.333313 0.340752 415.125000 49420 1822.000000 1717.250000 \n", - "49421 848.000000 0.149664 678.666687 49421 2938.714355 2196.000000 \n", - "49422 749.500000 0.326076 542.250000 49422 1422.250000 2851.000000 \n", - "49423 609.500000 0.269118 430.000000 49423 4889.333496 4047.333252 \n", - "\n", - " B03_-1 B08_-1 B03_0 B08_-4 ... B04_-1 \\\n", - "0 1175.000000 2098.666748 906.500000 4454.500000 ... 1488.000000 \n", - "1 1174.666626 2220.666748 970.166687 3485.399902 ... 1261.000000 \n", - "2 1366.000000 2161.000000 1082.000000 3989.333252 ... 1696.000000 \n", - "3 424.600006 2130.399902 299.250000 3587.199951 ... 404.000000 \n", - "4 649.000000 4394.375000 718.799988 4795.375000 ... 382.375000 \n", - "... ... ... ... ... ... ... \n", - "49419 1006.250000 2349.083252 780.888916 3652.500000 ... 1309.166626 \n", - "49420 490.000000 3446.000000 457.428558 2805.750000 ... 451.583344 \n", - "49421 1133.166626 2554.833252 777.181824 4658.181641 ... 1370.500000 \n", - "49422 474.000000 3951.416748 521.142883 2643.375000 ... 303.750000 \n", - "49423 869.500000 3668.000000 701.200012 3319.166748 ... 786.250000 \n", - "\n", - " NDVI_-3 B08_0 B02_-4 B02_-1 B04_-5 NDVI_-8 \\\n", - "0 0.151007 1831.750000 661.166687 860.666687 1155.000000 0.191842 \n", - "1 0.102364 3555.000000 443.799988 880.000000 604.000000 0.204141 \n", - "2 0.146539 2065.800049 507.000000 1010.500000 0.000000 0.183905 \n", - "3 0.258360 1268.875000 353.299988 258.100006 499.000000 0.182570 \n", - "4 0.263946 3661.300049 368.000000 366.500000 572.000000 0.208747 \n", - "... ... ... ... ... ... ... \n", - "49419 0.250944 2705.444336 319.100006 707.500000 259.000000 0.158985 \n", - "49420 0.304943 3851.857178 748.583313 314.416656 1437.500000 0.107344 \n", - "49421 0.214371 2457.545410 660.636353 787.000000 452.833344 0.120914 \n", - "49422 0.269512 4185.571289 884.375000 285.166656 1045.333374 0.122793 \n", - "49423 0.308471 5036.600098 426.833344 516.000000 280.000000 0.228884 \n", - "\n", - " geometry time_start \\\n", - "0 MULTIPOINT (428690.027 5711938.189) 2021-10-01 00:00:00+00:00 \n", - "1 MULTIPOINT (427819.337 5710040.545) 2021-10-01 00:00:00+00:00 \n", - "2 MULTIPOINT (427320.866 5710158.178) 2021-10-01 00:00:00+00:00 \n", - "3 MULTIPOINT (431527.388 5693772.886) 2021-10-01 00:00:00+00:00 \n", - "4 MULTIPOINT (431535.193 5693614.690) 2021-10-01 00:00:00+00:00 \n", - "... ... ... \n", - "49419 MULTIPOINT (472357.075 5696612.529) 2021-10-01 00:00:00+00:00 \n", - "49420 MULTIPOINT (472016.875 5697690.039) 2021-10-01 00:00:00+00:00 \n", - "49421 MULTIPOINT (471981.413 5696219.338) 2021-10-01 00:00:00+00:00 \n", - "49422 MULTIPOINT (471704.064 5697043.769) 2021-10-01 00:00:00+00:00 \n", - "49423 MULTIPOINT (472522.639 5708612.229) 2021-10-01 00:00:00+00:00 \n", - "\n", - " time_end \n", - "0 2021-11-01 00:00:00+00:00 \n", - "1 2021-11-01 00:00:00+00:00 \n", - "2 2021-11-01 00:00:00+00:00 \n", - "3 2021-11-01 00:00:00+00:00 \n", - "4 2021-11-01 00:00:00+00:00 \n", - "... ... \n", - "49419 2021-11-01 00:00:00+00:00 \n", - "49420 2021-11-01 00:00:00+00:00 \n", - "49421 2021-11-01 00:00:00+00:00 \n", - "49422 2021-11-01 00:00:00+00:00 \n", - "49423 2021-11-01 00:00:00+00:00 \n", - "\n", - "[49424 rows x 53 columns]" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "gp_train_1=gp_res.replace(np.nan, 0)\n", "gp_train_1" @@ -2465,7 +535,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2488,31 +558,9 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 OE\n", - "1 GT\n", - "2 GT\n", - "3 GL\n", - "4 GL\n", - " ..\n", - "49419 GT\n", - "49420 GT\n", - "49421 GT\n", - "49422 AF\n", - "49423 GL\n", - "Name: USE_CODE, Length: 49424, dtype: object" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "y_list = gp_train_1['USE_CODE'].replace(0, 'None')\n", "y_list" @@ -2528,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2545,20 +593,9 @@ }, { "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"RandomForestClassifier(class_weight='balanced_subsample', n_estimators=300,\\n random_state=1337)\"" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "X = X_train\n", "Y = y_train\n", @@ -2577,38 +614,9 @@ }, { "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " precision recall f1-score support\n", - "\n", - " AF 0.667 0.681 0.674 1048\n", - " DA 0.500 0.015 0.030 65\n", - " EP 0.000 0.000 0.000 14\n", - " EW 0.830 0.568 0.675 146\n", - " GL 0.786 0.978 0.872 3919\n", - " GM 0.500 0.179 0.264 39\n", - " GT 0.860 0.885 0.872 2794\n", - " HF 0.748 0.864 0.802 220\n", - " HP 0.000 0.000 0.000 0\n", - " None 0.000 0.000 0.000 108\n", - " OE 0.909 0.877 0.892 284\n", - " PA 0.000 0.000 0.000 238\n", - " SF 0.357 0.032 0.059 156\n", - " SL 0.617 0.295 0.399 847\n", - " ZP 0.000 0.000 0.000 7\n", - "\n", - " micro avg 0.789 0.789 0.789 9885\n", - " macro avg 0.452 0.358 0.369 9885\n", - "weighted avg 0.744 0.789 0.753 9885\n", - "\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "x_test_predictions = clf.predict(X_test)\n", "\n", @@ -2625,20 +633,9 @@ }, { "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGwCAYAAAAJ/wd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNnElEQVR4nOydd3hURdfAf5tNsptNb6SQAAkh9CYqIkhRIEgR7CiIFEGqUgSMoBQFbChKkddXKfqBgq+ggEqvSkRKQguEEhLSC+k9W74/YhZWQkiyd5fsOr/nmSfZuTPnzMydu3vumSbT6XQ6BAKBQCAQCMyEzb0ugEAgEAgEgn8XwvgQCAQCgUBgVoTxIRAIBAKBwKwI40MgEAgEAoFZEcaHQCAQCAQCsyKMD4FAIBAIBGZFGB8CgUAgEAjMiu29LoCloNVqSU5OxtnZGZlMdq+LIxAIBIJaotPpyM/Px9/fHxsb0717l5SUUFZWZrQce3t7lEqlBCWqfwjjo4YkJycTGBh4r4shEAgEAiNJSEggICDAJLJLSkoIauxEarrGaFm+vr5cu3bNKg0QYXzUEGdnZwAefnAWtrYKk+mxOXrGZLKtCVtfH5PKV6emmVQ+AObwoIkNjAUCPWrK+Z1f9d/npqCsrIzUdA3xJ5vg4lx370pevpbGneIoKysTxse/mcqhFltbBba2pusINjI7k8m2Jmxt7E2rwBz3wSzDd8L4EAj0/P04mGPo3MlZhpNz3fVose7hfWF8CAQCgUAgMRqdFo0Rtr9Gp5WuMPUQYXwIBAKBQCAxWnRojfA8GpPXEhBLbQUCgUAgEJgV4fkQCAQCgUBitGgxZuDEuNz1H2F81JLvvtiGb4Oi2+K37WrB8jUP0f+xGB7tGktIUBaOqnKGjHqBwqKqV8fY2WpYvmgHTZtkM37WIK7Ge9aoDG06F/DsxAyatS3C01fN/NFNiNjpalS97sSgkZk8MyEdD281sdEOrJrbkJgo1T2X/+yoWB7ulUZAk0LKSuVcOOPG2s9DSYp3BKCBXzFrdxyuMu+S2e35fa8vAK/OvECr9jk0bppPwjUnprz4cK3KL/W9eH5yGl0fzyEwpJSyEhuiT6j4erE/iVdvTnL2a1zK2LeTaf1gAXb2Ok4edGHl3IbkZNZskmxtyvza+4kMGHGD1e/4s/Ur7zrXC0zfl0ytY+CITAaMuIFPYMX+DfExSjZ86sOJAy6SyK/E1O0kdZ+15v5kDBqdDo0Rq82MyWsJiGGXWjJ+dl+eG/ecPsx6ry8Ah/5sDIBCoeb46YZ891Pbu8oaO+wEN7Jr/7AoVVpizytZ8ZZp1qlX0uOJbMbNS2bDJ75MCgslNlrJoo2xuHqW33P5be/L4pcfGjFj5EPMndgJW1st7608gUKpBiAzTcnwvj0Nwv+tbkpRoZwTf3gZyNr9c0MO7/arUx2kvhftHipg+3ovpg5qRvgLTZHbweKNV1E4VOwZoHDQsHjjVXQ6mP1cCNOHNMPWTsvCddeQyWr2ZVXTMj/cL5cWnQrJTDH+HcXUfckcOjJS7Fiz2I/J/UKZ8ngop/9wYv7aOBqHlkgiH8zTTlL3WWvtTwLTYlXGR0REBHK5nAEDBhjEx8XFIZPJbgvDhw+vtY7cPCXZuSp9eOi+BJJSnTkTXfEmvfXX1mz6uR0XLldv1T/QIZFO7ZP5z7cP1LoMJw64sP5DP46ayNtRyVPjMtm50YPdmzy4flnJ57MDKC2WEfZC1j2X/86U+9m7vSHXY524dtmFT+a1pYFfCSEt8wDQamVk31AYhC490/l9jy8lxTe//P7zUUt++aERqUkOdaqD1PdizvCm7NnsSfwlB2KjHVg6tRE+AeU0a1cMQOsHCvEJLGPptEbEXXQg7qIDH01tTLP2RXToViBZmT19y5n4XhIfTGqMWm38kj9T9yVz6Di2x5Xj+11IvqYgKVbBug/8KCm0oUWnQknkg3naSeo+a639yVgqJ5waE6wZqzI+vv76a6ZMmcLhw4dJTk6+7frevXtJSUnRh5UrVxqlz1au4bFusew60AxqsSbbzbWYaeOO8sGKRygtkxtVBlNha6elWbsiTh25uRmPTicj8ogzrTrdPux0r+U7OlW88RTkVT30ENIil6Yt8tn9c8O6Ffge4ehS4fHIz6noJ3YKHeigvOxmfysvlaHTQusHamZ83A2ZTMesz6/zvy+8ib9k/J42pu5L5tJxKzY2OnoMzkah0nLhhKMkMs1dB3Nhif1JCrTo0BgRrN34sJo5HwUFBWzatIkTJ06QmprKunXreOuttwzSeHp64uvrWyN5paWllJaW6j/n5eXdlubhB67j5FjG7kMhtSipjpkTfmfH3uZcivXCxzu/FnnNh4uHBrkt5GQYdpHsTFsCQ0rvkOveyJfJdIx7I4bzUW7EX61658K+Q5K4HuvIhTPudS6zuZHJdIxfkMS5vxyJj6nwzFw86UhJkQ1j5iSzdok/yHSMeSsFuS14+Kgl0fvcpHQ0Gvjpa6+7J64Bpu5L5tIB0KRFMcu2X8FeoaW40IaFY5pw/bI0mw6aqw7mxhL7k8D0WI3nY/PmzbRo0YLmzZszfPhw1qxZg86ICTtLlizB1dVVH6o61+XxRy/zV1TDWs3bGNLvAiqHcr7fevc5IYKaMeHNCzRums8H4e2rvG6v0NCjXwq7fzbtHBmpmbw4kcbNi1kysbE+LjfLlvdebULn3nn8dPkMWy+exdFVw+UzDkixJ1FI2yKGvJLJx1MbURtv3r+FxKsKJvYJ5bUBzdjxjRdvfHadRs2km/Nhbfyb+5MYdqkeq/F8fP311/o5HP369SM3N5dDhw7Rs2dPfZqHH37Y4CTDI0eO0LFjxyrlhYeHM336dP3nvLw8AwOkgVcBHdumsGBpr1qVs0ObFFqGZvDrhm8N4lcu2cG+34NZesSpVvJMRV6WHI0a3LwN36bdvdRkZxjfbaSSP35WNA92y2D22Ae4kV71G2jXx9JQKDXs2+FvVJnNyaT3EuncO48ZT4WQmWK4lfypwy6M6toKF3c1Gg0U5tnyXeQ5UuKNP3OobedC3LzU/N/xaH2c3BbGzktmyNgMXu7cqtYyTd2XzKUDQF1uQ3JcRTtfOauieYcihrySweezjT900lx1MCeW2p+kQKx2qZ76c6eMICYmhr/++outW7cCYGtry/PPP8/XX39tYHxs2rSJli1b6j9Xd0qtQqFAobjzl3lYz8vk5Co5dqp2b9Mr13Zm3ab79J893Yt4f84e3lvWg4tXvIFLtZJnKtTlNlw+o6Jjt3z9sjmZTEeHbgVsW1ezJcGmla9j/KwLdOmVTvi4B0hLvrP3qe/gRI4dakBejonPg5EEHZPeS+LhfrnMfDaEtIQ798G87IrHt33XfNy81Py5x/gln3t/dOfUPwzgxRtj2fejO7s3edRJpqn7krl0VIVMBnb20vxI3Ks6mBJL7U8C02MVxsfXX3+NWq3G3//mm61Op0OhULBixQp9XGBgICEhtZmfUTUymY6wnlfYc6gpWq3hyJW7axEebsU09K2YyxHUKIfiYlvSM53IL1SQccOJjBs30xeXVNyClDRnMrMcazQOplRp8A8q03/2DSwjuHUx+TlyMpKk+4Hd8qUXbyxL4NJpFTGRKp4cm4FSpWX393X70pBS/sQ3L9CjXwrvTu9IcZEt7p4VY72FBbaUld6cxOsXUEib+7KZ/9p9VcrxCyjEQaXB3bMUe4WG4NCKuT2xmVrU5Xe/G1Lfi8mLE+k1JJv5o4MpLrDB3btiIm1hvpyykory9H3uBtevKMm9YUvLToVMWJjE1v96G+wFYkyZ87MNvxbUahnZ6XY1ll8Vpu5L5tAxKjyF4/udyUiyx8FJQ68nc2j3cAFzXgyWRD6Yp52k7rPW2p+MRft3MCa/NWPxxodareabb75h6dKl9O3b1+DakCFD+O677+jXr5+kOu9rm4yPdyE7Dza77drAPjGMePa0/vOnC34D4KNVXdl96Pb0dSG0fTEf/XhV/3n8goqVPbs3ubN0WiNJdAAc2uaOq6eGETNTcfdWE3vegTnDgmq8mZUp5Q94NgGAD/573CD+0/lt2Lv95oqWPoOTyExXcurPqie7vfb2edrdn63/vPy7CABGPNiStMS7fxFLfS8GvVxhmX784xWD+I+nBbJnc8VbXUDTUkaFp+DspiEt0Z7vPvdhy5c137DJXP3nVkzdl8yhw81LzczPr+PRQE1RvpxrF5TMeTGYU4elO57dHO0k9f231v5kLJWrVozJb83IdMbMyqwH/PTTTzz//POkp6fj6mq4znz27Nns37+fH374gaCgICIjI+nQoUOd9OTl5eHq6kr3h9/G1laa2e1VYXMk0mSyrQlbv5qtWqor6pRUk8oHKnz2psayH2+BQFLUunIO8jO5ubm4uEi7M20llb8VZ6Ib4Oxc9zUd+fla2rVKN2lZ7yUWv9rl66+/pnfv3rcZHgBPP/00J06cqHKZrEAgEAgEgnuDxQ+7bN++/Y7XHnzwQf1yWwt38AgEAoHAghBzPqrH4o0PgUAgEAjqG1pkaIzY20Rr5fuiWPywi0AgEAgEAstCeD4EAoFAIJAYra4iGJPfmhHGh0AgEAgEEqMxctjFmLyWgBh2EQgEAoFAYFaE56OW2Bw9g42s/mxk829Fk5F5r4tgPGIFlkBgtQjPR/UI40MgEAgEAonR6mRodUasdjEiryUghl0EAoFAIBCYFWF8CAQCgUAgMZXDLsaE2vDFF1/Qrl07XFxccHFxoUuXLvz222/66z179kQmkxmE8ePHG8i4fv06AwYMQKVS0aBBA2bOnIlarTZIc/DgQe677z4UCgUhISGsW7euTu0jhl0EAoFAIJAYDTZojHi/19QyfUBAAO+//z7NmjVDp9Oxfv16Bg8eTGRkJK1btwZg7NixLFy4UJ9HpVLd1KfRMGDAAHx9fTl69CgpKSmMGDECOzs7Fi9eDMC1a9cYMGAA48ePZ8OGDezbt49XXnkFPz8/wsLCalVeYXwIBAKBQCAxOiPnfOhqmXfQoEEGnxctWsQXX3zBn3/+qTc+VCoVvr5VH8q5e/duoqOj2bt3Lz4+PnTo0IF3332X2bNnM3/+fOzt7Vm9ejVBQUEsXboUgJYtW/L777/z6aef1tr4EMMuAoFAIBDUU/Ly8gxCaWnpXfNoNBq+//57CgsL6dKliz5+w4YNeHl50aZNG8LDwykqKtJfi4iIoG3btvj4+OjjwsLCyMvL4/z58/o0vXv3NtAVFhZGREREreslPB9G0qZzAc9OzKBZ2yI8fdXMH92EiJ23nrCrY8TMNPq9eAMnFw3RJxz5/M0Akq8pTKhTOgaNzOSZCel4eKuJjXZg1dyGxESp7p7xHsgfPi2Z4dNSDOISrigY+2gbAB5/MYNeg7No2qYIR2ctT7dpT2Ge8Y+AqdvIXPfbku61Neuw9Do8PzmNrv1zCQwppazEhugTKr5e5EfiVaUk8isxRzsZg1RLbQMDAw3i582bx/z586vMc/bsWbp06UJJSQlOTk5s3bqVVq1aAfDiiy/SuHFj/P39OXPmDLNnzyYmJoYtW7YAkJqaamB4APrPqamp1abJy8ujuLgYBweHGtfPoj0fI0eO1E+csbOzw8fHhz59+rBmzRq02tvPBAwLC0Mul3P8+HHJyqBUaYk9r2TFWwFVXn9uUgaDR2ew/M0AXh/YjJIiGxZvjMVOUfczC++mUyp6PJHNuHnJbPjEl0lhocRGK1m0MRZXz/J6Kz8uRskLndrpw4ynW+ivKRy0nDjkyqaVflIUHzB9G4F57rcl3mtr1GENdWjXpZDt67yYOrAZ4UODkdvqWPxdLAqH2s5iuDPmaCdj0ehsjA4ACQkJ5Obm6kN4ePgddTZv3pyoqCiOHTvGhAkTePnll4mOjgZg3LhxhIWF0bZtW4YNG8Y333zD1q1buXr1qlna459YtPEB0K9fP1JSUoiLi+O3336jV69evP766wwcONBglu7169c5evQokydPZs2aNZLpP3HAhfUf+nG0yjdRHUNeyeC7z3yI2OXKtQsOfPhaIzx9ynm4X66JdErHU+My2bnRg92bPLh+WcnnswMoLZYR9kJWvZWvUcvIzrDTh7zsm56Nn772YfMqXy6ecpSi+IDp2wjMc78t8V5bow5rqMOcYcHs2exB/CUlsdEOLJ3aCJ+Acpq1K5ZEPpinneoLlatXKoNCcWevub29PSEhIXTq1IklS5bQvn17PvvssyrTdu7cGYArV64A4OvrS1pamkGays+V80TulMbFxaVWXg+wAuNDoVDg6+tLw4YNue+++3jrrbf4+eef+e233wyWAK1du5aBAwcyYcIEvvvuO4qLpXsQ7oRvozI8fdScOuKsjyvKl3MxUkXLTkXV5Lz32NppadauyKDsOp2MyCPOtJKg7KaS3zColA3Hz7D297PM+uwa3v5lRpf1Tpi6jcyFpd5ra9NhDXWoCkeXCo9Hfo5cEnmW8txpkaHFxohg/CZjWq32jnNEoqKiAPDzq/AEd+nShbNnz5Kenq5Ps2fPHlxcXPRDN126dGHfvn0Gcvbs2WMwr6SmWLzxURWPPvoo7du3149l6XQ61q5dy/Dhw2nRogUhISH873//q1ZGaWnpbRN9aotHgwrPS06G4byCnAxbPBrUH/dgVbh4aJDb3l727Exb3L3Vd8h1b+VfjHRk6YwmzH0phBVvNcI3sJSP/xeDg6N07t5bMXUbmQtLvNfWqMMa6vBPZDId4xckce4vFfExtXszvhOW8tyZe5+P8PBwDh8+TFxcHGfPniU8PJyDBw8ybNgwrl69yrvvvsvJkyeJi4tj27ZtjBgxgu7du9OuXTsA+vbtS6tWrXjppZc4ffo0u3btYu7cuUyaNEnvbRk/fjyxsbHMmjWLixcvsmrVKjZv3sy0adNq3T5WaXwAtGjRgri4OAD27t1LUVGRfinQ8OHD+frrr6vNv2TJElxdXfXhn5N+BPWPEwddOfKLO9cuqjh52JW3R4bg5KKm+8Dse100geBfyeTFSTRuUcKSCY3vdVGsnvT0dEaMGEHz5s157LHHOH78OLt27aJPnz7Y29uzd+9e+vbtS4sWLZgxYwZPP/0027dv1+eXy+Xs2LEDuVxOly5dGD58OCNGjDDYFyQoKIhffvmFPXv20L59e5YuXcpXX31V62W2YMWrXXQ6HTJZheW4Zs0ann/+eWxtK6r7wgsvMHPmTK5evUrTpk2rzB8eHs706dP1n/Py8mptgGSlV+hz81aTlX7zMDo3bzVXz0vzFmAq8rLkaNQVZb0Vdy812RnGdxtTywcozLMl6ZoS/yZ3X5pWF8xRB3NgDffaGnRYQx1uZdKiRDr3yWPGk03JTLGXTK6lPHe3ThqtW/7aHTxZ3Qt1YGAghw4duquMxo0b8+uvv1abpmfPnkRGRtaqbFVhtZ6PCxcuEBQURFZWFlu3bmXVqlXY2tpia2tLw4YNUavV1U48VSgUt030qS2p1+25kWZLx275+jiVk4YWHYu4cLL+LAmrCnW5DZfPqAzKLpPp6NCtgGgJym5q+QBKlQa/xqUGhp+UmKMO5sAa7rU16LCGOlSgY9KiRB7ul8usZ5uSllD3bQWqwlKeu4o5H8YFa6b+mIkSsn//fs6ePcu0adPYsGEDAQEB/PTTTwZpdu/ezdKlS1m4cCFyed0nQilVGvyDbk5q9A0sI7h1Mfk5cjKS7PnpK29eeD2dpGsKUq/b8/KsVG6k2Rm1cuFuOqViy5devLEsgUunVcREqnhybAZKlZbd33vUS/mvzEnk2F5X0pPs8fAp56XpyWg0Mg7+7A6Au3c57t7lek9IkxbFFBfISU+ypyC3bo+CqdsIzHO/Le1eW6sOa6jD5MVJ9Hoym/mjgigusMHdu2J+W2G+nLISad53zdFOAtNi8cZHaWkpqampaDQa0tLS2LlzJ0uWLGHgwIGMGDGCTp068cwzz9CmTRuDfIGBgYSHh7Nz504GDBhQZ/2h7Yv56Meb66THL0gGYPcmd5ZOa8Tmld4oVVpe/zARJxcN5487MmdYMOWldX8I76ZTKg5tc8fVU8OImam4e6uJPe/AnGFB5GRK40mQWr6XXxlvrriGs5ua3Cxbzh93YtqQFuRmVcgbMDzDYBOypf+7VPF3emP2/M+rXtShKsxxvy3tXlurDmuow6CRNwD4eIvh/hEfTw1kz2ZpjANztJOxaI0820VL7YZdLA2ZTlfLgaV6xMiRI1m/fj0Atra2uLu70759e1588UVefvllIiMjuf/++/nrr7944IEHbsvfv39/lEqlflVMdeTl5eHq6kpPBmMrqz8d/N+KzNa0drNOXX9mzQsEAmlQ68o5yM/k5ubWaSi9JlT+Vnwf1QqVc9296kX5GoZ2iDZpWe8lFu35WLduXbXH+Xbq1InqbKu7TawRCAQCgaAuVO7XUff8FusXqBFWO+FUIBAIBAJB/cSiPR8CgUAgENRHNDoZGp0RB8sZkdcSEMaHQCAQCAQSozFywqlGDLsIBAKBQCAQSIfwfAgEAoFAIDFanQ1aI3Y41VruQtQaIYwPgUUilsIKBIL6jBh2qR4x7CIQCAQCgcCsCM+HQCAQCAQSo8W4FSta6YpSLxHGh0AgEAgEEmP8JmPWPTBh3bUTCAQCgUBQ7xCeD4FAIBAIJEajs0FjxGoXY/JaAsL4EAgEAoFAYrTI0GLMnA+xw6lAIBAIBIJaIDwf1WPdtbtHtOlcwIL119h46jy7kk/TpV+uSfQMGpnJ+mPRbI89w2c7LtO8Q5HF6TClfBsbHSNmprD+zwtsu3qGtUcv8OLUNJB4/bw13IdbeW5yGruSTzN+QZKkcq2lnSz5mTCHDmv6/hOYDqsxPkaOHIlMJrst9OvXD4AmTZro4xwdHbnvvvv44YcfTFIWpUpL7HklK94KMIl8gB5PZDNuXjIbPvFlUlgosdFKFm2MxdWz3GJ0mFr+c5PSGfjyDVbOacjYHi34epEfz05MZ/CYTEnkg3Xch1sJbV/EgOFZxJ5XSirXWtrJ0p8Jc+iwlu8/Y6ncZMyYYM1YVe369etHSkqKQfjuu+/01xcuXEhKSgqRkZE88MADPP/88xw9elTycpw44ML6D/04utNVctmVPDUuk50bPdi9yYPrl5V8PjuA0mIZYS9kWYwOU8tvdX8hEbtc+WufC2mJ9vz+ixunDjlL+oZkDfehEqVKw+wV8SybGUB+rlxS2dbSTpb+TJhDh7V8/xmLViczOlgzVmV8KBQKfH19DYK7u7v+urOzM76+voSGhrJy5UocHBzYvn37PSxx3bC109KsXRGnjjjr43Q6GZFHnGnVSZofVlPrMEcdok840qFbPg2DSwEIblVM6wcLOb7fRRL51nAfbmXy4iT+2udC5C26pMBa2skanglz9idTYQ11EPyLJ5za2tpiZ2dHWVlZlddLS0spLS3Vf87LyzNX0e6Ki4cGuS3kZBjevuxMWwJDSu+Qq37pMEcdNq1ogMpZw1eHL6LVgI0c1r3vy4Gt7nfPXAOs4T5U0mNwNiFti5nSv5lkMiuxlnayhmfCXP3JlFhKHbRGDp2ITcYsiB07duDk5GQQFi9efFu6srIylixZQm5uLo8++miVspYsWYKrq6s+BAYGmrr4Aonp/kQOjz6Vw/uTGjEpLJSPXw/kmfEZ9H62/rhm6wPe/mVMWJjMB5MbUV5qVV8JAsE9o/JUW2OCNWNVno9evXrxxRdfGMR5eHjo/589ezZz586lpKQEJycn3n//fQYMGFClrPDwcKZPn67/nJeXV28MkLwsORo1uHkbnuzq7qUmO0OaW2pqHeaow9i3U9i0ogGHfq7wdMRddKBBQDlDp6Sz9wePu+S+O9ZwHwBC2hXj7q1m5a5L+ji5LbR9qJAnRmUysEk7tNq6jz9bSztZwzNhDh2mxhrqILAyz4ejoyMhISEG4VbjY+bMmURFRZGYmEh2djazZ8++oyyFQoGLi4tBqC+oy224fEZFx275+jiZTEeHbgVEn1RZhA5z1EGh1KL7x+lMWk2FHimwhvsAEHXEiXG9QpnQ52aIiXJg/xZ3JvQJNcrwAOtpJ2t4Jsyhw9RYSh00yIwO1sy/ykz08vIiJCTE5HqUKg3+QTfnkvgGlhHcupj8HDkZSfaS6NjypRdvLEvg0mkVMZEqnhybgVKlZff3xr/Rm0uHqeX/uceFoa+lk55kT3yMkqZtinnq1QyLaiNz6CgulBMf42AQV1JkQ3727fF1xRrayRw6rKEO1vL9ZyzGDp2IYRcLorS0lNTUVIM4W1tbvLy8zFqO0PbFfPTjVf3n8QuSAdi9yZ2l0xpJouPQNndcPTWMmJmKu7ea2PMOzBkWRE6mnSTyzaHD1PJXzW3Iy7NSmbwkETdPNTfS7Pj1W082fOojiXywjvtgDqylnSz9mTCHDmv5/hOYFplOp5N2u8d7xMiRI1m/fv1t8c2bN+fixYs0adKEqVOnMnXq1DrJz8vLw9XVlZ4MxlYmOrhAIBBYGmpdOQf5mdzcXJMNpVf+VrxzrDdKp7r/VpQUlLOw816TlvVeYjWej3Xr1rFu3bo7Xo+LizNbWQQCgUDw70YMu1SP1RgfAoFAIBDUF8TBctVj3bUTCAQCgUBQ7xCeD4FAIBAIJEaHDK0Ry2V1YqmtQCAQCASC2iCGXarHumsnEAgEAoGg3iE8HwLJkSkUJtehK60/B0jVGRtpj62vEq3G9DoEAsFtaHUytLq6D50Yk9cSEMaHQCAQCAQSozHyVFtj8loC1l07gUAgEAgE9Q5hfAgEAoFAIDGVwy7GhNrwxRdf0K5dO/1BqF26dOG3337TXy8pKWHSpEl4enri5OTE008/TVpamoGM69evM2DAAFQqFQ0aNGDmzJmo1YanBx88eJD77rsPhUJBSEhItZt7VocwPgQCgUAgkBgtNkaH2hAQEMD777/PyZMnOXHiBI8++iiDBw/m/PnzAEybNo3t27fzww8/cOjQIZKTk3nqqaf0+TUaDQMGDKCsrIyjR4+yfv161q1bxzvvvKNPc+3aNQYMGECvXr2Iiopi6tSpvPLKK+zatavW7WM1Z7uYGnG2S80RE05riJhwKhCYFXOe7TL59ydRGHG2S2lBOSu6bSUhIcGgrAqFAkUNv2M9PDz46KOPeOaZZ/D29mbjxo0888wzAFy8eJGWLVsSERHBQw89xG+//cbAgQNJTk7Gx6fi8M3Vq1cze/ZsMjIysLe3Z/bs2fzyyy+cO3dOr2Po0KHk5OSwc+fOWtVPeD4EAoFAIJAYjU5mdAAIDAzE1dVVH5YsWXJ33RoN33//PYWFhXTp0oWTJ09SXl5O79699WlatGhBo0aNiIiIACAiIoK2bdvqDQ+AsLAw8vLy9N6TiIgIAxmVaSpl1Aax2sUEODhqeHlWKg8/noubp5qr5x344u2GXDqtklTPoJGZPDMhHQ9vNbHRDqya25CYqPqpw8ZGx/CpSTw6JBN373JupNmz90cvNi73h7938hv+eiI9BmXh7VdGebmMK2cdWbc0gJgopzqX39O3nDFzknmgVz4KBy3JcQqWTgvk8hlp2qlN5wKenZhBs7ZFePqqmT+6CRE7XSWRDfDcpFTGhCez9StvVs8P/MdVHe99e5UHeuUxf0wwEbvc6qTD1HWoxJL6673UYel1eH5yGl375xIYUkpZiQ3RJ1R8vciPxKtKSeRXYo52MgapltpW5fm4E2fPnqVLly6UlJTg5OTE1q1badWqFVFRUdjb2+Pm5maQ3sfHh9TUVABSU1MNDI/K65XXqkuTl5dHcXExDg4ONa6f8HyYgGlLE7ivez4fTmnE+Meac/KQM+9vuoqnb7lkOno8kc24ecls+MSXSWGhxEYrWbQxFlfP+qnj2fEpDBiWzqp5TRjXux1rPgjkmXEpDB55c8JT4jUlq+Y1Zny/NrzxbEvSkhQsXh+Dq0fd6uTkquaTny+jUcuYOzyYsT2b8+VCfwpypRvuUKq0xJ5XsuKtAMlkVhLavpABwzKJja76gX7ylXSkGDQ1ZR0qsbT+eq90WEMd2nUpZPs6L6YObEb40GDktjoWfxeLwkG6IUBztJOx6P4+1bauQff3DqeVE0grQ3XGR/PmzYmKiuLYsWNMmDCBl19+mejoaHNVuVZYpPExcuRIZDLZbaFfv34MHTqUfv36GaTfuXMnMpmM+fPnG8TPnz+fRo0aSVo2e6WWbv1z+eo9f84dcyI5TsH/LfUlOU7BwBGZkul5alwmOzd6sHuTB9cvK/l8dgClxTLCXsiqlzpa3ZfPn3vc+OuAG2lJCn7/zYNTR1xp3r5Qn+bgNi8i/3AlNUFJ/GUVX77XCEcXDUEtiupU/ucmpZOZbM/SaY2IiVKRlqDg1CFnUuKlm5Ny4oAL6z/046jEngKlSsPs5XEsm9WI/CqMpeBWRTz9ajqfzGhstC5T1eFWLK2/3isd1lCHOcOC2bPZg/hLSmKjHVg6tRE+AeU0a1csiXwwTztZIvb29oSEhNCpUyeWLFlC+/bt+eyzz/D19aWsrIycnByD9Glpafj6+gLg6+t72+qXys93S+Pi4lIrrwdYqPEB0K9fP1JSUgzCd999R69evfjjjz8MlgcdOHCAwMBADh48aCDjwIED9OrVS9JyyeU65LZQVmrobistkdH6wcI75KodtnZamrUr4tQRZ32cTicj8ogzrTrV7Yfa1DqiTznToWseDYMqvoCCWhbR+oF8jh+s+gfP1k7L4y+kU5AnJ/ZC3VypD/XN49JpB+b8J45NZ86zcncMj794o06yzM3kRQn8tc+VyN9vnxSnUGp5c0UcK+cEkp1R/yc/W2J/vRc6rKEOVeHoUuHxyM+RxuN4L+pQFzTIjA7GotVqKS0tpVOnTtjZ2bFv3z79tZiYGK5fv06XLl0A6NKlC2fPniU9PV2fZs+ePbi4uNCqVSt9mltlVKaplFEbLHbOh0Kh0Ftjt9KrVy8KCgo4ceIEDz30EFCxLvnNN99kxowZlJSUoFQqKSkp4dixY4waNapK+aWlpZTesqIiLy+vRuUqLpQTfULFi1PTuH5ZSU6GLT2H5NCyUxHJcdK8cbt4aJDbQk6G4e3LzrQlMESaVSBS69j8hR8qJw3/3XsWrUaGjVzH+o8DOPCzl0G6Bx/NJvzzqygctGSl2/HWS83Jy67bD6xfozIGjrjBli+9+X55A0LbFzPh3STKy2Xs/cGjTjLNQY8nsghpW8SUAS2qvP7q/ESiTzoSsdvNvAWrI5bYX++FDmuowz+RyXSMX5DEub9UxMfU7s34Tpi7DnVFqzNui3RtLYdUw8PDefzxx2nUqBH5+fls3LiRgwcPsmvXLlxdXRkzZgzTp0/Hw8MDFxcXpkyZQpcuXfS/k3379qVVq1a89NJLfPjhh6SmpjJ37lwmTZqkH+oZP348K1asYNasWYwePZr9+/ezefNmfvnll1rXz2I9H3ciNDQUf39/Dhw4AEB+fj6nTp3i2WefpUmTJvpZuUePHqW0tPSOno8lS5YYzDAODPznZL878+GURshk8F1kNDvizjBkTAYHf3JDpzW+fpZK9wFZPDr4Bh+83pTJg1qz9I1gnh6bQu+nMgzSnY5wYeKANkx/uhUnD7ny1oordR7HldnAlXMOrH3fj6vnVPy2wZPfNnoy4KX66/3w9itjwoJEPpjShPLS2x/Ph/rk0KFrPqvnmW5+hkAgFZMXJ9G4RQlLJhg/PCionvT0dEaMGEHz5s157LHHOH78OLt27aJPnz4AfPrppwwcOJCnn36a7t274+vry5YtW/T55XI5O3bsQC6X06VLF4YPH86IESNYuHChPk1QUBC//PILe/bsoX379ixdupSvvvqKsLCwWpfXYj0fO3bswMnJcBXEW2+9xVtvvUWvXr04ePAg4eHhHDlyhNDQULy9venevTsHDx7UXw8KCqJx46ofivDwcKZPn67/nJeXV2MDJCVewcynQ1A4aHB0/vsNfnUcKfH2da/wLeRlydGowc3bcOc5dy812RnS3FKpdbwSnsDm1X4c2uEJQFyMigYNS3l+Ygp7t3jr05UWy0mJl5MSDxejnPh6/2n6PZfBpi/8a60zK92W+EuGM+wTLivo1j+n1rLMRUi7Ity91az87aI+Tm4LbTsX8MTIDHZ8641f41K2RJ82yPf2l7Gc+8uJWc+GmrvId8US++u90GENdbiVSYsS6dwnjxlPNiUzRZrvPjBvHYyhcuKoMflrw9dff13tdaVSycqVK1m5cuUd0zRu3Jhff/21Wjk9e/YkMjKyVmWrCov1fFTusHZrGD9+PFDROH/88Qfl5eUcPHiQnj17AtCjRw/9vI9KI+ROKBSK22YZ15bSYjlZ6XY4uarp1COfiF3STOhTl9tw+YyKjt3y9XEymY4O3QqIPinNUjOpdSgcNGj/4fnRamTIbKr3LcpswM6+bi6j6OOOBDY1dMM2DC4lPUm6L0KpifrdmXGPtWRC2M0QE6Vi/1YPJoS15LvPfRnfx/A6wH8WBLB0ev18u7TE/novdFhDHSrQMWlRIg/3y2XWs01JS5B200Hz1MF4tMiMDtZM/TETa4mjoyMhISFVXuvVqxeFhYUcP36cAwcOMHPmTKDC+Bg9ejRZWVkcO3aMV1991SRl69QjD5kMEq4qaBhUxitvJ5NwRcnuTdLNM9jypRdvLEvg0mkVMZEqnhybgVKlZff39VPHsX3uDJ2UTEaygvhLDjRtXciTY1LZ/UOF10PhoOGFScn8udedrAw7XNzVDHopDS/fMo78Wrc6bfnSm0+3XWbolDQOb3ejecci+g/PYtlM6YYslCoN/kFl+s++gWUEty4mP0dORh2MnOJC+W1j4yXFNuRn34yvapJpepJ9nb/kpa5DVVhaf71XOqyhDpMXJ9HryWzmjwqiuMAGd++KYdPCfDllJdK875qjnQSmxWKNj+po2rQpgYGBbNu2jaioKHr06AFAw4YNadiwIUuXLqWsrEzylS6VOLpoGRWegpdfOfk5cv741ZW17/uhUUtnyR7a5o6rp4YRM1Nx91YTe96BOcOCyMmUbvWDlDpWzW/MiOmJTHo3DjfPik3GfvuuARs+rxhO0WpkBDYtoffTl3FxV5OfY8ulM4688VxL4i/X7W3m0mkVC8cEMSo8hWHT0khNsGf1O/4c2OpeJ3lVEdq+mI9+vKr/PH5BMgC7N7mzdJq0y7hNhTnqYGn99V7psIY6DBpZMafq4y1XDeI/nhrIns3SGAfmaCdjuXWX0rrmt2Ys8myXkSNHkpaWxtq1aw3ibW1t8fKqWD3x8ssvs3XrVho2bMiFCxf0aUaPHs3//vc//Pz8iImJqbFOcbZLzRFnu9QQcbaLQGBWzHm2y9B9w7F3qrvnsKygjO8f+z+TlvVeYrFzPnbu3Imfn59B6Natm/56r169yM/P18/3qKRHjx7k5+ebzOshEAgEAoGgeizS83EvEJ6PmiM8HzVEeD4EArNiTs/Hc/tewt7RCM9HYRmbH/vWaj0fVjnnQyAQCASCe4nOyBUrOrHaRSAQCAQCQW2Q6lRba8Vi53wIBAKBQCCwTITnQyAQCAQCiTH3DqeWhjA+BAKBQCCQGDHsUj3C+BBIjjlWouxKjjKp/DD/DiaVLxBYJDIT/yCKxZf/GoTxIRAIBAKBxBh7Pos420UgEAgEAkGtEMMu1WPdM1oEAoFAIBDUO4TnQyAQCAQCiRGej+oRxodAIBAIBBIjjI/qEcMuAoFAIBAIzIrwfBhJm84FPDsxg2Zti/D0VTN/dBMidrrqrw+fkUrPwTl4+5dTXibjylkH1r7vS0yko9G6B43M5JkJ6Xh4q4mNdmDV3IbERKmMlmtOHXWVP3VQM4ZNS+WBR/MByEq35at3/Tl12JmiAhsCm5Yy9PU0HhmQq88z7+Ugrp53IOeGLc6uGjo+ks+YOcl4+qoBKCuR8fmbgVw+41Dj8j8/OY2u/XMJDCmlrMSG6BMqvl7kR+JVZS1bomqem5TKmPBktn7lzer5gQDYKbSMezuRnoOzsbPXcfKQC8vfCiQns24HHg6fkcpLM9IM4hKuKHilewujy38r1tBfzaHDHHWo5LnJaYx5K5Wt//Vi9byGtc7//OQ0uj6eY9j/F/vfof/reO/bWB54NL/ie3KXm1FlN2c71QXh+ageq/F8pKam8vrrrxMSEoJSqcTHx4euXbvyxRdfUFRUBECTJk1YtmyZpHqVKi2x55WseCugyutJsQpWzmnIq4+GMmNICKkJ9iz5LhZXD7VRens8kc24ecls+MSXSWGhxEYrWbQxFlfPcqPkmlOHMfLbd81n/qgg4mIqvuQ+eq0RCVcVzF93jf/sj6Fr/1wWv9qEK2cdbslTwJz/xPH1kQvM/e81kuMUvDs2SH9dq5Vhr9QyeExGjevQrksh29d5MXVgM8KHBiO31bH4u1gUDsafJhvavpABwzKJjTY0hsbPS+ShPrm892owbzwTiodPOe/8N9YoXXEXlQxt30ofpg8JMUreP7GG/moOHeaoQyWh7YsYMDyL2PN1N5TbPVTA9vVeTB3UjPAXmiK3g8Ubr1bZ/58cmyHZNh7mbKe6ouPmctu6BGvf8cQqjI/Y2Fg6duzI7t27Wbx4MZGRkURERDBr1ix27NjB3r17Tab7xAEX1n/ox9FbvB23cmCrO5FHnEm9riD+kpIv5/vj6KIlqFWxUXqfGpfJzo0e7N7kwfXLSj6fHUBpsYywF7KMkmtOHcbIH/VmKkpHLRdPVrzpRJ9wZPDoTFp0LMKvcRkvTk3D0VVj4MV4alwGLTsV4RNQTusHinh+choXT6lQ//19pVRpee39RPoPq3n95gwLZs9mD+IvKYmNdmDp1Eb4BJTTrJ1x91ep0jB7eRzLZjUiP1euj1c5awgbeoP/LAzg9FFnrpxV8cn0xrR+oJAW9xXWWZ9GA9kZdvqQlyWtU9Qa+qs5dJijDvB3/1oRz7KZAQb9q7bMGd6UPZs9ib/kUG3/D25dxNOvZvDJjEbGFh0wXzsZQ6Xnw5hgzViF8TFx4kRsbW05ceIEzz33HC1btiQ4OJjBgwfzyy+/MGjQoHtdRABs7bT0H36Dglyb295mayunWbsiTh1x1sfpdDIijzjTqlORFEU1uQ5j5R/8yY3SIhta3l/xg9vq/kIObXMjL1uOVltxvaxERruHC6rMn5ctZ/8Wd1rdX4ht3UYrqsTRpeKNLz+n7l/oAJMXJfDXPlcif3cxiG/Wtgg7ex2Rt7RbwlUlaYn2tLyv6rrWhIZBZWw8dZ51EReYvSIe74ZldZb1T6yhv5pDhznqUMnkxUn8tc/FoB9JQVX9X6HU8uaKeFa+FUB2hvEPmznbSWA6LH7Ox40bN/QeD0fHqudRyOqwJXBpaSmlt2wTnpeXV+cydu6dR/gX8SgctGSl2RI+tKlRb5YuHhrktpCTYSgjO9OWwBBptjY3tQ5j5X/+ZiDvfH2NxqEVaef8J57F4xvzbOu2yG11KBy0zPs6joZBhj+iX73nx7a1XpQWy2nZqZCF640brrgVmUzH+AVJnPtLRXxM3Y3LHk9kEdK2iCkDbp9z4dGgnLJSGYV5hu2Wk2mLR4O6DeVdPKXi46mBJF5V4NGgnOEz0li69Qqv9mpOcaFxRhRYR381hw5z1AGgx+BsQtoWM6V/M8lkwq3939Gg/7+6IInoE45E7K7aO1xbzNVOxiLmfFSPxXs+rly5gk6no3nz5gbxXl5eODk54eTkxOzZs2std8mSJbi6uupDYGBgncsY9YcjE/uEMu2JEE4cdGHOf+Lr1dikJTJwRCYfv96Y+EsKANZ/6EtBnpz3N11h+W8xPD0unUXjm3DtguF49rMT0lm1+xKLv7uCjY2Oj15vJNk49OTFSTRuUcKSCY3rLMPbr4wJCxL5YEoTykvN83ieOODCkR1uXLvgwMlDLswdHoyTi4buT+SYRb/AfHj7lzFhYTIfTG4kef+avDiRxs2LWTLxZv9/qE8uHbrm12kyq6Ujhl2qx+I9H3fir7/+QqvVMmzYMAMPRk0JDw9n+vTp+s95eXl1NkBKi+Ukx8lJjlNw8ZQja36/QL8Xsti0wqdO8vKy5GjU4OZt+Kbr7qUmO0OaW2pqHcbKH/1WCjFRKn76yptnJ6azba03/zlwkSbNSwBo2rqEs8ec2LbOi9c/SNTnc/XU4OqpIaBpKY2axTP8/tZcOKmi1f3GuWsnLUqkc588ZjzZlMwU+zrLCWlXhLu3mpW/XdTHyW2hbecCnhiZwVvDQrBX6HB0URt4P9y81GSlS3PvC/PkJMYq8G8izdCLNfRXc+gwRx1C2hVX9K9dl/Rxclto+1AhT4zKZGCTdmi1tf/Rm/ReIp175zHjqRCD/t+hWz5+jcvYcuGsQfq3/xvHuWOOzHq29t4Xc7STwPRYvOcjJCQEmUxGTEyMQXxwcDAhISE4ONTN/a1QKHBxcTEIUiGzATtF3V+31eU2XD6jomO3/JsyZTo6dCsg+qQ0S81MrUMK+TodlJfZUFpc0Y1tbAzbVC7XodNWk//va+VlxjwGOiYtSuThfrnMerYpaQkKI2RB1O/OjHusJRPCboaYKBX7t3owIawll844Ul4mM2i3gOASfALKuHDKySjdlShVGvwbl0lmzFhDfzWHDnPUIeqIE+N6hTKhz80QE+XA/i3uTOgTWgfDQ8ek9/7u/8+F3Nb/N63wYXzv5kzoezMA/Gd+Q5ZOr9vkU3O0kxQIz0f1WLyZ6OnpSZ8+fVixYgVTpky547wPU6FUafC/ZV6Bb2AZwa2Lyc+Rk5cl58XX04nY7UJWmh0uHmqeGJWJl285R7a7GaV3y5devLEsgUunVcREqnhybAZKlZbd33sYWSPz6TBG/prFfpw56sSijVcJDCnBP6iUz2YFMvadZFzc1Rzd6cqpw84s/KZiTsfFUypiolS0ebAQJzc1KXEK1n/oi1+TUlp2urlKJP6SAnUtjJHJi5Po9WQ280cFUVxgg7t3xXBaYb6cspLaGzXFhfLb5ouUFNuQn30zftf3nox7J4n8HFsK8+VMejeB6BOOXDxVt74/9p1k/tztQnqiPZ6+5bz0RioaLRzc6l4neVVhDf3VHDpMLb/K/lVk2L9qw+TFifQaks380cFV9v/K1VP/JD3JzihD3Rz32lh0Ohk6IwwIY/JaAhZvfACsWrWKrl27cv/99zN//nzatWuHjY0Nx48f5+LFi3Tq1EmfNikpiaioKIP8jRs3xt29bl+0oe2L+ejHq/rP4xckA7B7kzufvxlAQEgpbz8bh4uHhvxsOZdOq5jxZAjxl4zbhOrQNndcPTWMmJmKu7ea2PMOzBkWVOeNpu6FDmPkx0SpWLTxKp16VKzweO/bq3y92J95LwdRXGiDf1AZb3x2nQcfq3g7Ujho+eM3V75d6ktJkQ0eDcq5v1c+c16Px/4WL9Tbw5uSlljzYZNBI28A8PGWqwbxH08NZM9m03wRrl4QgFabyNtfxmJnr+PEIWdWvFX3JYxefuWEr4rH2V1D7g1bzh93ZOrAZuRKuNzWGvqrOXSYow5SMujlv/v/j1cM4j+eFsiezZ4m02tp7SS4HZlOJ9V0u3tLSkoKixcv5pdffiExMRGFQkGrVq149tlnmThxIiqViiZNmhAfH39b3m+//Zbhw4dXKz8vLw9XV1d6Mhhbmejg95pdyVEmlR/m38Gk8gGwMX4lyV3RGr/ZmUCgpw4rB2uFiX+O1LpyDvIzubm5kg6l30rlb0WXn6dg61h37466sJSIwctNWtZ7iVV4PgD8/PxYvnw5y5cvv2OauLg48xVIIBAIBP9axFLb6rH4CacCgUAgEAgsC6vxfAgEAoFAUF8QE06rRxgfAoFAIBBIjBh2qR5hfAgEAoFAIDHC81E9Ys6HQCAQCAQCsyI8HwKLxCxLYU2NWAYrsDSsY2cGs6AzctjF2j0fwvgQCAQCgUBidBhnq1m7mSeGXQQCgUAgsHCWLFnCAw88gLOzMw0aNGDIkCG3nXnWs2dPZDKZQRg/frxBmuvXrzNgwABUKhUNGjRg5syZqNWGh/gdPHiQ++67D4VCQUhICOvWrat1eYXxIRAIBAKBxGiRGR1qw6FDh5g0aRJ//vkne/bsoby8nL59+1JYWGiQbuzYsaSkpOjDhx9+qL+m0WgYMGAAZWVlHD16lPXr17Nu3TreeecdfZpr164xYMAAevXqRVRUFFOnTuWVV15h165dtSqvGHYRCAQCgUBizL3aZefOnQaf161bR4MGDTh58iTdu3fXx6tUKnx9fauUsXv3bqKjo9m7dy8+Pj506NCBd999l9mzZzN//nzs7e1ZvXo1QUFBLF26FICWLVvy+++/8+mnnxIWFlbj8grPh0AgEAgE9ZS8vDyDUFpaWqN8ubm5AHh4GB5wuWHDBry8vGjTpg3h4eEUFRXpr0VERNC2bVt8fHz0cWFhYeTl5XH+/Hl9mt69exvIDAsLIyIiolb1Ep4PgUAgEAgkRquTIZNgk7HAwECD+Hnz5jF//vzq82q1TJ06la5du9KmTRt9/Isvvkjjxo3x9/fnzJkzzJ49m5iYGLZs2QJAamqqgeEB6D+npqZWmyYvL4/i4mIcHBxqVD9hfAgEAoFAIDE6nZGrXf7Om5CQYHCqrUJx95NyJ02axLlz5/j9998N4seNG6f/v23btvj5+fHYY49x9epVmjZtWvfC1gFhfBhJm84FPDsxg2Zti/D0VTN/dBMidrrqrw+fkUrPwTl4+5dTXibjylkH1r7vS0yko9G6B43M5JkJ6Xh4q4mNdmDV3IbERKmMlmsuHXdrO2MZOCKTASNu4BNYBkB8jJINn/pw4oB0x1OvPxaNb2D5bfHb1nmy8q0Ao+Wbow42NjqGz0jlsadzcPcu50aaHXs2e7BxWQOo5aS36rD0/mouHaaUb47+ZOrnuhJz3Ov6gIuLi4HxcTcmT57Mjh07OHz4MAEB1X8Hde7cGYArV67QtGlTfH19+euvvwzSpKWlAejnifj6+urjbk3j4uJSY68HWPCcj9TUVF5//XVCQkJQKpX4+PjQtWtXvvjiC/0YVpMmTZDJZHz//fe35W/dujUymaxOS4RuRanSEnteyYo7/NAkxSpYOachrz4ayowhIaQm2LPku1hcPdRVpq8pPZ7IZty8ZDZ84suksFBio5Us2hiLq+ftP4T1Vcfd2s5YMlLsWLPYj8n9QpnyeCin/3Bi/to4GoeWSKbjtcdDGdq+lT68+XwwAEe2u0ki3xx1eG5SOgNfvsHKOQ0Z26MFXy/y49mJ6QwekymZDmvor+bQYWr55uhPpn6uwTz32lgqJ5waE2qnT8fkyZPZunUr+/fvJygo6K55oqKiAPDz8wOgS5cunD17lvT0dH2aPXv24OLiQqtWrfRp9u3bZyBnz549dOnSpVbltUjjIzY2lo4dO7J7924WL15MZGQkERERzJo1ix07drB371592sDAQNauXWuQ/88//yQ1NRVHR+O9DycOuLD+Qz+O3sGyP7DVncgjzqReVxB/ScmX8/1xdNES1KrYKL1Pjctk50YPdm/y4PplJZ/PDqC0WEbYC1lGyTWnjru1nbEc2+PK8f0uJF9TkBSrYN0HfpQU2tCiU+HdM9eQ3CxbsjPs9KFz7zySr9lzJsL4vgXmqUOr+wuJ2OXKX/tcSEu05/df3Dh1yJnmHYrunrmGWEN/NYcOU8s3R38y9XMN5rnXxmJu42PSpEn83//9Hxs3bsTZ2ZnU1FRSU1MpLq74rbl69SrvvvsuJ0+eJC4ujm3btjFixAi6d+9Ou3btAOjbty+tWrXipZde4vTp0+zatYu5c+cyadIk/XDP+PHjiY2NZdasWVy8eJFVq1axefNmpk2bVqvyWqTxMXHiRGxtbTlx4gTPPfccLVu2JDg4mMGDB/PLL78waNAgfdphw4Zx6NAhEhIS9HFr1qxh2LBh2Nqad9TJ1k5L/+E3KMi1ITa65u6pquQ0a1fEqSPO+jidTkbkEWdadZLmB8McOsyJjY2OHoOzUai0XDghjWHwT2zttDz6dDa7vvdAyuGKSkxVh+gTjnTolk/D4IpZ9MGtimn9YCHH90vjireW/mpqHeZ+5szxTJgCS/luqjzV1phQG7744gtyc3Pp2bMnfn5++rBp0yYA7O3t2bt3L3379qVFixbMmDGDp59+mu3bt+tlyOVyduzYgVwup0uXLgwfPpwRI0awcOFCfZqgoCB++eUX9uzZQ/v27Vm6dClfffVVrZbZggXO+bhx44be43Enz4VMdvOm+fj4EBYWxvr165k7dy5FRUVs2rSJQ4cO8c0339xRT2lpqcGSpry8vDqXuXPvPMK/iEfhoCUrzZbwoU3Jy6p707t4aJDbQk6GoYzsTFsCQ2q2DKs+6DAHTVoUs2z7FewVWooLbVg4pgnXLytNouvhfnk4uWjYvdnj7olrganrsGlFA1TOGr46fBGtBmzksO59Xw5sdZdEvrX0V1PrMNczZ85nwhRYy3eT1OjuMrs1MDCQQ4cO3VVO48aN+fXXX6tN07NnTyIjI2tVvn9icZ6PK1euoNPpaN68uUG8l5cXTk5OODk5MXv2bINro0ePZt26deh0Ov73v//RtGlTOnToUK2eJUuW4Orqqg//XO5UG6L+cGRin1CmPRHCiYMuzPlPfL0am7RmEq8qmNgnlNcGNGPHN1688dl1GjWTbnz7VsJeuMHxAy5kpdlJKtfUdej+RA6PPpXD+5MaMSkslI9fD+SZ8Rn0frb+uLAF0mHOZ+LfTOVqF2OCNWNxxsed+Ouvv4iKiqJ169a3bcIyYMAACgoKOHz4MGvWrGH06NF3lRceHk5ubq4+3DpsU1tKi+Ukxym4eMqRT2cEolFDPyPGJvOy5GjU4OZtOGnV3UtNdoY0zixz6DAH6nIbkuMUXDmrYu0SP65FOzDklQzJ9TRoWEbHRwrYuVFarweYvg5j305h04oGHPrZnbiLDuz70YMt//Vm6JT0u2euAdbSX02tw1zPnLmeCVNhKd9NFQaEMXM+7nUNTIvFGR8hISHIZLLbDswJDg4mJCSkyqU+tra2vPTSS8ybN49jx44xbNiwu+pRKBT6JU61Xep0N2Q2YKeoe89Sl9tw+YyKjt3yb8qU6ejQrYDok9IsNTOHjnuBTAZ29tI/1X2HZpGTacuxvdL1kzshdR0USi06rWGcVlNxv6XAWvqrqXXcq2fOVM+EqbDW76Z/G/XHTKwhnp6e9OnThxUrVjBlypQar1gZPXo0H3/8Mc8//zzu7tKMZQMoVRr8g8r0n30DywhuXUx+jpy8LDkvvp5OxO4KV7yLh5onRmXi5Vtu9FLMLV968cayBC6dVhETqeLJsRkoVVp2fy/dm7epdVTXdhlJ9kbLHxWewvH9zmQk2ePgpKHXkzm0e7iAOS8GGy37VmQyHX2fz2LvD+5oNdJONDVHHf7c48LQ19JJT7InPkZJ0zbFPPVqhkX1JWvRYWr55uhPpn6uwTz32ljMfbaLpWFxxgfAqlWr6Nq1K/fffz/z58+nXbt22NjYcPz4cS5evEinTp1uy9OyZUsyMzNRqaS1jEPbF/PRj1f1n8cvSAZg9yZ3Pn8zgICQUt5+Ng4XDw352XIunVYx48kQ4i8ZN8Hr0DZ3XD01jJiZiru3mtjzDswZFkROpnTzDUyto7q2WzqtkdHy3bzUzPz8Oh4N1BTly7l2QcmcF4M5ddj57plrQcfuBfgElLPre09J5YJ56rBqbkNenpXK5CWJuHmquZFmx6/ferLhU5+7Z64h1tBfzaHD1PLN0Z9M/VyDee61sej+Dsbkt2ZkurtNka2npKSksHjxYn755RcSExNRKBS0atWKZ599lokTJ6JSqWjSpAlTp05l6tSpVcpwc3Nj2bJljBw58q768vLycHV1pSeDsZXVnw4uEAgEgpqh1pVzkJ/Jzc2VdCj9Vip/K5p+G45cVfeXTE1RCVdfWmLSst5LLNLzARU7si1fvpzly5ffMU1cXFy1MnJycqQtlEAgEAgEiGGXu2GxxodAIBAIBPUWMe5SLcL4EAgEAoFAaoz0fGDlng+LW2orEAgEAoHAshGeD4FAIBAIJMbYXUotcylIzRHGh0AgEAgEEiMmnFaPMD5qidzTA7mNNBvlVIUm84bJZFsTMhOfSKxTq++eyEjSf25hch0NBl80uQ7BvwgbuWnlazWmlS+oNwjjQyAQCAQCqdHJjJs0KjwfAoFAIBAIaoOY81E9YrWLQCAQCAQCsyI8HwKBQCAQSI3YZKxahPEhEAgEAoHEiNUu1VMj42Pbtm01FvjEE0/UuTACgUAgEAisnxoZH0OGDKmRMJlMhkZj3Uulhr6SQLfeWQQEFVFWasOFKFfWLGtKUpyjPk2/p5Po2T+NkJb5qJw0PNv1EQrzDU/CXfvbUXwalhjGLQvm+w9rfrT1oJGZPDMhHQ9vNbHRDqya25CYKJVxFTSjDgdHDS/PSuXhx3Nx81Rz9bwDX7zdkEun6yZ/+LRkhk9LMYhLuKJg7KNt/pFSx7vrr/BArzwWvNKUiN1udasA0KZzAc9OzKBZ2yI8fdXMH92EiJ2uNcrrujiRghHeaAIUt1/U6XBdmIjiVCE54Q0pe6iiXyj35eDyeWqV8jLWh6Bzq5sz09O3nDFzknmgVz4KBy3JcQqWTgvk8hnp+pOl99eBIzIZMOIGPoFlAMTHKNnwqQ8nDkh74qgltdPAlzIYMCIDn4C/2+SSAxuW+XLigCvObmpempHCfd3zaNCwjNwbthzd5cb6j/wpyjd+ya452slorHzoxBhq9E2l1WpNXQ6Loe39uez4PoBL552Ry3W8/Fosi1ZH8eqTD1FaXPFAKRy0nPzDg5N/eDBqauwdZX27IoidP/rrPxcV2QI5NSpHjyeyGTcvmeVvBnDxlIonx2awaGMsYx5pTu4Nu7sLqAc6pi1NoEnzEj6c0oisNDsefTqb9zddZWzPFtxIrZv8uBgl4S+G6j9r1Le7Lp8cky7ZTHKlSkvseSW7vvNg3pq42mVW63Cbn8CNFcGgNJz77bAtG6rwupZ0c6HsPieDOOfPUpCVa28zPGQFNXsRcHJV88nPlzlz1Im5w4PJuSGnYXAZBbnS7elgDf01I8WONYv9SLqmQCaDPs9mMX9tHJP6hhJ/qe5Hp9+KpbVTRooda5Y0rGgToM+zN5j/dSyT+rUAGXj6lPPfdxty/bIDDRqW8dr71/H0Kee9V4PrTR1MhRh2qR6jVruUlJTcPZGZSE1N5fXXXyckJASlUomPjw9du3bliy++4MEHH0Qmk90x9OzZs8Z65oxvw95tfly/6sS1S8588nZLGviX0qxVnj7Nz/8XyA9rmnDxTPVvwEVFtmTfUOhDpfFSE54al8nOjR7s3uTB9ctKPp8dQGmxjLAXsmos417qsFdq6dY/l6/e8+fcMSeS4xT831JfkuMUDByRWWe5GrWM7Aw7fcjLNvxBDm5VxFPj0vh0ZhMja1DBiQMurP/Qj6M19HbcSt7rfsgz1NhdNXyObGNLUP2cRf4Uv9szKWzQutvqg84G7M8WUtLb7bakzl9U7SH5J89NSicz2Z6l0xoRE6UiLUHBqUPOpMRX4ZGpI5beXwGO7XHl+H4Xkq8pSIpVsO4DP0oKbWjRqVAS+WB57XRsrxvH97uSfE1J0jUl6z5sSEmRDS3uKyQ+xoF3xwVzbK8bKfEKTh91Zt0H/nTunYuN3Djr3xztZDQ6CYIVU2vjQ6PR8O6779KwYUOcnJyIja14s3/77bf5+uuvJS9gTYiNjaVjx47s3r2bxYsXExkZSUREBLNmzWLHjh1MnjyZlJQUUlJS+OuvvwDYu3evPm7Lli111u3oVLETZn5u7a3tZ0fH8/3hwyzf9BdPj4zHRl4zD5OtnZZm7Yo4deTmEI1OJyPyiDOtOhXVuhz3QodcrkNuC2WlhtZ9aYmM1g/W/cu8YVApG46fYe3vZ5n12TW8/cv01xRKLbOXX2Pl3EZkZ9z7tyOboor7rXW6xegs1eKyNJn8V33Qut/dMak8kItOYUPJw4bDdcq9OcjTymtUjof65nHptANz/hPHpjPnWbk7hsdflG6nXWvor//ExkZHj8HZKFRaLpxwvHuGGmDp7WRjo6PHE1koHLRcOFl1mzi6aCgqkKPV1P2t3tz3WmAaaj1AvGjRItavX8+HH37I2LFj9fFt2rRh2bJljBkzRtIC1oSJEydia2vLiRMncHS82emDg4MZPHgwOp0Omayis1d6azw9PfH19b2jzNLSUkpLS/Wf8/Lybksjk+l4ddZlzp9yJf6K023Xq2PbxgCuXHAmP9eOVh1yefn1q3h4lbH6TY+75nXx0CC3hZwMw9uXnWlLYEjpHXLVDlPrKC6UE31CxYtT07h+WUlOhi09h+TQslMRyXF1e+O+GOnI0hlNSLyqwKNBOcOmpvDx/2IY36cVxYVyXp2XwIUTjvy5x83o8kuB01dplLV0QNP4Zn2dv06nvIUDZZ1rNvfHYU8uJd1dQHHzPUKeXIbTNxlkL2mM58Q7D/tV4teojIEjbrDlS2++X96A0PbFTHg3ifJyGXt/uHt/vBvW0F8radKimGXbr2Cv0FJcaMPCMU24flmaIRdLbacmLYpZ9nPM320iZ+HYYK5fdrhdt7uaF19P5bcNnnXSo5djpnttPDKqHDutVX7rpdbGxzfffMOXX37JY489xvjx4/Xx7du35+JF858jcePGDb3H41bD41YqDY/asGTJEhYsWFBtmolzLtE4pJA3Rt5Xa/lbv22k/z/ushPl5TKmvB3D1++4UV7279j77cMpjZj+SQLfRUajUcOVsw4c/MmNZu2K6yTvxMGbQx/XLsLFKEe+OXqW7gOzyc2ypf3D+Ux6vKVUxTca2+ulZC9prP9sfywfuzOFZH8aVLP8F4uxTSwjb9rNeUNodLgsTabgBS80DWt2BpHMBi6fcWDt+xXDPFfPqWjSooQBL92QxPiwJhKvKpjYJxSVs4ZHBubyxmfXmflUiGQGiCWSeFXBxLAWqJy1PDIgmzc+jWfmM80MDBCVk4Z3v7nC9ctKvv3EvxppVoTY56Naam18JCUlERISclu8VqulvLxmbl4puXLlCjqdjubNmxvEe3l56b0ckyZN4oMPPqiV3PDwcKZPn67/nJeXR2BgoP7zhPAYHuyeyaxR93EjzfgvnpizLtja6fAJLCPxavXy8rLkaNTg5m14+Jm7l5rsDGm2bjGHjpR4BTOfDkHhoMHRWUtWuh1vrY4jJV6ag/sK82xJuqbEv0kpTVoU49e4lB/PRRmkmfufq5z/y4lZzzevWogJyX6vEVqvm8M/9meLkKeW4/XiJYN0rh8kUd7KgZxFjQ3iHfbkUB6kQB1ys7/IirXYXSnBNrYE5y/TalSOrHTb2yZMJlxW0K1/Ti1rVDXW0l8B1OU2es/clbMqmncoYsgrGXw+O/AuOe+OpbZTRZtU9J8rZ1U0b1/EkDEZfP5mxQuWg6OGRf93heICOQteCa5yEvi9roPA/NT6FbtVq1YcOXLktvj//e9/dOzYUZJCScFff/1FVFQUrVu3Nhg+qSkKhQIXFxeDUIGOCeExdHk0g/BXOpKWdLt7sS4ENy9Ao4GczLs/POpyGy6fUdGxW74+TibT0aFbAdEnpVlqZg4dlZQWy8lKt8PJVU2nHvlE7Kr95M2qUKo0+DUuJSvdjs2rfJnQtxUT+90MAF8uDGTpG00k0VdbtD6GRlbR055kfRZE1rKbAaBgdAPyXjOcfCor1qL4PZ+SPm4G8TqVDTc+N8x/N6KPOxLY1PAZaRhcSnqSNEagtfXXW5HJwM5emldUa2knmY0OO/uK+UwqJw2LN16hvFzGvFFNKS813qt7r+51rRETTqul1mbiO++8w8svv0xSUhJarZYtW7YQExPDN998w44dO0xRxmoJCQlBJpMRExNjEB8cXLGUy8FBGuOgkilzr9KrfyYLX29LcaEcd8+KL+3CAlvKSismDrp7luLuVYZ/o4rhgybNCikulJOeoqQgz44W7XJp3i6PM3+5UVxoS4v2uYybdZkDv/hSkFuzW7LlSy/eWJbApdMqYiIrlpopVVp2fy+dm9zUOjr1yEMmg4SrChoGlfHK28kkXFGye1Pd5L8yJ5Fje11JT7LHw6ecl6Yno9HIOPizO7lZdlVOMk1Psictoe6rOpQqDf5BNye1+gaWEdy6mPwcORl3+fG2ya54c9OqbPSrWKhikqnG2+42Q0Xxex4yrY6SHv/YY8JGZjCHpCZs+dKbT7ddZuiUNA5vd6N5xyL6D89i2cyAWsmpXofl99dR4Skc3+9MRpI9Dk4aej2ZQ7uHC5jzonHLRm/F0tpp1JtJHD/g8nebaOk1JIt2XQqYMyzkb8PjMgoHLR++1hSVswaVc8Xy79wbtmi1dfeAmKOdjEacalsttTY+Bg8ezPbt21m4cCGOjo6888473HfffWzfvp0+ffqYoozV4unpSZ8+fVixYgVTpky547wPqRg0tGL54odrIw3iP5nbkr3bKt5O+z+XxLAJcfprH607ZZCmvNyGHv3SGDb+Gnb2WtKSlPz0bSBbvmkEZNeoHIe2uePqqWHEzFTcvdXEnndgzrAgcjKlW8Vhah2OLlpGhafg5VdOfo6cP351Ze37fnV2y3r5lfHmims4u6nJzbLl/HEnpg1pQW6W6Va2hLYv5qMfr+o/j1+QDMDuTe4sndboTtkqyjvyCgB5r/lS8phbrfQ67Mml9CFndE7G78Vx6bSKhWOCGBWewrBpaaQm2LP6HX8ObHU3WnYl1tBf3bzUzPz8Oh4N1BTly7l2QcmcF4M5dbjmGwPeDUtrJzcvNTOXxePRoPzvNnFgzrAQTh1xoV2XfFreV7H6ZN0f5w3yjXioNWmJdTf6zdFOAtMi0+ks/+Deq1ev0rVrV9zd3Zk/fz7t2rXDxsaG48eP88YbbzBs2DCWLl0KQFxcHEFBQURGRtKhQ4ca68jLy8PV1ZXHPEdhayONO7oqNJnSLXG0ZmS2ph3b1anVd09kJOk/tzC5jgaDzT8JXGDF2Ei38VyVaE27Q7ZaV85BfiY3N/eWoXRpqfytCFixABuHus8H1BaXkDh5nknLei+p8zf4iRMnuHDhAlAxD6RTp06SFaq2NG3alMjISBYvXkx4eDiJiYkoFApatWrFG2+8wcSJE+9Z2QQCgUDwL0SsdqmWWhsfiYmJvPDCC/zxxx+4ubkBkJOTw8MPP8z3339PQIB048S1wc/Pj+XLl7N8+fJq0zVp0gQrcPYIBAKBQGCx1Hrq8SuvvEJ5eTkXLlwgKyuLrKwsLly4gFar5ZVXXjFFGQUCgUAgsCwqJ5waE6yYWns+Dh06xNGjRw321WjevDnLly/nkUcekbRwAoFAIBBYIjJdRTAmvzVTa+MjMDCwys3ENBoN/v7/kp3rBAKBQCCoDjHno1pqPezy0UcfMWXKFE6cOKGPO3HiBK+//joff/yxpIUTCAQCgUBgfdTI8+Hu7m5wPkphYSGdO3fG9u/ljmq1GltbW0aPHs2QIUNMUlCBQCAQCCwGsclYtdTI+Fi2bJmJi2E5aG5kIZOJjWzuNebYh8PUmGMPDrm7dBuFVYUmu2ab4gmsBBPvw2FVmHnYZcmSJWzZsoWLFy/i4ODAww8/zAcffGAwP7OkpIQZM2bw/fffU1paSlhYGKtWrcLHx0ef5vr160yYMIEDBw7g5OTEyy+/zJIlS/TOBoCDBw8yffp0zp8/T2BgIHPnzmXkyJG1Km+NjI+XX365VkIFAoFAIBCYj0OHDjFp0iQeeOAB1Go1b731Fn379iU6Olq/8/e0adP45Zdf+OGHH3B1dWXy5Mk89dRT/PHHH0DF3M0BAwbg6+vL0aNHSUlJYcSIEdjZ2bF48WIArl27xoABAxg/fjwbNmxg3759vPLKK/j5+REWFlbj8hq1w2lJSQllZWUGcda4Exvc3LWuJ4OxFZ4PgYUgPB8CwU3MucNp4NJ3jd7hNGHG23Uua0ZGBg0aNODQoUN0796d3NxcvL292bhxI8888wwAFy9epGXLlkRERPDQQw/x22+/MXDgQJKTk/XekNWrVzN79mwyMjKwt7dn9uzZ/PLLL5w7d06va+jQoeTk5LBz584al6/WE04LCwuZPHkyDRo0wNHREXd3d4MgEAgEAsG/HolOtc3LyzMINT2lPTc3FwAPj4rD9k6ePEl5eTm9e/fWp2nRogWNGjUiIiICgIiICNq2bWswDBMWFkZeXh7nz5/Xp7lVRmWaShk1pdbGx6xZs9i/fz9ffPEFCoWCr776igULFuDv788333xTW3ECgUAgEAjuQGBgIK6urvqwZMmSu+bRarVMnTqVrl270qZNGwBSU1Oxt7fX70xeiY+PD6mpqfo0txoeldcrr1WXJi8vj+Li4hrXq9b7fGzfvp1vvvmGnj17MmrUKB555BFCQkJo3LgxGzZsYNiwYbUVKRAIBAKBdSHRapeEhASDYReF4u6nAU+aNIlz587x+++/112/iam15yMrK4vg4GCgYn5HVlYWAN26dePw4cPSlk4gEAgEAgukcodTYwJU/M7eGu5mfEyePJkdO3Zw4MABg7PWfH19KSsrIycnxyB9Wloavr6++jRpaWm3Xa+8Vl0aFxcXHBwcatw+tTY+goODuXbtGlAxXrR582agwiPyT3fOvxUHRw3jFyTxzV/RbLt6hk+3XSa0fZHkegaNzGT9sWi2x57hsx2Xad7BMnUAPDc5jV3Jpxm/IElSuea4F6ZuI0/fcmYtj+eHc+fYdvUMq/fF0KxdzXW06ZTDvJVn+fbAUX49f5Auj2YYXHfzLGPaogt8e+AoW04cZuF/TuPfyFC+nb2GiXMv8f0fv/Pj8cPMWXYON0/DyeZ3w1r6q6l1WHodnp+cxue/XmLrpbNsOnOeeWuuEdC0RDL5lZjru8lS0Ol0TJ48ma1bt7J//36CgoIMrnfq1Ak7Ozv27dunj4uJieH69et06dIFgC5dunD27FnS09P1afbs2YOLiwutWrXSp7lVRmWaShk1pdbGx6hRozh9+jQAb775JitXrkSpVDJt2jRmzpxZW3GSMHLkyCo3Nzt48CAymYycnBz9//8Mc+fOlbw805YmcF/3fD6c0ojxjzXn5CFn3t90FU/f27elrys9nshm3LxkNnziy6SwUGKjlSzaGIurp2XpAAhtX8SA4VnEnq/7zPA7Yep7Yeo2cnJV88nPl9GoZcwdHszYns35cqE/BbnyGstQOmi4FuPIqveaVXFVx9ufn8MvoISFU9ow5Zn7SU9Wsvjr0ygcbu7pMG72VR7seYMl01sz++WOeHiXMfezc1XIqxpr6a+m1mENdWjXpZDt67yYOrAZ4UODkdvqWPxdrEF/MhZzfTcZhUQTTmvKpEmT+L//+z82btyIs7MzqamppKam6udhuLq6MmbMGKZPn86BAwc4efIko0aNokuXLjz00EMA9O3bl1atWvHSSy9x+vRpdu3axdy5c5k0aZLe4zJ+/HhiY2OZNWsWFy9eZNWqVWzevJlp06bVqry1Nj6mTZvGa6+9BkDv3r25ePEiGzduJDIyktdff7224sxOTEwMKSkp+vDmm29KKt9eqaVb/1y+es+fc8ecSI5T8H9LfUmOUzBwRKZkep4al8nOjR7s3uTB9ctKPp8dQGmxjLAXsixKh1KlYfaKeJbNDCC/Fj+oNcEc98LUbfTcpHQyk+1ZOq0RMVEq0hIUnDrkTEr83cd9KznxuyfffB5MxD7v2641bFxMyw55rFgYyuVzLiTFqVi5MBR7hZae/StcqyonNX2fTuG/Hzbl9DF3rkQ78+nc5rTqmEeL+wprVAZr6a+m1mENdZgzLJg9mz2Iv6QkNtqBpVMb4RNQTrN2NZ+MeDfM0U6WxhdffEFubi49e/bEz89PHzZt2qRP8+mnnzJw4ECefvppunfvjq+vL1u2bNFfl8vl7NixA7lcTpcuXRg+fDgjRoxg4cKF+jRBQUH88ssv7Nmzh/bt27N06VK++uqrWu3xAXWYcPpPGjduTOPGjY0VYzYaNGhg0uEhuVyH3BbKSg0nGpWWyGj9YM2+qO+GrZ2WZu2K+H5FA32cTicj8ogzrTpJ43o0hw6AyYuT+GufC5FHnHnh9bS7Z6gFpr4X5mijh/rmcfKgM3P+E0e7LoVkptqyY50Xv230lES+nb0WgLKym+8hOp2M8jIbWt2Xy64f/WnWOh87Ox1RETeX0idecyQ9WUHLTkVcPOVYrQ5r6a+m1mENdagKR5cKj0d+jjQvF/eiDnVBhpGn2tYyfU227FIqlaxcuZKVK1feMU3jxo359ddfq5XTs2dPIiMja1lCQ2pkfHz++ec1FljpFbF0SktLDdZT5+Xl1ShfcaGc6BMqXpyaxvXLSnIybOk5JIeWnYpIjqv522p1uHhokNtCTobh7cvOtCUwpGZrwOuDjh6DswlpW8yU/lUNBxiPqe+FOdrIr1EZA0fcYMuX3ny/vAGh7YuZ8G4S5eUy9v7gYbT8hGsq0pMVjJoay/IFoZQUyxkyIhFvv1I8vCvmdLh7lVFeJqMw33Bzvewb9ng0uLub21r6q6l1WEMd/olMpmP8giTO/aUiPqbmkxGrw9x1EJiGGhkfn376aY2EyWSye2Z87NixAycnJ4M4jeb2McZbZ/8CxMfH4+l5+1vkkiVLWLBgQZ3K8uGURkz/JIHvIqPRqOHKWQcO/uQmqdvR0vH2L2PCwmTChwZTXlrr0b8aY+n3QmYDl884sPZ9PwCunlPRpEUJA166IYnxoVHb8N7rbXj93YtsjvgDjRoi/3Tn+GEPZNZ9rpXADExenETjFiXMGBJyr4tifsTBctVSI+OjcnVLfaZXr1588cUXBnHHjh1j+PDhBnFHjhzB2dlZ//lOu7KGh4czffp0/ee8vDwCAwNrVJaUeAUznw5B4aDB0VlLVrodb62OIyXevqbVqZa8LDkaNbh5Gx6u5u6lJjvD6JE0s+gIaVeMu7ealbsu6ePkttD2oUKeGJXJwCbt0GqNf/hMeS/McR+y0m2Jv2Q4ETfhsoJu/XMkkQ9wJdqZKU8/gMpJja2dlrxsez797iSXz1c8J9mZ9tjZ63B0Ljfwfrh7lpGV7nwnsXqsob+aQ4c11OFWJi1KpHOfPGY82ZTMFGm++8C8dTAKMx8sZ2mY7pXTzDg6OhISEmIQGjZseFu6oKAggzQ2NlU3gUKhuG19dW0pLZaTlW6Hk6uaTj3yidjlWmsZVaEut+HyGRUdu+Xr42QyHR26FRB9UmUROqKOODGuVygT+twMMVEO7N/izoQ+oZIYHrdiinthjvsQfdyRwKaGruSGwaWkJ0n3ZV5JUYEtedn2+DcqIqR1PhH7vQC4fN6Z8nIZHR7KuVmGJkU08C/lQg3qaQ391Rw6rKEOFeiYtCiRh/vlMuvZpqQlSDPcXIl56iAwNfXITLQeOvXIQyaDhKsKGgaV8crbySRcUbJ7k/Fu8kq2fOnFG8sSuHRaRUykiifHZqBUadn9vWXoKC6U3zYGXFJkQ3727fHGYOp7Yer7sOVLbz7ddpmhU9I4vN2N5h2L6D88i2UzA+6e+W+UKjX+jW4OM/kElBDcIp/8XDsyUpR065tObnbF/02aFfJq+GX+3O9F5NGKOhQV2LL7Rz/GzrpCfq4tRQW2jH/rMtGRLnedbHqzHpbdX82lwxrqMHlxEr2ezGb+qCCKC2xw966YF1SYL6esRJr3XXO0k9EIz0e1COPDBDi6aBkVnoKXXzn5OXL++NWVte/7oVFL9zZ/aJs7rp4aRsxMxd1bTex5B+YMCyInU7oTd82hw9SY+l6Yuo0unVaxcEwQo8JTGDYtjdQEe1a/48+BrTU/xLFZ63w+WHda/3nc7KsA7PnJh0/ntMTDu4yxs67i5lVGdoY9+7b58t1qwxVsX37QFJ0O5iw7j52dlpN/ePy9b0jNVhdYS381tQ5rqMOgkTcA+HjLVYP4j6cGsmezNMaBJXw33bpLaV3zWzMyXU3W59RzRo4cSU5ODj/99JNB/MGDB+nVqxfZ2dlERUXp/6/LUtvKY5J7MhhbWf3p4AJBdchNfNK0JjvbpPIFAilR68o5yM91Pqa+JlT+VjRZtAgbZd03TtSWlBA3Z45Jy3ovsQrPx7p166qM79mzp37t863/CwQCgUBgUsSwS7XUaQDuyJEjDB8+nC5dupCUVHEWx7fffluvT9ATCAQCgcBsmHl7dUuj1sbHjz/+SFhYGA4ODkRGRuo34srNzWXx4sWSF1AgEAgEAoF1UWvj47333mP16tX897//xc7u5tyHrl27curUKUkLJxAIBAKBJVI54dSYYM3Ues5HTEwM3bt3vy3e1dWVnJwcKcokEAgEAoFlI3Y4rZZaez58fX25cuXKbfG///47wcHBkhRKIBAIBAKLRsz5qJZaez7Gjh3L66+/zpo1a5DJZCQnJxMREcEbb7zB22+/bYoyCgSCOiKWwgoEgvpIrY2PN998E61Wy2OPPUZRURHdu3dHoVDwxhtvMGXKFFOUUSAQCAQCi0JsMlY9tTY+ZDIZc+bMYebMmVy5coWCggJatWp124myAoFAIBD8axH7fFRLnTcZs7e3p1WrVlKWRSAQCAQCwb+AWhsfvXr1Qia78yzc/fv3G1UggUAgEAgsHmOXywrPhyEdOnQw+FxeXk5UVBTnzp3j5ZdflqpcAoFAIBBYLmLYpVpqbXx8+umnVcbPnz+fgoICowskEAgEAoHAuqnT2S5VMXz4cNasWSOVOItn0MhM1h+LZnvsGT7bcZnmHWp29Pi/TYeow79HhzXUwRw6rKEO5tBhjjoYhdjno1okMz4iIiJQGnF8sDXR44lsxs1LZsMnvkwKCyU2WsmijbG4epYLHWaUbw4d1lAHc+iwhjqYQ4c11MEcOsxRB2MR26tXT62Nj6eeesogPPnkkzz00EOMGjWKV1991RRlrJaRI0cyZMiQ2+IPHjyITCYjJydH/39l8PHx4emnnyY2NtYkZXpqXCY7N3qwe5MH1y8r+Xx2AKXFMsJeyBI6zCjfHDqsoQ7m0GENdTCHDmuogzl0mKMOAtNSa+PD1dXVIHh4eNCzZ09+/fVX5s2bZ4oySkZMTAzJycn88MMPnD9/nkGDBqHRaCTVYWunpVm7Ik4dcdbH6XQyIo8406qTNG5Ba9Ah6vDv0WENdTCHDmuogzl0mKMOAtNTqwmnGo2GUaNG0bZtW9zd3U1VJpPRoEED3Nzc8PPz45133mHYsGFcuXKF5s2bS6bDxUOD3BZyMgybNjvTlsCQUqHDTPLNocMa6mAOHdZQB3PosIY6mEOHOeogCWK1S7XUyviQy+X07duXCxcuWKTxcSsODg4AlJWVVXm9tLSU0tKbHTkvL88s5RIIBAKB5SO2V6+eWi+1bdOmDbGxsQQFBZmiPHVix44dt23vXt1wSkpKCh9//DENGza8o9djyZIlLFiwoNZlycuSo1GDm7faIN7dS012Rq2b22p1iDr8e3RYQx3MocMa6mAOHeaog8D01HrOx3vvvccbb7zBjh07SElJIS8vzyDcC3r16kVUVJRB+Oqrr25LFxAQgKOjI/7+/hQWFvLjjz9ib29fpczw8HByc3P1ISEhoUZlUZfbcPmMio7d8vVxMpmODt0KiD6pqlsFrVCHqMO/R4c11MEcOqyhDubQYY46SIZYZntHamwmLly4kBkzZtC/f38AnnjiCYNt1nU6HTKZTPIJnDXB0dGRkJAQg7jExMTb0h05cgQXFxcaNGiAs7PzbddvRaFQoFAo6lSeLV968cayBC6dVhETqeLJsRkoVVp2f+9RJ3nWqkPU4d+jwxrqYA4d1lAHc+gwRx2MRsz5qJYaGx8LFixg/PjxHDhwwJTlMSlBQUG4ubmZXM+hbe64emoYMTMVd281secdmDMsiJxMO6HDjPLNocMa6mAOHdZQB3PosIY6mEOHOeogMC0ynU5XI/vKxsaG1NRUGjRoYOoy1YqRI0eSk5PDTz/9ZBB/8OBBevXqRXZ2NlFRUfr/62p85OXl4erqSk8GYysTHVwgEAgsDbWunIP8TG5uLi4uLibRUflb0WzWYuSKum+8qSkt4fKHb5m0rPeSWs3Oqe40W4FAIBAIBH8jhl2qpVbGR2ho6F0NkKws8+4wt27duirje/bsSaVT59b/BQKBQCAQ3FtqZXwsWLAAV1dXU5VFIBAIBAKrQOzzUT21Mj6GDh1a7+Z8CAQCgUBQ7xDDLtVS430+xHwPgUAgEAgEUlBjz4eYMyEQCAQCQQ0Rno9qqbHnQ6vViiEXgUAgEAhqQOWcD2NCbTl8+DCDBg3C398fmUx22xYUI0eORCaTGYR+/foZpMnKymLYsGG4uLjg5ubGmDFjKCgoMEhz5swZHnnkEZRKJYGBgXz44Ye1LqvYCF9gmdjITStfa4adek1dBzBPPQT/Hkw9/G5NHvZ74PkoLCykffv2jB49mqeeeqrKNP369WPt2rX6z//cyXvYsGGkpKSwZ88eysvLGTVqFOPGjWPjxo1AxT4mffv2pXfv3qxevZqzZ88yevRo3NzcGDduXI3LKowPgUAgEAisgMcff5zHH3+82jQKhQJfX98qr124cIGdO3dy/Phx7r//fgCWL19O//79+fjjj/H392fDhg2UlZWxZs0a7O3tad26NVFRUXzyySe1Mj5qfbCcQCAQCASCu2DMoXK3eE3+eXhraWmpUcU6ePAgDRo0oHnz5kyYMIEbN27or0VERODm5qY3PAB69+6NjY0Nx44d06fp3r27waGsYWFhxMTEkJ2dXeNyCONDIBAIBAKJkWrOR2BgIK6urvqwZMmSOpepX79+fPPNN+zbt48PPviAQ4cO8fjjj+sPhK3qCBVbW1s8PDxITU3Vp/Hx8TFIU/m5Mk1NEMMuAoFAIBDUUxISEgzOdqnraetQsVdXJW3btqVdu3Y0bdqUgwcP8thjjxlVztoiPB8CgUAgEEiNRMMuLi4uBsEY4+OfBAcH4+XlxZUrVwDw9fUlPT3dII1arSYrK0s/T8TX15e0tDSDNJWf7zSXpCqE8SEQCAQCgcTci6W2tSUxMZEbN27g5+cHQJcuXcjJyeHkyZP6NPv370er1dK5c2d9msOHD1NeXq5Ps2fPHpo3b467u3uNdYthF4lZfywa38Dy2+K3rfNk5VsBkuoaNDKTZyak4+GtJjbagVVzGxITpbIoHaaS/9ykVMaEJ7P1K29Wzw8E4LX3r9OxWx6evuUUF8q5cMKRrxc3JOFq3Y+9lroOA1/KYMCIDHwCygCIv+TAhmW+nDjgik9AKd/8eb7KfO+9GsSRX2r+4FfHc5PTGPNWKlv/68XqeQ0lkQmW31+fn5xG1/65BIaUUlZiQ/QJFV8v8iPRyP7zTyytndp0LuDZCek0a1uEp6+a+aObELHLTX99xqfx9H3OcCLiiQPOzBne1JgqmKWdLI2CggK9FwPg2rVrREVF4eHhgYeHBwsWLODpp5/G19eXq1evMmvWLEJCQggLCwOgZcuW9OvXj7Fjx7J69WrKy8uZPHkyQ4cOxd/fH4AXX3yRBQsWMGbMGGbPns25c+f47LPP+PTTT2tVVuH5kJjXHg9laPtW+vDm88EAHNnuJqmeHk9kM25eMhs+8WVSWCix0UoWbYzF1fN2w6e+6jCV/ND2hQwYlklstINB/OWzKpbOaMzYnq2YMywEZLB442VsbOr+iiF1HTJS7FizpCGT+7dgSv8WnP7Diflfx9I4tJiMZHuGdmxrEL752I+iAhuOH3C5u/AaENq+iAHDs4g9L+0PqjX013ZdCtm+zoupA5sRPjQYua2Oxd/FonCQbi8VS2wnpUpLbLQDK+bc+eXq+H5nhnZorQ9LJjWua/EB87ST0Ug07FIbTpw4QceOHenYsSMA06dPp2PHjrzzzjvI5XLOnDnDE088QWhoKGPGjKFTp04cOXLEYChnw4YNtGjRgscee4z+/fvTrVs3vvzyS/11V1dXdu/ezbVr1+jUqRMzZszgnXfeqdUyW7jHxkflbmvvv/++QfxPP/1ksWfJ5GbZkp1hpw+de+eRfM2eMxGOkup5alwmOzd6sHuTB9cvK/l8dgClxTLCXsiyGB2mkK9UaZi9PI5lsxqRn2u4iddvG7w4d8yZtEQFV86pWP+RHw0aluMTWFZv6nBsrxvH97uSfE1J0jUl6z5sSEmRDS3uK0SrlRn0rewMOx7ul8PhHe6UFBm/YZlSpWH2iniWzQy4re2MxRr665xhwezZ7EH8JSWx0Q4sndoIn4BymrUrlkQ+WGY7nTjgwvoP/Ti60+2OacrLDPtuQa5xTndztJPR3APjo2fPnuh0utvCunXrcHBwYNeuXaSnp1NWVkZcXBxffvnlbStXPDw82LhxI/n5+eTm5rJmzRqcnJwM0rRr144jR45QUlJCYmIis2fPrnVZ77nnQ6lU8sEHH9RqfbClYGun5dGns9n1vQcgnTFla6elWbsiTh1x1sfpdDIijzjTqlORRegwlfzJixL4a58rkb9X7wlQOGjo+1wWKfH2ZCTb1UmXqdvIxkZHjyeyUDhouXDyduM1pG0RIW2K2fWdp9G6ACYvTuKvfS5E3lIfKbCG/loVji4VHo/8HGkMNWttJ4B2XQrYdPocXx2+wJQlCTi7q+ss617VQSAt99z46N27N76+vtWuXf7xxx9p3bo1CoWCJk2asHTpUoPrTZo0YfHixYwePRpnZ2caNWpk4CaCiuVKzz33HG5ubnh4eDB48GDi4uLuqLO0tPS2zV1qy8P98nBy0bB7s0et81aHi4cGuS3kZBi+PWRn2uLuXfeH2pw6TCG/xxNZhLQtYs37/ndMM3BEBj/FRLHt8mke6JVL+IvNUJfX7TEwVRs1aVHMTzFR7IiN5LUlCSwcG8z1yw63pes3NJP4S0qiTzpVIaV29BicTUjbYtYs8TNa1j+xhv76T2QyHeMXJHHuLxXxMbffm7pgje0EFZ6Rj15vzOznm/L1Ij/aPlTAom9j6zzceS/qUBdkEgRr5p4bH3K5nMWLF7N8+XISExNvu37y5Emee+45hg4dytmzZ5k/fz5vv/0269atM0i3dOlS7r//fiIjI5k4cSITJkwgJiYGgPLycsLCwnB2dubIkSP88ccfODk50a9fP8rKqna5L1myxGBjl8DAwFrXLeyFGxw/4EJWWt3erAU1x9uvjAkLEvlgShPKS+/crfdv9WBivxbMeLoZibFK5nwRi51Ca8aS3p3EqwomhrXgtUEt2PGtF298Gk+jZoaufXulll5Dstn1vfFeD2//MiYsTOaDyY2qbTvBTSYvTqJxixKWTDBu7sK/gUPb3PlzjytxFx2I2OXGOy8H07xjEe0eLrh7ZkvmHgy7WBL14pvmySefpEOHDsybN++2a5988gmPPfYYb7/9NqGhoYwcOZLJkyfz0UcfGaTr378/EydOJCQkhNmzZ+Pl5cWBAwcA2LRpE1qtlq+++oq2bdvSsmVL1q5dy/Xr1zl48GCVZQoPDyc3N1cfEhISalWnBg3L6PhIATs3Suv1AMjLkqNRg9s/rHx3LzXZGdIsYDK1Dqnlh7Qrwt1bzcrfLvJr3Cl+jTtF+y4FDB6dwa9xp/RvWUX5cpKvKTl3zJn3Xg0iMKSUrv1y6kUdKlGX25Acp+TKWRVr32/ItWgHhozJMEjzyIBsFA5a9v7P+P4V0q64ou12XeLX66f59fpp2j9cyOAxmfx6/bRRE3LBOvrrrUxalEjnPnnMeqYpmSn2d89QQ6ytne5E6nUFOTfk+Dep2zbh9aEONcESltreS+qF8QHwwQcfsH79ei5cuGAQf+HCBbp27WoQ17VrVy5fvqzfEhYqJsBUIpPJDDZLOX36NFeuXMHZ2RknJyecnJzw8PCgpKSEq1evVlkehUJx2+YutaHv0CxyMm05tleaVQi3oi634fIZFR275evjZDIdHboVEH1SmqVmptYhtfyo350Z91hLJoTdDDFRKvZv9WBCWEu02tudmDIZINNhZ1+3p9wc9wFAZqPDzt7QOxM29AZ/7nElN8t4r1rUESfG9QplQp+bISbKgf1b3JnQJ7TKtqsN1tBfK9AxaVEiD/fLZdazTUlLkG6zJ7CmdqoeL78yXNw1dfYI14c6CIyn3piJ3bt3JywsjPDwcEaOHFnr/HZ2hh1ZJpOh1VZ8YRcUFNCpUyc2bNhwWz5vb+86lbc6ZDIdfZ/PYu8P7mg1phm52/KlF28sS+DSaRUxkSqeHJuBUqVl9/fSeVpMrUNK+cWF8tvG3kuKbcjProj3bVRKj0HZnDzsQu4NW7z9ynhuUhplJTb8tb/uBqLUbTTqzSSOH3AhI8keByctvYZk0a5LQcXS4L/xb1JC284FvD3CuH0SKqmy7Yputp0UWEN/nbw4iV5PZjN/VBDFBTa4e1cs6yzMl1NWIs17nCW2k1KlwT/ophfDt1EZwa2LyM+2JT9HzvDpqfz+qxvZ6bb4NSnjlTnJJMcpOHmo7hObzdFORmPs0ImVez7qjfEB8P7779OhQweaN2+uj2vZsiV//PGHQbo//viD0NBQ5PKazTK/77772LRpEw0aNKi1B6MudOxegE9AuSTj8Xfi0DZ3XD01jJiZiru3mtjzDswZFkROpnTzS0ytwxx1qKSsVEabzgU8+Uo6Tq4acjJtOXvMiWmDm5N7o+76pK6Dm5eamcvi8WhQTlG+nGsXHJgzLIRTR27227Dnb5CZYsfJQ6bvy1JhDf110MiK0z8/3mLoLf14aiB7JJpUbontFNq+iI/+d7NNxs9PBmD3ZneWhwcS1LKEPs9ew9FFw400W04dcmH9R76Ul9XdYDPnd4dRWLkBYQwynU53z5pn5MiR5OTk8NNPP+njRowYwQ8//EBJSQk6nY5Tp07xwAMPMH/+fJ5//nkiIiKYMGECq1at0ntImjRpwtSpU5k6dapeTocOHRgyZAjz58+nqKiIDh060LBhQxYuXEhAQADx8fFs2bKFWbNmERBw951H8/LycHV1pSeDsZXVsw7+b8RG2n0obkMr3cZRd8TUdQDz1EPw78HU+y+Z+OdIrSvnID+Tm5trshfRyt+K1q8uRm5f9836NGUlnP/PWyYt672k3sz5qGThwoX64RKo8Fps3ryZ77//njZt2vDOO++wcOHCWg3NqFQqDh8+TKNGjXjqqado2bIlY8aMoaSkxCpvqkAgEAjuLWLCafXcU8+HJSE8H/UM4fmoGcLzIZAS4fm4K5W/FW3GGu/5OPdf4fkQCAQCgUAgkIR6NeFUIBAIBAJrwNihE2sfdhHGh0AgEAgEUiOW2laLGHYRCAQCgUBgVoTnQyAQCAQCiRHDLtUjjA+BZWINqzh09etAu38zcp8GJpWvSUs3qXyzIRZH1hwx7FItwvgQCAQCgUBqhPFRLWLOh0AgEAgEArMiPB8CgUAgEEiMmPNRPcL4EAgEAoFAasSwS7WIYReBQCAQCARmRXg+BAKBQCCQGJlOh8yI1UHG5LUEhPFhAtp0LuDZiRk0a1uEp6+a+aObELHTVXI9g0Zm8syEdDy81cRGO7BqbkNiolQWpcOU8geOyGTAiBv4BJYBEB+jZMOnPpw4IO0hTVLW4fnJaXR9PIfAkFLKSmyIPqHi68X+JF6tOKDKJ6CUb45dqDLve6824cgOt7rp7J9rqHORn16nVNTn/vrc6Gs8/Gg6AU0KKSu14cJpN9Z81oykeMcqUutYuCKS+7ve4N1p7Yk4eHOZbvsHb/DSxKs0CSmgpFjOvu3+rF/ZlNosDK/P7VQTrKk/GYUYdqkWqxh2SUhIYPTo0fj7+2Nvb0/jxo15/fXXuXHjhj5Nz549kclkt4Xx48dLXh6lSkvseSUr3gqQXHYlPZ7IZty8ZDZ84suksFBio5Us2hiLq2e5xegwtfyMFDvWLPZjcr9Qpjweyuk/nJi/No7GoSWSyAfp69DuoQK2r/di6qBmhL/QFLkdLN54FYVDxc9XRrI9Qzu0NgjffORLUYENx/c7101nl0K2r/Ni6sBmhA8NRm6rY/F3sXqdUlDf+2ub+7LZsSmQ6SMeZM6ETshtdSz64hQK5e1tMGTY9Sq3uwgKzWfh8khOHvVkygsP8f6bbencI4NRr10xSx3qiw5r6U8C02LxxkdsbCz3338/ly9f5rvvvuPKlSusXr2affv20aVLF7KysvRpx44dS0pKikH48MMPJS/TiQMurP/Qj6Mm8HZU8tS4THZu9GD3Jg+uX1by+ewASotlhL2QdffM9USHqeUf2+PK8f0uJF9TkBSrYN0HfpQU2tCiU6Ek8kH6OswZ3pQ9mz2Jv+RAbLQDS6c2wiegnGbtigHQamVkZ9gZhIcfz+XwdjdKiuR10zksmD2bPYi/pKxSpxTU9/76zuT72Lvdn+uxTly75Mwn81rTwK+EZq3yDNIFh+bz1EvxLJvf+jYZ3fumcu2yM9992ZSUBBXnTnqw5rNmDHwuAQfHmv3w1vd2qgnW0p+MpXK1izHBmrF442PSpEnY29uze/duevToQaNGjXj88cfZu3cvSUlJzJkzR59WpVLh6+trEFxcpHXBmwNbOy3N2hVx6sjNN12dTkbkEWdadSqyCB3mqMOt2Njo6DE4G4VKy4UTVbnSa4856uDoUvGjlZ9TtWER0raIkDbF7PreUxJ9NdFZWyyxvzo6qQHIz7XTxymUGmYtOcuq91uQfUNxWx47ey1lpYZfqWWlNiiU2hr98FpiO9UES+xPkqCTIFgxFm18ZGVlsWvXLiZOnIiDg4PBNV9fX4YNG8amTZvQ1WHiTmlpKXl5eQahvuDioUFuCzkZhlN2sjNtcfdWW4QOc9QBoEmLYn66fJYdcWd47f1EFo5pwvXL0ow9m7oOMpmO8QuSOPeXI/ExDlWm6ffCDeIvKYiWyKC6qVN1R521xdL6q0ym49U3Yjgf6Ub8VSd9/NgZMVw47cqfB6veiv3kUS9ats+hR78UbGx0eHqX8OK4WAA8fO4+HGBp7VQTLLU/CUyPRRsfly9fRqfT0bJlyyqvt2zZkuzsbDIyMgBYtWoVTk5OBmHDhg1V5l2yZAmurq76EBgYaLJ6CExH4lUFE/uE8tqAZuz4xos3PrtOo2bSzfkwJZMXJ9K4eTFLJjau8rq9UkuvIdmSej0mL06icYsSlkyoWue/gYnhF2kcUsD7b7bVx3XukU77B7P4z0fN75gv8k9P1iwLZfJbF/n52D7++/MfHP/dC/j3HuPzb+5PYtileqxitUtNPRvDhg0zGIYB8PHxqTJteHg406dP13/Oy8urNwZIXpYcjRrc/mHlu3upyc6Q5paaWoc56gCgLrchOa7CRX7lrIrmHYoY8koGn882/l6asg6T3kukc+88ZjwVQmaKfZVpHhmQg8JBx94fPIzSpde5KJHOffKY8WTTO+qsC5bUXyfMvsiDj2Qwa8wD3Ei/6SFr/0A2fgHF/HD4oEH6tz4+zflId94cez8AW/+vMVv/rxEe3qUU5Nnh41/MqNeukBJ/+zCNqepwr3VUYsn9SRLEapdqsWjPR0hICDKZjAsXql56eOHCBdzd3fH29gbA1dWVkJAQg+DsXPUKAYVCgYuLi0GoL6jLbbh8RkXHbvn6OJlMR4duBUSflGapmal1mKMOVSGTgZ29NE+1aeqgY9J7iTzcL5dZz4WQlnDnH62woTf4c48LuVnGfuHqmLTob53PNq1WZ12wjP6qY8Lsi3R5NJ3wVzuRlmw4RPDD2iZMeq4Lk4c+pA8A/13anE/n/XPyqYysDCVlpXJ69EslPUXJlbN3H3KwjHaqCZbfn6RAeD6qpx6ZibXH09OTPn36sGrVKqZNm2Yw7yM1NZUNGzYwYsQIZDKZWculVGnwDyrTf/YNLCO4dTH5OXIykqR5A9jypRdvLEvg0mkVMZEqnhybgVKlZff30rwFm0OHqeWPCk/h+H5nMpLscXDS0OvJHNo9XMCcF4MlkQ/S12Hy4kR6Dclm/uhgigtscPeumCtQmC+nrOTmu4J/k1LaPlTI2y8ZX5fJi5Po9WQ280cFVavTGOp7f50YfpGej6eycFp7igttcfcsBaCwwJayUjnZNxRVTjLNSFEaGCpPj4jj5FFPtFoZXR9L59lRcbw/qx3aGg671Pd2qgnW0p8EpsWijQ+AFStW8PDDDxMWFsZ7771HUFAQ58+fZ+bMmTRs2JBFixbp0xYVFZGammqQX6FQ4O7uLmmZQtsX89GPV/Wfxy9IBmD3JneWTmskiY5D29xx9dQwYmYq7t5qYs87MGdYEDmZdnfPXE90mFq+m5eamZ9fx6OBmqJ8OdcuKJnzYjCnDtdtP4yqkLoOg16u2Jvm4x8N94b4eFogezbfnNsRNvQGmSl2nDxkfF0Gjfxb55arBvEfTw1kz2Zpvszre38d+FwiAB9+ddIg/pN3WrN3u3+Ny3B/10yef+UadnZarl1y5t1pHTjxhxeQbvI61BRT67CW/mQ0YtilWmS6uiwFqWfEx8czb948du7cSVZWFr6+vgwZMoR58+bh6Vnxhd2zZ08OHTp0W96wsDB27tx5Vx15eXm4urrSk8HYyupRBxdYLubwyFn+420W5D5Vr2CRCk1azYwPgWlR68o5yM/k5uaabCi98rei03OLsLWr+8o6dXkJJzfPMWlZ7yUW7/kAaNy4MevWras2zcGDB81SFoFAIBAIBNVjFcaHQCAQCAT1Cp3OOM+jlXsthfEhEAgEAoHEGLtixdpXu1j0UluBQCAQCASWh/B8CAQCgUAgNWK1S7UIz4dAIBAIBBIj0xofasvhw4cZNGgQ/v7+yGQyfvrpJ4PrOp2Od955Bz8/PxwcHOjduzeXL182SJOVlcWwYcNwcXHBzc2NMWPGUFBQYJDmzJkzPPLIIyiVSgIDA+t0OrzwfAgsErmJl55p6tFBggLTI5bC1gyZrWl/MnRqcTCcMRQWFtK+fXtGjx7NU089ddv1Dz/8kM8//5z169cTFBTE22+/TVhYGNHR0SiVFcuChw0bRkpKCnv27KG8vJxRo0Yxbtw4Nm7cCFQsJe7bty+9e/dm9erVnD17ltGjR+Pm5sa4ceNqXFZhfAgEAoFAIDUSDbv880R1hUKBQlH1lvWPP/44jz/+eNXidDqWLVvG3LlzGTx4MADffPMNPj4+/PTTTwwdOpQLFy6wc+dOjh8/zv33V5xXtHz5cvr378/HH3+Mv78/GzZsoKysjDVr1mBvb0/r1q2Jiorik08+qZXxIYZdBAKBQCCQGKnOdgkMDDQ4YX3JkiV1Ks+1a9dITU2ld+/e+jhXV1c6d+5MREQEABEREbi5uekND4DevXtjY2PDsWPH9Gm6d++Ovf3No0LCwsKIiYkhOzu7xuURng+BQCAQCKRGon0+EhISDHY4vZPX425UHi3yz5PcfXx89NdSU1Np0MBwt19bW1s8PDwM0gQFBd0mo/JaTY8rEcaHQCAQCAT1lPp2qrpUiGEXgUAgEAgkRqphF6nw9fUFIC0tzSA+LS1Nf83X15f0dMPJ12q1Wn9mWmWaqmTcqqMmCONDIBAIBAKp0UkQJCQoKAhfX1/27dunj8vLy+PYsWN06dIFgC5dupCTk8PJkzdPd96/fz9arZbOnTvr0xw+fJjy8nJ9mj179tC8efNanRAvhl2MpE3nAp6dmEGztkV4+qqZP7oJETtdb0mhY8TMNPq9eAMnFw3RJxz5/M0Akq/VbdzuVgaNzOSZCel4eKuJjXZg1dyGxESpjJZrTh3GyG9zfy5Pj0kkpHUBng3KeHdSSyL2eemvT1sSQ58nDa34E0fceWdsG/3n51+9zgM9swhuUYi6XMZzDz5s1jr8k+cnp9H18RwCQ0opK7Eh+oSKrxf7k3i1Yhmcs5ual2akcl+PfBr4l5GbZcvRna6s/8iPonx5nXQOn5HKSzMM32QSrih4pXuLOsm7E6buS3d/FqXjuclpjHkrla3/9WL1vIaSyrbk5/q5iamMfjOJrV834D8LAgH4cFMM7boY7hPxy/95sfytxkbpMkc7WRoFBQVcuXJF//natWtERUXh4eFBo0aNmDp1Ku+99x7NmjXTL7X19/dnyJAhALRs2ZJ+/foxduxYVq9eTXl5OZMnT2bo0KH4+/sD8OKLL7JgwQLGjBnD7NmzOXfuHJ999hmffvpprcoqPB9GolRpiT2vZMVbAVVef25SBoNHZ7D8zQBeH9iMkiIbFm+MxU5Rhx1kbqHHE9mMm5fMhk98mRQWSmy0kkUbY3H1LL975nqiw1j5SgcN1y46smph0zumOXHYnWHdOuvDhzOaG1y3tdfx+05vfv3e757U4Z+0e6iA7eu9mDqoGeEvNEVuB4s3XkXhoAHAw6ccT59y/vuuP68+1oKPpzXi/l75TF96vU76Kom7qGRo+1b6MH1IiFHy/ok5+uvdnkWpCG1fxIDhWcSer/tx6XfCkp/r0HaF9H8xg9hoh9uu/brRixc6tdOHrxcbd4/M0U7Gci+GXU6cOEHHjh3p2LEjANOnT6djx4688847AMyaNYspU6Ywbtw4HnjgAQoKCti5c6d+jw+ADRs20KJFCx577DH69+9Pt27d+PLLL/XXXV1d2b17N9euXaNTp07MmDGDd955p1bLbMGKjI+RI0cik8mQyWTY29sTEhLCwoULUd+yaU1YWBhyuZzjx49LpvfEARfWf+jH0SrfsHQMeSWD7z7zIWKXK9cuOPDha43w9Cnn4X65Rul9alwmOzd6sHuTB9cvK/l8dgClxTLCXsgySq45dRgr/8QRD775rAkRe73umKa8zIbsTHt9KMizM7i+YXljflrfkLhLjvekDv9kzvCm7NnsSfwlB2KjHVg6tRE+AeU0a1cMQHyMA++OC+LYHldS4hWc/sOZdR/40bl3HjbyuvtpNRrIzrDTh7wsaZ2i5uiv1T+L0qBUaZi9Ip5lMwPIz62bp6k6LPW5Vqo0zPr8Gp+92ZiCKtqltNjGoH8VFRjXduZoJ6OpXO1iTKglPXv2RKfT3RbWrVsHgEwmY+HChaSmplJSUsLevXsJDQ01kOHh4cHGjRvJz88nNzeXNWvW4OTkZJCmXbt2HDlyhJKSEhITE5k9e3aty2o1xgdAv379SElJ4fLly8yYMYP58+fz0UcfAXD9+nWOHj3K5MmTWbNmjVnK49uoDE8fNaeOOOvjivLlXIxU0bJTUZ3l2tppadauyECuTicj8ogzrYyQa04d5qgDQNsHc9j4x598+dsJJs27jLObdG9G5qiDo0uFxyM/585f1o7OGooKbNBqZHXW0zCojI2nzrMu4gKzV8Tj3bCszrL+ibnutTmYvDiJv/a5EHlLXaTCkp/rSe9d56/9rkT+XvWqjF5DstgUFcXqPecZNTsJhbLunl9r6k//ZqzK+FAoFPj6+tK4cWMmTJhA79692bZtGwBr165l4MCBTJgwge+++47i4uJqZZWWlpKXl2cQaotHgwqvS06G4VtkToYtHg3q/iPo4qFBbnu73OxMW9y9pdme2NQ6zFGHk0fcWTq7OW+Nasvaj5vQ9oFcFn55DhsbaWZymboOMpmO8QuSOPeXI/Ext7uyAVzc1bw4NZXfNtzZ+3M3Lp5S8fHUQOYMC2b5mw3xbVTG0q1XcHDU1FmmQRnNcK/NQY/B2YS0LWbNkroN0d0NS32uewzKIqRNEWs/qHruy4GfPfjo9SbMfr45m1b68uhTN5j12bU66QLL6U/1bbVLfcOqJ5w6ODhw48YNdDoda9euZeXKlbRo0YKQkBD+97//8dJLL90x75IlS1iwYIEZSyuQmsO/3twsJ+6SI9diHFmz9wRtH8zh9J81n5V9r5i8OJHGzYuZ8WSzKq+rnDS8+00s1y8p+XZpzZe4/ZMTB26+rV674MDFSEe+/Sua7k/ksOs7zzrLtSa8/cuYsDCZ8KHBlJda1TubUXj5lTF+fgJvDWt2x3b5baO3/v+4GAey0u344PvL+DUuJSXe+In39RZxqm21WOVTpPv/9u48Lspqf+D4Z5iBGWCQXRBBRBEVc0nNtZvijdCs1Lympqm5VC6lll5FM1FTzLTFSttUrJ+l3kqvqZlLUuaaa+aCCiKggMi+w8w8vz+4jI4sArMo03m/Xs/rBc9yvuc8y8yZc87zPJLE3r17+fnnn+nTpw979+6loKCAsLAwAEaOHMmaNWuqTSM8PJzs7Gz9lJiYWOt8ZNwsq9u53FUbd/HUkHHTtrJNaiQnQ45WUzFdVw8NmWmmqU+aO4YlynC3lCR7sjMU+PgXmSQ9c5Zh8ttJdH08h38PCeRWsl2F5faOWhZviKUw34YF4wPQaure5XK3/Bw5SXFKfJqapuvlfhxrUwtsV4irp4ZPfr7EzoQz7Ew4Q/se+QwYd4udCWdM0ppWH6/rFm0LcPXU8PHOC+yIO8GOuBO0657HgBdvsiPuRKX75eKpsvFVdb0OreF8Eqys8rF9+3bUajUqlYp+/foxdOhQIiIiWLt2LUOHDkXxvzcyDh8+nIMHDxIbG1tlWkqlUv9kubo+YS4lwY70VAUPP5qrn+eg1tLq4QIunKj7LWGaUhsu/+lgkK5MJtHh0TzOG5GuJWNYogx3c/cqxslFQ8bNil/mdWGeMkhMfjuJHn2z+fdzgaQmVvxl6KDWsuTbWEpLZMwfY/pf4ioHLT7+JfrKs7Hux7E2tdMH1LwUEsTE0NtTzGl7fvnBlYmhQeh0xlf+6uN1ffqgEy8/HsykvrenS2cc2L/VjUl9gyvdL83blHV51/UHWH05n0S3S/WsqpoYEhLC6tWrsbOzw8fHB4VCQUZGBlu2bKG0tJTVq1fr19Vqtaxdu5bFixcbFVPloMUn4PYvRG+/Epq1KSQ3S07adTu2funJ8Kk3uX5VSUqCHaP/nUJ6qq3RI/J/+NyDGR8kcumMAzGnHBg0IQ2Vg47dG92MSteSMYxNX+WgxafJ7bE7Xr7FNGuVR262gtxsW56ffI2Duz3IvGVHI79Cxs6MJznBnhO/3+5y8WxUhJOzBs9GRdjIoVmrsucRJP6lpajg3iPyTb2PpixJImRgJhFjm1GYZ4OrZ9nYoPxcOSVFNvqKh1KlY9mrATg4aXFwKhubkZ2uqNOX4IS3bnBkdwNuJtnh7l3KCzNS0OogeovpuqYscb7e61o0RmG+vMK4m6ICG3IzK843Rn27rgvz5Vy7VHG/5GQquHbJnkb+xYQMyODY/gbkZioIaF3IS28l8ucRNVcv1r2iYIn9ZDSdVDYZs70Vs6rKh6OjI4GBhs8n2LBhA76+vmzdutVg/u7du1mxYgULFy5ELq/7bV9B7Qt59/vbLSivLLhRlv4mV1ZMb8LmTzxROeiYuiwJdQMt5/5wZO4I43+t/rrNFWd3LaNmpuDqqSHunD1zRwSQdavu3TmWjmFs+i0eyuWdr87q/38pPA6APVsa8klEIAEt83l84E0cnTRkpNlx8qArX3/oj6b09r4f+do1gweRfbz1FAAzBzfnz8OGt5eZowx3e3p0OgDLv79iMH/5dD/2bHYnsG0BrTuWjeiPOnTBYJ1RXVuTmlT7PnSPRqWEr7qGk6uW7HQF5/5wZNpTLcg24e22ljhf73Ut1gfWcF3fqbRERodHcxg4LhWVvY60ZDsO/uTKtyuNG7RryTLUmRjzUS2ZJBnz2r0Hx5gxY8jKyqpQyejQoQN9+/Zl6dKlBvOzs7Np2LAhP/zwA/37979n+jk5OTg7O9ObAShkD9AJ/jclN/OLlrR1uLup1mSmG6dRJeu4vIUHhExh3t+rksa8d6topFKi+S/Z2dlme1lb+XdFj8cXoLCt+4PoNKVFHNo736x5vZ+saszH3U6cOMGZM2cYPHhwhWXOzs7885//vOfAU0EQBEGoLRlGjvm43wUwM6vpdil/gtudOnXqRHUNOzt37jRjjgRBEIS/rTo+pdRgeytm1S0fgiAIgiA8eKym5UMQBEEQHhTG3i4rbrUVBEEQBKF2xN0u1RLdLoIgCIIgWJRo+RAEQRAEE5NJEjIjBo0as219ICofQr0klZjule+CINSMuZ/DYVV0/5uM2d6KiW4XQRAEQRAsSrR8CIIgCIKJiW6X6onKhyAIgiCYmrjbpVqi8iEIgiAIpiaecFotMeZDEARBEASLEi0fgiAIgmBi4gmn1ROVDyM91DWPIZPSaNG2AHdvDRFjm3J4lzMAcoXEmFnJPNInl0b+JeTn2HDqgBNrljQiI9XW6NhPj7nFvybexM1TQ9x5e1a92ZiY0w5Gp2vJGKZM395Ry6jXk+j+RAYu7qXEnnPks0X+XPpTXWHdKW9fpf/zN/lsURO2rmtU5/xXd/zrYuiUVHr2y8IvsJiSIhvOH3dgzRIfkmJvv5p72X8u075HvsF2O752Z+VsvzrHvdNzU1IZNyeFLV948On8xiZJE+r/+Tp0Sio9n8w2PDaLGxkcG1MwZxlGvpHCC2+kGsxLvKJk/GOt6pzmva6BkW+k0HtAFp4+pZSWyLhy1p51S72JOeVY55hgmfPJKKLbpVqi28VIKgcdcedUfDzHt8Iypb2OwLaFfPOBF5PDWrBwfFN8mxezIOqq0XF7PZPJS/NvsOE9byaHBRF3XsXib+Jwdi81Om1LxTB1+lMj43i4ZzbLX2/OxH7tOPm7M0u+voi7l+EzQXo8kUGrDnncSjG+Aljd8a+Ldt3y+HG9B9OebkH48ObIbWHJN7Eo7bUG6+38P3eGdWijn75828ck8YPaF9B/ZAZx50z7hWoN52u77vn8GOXBtKdaED6sGXKFxJJv4yocG2NYYj/FX1QxrH2wfnp9YKBR6d3rGrgep+STuY15uU8QbwwMJCXRjshv43B2q/szQyyxnwTzsqrKR1paGhMnTqRJkyYolUq8vb0JCwvj4MGDADRt2hSZTGYw+foa96VxfH8D1i9rxKFKfu0W5MoJH9ac3350ISlWxcWTjnwytzFB7QvxbGzcQ7KefekWu75xY/cmNxIuq1g5y5fiQhlhwzOMSteSMUyZvp1Sx6N9M1jzjh9//dGA5GsqNnzoy414Jf1H3P6l5+5VwsT58Syb3hytRmZ0Gao7/nUxd2Rz9mx259ole+LO27NiWhO8fEtp0a7QYL3iIhmZabb6qSBPbnRslYOWWR9f44OZvuRmG5/enazhfJ07ohl7Nrtx7ZKq2mNjDEvsJ60Wg3MnJ8O4BvB7XQP7t7hy6oATKQlKrl1S8XmED44NdAQE132/WWI/GUumM36yZlZV+Rg8eDCnTp1i/fr1XLp0iW3bttG7d2/S09P16yxcuJDk5GT9dOrUKYvm0bGBFp0O8o34cFfY6mjRroCTB5z08yRJxqkDTgR3KjBFNs0ew9TpyxUScgWUFhue0iXFNrTpnAuATCYxY0Us333hQ8LlB6h5thqODcp+VedmGZ4vIYMy2Xz2LJ/tu8iLs2+gVBn/STVlyXWO7WvAqTuOiSlYw/lamaqOTV1ZqgyNA0r45uQ5og5fYNbH14z+IVQbClsdT45MJy/bhrjz9nVOw9LHuk7Ku12MmayY1Yz5yMrK4sCBA0RHR9OrVy8A/P396dKli8F6Tk5OeHt73zO94uJiiouL9f/n5OQYnUdbpY5xc5OJ3upi1C/VBm5a5ArISjM8fJm3FPgFFlex1YMVw9TpF+bLOX9CzfAp10m4Yk/WLVt6PZ1Oq4fzSL5W1oUw5JUb6LTw3ygvo/NvCTKZxCsLrvPXMUeuxdz+oN6/1ZWbSXakp9oS0LqQcXOT8W1ezKIJAXWO1WtAJoFtC3n1yRamyLoBazhf73b72DgYHBtjWKIMF086sHyaH0mxStwaljLyjVRWbLnCyyEtKcw3bWvXnbo+nkP46mso7XVkpCoIH9a8zi0ulj7WgnlYTeVDrVajVqvZunUr3bp1Q6lUGpVeZGQkCxYsMFHuyn6Zz/3sGsjgo9mmGR8gGFr+RnOmvxPHhiOn0GrgyjlHfv3RncCH8gl8KJ8BY1J59emHAOO7WyxhypIk/FsW8sYgwwrBTxs89H/HX7Qn46YtyzbH0si/mORrtT/vPX1KmLjwBuHDmlVoORIqN2XJdfxbFfGGkeMlLO34/gb6v69esOfiKUe+Pnaex57J4udv3c0W9/RBRyaFBtHATUO/ERnM/ewar/UPJDvd+HFXDyzxkLFqWc0njUKhICoqivXr1+Pi4kLPnj2ZM2cOf/75p8F6s2bN0ldU1Go1K1eurDS98PBwsrOz9VNiYmKd81ZW8YjHq3EJ4cOaGd0/n5MhR6sBF0/DAVuuHhoy00xTnzR3DHOkn5yg4t/DgxnYpjMv9HyYaYMeQq6QSElU8dAjObi4l/LV76fYfuko2y8dxcu3hPFzEoj6zbJdbzUx+e0kuj6ew7+HBHIr2a7adS+eLOtC8mlat199ge0KcfXU8MnPl9iZcIadCWdo3yOfAeNusTPhDDY2xn0KWsP5eqfJi5PoGprDv//V/J7HpjYsWYZy+TlykuKU+DQ1b9dLcaGcG/FKLp505P03/NBqoG8dx2fcj/1UF+WPVzdmsmZWU/mAsjEfN27cYNu2bfTt25fo6Gg6duxIVFSUfp2ZM2dy+vRp/TRq1KhK01IqlTRo0MBgqovyikfjgBJmD21ObqbxF4em1IbLfzrw8KO5+nkymUSHR/M4f8I0YxnMHcOc6RcXyslMs0PdQEOnx7I5sseVfVs8mPRkWyY/dXu6lWLL9180Yu7out9maHoSk99OokffbP79XCCpifduyWjepmzgXsbNuv2KPH1AzUshQUwMvT3FnLbnlx9cmRgahE5nXEuRNZyvZSQmL/7fsRnSvEbHpjYsUwZDKgctPv4lZNy07Je2zAZslXX7cr0f+0kwvQenmmgiKpWK0NBQQkNDmTdvHuPHj2f+/PmMGTMGAA8PDwIDTddUqnLQ4hNw+1eDt18JzdoUkpslJyPVlnlfxBPYtpC3RgVgI5dw9Sy7FSw3S46mtO51vx8+92DGB4lcOuNAzCkHBk1IQ+WgY/dGN6PLZKkYpk6/4z+ykMkgKU6FT9Nixs1OIClWxe7vPNBqbMjNMvxy1mrK7hi5frXuffbVHf+067X/VTxlSRIhAzOJGNuMwjwb/fmSnyunpMiGRv7FhAzK5Ni+BuRmygloXcTLEdf587AjVy/UrRyF+fIK4xaKCmzIzaw4v66s4XydsuQ6IYMyiXgxoNJjYwrmLsOEt25wZHcDbibZ4e5dygszUtDqIHqLa53TrO4ayMmQ8/zUmxze3YCMVFsauGl45sVbeHiXcuBHlzrHtMT5ZDTxnI9qWV3l427BwcFs3brVbOkHtS/k3e9j9f+/suAGALs3ufJ/K7zpHlY2UHX13ksG280c3Jw/D1d8+FVN/brNFWd3LaNmpuDqqSHunD1zRwSQdct0fajmjmHq9B2dtLw4MxEP7xJysxX8vsuN9St80WrM18BX3fFfMb1JrdN7enTZnVnLv79iMH/5dD/2bHZHUyrj4UdzGTQ+DZW9jrRkW37f6cK3Hz7Yg2it4Xx9esz/js0PsQbzl0/zY89m03zpmbsMHo1KCV91DSdXLdnpCs794ci0p1qQbcTtttVdAytn++IbWMy8IfE0cNOSmynn0hkH3hgUyLVLdX+WjCXOJ6NJgDE3oVl33QOZJFlH9So9PZ0hQ4YwduxY2rVrh5OTE8ePH+fVV1+lf//+rFmzhqZNmzJt2jSmTZtW6/RzcnJwdnamNwNQyB6gE/xvykZl2odg3U1XVGTW9AGQWWDgq3Vc3oJgEhqplGj+S3Z2dp270u+l/Luiz8OzUcjr/jml0Rbxy6mlZs3r/WQ1LR9qtZquXbvy/vvvExsbS2lpKX5+fkyYMIE5c+bc7+wJgiAIgvA/VlP5UCqVREZGEhkZWeU68fHxlsuQIAiC8PclYeSYD5Pl5IFkNZUPQRAEQXhgiAGn1bKqW20FQRAEQXjwicqHIAiCIJiazgRTLURERFR4cWqrVrefYVRUVMTkyZNxd3dHrVYzePBgUlNTDdJISEigf//+ODg40LBhQ2bOnIlGU/e3D1dHdLsIgiAIgokZ+5TSumzbpk0b9u7dq/9fobj9FT99+nR27NjBf/7zH5ydnZkyZQrPPvus/q3vWq2W/v374+3tzaFDh0hOTmbUqFHY2tqyZMmSOpejKqLyIQiCIAgPqLtfaqpUKqt8d5lCoaj0xanZ2dmsWbOGb775hj59+gCwbt06WrduzZEjR+jWrRu7d+/m/Pnz7N27Fy8vLzp06MCiRYuYNWsWERER2NmZ7lUCICoftSZTKJDJzLfbJDM1cVkbG++GZk1fF59g1vQB5M7mv3dfm5Vt9hjC34fcy7zXnTb1plnTtygTDTj18/MzmD1//nwiIiIq3eTy5cv4+PigUqno3r07kZGRNGnShBMnTlBaWsrjjz+uX7dVq1Y0adKEw4cP061bNw4fPkzbtm3x8rr9wMKwsDAmTpzIuXPnePjhh+telkqIyocgCIIgmJqJKh+JiYkGDxmrqtWja9euREVF0bJlS5KTk1mwYAH/+Mc/+Ouvv0hJScHOzg4XFxeDbby8vEhJSQEgJSXFoOJRvrx8mamJyocgCIIgPKBq+mLTfv366f9u164dXbt2xd/fn82bN2Nvb5p3NJmSuNtFEARBEEytvOXDmMkILi4uBAUFceXKFby9vSkpKSErK8tgndTUVP0YEW9v7wp3v5T/X9k4EmOJyocgCIIgmJqFb7W9W15eHrGxsTRq1IhOnTpha2vLvn379MtjYmJISEige/fuAHTv3p2zZ89y8+btcTd79uyhQYMGBAcHG5eZSohuF0EQBEEwMUvfajtjxgyefvpp/P39uXHjBvPnz0culzN8+HCcnZ0ZN24cr7/+Om5ubjRo0IBXX32V7t27061bNwCeeOIJgoODeeGFF1i2bBkpKSm8+eabTJ48ucpxJsYQlQ9BEARBqOeSkpIYPnw46enpeHp68uijj3LkyBE8PT0BeP/997GxsWHw4MEUFxcTFhbGqlWr9NvL5XK2b9/OxIkT6d69O46OjowePZqFCxeaJb+i8mGkkdNvMHJ6ssG8xCtKJvR5CIBlm2Jo1z3PYPmO//Pgozn+Rsd+eswt/jXxJm6eGuLO27PqzcbEnHYwOl1LxHhq1C36j0rHy68EgGsxKja878Xx/TW7/fTJQfE8OSger0aFZdtfdeLbtS04ccTrrjUlFqw4SufuaSya3ZkjvzXSL9lx6McK6b7zVkd+29u4xuV4qGseQyal0aJtAe7eGiLGNuXwLueab98pi8Fjkwhsk4d7wxIWvRrM4X0eBuv4NSvgxdfjaPtINnK5REKsA4unBZOWXPa6bm+/QsbPjKNNxxxs7XSc+N2V1YsDyUqv/L78e+W5Z78s+o9Kp0XbQhq4aZkYGkTcOeMHrJn7fDX2WNQ2vb/jfnpu7FV69LmJb9N8SoptuHDGhbUftuD6NUf9Oku/OE67zpkG2+38rjEfL77ddO/pXcjkORdp1zmDokI5e3/0IeqjQLS1KIclPv+MYuF3u2zcuLHa5SqVik8++YRPPvmkynX8/f3ZuXNnreLWlVWN+UhLS2PixIk0adIEpVKJt7c3YWFh+ie4NW3alA8++MDkceNjVAzv1E4/vTG4lcHynd94GCxfs8TX6Ji9nsnkpfk32PCeN5PDgog7r2LxN3E4u5canbYlYqQl27J2SSOm9A3i1X5BnDmoJmJdPP5BRTXa/tZNFVGrWzP1xX8wdew/+POEO/Pe+YMmAbkG6w0cGockyapM5/23OzDyqVD9dPi32g2sUjnoiDun4uM5dTumKgcdV2McWbUosNLl3n6FvPt/p0m66sCsMe2ZNKgT337qT0lx2aWrtNey+IuzSBKEv9iOGSM6oLCVmP/JOWSyyj+87pVnlYOOc8ccWbOkUaXL68IS56uxx6K26f0d99NDHTPZvsmP10d1Ye7ETsgVEotXn0SpMqw2/PR9Y0Y8/ph+WvNBkH6ZjY3EgpWnsbXVMWNMF9576yFCn7nBCxNja5wPS+wno+kk4ycrZlUtH4MHD6akpIT169fTrFkzUlNT2bdvH+np6WaNq9XIyEyzrXJ5caFNtcvr4tmXbrHrGzd2b3IDYOUsX7r8M4ew4Rls/vjuX/8PXoyjewx/aUW904inRqXTqlM+1y6p7rn9sYOGlYSvPmvNk4Ou0apNJglXnQBo1iKbQcPjmDb2H/zf9j2VppOXpyAz497xqnJ8f4Mat9ZUuv0BN44fcKty+eip8Rz/zY21K5rp56Uk3v51HfxwNg0bFzFlcEcK88su5xXhLdl85BDtu2Vx4qeKvy/uled935flx8u3pNblqYolzldjj0Vt0/s77qe3pnQ0+P+9+W3Y+MuvtAjO4a+Trvr5xUVyMtMrHyfQsXs6fs3ymPPKY2RlKIm75MTXq5rz4mtX+GqhE5rSe/8mtsR+EszLaiofWVlZHDhwgOjoaHr16gWUNSF16dLF7LEbBxSz4Y8/KSmWceGEmnXvNCbtxu0m75CBGfQZlE5mmi1H97rwzYeNKC6qe6OTwlZHi3YFbPz49tMGJUnGqQNOBHcqMKosloxRzsZG4h9PZ6F00HHhuOO9N6hk+0f73ECl0nLhr7IPQKVSw8yIk6xe0bbaysXEN/7itdlnSLnhyE9b/Nmzww+ouqXEkmQyiUd6ZfD9Gl8WfX6W5q3zSL2uYvMXfvquGVs7CSQoLbl9PpUU2yDpoE3HbE785FpV8hZjyXOpPquP+8lRXfZE5txswx9XIU8mE/JkMpnpdhz7zZNvv2hGcZEcgFbtsoi/oiYr43bl5MQhD6bMvYh/yyJi/6q+66Te7CcLd7vUN1ZT+VCr1ajVarZu3Uq3bt2MHp1bXFxMcXGx/v+7n69f7uIpR1a80ZSkWCVuDUsZMS2Z5d/F8EpoMIX5cvb/142bSXakp9oR0LqAseHX8W1WxKKXm9c5bw3ctMgVkJVmePgybynwCyyuYqsHL0bTVoV88OMV7JQ6CvNtWDiuKQmXa94K4d8shxWf/46dnY7CQjlvh3cmMb6s1WPC1HNcOOvGkQNVd6N8/XlLzpzwoLhYTscuaUyacRaVg4Yf/9Osym0sycW9FAdHLUPGJ/LVyqasey+ATo9mMPfD88we046/jrtw8YwTRYVyxr5xlfUfNAUZvPj6VeQKcPU03S9yY1jiXLIG9W0/yWQSL8+I4dwpF67FqvXzo3/y5mayiow0JU1b5DF26mUa+xeweEZ7AFzdS8i6q1UkK6Psx5qr571fL1F/9pOxz+oQlY96QaFQEBUVxYQJE/j000/p2LEjvXr1YtiwYbRr167W6UVGRrJgwYJ7rnc8+nb3wdWLcPG0I18dOstjT2Xy8yYPfvrGU788PsaejJu2vLPxMo38i0m+Zvrbl+qTpFglk0KDcHDS8o+nspnxYQIznw2scQXkeoKaV0f3wlFdSs+QZF5/8zSzJvfAxzefdp3SeW3MY9VuvzHqdj903CVnVCoNg5+PfWAqH+VjNo784s7Wr8r65+MuqmndIYcnhybz13EXcjLtWDK9NVPeusIzI68j6eDXnQ25fE6NpHswWnAE6zQp/CL+gXnMePERg/m7frg9liT+ihOZt5REfn4Cb98CUpIeoAGhwn1lVQNOBw8ezI0bN9i2bRt9+/YlOjqajh07EhUVVeu0wsPDyc7O1k+JiYk12i4/R8H1qyp8mlZeA794qqxbwce/ZgMrK5OTIUerAZe7fiW4emjITDNNfdISMTSlNtyIV3LlrAPrIhtx9bw9A8en1Xx7jQ3J1x25EuPC+k9bc/VKAwY8F0e7Trdo1DifzT/vYttv29n223YA5iw+TuTHh6pML+a8K55eRShsazPm3nxysmzRlMpIiDX8wE6Mc6Bho9vn16lDbozr24XnH+3OsJ49WD67Fe5exaQk1X0siylZ4lyyBvVpP02cdZEu/0hj9oTOpN+s/jy7eLbsB5qPX1mXSGa6HS7uhp+PLm5lrXQ1KWe92U/3+QmnDzqrqnxA2e1EoaGhzJs3j0OHDjFmzBjmz59f63SUSqX+mfo1fbY+gMpBSyP/YjJuVj7AtHmbsltDq1peE5pSGy7/6cDDj96+s0Mmk+jwaB7nT5jml4UlYtxNJvvfGIa6bm8jYWur47uvA5kyqhevjnlMPwF8sbINHyzuUOX2zVpkk5tji6ZUXuc8mJKm1IZLfznhG1BoML9x00Ju3qjYapaTZUt+roL2XTNxcSvlyC/ulspqte7HuVQf1Y/9JDFx1kW697lJ+MudSL1x71uLm7csK0/GrbJz9uKfLjQNzMPZ9Xa34MPd0snPVZBQg8Hm9WM/Ie52uYcHqJpoHsHBwWzdutVs6Y+fm8TRvc7cvG6Hm1cpL7x+A61WRvR/XWnkX0zIgAyO7W9AbqaCgNaFvPRWIn8eUXP1onEXyQ+fezDjg0QunXEg5pQDgyakoXLQsXtj1XdOPEgxXgxP5o9fnEi7boe9WkvIoCza9chj7vM16/IY/coFjh9pSFqKPfYOGno/cZ22D6czb3o3MjNUlQ4yTUu1JzW5bL936ZmCi1sxMedcKSmW83CXNJ4bdYUfvqndWByVgxafgNsfot5+JTRrU0hulpy065U/Z6PC9k1uVy68GhfRrFUeudkK0pJVfL/Wl9nvXeDscWf+POZCp0cz6No7nVlj2uu3CR2UQkKsA9mZtrTukMPL4bFs/aox1+MdgOxa59nJRYNn41LcvcpuW/RrXtZKl3lTUee7tixxvhp7LGqb3t9xP00Kv0jvfiksnN6ewnwFrv9rwcjPU1BSLMfbt4CQfin88bsHOVm2BATl8tIblzh7woX4y2XjsU4edicxTs2Mt/9i7YctcHUvZtTkK2zf7GswcLo6lthPgnlZTeUjPT2dIUOGMHbsWNq1a4eTkxPHjx9n2bJlDBgwQL/e9evXOX36tMG2/v7+uLrW7a4Aj0YlzP74Kk4uGrIzFJz7Q830ga3IzrDFVllCh0dzGDguFZW9jrRkOw7+5Mq3K41/LsCv21xxdtcyamYKrp4a4s7ZM3dEAFm3THdLrzljuHhomLkyAbeGGgpy5Vy9oGLu8804+ZtTzbZ3LeaNeadwcy8mP19B/JUGzJvejdN/eN57Y0CrseGpwfFMeO0cMhkkJznyxcpgft5Wu4e/BbUv5N3vbz+f4JUFNwDYvcmVFdOb3HP7Fm1yeWf9n/r/X5odB8CeLV68P7clh/d58PGCFjw3IYFX5sSSFG/P4mnBnD95e6xR46aFjJ5+FSdnDTevq9j0WRO2rK/6QWn3ynO3J3KY8cHtbsY5nyYA8PUKL/5vRd1eMGWJ89XYY1Hb9P6O++mp55IAWPblCYP5773Vhr0/+qAptaFD13QGPJ+Ayl5LWqqSg/sa8u2Xt39U6HQyIqZ2YPKcC6yIOkZxUdlDxr5e3Ry4VaMyWGI/GU3SlU3GbG/FZJJkHR1LxcXFREREsHv3bmJjYyktLcXPz48hQ4YwZ84c7O3tadq0KdeuXauw7ddff83IkSOrTT8nJwdnZ2dCFINRyMx3gkuae4/2FkDRtPZfJrWhiU8wa/oAcpe6P32zprRZFVs+BKGu5F4N772SEbSpN++9khE0UinR/Jfs7Owad6XXVvl3xeN+E1HY1P2mAo2umL2Jq82a1/vJalo+lEolkZGRREZGVrlOfHy85TIkCIIg/H3pJIy6XdbKx3xY3YBTQRAEQRAebFbT8iEIgiAIDwzxhNNqicqHIAiCIJiahJGVD5Pl5IEkul0EQRAEQbAo0fIhCIIgCKYmul2qJSoftSRpNEgy8c6M+80St8Kam7gNVqhvzH0rrFXR6QAjntWhs+7nfIhuF0EQBEEQLEq0fAiCIAiCqYlul2qJyocgCIIgmJqofFRLdLsIgiAIgmBRouVDEARBEExNPF69WqLyIQiCIAgmJkk6JCPeTGvMtvWBqHyYwUNd8xgyKY0WbQtw99YQMbYph3eZ/g2mT4+5xb8m3sTNU0PceXtWvdmYmNMO9SqGOdN/atQt+o9Kx8uvBIBrMSo2vO/F8f2mfUOkufeRtZxP1nC+WiJGfS/D0Cmp9HwyG7/AYkqKbDh/3IE1ixuRFKsySfrlLLGfjCJJxrVeiDEfQm2pHHTEnVPx8Rxfs8Xo9UwmL82/wYb3vJkcFkTceRWLv4nD2b203sQwd/ppybasXdKIKX2DeLVfEGcOqolYF49/UJFJ0gfLHAdrOJ+s4Xy1RAxrKEO77vn8GOXBtKdaED6sGXKFxJJv41Daa02SPlhmPwnmVe8rH9HR0chksiqnkJAQ4uPjDea5u7vzxBNPcOrUKbPk6fj+Bqxf1ohDZvh1Wu7Zl26x6xs3dm9yI+GyipWzfCkulBE2PKPexDB3+kf3OPPHLw24cVXJ9TglUe80oijfhlad8k2SPljmOFjD+WQN56slYlhDGeaOaMaezW5cu6Qi7rw9K6Y1wcu3lBbtCk2SPlhmPxmt/G4XYyYrVu8rHz169CA5ObnC9NlnnyGTyZg0aZJ+3b1795KcnMzPP/9MXl4e/fr1Iysr6/5lvo4UtjpatCvg5AEn/TxJknHqgBPBnQrqRQxLlOFONjYSvQZkonTQceG4o0nStHQZzMUajrU1xLCGMlTGsUFZi0dultwk6dWb606nM36yYvW+8mFnZ4e3t7fBlJmZyYwZM5gzZw5DhgzRr+vu7o63tzedO3dm+fLlpKamcvTo0UrTLS4uJicnx2B6UDRw0yJXQFaa4ZCdzFsKXD019SKGJcoA0LRVIVsvn2V7/J+8tjSJheOaknDZNH3PliqDuVnDsbaGGNZQhrvJZBKvLLjOX8ccuBZjb5I0reW6+7ur95WPu2VlZTFgwAB69+7NokWLqlzP3r7sQigpKal0eWRkJM7OzvrJz8/PLPkVzCspVsmk0CBe69+C7V95MOPDBJq0MN2YD0EQqjZlyXX8WxUROdH/fmfF8kS3S7WsqvKh0+l4/vnnUSgUbNiwAVkVL4DLyspi0aJFqNVqunTpUuk64eHhZGdn66fExERzZr1WcjLkaDXgclct39VDQ2aaaW5gMncMS5QBQFNqw414JVfOOrAushFXz9szcHyaSdK2VBnMzRqOtTXEsIYy3Gny4iS6hubw738151ayncnSrS/XnaTTGT1ZM6uqfMyZM4fDhw/z3//+FycnpwrLe/TogVqtxtXVlTNnzrBp0ya8vLwqTUupVNKgQQOD6UGhKbXh8p8OPPxorn6eTCbR4dE8zp8wza1m5o5hiTJURiYDWzvT/KK4X2UwNWs41tYQwxrKUEZi8uIkevTN5t9DmpOaqDRRumWs5br7u3twqolG2rhxI8uXL2fHjh20aNGi0nU2bdpEcHAw7u7uuLi4mC0vKgctPgG3u3O8/Upo1qaQ3Cw5addN8wvgh889mPFBIpfOOBBzyoFBE9JQOejYvdHNJOlbIoa5038xPJk/fnEi7bod9motIYOyaNcjj7nPNzNJ+mCZ42AN55M1nK+WiGENZZiy5DohgzKJeDGAwjwbXD3Lbn/Nz5VTUmSa37uW2E9Gk4x8wqmVd7tYReXj9OnTjBs3jqVLlxIWFlblen5+fjRv3tzs+QlqX8i738fq/39lwQ0Adm9yZcX0JiaJ8es2V5zdtYyamYKrp4a4c/bMHRFA1i1bk6RviRjmTt/FQ8PMlQm4NdRQkCvn6gUVc59vxsnfKraK1ZUljoM1nE/WcL5aIoY1lOHpMekALP8h1mD+8ml+7NlsmsqBJfaT0XQSyETloyoySarfJbx16xadO3emTZs2rFmzpsJyuVxOfn4+AQEBnDp1ig4dOtQpTk5ODs7OzvRmAArZA3SCC4IgCDWikUqJ5r9kZ2ebrSu9/Luij/I5FLK6t0xqpBJ+Kd5s1rzeT/W+5WPHjh1cu3aNa9eu0ahRowrL/f39iY6OtnzGBEEQhL8vSQKMGDRav9sF7qneVz5Gjx7N6NGj77lePW/gEQRBEOoRSSchGdHtYu3fWfW+8iEIgiAIDxxJh3EtH+JWW0EQBEEQ6oFPPvmEpk2bolKp6Nq1K8eOHbvfWaqUqHwIgiAIgolJOsnoqbY2bdrE66+/zvz58zl58iTt27cnLCyMmzdvmqGExhGVD0EQBEEwNUln/FRL7733HhMmTODFF18kODiYTz/9FAcHB9auXWuGAhpHjPmoofLBPxpKjXpujCAIgnB/aCh74JklBnMa+11Rnte7X2qqVCpRKis+NbakpIQTJ04QHh6un2djY8Pjjz/O4cOH654RMxGVjxrKzS17lO/v7LzPOREEQRCMkZubi7Ozs1nSLn/T+u8pxn9XqNXqCi81nT9/PhERERXWvXXrFlqttsIrQ7y8vLh48aLReTE1UfmoIR8fHxITE3FycqryhXV3y8nJwc/Pj8TERLM8JMbc6VtLDGsogyViiDL8fWJYQxnqEkOSJHJzc/Hx8TFLfgBUKhVXr16t8o3ptSFJUoXvm8paPeojUfmoIRsbG3x9feu0rblfTGeJF99ZQwxrKIMlYogy/H1iWEMZahvDXC0ed1KpVKhUKrPHuZOHhwdyuZzU1FSD+ampqXh7e1s0LzUhBpwKgiAIQj1nZ2dHp06d2Ldvn36eTqdj3759dO/e/T7mrHKi5UMQBEEQrMDrr7/O6NGj6dy5M126dOGDDz4gPz+fF1988X5nrQJR+TAjpVLJ/PnzzdZHZ+70rSWGNZTBEjFEGf4+MayhDJaKUZ8MHTqUtLQ03nrrLVJSUujQoQO7du2qMAj1QVDv32orCIIgCEL9IsZ8CIIgCIJgUaLyIQiCIAiCRYnKhyAIgiAIFiUqH4IgCIIgWJSofJjI4cOHkcvl9O/f32B+fHw8MpmswjRy5MgapTtmzBj9Nra2tnh5eREaGsratWvR6Sq+eCgsLAy5XM4ff/xRq/zfGefOqW/fvgA0bdpUP8/R0ZGOHTvyn//8x6h0hw0bpk+/3K5du5DJZBUeHxwREUGTJk3uGS8lJYWpU6cSGBiISqXCy8uLnj17snr1agoKCvRl+eCDD2q2Y2qZrkwmY+PGjRW2b9OmDTKZjKioKKNidenSpdL9WT717t272rTHjBnDwIEDK8yPjo5GJpORlZWl//vu6c0336zJrqpTDC8vLwYPHkxcXJz+nFm6dKnB9lu3bq3x04VNITExkbFjx+Lj44OdnR3+/v5MnTqV9PR0/Tq9e/eudF+98sorNYpx5/VhZ2dHYGAgCxcuRKPR6Nep6zVdLi0tjYkTJ9KkSROUSiXe3t6EhYVx8OBBwPDaLp9q+0DFmsSo7TUHVHkulk8hISEVPmPd3d154oknOHXqVK3jCZYjbrU1kTVr1vDqq6+yZs0abty4UeHxvXv37qVNmzb6/+3t7Wucdt++fVm3bh1arZbU1FR27drF1KlT+e6779i2bRsKRdlhTEhI4NChQ0yZMoW1a9fyyCOP1KoM5XHudOctbAsXLmTChAnk5OSwYsUKhg4dSuPGjenRo0ed0t28eTMzZsxAo9Hoy7B//378/PyIjo42WH///v2EhIRUGycuLo6ePXvi4uLCkiVLaNu2LUqlkrNnz/L555/TuHFjnnnmmXvtBqPS9fPzY926dQwbNky//ZEjR0hJScHR0dHoWFOmTOGJJ54Ayr4cu3TpYnBu2dnZ1bp8VYmJiTF4aqRarTZZ2nfGcHJy4vLly7z00ks8/fTTdO7cGZVKxTvvvMPLL7+Mq6uryePeS1xcHN27dycoKIhvv/2WgIAAzp07x8yZM/npp584cuQIbm5uAEyYMIGFCxcabO/g4FDjWOXXR3FxMTt37mTy5MnY2toSHh5u9DUNMHjwYEpKSli/fj3NmjUjNTWVffv2GVSiyq/tcnK53OQx6qJHjx4kJydXmL9t2zZeeeUVJk2apJ9Xfh0kJSXx2muv0a9fPy5evIiLi4tReRDMRBKMlpubK6nVaunixYvS0KFDpcWLF+uXXb16VQKkU6dO1Snt0aNHSwMGDKgwf9++fRIgffHFF/p5ERER0rBhw6QLFy5Izs7OUkFBgdFxyvn7+0vvv/++/v/S0lLJwcFBmj17dp3TjYmJkQDp8OHD+nldunSRPvnkE0mlUkmFhYWSJElSYWGhpFQqpXXr1lUbKywsTPL19ZXy8vIqXa7T6Soty73UJt3Zs2dLSqVSSkhI0C+fMGGC9Oqrr0rOzs4mK4Mk1e3cqup47N+/XwKkzMxMg7/roq4xNmzYIAHSwIEDpaeeekpq1aqVNHPmTP3yLVu2SHd+ZH333XdScHCwZGdnJ/n7+0vLly83iOfv7y8tXrxYevHFFyW1Wi35+flJn332mcE6CQkJ0pAhQyRnZ2fJ1dVVeuaZZ6SrV69Kffv2lXx9fStcQ8nJyZKDg4P0yiuvSJIkSb169ZKmTp1ap/0kSZXvq9DQUKlbt26SJBl3TUuSJGVmZkqAFB0dXeU6tb0e7keMO50/f15ycnKS5s6dK0lS5dfBwYMHJUDatWuXSWIKpie6XUxg8+bNtGrVipYtWzJy5EjWrl1r9lc29+nTh/bt2/PDDz8AZS8gWrduHSNHjqRVq1YEBgby3XffmS2+QqHA1tbWqJcnBQUF4ePjw/79+4GyN02ePHmSIUOG0LRpU/1roA8dOkRxcXG1LR/p6ens3r2byZMnV9nCUJcm+9qm6+XlRVhYGOvXrwegoKCATZs2MXbsWJPHsjblrYE6nQ65XM6SJUv46KOPSEpKqrDuiRMneO655xg2bBhnz54lIiKCefPmVejWWrFiBZ07d+bUqVNMmjSJiRMnEhMTA0BpaSlhYWE4OTlx4MABDh48iFqtJjQ0lJ9//plJkyZVaKH09vZmxIgRbNq0yWzXuL29PSUlJSa5ptVqNWq1mq1bt1JcXGyW/FoiRrmsrCwGDBhA7969WbRoUZXrlR83U7zcTTAPUfkwgTVr1ujHcPTt25fs7Gx+/fVXg3V69Oihv0jVarVJ+iNbtWpFfHw8UNbkWFBQQFhYGAAjR45kzZo1tUpv+/btBnlUq9UsWbKkwnolJSVERkaSnZ1Nnz59jEo3JCRE38Vy4MABgoKC8PT05LHHHtPPj46OJiAgAH9//ypjXLlyBUmSaNmypcF8Dw8PfcxZs2bVcE8Yl+7YsWOJiopCkiS+++47mjdvTocOHcwSqy4qOx79+vWrsJ6vr6/BOrVpQq9pjHLJycksX76cxo0b61/8NWjQIDp06MD8+fMrrP/ee+/xz3/+k3nz5hEUFMSYMWOYMmUK7777rsF6Tz75JJMmTSIwMJBZs2bh4eGhr+xu2rQJnU7Hl19+Sdu2bWndujXr1q0jMTERSZJo3bp1pXlt3bo1mZmZpKWlAbBq1aoKZd2wYUON91U5SZLYu3cvP//8M3369DHJNa1QKIiKimL9+vW4uLjQs2dP5syZw59//mmw3qxZswzyv3LlSpPHMJZOp+P5559HoVCwYcOGKiviWVlZLFq0CLVaTZcuXUyaB8F0xJgPI8XExHDs2DG2bNkClF2IQ4cOZc2aNQaD/zZt2mTwYebn52d0bOmO1y2vXbuWoUOH6sdODB8+nJkzZxIbG0vz5s1rlF5ISAirV682mFferw1lH1BvvvkmRUVFqNVqli5dWmGAbW3T7d27N9OmTaO0tJTo6Gj9PuvVqxefffYZUFb5uNd4j6ocO3YMnU7HiBEjTPqrrLp0+/fvz8svv8xvv/3G2rVra9TqUddYdVHZ8Th69GiFQdAHDhzAyclJ/39txl7UNIavry+SJFFQUED79u35/vvvDbZ755136NOnDzNmzDDY7sKFCwwYMMBgXs+ePfnggw/QarX6MQvt2rXTL5fJZHh7e3Pz5k0Azpw5w5UrVwzKCOj3cU1bNkaMGMHcuXMN5tXmcdblFbXS0lL9F2xERATjx483+pqGsvEY/fv358CBAxw5coSffvqJZcuW8eWXXzJmzBgAZs6cqf8byiq8tVGTGMaaM2cOhw8f5tixYxWOGZT9wLOxsSE/P59mzZqxadOmB/Kx4kIZUfkw0po1a9BoNAYDTCVJQqlU8vHHH+vn+fn5ERgYaNLYFy5cICAggIyMDLZs2UJpaanBB7dWq2Xt2rUsXry4Ruk5OjpWm8fyDyi1Wo2Xl1eNuwCqSzckJIT8/Hz++OMP9u/fz8yZM4GyysfYsWPJyMjg6NGjvPzyy9XGCAwMRCaT6ZvUyzVr1gyo3QBfY9NVKBS88MILzJ8/n6NHj+orpuaIVReVHY/KujYCAgLqPFivpjEOHDhAgwYNaNiwof4L5c5z+LHHHiMsLIzw8PA6fYnZ2toa/C+TyfR3ieXl5dGpU6cKrRSZmZl07dqVCxcuMGjQoAppXrhwAVdXVzw9PYGyV7Qbc22XV9Ts7Ozw8fFBoVCY7Joup1KpCA0NJTQ0lHnz5jF+/Hjmz5+v36ceHh5Gfz7dK4YxNm7cyPLly9mxYwctWrSodJ1NmzYRHByMu7u7GGRaD4huFyNoNBq++uorVqxYwenTp/XTmTNn8PHx4dtvvzVb7F9++YWzZ88yePBgNmzYgK+vL2fOnDHIx4oVK4iKikKr1ZokZvkHlLe3t8nGHjRv3hw/Pz+2bdvG6dOn6dWrFwCNGzemcePGrFixgpKSknu2fLi7uxMaGsrHH39Mfn6+SfJmTLpjx47l119/ZcCAATVuMTBXGR5kAQEBNG/evNJfsuWWLl3Kjz/+qB8DBGVdH+W3cZY7ePAgQUFBNb5To2PHjly+fJmGDRsSGBionx555BFCQ0NZtWoVhYWFBtukpKSwYcMGhg4darJroLyi1qRJE30rh7mv6eDgYLOfY6aKcfr0acaNG8fSpUv1XVCV8fPzo3nz5qLiUU+Ilg8jbN++nczMTMaNG6fvpy43ePBg1qxZU+E5FnVRXFxMSkqKwa22kZGRPPXUU4waNYpOnTrxr3/9i4ceeshgOz8/P8LDw9m1a1eNukfK49xJoVDUugm2tumGhISwatUqAgMDDZpJe/XqxUcffaQfmHovq1atomfPnnTu3JmIiAjatWuHjY0Nf/zxBxcvXqRTp076da9fv87p06cNtvf396+0olCbdMu1bt2aW7du1eqWy7rGsnZt27ZlxIgRBuMQ3njjDR555BEWLVrE0KFDOXz4MB9//DGrVq2qcbojRozg3XffZcCAASxcuBBfX1+uXbvGDz/8wJtvvsmzzz5LWFgYb7/9tsGtto0bNzZoeSgoKKhwfiuVSqNuEV6zZo1Jrun09HSGDBnC2LFjadeuHU5OThw/fpxly5ZV6Laqq5rGqM01V+7WrVsMHDiQ3r17M3LkyAr7uba3BAsPkPtxi421eOqpp6Qnn3yy0mVHjx6VAOnMmTNG32oLSICkUCgkT09P6fHHH5fWrl0rabVa6fjx4xIgHTt2rNLt+/XrJw0aNKhWce6cWrZsKUlS3W+Vu1e6kiRJ69atkwD97YvloqKiJEB6+eWXaxzvxo0b0pQpU6SAgADJ1tZWUqvVUpcuXaR3331Xys/P15elsjx9/fXXRqdb3T6qya22NY0lSdZ3q21121+9elWys7Or9FZbW1tbqUmTJtK7775rsE1lx6N9+/bS/Pnz9f8nJydLo0aNkjw8PCSlUik1a9ZMmjBhgpSdnS3Fx8dLo0ePlry8vCRbW1vJz89PevXVV6Vbt27pt+/Vq1el51JYWFid95WprmlJkqSioiJp9uzZUseOHSVnZ2fJwcFBatmypfTmm2/qb9s19jbYmsao7TUnSbc/A6qa/P39jX6cgXB/yCTJzPeECoIgCIIg3EGM+RAEQRAEwaJE5UMQBEEQBIsSlQ9BEARBECxKVD4EQRAEQbAoUfkQBEEQBMGiROVDEARBEASLEpUPQRAEQRAsSlQ+BEEQBEGwKFH5EIR6ZMyYMQwcOFD/f/lbgS0tOjoamUxGVlZWlevIZDK2bt1a4zQjIiLo0KGDUfmKj49HJpNVeIy3IAgPFlH5EAQjjRkzBplMhkwmw87OjsDAQBYuXIhGozF77B9++IFFixbVaN2aVBgEQRAsQbxYThBMoG/fvqxbt47i4mJ27tzJ5MmTsbW1JTw8vMK6JSUl2NnZmSSum5ubSdIRBEGwJNHyIQgmoFQq8fb2xt/fn4kTJ/L444+zbds24HZXyeLFi/Hx8aFly5YAJCYm8txzz+Hi4oKbmxsDBgwgPj5en6ZWq+X111/HxcUFd3d3/v3vf3P3q5ju7nYpLi5m1qxZ+Pn5oVQqCQwMZM2aNcTHxxMSEgKAq6srMpmMMWPGAKDT6YiMjCQgIAB7e3vat2/Pd999ZxBn586dBAUFYW9vT0hIiEE+a2rWrFkEBQXh4OBAs2bNmDdvHqWlpRXW++yzz/Dz88PBwYHnnnuO7Oxsg+VffvklrVu3RqVS0apVq1q9yVYQhAeDqHwIghnY29tTUlKi/3/fvn3ExMSwZ88etm/fTmlpKWFhYTg5OXHgwAEOHjyIWq2mb9+++u1WrFhBVFQUa9eu5ffffycjI4MtW7ZUG3fUqFF8++23rFy5kgsXLvDZZ5+hVqvx8/Pj+++/ByAmJobk5GQ+/PBDACIjI/nqq6/49NNPOXfuHNOnT2fkyJH8+uuvQFkl6dlnn+Xpp5/m9OnTjB8/ntmzZ9d6nzg5OREVFcX58+f58MMP+eKLL3j//fcN1rly5QqbN2/mxx9/ZNeuXZw6dYpJkybpl2/YsIG33nqLxYsXc+HCBZYsWcK8efNYv359rfMjCMJ9dJ/fqisI9d6dr0XX6XTSnj17JKVSKc2YMUO/3MvLSyouLtZv8/XXX0stW7aUdDqdfl5xcbFkb28v/fzzz5IkSVKjRo2kZcuW6ZeXlpZKvr6+Bq9g79WrlzR16lRJkiQpJiZGAqQ9e/ZUms/KXmNfVFQkOTg4SIcOHTJYd9y4cdLw4cMlSZKk8PBwKTg42GD5rFmzKqR1N0DasmVLlcvfffddqVOnTvr/58+fL8nlcikpKUk/76effpJsbGyk5ORkSZIkqXnz5tI333xjkM6iRYuk7t27S5IkiderC0I9IcZ8CIIJbN++HbVaTWlpKTqdjueff56IiAj98rZt2xqM8zhz5gxXrlzBycnJIJ2ioiJiY2PJzs4mOTmZrl276pcpFAo6d+5coeul3OnTp5HL5fTq1avG+b5y5QoFBQWEhoYazC8pKeHhhx8G4MKFCwb5AOjevXuNY5TbtGkTK1euJDY2lry8PDQaDQ0aNDBYp0mTJjRu3Nggjk6nIyYmBicnJ2JjYxk3bhwTJkzQr6PRaHB2dq51fgRBuH9E5UMQTCAkJITVq1djZ2eHj48PCoXhpeXo6Gjwf15eHp06dWLDhg0V0vL09KxTHuzt7Wu9TV5eHgA7duww+NKHsnEspnL48GFGjBjBggULCAsLw9nZmY0bN7JixYpa5/WLL76oUBmSy+Umy6sgCOYnKh+CYAKOjo4EBgbWeP2OHTuyadMmGjZsWOHXf7lGjRpx9OhRHnvsMaDsF/6JEyfo2LFjpeu3bdsWnU7Hr7/+yuOPP15heXnLi1ar1c8LDg5GqVSSkJBQZYtJ69at9YNnyx05cuTehbzDoUOH8Pf3Z+7cufp5165dq7BeQkICN27cwMfHRx/HxsaGli1b4uXlhY+PD3FxcYwYMaJW8QVBeLCIAaeCcB+MGDECDw8PBgwYwIEDB7h69SrR0dG89tprJCUlATB16lSWLl3K1q1buXjxIpMmTar2GR1NmzZl9OjRjB07lq1bt+rT3Lx5MwD+/v7IZDK2b99OWloaeXl5ODk5MWPGDKZPn8769euJjY3l5MmTfPTRR/pBnK+88gqXL19m5syZxMTE8M033xAVFVWr8rZo0YKEhAQ2btxIbGwsK1eurHTwrEqlYvTo0Zw5c4YDBw7w2muv8dxzz+Ht7Q3AggULiIyMZOXKlVy6dImzZ8+ybt063nvvvVrlRxCE+0tUPgThPnBwcOC3336jSZMmPPvss7Ru3Zpx48ZRVFSkbwl54403eOGFFxg9ejTdu3fHycmJQYMGVZvu6tWr+de//sWkSZNo1aoVEyZMID8/H4DGjRuzYMECZs+ejZeXF1OmTAFg0aJFzJs3j8jISFq3bk3fvn3ZsWMHAQEBQNk4jO+//56tW7fSvn17Pv30U5YsWVKr8j7zzDNMnz6dKVOm0KFDBw4dOsS8efMqrBcYGMizzz7Lk08+yRNPPEG7du0MbqUdP348X375JevWraNt27b06tWLqKgofV4FQagfZFJVo9cEQRAEQRDMQLR8CIIgCIJgUaLyIQiCIAiCRYnKhyAIgiAIFiUqH4IgCIIgWJSofAiCIAiCYFGi8iEIgiAIgkWJyocgCIIgCBYlKh+CIAiCIFiUqHwIgiAIgmBRovIhCIIgCIJFicqHIAiCIAgW9f8qc/FAb0xngwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "cm = confusion_matrix(y_test, clf.predict(X_test), labels=clf.classes_)\n", "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)\n", @@ -2684,25 +681,9 @@ }, { "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "QueryRectangle( \n", - " BoundingBox2D(xmin=443678.0, ymin=5699335.5, xmax=453918.0, ymax=5709575.5)\n", - " TimeInterval(start=2021-10-15 00:00:00+00:00, end=2021-10-15 00:00:00+00:00)\n", - " SpatialResolution(x=10.0, y=10.0)\n", - " srs=EPSG:32632 \n", - ")" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "start_dt = datetime(2021, 10, 15, 0, 0, 0)\n", "end_dt = datetime(2021, 10, 15, 0, 0, 0)\n", @@ -2748,7 +729,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2784,7 +765,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2796,7 +777,9 @@ "res_arrays = []\n", "\n", "async for tile_stac in zip_longest(*queries):\n", - " arr_stack = xr.concat(tile_stac, dim=\"band\")\n", + " tiles_as_xarrays = [tile.to_xarray() for tile in tile_stac]\n", + "\n", + " arr_stack = xr.concat(tiles_as_xarrays, dim=\"band\")\n", " arr_stack_2 = arr_stack.transpose(\"y\", \"x\", \"band\")\n", "\n", " rf_input = arr_stack_2.values.reshape((box_size * box_size, len(tile_stac)))\n", @@ -2830,100 +813,9 @@ }, { "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWaUlEQVR4nOyde3wU1d3/PzFowiUhTaoEiIElNoqikWqEiNdVjJDSXJSL9ZonjykUtaaR+tDGB9RUSmmMdzB98ovV1oLUhGjDU0TXeoEgQSE1j2gQgjFAwCZCALk1zO+PzZmcmZ2ZnZk9c9nNeb9e+0p2dnbmzOzMOZ/5fr/n+40SBEEAh8PhcDgcjos5w+kGcDgcDofD4QSDCxYOh8PhcDiuhwsWDofD4XA4rocLFg6Hw+FwOK6HCxYOh8PhcDiuhwsWDofD4XA4rocLFg6Hw+FwOK6HCxYOh8PhcDiuhwsWDofD4XA4rocLFpcwduxY3HPPPU43g8PhRDj33HMPxo4da+q7TvVT+/fvx6233oqkpCRERUXhqaeesr0NHOfhgsVGNm7ciMWLF+PgwYNON8VWmpqacN999+Giiy7C0KFDkZqailmzZqG1tVVx/e3bt+Pmm2/GsGHDkJiYiDvvvBPffPONZJ3PP/8cv/zlL3HppZciLi4OI0eORE5ODrZs2RKwvS+++AIlJSW48sorERsbi6ioKOzevdvQMSxfvhwzZ85EamoqoqKiNDvtgwcPori4GGeffTaGDh2K66+/Hp988omh/VVXV2P8+PGIjY3FD37wAzz77LOmjuuee+5BVFRU0Bd9PKzPvxYbN27EVVddhSFDhiA5ORkPPPAAjhw5ErDeiRMn8PDDD2PUqFEYPHgwJk2ahPXr1xval55zCgB79uzBrFmzkJCQgPj4eOTm5mLXrl2G9uU0e/fuxeLFi7Ft2zanm8KEkpISrFu3DgsXLsQrr7yCm2++2bZ9671GOTYgcGxj2bJlAgChra0t4LPjx48LJ0+etL9RNnDLLbcIycnJwv333y/84Q9/EB5//HFhxIgRwtChQ4VPP/1Usu7XX38tfP/73xfS0tKEp59+WvjNb34jfO973xMyMjKEEydOiOuVlpYKCQkJQlFRkfDiiy8Kv/vd74S0tDQhOjpaWL9+vWSbNTU1whlnnCFMmDBBuPTSS1V/Ay3GjBkjJCYmCjfffLMwaNAg4e6771Zcr7e3V7jyyiuFoUOHCosXLxaee+454cILLxTi4uKE1tZWXftasWKFAEC45ZZbhKqqKuHOO+8UAAi//e1vDR/Xxo0bhVdeeUV8PfbYYwIAobi4WLJ848aNgiBYc/7V2Lp1qxAbGytMnDhRWL58ufDrX/9aiImJEW6++eaAdefMmSMMGjRIeOihh4QXX3xRyMrKEgYNGiR88MEHTM/p4cOHhR/84AfCOeecIyxdulR48sknhXPPPVdISUkR/vWvf+nalxtoamoSAAg1NTUBn508eVI4fvy4qe2OGTNG9dq3khEjRgi333677fs1co1yrIcLFhvREiyRzIYNGySDnSAIQmtrqxATExPQCc2bN08YPHiw8NVXX4nL1q9fLwAQXnzxRXHZli1bhMOHD0u++69//Us4++yzhSlTpkiWd3V1CT09PYIgmP8Ndu/eLZw+fVoQBEEYOnSoaqe9atUqAYCwevVqcdmBAweEhIQE4bbbbgu6n++++05ISkoScnJyJMtvv/12YejQoUJ3d3dIx6U1kAmCNedfjWnTpgkjR44UDh06JC77wx/+IAAQ1q1bJy776KOPBADCsmXLxGXHjh0T0tLShKysrKD7MXJOly5dKgAQNm/eLC7bvn27EB0dLSxcuFDXcbmBYL+zWVgIlt7eXuHYsWOGvhMVFSXMnz8/pP2aQe81yrEHLlhsYtGiRQKAgBcZYOQdQU1NjQBA+OCDD4T7779f+P73vy8MHz5cKC4uFk6cOCF8++23wp133ikkJCQICQkJwoIFC8QBldDb2ytUVlYKF154oRATEyOcc845QnFxsaSDdpIf/vCHwg9/+EPJsnPOOUeYOXNmwLrp6enCDTfcEHSbBQUFQmJiournLESjlmCZOXOmMGLECKG3t1eyvLi4WBgyZEjQJ9uGhgYBgNDQ0CBZvnHjRgGA8Morryh+j5VgseL8Hz16VNi+fbvwzTffiMsOHTokDBo0SFiwYIFk3RMnTgjDhg0TioqKxGULFiwQoqOjJYOGIAjCE088IQAQ2tvbxWXffPONsH37duHo0aPiMiPnNDMzU8jMzAw4rptuuklIS0sLevxK7Nu3T7jnnnuE0aNHC2eddZaQnJws/PjHP5b8VmPGjBFycnKEdevWCRkZGUJMTIwwfvx44fXXX5dsq6urSygtLRUmTJggDB06VIiLixNuvvlmYdu2beI67777rmJfQ37zu+++WxgzZoxku8uWLROysrKExMREITY2VvjhD38oEd10O40KFgDC/PnzhT/96U/ChRdeKAwaNEioq6sTBEEQOjo6hMLCQuGcc84RzjrrLOHCCy8Uqqurxe+SflD+sgMj1yjHHngMi00UFBTgtttuAwBUVlbilVdewSuvvIKzzz5b83v3338/duzYgUcffRQ//vGPUVVVhUceeQQzZsxAb28vnnjiCVx11VVYtmwZXnnlFcl3f/rTn2LBggWYMmUKnn76aRQWFuLPf/4zsrOzcerUKc39njhxAv/61790vcwgCAL279+P73//++KyPXv24MCBA7j88ssD1r/iiiuwdevWoNvt7OyUbNNutm7dih/+8Ic44wzprXXFFVfgu+++U43bob8PIOAcXHbZZTjjjDN0nQOzWHX+N2/ejPHjx+O5554Tl3366af497//HbCvs846C5deeqlkX1u3bkV6ejri4+MD2gRAEqfx3HPPYfz48di8ebPk+0Dwc3r69Gn885//VD3+nTt34vDhw0HPgZxbbrkFdXV1KCwsxAsvvIAHHngAhw8fRnt7u2S9HTt2YPbs2Zg2bRqWLFmCQYMGYebMmZJYnV27dmHNmjX40Y9+hCeffBILFizAp59+imuvvRZ79+4FAIwfPx6PPfYYAKC4uFjsa6655hrVNj799NOYOHEiHnvsMTzxxBPivhsaGgwfrxI+nw8lJSWYPXs2nn76aYwdOxb79+/H5MmT8fbbb+O+++7D008/jfPOOw9FRUViUO0111wj9mtTp04Vj0WLb7/9Vle/9d1332lux8g1yrEJpxXTQELrKVjNwpKdnS2xnGRlZQlRUVHC3LlzxWX//ve/hZSUFOHaa68Vl33wwQcCAOHPf/6zZD9///vfFZfLUXuyUXqZ4ZVXXhEASJ6myNP/yy+/HLD+ggULBACaFor3339fiIqKEh555BHVday2sAwdOlT4j//4j4Dl5Cn/73//u+a258+fL0RHRyt+dvbZZwtz5sxR/IyFhcWq80+e+BctWiQuW716tQBAeP/99wO2M3PmTCE5OVl8f9FFFwlerzdgvf/7v/8TAAgrVqwQlxFL5rvvvisu03tOv/nmGwGA8NhjjwWs9/zzzwsAhM8//1z54FX49ttvA9xZSowZM0YAILGoHDp0SBg5cqQwceJEcdnx48cDrHdtbW1CTEyMpN1av7OSheW7776TvD958qQwYcKEgPNu1sJyxhlnCP/3f/8nWV5UVCSMHDkyIDZozpw5wvDhwyVtQp+VRg/kXAZ70dejEkauUY49DLJGBnFYUVRUhKioKPH9pEmT0NjYiKKiInFZdHQ0Lr/8cnz88cfistWrV2P48OGYOnWqxApy2WWXYdiwYXj33Xfxk5/8RHW/2dnZhmdh6OXzzz/H/PnzkZWVhbvvvltcfuzYMQBATExMwHdiY2PFdZQ+P3DgAH7yk5/A4/Hgl7/8pSXt1oNa++j2B/v+WWedpfhZbGxs0O+HglXn/7rrroMgCIb2RR+nkXO6ePFiLF68OGBfes6p3uM3wuDBg3HWWWfhH//4B4qKivC9731Pdd1Ro0YhPz9ffB8fH4+77roLS5cuRWdnJ5KTkyVt6+3txcGDBzFs2DCcf/75hmeiydtJ+Pbbb9Hb24urr74af/nLX0xvk+baa6/FhRdeKL4XBAGvv/46Zs2aBUEQJH1UdnY2Vq5ciU8++QRTpkwxvK8///nPun6ncePGaX5u5Brl2AMXLC4nNTVV8n748OEAgHPPPTdg+bfffiu+37FjBw4dOoRzzjlHcbsHDhzQ3O/IkSMxcuRIM03WpLOzEzk5ORg+fDj++te/Ijo6WvyMdJonTpwI+N7x48cl69AcPXoUP/rRj3D48GF8+OGHGDZsmKm2ffPNN+jt7RXfDxs2zPC2Bg8erKv9avsaPHgwTp48qbjt48ePKx4/K+w8/8H2Re9H7znV2peec2r2+LWIiYnB0qVLUVpaihEjRmDy5Mn40Y9+hLvuugvJycmSdc877zzJwwkApKenAwB2796N5ORknD59Gk8//TReeOEFtLW1Sa6hpKQkQ22j+dvf/oby8nJs27ZNcvzy9pjF4/FI3n/zzTc4ePAgqqqqUFVVpfidYH2UGmZEjhJGrlGOPXDB4nLoAT3Ycvop9vTp0zjnnHPw5z//WfH7wWJnjh07hkOHDulqo7zjVePQoUOYNm0aDh48iA8++ACjRo2SfE4E0r59+wK+u2/fPiQmJgY87Zw8eRIFBQX45z//iXXr1mHChAm62qJEZmYmvvrqK/H9okWLAp7WgzFy5EjV9gMQj1ltXyNHjkRvby8OHDggEZsnT55EV1dXwDljiZ3nP9i+6OMcOXIk9uzZo7gegKDnRO85Jcen5/czwoMPPogZM2ZgzZo1WLduHR555BEsWbIEPp8PEydONLStJ554Ao888gj+4z/+A48//jgSExNxxhln4MEHH8Tp06cNtw0APvjgA/z4xz/GNddcgxdeeAEjR47EmWeeiZqaGrz66qumtilHPriTtt5xxx0SKyvNJZdcYmpf8ocBNYI9kBi5Rjn2wAWLjbB6WtFDWloa3n77bUyZMsXUk8CqVatQWFioa125uV+J48ePY8aMGWhtbcXbb78tMQ8TRo8ejbPPPlsx+djmzZtx6aWXSpadPn0ad911F9555x289tpruPbaa3W1Vw25KTmYyViJSy+9FB988AFOnz4tCbz96KOPMGTIEPGJWW1f5Bi3bNmC6dOni59v2bIFp0+fDjgHLLHz/E+YMAGDBg3Cli1bMGvWLHH5yZMnsW3bNsmySy+9FO+++y56enokgbcfffSR+LkWes/pGWecgYsvvljx+D/66COMGzcOcXFxuo+RJi0tDaWlpSgtLcWOHTtw6aWXoqKiAn/605/Edb788ksIgiDpJ0iQNslM+9e//hXXX389qqurJds/ePCgJNjZSF/z+uuvIzY2FuvWrZMI0pqaGkPHaISzzz4bcXFx6O3txY033sh02/KHATWCPZAYuUY59sAFi40MHToUAGzJdDtr1iy88MILePzxx/HEE09IPvv3v/+NI0eOICEhQfX7LGNYent7MXv2bDQ2NqK+vh5ZWVmq695yyy344x//iK+//lp0e73zzjtobW1FSUmJZN37778fq1atwosvvoiCgoKQ28nClHzrrbfir3/9K2pra3HrrbcCAP71r39h9erVmDFjhjggqO3L6/UiMTERy5cvlwyuy5cvx5AhQ5CTkxNyG7Ww4vx/9913aG9vx/e//31xUB0+fDhuvPFG/OlPf8IjjzwiCoFXXnkFR44cwcyZM8Xv33rrrfj973+PqqoqPPTQQwD8ZvqamhpMmjRJ4h4lM0BSU1MxZMgQAMbO6a233or/+q//wpYtW8TZIV988QV8Pp+4byN89913OOOMM8QYGMAvXuLi4gJcDXv37kVdXZ14Lnt6evDyyy/j0ksvFa2Y0dHRAQ8Iq1evxp49e3DeeeeJy4z0NdHR0YiKipJYJXbv3o01a9YYOlYjREdH45ZbbsGrr76KlpaWAMvcN998E9QKrAarGBYj1yjHHrhgsZHLLrsMAPDrX/8ac+bMwZlnnokZM2aInQtLrr32Wvz0pz/FkiVLsG3bNtx0000488wzsWPHDqxevRpPP/20OKAqwTKGpbS0FG+88QZmzJiB7u5uyVMl4DcLE371q19h9erVuP766/Hzn/8cR44cwbJly3DxxRdLLD5PPfUUXnjhBWRlZWHIkCEB28zPzxfP66FDh8Q07Bs2bADgn/6akJCAhIQE3HfffUGP4c0330RzczMA4NSpU/jnP/+J8vJyAMCPf/xj0Xx96623YvLkySgsLMRnn32G73//+3jhhRfQ29uLRx99NOh+Bg8ejMcffxzz58/HzJkzkZ2djQ8++AB/+tOf8Jvf/AaJiYniuiyOS44V53/z5s24/vrrA55of/Ob3+DKK6/Etddei+LiYnR0dKCiogI33XSTJPX6pEmTMHPmTCxcuBAHDhzAeeedhz/+8Y/YvXt3gKXhueeew6OPPop3330X1113neFz+rOf/Qx/+MMfkJOTg4ceeghnnnkmnnzySYwYMQKlpaWSfV133XV47733NC2Mra2tuOGGGzBr1ixceOGFGDRoEOrq6rB//37MmTNHsm56ejqKiorQ1NSEESNG4P/9v/+H/fv3SywdP/rRj/DYY4+hsLAQV155JT799FP8+c9/Dhh809LSkJCQgBUrViAuLg5Dhw7FpEmTAmJJACAnJwdPPvkkbr75ZvzkJz/BgQMH8Pzzz+O8887DP//5T9VjC5Xf/va3ePfddzFp0iTce++9uPDCC9Hd3Y1PPvkEb7/9Nrq7u01tl1UMC6D/GuXYhHMTlAYmjz/+uDB69GjhjDPO0JU4rqmpSfJ9Mm2TTsIlCP6pikOHDg3YX1VVlXDZZZcJgwcPFuLi4oSLL75Y+OUvfyns3buX+bGpce211xqaFt3S0iLcdNNNwpAhQ4SEhATh9ttvFzo7OyXr3H333ZrbpKf3trW1qa4nn96phtb+5FNHu7u7haKiIiEpKUkYMmSIcO211wb8jsGoqqoSzj//fOGss84S0tLShMrKyoDEgGaOS08GVNbnX2laM+GDDz4QrrzySiE2NlY4++yzhfnz54vZe2mOHTsmPPTQQ0JycrIQExMjZGZmKk4RV5rWTNBzTgXBX57g1ltvFeLj44Vhw4YJP/rRj4QdO3YErHfZZZcFndr6r3/9S5g/f75wwQUXCEOHDhWGDx8uTJo0SXjttdck69GJ4y655BIhJiZGuOCCCwKStx0/flwoLS0VRo4cKQwePFiYMmWK0NjYKFx77bWStAaCIAj19fViojb6N1ea1lxdXS384Ac/EPdbU1Mjnkt5O80mjlNi//79wvz584Vzzz1XOPPMM4Xk5GThhhtuEKqqqnRvw2r0XqMc64kSBB0BCBwOh8MROXz4MBITE/HUU09h/vz5IW9v7NixmDBhAv72t78xaB2HE5nwTLccDodjkPfffx+jR4/Gvffe63RTOJwBA49h4XA4HIPk5ORYHgDtdjo7OzU/Hzx4sJg3isNhARcsHA6HwzFMsKD8u+++Gy+99JI9jeEMCLhg4XA4HIfZvXu3000wTLC0BzyxGoc1POiWw+FwOByO6+FBtxwOh8PhcFwPFywcDofD4XBcDxcsHA6Hw+FwXA8XLCHy/vvvY8aMGRg1ahSioqJM1d8QBAG///3vkZ6ejpiYGIwePRq/+c1v2DeWw+FwOJwwhc8SCpGjR48iIyMD//Ef/2G6AN/Pf/5zvPXWW/j973+Piy++GN3d3abraHA4HA6HE4nwWUIMiYqKQl1dHfLy8sRlJ06cwK9//Wv85S9/wcGDBzFhwgQsXbpULMy2fft2XHLJJWhpacH555/vTMM5HA6Hw3E53CVkMffddx8aGxuxcuVK/POf/8TMmTNx8803Y8eOHQD8VYDHjRuHv/3tb/B4PBg7diz+8z//k1tYOBwOh8Oh4ILFQtrb21FTU4PVq1fj6quvRlpaGh566CFcddVVYsn4Xbt24auvvsLq1avx8ssv46WXXsLHH3+MW2+91eHWczgcDofjHngMi4V8+umn6O3tRXp6umT5iRMnkJSUBAA4ffo0Tpw4gZdffllcr7q6Gpdddhm++OIL7ibicDgcDgdcsFjKkSNHEB0djY8//hjR0dGSz4YNGwbAX49j0KBBElEzfvx4AH4LDRcsHA6Hw+FwwWIpEydORG9vLw4cOICrr75acZ0pU6bg3//+N3bu3Im0tDQAQGtrKwBgzJgxtrWVw+FwOBw3w2cJhciRI0fw5ZdfAvALlCeffBLXX389EhMTkZqaijvuuAMbNmxARUUFJk6ciG+++QbvvPMOLrnkEuTk5OD06dPIzMzEsGHD8NRTT+H06dOYP38+4uPj8dZbbzl8dBwOh8PhuAMuWELkH//4B66//vqA5aS0+qlTp1BeXo6XX34Ze/bswfe//31MnjwZjz76KC6++GIAwN69e3H//ffjrbfewtChQzFt2jRUVFQgMTHR7sPhcDgcDseVcMHC4XA4HA7HNO+//z6WLVuGjz/+GPv27QvIR0Yzd+5cvPjii6isrMSDDz5oaD98WjOHw+FwOBzTkIzvzz//vOZ6dXV12LRpE0aNGmVqPzzolsPhcDgcjmmmTZuGadOmaa6zZ88e3H///Vi3bh1ycnJM7YcLFpOcPn0ae/fuRVxcHKKiopxuDofD4XBcjCAIOHz4MEaNGoUzzrDOuXH8+HGcPHky5O0IghAwtsXExCAmJsbwtk6fPo0777wTCxYswEUXXWS6TVywmGTv3r0499xznW4Gh8PhcMKIr7/+GikpKZZs+/jx40hOHYND3xwIeVvDhg3DkSNHJMsWLVqExYsXG97W0qVLMWjQIDzwwAMhtYkLFpPExcUBAMp+5EXsmfpP4/3XZAMA/nSt1CR2/ctt4v+jx3yGPV9diNFjPpOs86drc/Dt48Z/8O898oyp78m56dM21c/eutiD7z3yDO54rwGAv63k/2ffX6e53YIxJabbRM4VALx7lweA9Fya4ZMfnQcAmPHpG/hoxFU4cE4izjkgre104BzpDC6lz3c/Pz+kdhC+98gzGN4dHbAPoxw4JxE//NuXTNpEI79O37z4x5rr0+dl7Pznxfdj52v7v2d8+gYA6bUlv4/IciXodVncD3ag59696dM2DPvRM+L72q8qJZ/ff0120HtQvj4QeG71oPa7KK1npE1m+N4jzwRfCdrXjBzS15jhyImjuGL5reLYYQUnT57EoW8O4PfvN2HwMPP7OXbkMB66JhNff/014uPjxeVmrCsff/wxnn76aXzyyScheyO4YDEJOfGxZw5C7Jln6v7eHxp9/n/I3z7W0m/2AoAP2AsklleJi4+VFevaV6nX31lU+Pw34rHflhpqo5zpzTv9bfxhuvg/AKzNSBPb92tfPbDZh47OTADAj1cdQA8ykeJpwd3pZVjVtlR1+2v3PofZnocBACmeFtR4c1Hoq9fZusGIv8AvUMZvbkONNxdxMUONHqKEIUPjMGJ/F1o8N2MogNu/XI+NyddK1vEcOYn9I/zlFfKba7Ex+VrsH5GEEfu7sH9EEm5vrkVFCOeckFhehUJfPeoyCjB0iHkz7/4RSbh2TSsQ4rlRIn7wYMn7IUP7O8pdlUXi/+NKqgFAci12Vj2IC3/5MnZVFkm+p7Wfn232AfT/NFRbyPVP7ge6Az/G4Lexg8HD4oK29f0fpgN7nxPfy+/1PzT6DN3/8YMHo8abi8HBV9X8Ln0P13hzA9b7dXae+BtZwc82+wL2q4T8+lUjOT0LWzoPh9osW0IIBg+LC0mwEOLj4yWCxQwffPABDhw4gNTUVHFZb28vSktL8dRTT2H37t26t8UFi8vpLitGYnkVusuKdX+HZSdACxTAL1IIRKxoiYuOtgloyksHKlVXkUA6mBpvrnjscgp99bo6IpqmvHRkrmk19J1gEHGixpSSspD3MblPrIzY3xXytpxkXEk1dlUWiaKFXq6H/OZaQ/tLTs/CAtl9YOQe4piDvi/J/4W+erGPoO9v/Q8l1hKsLWJ/mp5lU4siizvvvBM33nijZFl2djbuvPNOFBYWGtoWz8Nikp6eHgwfPhzl+TeFZL0IhVJvjqVPKECgYAGATW++I/4/tXon1helYWp14HqEFE8L6jIKJE/bBGJZodcN5ZhogdNdViyKhg2V5arryUnoig4qEIg1RWnZ/hFJyG+uxaaMiUabH8Dk5q0hC5b9I5KYizU5KZ4W8f+6jAKm2zYqVgD/ILNsbjk6WxvF9+GK0QcWVvuUPxjIRUcw5N+nj2F6806szUjDsrnlWLAidGGvhp4HHrklKNi5lvdZejl84igufGoaDh06FLLVQg0yLj3/yechu4Tm//AC3W0NlvFdztixY/Hggw8azsPCLSwuR95ZkY6kwtdgu1ihhQphfVFawDI5ZAAjT9kEsze+FvLOZkNlOaaUlAVYOyZrWGmCiYMrO98DOhHgJrLCChIJ1hUnWDbXL1CT07NE0cIxjpZI0WPplIsUOUtSzkFokVna6GmjRKSEsbB1ki1btkgyvv/iF78A0J/xnRU8cVwYkFheJb66y4odeVpUEisELesKAGSuaTX1lBwqel0yrE3TrI51cvNWJtux2rpiBiVrmx6MugIjAbutKyTmRw01EUOWd5cVB+2naNeylST3uXHU7nHSViPQ1kSOn+uuuw6CIAS81MTK7t27DVtXAG5hCQuc8r3TQbVAcGGiRUfbBOSjFhV972d7HsaqtqUSK8uqtqUYl1fN5CmHiBU10SL3tZMnsWDipcLXgEb4O/UrO99T/RxASMeRWF6FydgasnVl/4gkpMJdFhqzYsUoW9b5AySTswPjWTiBwkR05fUJbrX7QS5USP9UAWB6Zf/MHCJKlCwrxCVkdd+2YEUZConrvO8aqABM35vBxBzHWrhgcTlOBgrSQbUdbRNC3l5H2wSMK5HGstCzh8aVVCO/uV/UhAKJWZlSUiaJXyECRn5eSSemd99WW7m6y4qBCO0c9QbaKqHXGtbZ2ojk7Czxf9gQ7xUO0AOuWqyRf3kvAGngLHkvv3eUBAlZbpclxUrIOavLKEBd37LMNvdZLQcCXLC4FCcC7eQQodKB0MWKGqEMXpFMqTeHSbBtuGPEvaZmEUhOz7I0sNPt6BEpNPnNtRKhIp+5R5CnOJALlOnNO1XFDPncDkFT4801ZVEh92CdwmdGZh0SF1LPsWOG28CRwgWLS3FKrNCdGwuripz85lrUlVSjCcA4BIqVuowC5oFvLKYX2wkLsUJwY/xKKMhFiTxgsgL+gNt3592GdxHonmCNGx4saJTEidKAq4fusmLR8ri9eSe6ZfclESkAAv66iWC/j5qgC3beiBCR95M8xsU6uGDhKGKFWCHbzUct86mvNHI30EBk/4gkHEzqdboZhghmTanwNaBUtkzJPTF93m2MW6aOW8QK7bZggd7j0opTUVpXvp5dVhYlYRnqOSMBvVvaDgcVKTXeXBw7chgIuII5RuCChWO5VUWJ/GZrRQuBTGsOF1hZV+y0rKwvSkOhr7/DVhMewWJI1OKHyPWpJ+CRdk2IGZojII6CptSbgxpvLhK6osVlZq0oSqi5UJTOp1GLihGBYwa1e32yrx41VNZowPg5k1/X+eQfT/DvFvrq0XPsGNgU6xi4cMEywEksrwIYBdW6BW5dcXZmkBPBrfSTulygRFLwZ403F3Vd0Uiw+ee1Smhcv/wvIccXGXkgMfqQ5EQ6Bo46PA/LAKbUm8NsBpARyP6s6AzoJHFKCePCgXnH9pn+Lgm0bcpLZ9UcR6Gn1QfLwUIPpvKA0EigLqNAYlWxCjpGSB44Kz+XazPSdJ9fJbHzrkn3Hbm3rbq/85truVhxIdzCMgAhpnWnrSpWx7GEI3UZBVgOYL9CPTY95QJoWIgWp4N26cFTaQZQYnkVJs+4QXyv5raIFNFiJWSArvA1iOdMz3kzanWhfw8iiILtJ9T7eVPGRPH6kfc7ZoVJha+B52WxGS5YBhhuESucQEq9OeiQCQRadBBBYmeq/mCiJ/67K1Hoe8iy/ZsdFCJRpBxM6rXMwjISbf21r3wNhs6dUjBtqOtb8cBBzzALRaSobZNjPVywhMj3HnlGUuLercmp6Ih4p02dpBgipx8SSyRHzcIhFxL5zbWoG2H/Oe0ZshGAPdeT0uCgNpuFDr6NFOFCB4ya5WBSL8Z3tat+rhb/FUwA6o1xUar+Ll9mlXWUHLfe/k9PX64mVtzQz0YiPIYlRO54T3pRk5o/pd6cgBfxx5PP7UC+r/zmWketK5ESW8EScl0Y+V2cdtXQ2CU+zT7JujE3iBnM1lHKb67FrsoijESbplgB1KuY6xV9RgWiXWKFRus8kqKyesSKVh/OxYo1cAtLiDz7/jrEnnmm+D5R42Yo9NX70633dbylFqYLp9PqA/1PC6XeHEnOAO4acgdm6jRlrmnlAlAnkeAi6i4rBsqrdLuFDib1orusGJtKyjCFuHv07EMBeWxQuE4Zp2NZCGb6YB674gxcsDCGLgRmN0Sk0BVI5e0gN2diX04CtWyNVmFX/pWBAhEt4XpOldK5Gx0E1XKuqE1zDpVlc8vR2dooxtfY6QbuLitGYV+uHhpSn4u2UIzsAhCixYIUJz3c7O9P9FqrjMa1TG/eibi8Kqxycd4kuUjhQbf2wwVLBGEk66b8KcNu4cLxU+rNQYfJKtjEuuIGEWjGZ0+nc6fFhRNP72TgIdlLAajmB+lsbURdRgESvbmoAZiXkjBCfnMtKnwNlg3yh9cUY21GGmbnVYmFSuXTx61OBuckWoKEixX74YJlANPRNgFNeemSgSbF02KpaHF6YHUbtD/djFsonNETxBkqy+b2B5ESqwixkOj9Li1cSHB05ppWrC9yxh1S483F+K42AH4Xh153jxm0rF+hZLxV4vCaYsABFxNtJSOWZ4474YJlAELSvyPD/54WKCmeFsusLSmeFjSBx1zQ0FaxVdRyOvhRS8i4wbpCYDXF04iVRXzK9fr/jJd/LhMmpd4clPYJF3oZaXtna6PEygL4hQstWswGv7Kiu6w4ZFdPMOQCZBWWimKC/D5WWFSmN+/EIeZblaJ0nYrXkWw5n+3jLrhgGaDQs0zowM0m9FtcrLa2cNShhcx62cyNhK5oV80SIrDMEWLUwiKPJ5ALEsDv7lGyrNBFFeViBeizzCjss9BX75h4sbJGltLUY3p5uAXaygk2U4qGixV3wQXLAISIkKa8dMWBry6jAJlrWiXWFvp7ZmjKS0dKszvKrodbrSF5bFI3gF0AEpOqXGNdcRriqiFCRW4VkYsVuatISaiQz2q8uYqz/4hYsTvwlkCuY5bCJbG8CmvLilXjVMj7YMTl+UX24TXFiMur8rt7FNZRWs7hqMHzsAxQiFVFa1osyUfAwspi5EnFrbME3EYk+trpQFzyfzArhpKJX25J0YpZCSZWglHjzVXNXxKOKB2LFe4fNbGyPSmV+b60MCs2jVrXzjvvClP74fTDLSwuw+qntVJvDjragq9HZgSI/7cBpX1xAmYFjBFrABctAwetwXB6805s0rENIlpot5A48FJiRsktRN4T4ULe00KIDE5q7wEADlha7L5P9FpF6HW0rCxKWB2jM7l5a8AyrSnKSoLY7Sn5F+/5BmcMPWb6+6ePHgEAZGZmIjo6GvPnz8f8+fNZNc80XLC4DKs7PFpsEHeQ3MpCcjrI6W9bA8aVVItuo2AChnYrDWTIDARWv/GmjIkYCb/6JDEN++Bhsm2rCSZSCGsz0pCoc5tqT7zBBhfyvSVkQZ+XVKnwojjLSGF7Fb4GSS4kO7AyloUldrt+NlSWi7/F+K72AJFCHp7mHduHzr5lNd5c5d/N1xAYw6S0rA814fPll5sxXF/zXUNTUxPi4+OdboYIFyxhjFqQodb6xLpiVKwAwLiSauyqLBLFChA4w4gH6apj5RMZGbSIgCHYLWDqMgpsz0tCB7/KLSAEtVlAna2NokAxinwGybK55f2iJwyx2xWjxvTmnVhrUohtT0pFoa8e2w1MTxb7TkbXLU8oZx1RgiAITjciHOnp6cHw4cNRnn+TJDW/WymlsmPSgbar2paKQkQPJPOlEmpBvMTColTWnV5Gd/6bGOaWIB0xmR3gVNAt6cRYWFgSy6sMzXagsVrE6LmW9MRErM1IY5YXgzw9hzqQyH87tZwu4egaIlaJblnQrd3QAb7kuDZUljP57caVVIv9jF2/EZk2f0vDSgwvKcWhQ4css1qQcensNz/AGUOHmd7O6aNH8M2Mqy1tqxm4hWUAQW7Uurx+kTAO+sUK4Bc4aqJFrbYNmR1E9k/EyKaMichvrpW8B5R9zDTbk1IVB2u1Tm0ypNubTOXdkGNVJyaPrQjVZWBWrDiN3N1j18BY6KuXmPDVMtoqXT903It89tGCFWWoUPieUzOHwg2tKdKl3hzU9FlMJjMQK6XeHKAvM7CdkL6mx9a9RiZcsDgE/eRgB3TxQ2LZIO6dcSXVAPQ9GQeDbFMNueVEyZKitEx+njYobJtMbdWDXrFCz5hgFZdgV3yDG6Bzd8z2PCzWpNFLd1mxv2BoCKgF2hLRoiUuyDpqOVw4xqFFinxGkvy+NGtdc3tQLMccXLDYjNyUT5ty7RAvonAB/AMBg0ypWlYXO+kuK0aHyXaoBQbrFRdy14XazAIAIfvKwyHIEgisObMKSzFd5XOlWSTi515j+yUiI3bdHv+C9L5l6VmSzLe0AFGzrCjxrGcejmePloieZQicOs3CkmYnLKZmq1lMyLko9eZIsxFbJCrstJ4GgwsndvA8LDajZcq3cyAiOVaAfleNlmVECy2xIrqhQhBFdgi5UDOWdpcVi+dU7emu0FePQl99SANDuIgVIHDwUrpO1makYW1GmjiNnnUW1ePZo8X/g1lIaIGiZFEhn8u3SV5ygSOfZh1JkN9N/lLDTuFG9230/5zwh1tYXIZTFhcQH2+QwFA9lhS5W4iIFTOBtOGWlRboEy+yZUoxDjSqUyrDGHl8ityCojfluzwfitYTq1w0xK7bIxEYADC2LVW0kKh9jwgQxVlFKqh9Fi7xLGS2VWJ5FTZR78l1ycJixHoGjVIJBjtFIm1ZVXUpcwsLM7iFxUaMPh1PKSnzF2vre1kN/TSitb9VbUslieXUoGf9mKnJEY5iRYtNGROxKWMixne1i//T03GDWV7CyboCGKvGTFK5W01yepYoYJLTs8QXsZIoQZa7OYaFxb2SnJ6F7rJi8VXhawh7EW11BmJaPCv109wdxBYuWFwOGdgAe58cyJNQqTdH0apClinNCpK7luiZQEaIFHO6VqdJxAtdlyacOZjUK/4vnxGk5TZY1bZU14whMwOAGMuigtzSQl70e3k23EhgQ2W55EXPflKDhQBgZW1Ssq7IsVIwqO2T9JuRVK7BLXCXUJggipa+91aamGn/b6k3BymeFpR6/HlcmuCfCg3ZFGby/zj4xQodu2LGujK5eautZnSnnyRJbNOmjImYQok78uScWF4FhMFU5oSuaExWqfar9h6Q1hCSr6Mn062Wq0juEqKhXT/kfUfbBFyeHadoUdFjZVGKf7HTLbQ9KdXx69kqyOxGu6zOoVDoqxcF7pKUc3BLw0qHWxT+cAtLmGLXzSoPzqXFh1KSOCVYJoHTwu0dmBmmlJSJriC3ZCI1Ausg2mDQQuF49miJWAmYPST7Dvn88uw4bFl3mLk1xerrM+9YLDZUllsmVrrLih13ceQ31xo+j05aOsi1Veir58UPGcAtLGHGpoyJYmI1lplTg0EHy+U310qSz8lhMTPIzDFV+Bow2+O+0gCFvvqQRdv4rnZsT0oNEC1uSyBHu4RCESu0e0hP8UM5SpYQpcBa2jIjsbLA/HVkR6yLPJ4p0uK9aMxaaQmFvnqgL1kkKzFnJJiWXA/hWEvIbXDBYhMsAyblGWGVnjisEDGSbdLR/h6gCYGxLID5+JVIgdUsASXrSndZMTZAOlNBXlPH7nNf6KvH9hC+L89+q7f4YbAnf0klZg+A1nbF7xF3ToqnBZ0aBkS520dvYjm5a4h++g9FfE4pKUNi0jnoNr0F90GECkl0aUS0KD0sJXQBCQrxdUb7SlblIjjG4YIljJEPRnRKezusL8TqQlLsK9UKMoPZp0W6uKNbsKNjo6dRJ/YJFjqvjLwNdRnWF0TUa12Z3rxTFCn0d4xYZ+TxK0YtHHrEhlpeFjMziOh7020WsmA4MT2bFit6MtgasezWZRRgXN/6esQLFyvOwgWLxYRSpM4oSk/TJIDTKpMxXQdoJNoCLAFGn/AjybRNrCs13lxLrwF6sFcyedf0dbJ6Onu5yJRbbPQMBpvefEe0isjbQywK3WXFYr6PRPjdPqWkbV5gE73fIG3WO4AsWFGmmOafFhtqokQpZ4sekULOufw7Nd5cSXA1C8Z3tWO7Ddl1rQwglrue6b+A9m8dasZuWrwQAh66uFhxFC5YLKa7rBhwSf4MO2YqjO9qFzvpgewKsgO9hQNFC4yvQfxLoN2JFeRzGjJjrO9tog7RQ7un1AIe5cvpmkEVvgbJflkFqy6bWy5Jza8k4PS6dvRaVIhY2bLuMC7PjuM1ifpQE8/jSqqBEOJVWBNq/AyHLVywWIxbkn1NKSnzP8WCnVlX7dhIbpENleWGjj+SrCtA/8DtZvFmNriZoCUm5LWVAO3p41aJabXZPnT71NaJXbcHydlS64hccMitUEr7vjw7LmDfbr0m7EB+7sk5NROv4gZ4sUV74IJlgEHyfFgtDsj26f24RbzJSfG0ABbFvrByBykN/k5ACtjRuXrkKMZPOZiaXqnOj5pAkYsReQp/JdQGqrFtqSCx6ErbmNy8lbloGd/VrljJnCU13lwk9s24MZKuXy5uiQtnQWWRxFVnRqyE6g5SQ29buFixBy5YLCSxvArb4b6pp4BfPIQiWsyIDzoJmhvPCUcd8nvrvWbcVjtHLhjoXCzHs0cr1hxS+p4RdnvaxdlIkUoo8TKiGAjR5WeVWAmVd37we9yw4yGnmxFRcMFiMbTydpsJ2OggpJdg26On4xLhEmnuIAI5VjX0CD969peTkN9IjxhxU8E/peKFAVWcqanOeralJmQGQowKsazogVhVary5gK9eV60yI7hVrADgYsUCeKZbjmN0lxVjQ2W5awZkliSWV+ly3cjruciFm/zcOOkOCkf0uoL0bmvLusOaYkVtudpnVmQvtiKjrpJACSZa6M/VXCbhej0buY7obOGRyvvvv48ZM2Zg1KhRiIqKwpo1a8TPTp06hYcffhgXX3wxhg4dilGjRuGuu+7C3r17De+HCxYLCRe/ptOxJZF6M5s1l6uJF8B/TZGXHdClAfTipt9Tq/Ah/ZnSAKS0TB48G+z7wSwu4dJHGL2WS7054rHJa5NJrC59f8nLjbzzg9+H9P1wqHsUKkePHkVGRgaef/75gM++++47fPLJJ3jkkUfwySefoLa2Fl988QV+/OMfG94PdwnZCHladptryChaA1ikunYGKqH8nm5wC8ldP2oZb2lRQYofxq7b41+H+v7YtlTJMvozrWXybdGwDr71u1+sPe9qbiF6YCYzZ8iy0r70+Fqofa4k7OxyB8ldO2PbUtGJyHb7GWXatGmYNm2a4mfDhw/H+vXrJcuee+45XHHFFWhvb0dqqn4rI7ewOEA4u0CctsawZn0R++J8rLJhBnsqu375X2wvLhjuyAsdKkGsKGpVnrVcPG7AzoB2IloSy6sCrleW1iOnLDBEFNVlFIiv3Z7IDqSm6enpkbxOnDjBZLuHDh1CVFQUEhISDH2PW1gsIthgsz0p1TUzZQayVWRq9U7UFFn/RGoFna2N/hkWXmA83OWKoTOWOonS7B8iNpTqAdEoWU3IjCIAqhYTpW0DfdOcAdzftjzg3LipPzCKkkBXCq4NVXDQJSgAf04pO6ws8n3UUan83cr/CHdiqGDeHnFUOI1cAOeee65k+aJFi7B48eKQ2nb8+HE8/PDDuO222xAfH2/ou1ywOAC5cUnAXbgkkQpmXXFa+Pg7SRODtguNRmYGe9rkrvR06yZBYwVEJNBiabenHRUrlvtX8OYYsoyEMuNH63tKvy3dBxhNuOgEaiKFdv8AgTWt6Osz1OrJdEZkwpSSMuzTUpIMCQfhEipff/21RFTExMSEtL1Tp05h1qxZEAQBy5cvN/x97hJyCHkisO1Jqa53FWkJEqfFiptwMpDSjoBcvVNa7bSy0EJEzz7l9YGUUArY7WxtxPHs0aruIjXo9dVEE8v730rBo9flKbeoVPga0F1W7LeU9P3Pmg2V5dhVWYRdlUXMt61EJIsVAIiPj5e8QhEsRKx89dVXWL9+vWHrCsAtLI5R483Fwo4DYiDgkpRzJE8fbrW4EGHi9idAp7HDmmHEHM6yY7W6uJ4cLeGjRxSRz4PlUCHuIzHOJTsLyQjMdCuPg9Fde8ijz2rjxntLIlIosVKXUYBdlUXiTBi3ZDcGECBayHm1ywLD6YeIlR07duDdd99FUlKSqe1wC4sFBOtAyVMwPWuBPHkkdEWjxpuLyc1bbbG4mLWMcIuKOm6dnmkGNw6eNOReo0WElttn+eCRqkJPbjUJJiz0WGmUvhMOJJZXiS96ijIgFeP5zbWK7h+WsLoGSaoAYoEZibaIt5DYxZEjR7Bt2zZs27YNANDW1oZt27ahvb0dp06dwq233ootW7bgz3/+M3p7e9HZ2YnOzk6cPHnS0H64hcVBlDpW8rRS4WsQTe9uDcYLB187JzSUhCn9tK3HkmSk3oyVELGgJliUag4FExhG1w8G6ynOpmv9aLh8lB7IlOJJWGHVw9GGynJsADDO4sDdgVAYccuWLbj++uvF97/4xS8AAHfffTcWL16MN954AwBw6aWXSr737rvv4rrrrtO9Hy5YLILkclDqwMgF3NnaKJpU5ZR6c1DR19Fsp2IGWIoXFh0Bt7RI0RvfoYUbZtcEo6NtAgBgtmdCwGcpnhbJ+0JfvWR2hxmCuYUAoBP6MpBqPVUT0aJXeCiJHLcwpaQMk2XnXun6NDqYkt9CTwVut1PqzUGdxuekerQaap/R11ikixUAuO666yAIgurnWp8ZgQsWi0jxtKCzVfkz+gI+mNQb8DkZDIAGiXAhnYRbLS4cY3VWIpX+6zdQvFgNC5eLWTePnsy2dkMqK5M+p8bkdpLTs7Bghd+aSvqhcBYqejE7bXogzCByAi5YHEI0pfsaMK6kGiP2dwEAGl/9JVa1LRXXS07PAvo6C2J2JcX0QnHHcMuINbBwf7glhwkLyFN4KUILRNY6H2bPFUtxobQto9sn67N2C5EpxEpP+sGe/sXfLD1LFCoVZcWOB9SywoggyVzTKhHgbi68GKk4GnS7ePFiREVFSV4XXHCB6vrXXXddwPpRUVHIyenvsGpra3HTTTchKSkJUVFRYhAQzU9/+lOkpaVh8ODBOPvss5Gbm4vPP//cikPUTUG8cvCRVi2UDZXllhRP45jHqqdOOtMmeRn9vhNMrd7pGpM463gTPdvS6y6ik9kRWDxU0NbYUIJiO1sbI86qYkToZq7xm8s72iaIr/zmWk0LCreusMfxWUIXXXQR9u3bJ74+/PBD1XVra2sl67a0tCA6OhozZ84U1zl69CiuuuoqLF26VHU7l112GWpqarB9+3asW7cOgiDgpptuQm9voHvGDHQxL7VOYtnc/s5oxP4udLY24srO9wLWu79tuWiKVYJUPHabcBmowbis3EGRnuTNLpLTs8RquVr3kRXonUVEW2KIMACkfUQomAn6JOeMTFeONLHCAlq4cOzBcZfQoEGDkJycrGvdxMREyfuVK1diyJAhEsFy5513AgB2796tup3i4v4bb+zYsSgvL0dGRgZ2796NtLTQarMoDVhK2UeXDx6JXX3/F8SfxJIL/R1CqTdHfBreVVmEcSXV4v9adJcVi64iwNkChWTf5C93P4VOsOA/FsivGVa/W0fbBKR4WkIqhmjWTdbZ2ojkueWo7TkLja/+0pIYE73bpK0n9Pq0WAGojLAdB5i2U7JtqGdDpkVKDfqshhEmoOl+NlQ62iYgs60/YNHuuK2BhOMWlh07dmDUqFEYN24cbr/9drS36w8ora6uxpw5czB06FDT+z969Chqamrg8XgC6ibYRWdroyRYM5ipUQ9uz5rLcR9EoESawOxsbZS4XJ3OkxO7bk/QfDFWutHUsiHTYjISZgDpQU9GXOIO0gsddM5hi6MWlkmTJuGll17C+eefj3379uHRRx/F1VdfjZaWFsTFxWl+d/PmzWhpaUF1dbWpfb/wwgv45S9/iaNHj+L888/H+vXrcdZZZ6muf+LECUmlyp6eHlP7JZB8K0B/YO0S9Jtva7y5/kBFkymmSYCuG1wzU0rKIm4QVIL17CAngm8jWbTAm4PS1kYgyPhjJIOtmfXGItXQ91iiZV2RJ4CLdLECQLRgs4RbWKzDUcEybdo08f9LLrkEkyZNwpgxY/Daa6+hqEh7oK6ursbFF1+MK664wtS+b7/9dkydOhX79u3D73//e8yaNQsbNmxAbGys4vpLlizBo48+ampfStAD0YIVZf73fR2p0hMg8Wcb9cOTgafUm+NYuv9IG/zCFScTuBG3kJPojeXQKySMCpvk9CzErtuD3Z52oDXQkix3La0ZfBx5x2KxZvBxXdtXgxxzsGOXC5XpzTvFz9ZmhOYqdxOJ5VWo64rWta5R6wrHWhx3CdEkJCQgPT0dX375peZ6R48excqVK4OKGi2GDx+OH/zgB7jmmmvw17/+FZ9//jnq6tRTCC1cuBCHDh0SX19//bXpfStBTMSkBD3A1nRd4WsQU1NbiRssOk5ipSAI1U1Y6KsXhTJJuU6nYNeyEOlZJxKo8ebqim0gYkVrFp983c7WRr9Ygf7ZQyzQCv6X011WjOnNOyViRQ6JcZHHqgHsrYxW4JZZaxzjOB50S3PkyBHs3LlTDJxVY/Xq1Thx4gTuuOMOJvsVBAGCIEhcPnJiYmJCLq0th/iM6dkAalVgY9ftwYeIxyqmLWBLOIiVYNlSQ8VqK0Yowbfke+MyCoAu//uELuk63QrfSyyvQkJXtLhvpWSHeuhom4BSr3MzoPQMVPJ11AJqSYbb49mjJdYSpfXVvq+HUK0rBK1jJzOAplc+o2hJuX75XwD4JwoAkGSGTSyvwgaFZIlE8IRqmVk2t5z57C4rg9edtiJGOo5aWB566CG899572L17NzZu3Ij8/HxER0fjtttuAwDcddddWLhwYcD3qqurkZeXp1jxsbu7G9u2bcNnn30GAPjiiy+wbds2dHZ2AgB27dqFJUuW4OOPP0Z7ezs2btyImTNnYvDgwZg+fbqFRyuF7rQXrCgTX3KWzS3HsrnlOJ49WpJQjjMwsHtwVxKdZLAjHb1TT6hOBMvqsaDQhBKXYkVMy/akVF1ihSC3rMTlVWHLusPYsu6w6jbINUP2s2xuOdZmpGFtRpqmpYbDMYqjgqWjowO33XYbzj//fMyaNQtJSUnYtGkTzj77bABAe3s79u3bJ/nOF198gQ8//FDVHfTGG29g4sSJYjK5OXPmYOLEiVixYgUAIDY2Fh988AGmT5+O8847D7Nnz0ZcXBw2btyIc845x8Kj1Yeb0nqzwG35YawmUgMVaXdUOGX4DFXkEBdOuLE9KRWTm7caEitEZBhBHh9DaqTR2zQLqzw0dsGtK9YTJbCqSjTA6OnpwfDhw3GosgJ/aPSJy7V8uEqdB91pKH13YV8uhth1e3B/2/JQm20Zau6g7UmprhrEtWbd1GUUqMaJ6LV0WOUSkrfbKtEwEm0ApIHSSjkrzAYjkk7drOXIiZIFwYJ1rarGa7ZuWLCUBnRwrdwCQgTGbM/DOLzGfx3H5fX3S0156QHbI9cMTSixcsvmlkuKULK0MhrJv2L0Gg8mWHqOHcPwklIcOnQI8fHxhratFzIu1b8xFkOHmrdHHD16Grk/3m1pW83gqhiWcIXuRPUWFyNTVgt99ajREDnEJH08ezSwIpRW2s/k5q3Y7g0PCwvpxNQ6s3EaxczoDtUqcRZJ9YXCES1RorTcbIK6UMQPsWZOhl+w0Nel0pRlOs6E/E/+Hm42dx1vT0plUpzVqqBk//m1NgmjG2bERSpcsDCG7myMRObLrStkOwuz+2cYVAR8Ux+hPPWb/e6GynJM9ua4yrqihpHOS2ldWszYlcLcjsy3hBpvbkBw7kDCjICgLQRGWNhxAIXUfit05lKa3LxVFCqEUm+O2Aa6LyLXp5K7hiyjLS+H1xRLrCyEkWjDPngkyxK6ogOWAVLrMenv9NwnrGO4usuK/f2obLv0w4CZ+4oIFJI0Tp48jgsYNrhqWnOkQzoN8vRA6nXM9jysum6oECuOWUIROhwOa5zOUmsUcq+bbXew+2h7UqpqnBjtUtF7HwcLktXrJplSUhYwDb67rNhQf2JnPB/piyt8DchvrsXBpF6sL0pDiqdFt9jQynDb0TYBe766kFVzByxcsFiImlDobG3Es555GFdSjXEl1VjVtlQ1XTYrSO4EK4SE1swSDjt4QUT3BjXLXRhELND1gfRgZJAmQbVk22TApfO+KFlWAEhcQNObd5oKjlWypKh9pvd3u/Sn2x2feEAEXndZMb/nXAZ3CVmM3EVEOpAPq3eiCdIU/fL1LWuPLBbCqpvSqu1KYoYGWBVZq2NZJjdvDfjdCn31rpkZlFheBagErzspksW0+22p2O1pF9+Tc6n1m2m5jgp99QEZqpWmKtP7KaUDVRV+ywr0u35I/AptWVGa2qzF5OatYhtJAC4RLLS7m75Ple7ZS3+6HbdHvQ6kS4+JFWYz9warDdSelYSmEQWSAogca+AWFhuhn4bWF6XhYFJvgMXDiYGBWF9YYuWTCb1tOnvrQGMglrVXE6dOW/RIhmqladB6pufqDTKVixWl72nde3a51EaiTTH49tKfbrdl/8EgIm16807M9jyM2Z6HTU+jTm3s4in8bYILFpshT4J03gK6E8lvrhU7HPI3FBNpcnoWkNYupv7X6szCaeAn5m+CXPgpFTWz4/jsGDjp4x5oosVt1yi5d9VSDpD2at13tOtICRKjomRZITEq5KFDjyBh7RbWesgq7Qu87y4rFsWKHtFip1vo8JpiHF5TjHfn3RZgbdJzrpSmejvN0CH/g6FD/hzC638AAJmZmbjwwgvx/PPPO3xEfrhLyGZIh0ObsGnRQlsMSr05wIoy07ODgL4bPw3o7O1L6n/vxQBkTz47Q5t6THIukFgWO4sd0qZvunM5iN6AmQhKbgO3uDqMQruG7JwxxJFCric1ISUGvkLqttHjKqL3oeXyorcndwHJkc9IlE9tjsurUp0VpAXtFprcvFW8Hit8gX3BthfHK27j9qjXxf+tdAfpXX9tRhqmVgf/Xn5zLTqg7TYKV5qamngeFo4Uy/3vRJCkWZu10w1VmeUuA/ksBXn8Dic4Fb4Gceq2GyH3j9NxLEqwshQES1wXTKjohSSLI39pIUPIXNNqyqpww46H/H8drCell0iqTh1JcMHiEHQHZFUnG/D0pmFJMZvoyk0oxTfIl8mfbA8m9UrOf7haKuywshxM6kVCV7Sl+zCLG8UKDcneSmDh2tJrVZEjT8c/paQMqCxXHaTXZqQBbUuxbG65Zk0hwqaMiRiJNn/GXdr6oxPWxQ7NoJRqQonLs+OwfDAPuLULHsPiIPI4DKvQE9AX7mLFKOS8k6mLZAbXwaRe5DfXhkVsiN1PqW4QK0aCRt2Qs4XEjmmht530783yt6dduuSlxIIVZbg8Ow6XZ8dh3rF9mHdsX0Cw6eTmrWJpgE0ZE1XbSQu2Um+OpXWDrMwJ1dnayANubYRbWByk1MTThxHEbWt0mHUZBcg/8lTIcSzhSI03F9Mrn8HajDRprIvYwfVbX8LV8kIzYn8X9o8IrHAeTii59YykzLcTWqhoPRDobackvb4F/YaWS5eImCk4Lll/FYDSZn8/NoWafk1EywZqG3TcVYD4sigVPyey4ILFZuSmaztmPSygAnfl+/NbEiJHrBgRgd1lxZI6KiIzbgDgN4VvJ0m1+rZJP605PSACPPg2FKx0I9V4c7GEXtAKSWC93Kqipx1mXUAs2FBZHmB5Ie83AaJYCXbvyT+3+qENACb33c960RtwzNPt2w93CdkM3THpcQlZkR9FaZ9uD4KzCq3ZA/JsoNObd4pTNOWuJDop4EAoSxAJnbWVglOeuZoWKMHESjjfi3rqHtHQxxpsercZrL4Xa7y5EXEvhAvcwmIj8iylot+2L8hMSZzUZRSgFOw7sXDuFLUg59iq41OzxgDApjff6X9qNyg0K/qmZZvJ2uuElSVY9k8lSMce6m8TTpWr6TQGWp/TuDWTs5KVhTVWFDs0gpHp3BW+BsDX0Ge9Dmw3+R3N3CscZbhgsZHZnofR0ab8dKrWAdsZ/BmpIsYO1makIVHjc6VOa32Rf1aGmHsniNCpkLmlnBzI1hfpy1FhFeEkWoDAXEt6IAOiVUwpKTOcikCPaDGzXWJZYfmwkVheZdgdxJL++9X/u9/SsNKxtkQKXLDYzOXZcQCysGBFGRYoJJKikUfSA1xU6MHIOVKMYdHxHQABRePkSbkIak9YZMBXSzpFCxqAuh7IU3t5leLgZ4eVpdBX73iyrHATLYB+sWJVYC2NG/ImEejfUv6bhnufRx4snj11yuGWhD9csDBAb/Ce37LSHw1PXELLAMUo+dLWRnS0TcBV6BFrlNA3c7jfyFYS7EnN7JMcLVDkeSvU/OUpnhZTZuFggkbrmttVWSS2qdBX75+xEg90yix2dgXpWuXnDyfR4oYgbTfDOgjaSgvk+qI0wPl0MQMOLlgYYOQmE6u46lzPb5GJQzJGY8u6w5KOn1tdnEMuTkjn6LZBqbusGJtKyrCmbzqqvPLvSLRhQ2W5ZNCfUlKG7Umpkg5fnjSuLsNcsiwrrlUiusIhd44cpwWXGfeN3u0C7rLicMIfLlgcotSbg2fX7QEAHM8ejdqes1AQfxKdrY2qT720O4lsg/7LhUs/VruFCIVB3DPhwJSSMmySLRvf1S7JodFdVoxC+cDq8f9xMqiw1JuDur7/6zIKwk60WClW5LEmTogHtXgXpbZYUTqDtoKavceVKPTVo8PzMNYXpbkmKHogwAWLgxzPHi15T6wqpNMNllBJKacBjdLMhIF0c2m5feTLjYoWuThxk1hhJVzlgw0RNZObt0rM9+uL0hSLesqxIy6DFvt6xYv8fNmda0fpPi301YdU9BTQJ1BIEK3dYkZNyNQoVKRmhVrpAXLfGy34CPS5bVXS+HMxwx4uWByks7URG5OvRUH8yZC3tWxuOcYNHinppJXyQJidOhuOmI1RoSvYcrRRyy+iJFwKffViFmGlazCgUKUOtGJwzFhc5PdHBfrjgKyGnkkUTNyxsp5YPU05HCD3+bLsOF21kgB9VkVazKwvSsPehwvNN5IDAIgSBEFwuhHhSE9PD4YPH45DlRWIHzw4pG2pPZWObUsNsMJoEdvnYrq/bblYqEwr2JF0jgNFwMihBycy44f+S1AKrjU6gFnhNlH7beVCjfWgtF32FCy/frUSoxkRkWoB5vT5DxY0TAQLq3wmRFTpsSjR6BVP9Pa0agw5fc9aKXRIWn+Ck65u+hrsaJvQ55aHbmFDc/jEUVz41DQcOnQI8fHxzNpIQ8alt99+G0OHDjW9naNHj+LGG2+0tK1m4BYWF6DU4SWnZyG2bY/4nogRINCVFLB8hT8d/yoAaPMvkiejIvskSc7clKDKCWixIl/GCY1QZn8oDVbdZcX9pSZkn6kJGFbXNtkOiVkiVpFgx5ffXCtZr6NtgqLg1Hue3JCLZyAgvf4aAPirbjs9pX+gwlPzuxR5iurj2aPFV6gU+urFG5FOZmUkjXUkpJ+XH7PSlGUlt5DWoOKGCsFuxYpzIy+iRyptWx18211WLJZjUHvgkFdppsUK+atleVPaLhFJ5FXqzWESuMtdQ/pYknIOv8cdhLuETMLSJSQnOT0Lna2NQcvSA1I3kBb0TCK1YFS5/14p3qW0zxoDhOfTnZ7OPdjxBXMJKQ1idruE6EBKloORfAo0IBW9WsudMu1bbY3Q4yIM5fenf2d5AUUlV5zR45QH3eoNwrVK5Min1LuJxPIq0xmeuUsodLhLyIUQ64oe0XI8ezRi1+3Bsrnl4nRnNciAoTZwyDsJ8p4WLnSHGeosBjsx8hQqDgJ93wnXJyoy8MgHH9YDjdpgTQZVMy4hlsHhVg5+YkkFWJcPhoidFE+LYnwL6+uT505Rxw0ZngcyXLA4iJ5APLXqpXIhE7tuD571zFNcd7enPaSnW7rDF/+nTNFui38xIk70DKZGB1snpzjr+Z1DGZASy6vEAToYRmvnhBPywF8lNxRrqxq9Pfqc0rOLSNsIeu5Lp6Y2qyHPAeQWEsur0OFg/SwOj2FxjFBTone2NmL54JHobG1kFttiFqPxL25C3tkbxc3J+twyAJnBzSJHzywlq5PpkfiXYPux8r608voK1/6EYy1csDgEC7Mx2UZna6OqJcYq5AN1uIsWs7i1jo1Vg4lZS5pRUehWIVjqzZFcL7sqi8S6TQS7M/92tE2QBOLKUbovp5SUSV7yZU7jJostwc0i2mnef/99zJgxA6NGjUJUVBTWrFkj+VwQBPz3f/83Ro4cicGDB+PGG2/Ejh07DO+HCxYHqMsosCSN+G5Pe8Cr+qYHmO6DpsLXIL4AiLMWwlW4mEVPcHSkoFeghbM7KLG8SvEaVjp2epaOHouHVdD7VhMtWr+d26xxbhBNcpwsQeF2jh49ioyMDDz//POKn//ud7/DM888gxUrVuCjjz7C0KFDkZ2djePHjxvaDxcsDmJHpdwbdjxk+T4A6RMxsbaEi3AJJjiCfa7HusW6WrFV1Y9ZoSf5mdsh13A4Xcu0aLFDLLpN6HCcYdq0aSgvL0d+fn7AZ4Ig4KmnnkJZWRlyc3NxySWX4OWXX8bevXsDLDHB4EG3DpDfXGuLWCHYZV6nK8/SRQHdaN6lIYJDLQDXbncbjZIwqfA1AG3atZKsguxPnoiQoDZIuv0aoKFnxwHBrURue/Kmk9LR059rvLkohf/32lBW7IriiFq4KRB4oNLT0yN5HxMTg5iYGEPbaGtrQ2dnJ2688UZx2fDhwzFp0iQ0NjZizpw5urfF87CYxEweFrlIsauyrBPxAEq5OuwatNwaV6KE22ZYWYGZKcpOiDH5/gFlgUZwm1BRQi54JWkJGJ9fK9w4bknTX+rNCfn3tjMPy/6/bkT8kGHmt/PdEYy49cqA5YsWLcLixYs1vxsVFYW6ujrk5eUBADZu3IgpU6Zg7969GDlypLjerFmzEBUVhVWrVuluF7ewcCxB3tHbmbcllFTwdlLha7C8erEbMCvInBItegUvqVLtZuGiVgKAWFtYnl8lawgLEePWAOyBwNdffy0RV0atK6zhgsVmiFXFqsBbOU7f7E7v3yrMiCKSwZh8fyCIFbMQ96KdokUuVGgXJ72MkNhnrUjxtKDGm2s6A6rVyBPP0RWhE6nr2IrzHEoV6Q2V5ZgcRtbSSCQ+Pj5ka1BycjIAYP/+/RILy/79+3HppZca2hYPurURWpwoJZoi9UeU6pCYIVLFghsIRaxw9GFnwK7aDCC6LfL7qbusWLIsxdOC9UWBtafcgtosInKeS705WDbXHTEjROi4oQ9LLK9ytRXN7Xg8HiQnJ+Odd94Rl/X09OCjjz5CVpaxcY4LFpdBagPRgxsrAeMG7IgvUXJBWHX+tDpUtc8qfA0RH7dCY3aGjZ0xT8F+R622kM9rKItLOMziUqpD1NnaGFYxYHYQDu5lpzly5Ai2bduGbdu2AfAH2m7btg3t7e2IiorCgw8+iPLycrzxxhv49NNPcdddd2HUqFFinIteeNCtSawsfqgGGXT1PKm74cnESdzW6Q7k34NlXSBW6Lk+WP5mdAFGuqQFAEyt3hlgmVFzLzXlpSNzTSuTNqkVVSTvw+E3s+O+YhFwC4Rn0K3etv7jH//A9ddfH7D87rvvxksvvQRBELBo0SJUVVXh4MGDuOqqq/DCCy8gPT3dULu4YDGJk4Ildt0efIj4oE9xA3mQdItgoatjy2eeDBRCFSys41iMxqpYgd5BcH1RmiheaFHDIl5GjxVooF2rckKpziwnkgWLXXCXUJjR2dqI3Z52XJ4dF3RdOgsnxxnI+acH3XBJQuYWWA2a9P1Ab7PUmyPGqNCZm90APVhOrd4pvmjMxs3oycw70PsP7g5yF1yw2IzZWIpQYjDCodMpvfdi5eUWpPon59LuLKzypHoc+9C6B8I9poi4lKwSLkr3IBfdHCfg05ptghYcajNGSKdxFXqw29Me8Dn5jhnx4nQiLi2IWCEzFDp7V6HiD5+Knxf66gGG7Sfn0YxwUHIfcNyL2m8Vab8h7Tayanq1mmgJZ7GnB+I64zOFnIcLFhdBbozdCp/RAsfs9Fg3xlDQlpXOXmnGQ/mg4ob2L5tbjmV9/5v5Hdx07u3CiQEtmCBxY1ApC2ixQiwuegUMPSDL41voFP8B2BzAbCdaIoWcIzfn4Ik0uEvIJjpbG8UBzul8HOFgzp3teVj1Mydjc+jf0SgVvga/4HFJrotIRc+1EYliRQ6JdyHuIiMuI6WBOhRXJulzwqmQZDCIK21q9c6wmMoeCXALi82QwU4ryy1xOySnZ2HLusMAgMuz45gJHeJioffnBPK4leTo2eL/nZ7gx0qCJe0cfEKNJSrt+w3tKlPgNE5mqlUiXJ/0Q4F2F4XqMjJb9kLsc0hWXdMtsI9lc8sxu6//DYaadYq7kdjCBYvNiAPesX3IVKnzsWxuOUrJk7wHGNuWCiD4rCCzOOFqUQqyJYKswtcQ1Mxc4WtA6b0XS8SXZBaORYGtS1LOYR406+b4onBAnpGWCFi15QOZ7rJiEMcrsXSoCRilQZjVtR8O13xnayM6YFxwqImU0WM+C7VJAx7uEnIhckvKbk+7424kOyAdmJY7iKA2q4hVO+gXy9lEdFFI2rUVaUGgdiE/b91lxUgsr5IkZwv3WUBWQc6JU+6MgXbN7/nqQqebEPbwxHEmCTVxnFoVVT2QWUZGMt/qrWVjS+ZIFbGRHD0bW9YdtrzzlFeSVvrMCHo7Xtb7NQtxpRGsHMyteJI2er7dCKvsqUZYX5Sm+VsnlleJFhSltll5X7rxt2KZNA7gieNYwC0sDhHKzW/G2qL3O/Inf7sgYiXoegxqArE+Pr2drdo+7RYrNOGUE4a2nADaeXTszrETCZBijhW+hgEfQBopgcGRBo9hCQO0cn9Y7SpiHd+iFGhLT2duyktHSrN6Z+lG15gR8eM2M3iNNxfQ8dtqtVsuDqyw2NBP/4RCX73ivcHFSujQdY4IoViFw41CXz0PmHUhXLA4jHy2kLwDTk7PQmxbKp5tA45nj2aSj0UvdDuIG4EMEiwhs4Oa8tJVZ04RSBtqvLko/MEo4MXlAZ/JqcsoAADMO7ZP85y50SztJtQ68ACzuSQGKbQBTrwGVSxB8pIH4WQxcjNEdK5C/3kl03itEC3hEITLcR7uEnIY+QAtf1qMXbcHgF+sOA0ZDEKyEuxMVVzc2drYfy7SArP8yttQ6KuXiBUt8ptrkd9ca4nAc5vFxCrstlrI3T/J6VmKQdD0IMcDa62BDs6Vw/K6GCj3Esc83MLiAuRWFf80Zj9EqBDhkpwdPHhWb4Ct2ncBv4DQChI1PWVURYxIntxURA3S2tU/M7iu3BpjZbCt0r6dHlzJses9brPBh3pdTgQ1i0pnayNq+p70K8qKVfN40BY4Djv6rVi5KPT1C5dInOJvZVoETmhwC4sL0Br4SGbV3Z523VaWUCwJZH90pxGsgm2hr9704L1gRRm2rDuMprx0fV/46Tx96wURNvKO1mgcSiQ9DU4pKXO6CRKLivxaU7OoKEECRznW0F1WzMUgxzG4YHEhuz3tigIllLTwLAgmXHRXVqbExGzPw1jVttTvDlKyvpBlWhYTDReSEfQIERZChcdZSJHHnqhN+3baKsXxMxBES6QfX7jCXUIuxilxEuwJVSvIUSnzLNA3O2hnKpKjs9CJRv//6VnYgsP+AUpNkJBlO1P967y9EJCXROlbh2UWTtbQbj/HSiGoHNeGSutqG2mJjGABteJ5MnG+uLixlu6yYl1FD8MVXszQnXALSxjBIgdJMIwMpsT8buppJM2fvVdtxoFqO3am9r9Yw8hSowTrgofyoNRwgi6AV5dRIM7iomEh6nguDWthKbzpzNJOwy2g7oULFguxQ2C4YZ9qcQMSF0ufRQWA1M1DQ71fNrdcuj79HfJiJVzItq0QQRZBOlV6UH7WozO+xwHoar2Fvnqx/bsqi7Crskhcj6TSZwG3skjh54MT7nCXkIWwduno3d7YttSAnC20kNHaTihuC7VZReS9uN8+l05y9Gx0pvUljVMQCwtWlPnNzvLP9MS1GCHYNtT2IxdcGtthfS0QFxNxwdV4c3G/ywakFE8LSj2U26evWq+8nhIQmvsnGG6YeRKpaCW1dBul3pyAvFdqM/aI5Tdck8d1fXgIJ2P+bfr7h08cBQBkZmYiOjoa8+fPx/z581k1zzRcsEQYna2NGIvAgTN23Z4AEaOFpZ1838DeicbAeBRZG/RsJ2RYCR+dEGsDyydeIlzcMDCvL/L/qGT6q3xQ41WUOU5AXI+0CzKhC+hWWJeexk0z0GJbmpqaXFVLiAsWxrjliaOztVGSa2S3px1o1RejkZyehdh1e7Bbdhx6BkPDOQyIUJCJBiKsary5WNhxIFBo2SEw1NxOtGWFbr8O4VPhawD6rpEaKmiZxAGFOnjrufboDnsc9b884zJNiqdFNVZpavVOUaQA+qeM2zkTg1tZ3I3S76M3c7Ge37XUm4M6nW3RSkZIiojQrliS92egiRkncDSGZfHixYiKipK8LrjgAtX1r7vuuoD1o6KikJPT3yHW1tbipptuQlJSEqKiorBt2zbJNrq7u3H//ffj/PPPx+DBg5GamooHHngAhw4dYnJMTokV4vJJTs+STIeu8eYaGhiIWDmePRrJ6VkSV5Kewoh0B6MWUKkINdDT+yz86lmpWLEwMFZxH0r7Uwv8NSCiSKdIfhsWgX5Kv7ORmCbye9VlFAQErJJpxeRFk+JpEeNS9CRtM3pNhgIPvA1f9N4TTvS59L1A7uX1RWlI8bRIxDuHLY5bWC666CK8/fbb4vtBg9SbVFtbi5MnT4rvu7q6kJGRgZkzZ4rLjh49iquuugqzZs3CvffeG7CNvXv3Yu/evfj973+PCy+8EF999RXmzp2LvXv34q9//Sujo7IXIjLGIhXoy7/GakAQt4s+K40GxLpCbuBxesUKBT3Aiscwpv8pxtYIfrW4FZPWHfmTIBn4KyANSjVrZVE6N1ZNjSdtVBIEWr9RJOS3IMcsP05WVrKBCrGyGBUgLC1nZu8/yb3szcX6ojRuebEAxwXLoEGDkJycrGvdxMREyfuVK1diyJAhEsFy5513AgB2796tuI0JEybg9ddfF9+npaXhN7/5De644w78+9//1hRMLKFT4MuXGx1kOlsbAY/su61Mmimx1oxd538vdxeJnUxfB05mqxw/tg8AsMvXgHEl1QACaycpHYvEwkINCrrFitxlozQLiAiPvr/0QFroq5cIE4lQUhMr8m0rLddArZN0g3tRjmTA7jsvdTLXkpq4VOrEm0qqAwIhlSw1bhICWsfmRlI8LUCbNdtm6QY3sp1QSpCoweIao8ULfA2iG2nwf1UAT4W8+QGN49Oad+zYgVGjRmHcuHG4/fbb0d6u3+RfXV2NOXPmYOjQoSG14dChQ4iPj9cUKydOnEBPT4/kFQpqN1qoafVZQWoX0dDiJTk9SzGCvsLXIGbqJSybW455x/Zh3rF9up6GyHGYsqYoWUCCJaTr2xc93Zb+jmo7lFxHdNwLgzgbt8VdqFkXSIFJWqwoDd4dbRMCnjgz17SKlYDJ5/L1SPmHUm8O85w2RpEfe4WvwZF0AkZw02wXVueKPNywFPVWuhC/ffwBy7Y9UHDUwjJp0iS89NJLOP/887Fv3z48+uijuPrqq9HS0oK4uDjN727evBktLS2orq4OqQ3/+te/8Pjjj6O4WFtZL1myBI8++mjA8vPOuwIH9nxqat96BIbSzW2VmX9sm9+lRKwoNEoC5vLsOABZiG1LRSn8A/ayueVYprGP2Z6HAZgrT6/LJUSLBJWAXkDh6UyPq0fP9GYLgoG1ilCqIT9XRt1phb56scDgs555/QJUVjRRqU10Re1QB0oiWjrQv50l3nMUZ3YEQ20wYhHoXEqLbBcG+DblpQOV1m3fiJWFZf8lr3vGiWwctbBMmzYNM2fOxCWXXILs7GysXbsWBw8exGuvvRb0u9XV1bj44otxxRVXmN5/T08PcnJycOGFF2Lx4sWa6y5cuBCHDh0SX19//bX4GV1d2Q7kwbCstklbUOR1jOTvlQQM4O9AYtftkXxOd1Cr2paabqM44NKJ5PSgICIUO02t7Qbbn57ZQYzQ2hYJmk3oipYE0dLvg3EwqRc13lwxI+1uT7tkn2QbTrmrjAgMPevSmXeDPWG7JYhXd7HQPjLXMPIRczgO4ngMC01CQgLS09Px5Zdfaq539OhRrFy5Eo899pjpfR0+fBg333wz4uLiUFdXhzPPPFNz/ZiYGMTExJjenxnsNjOT2UFq7wFl4XJ/23LAk6O6jnymkZyOtgm4Cj34EPGqqfoNoTcw1kiGWy23kk2Qp1grhYJa/Am9z/zmWsV6UWQ9K4Oj27OSmMRidJcVB4gPvaKF1fHJZ5PQgeXy2WM13lwkdEWL6x5M6pVMNZfEBOWlBwiU9UVpgPNFuV2Pm+KkOIG4SrAcOXIEO3fuFANn1Vi9ejVOnDiBO+64w9R+enp6kJ2djZiYGLzxxhuIjY01tR3C8ezRunOcsEQpcFdvRls5na2NSM7OklhG9IiV49mjUdoqHUDV2gPICiJ6c/yfpwOx63pwFXqANh0zkoIJBb15U+TfMWK1ocUOFbxrNVbk+ZEHQhdSgbRKQdJaFp4KXwMSLQo8NWpVUGLyjBuwNsMvFNQGp+nN/YP/2ow0yftNb74DIPQZQSQfjwRvjj9+BxMCXGHyuJ+mvHRJnA+ZlQIAKc0tgKd/XSKCKmAtVuWgYhFcqzu9AsfVOOoSeuihh/Dee+9h9+7d2LhxI/Lz8xEdHY3bbrsNAHDXXXdh4cKFAd+rrq5GXl4ekpKSAj7r7u7Gtm3b8NlnnwEAvvjiC2zbtg2dnZ0A/GLlpptuwtGjR1FdXY2enh50dnais7MTvb29po7D7M2kVfBLr3VFvm8iOMy0qbO1Ebs97aIwUXP7aO1f7fPO1kbx/2VzyzUDJ49nj7bOzSavQ6QW8+Ji1ASDmU5Za9aW/DO9xemssq6wcGsQsaIXWqwAfoEyecYNmDzjhpDbwpKp1TtVZyiFezE/rT6Gx68MLBwVLB0dHbjttttw/vnnY9asWUhKSsKmTZtw9tlnAwDa29uxb98+yXe++OILfPjhhygqKlLaJN544w1MnDhRTCY3Z84cTJw4EStWrAAAfPLJJ/joo4/w6aef4rzzzsPIkSPFFx2Xopcvv9xs+DtKyAcD+ialY0LUYkOAfpGjR2hoQYQLsXLIY1LIsmB5WZTaSQsVkj+ms7UxwBUF+GODyCskgmWrVVpfDaPxMxYh76j1ihV6Ng8tSOjvk4GP/DVbRdeKmSlmREuwtk9v3ikKE7lAUcKo6LECpfNAZldxOJGKoy6hlStXan7+j3/8I2DZ+eefD0EQVL9zzz334J577lH9/LrrrtP8vlHevPjHuP3L9Ya/p1bdGAi0rqi5YuTErtuDyrzL/W+a2QyqJMcLACRDFpRLucFo99TYtlTdYoZsh96PkkAxsk0RteKEZsWK1uca33P6KfBgUq/iU7akXb4GMS6FxFB0lxWjprzKkoKEZlCKzTCKVmIwLbFCixQ9osZJOtomoCkvPWjOIyuwuzQJL7kwsHA8D0u4M+PTN0x9T62isRy5FeV49mhFsUKerOhcGKwhbSFWEa22GnVp0e01LEzUUHL3GMUF1hQl9M5WyW+uDRArZLYQSeYH9F9/Nd5cMQ2/Gwdms3EsFb4GRdEW6jG6adYQfW4y17QqWs0iETcmV+RYg6uCbgcaem40tYy48nVi2/xWl7Hr/MuOdxxAIZNWSqEtIQHL+9jtaZdYYwD/gKEUt0IC6uSDCREtxNryIUxUDFULhJVbWtTEjDwZnAlqvLnMLRR0VmE5atYUwC9UdlUWie0hBRgBoKJPoEyufIZpW1lCrCu7GG5THlSrhtI6SjONWCIXIFoofZ65phUdmCDWerI66JbgRAFYs5aW/OZa284LJ3S4YHERY9tS/S6dY/uCryyDWF1I0rfYdXvEWT/MLBYhoBVkG0yUHc8ejRQjQcRaVZZDtbrYNBtIDbVq2Grmf7nbhx5IiNtHC7OzYNwYS8HCykAEjhVxLPKSBaxyp3S0+UVLpLtP6Gs7ko9zIMNdQi5it6cd847tUwyaNZKTxcgsH1bIk9ktHzzS1DaU3hs+DjLNWC2Gxch2QoR1XgcjMz70un3ooFO3w6ISbihWESPBuW5CrQp3pEKudZK3SB5sTged0+dkoJyfcCVKYBmBOoDo6enB8OHDcaiyAvGDBwd8HmrugLFtqTiePVp1GzXeXCzsOKD42ZZ1h/vS5gdaLcwEr8pzp5iFHJMZQsrDEKpVhGGF5lBRO/9kP8SSJT9ftDXFyGBrxpKQWF5lWYXa9UVpIYlAWrQpbceoECF5WVgJU3/pCuugg3GttkKEc2yJFZW3j586hbK6t8TadVZAxqXPHvxfxMWYr7F3+MRRXPjUNEvbagZuYbGAjrYJWLCiLKRMtbs97eKMGwI93bTQVy8ZlOj/r0KPqlXCDe4h21GzuBjB6PfT2pm4IBLLq8SnRC2xQj6n890A/muFDM5GLSluEysAJNlerWBtRpp43OR/tfOwNiM08eQEpNBkuGG3iyfcc9dEKjyGxQKuQg+Ozy0X40hCsQ7QAoMuKkdQFC0e9SylRtGyrhi1Ihm1rqhtm7bU6N5/KBYWOguuXjfTzlR0/8H4YBZQDVml46QDG+W/S4WvQWLativJWWJ5lb/gIawbEA8mmUvuqBcSn6JHrFkVy2IHHW0TMK6kwDJri1qsVTjh1kKWAxluYbEAIjKUXDpqcRpakKdkI0/sesWK1jb13KgdbRPQ0TZB13GQp3+5FUDJGqQkRGq8udiYfG3Q/agSioVFKYiXMWTAN/N0R+JSyG/WXVYsPv2H66BqBcGuaS1rSrB1wg166nOo7htSQJJY+lhbKJx0L5V6c3hsi0vggsUi5IMyvVzrvRJkEJN3AiyqNofasVyeHYfLs+OwZd1hw20JJlrkFPrqURB/UhSChgN7WQoOpW0Rt5EBYaSnkydCRK2IJAmgVYIWLZEy0LKg0FcfdBCi3WdKrjT6fIbrgEZcREbLOhCBQq5foD/TLv2KFLiLSJve3l488sgj8Hg8GDx4MNLS0vD4448zTdIKcJdQ2EIGry3rDosm+Muz41QFEHHfKLlx9ATV0suVhMlV6AEQp9peefVZgiSvi84CkssHjwxweZE0/5bH6GhNi9YooCgf0IK5fGhIBeROKgOtUcj+11qYEI7OkKt0vKEOYE156Sj0hZ43g7jTCn31Yh4a+TmVnyMiTshyWqxYnY+FNUoZgzPXtAIl1WLSSXJM9P1KRE3mmlaAilOiizVGMvJp4cF+c7rqNgDc0rASZXVvWdY+J1m6dCmWL1+OP/7xj7jooouwZcsWFBYWYvjw4XjggQeY7YcLljAmdt0eXJ49GlvWHRbfKyV1k6NV0VmPG4jsj8xEAgLdX3JhZNbNIf8u2ab8iVAsV9AnevQk3LMEmYgJiEkxSaGvXrnCr07IgJxYXmWJaJHHLMgFQAWAxPJcyeezPQ8jxdOiS8iwqNRMQwLXyaAiT9kf6dYoNdFSl1eAQl8t4M1BXVe0RKRkthnLC9OUl+6vHB1BJJZX4dHqrVhUNFHXPU2vs/2rC61smqNs3LgRubm5Yg2/sWPH4i9/+Qs2b2ZTa4/ABUuYIlomWttFkbI7yHfMuo/kVhfiAlLaPl2dWb5P+eyVYDe80udkH/IYHXl2XbIvEoDqhElXnpFWKRBanhVUbkEhbWcV+EcCCWvKpdM2QxUw5PxqWX/kn61qWwq0AYB6XS1yftYnpWFhxwHsYnQeusuK+0RU/7WhZm2hiXQhQ7LjkunPdRkFzBLYyVGy7JrNkku+p6dfCYVCXz0KPQB8/ZZU/ZbDo5a0yQ1ceeWVqKqqQmtrK9LT09Hc3IwPP/wQTz75JNP98DwsJgmWh8UtBBMpC1aUaX6u1nmobVfJomHW2iHvfIxuh7iJ7m9b7ljQnvwYlDpk2mzcXVaMKSX9v8nk5q2m3UBy5MJNvl81N4je7bJqZ7B9sd6H0ey/SrBql9V5WPRCLFqhipYUj7qFhQh4sWQE3J+7JRS3ph25TVjnYfn6668lbY2JiUFMTEzA+qdPn8avfvUr/O53v0N0dDR6e3vxm9/8BgsXLjTdBiW4hSVEzjvvCpwxdJj9rgcGdLY2mo4HCGZBUVo3GLQLSM+TEllHKz4HcK4TrMvoM6/3oWYlGd9Fxb2UBApIEmsR6oAoP5+0jz0UV5Ee6wpLWKdgZ/FU7oZ8LHK3mVxk0G6gYC422hI479g+bAGbatlK+8hvrhUrhbuNcA0crv2qErFnnmn6+8dPnQIAnHvuuZLlixYtwuLFiwPWf+211/DnP/8Zr776Ki666CJs27YNDz74IEaNGoW7777bdDvkcAuLSYiSLc+/Sbww1LKMugG5sNDzJKk00JNEdiQPyoIVZcwFgdEBRH5syelZYrbf5YNHqj69scrgK0fNrL0pY6Kh7WxPSg04D6FYAPQIQKDf2rLpzXd07cvOGjWl3hzDM1oA5fwt8mOjLUX0OrT1RE9wrdJ2g62jtH/RVUW1R8lCJt8WOUcsxQWxlBjZLp1V1wpCKbKo1cdYJVLstLDQ45IZSFZevRaWc889F//1X/+F+fPni8vKy8vxpz/9CZ9//rnpdsjhFhaGEPdKBfzixU3ChQzkoZCcngXIHsyWzS3HMmofLDD6tKs0VbwurwDLAeyqLAo68ymUwZZ8l96H3MUAyKwoOlE7D1a4RehBkVhbEnV8z+4EYWbECqCSIVdt5hakIkDtf73o/Q6JqyGB1aL1k7o+JRZRjeuWddwJEQf5zbW6EgOyDpJWIpSHDD5NWR/x8fG6xNV3332HM86QZkmJjo7G6dOnmbaH52GxiNh1e0IWCKyhc8O4wYRtB07GrmzKmIjxXe2mxMr2JOlsI/lTvxnoxHJKyIN9g/GsZ16ARSKcSOiKlrzUpt5z/JDrRysuhcbqrMRWEK4uIKeZMWMGfvOb36ChoQG7d+9GXV0dnnzySeTn5zPdD3cJmUSP6c1tVhaCHouC0kBf4WsQ3V5KWHGsoRaRZIWSJUUJo24fJTZUlvenuac60Ka8dHEQYCU4ycwKo0G3rONI9EJXn7aCg0m9omAJ15Tspd4c5gPvqralActoNyOxfB1M6kVCV7TkPIYTVgqWcHQJ6W3r4cOH8cgjj6Curg4HDhzAqFGjcNttt+G///u/cdZZZ5luhxzuEgqRF8f8J86IGSImLKNnspTqGGitnoYXCh1tEyTJ6LTEilUsWFGGCjg/e4DsX63aNRncpjAQLFNKyjBZ4ZqgzfwplNCwClIrxwoXlBkSy6uALmv3QbuO3HLcboW4sIiryG2EEuPCMUZcXByeeuopPPXUU5buhwuWEGkZ87VkWrNRa4Bj+UH6kFsO5Dc5nUl3S9thSbI4AknaJneBKdVRcoO1BJAep5GO7f625ahoU/5sisIMn1DQetrraOvLLto3DXZ9kbnKwSQZXbDZQU5ZVJwgXF1cTmHmerBLSHDRElnwGBYb0FMc0Kl4F1LHhn6vBKkZJKeztVFXFWaSE8Xu4zTq/lJbP1j8B0vk8St6mFq9U/wtjaaJ1xIrStsibiQgMgf3hK5o00UoOe5ArwuXE15wC4uF9A9wDViwAkFzDWglRnPCOqEkUADl1PxKeVmU0Fs+gBBqh0N/n840q6dmEsFuiwIJZDVan4VYZKZW70QKg6nGazPSkAhlK6DduVfIPs3OEuK4C6stH2a2zQNu3Q8XLBaybG45lg8eiXnH9gUM6HqrNjtWE6dvn/KbmIgU8lfLDRSQql9FqIQSx5OcniXJ1qvVUen1szv5dDa5eSsAhFxMbmPytUgsDx7jEsy6ova7EOEwLqMAB5N6bREuFb4GTMmYiA2V5WJAuzwHDytBQ8Qtj2OxDu6u4RiFCxYGaA3a847tC1jHSGp5I+tbQXtWEq7sfE9sz4IVZbh8bjkWrCgTg3Bj1+3BWCgHo8pRSoJlRKyQNN5u7Og2VPYHJYcSz8LiSe/KzvfQ+Ko9lqGErmgUUm4iqwf4KSVlmILj2JQxEWtwHACQdyzWL5D7RCkRy9wi427cIlq4dSU84NOaTSKvJURiNPTEcwDuzIarBzVrSKTnsGDlFtISMpObtzLrOPUG4WpZWMaXqJeF1xICrKdeE1gGNRNxSbLCEusbOS7aGhduQcZWZLpVmtZsFXYXKzXjfjVDJE9rtgtuYbEBq8SJE3Etah2JU0JFK+hTb00iPbByDZCBUj74ElcQK0hVZq3BNtjMIPJdowNIQlc08ptrmdQ/sgpy/jcBGIk2ybR0Oui5xpurmVGWE/7YIVY4bOCChRGdrY1Izjbu9gl1n2poiRn5Z26abhyMgNwjGoNJDcMntUJfvelCkUqwch+pQSw1pV7z9YcI3WXFqOmbLaT3fNZlFCChC4CLRQsN/RuYyUzM4XCshwsWhrAa9EnsSuy6PbriQtTaQlcxppc7KVbkFpFgxd4I4qBn4GlXrM3Sh5avXG1Ql0/5tsI9QKwrrNxBKZ4WcVt0vpb1RWni+Q4mIja9+Q6gVEPHYLxBQlc0Ekqqxcyn4eZeCQexpYTemj9uREsUuznRJsd6eB4WBliRWyR23R7NfRnZJxEpSsJkSco55hoYhBpvrqLwUMpvQWq51GUU9D2Z+98TUy2rQYPkUpEPmhW+BtV92JVnhJVY0So6N7V6JzraJqDQV4/E8iq/KFFAKyW/WcjvazRHTKjkHYs1/B3a+hWuhHOwsdY9F64CksMGLlgYwNpCQZKxKVlXSPI1PfuUr6MmIFghnwGktW0ta4odqIkXOfIO0u4B1yj5zbVBxQ+xukyt3olNb74TIFCCxeuEMhgmdEXbOitkzeDjlmzX7ddBJBLJyQo5+uAuIYvQKyqM5mXZ7WkHWs25iViIEy2TLL082KBGXARa65lNN88a+pgLffVMg0kTy6vQwSjoT28VXRoxvb/Hf76DUePN9cemhEBdRgHG9c3M0esisiLORw+q4qovqNltkPPJcoaQGyAlJFjDpzOHF1ywMMJozhQ9eVnGtvlnK5iNYzFDsOPQK3pI1VYtWAx+dtBdViwZnFgH4LIi1M53avVOpHhaUOPNtSVhWl1GARItLuBohsTyKr8gQfgNaLM9EwAYF65ugu5jSJ4WOn6Mx7AMXLhgCZHzzrsCZwwdJr4nlpVgwkX+OREnAMRcLrFtfXldTFpUgqFkLWHl3tKythDrity0S0RO5ppW11hXCBW+BnF6b403F6UIPT9HqTcH8NW7JjiyKS8dTUgXRWRCSTUAv5uJDoxmGR9BgnJ3VRZprrehstw2KwufJeQe5IHuxOJFrkcyhZ4zMOCChTH07BwtaAsLHWB7PHu0mIBut6cddYMvV0xmxQK7nlRIu+lBT0mskL96XBNOQtrvRuuAFdRlFKDQZ+2goGcGFp3DRi2fDSfyUHLLsei7ws16xuGCJWS+/HIz4gcPFt+TjLdqdXPoKctq0HEqrnh6SGsHdhqvICxHKdCWCBUlEeM2aNcQORYWriF6GrJbobPBWrV9vVYrehaP2oweLmQGLlpxdlZfxxxr4YKFEZLYD49y0O3YtlTEtkmtKWQd8UayyP0TEgzECg2xSsgzqAZ0MhblPXETdEVvoP9p0gkBQ1x1gHLQdF1foUMjcUe7Koswrs+1FAwzwbhqGJmarCVumvLSIy6A1c0oWVOUyn4QUaKU10nL+sLFSnhjWLDcfffdKCoqwjXXXGNFe8IWJReQmmtIFCqUODF6I5HBw7EAtBCtLiR+Ixhk+qhbXC9WF2vrrxTtf69HuLCw0KR4WtBdtrTfYuRr0C00WFOXUWBrOnwlcbMBzlTr5qgjn61H/3V7Qrn1RWk4duQw8JTTLQlvDBc/zMvLw9q1azFmzBgUFhbi7rvvxujR+gr+RRLy4odWEkmFBSt8DZjtedjUFNxQU8yzhB7M7LICzfY8bNm2gwU5Swbvn85D3ab9lrWFQIJ9nfzNiWgLJyuLFS5GO4of2i0Q9Z6jYFa2prx00bUNUO5iWb9gR0HBSC9+aDhx3Jo1a7Bnzx7MmzcPq1atwtixYzFt2jT89a9/xalTp6xoY1iRnJ4VkIU21FkVwcycLFHLUMsSM2IF8J8Htzz10kms7Eoitqptqelzp4XfuqItCiRJ9l5czrwNhPzmWknlZKdFOnch2IMT97VWVuhg6zblpSPF04IUTwvym2slfbSehJQccxi2sMj55JNPUFNTg//5n//BsGHDcMcdd+BnP/sZfvCDH7BqoyshSvb5Tz7Hzzb7xOW0OLG1s0ujYl+IqyZNJR5Gw5Ujz1brZkhbnXoCl3eydndSpd4cJq4go+0u9eZYlvqdvmfo2XFODQBOxhSZJRwtLFqCJTk9C1vWHUZ7VhKu7HyP6X5Zu5K0rlM7LSxvvfoRhg4ZFvwLKhz97ghu+skkpKenIzo6GvPnz8f8+fMZttQcIaXm37dvH9avX4/169cjOjoa06dPx6effooLL7wQlZWVrNroaoZ3S5OjkSdE0slW+BoUrS5ySB0d+UsJiRUkrd2YWNH4rMabi8kzbsDkGTf4K/RS4sWNM3jIU01ieZUjqdLpzsmJ88NiUDIjBOw6Vvo+cgqybyNP407jxns1VFI8LSiIP8l8u3KxEmpdOLdYgFnR1NSEzz77zBViBTAhWE6dOoXXX38dP/rRjzBmzBisXr0aDz74IPbu3Ys//vGPePvtt/Haa6/hscces6K9rmPGp28oLtfTyQYTJmqI5kctUWIQIlYI05t3istp94cbO0PS6fD6LvZglUVLySJpRWFRM3DXkLN0tE2wpaq8nZXrOcYxLFhGjhyJe++9F2PGjMHmzZuxZcsWzJ07V2Liuv7665GQkMCynWGBvKAeSSktz3xrRKQorkesKnLXjpKrR8c6crFCIJYWwC8KusuKAywvbsFp95XT+7cbuwbwBSuczacSrvlclCxC4WQlknN5dpzh7xiJJXFjn8YJxHAMyyuvvIKZM2ciNtZ42fZIQikaW80cyMLfn99cG2hRCTE/CpmBQawpWmx68x0A6tWL7R6wtaYX2xnbIs8lY5f7wqn4FQI5bitiWYgYImkB3BDASOJ2wmG2kN7AbCPXj5MxLEYxknpAnnqCftgMtQ1ywjGGJexnCd15550DXqwoYbXvsi6jILhACeYiksW76BUrgN/aQuJFaKy2uiSnZ2FsW6rkBWifbztdRE4E/LIQK0Bo4or85vR0TjlmrTBm3KR2wN1C9mDnby93ARGrOMedhDxLaKCilodFre6PvzKxdvViPYiWFiXxoiRYDLiAgrE2I01XIjcrbni6OCSgv4K1nRYPMuPA6n0mlldharU+oalGKNYVmmC/tfx+MDMYBSuMaAfEohQOs4XCycLCqq/QO9vHrgRz3MJiDSHNEuL0Q54K6TwSNExvEj1iZWeqqkWmu6wYazPSsDbDWJFBvdYYltYWEnS529MueenFzhlEdlh2Sr05rhErQPDfWu1+4NiHWwKX5bB8sNHbvw60WLNIgwuWEHnz4h+7w3ytIVCUmN68U7cAodHjAmHhJpHUZgoBu2cQ8eA9bcJVwITzQOeWmS/E3eKk20Xt/uT3bXjAXUImMZMCmb5JzYgcsaMn1pSdqdL/aWi3kcyFtL3yGcP7piGuITvdQhuTr2WaNMqKlO/kmM1um7gd6M6T3s6yueXi4FPjzQ2wtKilENebSCxUy4vR31zvPWClS0ipzUrngPw2JImZm7HaJUTf+/IHgWDCTq2+WrgjP5dKv0HPsWMYXlLKXUIhwKs124hZ/6nqEykRIsFiVxhXW57evBPjffX9hfIsgDZjd7Y2imKlwtcgGbjNUuirR00Q0WUlahYfNbEC9D8pd7RNUHQLqc1g0Tsw+dczL1isLgxpBUrnhhSeJND3LanGrvbdSCTF0wK09b8v9NUD5Hc20J9V+BrQybhtboW+NqwopzFQ4RYWk4RaZIoEaaoF4lppNg/VwgIA40seAKAd1GrV4JWcnoXanrMMW1ysDoY1k6o/mKVKvn2rB0kW8S1mfncS/yX/H7DudzNyPpvy0sU2ydujdLxOihm9AyQ9TZs+PsDYfT1QBmc165De3/rwiaO48Klp3MISAtzC4iDE/C8XLaTjqPHmYmHHASxJOUfZMqM2W8gGnCzn3tnaiI3J1zqy72CQ81LjzQV0DLRGLDxKbqBIgR4s7YpxMSIq1MSK2jK5lcbo/uwgf/IIoO+4UprNCVW3HZNVRKorK9zggsUhyMAmFy1KnfXCjgMolC9UcgPZLGD0DspWwLoIWqjInzoLLXaZuRknxaxbCCZiiOuPtQC9PDsOnXpz27243BVJ+czS0TbBNovOkpRzAPfnDIx4uGBxiO6yYlTAP9AFdO59YqTwq2exMHo2AJnCVxMmNoqV7rJiv1tLw6URjjENZiEdf6KFsw26y4oBz8OWbT8UJL9znwgn13Uo2UPdMKA25aUjpTn0gVFyLH3/r4L+itApnhYxUFktXmnLusPoQOB25C6fgPYYwC1WFbk40yOUzYppte+45VwMFLhgcZiAQV0jW60oWtRmBMn/2gCxJNBBpN1lxf3vB9iTNt2xGYlPcTv0NapnoKPPQ7iLVjtcVHoGvnApDWAXchfNQLfqDQR4HhYXIBkAdqYiuc+qYhib41mIWZtM+aRzngzUzsPqfA7ri4wl+2OFU3kqrMqfM9ulliotQhFO4Zj7JlTcYJ3jsIULFpdCREtn7yrpcqWslcSqopaTxWJocUILl4EoWszmX3E7ShYTOywnkWKhihTCyVqm1FaWfRJ3B9kPFywugS6FTkSKmqVFVbQAQQsghltGR/6UZD96k6kNhN+mKS/d8n04cU+GWz/A4QA8hsV1VPgakOitQudXzyI5ejaSo2ejs7UxQKSQeBZJEBllWVHLtjqdQQ4WwJ88bm1ZcX8CKYsw+kTnhkGUxCU5nZzODFozL0IJng1XrM4HY6SQpdknesXcOiaOJbG8Ch0abbVjxo7WNUhE2Pgu9Ye27UmpA9LyGylwweJC/DdUKtD3cJecnuWfVgf/FGcAolgBlLOjshImwbBqCmu4zzAyel7cEqCrZ0aMnsRpHH0U+uoVZ/VwtFEUj74GTCkps78xHNvggsXFdLY2AmntqBlzv7hMKYmcKFJMFDPkWEO4PsVlrmkVU89rwUXKwIOLK47TOCpYFi9ejEcffVSy7Pzzz8fnn3+uuP51112H994LTBg2ffp0NDT4FXdtbS1WrFiBjz/+GN3d3di6dSsuvfRSyfpVVVV49dVX8cknn+Dw4cP49ttvkZCQwOSYWECsC2JyuZ3Kg9/kGTfY3DIpVrqFBtKASKaBKxWSk2dCzvfVDphBw8nEhBxlwj31frg+SIQDe/bswcMPP4z//d//xXfffYfzzjsPNTU1uPzyy5ntw/Gg24suugj79u0TXx9++KHqurW1tZJ1W1paEB0djZkzZ4rrHD16FFdddRWWLl2qup3vvvsON998M371q18xPRbWqN1cNd5cx4Pm1mY4M702XCC/T6GvXvcsoEJfPRK6ojG1eiemVu9EXUYBplbvROaaVvFlpsq3nKa8dPE1EDEjhp2+30LBDXFdbiGcf0c38+2332LKlCk488wz8b//+7/47LPPUFFRge9973tM9+O4S2jQoEFITk7WtW5iYqLk/cqVKzFkyBCJYLnzzjsBALt371bdzoMPPggA+Mc//mGorXZCx3DQgx/N2ow0S91AclFCD7yJADYBQFlx0HiNcI9HMUO3QctTd1kx6kqqJYnBrEoSZkfyMTfXXjFS8JDE81gVX8R6aqyiBaQtcJFREsurBlwSSI5+li5dinPPPRc1NTXiMo9Hh2/ZII4Llh07dmDUqFGIjY1FVlYWlixZgtRUfXlEqqurMWfOHAwdOtTiVgInTpzAiRMnxPc9PT2W71My26RPtLzzg98D6E/YBgvdQkouCpoab65fiATpyAaaWCEYDbzNbw7u7mEhNpry0kPajp7Bi4VYcTIIeX1RGgp94ZVsjUWlbQ6HRj7OxcTEICYmJmC9N954A9nZ2Zg5cybee+89jB49Gj/72c9w7733Mm2Po4Jl0qRJeOmll3D++edj3759ePTRR3H11VejpaUFcXFxmt/dvHkzWlpaUF1dbUtblyxZEhBvYwf0oOcXLf3WFivMmxKrCp1iH8rmVDXrjxO4rbO26pysL0rTPRVWze1DltOVwbXaS66DQl+9LU/aTsavpHhaUOjrt1S4IZYmxdPiaKIyN9zfHP1M2v8h4gcPNv39nmPHAADnnnuuZPmiRYuwePHigPV37dqF5cuX4xe/+AV+9atfoampCQ888ADOOuss3H333abbIcdRwTJt2jTx/0suuQSTJk3CmDFj8Nprr6GoqEjzu9XV1bj44otxxRVXWN1MAMDChQvxi1/8Qnzf09MT8GOyQl5IDvB3GO/84Pe4YcdDAPqFAiu30NqMNH/gJ7Wsu6wY3WXF+rZf8kDIbQjGxuRrJVWa5W6HUm+O60QLoL9yc4WvAbM9wQelQl89Ktoa9E2FrgyyT/KPryFoG00NWibrWllZ7VrJbULup+6yYtGFQkpMuGG6ud0865mHRUUTI+bYtydJr0G1PFV6UQuQZ11922m+/vprxMfHi++VrCsAcPr0aVx++eV44oknAAATJ05ES0sLVqxYETmCRU5CQgLS09Px5Zdfaq539OhRrFy5Eo899phNLVM3hbFGy9xOxArQf4OwcAsRsUIINk2atsLYOZWaFitqGC3SF87YOZgYjckRCSJW7E5GR/bDIpFaJLPb0w742i1PDGkl25NSle8Rb07I9478+xUA4GsQq2/T1uhwFjHx8fESwaLGyJEjceGFF0qWjR8/Hq+//jrT9rhKsBw5cgQ7d+4UA2fVWL16NU6cOIE77rjDppbZA4kHoS0JdRkFlhcuk4sVLREiD8QlFh6rEshpESxOQj4IhoOA0RNf4gYXBStKvTlITs9Cqey3tOoYzVwDbrDc6XEHsWxjOGY1TiyvwnYEF/JW3z8VvgbJ9tf39a+3NKy0bJ9OM2XKFHzxxReSZa2trRgzZgzT/TgqWB566CHMmDEDY8aMwd69e7Fo0SJER0fjtttuAwDcddddGD16NJYsWSL5XnV1NfLy8pCUlBSwze7ubrS3t2Pv3r0AIJ7E5ORkcTZSZ2cnOjs7RUvOp59+iri4OKSmpgbMRLIDeadAWxK0xAqxsoTiFtr05jsAjAsV+WfTZ9yAmjffMSxaxrb5n8B3e7RrILFAb40cJ8lvrkVdXoGmaLHSXRIMf9C31NoXKkrCs9BXH/B0b/dvRa7ljrYJoqtOzZ1k5om91JuDDgYzeIC+djHaFk04CRe9v4Hdbi6yv2dPnbJ1v3ZSUlKCK6+8Ek888QRmzZqFzZs3o6qqClVVbAu7OpqHpaOjA7fddhvOP/98zJo1C0lJSdi0aRPOPvtsAEB7ezv27dsn+c4XX3yBDz/8UDXG5Y033sDEiRORk+O/webMmYOJEydixYoV4jorVqzAxIkTxQjma665BhMnTsQbb7xhxWFqwqIjMFvtl4iQUMRKqOz2tNsiVtQo9eaIL6twmygyCzkOlmLFCKXeHPFat7rCNdm+3LLR0TZB8qrLKEChr168hsKh8rYZIuUa5lhDZmYm6urq8Je//AUTJkzA448/jqeeegq333470/1ECYIgMN3iAKGnpwfDhw9Hef5NiD3zTNPbYTVQVvgaJKIjLs/fcR5eE/g0wcKqIodsZ5MJK4vbYNU5k6BNo9v0P3mruwCcmr7qlqdsO46dHCurmTnEMkO3PdjvbHT7dp4XO4g0kXT81CmU1b2FQ4cO6YoLMQMZlw5VVoQ8S2h4SamlbTWDq2JYOOaRB98qCRU5LANmiVtq8owbbJkxFA6YDlQNgh0xLLTYMoKRWCYn4p6cgggTehYYK3eQXXCxwnEax1PzD3RY3Zh6O37auqIFT70fOonlVaZy5dR4czXT5tsxyJvdh5HvuVWsuM2to6eEgtUDvNvOCWdgwgXLAIKIlckzbtCcsmxWrJDvVfgaeM0OmA/u6y4r1gy2djKBmFnc8MRMCkwqFZqkoYXU+qI0pHhasL4ozbHaS3aUUggGfU4qfA3Mfk+lfsIN1wrHnXDB4gJY3aBaQkOPZYWFVcXq+kbhhlkrQjAri9VPvKwHDafjX4iLi7zIMr0U+uqR31wb9tWK3QARPBW+Btda2TjuhMewuBR6OqFaLhZ5UcFSbw4q0BAgGNZmpCERfsuKEla4fybPuAHbERlBuE7QXVaMQm9O0NpCVmGHwLArhkUpHkd8Tx+nQlZepfY5nSbfbtSSMZotauoW8UqQZDnmuBouWFyG/Mm2wteARG+u6c59bUaaX8go3IxWxamEs5WFm6PtQ+l6JkLAEUuGiRICkU6kZI6mRQqpJ1yXUQAASOjqy3clE1Khpu/nsIcLFpdAOoNxJf5ijrsq+/PMqAkVkoFTy8pCUv0rWV3swKqZMuHCQJoJEwpK+U4ANsKFn/+BB+3uS+iKBrqkAkUO+Yym0OcXMeEs1CINLlhcyriSalG0aJle6doo5P/E8iqsLStGqTcH43312F75jOQ7VosVOidLqUsHC9IJSaoQuwitmlKA9dluzZr7jWK1ayXYeTTDQHEH6bGu6LlOlMSAEvnNtYan7BOXeQAKosQoZLtTMiYqfr6hsjz0nXAMwQWLC6GtK2YGDXlac9pFY6dYAQITZbkNYvIlgz8pXCafFaEHRfHT97+8IFrq11cHfL/93A/E/8k21helIaEr2hUzRdSQDxh6a1+ZHfh1Vam2ALday6xKy68Hu+9p4toh11ydye3UeHMVLS1y8ptrsUlBsHCx4gxcsLgMIlaMdgRa65d6c7C92W9lmd680zLRQosVpQHFrqf2UBD91jI3G+3PVrXKBBnMpOsrpLffEfh9Ui9KT1HEUJH/NkpCRO/TMhAevzdBT80cN4oVq3DT7yYRKV36LTZaJHRF61pPSaxwnIMLlhD53iPP4NhvS5lu04rOYnzJAwHp+1kRYL3RePq1u5hacnpW0KrONMTVEmBV8TVI/OJ2Dl7ivjz+P35LTZrhbLdKQovu/IM9rRodKKz6jQt99ajRaWXR+zu5aYA2itUxFnbHcJA4PhFGIkVO/uQRwIvLLdk2xxp4HpYBRKk3h/kMHrkLSC92dYJKYsXsvrvLisWXk8nxSC6RYAnQCInlVSj15qDQV4+ErmjUZRSIL7ej1kY9QoRnZzWHEzODiBtRr+WDCS8ux6aMiRiJNskrv7lWt1uTYy/cwhIid7zXgNd1Pu0pBcjaBdkncQ+FGtNCXEt6rCpabQLc83RrtB3dZcUBga96thFsuqTSNhS/Y2AwsVucqO3P6ECQuaZVtCzJIbPk7GSgBNwCwcWK3vvFqCvRaYgbaKRKYBCPX3EObmGxEFJunggFerkTbVHCjLWFdRxMJE0bVLW6pLX7XwhuHSBZQMm2KnwNYZUPQmtwIsdkh3VqIMWcsMYN9yQ9+UDpPWfgwQULI4j5mYgTIhDc1mkmp2fh+uV/MSU4pjfvtCwhnBs6SBawFBbE9cRiO26BmPxZ3Rd63WIcfThp7ZSLWJLagQiVgNgWB+DWFWfhLiEG0Gm+3T4zorO10Z89t7wKm+AfzIJZTOyaEm3HFGg7hJHi9NedqaKFhcMOxRT7iBwBHC6YdfnQLkJ5/IqShcUNooXjHNzCwhg7xEqonTFdCI6gZjkJ1xT7RiFP6cwGOi5OHMXNDw2sCcdj1QpslQsVOokmS3hF+fCDW1gYoDehFCvrS6jboNta6s1BTXmuaGkB7E00J0ft2NSEBKvOmqXrrtBXDyidNl6rBgDEYp5W5JYJFhQbaqp/+vtkX6SqtpuT++nBaeFDgnOJFYW2plhhWUnoisaGynJMKSnTtT53BzkPFywMCIdcD8HcLYnlVUBfNWe3iRXymZJoYelGMpoW3DAK1YDtwo0zNQ4m9epaT61auRnkgiYUAUO+m9Lctw2P8j6sxr8/7gLjRD5csEQ4ZECXuHa8/j9yy9CmN9/B5D7RYjcSsWFyYKfrAxm1mDA3D3NriiZGznfmmlbU5bETLTRGiywqiWa5UNbalhVixsnU/GYxW86BNaXeHGxyZM8cM3DBEqbUeHOxsOOAZNmCFX7TJi1Opit8d3vlM9j05jsBg3qhrx41Kmn1rULRKkIP9iQWZGeq7rwbSvlRCPSMEvo45cGbIcWyOGhJUUNv7RS7SOiKRn5zLTrQ71ZRc6kQl4uVKAmJUESMOsYtgkoWJtodJVp4HCRUCx5LKxoH+OL5FRgWbT4J35Fev/UzMzMT0dHRmD9/PubPn8+qeabhgiXMIOn1J1c+g3dNfD8uzz9gn//ZQXS0TUCKp0WsVwPYOwVWV4ctm10TarIw+vgk02Fl4k3eNj7rxHrUREvmmlZV0WKl+8Wo9cUoehOzkYFcur4/Hm5V5VLmVbsHyrVOzuv2pFSM7+JB8ko0NTUhPj7e6WaIcMESJii6dgxAhAohtdH/uE2LFjsJECv0rBqbrBMScRZEPMkLIGqi1H6HZw11lxUjwYVTQvUG3mauaRWtMXbj1NN/sPgstwkLFlYWOyG/a3dZMTYofK43GJdjH1ywuBAyMAZz7WghFyhaENEC+K0OVllZNC0qZJCnB3aFQT45PQsLLOioiYVJS7gV+uolwsbQgOEyF5FbIIG3tGgxM3uIWGAOJvViajXbqfha5QHswk5x4kTJA6fQOk4+K8h98DwsLkQuVvQSl1clvoxCzN9WWlqCdoJEoFBp7OV0tjY6Pv2SEKwdPM+D/bgtszTHvcw7ts/pJnAMwi0sLqTUm4MKNAQVLWsz0jDb8zCz/RJLSymLwFMzaFgh5ObiUrBtX3dZsakU7+RcEatYYnmVGA+jNnhaPn06jCj01UsCb9WgPzuY1CueW/EaqPT/qSmvYm5h4XA47oBbWFxKqTdHMQ8KqZC86c13LKmhQgcxWrF9PSJDbplQ8m3XZRQ4VkNGyXJSSIsUJQsRz3yrilLitaa8dP8MGE8L1hel4WBSr1hXhtRYslNQDwRrGYvzGQ4zffKbazHv2D5xViUnfOAWFhdDJ3MD/GJFzDFCnt49bGdK0NMkScyGXQODUsZgrUC8Ql890xkS3WXF/TEqGlOT6WnTilW4leoGUdtyqhihG5PHEdYXpaHQVy9ee+SaqwBcYY3iriZ7sOoapWdaVQCWxMFxrCdKEATB6UaEIz09PRg+fDgOVVYgfvDgkLenNRNBT0AoK9GiNYWTtXChB3u5WNHbabF+UhIFoYZgkc8WMpqozsmARrcVj8tvrtU/+0onpd4c5tOdyX0R6cGoRtzBWjFcZkSHvP8LtaCi236r46dOoazuLRw6dMiyqcJkXNp83g9CzsNyxZc7LG2rGbiFxSVomVL1DIYpnhbbU4KHiloNJiMd1fLBI7GLZaMIBmb1EIuLnmBgHr9iPTXeXB7HEiawciHlN9dKrXKciIQLlgiApVBRS5ZV481Fad//rJ5caBdMoa/e1BMV6yquetxCaq6oCl9DUGuLU+4gt1KXUYBCXy0fZFwCqwKtRIgQ6zDJbMxqu/I+iF8/AwMuWMIYq7N80qJFXuGZpbnVnzbemPnSinLzLOguK0aNiVpGHHejtyJ7JMDy3pbM5jIphOTxJ5yBC58lFAbUZRSIL8DfeYab+0cL14oVDbeQ1gyl7rLiATGrhCWJ5VUo9eag1Jvj2OwvLQaKWLECswIov7kWuyqLbJ8RxnEv3MJiIURgGDGF6nGL0LkrrERLFJX2VXw225GUenP8IszAd2g/tdMEm6EkcS25CLfOFKIFQaizv7rLigGG+YncUmAwXDHiYnLL/c1xJ1ywWIB8QNCaASRfl+SiUEqiRW/D6SDbjrYJaMpLN5zAjXReRgfNXZVFYW8OdkPArRvFihWsL0pjFnjrhtT8boRVvAvZVqRCztELV3iBugscbk14wwWLzQQbMORCRa2svBvIXNOKurwClCJwqq8a4TBgSuIVNKY3hxOkkNtkF1pYlAR9qHFSLK2QtIVlINXZCQYXK8Ghz9Ed7zVgvoNtiQS4YGGM2mCgtFzN6kKLkmCdrplCcSwhVXRJkjkl4UJmzpixqjiOmlhJa0ei11ihSLsT8dFsqCzHlJIyVPgaMM5lggUA8NN5wIvLmW3OqqnNkTy40ugRZloWlmDWl4FwHt1S8yyS4ILFRrRiWcxaTjLXtDouWoD+WUVK8QdhK1aCYDbWwqmndFdXn2UoVgD74rw4ygz0wXqgH79VcMHCGCMBtqzcO06LFQI5HhKQC8BwYK0bhIodAbPctWAtPHlcaLgh3irS+NO1OYCYzYpjBj6tOYLQSqsfDrhBrBDsmJbMn8Ksg2WCvoNJvcy2FS7wBIfs+fbxB5xuQtjDBQtDktOzHN0/ccu0ZyU53g6CXotTOFR5lfy+SgUOTeCmnCPh8BtwwpuBkJ9I6UFkIBy3HXDBwpDO1kanm4COtglIbexyuhnoaJsgChetgXBXZZGYHMpNKCUKM/r76umkCn313NKiAkkk5yRNeekBWZ61SCyvkrzoRHi0OKXXod9HOuRcOv27WoWaWOEWKzZwweIg4e7CMYKSaLHCBWR1p2/EimYkO6obBiu3TXd2A0rxYURI0S9A+TckolVLmLjht7capQcSt2Y1Zs1AEyu//e1vERUVhQcffJD5tnnQbQRDcrrYHZSb4mnp76Da+peXwj8oWhmrwqpzILlY5IHRnaCsLDtTUepNZWIdMjPlmQyUTlmnDib1YvKMG9hsrCQ8/Pv09UDnTBqXUQBoGDYPJvXqErBuSo6YWK49bT+xvArQKcrVLCrkugfCf6qzqisozI/LCE1NTXjxxRdxySWXWLJ9bmGJYLSy5lpBiqcFq9qWqnY8Nd5c5DfXhsVTlZJYAdyVuI9jD6HEHxCXp9F6WW4nWFVyM4Szm0it7QPJunLkyBHcfvvt+MMf/oDvfe97luyDC5YIxw7rSjChQiA3b6GvPixEixokPqd/Gjc707abz0vmmlbJK6ErGpvefIfJtq0ISlxflMZkO2R69Ng2aRJBPffWuJJqjCupZtIOu1ETJKXeHFNiRY8FJZxFSyTS09MjeZ04cUJ13fnz5yMnJwc33nijZe3hLiGHsaMmEGvRcnl2HBasKOtf0Ka+rhySAdPJrK8sIb/d1OqdgOdhXJ4dF1LwtRETudlaLm4u98ASlsnj6jIKsBu1pvO70FOj5eLMzZWgSb6gYFlrlT6XL9d7rZaqZMyWo+SyciK/kRsDbe8uHYToweater3HooB5wLnnnitZvmjRIixevDhg/ZUrV+KTTz5BU1OT6X3qgQuWAUSoGXFXtS0FACxYEVo7JLV6Iowt6w6jAxOwvigt5GNk1fkqme/dKFLUrotgsRR2QAogykUQyTQdjISuaDGoOUEW6yIJdnahgA8mNNTECv1X77YIeh5oaHGvtz124fT1yoqvv/4a8fHx4vuYmBjFdX7+859j/fr1iI2NtbQ9XLAMIDLXtGJV21LM9jwcdF1J4CxjusuKUYH+2RZus7IYCSZUQzNmgc7fEqSwYrCnTfrc0R21RJBU77QkTX3mmlZmbpfJM25g5l4i8Gy35gnFNaN1P6t9RgeQy60yFb6GkGNmrKprFOmBtvHx8RLBosTHH3+MAwcO4Ic//KG4rLe3F++//z6ee+45nDhxAtHRbGK4uGCJcA6vkQ500wGkeNXdUKJQMeDmMQvpnPSagMONAIuBUqI5skxDuOh52iQiy42Wk1AxW7OJYwx68LXbCkpf2+R/IlJKvTkhP0DYSaT1Y8G44YYb8Omnn0qWFRYW4oILLsDDDz/MTKwAXLA4ilWDi1ykyNle+QzGlzyAjcnXAgBSG7tsFSpKDNhBKYiFxQiRKFZCobusGNBhTdRLXUZBxGYDllsKzIoVltYFO2p6hUKkW1f0EhcXhwkTpH3P0KFDkZSUFLA8VLhgsRHaVx1KLMnhNcVYm5GG6c07sTYj0CQ/HQj4fHqz1DS+vfIZNGY0YNnccixoW2qrUFFyXaR4WlzlHgp18Fcc2EJM569liWI9ONuB3AWkNUiajWNhGdRO4lisDJS36h7Q6+Kh+ygz4oy1dYGcC6tmDwWzWho5nki0ErsNPq3ZRkIVKavalopiBYCiWCEQgTK9eWeAWKHXkcz2sRiSqlw+LRjo7yhDmdZLtu+WDJqKU3V3pgZaVQyIGGIid8PxhUqhr17yClfcUi09VDraJrj2WCp8DQFuI6sfbuTXpLy0ghwuVvr5xz/+gaeeeor5drmFxUbWF6VharW+DoEWJgAADXFCULO4sP6OUcjTUYdG8Cc9C6PGxNN0YnlVwEyMhJJq5DfXOvbko3sQNuEWCncX2qY338F4AyIl3I/XSYJZJ4JZi9SEgRXJ44Ihb4taQK6eKf9GBQ/dh5CJAxx74YLFAlRvBF8DUiizvprlg6BlGSHIxUawbdIQtxFr0SIKlL6OsEOnu4nO0aK3Myj15vhFikpa9LqMAlG8EIip2y3uJ7PIgyThwIyYSMvgGs7I7zuC3vtPCa17RD5o+wO/7b+nCn31pnO+qMET2LkTLlgYYGTgq/A1INGba0hYqEEEh9nvEKHCQrSoTqkNgnz6ND1zKNh5TSyvQp2JAZNYYcZRQZS2iZe09n6LCsOA20JfPeryCmw36WeuacVhW/doDKumNoea08gq6jIKkNkWWrv05pahIVYOp6wOrAVGuD/MRCpRgiAITjciHOnp6cHw4cNRnn8TYs8809Q2QhEb9Hs9sSx6t6tXtKg9zQWDJJ/Tu30gsPOwOtU5i4HIiUrcrIK6jRJsVpoSJODWqEvBzECiJ++QEchvK7/2WdTsym+uNT1YkvgwFjTlpeNgUq9uV6rThTjpNgTDrjaSOBdyDo+fOoWyurdw6NChoLlNzELGpfHLx4eY6bYX2+dtt7StZuBBtw5iJt6EfE8p8FYpwFbPPujvBBM4xPohD5rVg16xAqgnRBvoptq6jALxJYee1dGUl25b0UszTJ5xAybPuAHbK5/B9spndNcSMvP7OyEezaL0u7odMjA7bZVQ2n+NN9exdoV7MLkb4S4hhzHq1tESIIpTnCm3j57tqrmHzFpUAGNCRQ0Sq1IX8pbshVkCrj5XUn5zrWRQkw9wRLSQnCFOuIncBs94ay0khsRNyOPhjLSPtbXIDaUlIgUuWFyAEdGiFXCrtI7Se73fWZuRRllTdDWPiTghWJ2DQYn85lomaexpoUJbDybPuEH1O2sz0tRnXvTFuxCBopYjQ/55fnMt4AlsW0JXNA4m9SKhKzpkQbPpzXc0j8soatY1+Wd6YVkEEYjsBHJmcJNYodtiZnagmjVXaVtG6yL9Zt0aQ23hBMJdQi5Bbx0VpVlBeq0nRj+b3rxTd2e0qm0pU7FCQ9oQToOE/ImeuEC00PwdDSacU3MbAf4ONL+5VvzrZvcRybcRSt6N5PQsxq2yjnnH9jndBI4Chb56JJZXie4vMw9R91+TzbpZAw5HBcvixYsRFRUleV1wwQWq61933XUB60dFRSEnp//iqa2txU033YSkpCRERUVh27ZtAds5fvw45s+fj6SkJAwbNgy33HIL9u/fb8Uh6qbQV4/xJQ8EFS5q8SZqwiWY9UbrMyJmVrUtxeXZcWjPShI/IwLFSqGihNWiRW8shV4KffVMrA91wx6UvtcQJErrqb1oiHAhrxRPC9YXpTErcKgFsSpZ8bS+YEUZUjwtzI6HtYtt3rF9mHdsH3ZVFtmayJEFbk5gyNoNQ2JSBnocnZM47hK66KKL8Pbbb4vvBw1Sb1JtbS1Onjwpvu/q6kJGRgZmzpwpLjt69CiuuuoqzJo1C/fee6/idkpKStDQ0IDVq1dj+PDhuO+++1BQUIANGzYwOKLQKPTVY7uB9enYE7UYFj3fp9dV2s6CFWUoIGn8HYDOsyCP43Ajl2fHoZPhuGbVMWttk+SwAfpnwBxM6gUgz7/SKxHaLN1DrKBjGgCgpihXPAYzAoTVbJx5x/a5VqTwZH0ct+G4YBk0aBCSk5N1rZuYmCh5v3LlSgwZMkQiWO68804AwO7duxW3cejQIVRXV+PVV1+F1+sFANTU1GD8+PHYtGkTJk+ebOIo2DK+5AFsr3zG0HfkU5P1WE70Lic43bHaEdNS6KtHcnYWtqxzJrvI5Bk3ACUPiO/lQbtOizU9ieLkVkI3CBit4n5EvNgZnEwshbtcFP9hhkgKJuWWE/fjuGDZsWMHRo0ahdjYWGRlZWHJkiVITdWXUKu6uhpz5szB0KFDde/v448/xqlTp3DjjTeKyy644AKkpqaisbFRVbCcOHECJ06cEN/39PTo3qcZxpc8gOT0LLw77zbN9ZSEiZprKFSWzS0HACxJOcfxjoqeDcOKg0m9qPA1YIGvAatC3NaCFUAF/J2g0ZlgtEihBQIdSOsmC1MwEfP5S/8Q/yeBvsRSQxjv4EwTUbx4gLFtqVhUNFGXgDFaBJFOUhgJlgt5npFwhouV8MDRGJZJkybhpZdewt///ncsX74cbW1tuPrqq3H4cPCn282bN6OlpQX/+Z//aWifnZ2dOOuss5CQkCBZPmLECHR2dqp+b8mSJRg+fLj4Ovfccw3t1yisAwVJjIuRgZPkXJnteRizPQ+jtucsbFl32PEpovTAxiqmZVdlEZPtKBFKZ5h/5CkACJjKHE4ByDRE3CR0RQcIHVK80sm4iN2edjEYmcS86EVL4Mw7ts+Wgn12EwlihRM+OGphmTZtmvj/JZdcgkmTJmHMmDF47bXXUFSkPYBUV1fj4osvxhVXXGF1MwEACxcuxC9+8QvxfU9Pj2WihRYrm958R1fdIRbQU2qVpjKnNqoU7HEAPcXN9JLfXIsKuL/zDWehooZctJCgZ61Mx3ZS6KtHTVF/ILZRsU5m/TjtTuWo46+BxBO8hQOOu4RoEhISkJ6eji+//FJzvaNHj2LlypV47LHHDO8jOTkZJ0+exMGDByVWlv3792vG0sTExCAmJiZg+f3XZOP1nDlMB7vO1kbR1JziaQS8OUieG9w9RJC7f+S5PcZDJWhQo5qyHJLu3M4ZQnKIaDHrIiFWFSvN8yELq778K/KEcJGGPM+F/DeRW13sFJeSvDie/jw2Kc0tErdQU156QG2qBba1kmOWUMpD6KkITeqi3ZvlNdU+Tj+uysNy5MgR7Ny5EyNHjtRcb/Xq1Thx4gTuuOMOw/u47LLLcOaZZ+Kdd/oDA7/44gu0t7cjK8u4G+bNi39sSfplMg2TnmZ7/fK/aH6HTtlP3DlErJBU+mZS6mvBuk6LUczmaFFzAbl5miYQXrlojBBMgHSXFYsvQOo+0uNGYmmlIS4jArlX5x3bh+T0rIhx+7Ce4h9p6HkQoYu4Pvv+OqubFPE4amF56KGHMGPGDIwZMwZ79+7FokWLEB0djdtu81sS7rrrLowePRpLliyRfK+6uhp5eXlISkoK2GZ3dzfa29uxd+9eAH4xAvgtK8nJyRg+fDiKiorwi1/8AomJiYiPj8f999+PrKws0zOE6jIKkGgiqyKNaifXF6C3oO9z2noir5A8m/oacedMNWA1Mctsz8NhYWkJpbBcKFT4GjCd8TbdFHRrN+Q+qwDE+wN9v6tSpmC7fvNIc/sMhGnNRq2fRq+lSBGvbsFRwdLR0YHbbrsNXV1dOPvss3HVVVdh06ZNOPvsswEA7e3tOOMMqRHoiy++wIcffoi33npLcZtvvPEGCgsLxfdz5swBACxatAiLFy8GAFRWVuKMM87ALbfcghMnTiA7OxsvvPBCSMdi981d6s3BxuRrXRNXQj9JOIEe0cI7D21oq0G4CqLusmLxPiSDEZ8Bwh63WyI5kYmjLqGVK1di7969OHHiBDo6OrBy5UqkpfVbEP7xj3/gpZdeknzn/PPPhyAImDp1quI277nnHgiCEPAiYgUAYmNj8fzzz6O7uxtHjx5FbW2t7lwwatRlFNh+E7tFrAB+C4/8+O0eKLTcQ1bOAtLDeCq3Cgusdg3lN9cGvMKNCl+DrW4NLow4NPwBiT2uCroNdxZ2HGAeZDelpAyTm7eK7+sy/NV3O9r6s4+6pRrv1OqdAOUecsr9QiwtTrVBDdZFAllgRIjkN9eqxj+FUouIzNKyAtriQmOFuNiUMRFTMiZiQ2U5823bBf071nhzRVdbpGI0gJbwrGceSqFe38tN/U4kwQULQ5YPHoldDLYjuXGat0oGicy2fnGSuaZVrPviFtECOO8eilRYzRBS2oY8o67cMhEssFx+/bm1mCLByqzJU0rKwlK00L9ZfnPtgAu6NTKjb7fHWDFSu9k08mbEDw2c1aqXnqMnMBzbkZmZiejoaMyfPx/z589n2EJzcMHiAHRgYI03NyC3gzz/iRZkoHCTaOlom4DZngmOBeLSg5GbxFOhrx41Oqws8vT8BCWhoSZg6BgU+TpaAxGrQSrYtegWQcMynw/NlBJ/AK6dwqXC14BxJQW6z71StmiJZVLjvin01UekoJH3FVYH5bqdpqYmxMfHO90MES5YGDJifxfyFQZI+cyFDmrmDqusscTa4hbR4gbIYOQG0UJbMPS4huQWDyXU3F60S4zeHo3SgBPMqlKXUSCx8IUCLbQjgRpvLsZ3BT51221tyW+uBTz9bVKmV/J5oa8/UF2eD0cNveuFO0qCVknEON2/DBS4YGHI/hFJQKeyBcXqqcUEN4gWJ6c4q+EG0QIYfzI102Y9VgOlNugRSKyv48w1reIAG6nYKVrI79pdVqw7/qQCwLiMgoD6TloMBLFC0LoH3dCnDCS4YGFMXUYBCn39wYl21t2x0z3kRlGihB0VnvXQXVYM2GReVjpWK5IbsqApLx0pzS1ON8Ny7BItZoREqTcHdehLzcAH4KDwc+QcXLCEyO7n5yP2zDMBAONKqh1ujR+r3EPhIlLU0LKy2DklvdBXj+0WbdtpYcZRZ0pJGbYnpQ4o64RdJJZX8fM6AHBVav5wRi5WjFR5tQIWYmVV21LJK5zRsrQQF57VVgirn8y4WOFwOJEMFywhMnb+8wFixe8Wco8JXiuwUS5KIkWgKCGfPUSw87cibdj05jtB1hwYAiRzTWtEzDbRew2N72rHlJIyJJZXuSZbLB1wqxe3tJ3ArSsDAy5YBgjtWUm4PDsOACJalARDqVO22ydN2qBHtDiJ0rmKlFk9TqM0o8hp+KDPcTtcsDBmxP4uzDu2z+lmSMhc04r9I5LQ2do4IEUKTXdZsTgQ00+JdoqW7rJiS6w6VhxDjTdXfAH+mUJE7K4vShNfKR7zgbNuskbaiRusLW6zlChBctqEI6SaeKk3B/dfk+10c8IeLlgYQETKvGP70PjqL7FgRZnrIskz17SiLqNgQLgZtCAdNHHbOdlhF/rqmVtZWFx3ehPLdZcVi68KX4NExBixxESCSygUxne1Y3xXuyPXolmxaKc1JhyzBj/rmYdSb86AFeNWwWcJhcju5+ej88wzmdcQsoLMNa2oKYr8+iBKJJZXIaErGpDViyz01QN9s4cqfA1IjIDBM9TsraSTNZPNlAxk3QB2QfoEX+irV61F5CRWZbs1yviudmzns13Cnmc981yfuj9c4YLFQlI8La7roKdW70RTSbW/4FwECxdRoBAUClvTtXnsnhZJBkkrpzizhMWTuL8IYeA1lwj3uyXsYnxXOxAGtYjckojRaYggp+8PraKInNDgLqEBiL/a8wRXPFWyptSbg3El1VKxogGZIeGEe0hrxlCoVZ3DaTDhFoVA7IrboOsI6SWxvGrAufHkMwvJMjvSIXD64YLFYkIJRrQaf5HChyXLls0tD2shY6YDpkWLE52PFbEsADvREqmF7mjcKPCmlJSFdcBppED6Q/oa0dtH0kHrf7o2fPtVt8AFi4W4sRNUgjw9lHpz0Nna6Ei7WXXMuyqLTH2PFjp2Wlrocy0XLWZFAkvBScez0H8HMiTeiX5ZKei4cHEOJbGiB6Xr4Y73wmM8cDM8hoWDjrYJoiXITrEi74Tp96H48HdVFhkuk0BXNy701ffFW9gHbcUgwoUOCCaoVYrVU1GWFaXenAFTrRfQd090lxUDYSYqSA0hwH/9673mRdEa4XEsZsQKuS8SvbliED85Xz2WtHJgESUIguB0I8KRnp4eDB8+HOX5N4m1hNRILK+ytQhiKKwvSrN8INL7tBhq4KER0UILFjl2dMqkc6yhOrhwIRwHLVrQabkRjVjs7LKCsArILfXmiMduJAjfiBgO52tDSZTrFTFE1AP9Aq/n2DEMLynFoUOHEB8fz7rZ/n30jUuH1pQgfmiM+e0cPYHheZWWttUM3CVkA91lxa6OZaGxI/jUrhkQegcbLbFiJXRSKUK4iZVwpS6jQHyFG251D4XjuZRD+r4KX4NpsULgAbns4YLFRlI8LZKX0wUSlehom+Aa0eJEx6zke2adiZRsj3dmHCdhLTCcEv6sILN+1AQJiVci66oRDtmDwxUuWGxC6SYo9NW70vLS0TbBFheWHaJFy8qS31wb0MkqiQjypFTqzRGtImY6JfJdso+aPj/39spnsL3ymYificNhBw/EZYsR68mUkjJsypgoWUYeQnh2W2vhQbccVWZ7Hsbl2XFYsMLZjnFKiIm0zATh6oGIFj0xP6XeHIASKuR705vDI7aJ405CvTdCQc1CE26WFi2xQieUVJskQM4/FyrWwy0sFqMUp0DoaJvguky4crasO4xxJdWWmTn1drYsLS1KlpVg0J2Z3BISzGVEAvBqvLnYXvkMJs+4AZNn3BAgVkJNFucU4Zy3JxjhcGwsLC0srXvhFh9Eu3oIpM8O9jCyobJc0b0bjsHGobBkyRJkZmYiLi4O55xzDvLy8vDFF18w3w+3sFgI/VQtx+1ChSZzTSua8tLRbdH2N1SWO27e1tPBmKk1RFKYT698xmzTLIH1bCSl38/N6eXzm2vDZkDVi53lJTraJgAZtuzKdpQsLkb7J3Lfh4PgZcF7772H+fPnIzMzE//+97/xq1/9CjfddBM+++wzDB06lNl+uGCxgEi8SDPXtOKgw4XZQjV/K1lVWD4JyTs6UawYcPvYNa3Zjn3ITeYc65hSUobtsE+0pHha0AT9FbnDBfoe1itS1O6lSBwH1Pj73/8uef/SSy/hnHPOwccff4xrrrmG2X64YGGIkZkfJNg2nCwtpHDiwaTekDrFUKwpoYgWO8y08n0kllcBBlw9k2fcgO0Axpc8wLhlgdgljuzKu2MFdRkFYVPdfHxXOzZUlhsuTGimEKpT1im62GCNNxePVm8FACwqmhhSnyQXKlNkQbVKTG7eisl930tOz8KCFWVYNtd/DXe2Nppui5vo6ZGmu4uJiUFMTPD8LocOHQIAJCYmMm0PFywO48aKzlqYcQ854e4h4pG1SOkuKzYUz1Poq0fNm++InaleawstJsIxmRzHGaaUlAHNW12RjdhI9ly90PdBoa8ehZ6+N7521Ji0Lhm1qkxu3oq6jALUeFNR6Kv3i7dj+7BsbrlrhMqbw36GIUPjTH//u6jDACpx7rnnSpYvWrQIixcv1vzu6dOn8eCDD2LKlCmYMIHt2MYFC0O6y4oBE2bAlN9ejY7/+sCCFllD5ppWZHoeFrPi2i1I5FYW+qlLFH/VOwGP0retQem3J2Ip0Zvbbx72+gXI5Bk3YG1GmqqAoS0tVogVN06htjMGI5LZlDHRb2kBdKXPr/HmWmJFYm2dSiyvUo0JBPz3/1jPPOz2tOsSa/RDjR6rChEqdRn9HYv/YaIW+cYOJWz4+uuvJZlu9VhX5s+fj5aWFnz44YfM28NnCbmBF5c73QJTTK3e6UiSpO1JqZJ8KCRPitxSZaflSssM311WLBEIpDpzYnkV1ma4L3mgU4zvane6CQOGSI2v2O3xX0PBRL5crOiBdoMdTOrVtZ9wJz4+XvIKJljuu+8+/O1vf8O7776LlJQU5u3hgsUBktOzApY15YVnANvU6p2Y3LzV8v1Mbt4qvohAISLA7unh8ic3PZ2WkmixI6Mwh6MlTvKbay2zarHOx2JUHKilGzDjLlbq4yJdrBhBEATcd999qKurg8/ng8djjXmbu4QYU+FrCBp8W9tzVsCy/OZa1OUVIHNNq5XNs4SOtgmYjK0B2R/NoCZ+lASJnmy8RgMQjVLoqxcD7oLRXVYs+vRpyxBKHhDdRHaxsOMAlqScw2x7k5vZ/P6c0CGBtzQkpoXul8ItwZtR6KrSkkKE5GFHh3WFuIE62k4hs61VfLDkYkXK/Pnz8eqrr6K+vh5xcXHo7OwEAAwfPhyDBw9mth9uYbGAYE8sV3a+h+T0rABLS35zbdhaWuoyCkxZWmjLCfk+sZjQLzdjJhNwd1mxREgV+uptmRlEcEtwoFNEcmIvNaud3YMsy3McqiVSXoiQ/K81M217UirqMqQPkeH4QGkHy5cvx6FDh3Dddddh5MiR4mvVqlVM98MFi0WYDWoM16eezDWtukTL9qTUoAKFJR1tEyz114faKVf4GiTXyqY338GmN98JtVkchuiNcdielGpxS/QRiU//VhyTlgia3LwVCV3RXKDoRBAExdc999zDdD/cJWQRwWYMaT3hhttUZ0AagzO5eavE/EwfSwp2ogP2HptftLB/qi701TOftkkgomW8hYOPGwc2N84UMipE6PUjNZBYq6goa4LNDjJKjTcX47va/XlrZJ/JXUB60dO3HD91ymBLOXK4YHEB9OBO0jm7XbTQAsUfMd8bYHKt8ebaUvU5kuguKxbjDTjhBbn+JyO4a5RMPZZjVYoAOvuyHDeKRBrWwrq7rBjoO8/y8y13AckJV5d9pMAFi4XorSUhj1jv71yczYRL35xyV1VKc0vQhGaFvnrUFLlDtPjPIxsLC+ukdIq/P3kfodNPByoVvgZ/grHmRvHpnu4jNgX5Pi1ylPqWCl9DgNUgGIW+ejEw1c3CJVTIPaYkCollJZgLiCTOpB8oIvmcuQ0uWCyGFi3y7KWA9sXuhIVC6QlCLa5GT6K8Ql+97S4gTviiZKZ3GtauP+IO1prBpmR9edYzD7tDFLBalha9wsWqRHN2oCZWzBRz5ELFfrhgsQEiVGi3j54bvrusGPA8bGnb9Jg46zIKFEWL0lTJSMeKlP+RPGMlEmA1QCv9zsvmlqOUimcj8V/P9mVspSmFejwMy2uo0FevmeY+HAdqrQRxxIqtN8A2c00r1hfxhI9OwGcJ2QCZwkpeRiBFEkMlxdOCprz0gJde1Iqd6RErKZ4WV9zg4ZrdM1wEjR0JBFnixIw8+TWolAun0FcfIFbUMNOn6HVTl3pzxGzSRr/Pimc980LehpJYmdy8FfvgQcoa44GwTXnpYSnaIgEuWGzETC6BCl+DYdGS4mkRX5dnx+Hy7Dgkp2dh3rF9Qb8779g+XesZxQ1WGKunOJtB65ognwVrc7gIGr24Lfsvq2tX1Q1jAjNCRa0NwSAZmcnvYtf1llhepVu4qUHaSrvYlPKrcMID7hKykICMt30+YqM3vD8ORjY92NOinmG1rf/fBbJ9zZtbjuWDR6rua/ngkaJoka+n6BpKawd2pqq/p3D7zCc92Cm86My4agMNuZboaypYpmWOMVgX8VOLa9PzPZbo3V6pN0eSNVZvZudQYHENb8qYGFDQcHtSqum4wKa8dGSuabWkCjVHH9zCYgHkaYT1oHF5dhxSPC1Y1bYUFb4GyzsNJQKm2xJxktbuf7kcFlYW1vECevepd7/cXO1unLLymd2v/LqzOkvys555IfWdavcKSQZnFjJDKNIsmuEEFywMoYWK1g1npOMgfmTA31GEerPoETlaFhhdN7yGcGEVkzNQMRsLxXEP8pIM4QBpsx35gUJxA6lNXd4HDxM3kBXuco5+uEsoRO6/JhvxpLhTX+ejNqtGL6XeHNF10tEm/SyxPPRcCUruHjnENaS0nuLxyd1CLnYNWZX51igkg6eWgNVqo57P3OYeUqvdYlXCNDdixtIRyrUq35+ZbSWWV6GjeiemVu9ERZt1982znnmas6G0UHIBAX6xwiJeZVXbUixYEfJmOCHALSwWoEesKFVTJS+twZzF4LNgRZmuJ4VgogY/NR/BH46WFhJ06LagUC3CxT20obJcfLlJYBkhkrMT25UPalGRuYrfSiJse1Iq9sETapM4LoILFgchooX81Vv8j8WAuWBFGUbs7zL9/bqMAuDF5cof0nEtEUBieZUk8JDVgBquA7MW4Ta1mSVW/Z5O5/yxM+bGjMBWOybivmZhXeEp+d0BdwlZTDD3UDCLipzk9Cx0BknspJfGV3+JZRqzhtSsMLU9Z2H/iKT+Y/vpvEDxsjNV6hoi4oX6PwXOlR6Qp+rX7JRlAxGLRGLBTN/J6VkAAmd5mYHu0N02rVsJuzKpVvgaME4lv5AZzCZR1CrhYVasqKXtN7MdN8/sU3IDkTT7rGjKS7e12CNHHW5hsRg1sUKsKUY6g8uz41g1S8TMTKOC+JPi/4qWFlqcENT+dxDaDSfHavN+qPklzGJ13A6L8xYubiw5Zi0srEWk1WLFLaJ3k0K8Cl0TiFhWuHUkcuAWFhsxEqXenpUEoF8cdLY2opP6Ksv6JnqCcIH+mBaSp4WInQqodGJEuNCuIWJx6bO0pPQtdttTXKGvXrRyWD2NUwlxn9R5ZVWczsqA3EJfveJAQphSUqYaeOtm9FQ01lvsVC+sMtiyFCvri9LQXbbU8Pb07lMPStfX9qRUJHRFo6PtFDLb2CaE43lX3AO3sNiInmDc9qwkiVjxCxVrB0w9QbidrY3YVVmEXZVFWLCiTNsyo2ZBcYllhaBHJCmd+0iJPQlXS4YTuP03Z+1SUro3zFoq9MTcsRAr8odBblmJPLiFxSU05aVLgmCv7HwPnZ32tmHE/i7sH+EXS/nNtdhFdXbBnjAk/nt5sK0O15DTU52V6Gxt9McMUaKFVbFHvU/jA624pFsgDxfEyrbLpinwLINiQ4l/kadTIJi17OqxUAWjwtegGK+yL0N7JlAoQbdNeelIaQ6/GY2RChcsNkOm88oH58w1rdKpvvSgL89xIl/GgAUrykDbEox2SiSNfKk3x1DbaDfHbI/9gqWjbYLmFGu5hYWIBxYdsB5oscLSDcjxk99cqziwk/PMIuhZDZa5VVhuV826YjS3lOhyJFXqVfYXDGJV0QquVRIlLGYHjdjf5Xi+Jk4/XLC4EZ2ipNREXSKrCWYRCGgv9d4pK0sw0SLHqXwbbvutIwE7zymrfdktVsxuX94PyEV+KPE+rGcCRRoL/7YVZ8QMMf390ye+AwBkZmYiOjoa8+fPx/z581k1zzRcsLgIceBUKiZIBav6O41PAdj3pK8XumCfUSp8DUgsz7UtSZVZCn31EZ0kzA247brWi/8atqbtVgkVsm01sUKsK3r28axnnuoMuMK+4q963Zxas4CsCK6V05SX7p9cYOle3E1TUxPi4+OdboYIFywOoWZNCHjaJ+JFFCqRTXdZMVIszP2gZEmp8DUgscjYjBnunrGWcBQrBNZtt1KoAP1p91mgZ7p+sPtMPCZfQ0DJBrusKqJYcaDALEcdLljCAK1OKZw7djVqvGysLLQ4Ec+hSjBhd1mxZAqxHSgF3pJ2uiXXhZVoWSLc6O60G6uFCuD/DbTuNSMzbRLLqzC2eqtlOYZImn1SNZlFjIocYk26/FgcFysuhAsWB1EKwG3KS8f6pDRDQqS0z8waKeKFWFnovDWK4iMYKuJEDaN5NKwYVJfNLXck74tWsUq9KLnJ1K5JPVNdw80tRF87LDPUhrpNNWZ7HgZUxIpcqNRlFKBUow2l3hzAV4/Cvgk75FrQa7VU6782VJZj2dxy1PacBYzoD6RlLVZSPC3+Y6v0BwdbGWzNMQ8XLC6AdA75zbVYVWlNUqZwo8LXgFIAydlZ/icdg+LDLE5PI3ZErABMZp2R86ZnYNUjRMLB7SYRXhZmumUpVvprlxn7nppoUWq/0XtI63pYsKIM+MnvDG3PCKvaltrWv3BCgwsWF0AC2kIKVrUgCHTZ3HJHzaIVvgbbn3SMuoYixnXBwMLC8jw4LRz1QMSK0XbqteKFej6f9czD/W3Sshl6ZgJpuYHqMgpsqfMk58rO91A3Qjl+hbTXqNVFtKpwwoYoQRAEpxsRjvT09GD48OE4VFmB+MGDQ9oWv2ncRbABRS3OhFUqdTWscPtJ2mBStBBXGuvr2C1ikC5hQGaubE9KZSqorD7OUpmLVQ0jMStG87IEQ885yOqztJAEl0qoHaOR2U5WcPzUKZTVvYVDhw5ZNvOGjEvnPvhayNOav35qlqVtNYOjqfkXL16MqKgoyeuCCy5QXf+6664LWD8qKgo5Of2driAI+O///m+MHDkSgwcPxo033ogdO3ZItvPJJ59g6tSpSEhIQFJSEoqLi3HkyBHLjjMYoQZYJpZXiS+OtdCdndmOL7G8SvKb650ibZnFgVTVNkiNN1c8B6zr6LgFck/VeHMl02xZ/RYVvgZbxEpH2wSmYgVQnrFT481VvJ71XOPBrh/5jCE5dMFDOSmeFkfFCocNjruELrroIrz99tvi+0GD1JtUW1uLkyf7KwV3dXUhIyMDM2fOFJf97ne/wzPPPIM//vGP8Hg8eOSRR5CdnY3PPvsMsbGx2Lt3L2688UbMnj0bzz33HHp6evDggw/innvuwV//+ldrDpIxcmFCOs9IyQ0y2/Ow5L3dpluSS0NPTAY9UGsFP9OdcXLHARRSnxkZ/CyxOui0qpDrSzw+WTsiaTAg99j4rkAhtz0pFZOx1fA27Tw/5Pr1V4QPvr7Zujt1GQUSSwt9LdP3gpLLWsntp3V9k6KZy+aWg3Z00VWZacEisajwGJWIwHHBMmjQICQnJ+taNzExUfJ+5cqVGDJkiChYBEHAU089hbKyMuTm+m+Ql19+GSNGjMCaNWswZ84c/O1vf8OZZ56J559/Hmec4TcwrVixApdccgm+/PJLnHfeeQyPzo8ef7yeGRFaFpRwnyUkFyk0HW0TkFhu7/EZSYBHixalQNHE8ipJQGaogbVkX3THriRig10T8napESBUdLSPZVZXu4VQYnmVolAB/InL9IoVp+5JMmNHby4jK4oEyo9dHhum9XAVrC9csKIMB8urkNAVLS5TEiu7KotcH7TNMYbj1Zp37NiBUaNGYdy4cbj99tvR3q7fNF1dXY05c+Zg6NChAIC2tjZ0dnbixhtvFNcZPnw4Jk2ahMZG/yBx4sQJnHXWWaJYAYDBfTEoH374oeq+Tpw4gZ6eHslLL3qeoLXWCebuCTexMtvzcMArGG7PfqskHojrh5X7IDk9S/Ii+6CtQUD/tVToq1e8bvS6D4nLp7us2PD1xcI9pOZesBItsWIEct7shrh/jCZeZBmPonTsateb2d+X3j4tuJry0pHiacGuyiJT2+W4G0eDbv/3f/8XR44cwfnnn499+/bh0UcfxZ49e9DS0oK4uDjN727evBmTJk3CRx99hCuuuAIAsHHjRkyZMgV79+7FyJEjxXVnzZqFqKgorFq1Cv/3f/+HSy+9FE888QR+/vOf4+jRo7j33nvx+uuv44knnsDChQsV97d48WI8+uijActZBN3KCXYTh5M4kaNnloIW64uM5aixEztiOJLTs8SZW8FEx+QZN2BtRhqmNweKvU1vvgNAei2FGkQsxy1Bs8HQcv8QjATZ2v0AYfaeaspLx8GkXomlwghKIoeO89melIrusmIx9oQ+h2p9nJGp8YA0CNftIoUH3YaOoxaWadOmYebMmbjkkkuQnZ2NtWvX4uDBg3jttdeCfre6uhoXX3yxKFb0ctFFF+GPf/wjKioqMGTIECQnJ8Pj8WDEiBESq4uchQsX4tChQ+Lr66+/NrRfI2h1jG4drPUS6gDm5qmuVg/ONd5cvDvvNkxv3onpzTsxecYNmi8AimIFgPi5fPssCadA3GBWFfl153S8GLHehfIAkN9cy1Ss0GxP8sdFBQuUVUPvddP46i9xZed7rhcrHDY4HsNCk5CQgPT0dHz55Zea6x09ehQrV67EY489JllOYmH2798vsbDs378fl156qfj+Jz/5CX7yk59g//79GDp0KKKiovDkk09i3LhxqvuMiYlBTEyMiaMyB/0kEu4iRc6qNn9yPD2uIJoUT4vfwuDip3YzqfX15hxREhmhIL+u6LgdVkIj1CnPVmW7lVhVgogVOsiWrnNjdymH/oRvE4DqneiAOasKEJoLSP5dOqvt5Oat2JQxUVEAju9qD5hpJRd+9L1AfqNgv384WPE4bHCVYDly5Ah27tyJO++8U3O91atX48SJE7jjjjskyz0eD5KTk/HOO++IAqWnpwcfffQR5s2bF7CdESNGAAD+3//7f4iNjcXUqVPZHAgDjAY6KhFuqc3VIAIHbZGZMtsJq9HajDTNz1kOAqGIFquu30JfvWI1YLV1AecGRolQYQARHCSbtN6CgiOpqTb0uaPFid5zCqhbqejl4ZDtmGMfjrqEHnroIbz33nvYvXs3Nm7ciPz8fERHR+O2224DANx1112KMSXV1dXIy8tDUpI0eVBUVBQefPBBlJeX44033sCnn36Ku+66C6NGjUJeXp643nPPPYdPPvkEra2teP7553HfffdhyZIlSEhIsPJwdUOsKqF21m52nwCUEFFYTr/CEf7UJ8UN7iHajWJkYAWUB1e135jVfUe7fFiLFXI8Fb4GHEzqDfo9NbHCgkJffdBJBxwO4LCFpaOjA7fddhu6urpw9tln46qrrsKmTZtw9tlnAwDa29sD4kq++OILfPjhh3jrrbcUt/nLX/4SR48eRXFxMQ4ePIirrroKf//73xEbGyuus3nzZixatAhHjhzBBRdcgBdffPH/t3f3QVHX+x7A3yjsAhEPRUIoJJmCGUnqgGgdSjyRx1HsOpND6XWs8SExTe4xx0ndGW8PHukoZqLeChy9Z8TsQU3MwkU6TmgiEaIYOYoTJahjKmqreOVz//Ds7+wTsA+/ZZfl/ZrZGfb3+/72990P+/DZ7+/70GmrTnvW/fNrvJk5yalj26PGrwp75gbxBt01IelqRWOyMHLN+56uhkvcNSOuvUxbSkbb+aU7sqb6bn27oM6W/VEcXeunI9sb/vav0WTHbQ45/h3Awws/tnnsg3ZOYlI0JsuuEVbfrXlL6Vt1+Eu9VYuKZXLIVhYy8mjCUlxc3OH+8vJyq20JCQnoaGCTn58fVqxYYdW/xdSWLVvsrqOnOHI5x1i2vV+wfMN7P2f6vnRHnk5aAOc7grqD6eUeNRMUSw8v/BjPl33e4Y+XM2teUabwN7I3WbGXabIC3O2XdfhLPWYMjMEXh8+blTVtdfGVy9vkGo/Pw+IL3PHha0+zsukcHJ190RnL+voXYndlbP5vj7df3rOXMVno6teh8XxqX85whvF/PSV+saqXe9pT+soA5VKQPR1YjSNuHE1WOmtdMSYrlv2nRk7IQNGpc7hy/x1lfiFL7c0pRD2LV3W6JXOWv0SNb9i4xqeQceqvDi1n78gU2KQOe/pt2DtCSM1LQp11uHWGI60WStLQRZdZrM7rgKIxWR3Ws73/sek2y4TEnS0plu6OCrrbR8WR97sjyYpxynzA+nVgus80WbGcH8g4Au7dL/VWc7WYToTIluKejQmLStzVqdD2ukF/dfrxisZkIW9QGv7r50PIm/OWMgmZq9hka1tnr4vu2HKi1iUVdyfNxrjb27dCTWYjb4a2v4KwOxknhgPUbwU2TUQ6Y0xM2pvE0NTICRko+tekhpa84XIieRYTFjeyXBjMGWp/oc0o26UsvPduvz6ASokGkxX3sje+pq0nnX05dKQr+nkcHvqEW1pZLFtVnE1WjDO1qsFyrRt3M01WHH0Orv7vjcnMX2pO4y+wL1ExZWxt2Tt0AO5763/M+t0YFybl503PxD4sKrI19NHeOQ48hW989+MvwvapmRhZrpHkSty/W/OWQ1Px26Ny0iC3LDRoy5X77zj1Y8ee/4dlx1lTxhluTfcb/zbd1tFlyb1DByhJzsgJGTYnOGR/Fu+0fv169O/fH4GBgUhNTcWRI0dUfXy2sKjIckVSb+bpqcXJPn8vK1F+qdrDlVYVTxm9cKlDlxhsMa5QbPm4XcHb3velrwxQkhVHfpA4Ei9n+0G1d5yjj8cfWt5n+/btyM3NxcaNG5Gamor8/HxkZmaivr4effr0UeUcbGFxI+PlIG9sZTFO1uSNv1Ty5rj25eVLvPH/4w6jFy5tt69PR32A2hv55upoIHfG3djS4q7WFnfOzGvZidZ4Mxp86ReMXrhUaSWxvJlqb7vlfuoeVq9ejZkzZ2LGjBl49NFHsXHjRgQHB6OwsFC1c7CFxUnGuWBu3v4/s+0tBoPZ/YzD/8CXSRPxj0f+jAm1u7usfvaaXFIMpI3Bun9+7dF6/MdDC5W//3bjOm7evu3B2qjP8nVhL8P1a7h+p/OZSO31TVI8YEdsb9y4odo57aV/ZBBmGgxWr8UWg6Hd18PkkmK0WGyrTBoKuFh/g/Zah+e1ZPn//ePGNbuO+/bPD2LYno7XTnPEgf+Mx9RvDfjf9PG4+fVOu48bmfNGp//zw+tXmd3//NG7l3+erW1Q4mR8jORZC5Xyz9Y23H3duUHEsvdx+b/nu+Wx1Wb8ruhoHjG1tN36Q5XjW1rM313tranX2tqKqqoqs5npe/XqhbFjx+LQoUMu1cWMkFMaGxsFAG+88cYbb7zZfWtsbHTb95LBYJDo6GhV6hkSEmK1TafT2Tzvb7/9JgCkoqLCbPuiRYskJSVFtefHFhYnxcTEoLGxEffeey/8/Pw8XR1VtLS0IDY2Fo2NjQgNDfV0dboFxsw5jJvjGDPneEvcRATXrl1DTEyM284RGBiIhoYGtLa2uvxYImL13WardaUrMWFxUq9evdCvXz9PV8MtQkND+YHoIMbMOYyb4xgz53hD3MLCwtx+jsDAQLO187pCZGQkevfujfPnzZdXOH/+PKKjo1U7DzvdEhERkdM0Gg2GDx8Ovf7fk/61tbVBr9cjLc32cgvOYAsLERERuSQ3NxfTp0/HiBEjkJKSgvz8fNy4cQMzZszo/GA7MWEhhVarhU6n8/h1yu6EMXMO4+Y4xsw5jFvXmDJlCi5evIjly5ejubkZycnJ2LdvH6KiolQ7h59IF4yxIiIiInIB+7AQERGR12PCQkRERF6PCQsRERF5PSYsRERE5PWYsHRTK1euhJ+fH15//XWrfSKCcePGwc/PDzt37jTbN3/+fAwfPhxarRbJyck2H/vYsWN46qmnEBgYiNjYWKxatcqqzI4dO5CYmIjAwEAkJSVh7969VnVYvnw5HnzwQQQFBWHs2LE4deqUs09XNc7EraamBtnZ2YiNjUVQUBAGDx6MtWvXWh1fXl6OYcOGQavV4pFHHsHmzZutynS2/PrNmzeRk5OD+++/HyEhIZg8ebLVZExdzZmYXbp0Cc899xxiYmKg1WoRGxuLefPmWa1N4qsxA5x/jxpdunQJ/fr1g5+fH65cuWK2z1fj5mzM/Pz8rG7FxcVmZXw1Zj2KapP8U5c5cuSI9O/fXx5//HFZsGCB1f7Vq1fLuHHjBIB88cUXZvtee+01+eCDD2TatGkydOhQq2OvXr0qUVFR8tJLL8nx48dl27ZtEhQUJJs2bVLKfPfdd9K7d29ZtWqV1NXVydKlSyUgIEBqa2uVMitXrpSwsDDZuXOn1NTUyMSJEyU+Pl4MBoNaYXCYs3H7+OOPZf78+VJeXi6nT5+WrVu3SlBQkKxbt04pc+bMGQkODpbc3Fypq6uTdevWSe/evWXfvn1KmeLiYtFoNFJYWCgnTpyQmTNnSnh4uJw/f14pM2fOHImNjRW9Xi9Hjx6VkSNHyqhRo9wSD3s4G7Pff/9dCgoKpLKyUs6ePSv79++XhIQEyc7OVsr4asxEXHuPGmVlZSllLl++rGz31bi5EjMAUlRUJE1NTcrN9LPGV2PW0zBh6WauXbsmAwcOlNLSUklPT7d6Y1dXV0vfvn2lqampww9DnU5nM2EpKCiQiIgIuXXrlrJt8eLFkpCQoNx/4YUXZPz48WbHpaamyuzZs0VEpK2tTaKjoyUvL0/Zf+XKFdFqtbJt2zYHn7E61Iqb0dy5c+WZZ55R7r/xxhsyZMgQszJTpkyRzMxM5X5KSork5OQo9+/cuSMxMTHy7rvvisjdGAUEBMiOHTuUMidPnhQAcujQIUefssvUjtnatWulX79+yn1fjJmIOnErKCiQ9PR00ev1VgmLL8bN1Zh19vrzxZj1RLwk1M3k5ORg/PjxGDt2rNW+P/74Ay+++CLWr1/v9PoNhw4dwp/+9CdoNBplW2ZmJurr63H58mWljOX5MzMzlWXEGxoa0NzcbFYmLCwMqamp6i417gC143b16lXcd999yv3OYmJcft20jOXy61VVVbh9+7ZZmcTERMTFxXkkbmrG7Ny5c/j888+Rnp6ubPPFmAGux62urg4rVqzAli1b0KuX9Ue0L8ZNjddaTk4OIiMjkZKSgsLCQojJFGO+GLOeiDPddiPFxcX44YcfUFlZaXP/woULMWrUKGRlZTl9jubmZsTHx5ttM85U2NzcjIiICDQ3N1vNXhgVFYXm5malnOlxtsp0JbXjVlFRge3bt6OkpETZ1l5MWlpaYDAYcPnyZdy5c8dmmZ9++kl5DI1Gg/DwcKsyXR03tWKWnZ2NXbt2wWAwYMKECfjoo4+Ufb4WM8D1uN26dQvZ2dnIy8tDXFwczpw5Y1XG1+KmxmttxYoVGDNmDIKDg/HNN99g7ty5uH79OubPnw/A92LWUzFh6SYaGxuxYMEClJaW2lyJc/fu3SgrK0N1dbUHaue91I7b8ePHkZWVBZ1Oh2effVbt6noFNWO2Zs0a6HQ6/Pzzz1iyZAlyc3NRUFDgjmp7nBpxW7JkCQYPHoypU6e6s6peQ63X2rJly5S/n3jiCdy4cQN5eXlKwkK+gZeEuomqqipcuHABw4YNg7+/P/z9/fHtt9/i/fffh7+/P0pLS3H69GmEh4cr+wFg8uTJePrpp+0+T3R0tM0lwo37Oipjut/0OFtluoqacaurq0NGRgZmzZqFpUuXmu1rLyahoaEICgqya/n16OhotLa2Wo0I6eq4qRmz6OhoJCYmYuLEidi0aRM2bNiApqYmZZ+vxAxQJ25lZWXYsWOHsj8jIwMAEBkZCZ1OB8C34uauz7XU1FT8+uuvuHXrFgDfillPxhaWbiIjIwO1tbVm22bMmIHExEQsXrwYkZGRmD17ttn+pKQkrFmzBhMmTLD7PGlpaXjzzTdx+/ZtBAQEAABKS0uRkJCAiIgIpYxerzcbelhaWqosIx4fH4/o6Gjo9Xpl6HRLSwu+//57vPrqq44+dZeoFbcTJ05gzJgxmD59Ot5++22r86SlpVkN7TaNieny65MmTQLw7+XX582bBwAYPnw4AgICoNfrMXnyZABAfX09fvnlF1WXaO+Mu15rbW1tAKB8ifhSzAB14vbZZ5/BYDAo+ysrK/Hyyy/j4MGDGDBgAADfipu7Xms//vgjIiIilAUPfSlmPZqne/2S82z1pjcFGz3nT506JdXV1TJ79mwZNGiQVFdXS3V1tTIq6MqVKxIVFSXTpk2T48ePS3FxsQQHB1sNa/b395f33ntPTp48KTqdzuaw5vDwcNm1a5ccO3ZMsrKyPD6s2cjRuNXW1soDDzwgU6dONRs2eeHCBaWMcdjkokWL5OTJk7J+/Xqbwya1Wq1s3rxZ6urqZNasWRIeHi7Nzc1KmTlz5khcXJyUlZXJ0aNHJS0tTdLS0lR9/s5wNGYlJSVSWFgotbW10tDQIHv27JHBgwfL6NGjlTK+HjMR596jpg4cONDusGZfjZujMdu9e7d8+OGHUltbK6dOnZKCggIJDg6W5cuXK2V8PWY9BROWbsyZD8P09HQBYHVraGhQytTU1MiTTz4pWq1W+vbtKytXrrR67E8++UQGDRokGo1GhgwZIiUlJWb729raZNmyZRIVFSVarVYyMjKkvr7elaerGkfjptPpbMbsoYceMjvuwIEDkpycLBqNRh5++GEpKiqyeux169ZJXFycaDQaSUlJkcOHD5vtNxgMMnfuXImIiJDg4GB5/vnnpampyYVnqw5HY1ZWViZpaWkSFhYmgYGBMnDgQFm8eLHZF6+Ib8dMxD0Ji3G7r8bN0Zh99dVXkpycLCEhIXLPPffI0KFDZePGjXLnzh2z43w5Zj2Fn4jJ2C8iIiIiL8ROt0REROT1mLAQERGR12PCQkRERF6PCQsRERF5PSYsRERE5PWYsBAREZHXY8JCREREXo8JCxEREXk9JixERETk9ZiwEBERkddjwkJELrt48SKio6PxzjvvKNsqKiqg0Wig1+s9WDMi8hVcS4iIVLF3715MmjQJFRUVSEhIQHJyMrKysrB69WpPV42IfAATFiJSTU5ODvbv348RI0agtrYWlZWV0Gq1nq4WEfkAJixEpBqDwYDHHnsMjY2NqKqqQlJSkqerREQ+gn1YiEg1p0+fxrlz59DW1oazZ896ujpE5EPYwkJEqmhtbUVKSgqSk5ORkJCA/Px81NbWok+fPp6uGhH5ACYsRKSKRYsW4dNPP0VNTQ1CQkKQnp6OsLAw7Nmzx9NVIyIfwEtCROSy8vJy5OfnY+vWrQgNDUWvXr2wdetWHDx4EBs2bPB09YjIB7CFhYiIiLweW1iIiIjI6zFhISIiIq/HhIWIiIi8HhMWIiIi8npMWIiIiMjrMWEhIiIir8eEhYiIiLweExYiIiLyekxYiIiIyOsxYSEiIiKvx4SFiIiIvB4TFiIiIvJ6/w873IN3an0QiAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADFdklEQVR4nOyde1xVVfr/P4iKeEGCTDTEkMI0Da3MW6UdLVPGUSjNLpYME1PD1ERkff0NjVZMjhlZzZTGfPnS1FSWE0gNTmWeslJJ8kIxmZpiaIo2kOIVDffvj8Parr3Pvt/PYb1fr/OCs8++nX32XuuznudZzxPBcRwHBoPBYDAYDA/Twe0TYDAYDAaDwVCDCRYGg8FgMBiehwkWBoPBYDAYnocJFgaDwWAwGJ6HCRYGg8FgMBiehwkWBoPBYDAYnocJFgaDwWAwGJ6HCRYGg8FgMBiehwkWBoPBYDAYnocJFo9w0UUXYc6cOW6fBoPBCHPmzJmDiy66yNC2brVTBw8exC233IL4+HhERETgueeec/wcGO7DBIuDrF+/HgsWLMDhw4fdPhVHqa6uxu9+9ztcdtll6NatG5KSkjBz5kzs2LFDcv1t27bhpptuQvfu3REXF4fZs2fjxx9/FKzz7bff4pFHHsGwYcPQo0cP9OnTB+np6fjyyy+D9rd9+3bk5eVhzJgx6NKlCyIiIrBnzx5d32Hp0qWYMWMGkpKSEBERodhoHz58GDk5OejVqxe6deuG66+/Hps3b9Z1vJKSEgwaNAhdunTBJZdcgr/85S+GvtecOXMQERGh+qK/j9XXX4n169fjmmuuQdeuXZGQkIAHHngAx44dC1qvpaUFjz76KPr27Yvo6GiMHDkSq1ev1nUsLdcUAH744QfMnDkTsbGxiImJwbRp07B7925dx3Kb/fv3Y8GCBdi6davbp2IJeXl5+OCDDzBv3jy89tpruOmmmxw7ttZ7lOEAHMMxFi9ezAHg6urqgj47deoUd/r0aedPygFuvvlmLiEhgbv//vu5v/3tb9yTTz7J9e7dm+vWrRv39ddfC9bdu3cvd/7553MpKSnc888/z/3pT3/izjvvPC4tLY1raWnh18vPz+diY2O57Oxs7uWXX+aefvppLiUlhYuMjORWr14t2GdpaSnXoUMHbsiQIdywYcNkfwMl+vfvz8XFxXE33XQT17FjR+7uu++WXK+1tZUbM2YM161bN27BggXcX//6V27w4MFcjx49uB07dmg61rJlyzgA3M0338wVFxdzs2fP5gBwf/7zn3V/r/Xr13OvvfYa/3riiSc4AFxOTo5g+fr16zmOs+f6y7FlyxauS5cu3PDhw7mlS5dyf/jDH7ioqCjupptuClp31qxZXMeOHbmHH36Ye/nll7nRo0dzHTt25D777DNLr+nRo0e5Sy65hLvgggu4RYsWcc8++yzXr18/LjExkfvvf/+r6VheoLq6mgPAlZaWBn12+vRp7tSpU4b2279/f9l730569+7N3XHHHY4fV889yrAfJlgcREmwhDPr1q0TdHYcx3E7duzgoqKighqh++67j4uOjua+//57ftnq1as5ANzLL7/ML/vyyy+5o0ePCrb973//y/Xq1YsbO3asYHljYyPX3NzMcZzx32DPnj3c2bNnOY7juG7dusk22m+99RYHgFuxYgW/7NChQ1xsbCx32223qR7nxIkTXHx8PJeeni5Yfscdd3DdunXjmpqaTH0vpY6M4+y5/nJMnjyZ69OnD3fkyBF+2d/+9jcOAPfBBx/wy7744gsOALd48WJ+2cmTJ7mUlBRu9OjRqsfRc00XLVrEAeA2btzIL9u2bRsXGRnJzZs3T9P38gJqv7NRrBAsra2t3MmTJ3VtExERweXm5po6rhG03qMMZ2CCxSHmz5/PAQh6kQ5G3BCUlpZyALjPPvuMu//++7nzzz+f69mzJ5eTk8O1tLRwP/30Ezd79mwuNjaWi42N5ebOnct3qITW1lZuyZIl3ODBg7moqCjuggsu4HJycgQNtJtcccUV3BVXXCFYdsEFF3AzZswIWjc1NZWbMGGC6j4zMzO5uLg42c+tEI1KgmXGjBlc7969udbWVsHynJwcrmvXrqoj28rKSg4AV1lZKVi+fv16DgD32muvSW5nlWCx4/ofP36c27ZtG/fjjz/yy44cOcJ17NiRmzt3rmDdlpYWrnv37lx2dja/bO7cuVxkZKSg0+A4jnvqqac4AFx9fT2/7Mcff+S2bdvGHT9+nF+m55qOGDGCGzFiRND3uvHGG7mUlBTV7y/FgQMHuDlz5nAXXngh17lzZy4hIYH75S9/Kfit+vfvz6Wnp3MffPABl5aWxkVFRXGDBg3i3nnnHcG+Ghsbufz8fG7IkCFct27duB49enA33XQTt3XrVn6djz/+WLKtIb/53XffzfXv31+w38WLF3OjR4/m4uLiuC5dunBXXHGFQHTT56lXsADgcnNzuX/84x/c4MGDuY4dO3Ll5eUcx3Hcvn37uKysLO6CCy7gOnfuzA0ePJgrKSnhtyXtoPjlBHruUYYzsBgWh8jMzMRtt90GAFiyZAlee+01vPbaa+jVq5fidvfffz927tyJxx9/HL/85S9RXFyMxx57DFOnTkVrayueeuopXHPNNVi8eDFee+01wba/+c1vMHfuXIwdOxbPP/88srKy8Prrr2PSpEk4c+aM4nFbWlrw3//+V9PLCBzH4eDBgzj//PP5ZT/88AMOHTqEq666Kmj9q6++Glu2bFHdb0NDg2CfTrNlyxZcccUV6NBB+GhdffXVOHHihGzcDr09gKBrcOWVV6JDhw6aroFR7Lr+GzduxKBBg/DXv/6VX/b111/j559/DjpW586dMWzYMMGxtmzZgtTUVMTExASdEwBBnMZf//pXDBo0CBs3bhRsD6hf07Nnz+Krr76S/f67du3C0aNHVa+BmJtvvhnl5eXIysrCSy+9hAceeABHjx5FfX29YL2dO3fi1ltvxeTJk7Fw4UJ07NgRM2bMEMTq7N69GytXrsQvfvELPPvss5g7dy6+/vprjBs3Dvv37wcADBo0CE888QQAICcnh29rrrvuOtlzfP755zF8+HA88cQTeOqpp/hjV1ZW6v6+Uvj9fuTl5eHWW2/F888/j4suuggHDx7EqFGj8NFHH+F3v/sdnn/+eVx88cXIzs7mg2qvu+46vl274YYb+O+ixE8//aSp3Tpx4oTifvTcowyHcFsxtSeURsFyFpZJkyYJLCejR4/mIiIiuHvvvZdf9vPPP3OJiYncuHHj+GWfffYZB4B7/fXXBcd5//33JZeLkRvZSL2M8Nprr3EABKMpMvp/9dVXg9afO3cuB0DRQvHpp59yERER3GOPPSa7jt0Wlm7dunG/+tWvgpaTUf7777+vuO/c3FwuMjJS8rNevXpxs2bNkvzMCguLXdefjPjnz5/PL1uxYgUHgPv000+D9jNjxgwuISGBf3/ZZZdxPp8vaL3//Oc/HABu2bJl/DJiyfz444/5ZVqv6Y8//sgB4J544omg9V588UUOAPftt99Kf3kZfvrppyB3lhT9+/fnAAgsKkeOHOH69OnDDR8+nF926tSpIOtdXV0dFxUVJThvpd9ZysJy4sQJwfvTp09zQ4YMCbruRi0sHTp04P7zn/8IlmdnZ3N9+vQJig2aNWsW17NnT8E5oc1KowVyLdVe9P0ohZ57lOEMHe2RQQyryM7ORkREBP9+5MiR2LBhA7Kzs/llkZGRuOqqq7Bp0yZ+2YoVK9CzZ0/ccMMNAivIlVdeie7du+Pjjz/G7bffLnvcSZMm6Z6FoZVvv/0Wubm5GD16NO6++25++cmTJwEAUVFRQdt06dKFX0fq80OHDuH2229HcnIyHnnkEVvOWwty50efv9r2nTt3lvysS5cuqtubwa7rP378eHAcp+tY9PfUc00XLFiABQsWBB1LyzXV+v31EB0djc6dO+OTTz5BdnY2zjvvPNl1+/bti4yMDP59TEwM7rrrLixatAgNDQ1ISEgQnFtraysOHz6M7t27Y+DAgbpnoonPk/DTTz+htbUV1157Ld58803D+6QZN24cBg8ezL/nOA7vvPMOZs6cCY7jBG3UpEmTsHz5cmzevBljx47VfazXX39d0+80YMAAxc/13KMMZ2CCxeMkJSUJ3vfs2RMA0K9fv6DlP/30E/9+586dOHLkCC644ALJ/R46dEjxuH369EGfPn2MnLIiDQ0NSE9PR8+ePfHPf/4TkZGR/Gek0WxpaQna7tSpU4J1aI4fP45f/OIXOHr0KD7//HN0797d0Ln9+OOPaG1t5d93795d976io6M1nb/csaKjo3H69GnJfZ86dUry+1uFk9df7Vj0cbReU6VjabmmRr+/ElFRUVi0aBHy8/PRu3dvjBo1Cr/4xS9w1113ISEhQbDuxRdfLBicAEBqaioAYM+ePUhISMDZs2fx/PPP46WXXkJdXZ3gHoqPj9d1bjT/+te/UFhYiK1btwq+v/h8jJKcnCx4/+OPP+Lw4cMoLi5GcXGx5DZqbZQcRkSOFHruUYYzMMHicegOXW05PYo9e/YsLrjgArz++uuS26vFzpw8eRJHjhzRdI7ihleOI0eOYPLkyTh8+DA+++wz9O3bV/A5EUgHDhwI2vbAgQOIi4sLGu2cPn0amZmZ+Oqrr/DBBx9gyJAhms5FihEjRuD777/n38+fPz9otK5Gnz59ZM8fAP+d5Y7Vp08ftLa24tChQwKxefr0aTQ2NgZdMytx8vqrHYv+nn369MEPP/wguR4A1Wui9ZqS76fl99PDgw8+iKlTp2LlypX44IMP8Nhjj2HhwoXw+/0YPny4rn099dRTeOyxx/CrX/0KTz75JOLi4tChQwc8+OCDOHv2rO5zA4DPPvsMv/zlL3HdddfhpZdeQp8+fdCpUyeUlpbijTfeMLRPMeLOnZzrnXfeKbCy0lx++eWGjiUeDMihNiDRc48ynIEJFgexarSihZSUFHz00UcYO3asoZHAW2+9haysLE3ris39Upw6dQpTp07Fjh078NFHHwnMw4QLL7wQvXr1kkw+tnHjRgwbNkyw7OzZs7jrrruwZs0avP322xg3bpym85VDbEpWMxlLMWzYMHz22Wc4e/asIPD2iy++QNeuXfkRs9yxyHf88ssvMWXKFP7zL7/8EmfPng26Blbi5PUfMmQIOnbsiC+//BIzZ87kl58+fRpbt24VLBs2bBg+/vhjNDc3CwJvv/jiC/5zJbRe0w4dOmDo0KGS3/+LL77AgAED0KNHD83fkSYlJQX5+fnIz8/Hzp07MWzYMBQVFeEf//gHv853330HjuME7QQJ0iaZaf/5z3/i+uuvR0lJiWD/hw8fFgQ762lr3nnnHXTp0gUffPCBQJCWlpbq+o566NWrF3r06IHW1lZMnDjR0n2LBwNyqA1I9NyjDGdggsVBunXrBgCOZLqdOXMmXnrpJTz55JN46qmnBJ/9/PPPOHbsGGJjY2W3tzKGpbW1Fbfeeis2bNiAiooKjB49Wnbdm2++GX//+9+xd+9e3u21Zs0a7NixA3l5eYJ177//frz11lt4+eWXkZmZafo8rTAl33LLLfjnP/+JsrIy3HLLLQCA//73v1ixYgWmTp3Kdwhyx/L5fIiLi8PSpUsFnevSpUvRtWtXpKenmz5HJey4/idOnEB9fT3OP/98vlPt2bMnJk6ciH/84x947LHHeCHw2muv4dixY5gxYwa//S233IJnnnkGxcXFePjhhwEEzPSlpaUYOXKkwD1KZoAkJSWha9euAPRd01tuuQX/8z//gy+//JKfHbJ9+3b4/X7+2Ho4ceIEOnTowMfAAAHx0qNHjyBXw/79+1FeXs5fy+bmZrz66qsYNmwYb8WMjIwMGiCsWLECP/zwAy6++GJ+mZ62JjIyEhEREQKrxJ49e7By5Upd31UPkZGRuPnmm/HGG2+gtrY2yDL3448/qlqB5bAqhkXPPcpwBiZYHOTKK68EAPzhD3/ArFmz0KlTJ0ydOpVvXKxk3Lhx+M1vfoOFCxdi69atuPHGG9GpUyfs3LkTK1aswPPPP893qFJYGcOSn5+Pd999F1OnTkVTU5NgVAkEzMKE//f//h9WrFiB66+/Hr///e9x7NgxLF68GEOHDhVYfJ577jm89NJLGD16NLp27Rq0z4yMDP66HjlyhE/Dvm7dOgCB6a+xsbGIjY3F7373O9Xv8N5776GmpgYAcObMGXz11VcoLCwEAPzyl7/kzde33HILRo0ahaysLHzzzTc4//zz8dJLL6G1tRWPP/646nGio6Px5JNPIjc3FzNmzMCkSZPw2Wef4R//+Af+9Kc/IS4ujl/Xiu8lxo7rv3HjRlx//fVBI9o//elPGDNmDMaNG4ecnBzs27cPRUVFuPHGGwWp10eOHIkZM2Zg3rx5OHToEC6++GL8/e9/x549e4IsDX/961/x+OOP4+OPP8b48eN1X9Pf/va3+Nvf/ob09HQ8/PDD6NSpE5599ln07t0b+fn5gmONHz8ea9euVbQw7tixAxMmTMDMmTMxePBgdOzYEeXl5Th48CBmzZolWDc1NRXZ2dmorq5G79698X//9384ePCgwNLxi1/8Ak888QSysrIwZswYfP3113j99deDOt+UlBTExsZi2bJl6NGjB7p164aRI0cGxZIAQHp6Op599lncdNNNuP3223Ho0CG8+OKLuPjii/HVV1/Jfjez/PnPf8bHH3+MkSNH4p577sHgwYPR1NSEzZs346OPPkJTU5Oh/VoVwwJov0cZDuHeBKX2yZNPPsldeOGFXIcOHTQljquurhZsT6Zt0km4OC4wVbFbt25BxysuLuauvPJKLjo6muvRowc3dOhQ7pFHHuH2799v+XeTY9y4cbqmRdfW1nI33ngj17VrVy42Npa74447uIaGBsE6d999t+I+6em9dXV1suuJp3fKoXQ88dTRpqYmLjs7m4uPj+e6du3KjRs3Luh3VKO4uJgbOHAg17lzZy4lJYVbsmRJUGJAI99LSwZUq6+/1LRmwmeffcaNGTOG69KlC9erVy8uNzeXz95Lc/LkSe7hhx/mEhISuKioKG7EiBGSU8SlpjUTtFxTjguUJ7jlllu4mJgYrnv37twvfvELbufOnUHrXXnllapTW//73/9yubm53KWXXsp169aN69mzJzdy5Eju7bffFqxHJ467/PLLuaioKO7SSy8NSt526tQpLj8/n+vTpw8XHR3NjR07ltuwYQM3btw4QVoDjuO4iooKPlEb/ZtLTWsuKSnhLrnkEv64paWl/LUUn6fRxHFSHDx4kMvNzeX69evHderUiUtISOAmTJjAFRcXa96H3Wi9Rxn2E8FxGgIQGAwGg8Fz9OhRxMXF4bnnnkNubq7p/V100UUYMmQI/vWvf1lwdgxGeMIy3TIYDIZOPv30U1x44YW455573D4VBqPdwGJYGAwGQyfp6em2B0B7nYaGBsXPo6Oj+bxRDIYVMMHCYDAYDN2oBeXffffdeOWVV5w5GUa7gAkWBoPBcJk9e/a4fQq6UUt7wBKrMayGBd0yGAwGg8HwPCzolsFgMBgMhudhgoXBYDAYDIbnYYKFwWAwGAyG52GCxSSffvoppk6dir59+yIiIsJQ/Q2O4/DMM88gNTUVUVFRuPDCC/GnP/3J+pNlMBgMBiNEYbOETHL8+HGkpaXhV7/6leECfL///e/x4Ycf4plnnsHQoUPR1NRkuI4Gg8FgMBjhCJslZCEREREoLy/H9OnT+WUtLS34wx/+gDfffBOHDx/GkCFDsGjRIr4w27Zt23D55ZejtrYWAwcOdOfEGQwGg8HwOMwlZDO/+93vsGHDBixfvhxfffUVZsyYgZtuugk7d+4EEKgCPGDAAPzrX/9CcnIyLrroIvz6179mFhYGg8FgMCiYYLGR+vp6lJaWYsWKFbj22muRkpKChx9+GNdccw1fMn737t34/vvvsWLFCrz66qt45ZVXsGnTJtxyyy0unz2DwWAwGN6BxbDYyNdff43W1lakpqYKlre0tCA+Ph4AcPbsWbS0tODVV1/l1yspKcGVV16J7du3MzcRg8FgMBhggsVWjh07hsjISGzatAmRkZGCz7p37w4gUI+jY8eOAlEzaNAgAAELDRMsDAaDwWAwwWIrw4cPR2trKw4dOoRrr71Wcp2xY8fi559/xq5du5CSkgIA2LFjBwCgf//+jp0rg8FgMBhehs0SMsmxY8fw3XffAQgIlGeffRbXX3894uLikJSUhDvvvBPr1q1DUVERhg8fjh9//BFr1qzB5ZdfjvT0dJw9exYjRoxA9+7d8dxzz+Hs2bPIzc1FTEwMPvzwQ5e/HYPBYDAY3oAJFpN88sknuP7664OWk9LqZ86cQWFhIV599VX88MMPOP/88zFq1Cg8/vjjGDp0KABg//79uP/++/Hhhx+iW7dumDx5MoqKihAXF+f012EwGAwGw5MwwcJgMBgMBsMwn376KRYvXoxNmzbhwIEDQfnIaO699168/PLLWLJkCR588EFdx2HTmhkMBoPBYBiGZHx/8cUXFdcrLy9HVVUV+vbta+g4LOiWwWAwGAyGYSZPnozJkycrrvPDDz/g/vvvxwcffID09HRDx2GCxSBnz57F/v370aNHD0RERLh9OgwGg8HwMBzH4ejRo+jbty86dLDPuXHq1CmcPn3a9H44jgvq26KiohAVFaV7X2fPnsXs2bMxd+5cXHbZZYbPiQkWg+zfvx/9+vVz+zQYDAaDEULs3bsXiYmJtuz71KlTSEjqjyM/HjK9r+7du+PYsWOCZfPnz8eCBQt072vRokXo2LEjHnjgAVPnxASLQXr06AEA2HjfP9E9qpttx/n4rmQAwJ1rK/llf/n0AwDA/ddNktyGfG4HN35dp3ndD4cGzv28x17AT0+au1GVOO+xF3Rvc+faSvxjnLRZUukzo9/jotyAb/eKf32nuN6F/b8JOjb57f8xLl1w/PMee0HyvtDDqNxHdG9DqHrxaf5/uXtRC+Lvpcb9102S/X2cxIpztvO5CGXodubDocn8e9KmeInzHnsBI2ZOxYdDk3HeYy+gZ1Ok5Honjh9FzrQr+L7DDk6fPo0jPx7CM59WI7q78eOcPHYUD183Anv37kVMTAy/3Ih1ZdOmTXj++eexefNm094IJlgMQi5896hu6GGDYElMrgUADNrY9uBGRwMAivyV+MOk6UHrl/qmAQCaCnLQpVMny8+H8OkVqUHLptTsClq2Ki0FXdr+P/nnfMvOKa6wGE0FOYL3RngnfRZ+66/g35Prl+WvAKKj8duNfn4Zwcy17dqtB0as3AGo3Csx0dFBDc076bMAAL/1V6B0USn//X+70c/fF6W+aeiywa/7vLp1M37v0tfib23HzvfpFxK/3ehHkY7rGtP2+wAI+o3spqkgh78Htd4LcYXFeAdAtMS+7HxWQxG+LaEyg2d+U8+/9+L1OvnnfNSu+gR9EWg/ytMyFdd3IoQgunsPU4KFEBMTIxAsRvjss89w6NAhJCUl8ctaW1uRn5+P5557Dnv27NG8LyZYPAgRKwD4m3/3kmzV7eiO3ElWpQUy9JLGhry3AyvECqHUNy0gUAD+r9fJ8legyO2TUIC+plZDfu9SuPN7kXvPreeM4V2y/BW8eM6oKQv6XE3EhDOzZ8/GxIkTBcsmTZqE2bNnIysrS9e+mGCxmMTkWuyrG6J7Gzn4m79t5Frkr0SRv1KwTlxhsSc6sqr31gTOB+dGojRebOilRuik8aEbIS9Azinflx44LxdF1rolhQCAsXkF/P9A229swMqiBXL/8MLFQ7+NEqHyLDDMoSaip379rkNn4jx0xncAqKurw9atW/mM76TYL6FTp05ISEjQXSuPCRaXUBIpBLrTVGrg+I5VJGTcgJwLEVF0pyJ253gV+py1XH8tjFi5w+xpCXDbIjQ2r0B+ec0Wh8/G+4TCfe80cq5kpc+n1Oyy1YJrBiXrYkZNGZodPh8n+fLLLwUZ3x966CEA5zK+WwUTLDZgxMoiRZa/ImBNURAicYXFro60paAf2lAVLYAwrsVt65UaXrmm65YUYpRNFhaaULGuMLThVRGiB7cHEW4yfvx46EmaryduhYYJFgu5alIPNLQNpMWiRYtFhSB2+ahhhQXACpoKclDaZlkhiM8trrCYN49LuVyMfg8ps7uXqJ6eqsnKotYR2xkjYhSxW8hu3Pitjd6XTsR1hSpar4nXr52RQHOGMZhgMcmF/b9BTNtMjQaJ/khKqBT5K4NuciOigzTaXhArBCJaAOkRB32upVSnQzohYoFRs8RIdVjiGAc92B2votUlpPZbxhUWC2c0tZHvS9ctdMXQcSn0Mjn3j3g7I3hRgFkF7dKQcm8QvN4hOwn97FaRZZB+LqxoQ81Cn0M438tegQkWGxGLlfK0TMnZPmpuHzm8FhRKII1GqYrooEfKUiJDi/tIKaBRr3CRu55mhYCVKH03Eoyrp9HWIkgY9kKLmfYsXuJE1lkBMlYMevZNbCMAB13OYnc8Eyv2wwSLSf4xLp3PCSGGPExkpk9GTZlgto9ZjAodp9DScEito9W60lSQEwjCk1nXCteBFfErY/MKgJVnTO4lAN+oi4KB6e+pd0aK2EIitrSoiRp6PaeQCob2sktQK7QLiVll9OOkhYUJFOdh1ZptJKOmTHJOfnvATOch1wnR8S9ErACBRp68zCIOGPYS4hFoU0EOxuYVYGxeAQY11qOpIId/ibeTQ826okWMbItPwrb4JP5c9EC+j5E4APHvQ39/KzsuN1yuaveylfe8V7DiOjsVT6LnOF6y0IY6zMJikjvXVvLZRvWQb6GlxYtY1cgr7UdqFCo2r2vpvMUdn9eECkEczDw2bbjgc4FYaKzn/123pFDwvelrIpVPRSw61ETIINGxjMwSMvocLL43cM4f33db8IdTJwBQtkZoEdZOBxW3V7w441EKvaKIBeVaBxMsFiIVTKtGuAsXK9EbmyI1Q8Prs4nsYGxeAdZR107K5eZWh7zmkmcwYefDpvdz/dI3Be9pAaOU70POJUnjZbESTq4hK5IOaslHpRgrw/A0TLBYiBklTW/LxIsydCcjl2iKLhcgFi56hI9XEvKJR59NBTmADvcL79pp++5j8wqwLT6JdyvRnbKcpcUOrBArhLLmzgCA7YNjgwQMoC5iAGmrnFdxW6zwGbY98HzQqD3XTKyELkyweBCx8PFag+A1iMVA3ICLhYq4k+KDdRWEZpa/Imj6tduYEVG0CBnUWA+0iZW4wmIMaqwXBNiGwgyiucsKgn7XUQA+bvufFi7XL31T2nVkA+EUW6KGVckgrXAJMTES3rCg2xAg35ceMm4MN85TrrGUEyqEKTW7VM9XnPPEzu+3Olt+xEx/R6sb5bF5BWgqyAkSK+HAx/fdJngxrCfLXxEy7ZOTSNV9Y5iDWVhChCx/BWBBcjA78WLafdrqQoJ06WVxOvdn5/dzswQAESrb4pOClunej4FaQkZjucjv2Z4sGozQgAXbWg+zsIQY7CEwh0Cs6Ai+M5Ogj1grqqenyq6j9JkUdrlqyPRot0bMWu9v8nsMynsA+b50VL23hq8WrhW3Y0DM4IVzF1v98n3pvDU4lKzCjNCBCZYQIyF1ND+VkxEQHVI5Kazo0K3MIiwnSPQKFSeg3ULk5XWy/BXI8lfo7si90PGHOmLXBxkE6HVdNhXkoNQ3DQmpowUvBoPAXEIhRELqaHT54AcA1tSOsRqn3UFSIzhetMzJwhQod0hNBTm8C0bJ2mKmRhFBay0hOZzOUUEH5IYSelxDQUHYaSmeyrkSKmKKdueZtQBn+SsQS6XblyIhdTS+/OAorprUA0tNHY0RajDBEoKcmnQhEnAh5npIsHgxfgXQXi2XLtpI3otn4pj5fsSSIidcRqzcASRr21epb5ogWZsTODljyIwYH5T3ALYteQGAtg6f/k5j4Z1g41ARKzRWuatHrNyB+tHxGNOwVvLzhh0bkDCJWV7aI0ywhBANOzYAyQiIlWXemm7qllgZ1ZbNVA2xcJEaSVthSVHDiy4gJejr5PQ0ZyURTFvDLqpLwp7kgIBLSB2Nhe+1ufI03JNeESh2oHYfy2WB1hrDpMXlo1SYVPI4/gokJtcisUF6f6Q+G7OstE+YYAlBGnZsAAxU5g0njFp0tLiM7LimijWlNFpWCHqTxpmFTjJnNyRuKB9AkcLxaPcDEStF/krM9VeiSeUYXnL72IFWwU3W46115G9eAQ40RqpuX67iugGApoLg6vSB5dqn6ZPjjFi5AyPqhBZKPQMAYrWTc2FZ4dJi2AsLug1hSGR+e43GNzuV1Umzu5mcDF5IJU46NdraYnenr+W+JtdVz7W167zVrE+r0lL4l1dw2rUoRo8Irp6eGvQyg5Q48VpcIEMIs7CEASRHC004P3hWxctIpfK3C6WRGxnZSWWwlRIrcYXFguKGTiHVIRM3ES0CjBQ/JARVyw6hEa+aEPJSzhi3hQoNbdlISB0dsCC3UeqbhthGbfsRWzHFFhNxrh/xM2mldaXUN831QUY4wiwsYUq4mzatbvTJ/ty0VkkJE682ekS8xBUW8x01KazI8DZeEitiaLGiBbOz7+zCq89tqMMsLGEMK6ioDzs7W/r6y/0utIVFdZq1B2r8iKtAE+Ty12T5K1Q/k/rOcrESinFBDEm8KlbkrB5Z/grB7z9i5Q7VGXf0/oiVRan9o9cJl4Hegh9+RIduJw1vf/b4MQDAiBEjEBkZidzcXOTm5lp1eoZhgsVG6IcwnB4Gt9E6M0gKOZP8qrQU3Wn6zSAnYIBgsSKuZ+Q1ptTsAjT8JtsAjGqbchxE3gOC76cloDNUUXML2eWe9KpYIWhpH6unpwqESmJyLRJrarGvbgj2YQgSk2v5fRkZpIm3ae9tdnV1NWJiYtw+DR4mWBxA6cEpT8tkI0UdxBUWa+ocCV6JGVCCiFmpuBwrs+1ajV3Bq3riFhja8LpYAZydpaN0HHqAqVX0qJ13eVomThw/isD8N4ZRmGCxEa+oc+YOOgedj4UWMnQOCrtRG8WJLSleCbqVwkoxSFxCYjcAQztit2YoCBUaqWeDdgMBwiSM++qGaNqP3nPQa6FhFnRnYEG3LsOsK9oxMjuIzMwQm9m9ZHVRahi96gayA/JdvWxVChWaCnJMiRWj7RLZLqOmzNK2bcTKHfyL7JtMbSZuIDnEz5e4FptVs4XYwNB+mIWFETIYtX4Q0eJl6IDb9j4lMhwtLOT+c+JebCrIsSQjsVnRYhe8VSXNnmOZtc4AQtETbveymzALi8uYSSimdf/hhFHLiJbt3MoanO9L5wWK1qnM2+KTwjpbqx2QaddxhcWOm+/p+88u6x5xBzlRPqE8LdOxjlguSZycS0jN5SqeOi1ug624N8j1YWLFWphgcRH6IbFDuISTWIkrLPaUG8dK9P5OtLjZFp9kxymFLVn+ikCVbheeDTvvXyJ0nbLMWe3yIYjdNcA5d5AcRLSouYYIcgJFnFjOKCyWxT6YS8gh5Mz84iyhVk2rc7JBJlla7bRQmJnKHIrQcRxS9414WZG/0tHChF6gPC0zKDOwEk0FOSiy8XzcgA6yTUgNVDBeiVNunY4lWCEcxKkk1NpRej2zx2VWFftgFhaHkOp08n3pqiNku11GVkDOj2U6NQ65hlIzhLSYlvN96RhVswXb4pMEL+Y2Ci30xLeIn7WGHRuwMPECq0/JFYy0ecTSYsbC4fW2tr3DLCwWYGZKG6mXovagyGWC9Aq0dYU0pCR7qVnLi97cK+GCEfN+0Da+dKBmC6rShlt0Vgy7MCNWgPCYXTV3WQHgS7e1nfN6W8qQhwkWC6BdIuKHwOr5+VpcRqW+aZgiyihK8o44MVsmtq00fXlaJmIbgRuSH+X9y14cwaxKSwFcCrgFtDecYiuLnhiCUSEkWvSY1K0qhOkm9DOp5Rl1yoppiWvDg8+7XUKFuYPshwkWC4krLAZEI1ytD4fRuj9SwWNSDTgJ+KMTpznJOXPtuWVavmc4dEhGkLOu7F6SjQF5JQC0dyhE2Iyq2cIv86J4cauxFwsAOh/M4yVbcH/dUs/ch06JlfaWbdiKgSUTK/bDBItJ/jEuHb/d6NdsvtfyYBgN/OJNwhq2dVu4JCbXav6eds8O8nKeFisaQSnLDC1e5LBL1NA5SdyEn0Iu8+xm+SuQlQwgOR3wV9gWsOvWs6hEOObCUcKsWMn3paPconNhyMMEi0nuXFsJREdrXt+IxYWgpXNvKsjR1RGI1zXbaJLRP0FuOiIRLrcmn8ujkJhcK4h5cWo0uSotRXC91WIBmgpyLBtxi39ntU5CfH2NQNevkkttDgCJdWcU93Nr8qNActu6ybW6RTZ9rw3SteU5jP4G+b50WaFiBVKZlaWeLS35WQSzv9qy19o9nT0ULSziac1yba04hsVIKn4x7UncuQkTLCGE2nQ/IlboeBW9o1grR3tKuROk2Fc3BDeU7EKiLx0JqaPR4K8IdKjTi3F0pX3m+LjCYuwrOXedbqD+X5197jrENkbicHwrL6TI76EkcPR0qKzRY9DPndvT1DNqygT3NolNI5+F+v1KW7u9GFvHCIYJFpuwM726XKAt6Rzp0ZxR87sRN4kVo38gIFwasEEw+q96bw0A5/Ox3FCyS5Blk260tVTa1pq51g2UrCsMc4iFv9yzZHRgMKixHtvik/iZeHYg3u/h+FbBZ1l+e0SLOC6PLnYoRfX0VN2DIxpLcq8Y3pqhByZYbMKNTkpsXqYbQ7utLeKH1kwDAgR3pjeU7MLq7BReuOh1fbmB3nsgHEatTkJ3oF5DbaBA38di16fWWkCDGuvDYiqzVje5VHp++rNqBD5XG0RIzeRkhAZMsJjkL59+gD9Mmu72aahitHPXOgJ0oqMlrprV2SmIKyxGVdtyO60uq7NTdPvytQgVVo6+/UGeJVqgsESLAaxsP3Tvy6RgYYMM52CCxST3XzfJtn1r7dS0JGeTEx5qQsZIcKlZ64oadIwJACTmPcCPNN1M4a8kVOR+I3LeWf4K4Df3AVUHbTs/O6GrTbc3lJ4RWqTEadyfntiVQY31WLekMKSFj5sdfkZNmanZX8wd5CwsNb9F2GFW1DoCp4NtaabU7OJfYsTLxduuSkvx1DRLJUiw7g0lu1D13hr+pRWz7julonOlvmmSYkWyU3p5qanzcBM3cpQ46XbV83ybDZbVW07BqeBcJ4srhgrMuuIszMJiEW6a9/N96YAPqPJNwyoq8FYLanEuWjoiq4JtrUBgfZleLJjlAwRbYKreW4NBBhthNV95VdpwDGqbhgpRp7ItPgmjoJ4Lpb3gRsMvsG6ZQPyMSAkOqVgVK7F7/0B4pP6nyagpcyzYNqOmDM0nTxo+FiMAs7CEEVn+CuT70hFXWKxqIRGnAxfj9YBWrRDLC0HK+iI3W6Z6eqpgVhCNnrT4Utg5u0MrSkGMegk1lwQRk7ygpAiFgqNSMOuHs+jNNB3OfPrpp5g6dSr69u2LiIgIrFy5kv/szJkzePTRRzF06FB069YNffv2xV133YX9+/frPg4TLGFIlr+C70CUhIvS1Get7iCxZcnu+BWjEOFCGnW9biMapQaIiBCtYiTLXyErihjy3HfygK71x+YVCF5exoj4G5tX4IgAtkMUudGhm7WuMIQcP34caWlpePHFF4M+O3HiBDZv3ozHHnsMmzdvRllZGbZv345f/vKXuo/DXEIOYWdeFimMxBQYmfpspSmfZLrNIgnjbIDEu9DH3AfpY9HTZrX+dnotJ25mFPWquNTCwsQLAI2nryZQxM+m0bpeVrJuSaFuYUWKr9pRUkHq/rfq3g3FOBAWbCtk8uTJmDx5suRnPXv2xOrVqwXL/vrXv+Lqq69GfX09kpK0Z21mFhaHoAuqeQ2pwFwtozyrrStF/ko0FeSgyF+Jt+oWITG5NigGxWq0CCO7haaX84loxYhAjiss5l8ZNWW6RtpW/iZSbiE3MfPdQtXK4jROCtE1lzzj2LGsprm5WfBqaWmxZL9HjhxBREQEYmNjdW3HLCwOQ0bgXnroiWWFnmmkZQqm3SOjIn8l4K9Eoi89ZLKyijsMIyPlUCMxuRao07au1BTgpoIcwOWcNE48k1oDY0t905AP8HmG9B5DHOBtBi+1U1ZhdiozoK/tm7DzYZNH08//crPRjTNujzjOncU0AP369RMsnz9/PhYsWGDq3E6dOoVHH30Ut912G2JiYnRtyywsJvnLpx/IfkaC98Rq3ouNAB3roiX3itYih1oRFy6jIRYX8kpMrlVc34pjEsS/lVKMCr2MbKcmVmjLmxetb3KQ34BcQ61xF/R91VSQI3hvlwDWM004IXW0LeegFyP3gh3CONTuSy2Yta5onRGq12roRfbu3YsjR47wr3nz5pna35kzZzBz5kxwHIelS/WncWAWFocgDwlp2O0ULWYfyCx/BWCyvoadnKu2GmhQxYnkrGB1dorkb2TV7B4p4ZPlr3DMn1+elokRddpFppS4E9wfLtwrdtyfDTs2WL7PcCPcBIwe8n3pmp7RUBcqhJiYGN1WEDmIWPn+++/h9/sN7ZcJFpPozXRLRpRFsCd3i1Wjh311Q3Br8hBBR2WXgFmdnYKmgkW6tyMuo7eoZbcmP2rJOYln7khZT6Q+I6gFPkpl5N0GAK/YL1gyRvUGAJS2xc6QKtRKwk/sknurTv/vpYRXAi/F2aWlnlGvCnnAviRy4vs/VEWLFe4gLdD3c7iIFzMQsbJz5058/PHHiI+PN7QfJlhcxKv1ZOjOif4/33duHa9GyL9Vt4ivkKwW96L0uZFGhnT8Wf4KW2ZqGIX+LkX+Sj5eJDYtM6RnCtnB4nsLkW+jlcWJBG92Qyfcs0JohkrRT63WlfbIsWPH8N133/Hv6+rqsHXrVsTFxaFPnz645ZZbsHnzZvzrX/9Ca2srGhoaAABxcXHo3Lmz5uMwwWITWkdh59wb3hMuYugOnrgTzJZ2t2MWUFNBTtsoqtKQxUUptkXNlWc2p0rGqN4oN1BPiAglAl0OQDyiJEI5VMWKXSPWUt80YN8hxXW8bF2xkkGN9RhVs0XWkuLFODwttJffz2m+/PJLXH/99fz7hx56CABw9913Y8GCBXj33XcBAMOGDRNs9/HHH2P8+PGaj8MEi03k64wBodeVygOhRdBY8TDqnY1jRadnZx0a2nVBRrZGYl6UzOBioVDqm6Y4VTaQll+Gl5ciA9pcJJfOGS/cL/V/U5g3zFZ3PIMa67EtXj0fxOJ7CzF3mfdnfW2LT7JEVNBB4Ub2R9otpd+LuHbtJt+XbsodZNa68t7QXwLIN7UPrzJ+/HhwHCf7udJnemCCxYPIPdxemw4dahBhtFqjy8gIau4gLTNWSMOoJgaP6js1hgbEQbf0rKG5ywow118piBPRW6hQC0QcG50SP6pmC7b5kix1X8Q2Guuw+W08IKCZdSX0YYIlBIgrLMa+ttTyJCurFdN6xeT70rFPYz4NqzBrXRmbV6C701DL+yG2pNAikZ7tRVtd6JGoknWFbLet5gXFcwxVd43d2JlSfVBjfZDYXIlT5944lE+H3FNxhcWAgaR2VWnDHZ1x1h5gmW29gat5WBYsWICIiAjB69JLL5Vdf/z48UHrR0REID39XOdTVlaGG2+8EfHx8YiIiMDWrVuD9vOb3/wGKSkpiI6ORq9evTBt2jR8++23dnxFS5CyqoitA07lFrASO0SXFuIKi3VbV+iYEAB8Rl6SS4Rc/yx/helRN5tVEDp4NSkgsyYwwhHXE8dddtllOHDgAP/6/PPPZdctKysTrFtbW4vIyEjMmDGDX+f48eO45pprsGiR/LTLK6+8EqWlpdi2bRs++OADcByHG2+8Ea2txlKkk7gFO6b6KXWuwhk83g/atQMj4sBI4KxVrrimgpyQnRJKsLtcghztSchZcb+1p+tlJ2ZmB7HfwFpcdwl17NgRCQkJmtaNixMmjF++fDm6du0qECyzZ88GAOzZs0d2Pzk550bKF110EQoLC5GWloY9e/YgJcV4Y+xGfAktWgbkZfIPiJ4RFp17xSkSk2tdGQXmq6T5r56eCkAoWsrTMi1reMbmFQiCY90grrAYMHGv3lCyS5D7xi7ac2NvVtSOzStA0ZJC5MMbOW70TkJgMKRw3cKyc+dO9O3bFwMGDMAdd9yB+nrtPtuSkhLMmjUL3bp1M3z848ePo7S0FMnJyUF1E7Rw8cVXSy636uHUM6NlxModhkWH042aF60MRKzIYZUVSxy3Q8oirEpLYY26BsLRmsiC6b0Js654C1cFy8iRI/HKK6/g/fffx9KlS1FXV4drr70WR4+qz3/YuHEjamtr8etf/9rQsV966SV0794d3bt3x7///W+sXr1aMYFNS0tLUOVKAFhwYS9Dx7eTfXVDkO9L19WwOxnk6ZZLQc26ooRco0WmSpO/pb5pqnENcYXFApHiNKHQOd538oDgfXlaJv8KB7L8FUHT4enPCFqmWjMY7QVXBcvkyZMxY8YMXH755Zg0aRJWrVqFw4cP4+2331bdtqSkBEOHDsXVV0tbONS44447sGXLFqxduxapqamYOXMmTp06Jbv+woUL0bNnT/4ltsZIzSQxi5mR5L66IW3p9R9VTZ7mRiVkO3OvGIG2ruxeko3dS7I1bSdZeViGdUsKsW5Joep3T0gdrWrtMYPXCtpJ3edkenEoiBS9gbfi35+IF1rEWCEqx+YVMIudSZh1xVu4HsNCExsbi9TUVEGKXymOHz+O5cuX44knnjB8LCI8LrnkEowaNQrnnXceysvLcdttt0muP2/ePD57HwA0NzcbciFphUxltgotCZycIDG51lDdICuwU5hl+Sv4a0sHAmupfC1FRk0ZP4XdDswUjExMrgUsnP5e6puG2Mbg5V4XKnYTyjV7GAw7cD2GhebYsWPYtWsX+vTpo7jeihUr0NLSgjvvvNOS43IcB47j0NLSIrtOVFQUX7mSrmB559pKy60rJFeHldAWF9pd5HQ8gNEGWGkUOzavgH/Joed7DsgrwYC8kqDlRjrQLH+F7toxejKpEpeSk64lqztRqXtd6VqHg5Ch8/eoXU8z0+S9Ou06FDDTNjKhaQ+uCpaHH34Ya9euxZ49e7B+/XpkZGQgMjKSt3LcddddmDdvXtB2JSUlmD59umTFx6amJmzduhXffPMNAGD79u3YunUrX2xp9+7dWLhwITZt2oT6+nqsX78eM2bMQHR0NKZMmWLjt9WOXVlYCfvqhqA8LZN/IJ2MKbHDFURcLUaxyv0i18AZFZ/V01P51+rslKAXAEyp2SX4qwWzYjgUYmBCAamkg3bA3BPuEw4i2wu4Klj27duH2267DQMHDsTMmTMRHx+Pqqoq9OoVCGStr6/HgQPC4Lvt27fj888/R3a2dIzBu+++i+HDh/PJ5GbNmoXhw4dj2bJlAIAuXbrgs88+w5QpU3DxxRfj1ltvRY8ePbB+/XpccMEFNn5bb0GCbIv8AQsR3Ql6ATWLiRRyosXK6rh692XG4nY4vpV/ifFaDJDThMNMITnhJxYuoV7dOVxgws99XI1hWb58ueLnn3zySdCygQMHKhZSmjNnDubMmSP7ed++fbFq1Sqtp6gbK2JFnAiCpfOg0MXHVlMp583EOcgdU2vsAxEfRLSYsaAoWaz0Wley/BWSBdRIBWSn8k3osaiIMfPbKmUnNiIiytMygRDoCBJXngEA7JveSfJzvSUimgpyUCoSInyVcX/luXuM3EsaxLvc8UeFgbhzA3FRxiJAU14bImxI7TdmXbEOTwXdhhNGO664wmLAYqEgRalvmmRBMrrRTPSl2yJc9EAKwImtLXo6h4CYOPc/IRArJN9ZGk0YJ/7tiZixUsisSksxLFqy/BUon54pmMqemFwrGNlLZfsFgGqkKl4T3dW+63YAybo2cYzElWd4gSInVMygx0pmR5FFhvXQzwZznVoPEyweggTb2jk7BNA+U4eMMEhW0/w2AQPon2XiVmZbgtSxeXEmBz3S1XgMOphZfEzxjCGjM4iy/BUoLSzGKpNuIdq6VI1UyZk6UpSnZUqKXSOWwerpqUiscaemlBp2iBQ3kJuF5STlaZmI801DbGMkDse3CgSx2OUpJZbJNlLuUYIdqSXMwCwr1sMEi0l++H4wYi6V9nPoHVXbHWxLMPowEwETV1jMx7toES6BdVMMl5i30j1kBUpCg5iBpZBzJ0lR5K9EvsLnevYlhjWk9qAUc+X2PZtRU+aZ313Oeqf0mdo2tJBxS6zQ1hWvXOtww1PTmkMVMmVY6iYNh+BAMaRCcVNBDt6qW4TE5FrFgF2rTKNmZwM5gZyQIY0oHUDZVJDjSkCl2eBBq4MPw20KKH2PhsI96xRiq0pGTZngXlISJUooWV0Y4QWzsFjIiJXS/ngtgbhm0sbrweqkX0Cw64gm35eOhNTRmNsOZ7VIxrIAKDXoCrIKO0Z/gfvX8t1aBomFsvsYUv+7TVNBDuCBgZPYrSMWqkaEBwlqJdvabV0JWFCFgl0c68asK/bBLCwW40aaey9T5K/UlQgtFFATG2qNJm1xau/Tkw/Ht7LgxHaGUUuK0/tUgwguNt3ZOZiFxQb21Q2RnP6pFNPi9FRmhjuQGBejAbcMe9kWn4RBjdorxhO8ZFGRw0txLFZBfx+n2za9GZqdpFvX/0W3rt2M74A7DmAiRowYgcjISOTm5iI3N9ey8zMKEyw2oSRaSn3TBJ2VU+Z0uanMDP0YnaZM8m9k+Ss8YaZ3GznrilrnKjdTySxKYiUURIkc9Aw2t7DTCpJRU2Y4CF0v4gzFgHeEitVUV1fzZWi8ABMsLmBmhodRVmenBBoMNrJ3FC3CRqoBJNu43ck4gZca+1AWJQxGuMMEi43IWVkAYUfkhDuIjG5iGyMRKyrsl1FTFjauIiMdfFHbVG0i5JRm7pB19FwvOn+NFFJWBi8LFSfuFS+JmHChyF+JAS5fVytn9JA2zckYEqm6T+xedQ4mWGxGSbR4hfK0TAxoi3QPdeGiJP5WZ6fIiwPKRVNKfaalmq6YuMLiwP7aELsAATB3kArhGG9hFivKfriJlgRxUtuI15MSPU5cE/q5ZoHi7sAEiwMoJRPz0qwiIlwOx7eGpdvohpJdilmE+aBkUf0Q+j0dgyQVOJvvS0cphG4eN1yAjNCHWPrI1N1y8kGIChax+KeFh9aEcfQ2XphhpkdUH4lj+WLMwgSLA9xQssvVeil6C/yJ3UYZNWXSVgKPYTZ4WUtQMi1oSIr8poIcXsgUFeQI9sEH2DJ0oaUjcKrQpN0Qy0nQd25Lpy9ebuZ7u2m5UrJUGs3BAjhncTLzHB+Ob8WdlZVwf55NaMMEi0NIuYacsK7oFStSlKdlIrYRiM0rCVvrS+C3kc/Wq4bYMsNQh9QRkupEiUh2I7+Gk+T70nULCDMzpNwSK3a4m922Wuq5lln+CjTbeC7tBSZYXCJUxIoYr1pfzGYK1vsdyKjY7e8dqtD3ZqlvGgY1Ck1j/O8hEwBN3AtxOuKLtklsDwDz9h3CwsQLAKgHXGsJyBbvR3yPCPbhsPVt95JsDBAF3TtBqKdU+EvyfciH/vw8AEssZyVMsDhIKATg6oVYX7Ik8suEO1oaYeYOCoaIFaWGnNxHsrWZAMSZuN/o2KQGXzpKE9WFj1rdJzqmiZ5NIt7O7XvCDbdQbGMkmhw9orXsSTYmVhjWwgSLSS7s/w2aG0ZoXl8pADeUIcLFjTwvVtRhsuOcyayCUB9daqE8LRNIC/w/YuUOAAFhIo5NyPJXYHW80PVmJLMsYUrNLqxKS+H/0svUtiEQS4uV9wDv/pD43WlXRr4vnc2IYjA0wgSLSf7y6Qe4O1W7YCEBuKuzUwL/24Qd7iA1iHso1DBSEJLErNAzOcQWJieFqZ5U/2ZN1KWFxcH3bptIoRlBLTu6MnBu2wCMWvICAKAoLcWSfDNTanYJ/or/V9oGAKrgnmvPCxloGfLw1jHRs6xFYDJXkPUwwWKSzP55urcJ3OxsiptVmLWumLGA8B2dL52fNcQjIWKsJI6egSRK9W9VgKNUh2plIGwgfsUdczuxzLQnNyZDH2QGoF6YWLEHJlhcYMTKHUhMrlXMCRKKhGIMi9nZQVI4ZVkxepwiUV4ZtfXEomWEhDVFCWJd8RpqriOnKPJXIr/tf62uIVY80z2Y+849Orh9Au2ZxORarM62vsF0wx0EBEbeA/JKEFdYrBqgaCVv1S3iX4nJtZoDm1dnp1gisujOXCwiSGVmOwmHXCRuQVxDTt6vUhT5K1Hkr3RkZM46XO3ouS8Ox7cio6aMWVdshFlYXIIE32b5K8LO0sLXLcorcXza87migYH3Su6iLH+FI509nWDODgbklQDtsJEMVwuDliDcUMyeHCdKoigV70ZiwWIbI/m2QzwIcFOgK/0u4TiZwmswweISgxrrUZU2HNvikwKixaK8LG5ZV+Sgk84RyAjETiFzrlETNm60NcSK2TviukFyZIliTNzGK4GeTQU5QF6B26fhGXjBDeXO0WjyuHxf+rkU/w4T2xgp+E6xjcHr8LMNqf/pbZy2XmgVIcyq4gxMsLjMoMZ6fhThpbpCdkIaIJK/haBn5GTUhy84Rpi4UsSNpZoQ84pYAYCxHhArU2p2ocrtkxDhhcrK7ZHgAY1QsMhlZWY4A4thcQFxjAWZJWE2qZzXrCtaKE/L5F8D8kqQ70t3PZ5AD00FOSj1TfPUdG61UaFXYl7iCouxLT7J1D6sCpoNJfdSRk0Zdi/Jdvs0XMHJe1eLdYUIGBYX5AzMwuIRiHsIQLuytoiRciEBwTlevNTBkHOhYwrE/nqGPcQVFgNTJ1i2Ly/dV3L1d8zGrsjN8jIz4NE7c8wIdg/IlNy7YkFCKkWT5czK4gzMwuICcqNxOh9FuKXwN0tAyEQiy1/hqU7Fa2ix9Oh1CXnJhdSecNpqN2LlDkPCwwmxAtgvCuQGGFLWE3E8DsMZmGBxmMTkWsVEWSQYt9Q3TZdoCUV3kBFCoZFw07riRasO7bZZlZaCqvfWoOq9NcjyV1iSNM4Kt5BaZlw3cEuY6xEgVomV6umpim1YYnKt7e4gKYFoNKMtmaZOXgxrYC4hj0KCce1M389g0NiRJr56eiqwBKh6bw1uKNmFuLa8Q1Zmy2VYD10Piryn/zfLW3WLcGvyo4LjvVW3CLsl1nXTwqe3ujXJ3Dw2bbhgeRWA48ePW3x27Q8mWBxGbyryxORa1XiW9mJdAdr8+m6fhA7K0zJDxr8t1zHoFTLi+/HW5EeBNuEtEODJ+s/RTtqDqzEw2tcx4l8S+LNb/L8FvFW3SNN6TlkopKyTtFiREi/0s82nafDAzDen+fTTT7F48WJs2rQJBw4cQHl5OaZPn85/znEc5s+fj7/97W84fPgwxo4di6VLl+KSSy7RdRzmEnIQNXeQGGJlUcreakemXK8iF4ToVYg5WWxW9tqsIjFKZmz6vFdnp/CmfFqkkFgIozERZjDrHgqlGWpGcDoLdTghFit0JXLyXHhhmr4bHD9+HGlpaXjxxRclP3/66afxwgsvYNmyZfjiiy/QrVs3TJo0CadOndJ1HCZYPA4RLYB0IK6bpnW3OiWvIx6p0Q2b1OdeI9+XzltUyP9EwGT5K3gBTb4HuwdCB6/fe24hZUEsT8tUnD5OruWaS56x7bxChcmTJ6OwsBAZGRlBn3Ech+eeew4FBQWYNm0aLr/8crz66qvYv38/Vq5cqes4TLA4iNFRNS1ayKgWcNcVJO6g7O60Qs26QiMlKr3QcYivJ13sUOn/In8lfz+6LVSaCnIssxh4MfAWsNbqU+SvbBeuL7OEQnC/EzQ3NwteLS0tuvdRV1eHhoYGTJw4kV/Ws2dPjBw5Ehs2bNC1LxbD4iBmZkSQ2UN8R5cMVMMdwaLUSdmR4wHwTrIzNbSk6vdSXIucaFGjqSDHU6UGCF4VHV4h35ceklXV7URsXQnUMgr8LxdwSz+/E3Y+jNJ+5tp3qxl6uCtiTnczvH3zCQ4A0K9fP8Hy+fPnY8GCBbr21dDQAADo3bu3YHnv3r35z7TCBEuIUdUWfT6qZougJo9TriGjI2rxrINQxooEY3YnnMpXKHkQKuLPDbzYkVt5TkX+SsR5OH7KaaRcQWptKd3uesFSaid79+5FTEwM/z4qKsrFs2GCJWSpoqbNkYyLJFbCLvFihfmf3kf19NSg91J4aWZQvi8dpQqfSzVgtCgRm5qdsLbk+9Kx5pJnMGHnwwDCT7B4UWR4mfZ+vYxOkybZbcVChbhHt8UnecrKYgUxMTECwWKEhIQEAMDBgwfRp08ffvnBgwcxbNgwXftiMSwO4UTm2tjGSF6seMXloIRcHAwdD+PV2BW1uAIvuX0ILDhQHeZSCm+UxEqpb5qm2BUiVpoKcgTB6AxpkpOTkZCQgDVr1vDLmpub8cUXX2D06NG69sUES4izLT5J8iEjHabXOs1wIMtfoamBckK0JKSqP/DidawM4tTj4ludnYLV2SmK0/SNYlURREb4onTfa3Gri595MoOOFEDN8ldg3ZJCS8411Dh27Bi2bt2KrVu3AggE2m7duhX19fWIiIjAgw8+iMLCQrz77rv4+uuvcdddd6Fv376CXC1aYC4hh9CbME4rdAEuMXScRHlapiBbZSjgVeuKHGqmZqnfyaygadihLcp+ws6HA6brnW1iq+1cla6v1PcRr59RU4Z9CCQ2FOcECnI9tKWoIO49KzOYWlkEMdzxWpFHMWbPT2r7fF+6YmFDEmQrh9Jzmu9LR1FBDn9f06KlveRl+fLLL3H99dfz7x966CEAwN13341XXnkFjzzyCI4fP46cnBwcPnwY11xzDd5//3106dJF13GYYHGA1dkprvs2iYvFaPCr29NXvYBSIKsabk6TbNixQXZKvVHRQG+XmFwbtH8tHU6RvzIohblVrEpLMeTeqXpvDeDhzpyhjh6xQz+Xcmn4xXmUxJT6pvGBzOJjr1tS2C5Ey/jx48FxnOznEREReOKJJ/DEE0+YOg4TLCHMqJotmjrC8rRMjKgLjheRQkrIZNSUoXx6pqOixYliZ3qgpyurnZcT4iQhdbRm64qVsxmkpoA2FeQABn4rKxvyLH8FtiEgVOIKi4GCnID4oNASjB7bCDQZPAdS9JJcbzZ9WD9WWn/0WDzlxIpSwDz5jPzWcoyq2YJS3zScjDqq6bwZ8jDBwhAgZYFxwzrgJbEC6AuqIy44LTgR52JnQGCWv8IzM7iq3luDAY2RQCMQm1cCqJj55aAz+4ohcRCSrtjGc+4F8teo+GmPEMFnxf2k13KoJlbUUBItRf5KwF+JU2fO6DonRjBMsNiMF9xBRiDCRRAc2VasTq0YYzjjFSGlxboibkDFUzHdntlg9TRQK6fzkw5PSpRILmeYxsz9qFegWPH7iQcbWf4KlHo8PijUYYLFZrL8FYKcKVai56ET5zzRipw4Ec/ysFLEJCbXAnXm9yPrvjC5n1BFagRIL5PKMWEnVoqVIn8lBlgkIqwUI0rWGrfwklWMQD9jas+b2XtU7feVsqwoTWwQixavXdtwgk1rZhhiX90QwYtMVTU7XdXK6a7laZmCV5a/gp+KaGRqr5FaUOTYauvYgVPCg1xTumii04SLqFTDiinpZgWUUsVnsfCQWo8sI/sh78l50dXMpZ45qaRtVqFHrMh93l7uRTdgFhYbCUzz9I5LyKiVRQu0hYVMb72hxFgSLitGpPm+dJSLltENS2wjkNXWsGi1vISTqVfO5+62m0gPdDwJoC92qD1CrpcV97HcPuhnl8RuyG0r2Eeb2BVbT8RBzOL7NpTuV4Z5mGAxyYX9v0FMdLSsS8QusTKqZgv21Z3xZF4VJaFCLCik8SHXrXp6qqV5V7TOngIC4iWWCrrLqCnjG0XSIHrJrK/HJK60nrjxdzquZVTNFlSlDceomi1Bnx2QKTonIATiScrTMg3NoJLCrHWFCASzM3HsEu5iqwq5F8WxSUbuUaV7RCm41kvB8wwmWEzzw/eD0RwVqIpJ56Mwal3Qi5ZaPDR2Wlm0QATKDSW7+CBewNpSAlLWFT2QGR50kTOrOh0ppISaklnZSlFB9mW1aV0rB5CM8rRk9RXbCbQoEf824WThEyO2otAcjm81fX/SuVScEOVejF0KByI4pWwvDFmam5vRs2dPfPPgv9EjSrqM91t1i/j/SUNklcXlAJJ1CQ9azHgxCdxVk3pgaXQfWeGi9eHP96VbNuIm56Ln2IC2UdnuJdm69hlKqF0vPdcJOHetpKaeepWMUb0D/7y8FICwQzY6m0nrPRNKEDcQQSzSzIgLuftQyzNlpg2h2zD6HE6dOYOC8g9x5MgR0wUF5SD90sF/rkdM1+7G93PiGHrfMsbWczUCs7A4BBkdrYNwFGVEwAQSxukblXpRpNAsjQ5U8aTLCdCYyTLL8A5GBJjXhYr4Xi31TUPRrb8QruSvBHzptlVSD0XIvUCLFCviU9xO2MfcQ/bBBItNKE3NpR+mbQbFi9cFiFnoEY6SeBE3TlbHM2h1B9GZcLXATMbeRhzAqxbQK/gt2e+qipRwtWJavRVixcsxUe0dJlhchn641lHL6RkQ4sKJUqn29ZCYXOup5G+JybV4a8kiWXeOUtFAupAfAMCimSLE562l8SMZOu2AdISh6BoS4+Z3IIKD/KVjGqTizfZhiOAZE78XEEIhOOQ38IJYliovYdqqouF7FfkrHbsX2cDEWphgsYHq6alIrDGXT4R0lKVtwmVbfBL1MG8xVdvHS2KFhp4GqRaLomSBMZJLQUyWv0JzQ0M3sm6NzvSOTPXUIgolaEvI4fhW3gVDqpUrCo92hJsdKRELCxMvQGmiRRYVJgraBUyw2AA/LdaCh4ge4QsyKPorkSEaJegRIl6xssgVOZTK4SAXrEne00GJUjk6xMiJCz3+Z9oVVJU2HH00puitShuOsWnDBaXolVAbFept9O0UK1pHr1JuFzWI8JAlOXzdpaE+WhffF0aFiln3m9r9eTi+1fTkCLnp+gxzMMFiE04EfdEPrtgtoSZGvCBW9MK7R6hldJAuLejI9S9CsHghEGHZHgMh3bKwiIUXPXWcthLRQoYWIF60jmgdnFhZPsBNrHQr6bUMWpGlVy3WzOrcWaEuNL0EEyxhQlNBDt9hi8VLqW+apJ/eC1aW8rRMXoBofajFIyy1EZPYvSbOpEnOA9A/ldlJrE7sZtSXL95O6xRUck3F13ZsXgHfSZCRabhaSRhCtNzPRf7KczMrDT6XfJuo4XhWFeX0QoHRcIMJFovhk8e52OHR4gUA4K/EW23/2hkgqheSG4aIhQES7gEtwkGruKCtLjSBxrA1aJkWK1kW5Q4ywti8As1uoaaCHGGAsUmMBh6Kt1Nq3OnrMtamIqChyO4l2fx0bTrPDL1cjFrWXKeDmrVaWvS2OVL7M2KxlkrCp0ZV2nDLLCz085rvS0fzyZMoKP/Qkn23V5hgsQEvZ6SkxUy+L90TVhYpaBFjt9WDTllORkVerLpqZYfk5YDbqrThSKw7Y3h7r97TBCJQxIngtCSGU7sHlGbUqUF38HraMJL8rakgR1CvSI9Vw2rEZQyYtSM8YIKlHePk9D690CNNsXixW7jQoyIvuIbctIqF07Rqu7ihZBdvwdQCsaQYwewsNDrjbj61jBYodKoA0kbQ94FUGQl+G3Kf0v/rxEytI7FQoa0lcqLFqHVUjbF5BQALvLUUlprfIHKp+Vdnp3jawiLFrcmPOn5M+jrpTdVOY4eAEQsEpf2Tc6/SMeNHvL3c/sl50A2tV6YjF/krAw0yhXDqfQCjnUHiytCysNBlOJSQm66vlPcnrrDYVGC4FguL0eBXu4SslmdarRikXYVn9UDPFHrpah9yr7jUkdT8SiVjtHC05TgGPzcZqampiIyMRG5uLnJzcy08U2N0cPsEwo1QEyvAuQrKTh5PMF3bX4kifyV2L8nWndLajrwn4t/QbJVcI9Ciie5IvCBWqtKGB4kVwJmiclpwo5CjFfeIXNvRVJBje6p3vb9dvi/dVasbPfPPK/edFOIK1KFGdXU1vvnmG0+IFYAJFktxuuO3EqfOXS7vCoEIF/FLrsG2qyEv8lcKZr/k+9JtEy50w086ArlGOCF1tK59J6SO1r2NUaQa5VE1WxzPR3FDyS6szk5x9JhaCdWOy2nEYiiusBhxhcWC50M82y/LX4FBjfVoKsjxhHUFgOSgg2EcVwXLggULEBERIXhdeumlsuuPHz8+aP2IiAikp5+7ucvKynDjjTciPj4eERER2Lp1q2AfTU1NuP/++zFw4EBER0cjKSkJDzzwAI4cOWLX1/Q8pBH1suCiLTBy1VCtpqkgh9+/VEdDC5ht8UmmjqV1xGrEwuKUVUapUdZ7fbx8L5ohFDour4gq8nwRa6O4SKLceUpZ/xjhgetBt5dddhk++ugj/n3HjvKnVFZWhtOnT/PvGxsbkZaWhhkzZvDLjh8/jmuuuQYzZ87EPffcE7SP/fv3Y//+/XjmmWcwePBgfP/997j33nuxf/9+/POf/7ToW4UW9PQ7uqOwIw7ArMDgtyfBgBack5Zjxsk0jl5p3OVwSqxsi0/CKMhbUsxO/w53Yhsj0eT2SbThJVElFXCudH6jarZ46h6jg5xx7KjbpxPyuC5YOnbsiISEBE3rxsXFCd4vX74cXbt2FQiW2bNnAwD27NkjuY8hQ4bgnXfe4d+npKTgT3/6E+688078/PPPioJJio/vSsZvN/p1beNFyIMlFBTn/qdH/16ZMurkDB6p+IKmghw+aHZKzS4MynuA/0xr1VipmVpenoIpLsQJSAfbAtKZmL3WoThNILOy22fh/j0mfj70ChMlaGueEdeQVYnjaLL8FWg+eRLeiAQJXVyPYdm5cyf69u2LAQMG4I477kB9vfYbpaSkBLNmzUK3bsajoQHwUdtKYqWlpQXNzc2CFwD89OQDgngH4msNNdQ6VxIYCwSsMOSlByvN/F64xiRvy5Sa4CzCZuJepBpqp+JQ1JBqyLV0LLR7zYm4FqnMznbiFYFJx30pYfX56hk8SIl5K8+Hjmdxk1E1WzxzX4QLrlpYRo4ciVdeeQUDBw7EgQMH8Pjjj+Paa69FbW0tevToobjtxo0bUVtbi5IS6ayQWvnvf/+LJ598Ejk5yh32woUL8fjjj8t+3lSQg33Jj55rKJMfDeqgtY663UKcc0FuHSHarDBqwbZ68cJ15H3q763BqKkTsG3JCwCAVWmBgE9arOjNuilOd++F2UEAdAkNqXwaAquLaJRPW16q0oZjFLZ4xppnFU0FOYiVyWRrJv8InS3XSrRaYki7oSUOy+5n14wFj7YWmp2BWJ6WLHh/4vhRCCuhMfTiqmCZPHky///ll1+OkSNHon///nj77beRna08QigpKcHQoUNx9dVXGz5+c3Mz0tPTMXjwYCxYsEBx3Xnz5uGhhx4SbNuvXz/FbcSNLZ2QCfBmvRoz0N8n3+fiiTgAXUQty1/BixYA5ywube/J/6vSUgTZdOXwelyMVtSyBZOsy7S7CGBxLkawWqgQ9FgItIgVJ8qWmHE7EquMHekSGOZx3SVEExsbi9TUVHz33XeK6x0/fhzLly9XFTVKHD16FDfddBN69OiB8vJydOrUSXH9qKgoxMTECF562Vc3hH8B52aGhGMWUeJCol/hhBFT75SaXUGjS1qc0P83FeSgqSCHt9qEM+Jr4vQ0aCvwiiXIaAZdp7DSuqLUphi9h8zO9mPYi6cEy7Fjx7Br1y706dNHcb0VK1agpaUFd955p6HjNDc348Ybb0Tnzp3x7rvvokuXLob2YwZavOyrG4Jbkx/FgLwS5PvSXZ2WV+qbFpYCykqk4lKy/BWoem+N6rZTanZh1NQJKPVNQ5G/Ek0FOUHun6aCHEyp2cVbarYtecEzMSx2Ie58SIdjJp8K2ZbeR2JyLaqnp3o2T4scWq1udlla3EDuO5MBEGun2h+uCpaHH34Ya9euxZ49e7B+/XpkZGQgMjISt912GwDgrrvuwrx584K2KykpwfTp0xEfHx/0WVNTE7Zu3YpvvvkGALB9+3Zs3boVDQ0NAM6JlePHj6OkpATNzc1oaGhAQ0MDWltbg/bnFmPzCviXk4jT5TOEKAXR6rG6jJo6gRclRLSQl9QxPr7vNkPn6xZGBJZUB2UmaJHEk9EBuPvqhmDEyh2mUt23V6QsGna6TswGrJqx1NmdWZhhDFdjWPbt24fbbrsNjY2N6NWrF6655hpUVVWhV69eAID6+np06CDUVNu3b8fnn3+ODz+ULtP97rvvIisri38/a9YsAMD8+fOxYMECbN68GV988QUA4OKLLxZsW1dXh4suusiqr6ebESt3oGp6sO9VTrRsi0/yRPAp4xyD8h7gg6ulZg9JMaVmFx/vosVKE444XeBxxModqJ6eihErdzh2TK8htuypITWIIbW86M/0Tpmm48HUoEUTfVwSsyKeYk/es7io8MBVwbJ8+XLFzz/55JOgZQMHDoRSvcY5c+Zgzpw5sp+PHz9ecXuj5PvSsa/O3D4Sk2uxD9ofrEGN9QAlZowU32Poo6kgR3Wqcpa/AqWFxcKgW537X5WWolnwuI1UB6VlVpOgA/RX8KP19jq6VQtStuN4CamjkaW+qiJessYOaqwX3I8kaZvbU5wZ1uB64jiGdYxl4sV28n3psqNBcUNZZEB0EGtL1XtrDAkeN1AaTZOpukqdGglYHVEXsHbsw5CwTc3vNeyYLq/XUkZn2jYKPTNISrQA2mafibdleAsmWMIUpdgXLWIm3Gb12E1V2nAMaqxHVdpwrFtSGCjUBqC0UJ97SIlQbEjFU/m9RCi5hZTyt+jBzXvI6JRmOn+VuF2rgnSsipRFRe9054yaMja92WMwwdIOYZYYY0j52qUawLF5BUBbg2nUPdRUkBPkFrJiJOo1Sn3THM9K255REytWCxrxVH2jKA3A5Fw+VWnDg8SMUkwLWVepJhbDXTw1rZnhPFKzkZh1JRgjQaHkOmqd8kyz+N5gIRkqMS160HJN24t7yAujeanfw0wiQ5JPyM7JAUrxKVVpwwXiRE2s6KW9xlu5BbOwWIRXEkeZgYgWZnURIiVWtJiWx+YVoAqB65kPAG0ziEZpsLZ8fN9tfIp/mlB0C3kZL7mDDsdbl1aB7kgTUkdjYeIFhu8bu+83p4N26YzKeoQKEyfuwwSLh/BCNDsTK8GIG+wifyXG6vCFj80rANoaRnEafyXiJFxJ4egWYpyDnoEmtkro6TATUkfzAbUNOzYAJnUZXc2dCAyxeKaPSVCrj6RlSrMVbaKcOFETLVquOYt1cQ4mWDyE22KFEYy4Qa1KG65LrNDbkWBcIlrUgnHFomZVWopgNEpcTl6ZViou7mllbpXE5FrPWzHlMiAHWcVqylRzoCSkjsZc0TKtrtrF9xYKhIOUkADOuXqkBIX4niLnSS/ni3/6piG2MRIL41t1CSOt98e2+CRbREsoloBo7zDBwmA4xNi8AqxrK/iXDwC+dJQWKruISOCtlHtI3DE5TVAHajD2KRTECGF1dopCJxv4jcSfi98npI4G9h0CAMyzoeRCw44NfKZhpfvDqrgSNdFBrCxBAoW5Nhk6YUG3FlE9PdXtU2BQWGF1sCP7qjjAOctfISlGCHJiBdCXQ4Ok/XeSUMnCLA7qTUyulXy9VbcoUGHaXylbRkDJYkJeWihr7qz/i1A07NgQdH/IFdrUg5HtsvwVyPeleyL2imW8tYfW1lY89thjSE5ORnR0NFJSUvDkk09anqSVWVhMcv91kxATHY1yt0+EIYCM/sVmeq2dKBEray55BhN2PmzL+ZFj5PvSUYTA+YpdRNcvfRMLEy/gz1tP0Tep5Flq62nFaE4NrZSnZRoOcpSaVZSQOhpzl8lMja0DgErRe2XkYonMFKksa+6MzJjTAIANbzxieD9SFPkrAX/luUy6Er+d3H2l9T6yGrsCzKvShgel8DcC7ZKlSxTIxbNM/fpdU8fzMosWLcLSpUvx97//HZdddhm+/PJLZGVloWfPnnjggQcsOw4TLCb54fvBaI7qxmfpJOg1c6/OTmExLDYgjqlQCmqkIY0ZLVasDIoem1eAbdT7fF+6ZIzC3GUFyPKlA22f67EcaW2QvTDy1YraFOcif6Wk4Jjrsan6tDgBzhW3LFv0DgDAjKNPfB8Z/e5WCAYz24trAnm5fSzyVwYqZdeUSQrtIn8lvjlzxoUzc4b169dj2rRpSE8PtE8XXXQR3nzzTWzcuNHS4zDBYhNSYoVubMWfe6FAV7jPEJITKGIRIyUK7JjBJd4fsbTIBeJaGVxrtjPSWvdG63GChMjKQIp+8TpezRFEW4TkKmvTrr0NgCColv/MYsuKUYhFptThopShBP085vvSAUqoePU+tYsxY8aguLgYO3bsQGpqKmpqavD555/j2WeftfQ4TLA4zDkzossnwuAhQoa3wIgaaH72i0K2TRoi/JSycxLEMxfy2wJxyXnpqWSrBys6Ibkpq7QAbG+d3cLECxRjkhj6ITOtrN6n1YSjSGlubha8j4qKQlRUVNB6//M//4Pm5mZceumliIyMRGtrK/70pz/hjjvusPR8mGBxEHFpdAJR6nprXTDswaz1QYtQUToe/78vHaWGz+Icel1JWhHXCZKcJmvhcQNWSW93Ck5XXLYDccfrlWSFVrqFvPKd7KLs+yXo0qmT4e1Ptbmv+vXrJ1g+f/58LFiwIGj9t99+G6+//jreeOMNXHbZZdi6dSsefPBB9O3bF3fffbfh8xDDBIsHoOupJNYFbhTx9Em7hUy4u4PUoKswi0dzgxrrNVtX9LAtPgmA8miP/kwsCORmMYkFit15WvgOTmKEqZZvRC9ysT5uE8pZUOn7SOraulosUQR5ZvQijmUzTEo9sEv+HMi+6eOR56/55EkUlH9o/NgusHfvXsTExPDvpawrADB37lz8z//8D2bNmgUAGDp0KL7//nssXLiQCZb2wA0lu3gffmJyLe82KPJX6h7BM/RhdwNNZijoKbJGYgpo5GaqOJ1ITimbqVxMUDgQDqN0NbFC32NWi0819LiC1Cwv69CWB2lJIQY11mNbfJKx76NBrJD/Q/3eAICYmBiBYJHjxIkT6NBBmCUlMjISZ8+etfR8mGAJAUiALglMpK0hTLyEDnSmW6sgnaaezpPuBMKhUXULL5VJkIsbIlloD8e3SopKPb9/KN8rpJ0kf60OoNcifi6++GpLj+klpk6dij/96U9ISkrCZZddhi1btuDZZ5/Fr371K0uPwwRLiCPnytEjZNq7O4gglXNFb90gGiJQgEBDNopyO+lByQXSVJCD0jYLRxGCR3aS+Ufo/VnQ4arFbei1RCilAwiFOBY1txV9T1iW4bfk3MwyenYVcTW/VbdI+jwUrCsEtyxJUsJaLAysCMalA9+1uBulLIZars93321ET/2nFxL85S9/wWOPPYbf/va3OHToEPr27Yvf/OY3+OMf/2jpcZhg8QA3lMjXkzEK6SzJqIpZYtQRixWzydHojslOpEbOpOFVy8FhVWekVuROChJrI1frJhSQun7kvsn3pUsLkrbnXTxt206kfh9Bp68iiiFKiGZnzI6UCBEvsyNrs9bYKL1B7GaSIIYKPXr0wHPPPYfnnnvO1uMwweIQicm1kgmt4gqLBaMjK6EbKLesKOTB9mKgJEFu6nBTQY5uS5XAoqIjRkUOI9dNj9Ay69YgYsPI7Bhyb4jFSvX0VIxYabK8sEMQy5aAtmsfCvWRpGKj3EaLgBYLFrMziPQOTvSIFiJW3hv6S7RVEWMYhNUSCiGcrgVjFtqvnu9LtzT40lSkv2g/Ug2knmu9bkkhLwjN1s/xsrCTghYbVv0moSJW1FDLyusmcYXFnmlPjNYnCrWYmnBOze8UTLCEEKH2gEqdLxEtZgWME4X11Kwr65YUYlt8EvJ96UHZcvUIjyJ/paAuCb1cL00FOcbqAllAlr8iSLRoDTLeVzeEf4ULXhWfUlNv9WC1eyPU2jWGezDB4jJaH9bE5FrPjIi0oDTaFucIsdr6YgVS5mUiUMiLdnfJxZHQYkQLeteXQu99YqX4o0WLXVM73bxXSDZkcV2qUMFI1eS4wmLZgn5uYXX1cS/XKWKcgwmWEMIJq4JV6Jlia6ThsarTkrqm4vMhLh9xB8yn7NeAnBCRWpbvSzfdGLvdmbp9fLtoKsgRvEKJcPlNxLOH3LLQeNWCFs6woFuG5dhV/4bGicaCJHg7kFeCjJoyrNl7LUp9n/GfG+mwpEoy0J+RZWY6Q5KsTU8QrNH0/VJFIUliLrG4U+pYzAbaajl3s9mijQSuv1W3CLcmP2rquFYiWT4hxKBnN1lpZTEy000L4ZBg0CswwcLwBHqj9K2afSQnrrbFJyG2MZI3hQemJgKlbaU1rGjYpOJW6OVehRYpcqb0QY31goZarcEesXKHrGhZnZ0StA+S64S2eqm5LfpITdNrR9hRRJChjVLfNNxcudzt0wh5mGBhWA6dxAzQ5h7SOy3WioJ+cibyLH+Foz57ccfrNWjX19i8Alv8/YnJtUisqQWSpT4NCBal1PFei7HwEtXTU5HlLws7sSJVZ8tptLRD5DybFddiaIEJFoZtkE5OSoiI4zSMWBVIR2/E2qEkEOQ6v8By6RTnZlGq52KEUt80xOk0/8sem1q+bkmhLUkIFeOBPGJxIrVo9OKWW6h6eioOx7ciy1+GfXVDcEPJLn6ZHmgBr3dbPZipVWSF2N/mS9JdXFNKrEi1H+GeOM4pmGBp56gVP7MLkrDKLr+xFF4POrT6+vO/q6V7tQ+774VRNVtsr3ruNYjYGFEXcLXpFRxil6ldVkA6gZ1e66xVkGMZsdwyC58zMMHiMqW+abak5teKOC6A4JR4MdtBaXUlWdEAZtQEzOpWd6x2TNMlrhKz5QXswOogxCJ/JQZo6DDK0zLbVRwLESdmE/EFCihacUbS+5bKKL2ubRktMNctKdSdEt8Keh9sxMHe8ab2UZ6WiQlVr1tyPu0ZJlgcQC7jJbFuOFlTRCtKDYOXgkLV3ELkGpdCm1iRa+QyaspsS2OuZ3q0HtxOuy4X60LP8qB/k1CeueIlSJBybGOkZCI+vdc5tjHSkvMSwxcWlXAxSrkdx+YVoKrtf7XK51aKLLNihcBS85uH5WFxGaXMnonJtfzLDFa7QtxI3EWyyYqzysohTuxlRqzYiRMuMat/fyvrUlkVLMliBM5B7nWzlhU7XailvmmmYqFI8Lfc/ZPlrzB1T/Q+2IjeB20yKzEMwywsDiFllcjyV6A0+5xLSDx90ypLBt0hWtFBWmlhIeejFOxGBJJgiiwtmvwVKKVGW+LEUmIhorchOxzfaotViYwQ7Y4xaSrIMZ2O3Q6yRLERpSbOUatbKJzjWEhA7Q0l8hXg9d5vtHXFi6JwUGM9/3uOqjFfbBSwxgXEsAcmWFwmy1/BT+XM8tcGMqLaeDwiDqyE3p9e94ZYfBg9N3HnR9AqVpSsK3Z18m5MY3YyyBnQH69ChItd5+hWHIvdFaiNzP5xkyx/hSPCMaOmTLfllIkV78IEi80ouXPIHH6nY0LI8czk/hCLFCAwGottBLIMig4rhFSoROs7kQ041AjnxGYZNWW2xqoRsaIWb6I1CJu0DXY+T9vikxyp4WNEtDC8CRMsFiGVjbPIXwm1wZybAawkwRtBq4DJ96ULYm/E5mc9DTMdIGg3Rkzau5dkW3LsAW3p/YHAb046ZyesHfm+dIE4cnKas94OiVwXI5YgJzomo7lY7JgNWD09FUDge2f5azVVuha7hOg4EpJjZ92SQkeSJ5LfmhUeZGhFd9Dt3XffjU8//dSOcwlJLuz/DRKTa5Hlr8C8fYcMVej1Clo7CC0No1YCVhn7xYoRrPLZk/iR8rRMlKdlYkBeCQBn4knsCpxU6rTNBuWSgnZ6z13rM3dAOp1uSEFcQMSyYvSZJIU9yW9mZUA1g2E1ui0sR44cwcSJE9G/f39kZWXh7rvvxoUXXmjHuYUEf/n0A3Tp1AkAMDcERYoWrEiDbzXE8kE6fzWUxEfADSE0qe9ekm2JJSLfl45yCUFmpaDNV0pN3yh0kx2Ob0WcRZYdrVlvjd4/JL4pFMW/mKaCHCSKLJNGqZ6eyt/P5WmZuvapxSUUV1gsec/agVNWFvp6MUIX3RaWlStX4ocffsB9992Ht956CxdddBEmT56Mf/7znzhz5owd58hwGXFnQ0zRVjBi5Q7+pYcBeSWaxYoS4piJw/Gtls6GcKKBZI1w+6Q8LVP3c+OlWWIEJ4PPM2rKPDnbiaENQzEsvXr1wkMPPYSHHnoImzdvRmlpKWbPno3u3bvjzjvvxG9/+1tccsklVp8rw2a0BoIejm+1fdaDVag1TlJJzKwa0csJqvtOHsBcS46gn9jGyEDGXhtn4oitLmPzClAan2QqwNuq34TcD+IZKtvazq8qbThmrWzE/XVLAQhnVREXlZEp4uTZMvPc0DErdolUJ4JtpdgWnyR4L5X9Vry+2CqjZ0ZauAfiXj3jSXTr2t3w9sdPHAPKP8SIESMQGRmJ3Nxc5ObmWniGxojgOI4zuvGBAwfw6quvorS0FPv27cPNN9+MH374AWvXrsXTTz+NvLw8K8/VUzQ3N6Nnz54ozLiRdwmFOnrM9nYGEVqJnGBRmo1iVUcuJVjowFurUHQJSUDOwaqgXy1uIT1p1aV+GzqXDHkfivCZl33TENsYqUu8EFeQEcsK2V4piJz8Pm4W77NzqvP0k13QsGMD/95pwXLi+FHcOfESHDlyBDExMbYcg/RLH77xhWnBcuPtI209VyPotrCcOXMG7777LkpLS/Hhhx/i8ssvx4MPPojbb7+d/2Ll5eX41a9+FdaCJdzQO81WnPTOCkas3MFPA3eiMZGaRmtVRxhXWAyIEmXy6f0tRmvSNDFWJK2LKyzGOtE1k5rhs/jeQsQlXsAf10h15lAVKTRNBTnCJIc6nqFwtwrYzcroU0hIHS0QLYzQQrdg6dOnD86ePYvbbrsNGzduxLBhw4LWuf766xEbG2vB6TGcQjzFWYzU6NiuOkhF/krEUeZdo4200qiQzpprR+4PN8zqdkAXjSTXiRYOUiJCatncZQVoavu/CPBcQUYnoZ+1fIBPHKlkOamenorEmlpT7qSMmjJVgRoO96wSc5cVCLNkU7AMt95Ht2BZsmQJZsyYgS5dusiuExsbi7q69lMVtT0gtgwQd8dhX2B2jRWWlsTkWn4Wg0BAiRLdaWlUjZiwrRrBS7lo7LKuGKE8LVPz9SHXpL2LDLsQ3BP+SmSQCtsQPlMjVu5A+fRMjKhTFyzSWW8D7/Op/Yvv93AXK4B0PBVdM4j8z4SLN9EtWGbPnm3HeTBCmCx/RaAxtTkIl4iYfCg3rkZSlFvpbpA6N6+IFQIJUHQj0zJDHtq6WJp9Ls6FxHeRoF1xvJdAEC+R3jdxRfHuKIfLNHgFEqzLXGyhB8t0yzAFyVuSUVNmiWjR0oDSeVOkzkNtW6unUdKdvlygrd3ZZfU2vl5N1segXEb+SjQBuO/eQuDkAQABl8ZuIEiUqN1fxLUnLgxaSifnkylO7OQ0YFLA0AoRrRQMToJ7pZ4bVqXZuzDBwrAMs9OdtdY5kUJLo0oaaysDbeMKi1EKII7s06W2LiF1NJbq3IZZWUKDhW3BynZaQ+RcreGes4SelURiWOTcQSzGxX10J45jMMSQhs6N6sNacaqonjgxlVOxK3OXqU8tFsOsLKGDWVEtB+0iEhNK1Z/NEO6iLJxgFhaGbvJ96SiX+cxoVdpAPaZaPoJfatorn8OCWkZmr4hFgdacH2ZHrXTiOfov0BqYNuyg5UKPW+hwfKugo2JWFu9ipWVFaVZce+24q9KGY/eSbGT40lHem8W0eBlmYTHJ/ddNQr4vnX8x9CeAIxWbaUjxO/HoUOyDB6QbdHEBSrpzJqNKKzoCqUKXSqNWryA+P6csUAx3Yb+zNCTeRWrGEE3vg40sxsVFTGW6bc+QjILfPPhv9IjqJrkOSYImRSiPZuVSztMFxrTEsdBF3GhIoyrV6ZO4Cz1ZWmkhSTfYdsYEuGWxkJtSTRB3WLSFqD3OGGkP0FOZCV4X1E5mYaahg37JMyw3EBWX84ijEgLSkDiZ48ePY+LEiSzTrQmYS8hGxFVUaQEjfghCRcBIZXA1gnSuiABSo3860RugT2zQjY5dieKkjukWRKAkpI7GyuhTQbk+aEoV4hvsQCoLLiMYK6+TF8WKeLaeHbP3gEBJCF3r41zbTJ4b2WfZXymYnSWXfHOsjeUG2hvMJeQgZOQrVRKedit52b2kpVFRCtarnp7Ku4xIjIda5y4+phExIOceCjeK/JWoShuOqrThWBl9StM2TrqwmFhRh7hB833piCssNtUeiF2qbtz7WgYI4vNy8xkNlcFje4RZWBwko6YM++qG8NkqxaJFzK3JQxTdSgQnHzAtQZ2xjZFB05uJ+yexppY399KjEfIdpBpmq8zD5Bh0h0Av83pnqte8TW8nN9IU17bxElNqApleV6UFxziFK/R9yGcXbnsmQuEeFUOLFdqdm7T3WpT6PvPkfUcIxesd7jDB4nGU3EoEqU7eDhGj1R3Ex7JMzwxapkd88N/B4u/CH79t5Mqbo9v+92IjZVSsaMFrnQYRKowARp8DujK0W7DgboaVMMESYqhZZYigsSNGRk9Bv1LfNMS2iZuMmjLZ+iVyOGE1IoFyNErCJd/DgsYMdsUPMNxHaladW2T5K7DmkmcE771MuD3n4QCbJWQQLbOEvAhtodErCuRmBwHSORz0ihQ3Z9YoQXfoUiNEJxo2sxYWteBDIty80kiLrSztwS1ktQtCanac10UCjRdiSegBDbFWqV1D8TpslpB1MAtLO2Nf3RDZ6cRWIK4ErNYA042qFxooKdQaKGJ6t/P81y0pNCValOJYCMS65NXfgaGduMJiwEOBrKEKESmxjZEoT8tEbKN6HJ94ncPxrXzBRYY5mGBxiMTkWlV3jlPYlS5e/CCT4mpaRo1udZJ6R6FiS0s4dQJW/wYsaFEbvOC16FpJ5QPxyn0qNcVazm0llz+Jxu77q8hfqVodXg1WAsM6mGBhWI7YyiIF3ah6QazQGBEuACwPDiaQjt+slcUpyDmus6AzWZWWEtZBuMTlEM5WLfp5knqmtIgpuSSSTojihNTRWBjfyoSHB2CChWEJciOQ2MZIZFHBqrxIcFmsaEGLv9rtWRhWYnXjLyWu9CbyCnecrjflBnZZd/hBg8firxj24apgWbBgAR5//HHBsoEDB+Lbb7+VXH/8+PFYu3Zt0PIpU6agsjLw0JeVlWHZsmXYtGkTmpqasGXLFgwbNkywfnFxMd544w1s3rwZR48exU8//YTY2FhLvpMUWnKpOImRBlIp4FYJYmkh8RFeRGySVrOwuCFQrBATavlYlKr6WgVvfdEoXIh1ZUrNrrAJvLU7KaRX3D9Wo/bciQNkldDTBs5dVoAsiZIXDCE//PADHn30Ufz73//GiRMncPHFF6O0tBRXXXWVZcdw3cJy2WWX4aOPPuLfd+wof0plZWU4ffo0/76xsRFpaWmYMWMGv+z48eO45pprMHPmTNxzzz2S+zlx4gRuuukm3HTTTZg3b54F30Idr8SvOIUWtxAQnAbbDYyaqRnG0RIEzGDoxa7nlk7TYIRRNVuw5mJ9RWFDiZ9++gljx47F9ddfj3//+9/o1asXdu7cifPOO8/S47guWDp27IiEhARN68bFxQneL1++HF27dhUIltmzZwMA9uzZI7ufBx98EADwySef6DrX9kq+Lx3lBrYjIxI14eK2SVxsYTFiWXHKHG1nHIuXTOpSsSvhYGXxasmNUEF8j8pVc7dauDQV5ACFxYbjWMrTMhFz3FuWditZtGgR+vXrh9LSUn5ZcnKy5cdxvZbQzp070bdvXwwYMAB33HEH6uu1T/8qKSnBrFmz0K2b/XlQWlpa0NzcLHhpwWvuICPnE46mULWAWz14qaNXIxSCdpWIKyw2XV8nnHHCredVyGCDWUetQ9zntbS0SK737rvv4qqrrsKMGTNwwQUXYPjw4fjb3/5m+fm4KlhGjhyJV155Be+//z6WLl2Kuro6XHvttTh69Kjqths3bkRtbS1+/etfO3CmwMKFC9GzZ0/+1a9fP83btjd3UCihtZKtm4G1YkFklyvFaQFg9Hih3CERa2KpbxqK/JX8TBfyMksoXxstkGskda3sfkZD6dqOPPg5xjSsNfwaefBzAEC/fv0E/d7ChQslj7d7924sXboUl1xyCT744APcd999eOCBB/D3v//d0u/lqkto8uTJ/P+XX345Ro4cif79++Ptt99Gdna24rYlJSUYOnQorr76artPEwAwb948PPTQQ/z75uZmXaLFbUiyOL3uFzV3UEZNmaIFxovuILqjNNsIOWVdMXucbfFJAMAnsJIK4nXbNSem6r01AIBRUyfwy5oKcgTB225lRzYDXd7ByvtHKllcOEEC4pWEnZ35kQKzBpXbOyVGfF1j8RnZz969ewWZbqOioiTXO3v2LK666io89dRTAIDhw4ejtrYWy5Ytw913323Z+bgew0ITGxuL1NRUfPfdd4rrHT9+HMuXL8cTTzzh0JkFfii5HysUGLFyB2C9S9GUWPEKatOXvThtWU8sy7b4pKCcN15wYyWkjsZcSmwQIcn/HmTa6ntrFM9XqgOjZz154bsS2rPLxizi59Dpa0nE8uF2lJMlJiZGU2r+Pn36YPDgwYJlgwYNwjvvvGPp+XhKsBw7dgy7du3iA2flWLFiBVpaWnDnnXc6dGbG8Fr8ihHCMX6FQDpGraOxUMi5IuUu8kLRRkk31r3CZXRV4qK2Zfm+dFVL0Ni2Wi3EigS0xeqQdOgWxO1Y6Yaz43dgQsiZ59PM/i++2BlvgBuMHTsW27dvFyzbsWMH+vfvb+lxXBUsDz/8MKZOnYr+/ftj//79mD9/PiIjI3HbbbcBAO666y5ceOGFQX6zkpISTJ8+HfHx8UH7bGpqQn19Pfbv3w8A/EVMSEjgZyM1NDSgoaGBt+R8/fXX6NGjB5KSkoJmIqlR9v0SdOnUKWj54nsL0bAj8D8RLm7GsiQm1wYeNh3mc6Ozg4DQs67oKWqmt6ijWeTKBxRp7ESL/JW2Z+Gl0dq5z12mLiTU3D20lcnOei1WTcPO8lfwYsxKQim+wihGM+JaCbHc0RXotR7zwNU+5Np5ci6Sl5eHMWPG4KmnnsLMmTOxceNGFBcXo7jYWiHtqmDZt28fbrvtNjQ2NqJXr1645pprUFVVhV69egEA6uvr0aGDMC54+/bt+Pzzz/Hhhx9K7vPdd99FVlYW/37WrFkAgPnz52PBggUAgGXLlgkS1l133XUAgNLSUsyZM8eS7zZ3WYGgYZKq7wE4K2K8ZBonOB2DIBXoqSRW6EbJrYRxTsYlLL63UJOQIHjxnvIq4R5jEkpIJZmTe9bFnxN3EBHIpBqzGgOb9pk8a+8yYsQIlJeXY968eXjiiSeQnJyM5557DnfccYelx4ngOI6zdI/tBFLGuzDjRkkLixnEI+osf4VpYZOYXKtbGJjNbqsHpwMniZsE0Dcqc9q6omTqZ2IhgFNTtc1aWOwS53KDIYYypb5pSNp7LZq7rje0fUZNmWaxAgRiLydOnIgjR45oigsxAumXjiwpQkx0tPH9nDyJnnn5tp6rETwVw8IIIGjU/JWAL10QD0M6zRtKwrconN0I3CRt4kXc6MsJGrvM+ozwheWM8SYTdj6M8jRj25anZeJwfKutrkiGENcTxzHUKfJX8i/gXIKkxORaJCbXYnV2imqAr1MWDKOxK24GDRb5K9FUkCO4xoBMRWZGu8WMJYfkXWF4B6usUnSwN8NemIUlxJBs9PhZFcLP6FFdfrL9sSJmAm29ZLUQW7jiCouFwa6s47EUs4Ud7SxXYBXMfeddrJggoMc1xDAOEyxhDN2xDsgrQb7Ecjn0zhAKlVlBRqA7G7dFFT0qdPtcrCLcO3MrKm0z3EHr4CTON425hhyACZZ2ABEfJKfKACq3ChEa4jwdWvOvhLNQ8SKCqdXM0sPjVSsLCYi1S1yygFv70GNJbSrIwTqcc23Tvwmxzp6MUi85w1CGCZZ2DhEmsY1AFuVC0mJdYWLFeVjnFFo0FeTwYoVZWsIfkqeFxb3ZAwu6ZfCUp2XyL4b7yBV4C8fGsD3MohGLFVbsMDxhotQ+mGAJc/J96ZYJENqiose6olUEsfTi2snyV1hW4dcLWCHC7KpibRdmO7Zw+e3dQG1wxgLrvQkTLAzNmBE+RODQDUV7seS0B+uBWehihV7GK3EybsauhENnnlFTxr/soKkgh1m/bIAJFobtKDUKYtESCp2WXor8lZaJFnGxRmZ+bj8Qixr9jLjlIhTnLGIEw66P9bCg2zDGancQ2ZfRUYncudCBv0Ag+NfpFPh2Y6TxUhuhhcu1YWhD6n5wexRvpRgPR0KhwnsowQQLQxNOum8Cx2oNPOxsZkUQfAMYZiM44hby+u9tVeXmUKS9WA20iLD2ci28BBMsYUwoWFfkiG2MRHlaJj/dWpwnxgnc7Dzb66jV7PX2aj4WM9DxKkqVxa3ASCdMtmlv96zW70t+r+aTJ5Fr5wm1A1gMS5hiZePhtFiR2j62MdLRBjEcY2lCBXbtz5HvSxcIFDvFilnXBbM4MOyGCRaGpdjpOipPy3RUtLhlXWEdtvdxwoqjdK+LC6IyGO0B5hIKU5yeMkwfrzwtUzCN2erj6KmJZBQvxlG0l+C9UHELueUyFJdlED8HRkW9FSUEyLmwkgEMO2CChWELSkJl95JsDMgrMbXvjJoy5Pvsr0DtBk0FOShVafC9KKikUOo8S33TENsYCSBwTzDOoXTdQuG3JyUJ2ltcC8NemGDxGPQDbqYz3r0k29JpzVZiRqwQ6EKOcp2d2LWi1tDLuWLc6CDoBp9YVujAy1ChPC0TI1bukPzshpJd/P+HRdYKs9YLJ6wsdt0XUp18qBa9ZNOeGVbCYlg8jNkHvchfid1LssO+SKHcdSJJ1shLKZW9VJVV+jO34kpC3YKk9d5j7oMA4di5s1gbhlUwwdIOKPJX2iparLbiaHEP0OtoDcYlwiXfly4rQJSsF1KZRp2gqSAn4CYK08KHbrBuSSH/8hJyHTuxrnhtSrMe2L3LMEsEx3Gc2ycRijQ3N6Nnz54ozLgRXTp1cvt0dGPEXSQnerzidjIiyqQ6AaMNayjEFrhBvi8d++qGqK6XmFwr6DSNuIVo4ao1d49e15FbIocIZaXvZCbY1UkrSDhaktRoPnkSPfPyceTIEcTExNhzjLZ+aePFl6B7ZKTh/RxrbcXV3+1EamoqIiMjkZubi9xc97PIMAuLBSiN2L2KXneR0npecznpERxWjli9VD3ZS+fiFsQNaCVuWmSUhEq+Lz0oZ4sS4mnRzPrBkKK6uhrffPONJ8QKwIJuTXP/dZMAtHV8IThrpchfyU8TNluNmZ714SZ6RYjdpnY3GNRYH/jHROCpVZ1zkb8SA/Lkg28J++qGIK7Q2ozGVkzVJXjNfUSwItYtlAJ5Ge0XZmGxmFA0dZKR1u4l2QKri17LSZa/whVri9ky8eEmVqzCylk2RoJvSW0hsxDrgxxKQsRrsS5iMdferWhuUJ6W6Rk3eHuDWVgYQfAjLoPii6495HXC0boCeK+mjlEri1NxQV4RJIzQgW7jvOYWD1eYhcViQs0lpIRXvwuZIWTWsgJYb13xUuCtFZ2wG1YWOj+LXpRS1odirBmN1Lk3FeR49jmVI5R/AzmI1UX8YlgLs7CY5C+ffhCSs4S04kVriRWJ59oL2+KTzsWztDOK/JXBM2tCrHOn0SqG11zyDCbsfNjms2m/6GkT6TIl7w39JcBHDDKMwCwsDEWM5nCx20TKTLDa8JLFR48lgFhD4gqLsfhe45YiksOmPcHEirdg1hbrYBYWhm3YZZ257+QBZFiwn3CNXwkXyG/TFMJWEStxq9giQ4hamyY3mGo+edKO02lXMAsLw1a8bAmREytGRQzrTNSpnp6q+Bl5MYKx8v5ieXrsg1lT7INZWBiyeLVEfMOODbbun06ixReco95LrcfQRkZNGfZhiKQoEcwgSj73bzhU5bbiO8hZWIykUuDv47bimk6KbS+2KYzQgFlYGLJY1bDYYWVJSB1t20hGSZQwkWKOIn+lulhhaMaKvE9MQDBCBWZhYTiClfEs5WmZaLDR1SQWJaRBJ8ulRAvJdEwjN6IWm+LbmyuJvhfEQqV6eqpgGYkzCgcri1nC5T4p8leGZIJNghdnTrYXmGBhSGJHg2K1aKH3axZ6CqxabItWK4vsNRTvX+O1Ntphb4tPMrQdwWywp3h7Ug5CqiCiWMA0FeSglAg8jwoWeuq0lgKFXqPUN83xayu+l0NZwEhBT2dmWAcTLIwgwq3x0ArpZEo1ChfAPheRVGee71PfTkrUuNl5kg5cLFpKfdMUE8TR38OrnT95TvaR75H8KFCyC2/VLXLxrBiM8IUJFpOc99gLOPlnlgzICLuXZHsyCRzpIIugHnjspP9fSsSIuTU5sE5ici2/zA1XSn5bMKecVUpJrCQm1wJ1tp6eafJ96eesfGkBy1D96HgkbWjE6NufxvbBsQCEYsvL05L/knwf7q9b6vZpMBiKMMFikp+efCCsMt0qWVeq0obz/4+q2WJo/7RbyCqxQvZ3OL7VcgHhRkCiFmGiZR/V01ORUVNmSUdJLCWDGus1Zc+taluX3DODGuuxru2zfF869nlckEix+N5ClDV3BgCsB9D7YCMO9o4HIIy9SdrQCADIjDmNL5Mf5S0uJM7JyKwcO8VOlr8CWckAkgPPfnuPFbIK5hayHiZYGJqgxYpZ7Apai22MtHyfjHMQkRKuqf6l4k+IgF+fMA5lzdr3lbShEWWjA2Lm1uRHUepL4cUvHaDNxAGDoR0mWBg8YuuKlSJFjF2iheyTjWwCborSbGdzbIQacYXF54RuwDCCeVQpgNFtFhUt0FaW+jaxQmgqyAFEM53iCosRJ8rx44aAcToPSzigtf0StEe/+jWQx8IHzMDysDAAeDfQllRm1otaY2KmY0hIHa24Xy/lavFijg0vTAmNKyxGvi9d0ipX1tyZf5mFFi7i+4LUOSKvUt80ln02RNBzD/ODp//7X5vOpv3ABAtDUqyoWVes6JS1WEHsCso1I9DUMu16USR4CbUkcXZbGUggtZ3CicSxEG5NflQw7VkKYuVgosX7MAuuOzDBwghCiyso3OIYpDoJI6LGCktVYnIt/woX1i0JuFnUro9d35nUzhmQV4LYxkhFsXKwdzzGNKw1dBw6i2/ShkaBcJlSIz8ziqBXtFgh7tx2B3nVumsVShZZhj6YYGnnOBm34iRaRkAJqaN5F47dVhGjjRYtXqReSqzOTjF0zHCCLvKnJyh7fcI4ZMacVl2v98FG1XWIW6jHdO9Oa2bYh921z7zGn//8Z0RERODBBx+0fN8s6LYdY3ZkU5U23PD0ZjuREyviaYYNOzYEZmu0iRW7RnpF/ko02LJnoUVCPB3aShHWVJDDT0tWI66w2FULHJ2xuBTGZo8d7B2PpQAORgfeSwmTg73j0ftgo2B6MxBcXoC2stxKTXNWIstfgSLdZ60fp7PchqI1pdQ3DbGNkabcQAmpo7Gjxm/hWXmT6upqvPzyy7j88stt2T8TLO0UI3EroYJS/gOrU/orwaasBlOelokRdeYLHeZLTAum3SgkRiVW3QCiGSJQCFqsK0bgyxGE6f0j5Y7zekyI2fNr2LEBOmbFhyTHjh3DHXfcgb/97W8oLCxU38AATLAwAAQa/rFhIlgAZ4WJFKW+afDCBMZwF02C+k+ikglWiJX7Th4AAJRBecaQ2MqihNVJ4EKpmGAoDoq0WipJOxNOCeOam4UyKyoqClFRUZLr5ubmIj09HRMnTmSChWEdUnErRsWKVPyH1xpQvbNBxI2qlNtLLe5FrZGzIputErSrSEuwJwCsSjMe80J3wmJ3EAm4BayZIUTfW+LrTH5rqywrX35wFFdN6sGLEbGVhUaraLE6jsXMs+Z0TM26JYWSM//CKX+SF77D3fkdERltPJFm68kI4D6gX79+guXz58/HggULgtZfvnw5Nm/ejOrqasPH1AILumWYQi5WIVxH9qW+afyUbi/lW5FC6jcwI0qUsKLjMztDyM5pysTSAkCzJUWMOJmcEuEcnOuFDp2hjb179+LIkSP8a968eZLr/P73v8frr7+OLl262Ho+zMLSjrArbkVr8K2c79qtRGJav3tV2nBsi08CENyRkMBIL1mUxKxKSxFYWWjRQparCRnx91NyuVUp7Id02uI8JUYgVi4775/60fH48oNGXDWpB+47eQBLo/sork+sLOLA27fqFgF1gJ75InbnY3E64JZQ5K/EAJnfLNTcKaT9CqVz1kNMTAxiYmIU19m0aRMOHTqEK664gl/W2tqKTz/9FH/961/R0tKCyEhryqYwwdJOsDPIVixW9HbeUg+71k7IKcFDiv7JQbvBiGXDTREjtq7ICRIiZuQEDUHpGos/66NQannDG48AADLb0t/PXVaAxfcWGp766cRvHxBZ6lOcCcRlRMQZ+c56yRLF5DC8BWm3wlWsaGXChAn4+uuvBcuysrJw6aWX4tFHH7VMrABMsLRbzATZHkAyMmrKeMFDLBBKcRtyHYvc6ESriDHaYdHnbxVEtLhtbUlMroWCZhCgNb7FauYuKxD878QUXqMc7B0PtLmE9ATXAsbFSrhCsgyjnXfy4USPHj0wZIgwJq9bt26Ij48PWm4WJljaIUaDbEfVbOEFQnlapmAkneWvUAxEtcISQosYs/sSn78WBjXWY5vKDA+puBG+kaaObcXUXimqp6cisaaWP6bqyHzqBABA1XtrAADz9h0SiAmz0AG3VkK+1+H4VgD2VOrOqClDkb8Si+8tRFlzZ02J5AhWCxW5e86MOLYy14vm82BlKxgmYIKlHUAaE9LIG03qJRYJo2q28FYKp0zWVrkA9IoVMzQV5KAIzriIiKgjAkl1SmbeAwCAQW3rNbUJrsWUy8ZrlPqm4YaSgGWIZPO1Urj0PtiIMQ1rg8QnES1lCvlXpLYLJ9y2Hiq1M6yGl3f45JNPbNkvEyxhDi1WmgpyMDbPug6ItlI0FeQ41iG7We3XzKi0yF/ZZvkoA5LPiS+1qb5aIdYVsxCxEircULLL0jIEG954RBAcO3dZAXD706rbZcacxtw3rBErcYXFrlkjxBZBL6E4e8rDge8Ma2CCJYyhBcSgxnrAoFg5gGTZz4iVZWxeAaAyU0hObOiJsndTrAABd1o+jE/bJtYWAPwMjd2idQTJ0NpYnzBOdWaNFcF/cYXFwL5D+Pi+2wDYNw3aDFn+CpRmB6wsxNICBITLVZN6AIDqbB4xxP0jR2bMaZQ1dw76n7yfu6wAc3UdUZ58XzpKqfdys3msGCDQOVEOx7cGJeBjMLwEy8MSpjhluqUFhN1uIavEitmO3e7v2VSQExA2/kr+tX1wLBKTa3Xl8jB6bNoN5FZQrhpZ/oogqwr9ns6booaaWAHkXWNErFiJE8U4S33Tgp4nr1pVGAwCs7CEOaW+aYZjVpQsKzTEymJnwTsrLStmZwdpCb61mnOWmUpsQECQ0lYXs0nXxBDLChEsdNpxNcj07yx/heaCiXrgxYW/Eom+dN7dCQBzEbg2atWxyfcp8ldqdvHRQbdWW1VotAgHswMSO4KU3cTt2BqGMzALSxhCP7xOdKrlaZkYVbNFU/I4LUUJQwG3R6NF/kqMaViLxORaS8WKXLIyqURxGTVlfLAr/VnS3msdvT5S93jDjg2KVhZiudIDyRXTsGODo8HIVl/LUHvWGAwCs7CEGeKRhpVBtgwhVhex04sdCerEQcXE0iJOkiWejUQzYefD/P9q52Z2Ro3U9mRZWcI4ZEI9O62eYy1Ny2yrA2XPTCCpYFu3MtKaJZwzwErhhYSR4Q4TLGGEVFFDI2h1BRklo6ZMMg6EXibOW+I1ivyViPNI9tFzs4+cs2pY1RkpNe60q8cIYxrWoqEBvHuIDpTNEGUl1sp9Jw9g6fRUYInh01LEid/QqZl2VosVJ6aLq93X4TxlPRRgLiGTnPfYC26fgiRGHywtbh27sbPRtqoR9arlyklxZ/exsvwViCssNjxiJc8AceXQMSjrE8YB0D8abtixQbZas9OUp2UKXnrIqCkTPAtetISQQqN0wVG78eJ1YJzDVQvLggUL8PjjjwuWDRw4EN9++63k+uPHj8fatWuDlk+ZMgWVlW1m4LIyLFu2DJs2bUJTUxO2bNmCYcOGCdY/deoU8vPzsXz5crS0tGDSpEl46aWX0Lt3b93f4c61lYgRBf65gVWuIKOdkBUjbidGl1am4x/UWG9LUKkR6CKAWn5Ds7+VUw07n63XoADnRQvOiRTCuffa913qm4bYxkgMyCvB7iXZhs5JL1K5f8ymByC41UGHc20kUqJDPGg8deaMS2cUPrhuYbnssstw4MAB/vX555/LrltWViZYt7a2FpGRkZgxYwa/zvHjx3HNNddg0aJFsvvJy8vDe++9hxUrVmDt2rXYv38/MjPNjRbJaNANmM/UPdz6zcXoFZpy63utIyFTfPN96aautZLFUc9+yaDEqmR/NOw5Dh+Y68geXBcsHTt2REJCAv86//zzZdeNi4sTrLt69Wp07dpVIFhmz56NP/7xj5g4caLkPo4cOYKSkhI8++yz8Pl8uPLKK1FaWor169ejqqrK1Hdxe+YIwagVwUl3kJ5r5WUzrVd+cyOUp2UGmdylhLebmW8HNdZbZhUb0xBsnQWAgd8c1iVaMmrKUD091ZJzshIvPycMhhW4HnS7c+dO9O3bF126dMHo0aOxcOFCJCUladq2pKQEs2bNQrdu3TQfb9OmTThz5oxA0Fx66aVISkrChg0bMGrUKMntWlpa0NLSwr9vbm6WXE/KFGgXUiOyIn8lbz7X4xaiCxs6jaYifQxboN2YxO0Q55smCOLN33EuUb3cvW110K84fxDJ8zPK4PN17rms5HPYEDJjTgP7DmnOqVLkr8QAi5+VsXkFqIL8oEFtRpp4ejmDEY64amEZOXIkXnnlFbz//vtYunQp6urqcO211+Lo0aOq227cuBG1tbX49a9/reuYDQ0N6Ny5M2JjYwXLe/fujYaGBtntFi5ciJ49e/Kvfv36ya7rlmlX3JCvW1KouVqu2zNxnJodYQdecQtZBcm066aIlEtCWJU23ND1pp8N+n8+AZzOvCoZNWW4NflR3echZmxegSUB3KFs6WMwtOKqhWXy5Mn8/5dffjlGjhyJ/v374+2330Z2tnJAW0lJCYYOHYqrr77a7tMEAMybNw8PPfQQ/765uVlRtLido4Nm3ZJCxUYxYF2xdyqzFOHSyJopiOhlBHWPEF4xFtsHx2LevkOeqUZtxh3rtnWFBJnajReKMjppQWcE47pLiCY2Nhapqan47rvvFNc7fvw4li9fjieeeEL3MRISEnD69GkcPnxYYGU5ePAgEhISZLeLiopCVFRU0PK/fPoBunTqFLyBzptaz4Mg6wpSgFhapISL29YVp7ByhhCBzA5zU6Dm+9JR7sBxlGbrNBXkWFYtV+13smJ2VlNBjqm0+kX+StyaPMTQtvQzqFWoSIliL8WseDFpmlxeJ0bo4inBcuzYMezatQuzZ89WXG/FihVoaWnBnXfeqfsYV155JTp16oQ1a9bg5ptvBgBs374d9fX1GD1auf6IVfwl+T7sSQ42eRtV73q2UbO2eBWnkl3phYgUr1jTQh0tta+0ujnt5q06+ZmIchgRK2LyfemAR8SKuO0Rv/eKgGHiJTxwVbA8/PDDmDp1Kvr374/9+/dj/vz5iIyMxG23BUrb33XXXbjwwguxcOFCwXYlJSWYPn064uODK9c2NTWhvr4e+/fvBxAQIwD4mUU9e/ZEdnY2HnroIcTFxSEmJgb3338/Ro8eLRtwazVSYoVAP+BaqrYaEThK1hYGQwklS5LZKsNaCmh6RazoxTKhEmLQ7RN9/m4G2tMz4hihhatBt/v27cNtt92GgQMHYubMmYiPj0dVVRV69eoFAKivr8eBA8ICZtu3b8fnn38uG+Py7rvvYvjw4UhPDzwcs2bNwvDhw7Fs2TJ+nSVLluAXv/gFbr75Zlx33XVISEhAWZk3Riw0dogVGtL490Ed+qDOUyZmKbx+fm7hRcuTHYSDWGnP0AUnvTAr0AvnwNCHqxaW5cuXK37+ySefBC0bOHAgOI6T3WbOnDmYM2eO4n67dOmCF198ES+++KKW0wxraBdRVdpw9EEdgHOjQD2dYXsrduYVMmrKAlNtJbKvDsgrsew4JFbHDuyIL3IbKaHihdIXVmF0wERSL3hhdh1zFYUWnophaQ9YZda1MlJdauTKBzVSOV22xSchtjHSsuMawUuxLNviteULcgIiTGiBsntJNi9grBIuSrE6djX4oWZZCXehYhXie8lqAaPX7aRFvIRq5exwgQkWhibWLSn0xIiIoR0n690AxmNYwsW60p5cP3ZM7SUCJr+tNpubuH18s1T1uQkx3YJntWql+XgLemIbRowYgcjISOTm5iI3N9fCMzQGEywOYoV1xc4cAOT8xB0PHaRGir/J0Z7cQl6ZGaRkcVKzrEyp2cX/vyotRfVYSkG3JG+LnvtcTawYta44mS9DLccRQx90tm4avQMmq0VHe8zIXV1djZiYGLdPg8f1WkIM7yEeJWf5K/hloernbS8iygpoEeMmZlxBTKyEH3oHCKTdsrLNCtX2L1xggoURcnhBfIRaXIUWptTs4sUK/b9etIoFu11Bdk8Dbq9ixc1Mr2SmEf1SwuopzO3NwuI1mEvIAaxsOIl/lzyA9APkpovCCyJCiXCJk3AasWipgrayE2qZT9USxJkVhIvvLcRiAKQ6mFWdbHsVKV5G8bf1V6KUciVpFS6kjRULnix/BUo9VHalvcEEi838Jfk+5EM5GZZe6IdO8ACa8NvbORqlxYJVjbqbs4VCzbqye0m25dObtSJXZybLX2GbiFx8b+D3KWvuzN8j+TAvWuTEitNCxWyCvvYGPR1fzUIiFbsntT+GOzDBYiP5vnTLxYqWY5L6NnZxOL41qMEUP9zkc2bZcB8rxQqgv7Cn2NqiFphtRhDm+9KxuO3/g73PZcIuT8s0PB3VK0KFwMSKtdD3Ml+vSXTP0iJR7v4n67LiiPbBBItJXu7/a/x+/9/5916oKJrlr+AL0dn18BCBQsz6YvO+nFBxY3SYUVMWtsLJbOHDVWkpmFKzS3KGkNXBt6W+aRj4zWHcd/IA7ksdjaXoI/htrLBcJaQG6oGVNXfGwehzy0es3IEMnWKe5VNh8O2nv5KfAUfaVznrIavobB9MsFiAQKR4bPSj5eEx4rZSq/niJYr8lRgbpoLFLHGFxVgl04ETMWMVWf4KXlAAwH0nDwBt1hYrBCXtCiLWlRErd/Cfl6dlIrYRyNLwTLSnnCp6EU8vDmUXid5zZ0LEXZhgMUlt/72I8YhIMfow3V+3FEh2prCalUKHdiso5YfxUuej152iRsBiVYZ9dUN0b7s6O0VgjZPy2dNixox4kYuRokXLOsk1tO17fcI4AKexNLoPb1khYuWtukUCt1h5WqZsTAuzqqgTZCGlfttw79DzFSwrBJYN1z7YtGZGWJDlr0BGTRn/OhzfisPxrZbPXjIbX5Hlr7A8Y7ARsQIgSODReStIp5TvSzd9vnGFxdhXNwT76oagrLlz0Of3nTyA8rRMQ8dZfG8hivyV2D44VvLz6umpsp0LfbyxeQWeESskUHjNJc84fmyzxBUWh31GbObycQ9mYWEA0Bdb0lSQA3jIaiGF23FETpHlr8A+GBMsI1buAJKV902IKyxGlaGjCM9xTMNalGEcMmNOS66r1QJF3D9zlxUELD9TJ2Dhe2uAxuB1pWaTladlIstfhtLCYs+5N4nInrDzYZfPRD/8PRMCAahZ/gqU55XgcHwrv0yr9dPuHD8MaZhgYQA4l1Yd0NZpiC0NXnK7iBlVs8UTQbdEFGb5K87NRggBpMRfVV6BJmtTvi9dYAHaVzcESXWNaEiuDYpnWdrYJ/BGh9uMdlONmjohcG7vrcENJbtQPT1VdXs5sRJqbiA1N4Vb0LNs3Ip1kbP4ECFLWxpjVWbU0QHuUtZbN79ne4AJFpP8Y1w6orv3MD2iN1vm3MqRjJEHjnRecmZ1Ihi2xSdhFEKrM7AKO6w+pb5puKHEnVT69G8tJ17K0zIxom5H0PJ9dUMASk8sje6j+bi0dUWKUVMnYPV7axArYW3RQqiJFYJXRQuAkBPpWpCy3GX5y8Lue3oJJlhMcufaSsRER6uvqAO5hEWh4OagOy569hTpBNwQK2pZVd1g8b2Fsh2uHoy6hFZnp7RtX2v6HIBgoUrfB9XTUwWzdQhffnAU9aPjkRlzOmBhaRMtsY2RQNuoWEo8N+zYgG1LXlA8n6aCHMXRsnh0HKoihSAWKmQA44U0CwQ38pTIWVeUCriawUy+H4Y6LOjWA2itT1Hqmya5rlf9xE0FOaz2hgwNOza4eny7rTLiIFYl9wwJxL3v5IHArCGc61DoDmfxvYV8kK0SVe+tUU2WRz9LoS5WxNDXp6kgx3Ptg9tWIDsFnNdLlIQ6TLCEIHLCxYvQI2S3ztkq64rVKfnDfTYFAEnLCk3ShmC/jVi0iFGaXl313hrV0XNGTRkfSxRuYkUOLYUCncRt0WIXdFwWw3qYS8hlivyVQSZErR1ZqAR40dkiEaYNlRpxhcVBSQXbQyE12rIi5xpK2tCIsjbXkJjYxkjMa3Of8TOCFFASK+1h9KsmSrSKFicEhd0uIrVgW6vJqCnDbg+JwnCEWVhcRO5BbSrICdtOTEvjFCrWIytwM77AqFvIzO9TPT2Vf9EkbWhEWXPnIPfQfScPaI71qXpvjeHzkiWlPvBqhzhlkQkXawuzrtgPEyweJlyFi5dM005SnpYpeDGESLmHCFNqdpl2BRliV1LgFSJY3fk75Upyyj3qlQBkhjGYS8gl9DQCYtESpzCDIlQQV/Al2GFd2RafZDqOxWz8ilRnSkRLnAnXntEst2bQei3XLSnUXSk6aUMjvgRw1aQeaNixAUX+SlU30KC8B/CtC64gtarTbmFFJlbx9vR7OywidIkIJcTtg1faQOYOcgYmWEIQrzykVkM3Rm5UdXYLt3JUVE9PRWKNNdOapVCrJC0X00LQ0ulWvbfGFbFi9771IjcAMIKS4IkrLEZRW/vjhitHqo6RnkFOoOaYxSeFgDtoLhMstsMEC8M11Bo8q0QL2YcXst1KUZ6WacjKEldYDGiIQ+GLHIowIlaszmlDYllo4cJbV6BecFHODeQlMWE3tLiwwn2jJFaIJUTOVeQJEaOCWOCQe+hwfKtht6IVOZVCmYULF6KsrAzffvstoqOjMWbMGCxatAgDBw609DhMsDA8jRcsLVZPZ5YitjESWRYWVauensrXSMnyV1gq/rQKP71xOkS8lB1sRKlvGqaoJIerkslmS9eGCXesji9Rsq7Q5TuUzsfrQbRangOp54XFncmzdu1a5ObmYsSIEfj555/x//7f/8ONN96Ib775Bt26dbPsOEywuEB7DTplWEuWvwLl0zMF1onq6anIqCkLsp64LfrUIGKl98GAAiF1gQir0lIE1halIFuvf1eG95G6h8RWO1rASMXihavrXor3339f8P6VV17BBRdcgE2bNuG6666z7DhMsDBcQc8ozG0ri9k0+nGFxZJVhMUQ1xCgPU4po6YMSD5n5s7y2+sKsavMAREqAJAZcxofiz7XKlbsdAWRDsor7iajAx/62aM7VqviX9oLSveBVBBx88mTKCj/0O7TspTm5mbB+6ioKERFRalud+TIEQBAXFycpefDBIvDMOuKdBI1L9OwYwPf+Bj5/Yz4xbVUzAbOzRIiOVXU6golJtsXZGsFB3vH4+M54xXXcVKsSLkBvDA7SM99qFRPSNyxlvqmCeKp6OnG7cliEOq81/236Nqth+HtT0QcBbAE/fr1EyyfP38+FixYoLjt2bNn8eCDD2Ls2LEYMsTaWYxMsDgIEysBFBvPNqye3kz2Z8Q6QE8dvjU58D/p+K3+TelOQU20qE1pXp2dghtKdvF/yTZeEy3EurJ9cCxGTR0f5P4hOGVZ0RKr4DVrixS8taPtudLyvWIbAzFAZNtSUM8lWaYwtdgrgbgMa9i7dy9iYmL491qsK7m5uaitrcXnn39u+fmwxHGMdkFTQY6lrox9dUOwr26IamOsp7GW6vy0JtRanZ3CV2Am2F3g0AoyasowpmFtm1iZICtW1PZhFXoDK80GYpanZeoWvWpiPt+XLrjv9CYqjG2M5LeREoikDhN5qd2jXqtjxNBOTEyM4KUmWH73u9/hX//6Fz7++GMkJiZafj5MsDAcRdy4kcZX3AiTxpD8bxa6crAe1GYI7asbgluTH5UVJmY6NCtN8GIx4wVooUG+q5xYsS2TLYXR38qsaDFqgRA/S2aFihxa9hNXWBz0EsNES/jCcRx+97vfoby8HH6/H8nJybYcJ4LjOM6WPYc5zc3N6NmzJ44sKUJMdLTq+uxhDeCWedhosOiomi2GsskmJteiyF+pK9NrRk2ZYg4MsbvIqAXFbpeQ1k5y95LsoKzNTruCrJyqapWlx2yMjFvTb6XO+VwweEXQzBml2JpwpPnkSfTMy8eRI0cEbhZLj9HWL/3jo53mYliOH8WdEy/RfK6//e1v8cYbb6CiokKQe6Vnz56I1tA/aoXFsDBcg27Mwo19dUMw+vZxwMFGHOwdr2kbJVHrlYBHWryJM9WKCxoqkVFThiIIv1coixUrMfq93P4+ZDaf+Lmm/5bKWFjp+0BpUCMWQOHYdoQiS5cuBQCMHz9esLy0tBRz5syx7DhMsDgAs64EcHN2EGng9FpZytMyMaJOPn28EqSYXxIadXXmWsjyV6jOCLIasaXJlFiReCaq3lsTlH9FaR9mcLtztxq3v8/h+NZAiQl/JdD22xYhUCeLFhZyAqOUsiAW+SsFFkUpAdOeKrqHAk45aphgMclfPv0Af5g0nX/PxIk0cuZfJ0dI5FhahUvAHXTGkmOrde7E4qDG4nsL0bBjgytFD61Aye3VVJCDqvfWCJZJWVeYWBHi9vdR+j14ESJaLhYhUtYX4i4kM5WkRAq9jFlbwh8mWBiOQIsFtzFqbbEKIl6strqEAkqCfmxeAdD2m2yLT2JiJYyRKtYo5+YpbbPS0OtIwVxE4Q8TLAxXIA2PWyMkNWvLuiWFSEx+1NZzIMKlfnS8Zsvc3GUFQRk09UJbZ0hwMBDoPC6qS8Ke5ODroWTR0Sq8lKxI4llcgxrrsS0+ybJ7grgZ7KjU6yZuCjAp8Si2nKjd10Gf+ysDriSRRVbuf6D9VnlvjzDBwrAdOR+0UqI4JxuebfFJQaIl35eOfXWOHF43CamjsTStj8DNZBRxpd/7ARS1fe98Xzr/u5jN6aLkCpLDaguY3dOi3YCIBiXhQqoQZ9SUOS5wpGrsSM0YEtNUkMO7iNTaAS9Zbxn2wgSLxShVO2UITbriWQVS69k9G4DsV2sFYjsY07AWG3SsP3dZATJ86UGFDwFt1g7ByFhBlNEBlDBhbVITK3I5ckbVbDF8TDFa6zmFKlpdZXLrlfqmBQm6jJoy3rJG31dm3HKC4Ns2QSw7Q4hZShgimGCxALE/Nt9E3Zn2gOxMAZF7yMrEcWqMqtkicA+FQlDr7iXZ2C1euER9Oy3BvTRxhcWAQQuLWuemRazQYtKIiCnyVyIfLH4FaLsWlOWM5nB8K/8/eeZIzh5x9W+rkCoSaGZfzMoS3jDBwmC0QVtznJ4yHMoouqaS9Qt3q8UK4xxkMNVUkIMBeSUCkRLqEGsNLchZHaPwggkWCyGjFwJzD8lDRrteazDdCNgzco+Ew32lVC7BjFARJyPL96W3e+vK+oRxGNOwln+f70tHOYRxPV57FvWS5a/QbT1khBaslhDDFaQaR69E969PGOf2KXgGMyUAAGPCymw8UVNBDi9WtBaPDCVKfdOQkDoaCamjNW9DixWyDwa7DqEGs7BYDLOyqFOeloksfyC2QS6Nt5uMaVjLXEIeQY91Re45CzfrSpa/AllunwSD4QLMwmID4nLq+b70sBzpmYF0InRwrVco9U3D6uwUvFW3yO1TUcSJe8rMVGClIotaqmdrESvkWZMSK+2tuJ5WyCCBtnIejm/1TL0qM4ifiSJ/paIVhd0foQUTLA7RXh8MqU41o6YMGTVlnjbHksb76MocW4WL17PdWpHrRYxVYkUO2sIZbtYVqzkc38oLl/Y8qPJyW8Q4BxMsDEcR52DxIuKR5pSaXTi6MgdHV1o/Au190LvJQcx0YErWFatQc7V69f7yCnKxSaF83dyuV8awlwjOqTKLYUZzczN69uyJwowb0aVTJ8V16RFfe4tnUau0qpal0unGptQ3TXPFYADoMd3cqJROje81BuSVGLawyH0vLdYVQN3ConbNAmn4nc9sa7bWkVbEsXIEuYFAeVpm0LnR1ienzttupDLoemVqc/PJk+iZl48jR44gJibGnmO09Uv/+GgnunbrYXg/J44fxZ0TL7H1XI3ALCwMx9EqQqwSK+KaRVZydGUOVmen2LJvt7HDHWQFXhV4TrL43kLJ5XLPzH0nD6jOKgoH91mWv0JgGWzPbq5whM0ScgB6NNReZg2pjWpoy4pcYTM9biPxbCPxcj1UvbcGQMA1NKVGfUrvqKkTcFS0vZapwNXTU7E6PuVc+nsDxBUW2xIsaSa7bWJybeC6i75Xvi8dVQbPR88zQ4Jtw6EDlqNhh55iDtLri60q4WJlMYu4zWAuJe/ALCwOIZ415DZ2jjz0fj9xtVWCGw0Ffcy4wmJevOhh1NQJmuNdzIoNu2Z2mL32UuflVGBjuIsVI5SnZWJ9wjisTxjHW1pILhc7LZChiBdnLjICMMHCsIx8X7pmsSJnETHaUJBGhjS+pb5pKE/LNBTHID6HVWnWuXy8PivIKqRiVYz+tmLritI95rYLwAmhZNRCe7B3PDJjTgMIiBVidQmH6cw0tFvIzHdjosV7MJeQS1jxQBkl35cOmExjLe4Y9D7cdKEyIw2DnMWK3q8VVWVLfdMClpa25VoDcqveWyMQS70PNuJg7/jAOSWfC4K0IpW4XW4ho5BMtWLRotUdtC0+CaMgH3Sr1GG3B+uKVRZaPZlyQxlxwUc97Q0TLd6CCRaXsVK40A0ZXU8laNRpwUNo9kGWcgPp2adco231dGlxBdiq99YoipZVaSmYUrMLo6ZOEMwgqh8dL1gvo6bMslgmL4kVKzDz+4W7WLGSsubOvMWlPdCeqjnP+9cWdIjqanj7sy0nAAAjRoxAZGQkcnNzkZuba9XpGYYJFo9gZuqzVOfNWwgUsn26NTK3s9GwY0QkDgSm41rE4oUO0j26Mger0lIQV1iMgd8cDpmgxnxfOvbVhV5pAlLQz0rITCk9rjypKcRuQ87nPhmrSlNBDuBLx0V1SdiTXO/kqdmCuBBikb/SdXdhKFJdXc2mNbcXxuYV8C9Ae0etJ5W/2YfQCwHAoYRYEFW9t0YxMJdYW7YPjmWjfw0YzXBrxX0sTuI3YuUOVE9PNRR3VJ6W6fnfm7auxBUWo9Q3DfOzzRWe9DrMxRPaMAuLTUgFHTYV5PAWDy3mSa0WEKVpeEoPKPmMNPZSSZfsINQbDanfTs1VNGrqBFS9t4Z3WVk9td0qa5nZjj8xuRb7YKzTU4tdUcNLAsFrFhYr8dqMR0b7gQkWhxibV4B1S6STPTUV5PDmy3xfOqrShmNQY5tZVi0zaOM58+22+CTBR1rjOegYEiuCQNsDktc17wHFTLlkeel7a0zlXpGCiBWzwsXNkglyx1V6dkiHaYVYOdj7XJxR74ONYTmji8wMSkgdLRnDove397J4ET8LpJ01ep5eLifSXmAuIRvQmn4cONfRkG3MjLwHNcr7ntUqlrIH0TnstGJ5Na+LUegZR3qeK7PQ4iUcadixwbRYEeO1hJh2tGksZ427MMHiMnRDbHWj3J6i4r2A1msdrsF/ThQ8lHo+vOQKCkUW31tomVAt8ld6Rriwti/8YC4hG1i3pFBWeJBofAB8LIPVI0fadCn+y7AXtTwtVe+t8ZwVgyausBjwV6i6Qw7HtwIIVPytnp7Kx2wQi4he9ATbkudlW3wSyi0scDhi5Q4cXZmjWNAynNxEdLr+0sJirNl7LSbsfNiSfXvBVST3nMkVjmR4H1ctLAsWLEBERITgdemll8quP378+KD1IyIikJ5+7ubjOA5//OMf0adPH0RHR2PixInYuXOnYD+bN2/GDTfcgNjYWMTHxyMnJwfHjh2z7Hs5aboW4+XOkBEaaLFYxDZGIrYxUiBWrEZN/Ci5QM1wdGVO0IsmHANqs/wVlokVMV6yujBCG9ddQpdddhkOHDjAvz7//HPZdcvKygTr1tbWIjIyEjNmzODXefrpp/HCCy9g2bJl+OKLL9CtWzdMmjQJp06dAgDs378fEydOxMUXX4wvvvgC77//Pv7zn/9gzpw5ln4vqSBBqTgVq90DY/MKdFtTmF/WOqreW4NVaSmS6fyr3luDLH+Fp0d3SvfO7iXZgr8Es1N4pawrRKwoWV4OINnwMaVQqv9EhMulc8aj1DcNGTVlii9GMES40C+7UGrPyBRuvTArtfu4Llg6duyIhIQE/nX++efLrhsXFydYd/Xq1ejatSsvWDiOw3PPPYeCggJMmzYNl19+OV599VXs378fK1euBAD861//QqdOnfDiiy9i4MCBGDFiBJYtW4Z33nkH3333nRNfWUCWv0J2BoTT58FEizV4JUZF73nIrU8LFLFYoTHiDlISJKNqtmBf3RCMqtnCv7RsFy4QIRgKOV2MYka4KG1rd1FQ1la6g+sxLDt37kTfvn3RpUsXjB49GgsXLkRSUpL6hgBKSkowa9YsdOvWDQBQV1eHhoYGTJw4kV+nZ8+eGDlyJDZs2IBZs2ahpaUFnTt3RocO57RadHQ0AODzzz/HxRdfLHmslpYWtLS08O+bm5tVz48IETUXUVxhsWB6sln0Tr+j41zYtGbjSNUfoqcb079Jvi/ddjO53kZb7p4ZkFei+N5Oqqenohrn4kZo60VGTZkrHTmZHksLPCtH3+LvZJXFRklQOiEAlaank2dByfpI4v3UBnilvmmqaQNuKNkFowY6NrhzjwiO4zi3Dv7vf/8bx44dw8CBA3HgwAE8/vjj+OGHH1BbW4sePXoobrtx40aMHDkSX3zxBa6++moAwPr16zF27Fjs378fffr04dedOXMmIiIi8NZbb+E///kPhg0bhqeeegq///3vcfz4cdxzzz1455138NRTT2HevHmSx1uwYAEef/zxoOWFGTeiS6dOhr4//XAaDVaUYlt8kubOStxAaO1EvezW8BJa6iS57d8nheHm7TuEpdF9JNcRW1aUREtGTZnm+3lbfFJw9uC04ZLuHpJ5VsnKo4RazpZL54zXvC+5Ct5ExJgVMHpEixVthx7Boud+pQXGlJpdWJWWwg/g9FqWpQZ+ZB/0gEApAaZdIlMLzSdPomdePo4cOWJbuvvm5mb07NkT/R5823Qtob3PzbT1XI3gqoVl8uTJ/P+XX345Ro4cif79++Ptt99GdrZyo1RSUoKhQ4fyYkUrl112Gf7+97/joYcewrx58xAZGYkHHngAvXv3FlhdxMybNw8PPfQQ/765uRn9+vXTdWynGNRYj3Ua1zWSDInMJGGo47bfe/G9hViYeIHySm15eLJgzRRhsg+6k9XaqVop3MXwHa1Eh5vvS8c2k/ufUrMLILPE8h5QXjmlHtilzZIMnKtPZNf1qUobbouVhRYltFixEy+KFYY1uO4SoomNjUVqaqpqLMnx48exfPlyPPHEE4LlCQkJAICDBw8KLCwHDx7EsGHD+Pe33347br/9dhw8eBDdunVDREQEnn32WQwYMED2mFFRUYiKijLwrSA5ohibV4AqnBthbotPsm3WgxJ0ll2tPF6yBVnWxjsybGLusgI0Ue/p7J+kUCPpqAfJdLJSFg16mZy1hS4CSDpDusMVW1foQNvytOAbzM4pxUX+SkzRsT6xFhhGRazQ7q5QCuKVEyRKkxDkPpfah3j//BT3tvdK7iAmUkIfTwmWY8eOYdeuXZg9e7bieitWrEBLSwvuvPNOwfLk5GQkJCRgzZo1vEBpbm7GF198gfvuuy9oP7179wYA/N///R+6dOmCG264wZov0obUwyV+MElelix/ha2jSyuZnz0c8Id+RVcvYLc7iK4eDeCcBUCCUt80xArr//HCZEBeiSaRooT4/pYXK+esPMQNROh9sBG7dR9ZG9cvfZO3Rqnl03ECrwoVcbumNVZPat2ec7ICH+gQf/Q+aJcQwNI6hDuuzhJ6+OGHsXbtWuzZswfr169HRkYGIiMjcdtttwEA7rrrLsmYkpKSEkyfPh3x8cL02REREXjwwQdRWFiId999F19//TXuuusu9O3bF9OnT+fX++tf/4rNmzdjx44dePHFF/G73/0OCxcuRGxsrJ1fV5KxeQV8p+WF2UIM7Xg58G5Kza5gsaITo7EiViK2qoxpWGvLcfJ96Vga3YfPL/PtK5/g21c+waC8B/iK3OKq3FZcY71Y7bZZt6SQf7lxPx95pdTS/Xllhh7DHly1sOzbtw+33XYbGhsb0atXL1xzzTWoqqpCr169AAD19fVBcSXbt2/H559/jg8//FByn4888giOHz+OnJwcHD58GNdccw3ef/99dOnShV9n48aNmD9/Po4dO4ZLL70UL7/8sqpVxwhKIw+xewg1WwKFDy0/C+thptUA9HWg3R96sGO2kB2dqBHxQq5HqW+awN0p5QoiHbFcDM2IlTuQmFzreIByeVqmwOr07SufCD4/HN+KuLb/6Wd3kI3PiJRoIfefE9dHfPxRJACfWk5n8JYaiAmWabSuSFmoyTJiqWYWlvDGVcGyfPlyxc8/+eSToGUDBw6E0sSmiIgIPPHEE0HxLTSvvvqq5nO0AjXLybolhdjWFuXuViyLVljArZBzs4DKDAUwl/qmIR/WuYa0ihWp+Is40XuxG4hm95Js1ZlCQLBYAeQFbyjmGoltjMSIlTsAAG/VLQJwLjGZEWEvlTZePOU3FK5Tvi+dFzCj2mahkftAKZ5Fqa2UimFhVun2hadiWNobgqCzEIxlYQhR66CkOjHyng6GNYoesSJlOo8V1eWREytq8Su0pUksVrbFJ2EUtvBWFXKv76sbAqRpOn3Pcmvyo4F/SnbhrbpFKBXNSpH6/aWEqlHxWp6WqZp/RM++5CyGxgRTq6oYYTDUYILFQ4RCUa5QdgcZLcimNFpWuh50TEBW29RhObL8FSg1KFr0uoDkcoWIOyIiTOjAWz1ICW9yTFqsjKrZgvLpyp2gG+4gPdBp/Yn1iv4t9xEx42GIW4UEXxt1c0pxQ8kuvGXJnoQYyeli1PrFcB/XU/MzGE6R70vnX3rQ2rjRHb4TAYxWBH1qGS1bMSMIkI692BavPReJnSSkjja1PV3hWetv4lUBFsqduZag21D+fu0dJlg8wti8An7GkFcacYY+Dse3otQ3jRcBdMOoJGBITRQ91hWzQoWcm9YRtBbRQgr/icXKtvgkgVipShvOu4RiGyNVRZMTwaRyGX7VIPErUhYWIOAmIq6iG0rsn1Fkl4XWbD2j6umplgSDy1lStEyp9vKsPoY2mGDxGEaqLTO8AXH7HI5vBRDsErIKKxp+KxtvpQrFUqn32zOh1mlaHeBrlWhhMS/e5MUXX8RFF12ELl26YOTIkdi4caOl+2eCxUVYEFp4ohavYgYrGnyxJcfqTlTs+in1TeOPQVtf9tUN0bQ/r7pOgEBsDRDsEqItK/R6BCPX3Inr4MQxrJp2L24j1ayUTDjby1tvvYWHHnoI8+fPx+bNm5GWloZJkybh0KFDlh2DCRYPsW5JoafdQWr+4VLfNBT5K/kOivxPPmtvWClcrE5S1lSQo6kwoxJKlhUiWuSuwaiaLZpS7ROXi1acTuZGRBftEqLFC71eYnKtoDK6WXofbFRfyWLMWlxWpaWYK2kggZbBndcnM4QDzz77LO655x5kZWVh8ODBWLZsGbp27Yr/+7//s+wYbJaQQUgumFNnfja1n+PHj/P/nzpzBvsfzcKa3Ecw7OJUwWd6OXXmjKnzkmL/o1lovm6S7Ocnjx3FqTNncPLYUf4cTh47iuaTJ3Fz5XI0W35GoYHad1f7rW78ug7HLDyf6zbvwIdDk/nfhnDi+FHN+5j69btB3+m9ob/kPwMC9/aaiwOi5ObK5VgzNA04fhwjvq7Btu8H48TF6sdbe0MfnHpR/V7O7J8X+KcvcOxfD2BK398BAMq+X4Ibv64DAHw4VL4Alp7vTnO0JfCMHmtt5ZeV7Sg8dz4U9LUGjD2jzSdP8uda170zIDrv5pMnTT/79DGk3hvlWGur5e3SmqfnY1TuI1jz9HzF9cTX3g2aT50CAMU8YlZxtuWEJds3NwufcrmaeqdPn8amTZsEmek7dOiAiRMnYsOGDabORQDHMMTevXs5AOzFXuzFXuzFXppfe/futa1fOnnyJJeQkGDJeXbv3j1o2fz58yWP+8MPP3AAuPXr1wuWz507l7v66qst+37MwmKQvn37Yu/evejRowciIiLcPh1Fmpub0a9fP+zduxcxMTFun07IwK6bftg1Mwa7bvoJtWvGcRyOHj2Kvn372naMLl26oK6uDqdPnza9L47jgvo2KeuKkzDBYpAOHTogMTHR7dPQRUxMTEg82F6DXTf9sGtmDHbd9BNK16xnz562H6NLly6C2nlOcP755yMyMhIHDx4ULD948CASEhIsOw4LumUwGAwGg2GYzp0748orr8SaNecqmp89exZr1qzB6NHmkjLSMAsLg8FgMBgMUzz00EO4++67cdVVV+Hqq6/Gc889h+PHjyMrK8uyYzDB0g6IiorC/PnzXfc/hhrsuumHXTNjsOumH3bNvMWtt96KH3/8EX/84x/R0NCAYcOG4f3330fv3r0tO0YExzkwx4rBYDAYDAbDBCyGhcFgMBgMhudhgoXBYDAYDIbnYYKFwWAwGAyG52GChcFgMBgMhudhgsWD/PnPf0ZERAQefPDBoM84jsPkyZMRERGBlStXBn3+yiuv4PLLL0eXLl1wwQUXIDc3V/D5V199hWuvvRZdunRBv3798PTTTwftY8WKFbj00kvRpUsXDB06FKtWrQo6hz/+8Y/o06cPoqOjMXHiROzcudPUdzaLkWv2yiuvICIiQvJFVxj95JNPcMUVVyAqKgoXX3wxXnnllaBjqJVVP3XqFHJzcxEfH4/u3bvj5ptvDkqy5AZG77Xq6mpMmDABsbGxOO+88zBp0iTU1NQI1mH32krBZ2vWrMGYMWPQo0cPJCQk4NFHH8XPPwtrkYXrNQOkr9v48eODnr17771XsF19fT3S09PRtWtXXHDBBZg7d27QdQvnZ5RBYVmSf4YlbNy4kbvooou4yy+/nPv9738f9Pmzzz7LTZ48mQPAlZeXCz4rKiri+vbty73++uvcd999x9XU1HAVFRX850eOHOF69+7N3XHHHVxtbS335ptvctHR0dzLL7/Mr7Nu3TouMjKSe/rpp7lvvvmGKygo4Dp16sR9/fXX/Dp//vOfuZ49e3IrV67kampquF/+8pdccnIyd/LkScuvhxaMXrMTJ05wBw4cELwmTZrEjRs3jl9n9+7dXNeuXbmHHnqI++abb7i//OUvXGRkJPf+++/z6yxfvpzr3Lkz93//93/cf/7zH+6ee+7hYmNjuYMHD/Lr3HvvvVy/fv24NWvWcF9++SU3atQobsyYMXZcDs0YvW5Hjx7l4uLiuDlz5nDffvstV1tby918881c7969udOnT3Mcx+418TXbunUr17lzZ+7xxx/ndu7cyX3yySfcpZdeyuXn5/PrhOs14zj56zZu3DjunnvuETyDR44c4T//+eefuSFDhnATJ07ktmzZwq1atYo7//zzuXnz5vHrhPMzyhDCBIuHOHr0KHfJJZdwq1ev5saNGxfUIG7ZsoW78MILuQMHDgQ1iE1NTVx0dDT30Ucfye7/pZde4s477zyupaWFX/boo49yAwcO5N/PnDmTS09PF2w3cuRI7je/+Q3HcRx39uxZLiEhgVu8eDH/+eHDh7moqCjuzTffNPK1TWHmmok5dOgQ16lTJ+7VV1/llz3yyCPcZZddJljv1ltv5SZNmsS/v/rqq7nc3Fz+fWtrK9e3b19u4cKFHMcFrk+nTp24FStW8Ots27aNA8Bt2LDByNc2jZnrVl1dzQHg6uvr+WVfffUVB4DbuXMnx3HsXhNfs3nz5nFXXXWVYP13332X69KlC9fc3MxxXHheM45Tvm5S15Fm1apVXIcOHbiGhgZ+2dKlS7mYmBj+OoXrM8oIhrmEPERubi7S09MxceLEoM9OnDiB22+/HS+++KJkbYbVq1fj7Nmz+OGHHzBo0CAkJiZi5syZ2Lt3L7/Ohg0bcN1116Fz5878skmTJmH79u346aef+HXEx580aRJfIryurg4NDQ2CdXr27ImRI0daW0ZcI2aumZhXX30VXbt2xS233MIvU7sepKw6vY64rPqmTZtw5swZwTqXXnopkpKSXLlmgLnrNnDgQMTHx6OkpASnT5/GyZMnUVJSgkGDBuGiiy4CwO41MS0tLUH1XaKjo3Hq1Cls2rQJQHheM0D5ugHA66+/jvPPPx9DhgzBvHnzcOLECf6zDRs2YOjQoYLkY5MmTUJzczP+85//8OuE4zPKCIZluvUIy5cvx+bNm1FdXS35eV5eHsaMGYNp06ZJfr57926cPXsWTz31FJ5//nn07NkTBQUFuOGGG/DVV1+hc+fOaGhoQHJysmA70hA0NDTgvPPOQ0NDQ1Bmwt69e6OhoYFfj95Oah2nMHvNxJSUlOD2229HdHQ0v0zuejQ3N+PkyZP46aef0NraKrnOt99+y++jc+fOiI2NDVrH6WsGmL9uPXr0wCeffILp06fjySefBABccskl+OCDD9CxY6BJYfeakEmTJuG5557Dm2++iZkzZ6KhoQFPPPEEAODAgQMAwu+aAerX7fbbb0f//v3Rt29ffPXVV3j00Uexfft2lJWVAZB//shnSuuE8jPKkIYJFg+wd+9e/P73v8fq1aslq2y+++678Pv92LJli+w+zp49izNnzuCFF17AjTfeCAB48803kZCQgI8//hiTJk2y7fzdwIprRrNhwwZs27YNr732mtWn6imsuG4nT55EdnY2xo4dizfffBOtra145plnkJ6ejurqaoHgCwesuGY33ngjFi9ejHvvvRezZ89GVFQUHnvsMXz22Wfo0CE8Dd1q1w0AcnJy+P+HDh2KPn36YMKECdi1axdSUlKcOlVGiBCeT0qIsWnTJhw6dAhXXHEFOnbsiI4dO2Lt2rV44YUX0LFjR6xevRq7du1CbGws/zkA3HzzzRg/fjwAoE+fPgCAwYMH8/vt1asXzj//fNTX1wMAEhISJMt/k8+U1qE/p7eTWscJrLhmNP/7v/+LYcOG4corrxQsl7seMTExiI6O1lRWPSEhAadPn8bhw4dl13EKK67bG2+8gT179qC0tBQjRozAqFGj8MYbb6Curg4VFRUA2L0GBN9rDz30EA4fPoz6+nr897//5a0xAwYMABBe1wxQv26tra1B24wcORIA8N133wEwd01C9RllyMMEiweYMGECvv76a2zdupV/XXXVVbjjjjuwdetW/OEPf8D/b+9+QptIwziOP6k20xZpkqK2KFYsYsAqBJXKUKmoIAhC7FX0oiD+OUqOIvQgIqIFES9ChR6UIiwFLWJFRbEoVrBJaAgolgr1oPgPsWAhvz1Iwg7Jbt2a3QzD93Nr5p30nYeZ8st0nrzpdNqz3czs4sWLNjAwYGZm3d3dZmaWz+dL7/vx40f78OGDrV692szMXNe1R48e2dzcXGnM6OioxeNxi8VipTF/XSK8OKa4RPiaNWusra3NM+br16/27Nmzqi4jPp9q1Kzo27dvNjQ0ZIcPHy77PfPV41eWVd+8ebPV19d7xuTzeZuenv5fa2ZWnbp9//7d6urqLBQKld63+HOhUDAzzjWzyudaKBSyFStWWGNjo12/ft1WrVplmzZtMrNg1cxs/rotWrSobJ9i7YofwFzXtUwm4/magdHRUWtubi59OAvaNYp/UOunflHZfE/PW4WOl2Qyqc7OTj158kSZTEZ79+7V+vXrS62mnz9/Vmtrqw4ePKhsNqsbN26oqamprG1y8eLFOn/+vHK5nE6fPl2xbTIajWp4eFjpdFrJZLLmbZPSwmomSVevXlVDQ4M+ffpUtq3YMplKpZTL5XT58uWKLZOO4+jatWuanJzUkSNHFI1GPZ0NR48eVXt7u+7fv6/x8XG5rivXdX/ncKvm39Ytl8vJcRwdO3ZMk5OTymazOnDggCKRiGZmZiRxrlU6186dO6d0Oq1sNqu+vj7V19d7xgS9ZpK3bq9evVJfX5/Gx8f15s0bDQ8Pq6OjQz09PaXxxbbm3bt36+XLl7pz546WLVtWsa05yNcofiKw+NRC/iB++fJFhw4dUjQaVUtLi3p7ez2tp5I0MTGhbdu2yXEcrVy5UmfPni1776GhIa1bt07hcFidnZ26ffu2Z3uhUNCpU6fU2toqx3G0a9cu5fP5BR9rtSw0sLiuq/379//tfg8ePFAikVA4HFZHR4cGBgbKxly6dEnt7e0Kh8Pq6urS06dPPdtnZ2d1/PhxxWIxNTU1qbe3V+/evfvVQ/tPLaRud+/eVXd3tyKRiGKxmHbu3FnW/sm59ofntR07digSiaihoUFbt27VyMhI2X5Brpnkrdv09LR6enrU0tIix3G0du1apVIpz/ewSNLU1JT27NmjxsZGLV26VCdPntTc3JxnTNCvUfwUkqTa3d8BAACYH8+wAAAA3yOwAAAA3yOwAAAA3yOwAAAA3yOwAAAA3yOwAAAA3yOwAAAA3yOwAAAA3yOwAAAA3yOwAAAA3yOwAPht79+/t7a2Njtz5kzptbGxMQuHw2Ur6QLAQrCWEICqGBkZsX379tnY2JjF43FLJBKWTCbtwoULtZ4agAAgsAComhMnTti9e/dsy5Ytlslk7Pnz5+Y4Tq2nBSAACCwAqmZ2dtY2bNhgb9++tRcvXtjGjRtrPSUAAcEzLACq5vXr1zYzM2OFQsGmpqZqPR0AAcIdFgBV8ePHD+vq6rJEImHxeNz6+/stk8nY8uXLaz01AAFAYAFQFalUym7evGkTExO2ZMkS2759u0UiEbt161atpwYgAPiXEIDf9vDhQ+vv77fBwUFrbm62uro6GxwctMePH9uVK1dqPT0AAcAdFgAA4HvcYQEAAL5HYAEAAL5HYAEAAL5HYAEAAL5HYAEAAL5HYAEAAL5HYAEAAL5HYAEAAL5HYAEAAL5HYAEAAL5HYAEAAL5HYAEAAL73J4uuozuhzN0BAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADD8ElEQVR4nOyde1xVVfr/P4gKiCJBKnhB0cIsDa1MycpCi5QMtSztzviNdKgmImv8Do1WNI4ZQ2WlMV/mNNXMWM6AVPTLzNPVS2oq6WRiiuENbSBBTdHB/fsD1nbtffb9fg7r/XqdF5x99mXttfde67Of9aznCeM4jgODwWAwGAyGh+ngdgEYDAaDwWAw1GCChcFgMBgMhudhgoXBYDAYDIbnYYKFwWAwGAyG52GChcFgMBgMhudhgoXBYDAYDIbnYYKFwWAwGAyG52GChcFgMBgMhudhgoXBYDAYDIbnYYLFIwwYMAD333+/28VgMBghzv33348BAwYY2tatdurw4cO47bbbEB8fj7CwMLz44ouOl4HhPkywOMjatWsxf/58HD161O2iOMrGjRvx0EMP4ZJLLkF0dDSSkpJw++23o7q6WnL9HTt24KabbkLXrl0RFxeHe+65Bz/99JNgne+//x5PPPEEhg8fjm7duiExMRGZmZnYtGlTwP527tyJvLw8XHXVVYiMjERYWBj27t2r6xyWLFmCadOmISkpCWFhYYqN9tGjR5GTk4MePXogOjoa119/PTZv3qzreKWlpRgyZAgiIyNx4YUXYvHixYbO6/7770dYWJjqhz4fq+tfibVr1+Lqq69Gly5dkJCQgEceeQTHjx8PWK+5uRlPPvkkevfujaioKIwaNQqrVq3SdSwtdQoABw4cwO23347Y2FjExMQgKysLe/bs0XUstzl48CDmz5+PrVu3ul0US8jLy8PKlSsxd+5cvPXWW7jpppscO7bWe5ThABzDMRYtWsQB4GpqagJ+O3XqFHf69GnnC+UAt956K5eQkMA9/PDD3J///Gfu2Wef5Xr16sVFR0dz27ZtE6y7b98+7vzzz+cGDRrEvfTSS9xzzz3HnXfeeVxqairX3NzMr5efn8/FxsZyM2fO5F5//XXu+eef5wYNGsSFh4dzq1atEuzT5/NxHTp04IYOHcoNHz5c9hoo0b9/fy4uLo676aabuI4dO3L33Xef5HotLS3cVVddxUVHR3Pz58/nXnnlFe7iiy/munXrxlVXV2s61tKlSzkA3K233sqVlJRw99xzDweA++Mf/6j7vNauXcu99dZb/OeZZ57hAHA5OTmC5WvXruU4zp76l2PLli1cZGQkN2LECG7JkiXc7373Oy4iIoK76aabAtadPn0617FjR+7xxx/nXn/9dS4tLY3r2LEj9+WXX1pap8eOHeMuvPBCrmfPntzChQu5P/3pT1y/fv24vn37cv/5z380HcsLbNy4kQPA+Xy+gN9Onz7NnTp1ytB++/fvL3vv20mvXr24u+66y/Hj6rlHGfbDBIuDKAmWUGbNmjWCzo7jOK66upqLiIgIaIRmz57NRUVFcT/++CO/bNWqVRwA7vXXX+eXbdq0iTt27Jhg2//85z9cjx49uDFjxgiW19fXc01NTRzHGb8Ge/fu5c6ePctxHMdFR0fLNtrvvPMOB4Bbvnw5v+zIkSNcbGwsN2PGDNXj/PLLL1x8fDyXmZkpWH7XXXdx0dHRXENDg6nzUurIOM6e+pdjwoQJXGJiItfY2Mgv+/Of/8wB4FauXMkv+/rrrzkA3KJFi/hlJ0+e5AYNGsSlpaWpHkdPnS5cuJADwG3YsIFftmPHDi48PJybO3eupvPyAmrX2ShWCJaWlhbu5MmTurYJCwvjcnNzTR3XCFrvUYYzMMHiEPPmzeMABHxIByNuCHw+HweA+/LLL7mHH36YO//887nu3btzOTk5XHNzM/fzzz9z99xzDxcbG8vFxsZyc+bM4TtUQktLC1dcXMxdfPHFXEREBNezZ08uJydH0EC7yWWXXcZddtllgmU9e/bkpk2bFrBuSkoKN27cONV9Tp06lYuLi5P93QrRqCRYpk2bxvXq1YtraWkRLM/JyeG6dOmi+mZbWVnJAeAqKysFy9euXcsB4N566y3J7awSLHbU/4kTJ7gdO3ZwP/30E7+ssbGR69ixIzdnzhzBus3NzVzXrl25mTNn8svmzJnDhYeHCzoNjuO4P/zhDxwArra2ll/2008/cTt27OBOnDjBL9NTpyNHjuRGjhwZcF433ngjN2jQINXzl+LQoUPc/fffz/Xp04fr3Lkzl5CQwN1yyy2Ca9W/f38uMzOTW7lyJZeamspFRERwQ4YM4f71r38J9lVfX8/l5+dzQ4cO5aKjo7lu3bpxN910E7d161Z+nU8//VSyrSHX/L777uP69+8v2O+iRYu4tLQ0Li4ujouMjOQuu+wygeimy6lXsADgcnNzubfffpu7+OKLuY4dO3Ll5eUcx3Hc/v37uezsbK5nz55c586duYsvvpgrLS3ltyXtoPjjBHruUYYzMB8Wh5g6dSpmzJgBACguLsZbb72Ft956Cz169FDc7uGHH8auXbvw9NNP45ZbbkFJSQmeeuopTJo0CS0tLfjDH/6Aq6++GosWLcJbb70l2PbBBx/EnDlzMGbMGLz00kvIzs7G3/72N2RkZODMmTOKx21ubsZ//vMfTR8jcByHw4cP4/zzz+eXHThwAEeOHMEVV1wRsP6VV16JLVu2qO63rq5OsE+n2bJlCy677DJ06CB8tK688kr88ssvsn479PYAAurg8ssvR4cOHTTVgVHsqv8NGzZgyJAheOWVV/hl27Ztw3//+9+AY3Xu3BnDhw8XHGvLli1ISUlBTExMQJkACPw0XnnlFQwZMgQbNmwQbA+o1+nZs2fx7bffyp7/7t27cezYMdU6EHPrrbeivLwc2dnZeO211/DII4/g2LFjqK2tFay3a9cu3HHHHZgwYQIWLFiAjh07Ytq0aQJfnT179mDFihW4+eab8ac//Qlz5szBtm3bMHbsWBw8eBAAMGTIEDzzzDMAgJycHL6tufbaa2XL+NJLL2HEiBF45pln8Ic//IE/dmVlpe7zlcLv9yMvLw933HEHXnrpJQwYMACHDx/G6NGj8cknn+Chhx7CSy+9hAsuuAAzZ87knWqvvfZavl274YYb+HNR4ueff9bUbv3yyy+K+9FzjzIcwm3F1J5QeguWs7BkZGQILCdpaWlcWFgYN2vWLH7Zf//7X65v377c2LFj+WVffvklB4D729/+JjjORx99JLlcjNybjdTHCG+99RYHQPA2Rd7+33zzzYD158yZwwFQtFB88cUXXFhYGPfUU0/JrmO3hSU6Opr71a9+FbCcvOV/9NFHivvOzc3lwsPDJX/r0aMHN336dMnfrLCw2FX/5I1/3rx5/LLly5dzALgvvvgiYD/Tpk3jEhIS+O+XXHIJl56eHrDev//9bw4At3TpUn4ZsWR++umn/DKtdfrTTz9xALhnnnkmYL1XX32VA8B9//330icvw88//xwwnCVF//79OQACi0pjYyOXmJjIjRgxgl926tSpAOtdTU0NFxERISi30nWWsrD88ssvgu+nT5/mhg4dGlDvRi0sHTp04P79738Lls+cOZNLTEwM8A2aPn061717d0GZ0Gal0QKpS7UPfT9KoeceZThDR3tkEMMqZs6cibCwMP77qFGjsG7dOsycOZNfFh4ejiuuuALffPMNv2z58uXo3r07brjhBoEV5PLLL0fXrl3x6aef4s4775Q9bkZGhu5ZGFr5/vvvkZubi7S0NNx333388pMnTwIAIiIiAraJjIzk15H6/ciRI7jzzjuRnJyMJ554wpZya0GufHT51bbv3Lmz5G+RkZGq25vBrvq/7rrrwHGcrmPR56mnTufPn4/58+cHHEtLnWo9fz1ERUWhc+fO+OyzzzBz5kycd955suv27t0bU6ZM4b/HxMTg3nvvxcKFC1FXV4eEhARB2VpaWnD06FF07doVgwcP1j0TTVxOws8//4yWlhZcc801+Mc//mF4nzRjx47FxRdfzH/nOA7/+te/cPvtt4PjOEEblZGRgWXLlmHz5s0YM2aM7mP97W9/03SdBg4cqPi7nnuU4QxMsHicpKQkwffu3bsDAPr16xew/Oeff+a/79q1C42NjejZs6fkfo8cOaJ43MTERCQmJhopsiJ1dXXIzMxE9+7d8c9//hPh4eH8b6TRbG5uDtju1KlTgnVoTpw4gZtvvhnHjh3DV199ha5duxoq208//YSWlhb+e9euXXXvKyoqSlP55Y4VFRWF06dPS+771KlTkudvFU7Wv9qx6ONorVOlY2mpU6Pnr0RERAQWLlyI/Px89OrVC6NHj8bNN9+Me++9FwkJCYJ1L7jgAsHLCQCkpKQAAPbu3YuEhAScPXsWL730El577TXU1NQI7qH4+HhdZaP54IMPUFhYiK1btwrOX1weoyQnJwu+//TTTzh69ChKSkpQUlIiuY1aGyWHEZEjhZ57lOEMTLB4HLpDV1tOv8WePXsWPXv2xN/+9jfJ7dV8Z06ePInGxkZNZRQ3vHI0NjZiwoQJOHr0KL788kv07t1b8DsRSIcOHQrY9tChQ4iLiwt42zl9+jSmTp2Kb7/9FitXrsTQoUM1lUWKkSNH4scff+S/z5s3L+BtXY3ExETZ8gPgz1nuWImJiWhpacGRI0cEYvP06dOor68PqDMrcbL+1Y5Fn2diYiIOHDgguR4A1TrRWqfk/LRcPz08+uijmDRpElasWIGVK1fiqaeewoIFC+D3+zFixAhd+/rDH/6Ap556Cr/61a/w7LPPIi4uDh06dMCjjz6Ks2fP6i4bAHz55Ze45ZZbcO211+K1115DYmIiOnXqBJ/Ph7///e+G9ilG3LmTst59990CKyvNpZdeauhY4pcBOdReSPTcowxnYILFQax6W9HCoEGD8Mknn2DMmDGG3gTeeecdZGdna1pXbO6X4tSpU5g0aRKqq6vxySefCMzDhD59+qBHjx6Swcc2bNiA4cOHC5adPXsW9957L1avXo13330XY8eO1VReOcSmZDWTsRTDhw/Hl19+ibNnzwocb7/++mt06dKFf2OWOxY5x02bNmHixIn875s2bcLZs2cD6sBKnKz/oUOHomPHjti0aRNuv/12fvnp06exdetWwbLhw4fj008/RVNTk8Dx9uuvv+Z/V0JrnXbo0AHDhg2TPP+vv/4aAwcORLdu3TSfI82gQYOQn5+P/Px87Nq1C8OHD0dRURHefvttfp0ffvgBHMcJ2gnipE0i0/7zn//E9ddfj9LSUsH+jx49KnB21tPW/Otf/0JkZCRWrlwpEKQ+n0/XOeqhR48e6NatG1paWjB+/HhL9y1+GZBD7YVEzz3KcAYmWBwkOjoaAByJdHv77bfjtddew7PPPos//OEPgt/++9//4vjx44iNjZXd3koflpaWFtxxxx1Yt24dKioqkJaWJrvurbfeir/+9a/Yt28fP+y1evVqVFdXIy8vT7Duww8/jHfeeQevv/46pk6darqcVpiSb7vtNvzzn/9EWVkZbrvtNgDAf/7zHyxfvhyTJk3iOwS5Y6WnpyMuLg5LliwRdK5LlixBly5dkJmZabqMSthR/7/88gtqa2tx/vnn851q9+7dMX78eLz99tt46qmneCHw1ltv4fjx45g2bRq//W233YYXXngBJSUlePzxxwG0mul9Ph9GjRolGB4lM0CSkpLQpUsXAPrq9LbbbsNvf/tbbNq0iZ8dsnPnTvj9fv7Yevjll1/QoUMH3gcGaBUv3bp1CxhqOHjwIMrLy/m6bGpqwptvvonhw4fzVszw8PCAF4Tly5fjwIEDuOCCC/hletqa8PBwhIWFCawSe/fuxYoVK3Sdqx7Cw8Nx66234u9//zu2b98eYJn76aefVK3Acljlw6LnHmU4AxMsDnL55ZcDAH73u99h+vTp6NSpEyZNmsQ3LlYyduxYPPjgg1iwYAG2bt2KG2+8EZ06dcKuXbuwfPlyvPTSS3yHKoWVPiz5+fl47733MGnSJDQ0NAjeKoFWszDhf//3f7F8+XJcf/31+M1vfoPjx49j0aJFGDZsmMDi8+KLL+K1115DWloaunTpErDPKVOm8PXa2NjIh2Ffs2YNgNbpr7GxsYiNjcVDDz2keg7vv/8+qqqqAABnzpzBt99+i8LCQgDALbfcwpuvb7vtNowePRrZ2dn47rvvcP755+O1115DS0sLnn76adXjREVF4dlnn0Vubi6mTZuGjIwMfPnll3j77bfx3HPPIS4ujl/XivMSY0f9b9iwAddff33AG+1zzz2Hq666CmPHjkVOTg7279+PoqIi3HjjjYLQ66NGjcK0adMwd+5cHDlyBBdccAH++te/Yu/evQGWhldeeQVPP/00Pv30U1x33XW66/TXv/41/vznPyMzMxOPP/44OnXqhD/96U/o1asX8vPzBce67rrr8PnnnytaGKurqzFu3DjcfvvtuPjii9GxY0eUl5fj8OHDmD59umDdlJQUzJw5Exs3bkSvXr3wl7/8BYcPHxZYOm6++WY888wzyM7OxlVXXYVt27bhb3/7W0DnO2jQIMTGxmLp0qXo1q0boqOjMWrUqABfEgDIzMzEn/70J9x000248847ceTIEbz66qu44IIL8O2338qem1n++Mc/4tNPP8WoUaPwwAMP4OKLL0ZDQwM2b96MTz75BA0NDYb2a5UPC6D9HmU4hHsTlNonzz77LNenTx+uQ4cOmgLHbdy4UbA9mbZJB+HiuNapitHR0QHHKykp4S6//HIuKiqK69atGzds2DDuiSee4A4ePGj5uckxduxYXdOit2/fzt14441cly5duNjYWO6uu+7i6urqBOvcd999ivukp/fW1NTIriee3imH0vHEU0cbGhq4mTNncvHx8VyXLl24sWPHBlxHNUpKSrjBgwdznTt35gYNGsQVFxcHBAY0cl5aIqBaXf9S05oJX375JXfVVVdxkZGRXI8ePbjc3Fw+ei/NyZMnuccff5xLSEjgIiIiuJEjR0pOEZea1kzQUqcc15qe4LbbbuNiYmK4rl27cjfffDO3a9eugPUuv/xy1amt//nPf7jc3Fzuoosu4qKjo7nu3btzo0aN4t59913BenTguEsvvZSLiIjgLrroooDgbadOneLy8/O5xMRELioqihszZgy3bt06buzYsYKwBhzHcRUVFXygNvqaS01rLi0t5S688EL+uD6fj69LcTmNBo6T4vDhw1xubi7Xr18/rlOnTlxCQgI3btw4rqSkRPM+7EbrPcqwnzCO0+CAwGAwGAyeY8eOIS4uDi+++CJyc3NN72/AgAEYOnQoPvjgAwtKx2CEJizSLYPBYOjkiy++QJ8+ffDAAw+4XRQGo93AfFgYDAZDJ5mZmbY7QHuduro6xd+joqL4uFEMhhUwwcJgMBgM3ag55d9333144403nCkMo13ABAuDwWC4zN69e90ugm7Uwh6wwGoMq2FOtwwGg8FgMDwPc7plMBgMBoPheZhgYTAYDAaD4XmYYGEwGAwGg+F5mGAxyRdffIFJkyahd+/eCAsLM5R/g+M4vPDCC0hJSUFERAT69OmD5557zvrCMhgMBoMRpLBZQiY5ceIEUlNT8atf/cpwAr7f/OY3+Pjjj/HCCy9g2LBhaGhoMJxHg8FgMBiMUITNErKQsLAwlJeXY/Lkyfyy5uZm/O53v8M//vEPHD16FEOHDsXChQv5xGw7duzApZdeiu3bt2Pw4MHuFJzBYDAYDI/DhoRs5qGHHsK6deuwbNkyfPvtt5g2bRpuuukm7Nq1C0BrFuCBAwfigw8+QHJyMgYMGID/+Z//YRYWBoPBYDAomGCxkdraWvh8PixfvhzXXHMNBg0ahMcffxxXX301nzJ+z549+PHHH7F8+XK8+eabeOONN/DNN9/gtttuc7n0DAaDwWB4B+bDYiPbtm1DS0sLUlJSBMubm5sRHx8PADh79iyam5vx5ptv8uuVlpbi8ssvx86dO9kwEYPBYDAYYILFVo4fP47w8HB88803CA8PF/zWtWtXAK35ODp27CgQNUOGDAHQaqFhgoXBYDAYDCZYbGXEiBFoaWnBkSNHcM0110iuM2bMGPz3v//F7t27MWjQIABAdXU1AKB///6OlZXBYDAYDC/DZgmZ5Pjx4/jhhx8AtAqUP/3pT7j++usRFxeHpKQk3H333VizZg2KioowYsQI/PTTT1i9ejUuvfRSZGZm4uzZsxg5ciS6du2KF198EWfPnkVubi5iYmLw8ccfu3x2DAaDwWB4AyZYTPLZZ5/h+uuvD1hOUqufOXMGhYWFePPNN3HgwAGcf/75GD16NJ5++mkMGzYMAHDw4EE8/PDD+PjjjxEdHY0JEyagqKgIcXFxTp8Og8FgMBiehAkWBoPBYDAYhvniiy+waNEifPPNNzh06FBAPDKaWbNm4fXXX0dxcTEeffRRXcdh05oZDAaDwWAYhkR8f/XVVxXXKy8vx/r169G7d29Dx2FOtwwGg8FgMAwzYcIETJgwQXGdAwcO4OGHH8bKlSuRmZlp6DhMsBjk7NmzOHjwILp164awsDC3i8NgMBgMD8NxHI4dO4bevXujQwf7BjdOnTqF06dPm94Px3EBfVtERAQiIiJ07+vs2bO45557MGfOHFxyySWGy8QEi0EOHjyIfv36uV0MBoPBYAQR+/btQ9++fW3Z96lTp5CQ1B+NPx0xva+uXbvi+PHjgmXz5s3D/Pnzde9r4cKF6NixIx555BFTZWKCxSDdunUDAJRUbEaX6G6S60za9p7g+/vDbjF9XPE+1bjggisRufoQtvffJ7kcQMBvSvsqjkoIKMviL1bipV89hR9+2IALLrgyYLvPVx/H5psvAADknazjl//wwwb+/wM/Xow+/b/jj7H31VwAwEu/eopfh5T31LhEfr9jx3XF/D49NJUfAH5+Vv8Dc95TL8tu+/C1GZLbvD02E/MP/MR/J+d6wQVXCs5bDql6/M1fnuWP9/ZYoUn17s8r+eV3f17J16cVkLKIy02Wk/rv3tAaHFHvPSrF+8NuwWUf/BCwfPPNF6AxroU/X7d4f9gtmLTtPSz+YiWA1vvgwI8XAwDKfizGw9dm4P1ht2Dvq7l4+NoM/nkj9y6NXL3SyG0rtY7Ucz30x9aXq1PjEvn7iK5j+l5Z/MVK2fsMgOC+Ju1BY1wLgNZn5LynXpa8PvR5FUclCO4TUo9mGJ37hOo6O+PsEQpa7semU6fQb+7v+L7DDk6fPo3Gn47ghS82Iqqr8eOcPH4Mj187Evv27UNMTAy/3Ih15ZtvvsFLL72EzZs3mx6NYILFIKTiu0R3kxUsMVFRgu9y6+lBvE81jhzYBt+vsxDjr+CXJaSk4Uj1OuCi1v9jqv+juI+ElDTUVa/D5q849E1eBQAo8lciJr21MYvs1Amvn38hVp9/IY5UlQm2A4Drb+kKoFWpP/nWH7E4eTZOZfRBSmr6uYOkAnOWvoIn1/lR17ZPUn5yvEWzClv3sbQAi2YV4vpbuuJI9Tr4Bmcplj+77dx96Vk42bZfPZz8Yz7iCksQtdCH2HphxOLVAKZQ50z49QY/fg2gPHVq63rnX4gpVWWt5xMVhfLUqfx2pJ5oiMG4rnodivyVuCP5SfTNmMz/Thojcm5ouy+iunbDvzKnt/1Wo/tcpSDXgByD3A9HDmzD2oSxQG0LpsacxpLo1g5V7z0qxV0/rAIuav1/f81QAMDGySm46/iLKG9+FKtH34UpVWV8WayAXAct+7vrh1VAVBR/n8ZERSHmotb6jjzYCTFRUegS3Q2/a7tmHaK74vQtF/LXNXLlAQDA3uRavl4JHaK7BhyP3laODhFd0OWrRpy65UIAQAouPPdjats6ABY/vBCLAQDHgVsS2u4xP/LbnuffSdxnwvKdxJKoRMw+eQin+3ZB9oW9gdeXICElDQsW+vj6EMPfRwCAbYLzjjTwXIqJjo5WXcdMJ66EnnveCReCqK7dLDnXmJgYgWAxwpdffokjR44gKSmJX9bS0oL8/Hy8+OKL2Lt3r+Z9sVlCQYYvXblzliKbEititDTOZjsEqzoUAhEuhIaCHNl1Y+vDUZ46lRcOcYUlho+rVI9qSIkaUiYaubp6p2ah5PKElDS+ozVyb+hlbcJYlDV1Fhxraoz58XIl+iZvR9/k7Zhy/MWA36y4t3zpWfz5WH2vynEqow9OZfSR/d1MOSJXHuAF0aaVxxTXlTsOXSdSzD55KGBb+ruee9GJ+5bhHvfccw++/fZbbN26lf/07t0bc+bMwcqV+ixrzMJikknb3rPkjVIr4jd8MUX+SuSnZwoagbn7z41n1lWv090Y7q8Zio2TU7DHPxP5ya1vYYtmFWJgVJuJ2l+JPcUzW/9PF5qQxccSiw2p3+YsLeCX8Z26vxJ11eskrRGLZhWizl+BIv85s+yYvAKsKS5EbF4pvyy2PhxTqspQpHK+UjQU5MBXWILYeuFyIkRIvdOUp06VrRdawNRVrzu3bnomb1Uh24n3S86F7jR86VmtgurB2Shff1hSIFnB4V7xbf+1DgFcVfc5EJMWUGZb2N36hjYFxs+NrycK8j3bwP7ItSHPCADAr224ilw72kpE7u+ElDRedACQFTf0M0HWobe7IkP5LZtYLutEy7P9FYpCoq563bnfX18CQCg8yPbZIssuLaCuyOiGuup1yPZXGHomGd6BjvgOADU1Ndi6dSsf8Z0k+yV06tQJCQkJunPlMcESYpAGlG4oxA0x/WavpWPrm7wdfau2A+mZgqGMkStacx7NnlXIi4wifyUGEpFw8hC/D7HY2LTymGxjuojaH1++9MzWDrFtH3PahoUG1CShDq37rgOwPnWE4rmUp07V3KHoQSwqElLSUFdVJtl5S4mbKVVlKM8rBdrOd9GsQr7OaNFHXzup3327DiIW50StVAdtBqX7RUpYuYXcUFFDQQ6KIF1WPUNCCSlpWBKVyNfHOzULgeLW38i+tYpGsVgBhKKDfCeCRMqyQW+rZLmh9wMov0ColRdobWcSUtKwoG/PgPXE992cpQV4p+3/O5KfbH3GycuVDc+kEkn7WnO71fb70tHjhiqbNm0SRHx/7LHHAJyL+G4VbEgoyLDizXlKVRn/MXN8tbc3Jfombze8rRgpq4sSZoaFtKC3PEa2n02JQeBcx0Fb08hygpWm94SUNMGwQUJKWqs/i4eg65EMnS2aVRjQSRf5KwUWDan6Fy+zYuhIbp9isSK1Hf0ZUJOkuL4RtNwr5N6SEitqvFOzUPLlihGcXHfddeA4LuAjJ1b27t2rO8otwCwsQQ09/OPEQ09bBvgGOxmoqwYSqOEcXtS0+Y6QzpW83UWuPICEjHNvs+RtWKmjoDsIYl0hf/kGPlm47Zi8Agi79XPEFZYo+r5I0VCQg+w2KxON3HUQW1LIkAm9jD7nOcUz+XqU6hCL/JUY2HbsJW3DcfR6pOOY4pcWolbeI3XV64Dqtv2Kyih1fk75hhDExxNbFki5IlceAJJn8/eQeD2p/ZHrP6WqjP9/IGV5pK2QRspNng25ISFxGcVDQWJLjNj6Qu6dPcUzFS0sasNCZL8LNJwX0Hrf02VZhNZ7Vu9zaIYh9bXYEZ/ELCtBChMsQYS4EdTyhkIaHCs6KzmTvy89C9h/BJErD2DRrELktzWUtHDJW7EJgLCx3bTyGN84i8WKVEOan56J/Op1KEJbw962Dt94V9dqOo/Y+nAcjW/RtK4aRRKmbL5zEw2hEcTLSAcyJT0Td5AxfpH44n0NqO3ojhPwxpuq1D3itFiR4lRGH0lRLBYCwLn7ctPKY5KWQPraEdEiXqYFul7oISxSTlnhlAwMWKksYgBq+JCyxkWuPIA9Na3DrWrDQVqsLGVNnbFTda1z5akT10014DPw8mA1auKM4Q2YYAkCzAwDeaETA0RvfdW1/FRVrZBOISElDXPaTPhiBtQkYVmqJcVV5Gh8i6wDr9jZOaCBFkEcbglkmK2u+tzvxGqxyJLSO4sTYkXL1GZaDMiS3Lqvq1cewKaVbcMWyep+OXLPp5KlRTyjpk7mOZUr797kWiQg0MqixqmMPhgYFehjJkZLB07KtvNibR29XF04LVaYOAlemGDxMHbN9LCabH8F5sq8EQKtzrmb2v4nFhWkkOmXTZJvv2Q2AXnDLU+dKuvboTbmL0VsfTgadG91TpDQFho5y9OCvj3h65vF+5fUgXLGbaPIX4n8tv8TUtLOzZAS7bPIX4k6CK0qbt0f5alTcTS+JcA/xi1xTN87egSSkq9Q3+TtArFi5PymVJXxFjhy7aUg+6WtdXPa/peaPUN8sOpEM3AIxNrCz1ATWVLE/k966szINRYLN/F32sneCZTESkNBjsDHTU5MiYeUtcxyOnXmjOYyMqRhTrcm0RSh8cHZkjE3tEAeLrW4CErb0ts7+WZR5K9Ekb8SV2R0w9VowhUZ3fgYEaSRJCJHrjEnjoV0I7tIwc/DbhoKcpDtr+AbbrWZMdn+Cv7ak3Ok7wXx9vnpmQGm+nxqarObQoWwp3gm5u4/wse30XJvSw2d2QEdl0YPahYYqY5a/ExJHZu+dkroqR+6oyTHlvLBoR2MxbFZyAsB+WukfVJqT+jfxPcr+U5+d1KsAML6I/8X+Sv5/7VYfNwewmqvhHEcx7ldiGCkqakJ3bt3R2NxkWocFj2NgROdkdm3YTkTvHiqJ91402/BWuJLkEaMjs0i7sjJPun9PVyzBGPyzjWAh8TOIBRH41sMNTykA5KangwExqMg5z1naQHy26Zn0/sYmFfKD3fR5wYETkGXctx1A6V72m1BpYaUNUZtFpAWR1rxfsXPiZIVyIigo++BATVJsn46YsT+LvSwI42cGNEypKKlfaH3YYUAIM/9mmL9U7Wd4NSZMygo/xiNjY2mo8fKQfqlVzd/bzo0f+5lF9laViMwC4tHsOLNWasFRW9jYha7LSFax++tQq5uiEWpoSCH/xBIHYg7BiLCylOnKnagZB0vYHbattOIpwFLLaeRul/1PJtkn+JZOnLPgRXWJ9pSSVtT5KB/p4PV0ci1E1a1DVYPIa4pLvSsWGFYA/NhcQB6+iO9zEqK/JWIs9CPwEg4f+JAShrgJRIdrFJALCloczH5n0yPlLLYLJpVCBSf22YgFelWCiPTm+XqRjxtk7y5zvFXojyvlJ+SXER8CwAgJY23rkzBuRlDs08eCvB3AWAoiqzV/iUL+vYE6tXX04re8uldX+zjIiUm1O5DvchZIO1ETqRoObdFswr5e49gVJjY6ctk5HllhA5MsDiE3Wby/PRMwIaGQq5zkDIhJ6SkAScPoa5teUKb38mUtt9JjAm1ISEiTO5IflKQQ4cfElpawIcSJ6ZwApnurGVc3Oj0ZlIn4vPfXzMUc/wFguVExAimI7cNAQHgp4AviUoUzISSiqFh1FIlFSbdDGrpIfSit1z0MBugLx+WnDWBDKcYRSyIxMeWEytmrCv0NaVFCf18keVlTZ1xVd3ngunS9DArn1rBxFCjUdGpR4AwsdK+YUNCIYAdDo1G47dIzdgQR+Lcm9waL0UsVvTmObLijdVIJ67UaN6R/KTgu9QQhBJWZh+mCbWpnORe0VtX9Hb09kbrnL6mSvsyWl49SA0FkWcsaZ28SYyUaWBeqWkBpXd9cWRmBkMJZmEJAax0wCTxUdQ6crUAYaTjratehwFI4kVLZM0BDECS5HaBDqXnppYW+SsFVhPZvCuUj21rAsSZAcNCtFXFaB4TqSi2i2aRMsmLksiVBzA745zViUCGDZUy4NJRg/V2fOWpU5EtEwFX735CDXFdWhFsURzUT4nFybPxcM0S3ccg5UtISQPa8i5KWVcAEt+n9b6kAxUObLPs7Sme2Tq9XuK5Fotdcb1I1RdZJivu2565ORrOk8EgMMHCENA3eXub2DC+D7FwiayRfusDWs3S+5OfFEQUlbIyiGdESI3Xn8row0e7FfuyTBndC3h9iemZCXGFJbIdmbjMei1AUp0b/fZOT+3Wa4mh921nzBSvzxCSQlwfev1jaPjrpaMejIiVuMIS1SHgvcm1QHWt5H1IBDKJ1SL1AqKnTgJiyTiczJDRPmBDQkGKnXEtjEy7lDMH11Wv44eAAAj+r6teh4F5pbyfColZIdcJaI2xMWdpAeYsLcCYvFZ/kilVZfDtOghfepbkDB67oYfJ1OLOyGGlw2aoDQ+ZxcmAd1Zdx7n7jwTsS0rEy4kV8jeusMSQhXb1hS8IZsWR//VidyJSRmjB4rAYRE8clvYO/QYrtgwQ07mW6JtSs4K+QmuMgL7J21tnSokaQKuFiZyFZX/NUMXs1XJTlu3yaSB1Tv7KHVOvtUVtSEjsNEywyzcHcDfKrhn0dvC0g6zskCgCkx/SiOP60BARm7TvGmx9fYiusjHUYXFYzMOGhBiWIjV7iO5MxI0oESplTZ0xNeY0/z8ArE0YCwC4qu5z4baiWHAJKWlY0DcLcWrj5hYg1zEqiRUxdIejtyPXKna0duBkPSs7fanAaV5IgOg2evxaxCyaVYhNK4/hioxukjOc6EzNcnVNZvGR4I5ivxQ+0iuYWGF4EyZYGJai17xMN651dcLfiFCRehOlo946naLeCqSmLevZzmrUxIqXrRhGp21bdU56RCcRK1qtK4tmFaKueh0WQV0Uy2ZrbmOJ6LdYC2PpMBhOwAQLwxbkwtZbBT1jyEgSQ6vgOx6DvglaHHXNzBQiHbLYqiN3fLnrRvYjTmJHoJeLp3JrLasYPYLCiPCw2qKkhpJlRW6oMZ+yUCmJW1qskBQZDEaowZxuGbawaFahJY7BTiXNM4vWTkvNoqJlCGVJVKLhDklNIOkRmVOqynA0vkW2IzYbe8QNi47TzsikvgWZf9scWGlHVqX7RuzDwsQKI1RhFhaGLdRVr+NjOqhZW7QklvMCUudAJzHUYmVRyi9DOqc5/koUtf0FRKnraQGXnqmr7iJXtsbAqYMxcaUkPMTDIm74rBgd4jE7NCQlcqT2R19zMtRDIyfOSX4gufD6VqQUCJYXA0b7hllYQhgvTV2VaxDJsIKdAcnsnDqppaFXinzqFOJow1KoTRuX+o3umN1OimilRcZMB05PG5dKSEqCIGqdCqyWZkIcLI7BCFWYhSWEUWrA6aiydjtU5qdn8o2znX4tctjpkEvOJz89E4valqn5G0hhpIMksz7EUXPl4N/Eq2sV1zMiPMg5G5395BXIc6D2XCj9tvrCF5C07wX40r8UrF9HgqvpLNOiWYV82H2xNUVuSrMUeySiPjNCk/kHfkKH6JOGtz974jgAYOTIkQgPD0dubi5yc3OtKp5hmGBppxARATjjK0APndAOhmrDGXQ5vYS4QyZDQkam8Ro9Pz3HsDITsRxS05mDAbn7X+m5EP9GW1Vq+30ZsP7c/UfQYOI6k3QWShmZeSYHhw8Ly7zsfTZu3OipOCxsSCiI8NIQj15o83dDQU7QnQttGfKlZynHutCwzGmcSL5HH6s9QcSLksDRkj1cD0YEqNesK0ysMPTCLCwmeX/YLegS3RofwS3HURJyXoza8IuU9UIpV45RpCwIDQU5KIK1iRv1ovUNTyxWSOTYOUsL+KED4gwr568ih5Hki3rrTDx8EZhkUpr2JjwIZoZIpbazQ5wr+arMbgsOpxU6GSiD4WWYhcVC7M5kK9eIynW64oZS/KYvKyQM5gURo2U/ao25XcNBVpijydTthoIcQSA7uyC5loiviFbLjTh3ENmPVuy2EFnVoWvZj5Zzmbv/iOZ1aVZf+AL/octE9ucEdK4uBiPUYBYWi5ETLXZYX+QsK1IY6XRosaCng9MjMhoKcuCzwaqjBJk1ZEa0iB1rzcQa8amUg9R9Qkoaypo6Y9PKcyFKEzKs8xcRn5NTQ1lOXnstdRW58gASMoT1oKeOx+16nP8/219h2HdFDTokP0Hpmsk53Wb7K3Q7AjMYbsAEi0chb4sNBTmCYRqBSFFoCKWGdsRJ7/QMRUgNHRHIG7zRzl9peMgOp1szlpWAvEhtZd5fMxR9k7fzvyWkpGHTymMAgKvRFPDmSzrBhJQ01FEdBl0HpPNZhHPXbmrMaYAK0V5XvU7T7CutokBL5F2vYpXw2Ztcy8+k0nP+tFAhWH3vEt8VOncQLVqUZqh5yYfFbodb5tAbmjDBEgSYtUL40rOwAICvr3Vj6YLInIBuPwwxRJi46dOihpRvw4CaJHyFGFyNJpyiRAjhajRJ7kssDMTnLe50xNYc+q1/0axCPoS7ldBTccXLtd6LRHi7mYfIjE+KlGXFl56F2Ppw/jvxAaGPYUbAK6EWc4XcJ1J+LHIWFiN+VF6HiZXQhAkWB9A7HFTkrwxoQBoKcvi3eb3QyeFoy42XIGJFq0OoU5By0MniSBkXzSpEZM0BXpSIO7crMrqhrno7lJDqEMtTpwInD8kOOwmsMxbP/NGS+0dP529HNmi9WH1c8hzdULqbX7ZxcopgOHju/kOYY9HxivyV2NvmuyQXdyVy5QHeMkSLFgKZpbSneKZFpTKH19ofRnDABIvNWO27ovVBV4ot4dUpxVIWFi/FYBFfy7rqdUjICOxE9AoIOb8npSnS+2uGYlPNMd6HxUpBoFZ+r2VudqM82f4KILn1//01QzFyRTU2Tk4B0GpxmVNg7TRmWqxITWk+ldEHCeiDOUsL+JQODEaowQSLjRgRK3abZ70qVgjEauC14SH6WtLlIkG9TmX0kY0gq9Vpk34jltsP4QrKjwWw3opAh5a3at9eEzpWQXyX+lads6ZZ7cRaV70OSA4cGvSSoGcw7IYJFpvQKlYCxrplGqC4whLARGNPB7fysmiZs7QASM80fb5WIOUAKyU8yBuvuDMZUJPEO9uKRYvAekIJFSmnV6mhILJuUVuiRMCaGDpahJWRY9glVOi4OICzsWPkBFhCSprlVg46MSa/zNIjMBjeh8VhcRE9jnlGs9CKv3tZrNDQOV3cQEqsSCEWKXKzbMRiZdPKYyhr6myobGRf4rdrsxGEE1LSMKAmydaZQVbff1602Fgd1TYUsTMhKSN0YRYWG7Dab2Vx8mzEpY9o/aLzzU2qg/Cyw5vYsuJLz0I+3PdloZP7qSU3pMWJ0rpJ6+oFU5QB6eEjPtNyivSbtlWQjja/OhOotm/40I6hIaOWFTN5j6TOwe37lOFdznvqZaD8IreLEdQwwWIxesSKFuEQV1iCvf4KwN86tKDFDEw6fXGDGgzWFbrMfIwSkT+L3Z2CnFVHqWOLXHmAd8IE2pwkaw5IbkecdVuXK1szaN8FLW/uZqbAS523HTNs1HDa18Wqqdd2DAWFKl5+aSIQK5BVZf352Ucs2U97hgkWC3Erl1CoIs6GPCavADvik5CPc0MtTpnf6aEduRkbCSlpWNC3J9/xKYVJp7M6S8VciVx5AKcy+gjW0+qzYGYKPI0TokHKudrpyLdG4hNJiSo2FBR8qA1NaYlEzXAOJlgswi6xQnc+Wi0LJHIsTTCMGdPB42hTfX56Jtantg6JDamvxfrUEViBU1hT3Jq/Z9GsQtOdBakfuc6SdnwFzkUYlQre5UvPAvYfscQRlAwHhWqOGKt8lDTV9YOzgdeXSP6kJpLEAsWLvjMMbehtC+XEysSq1jg8H6YOMl0mhjaYYLEAo2JFLeYIPevD7DAIeei8Llzy0zOxv2YokHJuWZG/EmPaBAvNmLxWkRIX3xPZOkUdjZbZNeIOMSElDacy+mDTymO4IqMbIlceaLWWqAzxkG3VRAxtuVGaMk1jR6ZtL2F6qOj1JYb24dWhVBZ+Xh8Tq3brFhdKYSaYUHEeNkvIQ9ACxkqxQhOMDRwRJnIMqa/lM0PryUQcV1iied266nVY0LdngHAh8VD2JtdKzhgSzw6SilaqhNSUaRpyvvnpmfz0Xt5JNwhRmqWkJDS0WrGk9qG0X1qsKAkXN5xtSZ4xr7+EuMXEqt28FYTA6iq4CeM4jnO7EMFIU1MTunfvjsbiIsRERVmyT7Hzn135SLwKaUzm7j+CBX17AmgVI3rYEX+us6Y7oiJ/pe0WCGI5IdeNDG0Byh2q0owj4ssCULN4JEQW2QftW+NkTBKzOB1HRc7KRVtg6Bgv4sSh4nvLKxixIgQbYhGilQ9TB+kSLNltDv9WcerMGRSUf4zGxkbExMRYtl8a0i/1eP9LdIjuang/Z08cx0+TrrG1rEZgQ0IeIqARtKEh9LIZmYiTFVHAmoIcVcuKFOKkjESk5KdnWhaIju6waKdR0qlpqV+t02npoSG5BIlkP0SskJwywRRZ1k6hoiaG6N+l/FTovE1eqVOlTjtURItRYcIIXZhg8Rhiq0q+Cd8MKbwqVsQYEStS0A7IasM/WtMBiDss2lEYAND2d5Hu0rait/MeUJOEOqzjp1Xz1pbSLZibYTzOiBvYZWlR2h8dY0e8vrg8tBO8UxbQUO64nTw3NhwU/DAfFo/gS89Ckb9SUqwwrEFK9BHfF7tyF2nxV6H9XdSC0qkh9pEJRrGix8fHKqTqSUo80fdIsIh/rxLKQqy98cUXX2DSpEno3bs3wsLCsGLFCv63M2fO4Mknn8SwYcMQHR2N3r17495778XBgwd1H4cJFg8gZVVhYsUeiDgh/kJ0XdvhiyCVWRewVkjQx6D3G2xToeuq1wl8duw+lhh6mjotGon1RWyFcQIjnXowDAd5Xax4Peea1zhx4gRSU1Px6quvBvz2yy+/YPPmzXjqqaewefNmlJWVYefOnbjlllt0H4cNCbkIL1TaOkrSca6+8AWM2/W4m0VznPz0TJRToWKnVJXxsVfsgAwVmRWGtNipg7IDrVbEM4vkxI2cVaAO6zRNg/YixP+GThxpBVp8hsQzvaRY0LcnfH297QwfDD4sH6YOclS0fJg6CHEa1yVDvmrXWKr8dL2Lfz/e0oJQDS04YcIETJgwQfK37t27Y9WqVYJlr7zyCq688krU1tYiKUn7rEYmWEzy/rBb0CW6m+RveuKz0B1nexMrAFCeOlXx+5SqMvjSs3TPGlJDbFUpT52Ko/Etuh0r7courdUSU546FSNXVAMprZ3zkqjEdhV5WUqQSPmkqO1DDn776tY/Xs6U7HWxEgwoxV/RIrS8bkHSSlNTk+B7REQEIiIiTO+3sbERYWFhiI2N1bUdEywuwzuCeWDmgZcpT52K2HrgUJsVxmoLDC8YdXbyxPdFPKPEKUhHvad4JvYAAFqj/84+eQh5MlYKq3Ln2InWYHlyWHkNxHmilDozq5GyRIiXMYGijh6HWzVnaiXrkFeEyv9x9yCaM+7xcYI7iywA/fr1EyyfN28e5s+fb6psp06dwpNPPokZM2bonjLNBIuLaO0wvBTnwQ7iCkuAen3biC0wQKuIWWNRmQhSzrj0rKA5Eg679AwTI74qdEZoqeEhqdxDoJbNWVqARbMKZTt9LwsVoLXDqNNZRnGclCX14bosTFL5oWjnX/paOD0cJCVImEixBynfFSlxKFX/XhErVrJv3z6BqDBrXTlz5gxuv/12cByHJUuk02QowZxubaI9meOtwKv1lZ+eadj5zqhYkfqrZ3+LZhXyDqxOO4nahZ7zyPZXYEpVmaSoNQIdhC/UXx7aO+0tWKcaMTExgo8ZwULEyo8//ohVq1YZCkjHBIsNWN35hvqsIZLQMBE1kh+nxQw9GyQhJU0Q+RRoFQRAq4BYNKsQi2YVSs4gUepki/yVktuIpzhLiRQ54UIsAuT3h2uWSCaFFAswX3qWp2ZESFmAjIg/rfcNfQ2IdaWueh32Jtdi3swRQTU1nGEOtaEgJdR+/3hYsuLvoQwRK7t27cInn3yC+Ph4Q/thQ0IWY2fnSr/tt6e3ACJmCIdg7YMvntZc17a8yF8pGGqhO1I5MSI3nEP/Ro55R1viRDreB72OknVFat8kg3RCW7A4Iqzi+vYU3i/+SqHTaNt5S82aMmOl8KrVTIq66nVIyDh3HUhEW7PDZ+SZbU/Pqxa8OHyS7a+QdKa2akbTjdtqQnaW0PHjx/HDDz/w32tqarB161bExcUhMTERt912GzZv3owPPvgALS0tqKtrbWXj4uLQuXNnzcdhFpYggzSioW51UcIu64u4PkmHr3U4QiqGB4H2kSCWFZI4UQ25N3wSU4aGHr4wYhmg92d2SMWqIRmzqF2/JVGJAM5Zt/SG36cdOkkywvb8fAYjatdbi8+QF0WYU2zatAkjRozAiBGtEyEee+wxjBgxAr///e9x4MABvPfee9i/fz+GDx+OxMRE/rN27Vpdx2EWFospT53q2Julk7MVvAptfTFbH+LOXy3+iVxHKDe9lszY0Tr9Vmq9TSuPoW/ydgCQdPSVKkvRUn11QuphoAWCw8nnQQ414SYun1LnlZ+eiSJ/JQbmlZ7bru3N3Mp8VQznMeufJBY1JB4O+XvqzBngh12mjuFVrrvuOijlUbYqxzKzsAQxRszVXsynsaa40LVj053+olmFut6KxT4mZjIka9kucuUBXqyIEfvDhIqzrRfJT8/ElKoyvs4H1CRhcfJst4vFkEGLdcQOHy6ng+O1B5iFxQacfKvUm33Zq2PpaqLFqmSINLQ4KfJXYomMRUHNr0RNbChlCZZzrJWCRGLV4ohrhaPo7JOH+OESM3jBymIXddXroOZS5dVnjmE/bPq5tbhqYZk/fz7CwsIEn4suukh2/euuuy5g/bCwMGRmnut4ysrKcOONNyI+Ph5hYWHYunVrwH4efPBBDBo0CFFRUejRoweysrLw/fff23GKDItYU1zIf+Swq2NQEhxGkZq2rGWfTs5YmbO0AEfjWyzZl1f8WayEzR7Sz8Sq3Y5bHbRYlZmoDA5cHxK65JJLcOjQIf7z1Vdfya5bVlYmWHf79u0IDw/HtGnT+HVOnDiBq6++GgsXLpTdz+WXXw6fz4cdO3Zg5cqV4DgON954I1parGmcAeca6Gx/hSeHeeyEFi9EwKwpLjRVDwPzSq0qnqcwa+r2epA5Rvvmw9RB/MdK2FCON3F9SKhjx45ISEjQtG5cnDB91bJly9ClSxeBYLnnnnsAAHv37pXdT07OOTU9YMAAFBYWIjU1FXv37sWgQcFnwsv2V8Cnc2hIK1qHYtz0QyHHNnP+s08eCphWTEQn+U0KI4HdlNZV2od4aErL8bL9FUCbo6gRElLSoD8epTShPDQkB3OM149W8TEmrwBjAOyIT5J99vUkPVQrQzAklQx1XBcsu3btQu/evREZGYm0tDQsWLBAc/bG0tJSTJ8+HdHR0YaPf+LECfh8PiQnJwfkTfAiclMu5WIIOIWUsHFTxOilrnodylOnInLFJt4ngXSus1WGaSJXHrA0s7AUWoaflHIE5RsULXOWFgAhan1iuIuezt+oD5sWH7/2ZqEOZlwVLKNGjcIbb7yBwYMH49ChQ3j66adxzTXXYPv27ejWTTlGxYYNG7B9+3aUlhprTF977TU88cQTOHHiBAYPHoxVq1YpBrBpbm5Gc3Mz/12cxdIplEz0eh1w7UbcyHhZwOyvGYopKMPsjLSA/DtSU43F0VETIAzfbjQGBy1I6YByYmhrkNa4IUZFy9H4FsTWh+veTg6jOZYYwY8WkWKHg70SWttMZl1xH1cFy4QJE/j/L730UowaNQr9+/fHu+++i5kzZypuW1paimHDhuHKK680dOy77roLN9xwAw4dOoQXXngBt99+O9asWYPIyEjJ9RcsWICnn37a0LEIUhEvrQwuRcz/gDU5T6xuOMT7G121hR92oYcKnM7X0po8EKirBhb07QlfX3UBIJWUkBBXWAJf2/9S+5FKakhYIDqGWLTQ4oQsI9/tFC1WIk5U6JafjNqxrSibl14g3IR+mbK6XWkoyLHc50QcQ4XhDVx3uqWJjY1FSkqKIMSvFCdOnMCyZctURY0S3bt3x4UXXohrr70W//znP/H999+jvLxcdv25c+eisbGR/+zbt8/QcWkv+YlVu1HkrzTtGCm1PYm46WVox+Ty1Kn8Z2Beqe2RQpX2rbeTElsL6O2l8vTosS6IExhqLZvSPaW3Xu0QFG7nLpI7vtfyKoUScYUlnrWeiGEixZt4SrAcP34cu3fvRmKicuyH5cuXo7m5GXfffbclx+U4DhzHCYZ8xERERARkrtQL/fDQCn70pHGmGkk5nxY6hL/XxMvoqi2Kv8vNslISYlrPUdxhL4lKDLBWyKHkSzKgJon/ndR/Q0GOpkaThO0XH39vcq2h4RO189AiWsi9Y0cHrscqZAfiPEG0/w9dNvrc9dYDEz5CnLY2WSE6mHDxFq4Klscffxyff/459u7di7Vr12LKlCkIDw/HjBkzAAD33nsv5s6dG7BdaWkpJk+eLJnxsaGhAVu3bsV3330HANi5cye2bt3KJ1vas2cPFixYgG+++Qa1tbVYu3Ytpk2bhqioKEycONHGsw2cKkd/Nyta1PCyeDGC+Fz4RH9UHhfyP72+VEdNRy1Vm46uJB5Ipl9xOQH1Ya69ybW8aHEKuq7y0zOxaFahIBcOwayoIMN94hlCRu53u54RNn07OFHyi9PSzjnRFgaDtTtYcFWw7N+/HzNmzMDgwYNx++23Iz4+HuvXr0ePHj0AALW1tTh06JBgm507d+Krr76SHQ567733MGLECD6Y3PTp0zFixAgsXboUABAZGYkvv/wSEydOxAUXXIA77rgD3bp1w9q1a9GzZ0/bztVLb1skdkswPkSkY6HfiPPTM3kh0VCQwycFJP8D5xIFSiUMpJl98lBAmHstDKg5N7NNvK2aaCFlt3umkRpWOMJOqSrD0fgWTKkq4z9kuRgjIsFNYSG2uBDYMJI2gmU4yCpI+6rVyspQJ4yzKitRO6OpqQndu3fH25/sQpdo4Yymo/EtAQ1rkb9Ss2PYkLxHLCunFqScgQF7G5hDavHM0VqP4nKJRZbYrK+lYRBbWaTEiZ7OW7y9UnZluTKQ31mGX3vQUrfEyXb1hS9g3K7HZfdjF/Tz5uUZdXohz+yQeusF+ZriQtl2VctwjlVO6EozNEn5jre04MofdqGxsdGQS4EWSL9U8d4AREcbt0ecOHEWWbfstbWsRnA9DksoYvYt0OmZEyTwXAA2NDBAa6Cn2HrldaZUlQW8tcYVljhSL5ErD6jmh6GhZ/MoIW4cxdfZabHi5gwdJ1HrkAL9VLLgkwvJZJNgEb8cjMkrCCnREorQIkUsVlikXHtggsVipEzfO4pfhh7vmIaCHPgc6pwJcscijbmVb0fZ/gpNqQu0mlGtNscbGZqRis8iFgS+9CzEtZXVh7Zgfy5YVZQCzIUicvXLW+RYJNp2SVxhCdA2PC7X1tAWXfE64kkUDPthgsUB1r+/GqMnjdO8/sSq3VhvY3n0INWp+dKzTAkYLWJFT0hzOd8CvVjhw6F1H0SU5ps+on70TI0OZVFjZ0oLRiu0Hwcc9mHRCn0fiIec2b3hLTw1rZlxDi8/KMHcicn5ryyJkp9KT5xwpYZ95JaJl0sJKnKNveqwafV19up5MhgE4iDLHGW9CbOwWIRaUjcjVpYihJ4TZmt0W3UHEanGoqEgRz5fkgGzfpG/EnP8lRiYV6o7KR8tSPbXDMXVaOKHkviotH2zZK0U5E2uqCDHFSuLGYxaXrwodN3OwdVeiCssscUnTm4o5vol/2jNg6WAoD1hw4JBAbOwOIAXG2q30DIc5BRaxCAtTOQawCsyuknGYBEHJ5MimKeWm4VZXNoPdlgrdsQLk+R+mDqI/6iJFSA4n732DrOwWIDet3OtTKzaDV+hfKPuphAaXbXFtC+L04gFCpk9sqd4Jp+DiYYWK3XV61pnUony+AyoScKpjD6KvityHXN7F7J0TJ32XBdOxycJJeipywJ/mTaU6naHfcVynegu/4foLtHGd8CdADAeI0eORHh4OHJzc5Gbm2tZ+YzCBItJGuNaNK2X7a8w9IAovZnImbL1DiPRM1X0zFqxa2bRlKoy2830CSlpmEOZgYl4oc+9rnodBtQk8UM9Uue7N7mWz+4slV2ZFitK9SX+rT114m6fp9eynIcSxCHeClEmtqgArdeOzyROQiUUlgTVi5SX2bhxI4vDEkrc/XklEBXldjEEGJkqK9Vhm0E8nTdYGxCpKc5iywuNnKVFb6fsdifuJejs1uJM11ZhZnYIEzzyWDHsJyVUtIZGYIQWLNKtQUhEwcbiIsRoFCzk4dXjfAuYS8ClRYCIA2vZ6eirpZGRinBrFjronLjTU4tAq4RalFxxgx1MQsQLVh4lcQjoE+dWn49RkS++J6TEfKgEjdMT5ZYIE/Lsi0Ukb0lR4Wh8i6bjWVnHWuKwOBnp9pNPPkF0tPEhoRMnTmD8+PGei3TLnG4dhDhhrn9/tWPHNBJ22s7w40fjWyT/p3HibVUuMq3eHEIAVJMW0tMk1XIZeQm3xYoW9IgFs+cjzkslhk6gKbUOEet6sniHAmrnuSM+KcCKwvLwMKRgQ0I2oRRNNNtfgaLUQY5FR/RSjhopXw2g9e2JOC87Nc2UiBPal0VuuMGr0WGJ1cAL1hA7sGP4xyxyz9KSqETMPnlI8je5ffgsK5X3WDSrEAsUfqdFiloUWa8E0mS4CxMsNjJ60jiBo+2HqYP4N4d8AL7C1tDgasJlYtVuU8NCakhlE5YbJrLT14WgljNIKTmdLNT+6qrXCURcwqxCvmMsT50qO+tLKpR+XfW61rxD1YEmaKXxe6sEENneS2IlVMWT1CwzehkRK7NPHkKdxPNC7it6SDJYfbvUyE/PRH71Ovj6tt7nO+KT+EiyWi0mdLvYUJCD2LxSW8rKCB7YkJANyGUNnli1G6MnjcPoSeP4DiuusMRWMULQMgyhJEKcHMpQ6+x0ixUKYlVZNKsQ+2uGAmh9M1bzrSFl0uoTVOSvDMlOWwuhfN5angHaKpSfnhlwz9C/k+EQelgkmP1XxOcrFilGh3f0xEzR6uvCCD6Y061BlJxui/yVmoZ7iFAhD7TaNmaFjZZsx0ZEiVQn7qQjr5dRqk+nsk87DW1hCVVrixRS/k+RKw9gb3Kt5JR34JyVhq6nYPBxWkRZJZUg5yI1rVlOmNECh7SJ699frUuIJKJGdR1i9bECLe192cVJKCj/mDndmoANCdmAXt8U8hbyoQbRYoaGghzJAGl2kJ+eKTnE5LZwMeLPIzW0Q4aHzEBCg7tdJ4C1fk60QLHC0dUL9WOUUxl9+OFCqQ4+GM+NDPdIIX4mWFA86kXzzBl3CxICMMFiAx9qdKgl69CWE/K/XcLF6jdepQZXLFoAdzsgX3oWxqSO0O3AJ/YzWFNc6Jjwsxs994Mb1pJg69AjVx6QTNOghtetUEoWFTmRYsXQlta21Ah2zz5yYqi/vcEEi8X40rMwsfhlXdsQL3i1oSErnG/VrCxSIkPKKZegJkDMihYpfyDBtoNETou7A4NMWU1cYUnr7A4Pme6NBlTT45uj1qm2p+EfKZQcsMXXRm6IyAtIiZP8Nkd1Key2onyYOghxth7BPEycOAMTLB6BDAvR2Pl2oQQtMpx+ww0QKFKNpFikSP0mIVwaCnIACxrXIfW1ktE33YAIlTlLCzQNL9kpKtqzWJFCLMzpuq+rXqc55g8/BZqawm6ldSA/PVMgeKWGe2ix4vQwj95pzVOqylDkr8SYvIKgdmBmBMIEi4cgqe6l1LqV4kVrpyU1ldlIVFiynZS1habIX2md1UJCuFjV0K4pLnQk06sRcaFmvbJLVLR36woNqQvxdRDXDxEttDVDnOOKfmbiKF8q+v4j4mXRrMDOWZy1mF6HPq6UM7AYN/1RGgpyAAkn9YSUtIBzJHGcmFgJPZhgsQESyZZ+C1Lq4HjrSlsjJ9epW2V2bCjIgY96+KVigtCNrdz/epBzwmXIo0UA8G/FbdelPHUqYCJ7uFHhQc9wUbpHiHXAq74pUudPi23a2gFAcC5F/kr+ORfPlJKioSAHdRLLxbOG5ILM8eVs+13SEVZcz1TnLhWgkYiSMakjJMvsBOKgcaTdI07qNHNYO9KuYILFBqTMtUomXLGYob9/aJNjmODhpxpaO2DiRBmtIkGr749U8Dut2xq1kvCdddu1VvLRsFusmLH2KGXUzqf+pyF1K/cMyc0ok6oHUl9yM8iK/JUCSwu9XC9ensFDCxW7A2cyggcWh8UgepIfqjUmRhpwq8exAWNxQaQ6QvEyqwVL/gPDtK9MDQmtt/CtcXTVFsvOy8oOXClSL41ap66n0xcP94l9IkIVfqiGem7oulicPFswY4jknDqV0Ue2bqTqTc2fjPhreI01xYWq5VIatqGHwENBsJw6c4bFYTEJs7DYgJzPhxa0p0yXThzoJMEyxGOHf4UvPcvyWUJWTPnWIlYAa31ZyHAmTaiLFRp6iJVcv0WzCgOSYhLxoiRWpMhPz8SAmiQMTL3iXL4tkZ8Ly7XDaA+w0Pw2oiccfnnqVB1ipTX8tNXDOHotNnQYbvK/VChy8rvjtFlXgsUZVGvYfyfQU2dS6xrJei2H1nNWyt1kxfpK0M+OLz0LddXrsDdZejYbyeqckJKGATVJGFCTZGl9eQUvWn0YwQ0TLDahtYM20wHZIVqK/JWWNuRAW9yS9CzEFZYgrrDEsw6XWgmV2QdWXWfaokhmoVhpYdF6v+gVpkaGP8m50s+t+J5WE/6kbuqq1+FURh9Ngeb2JtdiT/FMwYvNwLxSDAzhhIBODAM5MduPYR1MsNiEk0MkdlhavDzEA6DVekLHWiH/i5fbhB1WG7MJKvWidA56rv+iWYW8xSCUkZstJxYoRKADQuEWufIAP0wknlJMf5SOP6WqDFOqyvj/9xTPNHdS7Ry7o90yrIX5sFiM1oZeKXqsHmLrwzGlqgw+HWnbtUJmfnje/4MWKDJB5XzpWQEh9s1ghw+LlyxPespSV70OA2qSeEsB7TjqJedbsz5CUs7FtMWF7JsEdyOQcP28JYWKhFtnMoKskVQTwYIbQTMZ3oYJFpNsHJaK6OhojK7aoml9cYNpRSdVnjoV2f4yybgKXkHciJtCyrJC/pcRLFZFuQWYGVkNrwgUMUaeNbFIUXM0lxJFe5NrkYA+gnUIY/IKXI15Eiywqc0MgA0JWYbZzljr7A6nscJqY6lY8QANBTlB48jrBPRQUOTKA4LvXhUvWpFzKpcTP7SVBTjn97Ii6hT/GZNXwH8Y2mBixdt88cUXmDRpEnr37o2wsDCsWLFC8DvHcfj973+PxMREREVFYfz48di1a5fu4zALi8WoNUK0+ZZ23jRraSlPnWpbMj6r8goR4UJSENiCjP8K6xzsgwx51FWvwwAE1r/SUIxdIf2dSBWg9Xlg914gYsd1KavlegA3lO7GFRndAASmGbCCOBuG0tsjJ06cQGpqKn71q19h6tTA2a7PP/88Xn75Zfz1r39FcnIynnrqKWRkZOC7775DZGSk5uMwweIigoZM45CSm9jl0+IEWoJYeZFgyNGzN7kWqK5ttayktC4TJNMzmNuIPne9/idW15lbyUCDHa0z6mgr7A2lQt+VTSuPYePkFOyxvHSw9+WpHTFhwgRMmDBB8jeO4/Diiy+ioKAAWVmt1/jNN99Er169sGLFCkyfPl3zcdiQUBCgdSaAHt+KiVW7DTm1NRTkGI53If7rFHYcz6lzEHe8Xh5a0zLTRQq5c5LLbWUWI3Wo5/hGEoSGKlrbpISUNNxQujtArBBGrqi2slg8np8N6TJNTU2CT3Nzs+591NTUoK6uDuPHj+eXde/eHaNGjcK6dfraCmZhsZAif6UtDnR2xFowMyYslYRMyfKi5MNCB84z4scjFW5/R3ySoCzZ/gqsN2FdIW+J5BxHp2e2RnZV6Iz0BAEs17jelKoyz1tbCHpEC8m1Q8+cEycbVELKCmWHZUpPdnIaJ6x7XrUgah1u2bTymM0lkcaJISEi2k4ePwaUX2TrsQjDjnZBzGnjofmbfmnN2NOvXz/B8nnz5mH+/Pm69lVX15ris1evXoLlvXr14n/TChMsFhJXWAJYOHVWL26aNxsKchQ7cNp/hQSRy/ZXCDp2SdEinvXjQIwVMaQjWCMh1KQ6MT1iRQ9GRV0wYCY6spxYEQd3k1o3WJEaahHPVPRqjiGjBLO/SUNBDk6dOeN2MXSzb98+QS6hiIgIF0vDBAvDZgRTOFNHYH3qCMV4KHynTIQKESjkOy1gNIoXuyxfZN+EYDX/e81PRq4etcZ0Ibl98qllRQU5yE/PtP1cpaxC+emZsj5qVg5JeHF4Q+mZ8KVnyQ4BBTNiYRWsIgsAYmJiTCc/TEhIAAAcPnwYiYmJ/PLDhw9j+PDhuvbFfFgsYEe882/9cnghRggJ70/e8ExN4ZSJq6KElzrfYMBIiHqnGVCTxP8VR9UVDzfmp2cGdBLi6cZ2oSZa7fRB0jLt2g321wyV/ISSWKHb3WAWKHaQnJyMhIQErF69ml/W1NSEr7/+Gmlp+qJjMwsLwxLiCkvga/t/TOqI1qExgyIlwMpiQLTQhJJZ3Au40RmS4Gtk+jSNlAjxUodNozZ0ahSvnm+oQ3yt2rtIOX78OH744Qf+e01NDbZu3Yq4uDgkJSXh0UcfRWFhIS688EJ+WnPv3r0xefJkXcdhgsVC1KZo0lgZJp6gJ+ItmSFkxPmWmNZj68PPLaxvdQqVcoI1jHg4qJ0Tqv4rWgn2IHSA/cKCtn4tmlWIMThl6/HaE7QVhfhIeXEYzg02bdqE66+/nv/+2GOPAQDuu+8+vPHGG3jiiSdw4sQJ5OTk4OjRo7j66qvx0Ucf6YrBArAhIUtRmrYrFjM74pMEH6cxKlTiCktQnjpVKFbsxqSjbahkV9brzCtuUNtb4+pLzzI0BONLz7IlmaO4LFYOD0ntq656Xcjc+16hoSAnOJLDOsx1110HjuMCPm+88QYAICwsDM888wzq6upw6tQpfPLJJ0hJSdF9HGZhMcn6V5/H7zImC5bR4sRswjW96EnKpyRayNsELUzKAcTWmyqeZgTDQmLBolPAhMqQkF4Lix15q7wC/VzJOdIa9VfJ9lcg26KyKZXn6dIteNjEcaT2TR831GYJOYmUL2B7H/bxAszCYpKHr80QfBe/1WrpJEhjQ1LHm8GsU2FcYQniCksQWx9uuxXF0uEjRruCfq6Cwcla6o183kz7739mYdEHaf+y/RW8NYUJFe/ALCwWQ5ywpGJAAEDSvmsAALX9vgzY1peehYaCHMF0TEB+6qxV8T7oGBXlTg71aEEhA7MUO+KTMBreT3PA0E6whcWXiykjtgTZFTcpFIcr+iZvR7Z/u2J9xRWW4OnSLZg3c4RAZCxOno2Ha5aoHoOejiw+Dgvh7w2YYLGBgCidbY2ULz1LVqgQ4gpLUKSg6AWNkUTD5Css0Z0EkX+4PdYh8MNCOkSLHc7MDO1ojZWiB/I8BTtOWILoKMGA+8Es5Vg1s3U4mkxt7pu8HYCwLaSDTRLUhmr2JtcC/trWdrBtH/mohW+mMDYKvR8iVJQsKXqG2hn2wQSLTYjHkgEILCdK+VN8Jub0N7QFyKKPEcwmzVCO7hqK2DWTR/w8BYu1xWlIvdAWHbeGXtcUF2J0eiYvRmiy/W3Lks8tk3NKppcrtWWClCFtba74u3g/oSKG2wtMsFgAHQpcSqhIIX7bKqIfMJ0PkFzjrVWokMYNJt8AfelZ9lk4dA4NEWwtUxBhtJN3SxzYYalpb5ix6Mj5vkhZOOSOM5p6cbqhdLekcCG/D6mv1facipyIrfDR0RLyP5hf+kIJJlhMsviLlfhdVBQA9TF2sYCxqiMQ+7IcjW/R9YCZmV45paoMeHA2ytcf5k24VgsEwdCQCuJ8Kg0FOYYD2HkZvULC6L1ml1hxSwiJZxcRpDpdq8ool5wRAOIssoIqWgkstCCIyxlXWIL9NUMVtyHDPlLryYkYrYzJKzAtWph/SvDABItDKFlevDo+KjUUIy47bREiQ1niuDJD6muxIz6Jb+zG5BVgR3wSL2zExzHjTOy1vDh2EexDImrll7OuGHlW6HtCz+wiq+pYacp1sA9HNBTkAMlPul0M07ChoeCACRaTiKc1A+fezEiDJ/Ug0I2h2berKVVlgk5e7xsDEQ7rU0cgETX8cnrsW8tbjNTbV0NBDtaI1iP7WoNW8UKOQ5YrJSpUsuCsKS7UlXhOK2KnaKD9mYj31ww1/TasBTXByft46RCl7UHAMozRXl5wQgUmWGxALWAX/d0K60prmHxTu7AFvZ26UpArImqUhpvG5BVIihO9FhuxxUeceVU8w4BAcill+89tr7VBtGqKul1cjSbsdeA4SnXltrOtmeO7XXaGNCS3E7OuBAdMsIQADQU5iM0rdbsYIUOAeJCZYSD+nyCwbvkrVa1di2YVQj1KhLvsTXbfcVkq47KcILTjzVmv4KBFChMr3kWrWGHDRu7DBIvLWDW0QA8LladO9aRPDEOauup1miwsWtYh1qFgC7ZmFDlRQhzA1dazk1CveytQc9hlMGiYYGEwQggWt+YcTosUIpCYT4Q+3IwVwwguWC4hm9CSetxK86J4X1LxEszAkqh5n7wVm3ixQjt9t2eUMqhbDREqWo/FhhcYDH0wwWIjSlOZWWPFIFjlcFs8+QpL9mMHWgS8VUgNBTlh9SB+M1qPxQRlcOGE6GUow4aETPL22ExEde0m7XwpIVJYIyWEjsfCCF2cvO+lctA4dVw52LMfGjDHW3dhgsUkd39eie9GX6U5mmqRRKwQuxAPC4lnVxDWiMSWXPlGK1iMjGJHJFqrOyvWSNmP1U7CXvIj8WpgSC9Bx3liw88MOZhgsYA1xYWaH7IxeQXwxSfZ3oDF1ocHhOgXT7dVQm2YQim4mxgr8n3owa03bIZxQtn6kO2v8FwmdIZ+SMwWhnswHxaTvD02U5eDq5Odt9EOO5SsCb70LOwpnokpVWXYUzwTe4pn6t6H14O6BTuhdL+pwfwg1HH6BYcRPDALiwXomZZn9ewdGnGI/mBhdNUWS6c1FvkrA5LK0Z2iEdFiJ1ZcNy9NZbYyMaNUBnS91hja2maV5Y2+n+hsv+Lhw7jCEj6Tu53PfqjAhoOsof6rRpyO+K/h7Y81nwAAjBw5EuHh4cjNzUVubq5VxTMMEywWoLWzpXPd2JEdtMhfiYGijk9L6nSG+xgRHF59W7dyeEcurYUe4UGvZ9UwIS1MpJ4v8jsRK/npmSgi67FhBUmMihUrMjbroT35tG3cuBExMTFuF4OHCRYPoVdcqK1fnjoV2f4yQ+LISWuNUkJDI+SnZ+pKjucJBqmc/+6k1nXIX7R1vmRZkCPndCtnUcn2VyAhJU02q7Md+NKzAp43sfWHWFKKRJY9ufOQE3fB1CGumjlI8N2oKFxTXIiJVbtx/ZJ/YNPKY5q3e6dmoaHjGYHN9nIXVwXL/Pnz8fTTTwuWDR48GN9//73k+tdddx0+//zzgOUTJ05EZWXrA15WVoalS5fim2++QUNDA7Zs2YLhw4fz6zY0NGDevHn4+OOPUVtbix49emDy5Ml49tln0b17d93n8POzjwBPPK2+ogjxTc+/Mao8DGQ98nYdYGb2YBJENeyYKRRUELFCiRHZdch6Uv97FLVGXmmGkNJ2TooVQN15Nj89kxc17alTE4s4vS9IcYUlgL8SE6t2Gzo+syK3H1x3ur3kkktw6NAh/vPVV1/JrltWViZYd/v27QgPD8e0adP4dU6cOIGrr74aCxdKq+6DBw/i4MGDeOGFF7B9+3a88cYb+OijjzBzpjG/hvOeetnQdmJi68NRnjpV8KEh37P9FShPnYrY+nDJjxRGxs6D6Q2PYR1q1z0hJU33PtU6b36Y1IXAclYjZV2gz4s9V+rosa4w2heuDwl17NgRCQkJmtaNi4sTfF+2bBm6dOkiECz33HMPAGDv3r2S+xg6dCj+9a9/8d8HDRqE5557DnfffTf++9//omNH+6pkTF4BULVF81CLnGjRg5lhoWAmqKY1E8uKHkuLCcsK3WnK+YgArffO0fgWQT3aZdVwOrCcUcTWIqn7rNVicG4Z8XlQ266982HqIENWlmx/haPtG4ur4x6uW1h27dqF3r17Y+DAgbjrrrtQW6vdl6G0tBTTp09HdHS0qTI0NjYiJiZGUaw0NzejqalJ8AFaA8dpdfgKpel6es5FizPd6KotZooTQFB1BmI/FCW/FLJczedFAZJnSE0kTKkqE9SjEesKYM6qYJVFwqr9iH1WGgpyAiwoSk64ZNiIEbwEVdsSYrhqYRk1ahTeeOMNDB48GIcOHcLTTz+Na665Btu3b0e3bt0Ut92wYQO2b9+O0tJSU2X4z3/+g2effRY5OcpjoAsWLAjwtwGA94fdgvyoKBRp7MCL/JWm1Xl+eqZua4uRcV6pmStkjN7q6YdWO94GHWIBomRhcclvxah1xYz1RMu2WqwVdlpw6CEtpRkkZD1+qr1CudrTTBSCUR+W/TVDAThXV770LOSDDe+5gasWlgkTJmDatGm49NJLkZGRgQ8//BBHjx7Fu+++q7ptaWkphg0bhiuvvNLw8ZuampCZmYmLL74Y8+fPV1x37ty5aGxs5D/79u3jfwuGNyYjTmlk1gP9CTbntqBwftydpF2EBIGTrRJ2PCtG3nitKodeR2G53+nOLxjak/ZMsLWBoYTrPiw0sbGxSElJwQ8//KC43okTJ7Bs2TI888wzho917Ngx3HTTTejWrRvKy8vRqVMnxfUjIiIQEREh+ZvTY6h6KU+davmYq550BFpoKMjBGgv2M9pAB6IHPZ0J6UgtfxML4qnMXjGnW1EOJf8fgtwMKLEFhf7dK3XkFEwAMLTiKcFy/Phx7N69m3eclWP58uVobm7G3Xffbeg4TU1NyMjIQEREBN577z1ERkYa2o9bSAWI8zpOB3ciWB1LJlbHtHFybLVrVa6nAKmtf6bAO5FtjWJ3TAsro9qaia4rRUJKGupwTgBLrev07Ck3iSssASaNc7sYmmGOt+7g6pDQ448/js8//xx79+7F2rVrMWXKFISHh2PGjBkAgHvvvRdz584N2K60tBSTJ09GfHx8wG8NDQ3YunUrvvvuOwDAzp07sXXrVtTV1QFoFSs33ngjTpw4gdLSUjQ1NaGurg51dXVoaWmx8WwZjOBGzunWq0MYesWKLz1LEOiNQIcF8KVn8R8tx5YTOnXV6/hIuFr8b4JiaJPBsBlXLSz79+/HjBkzUF9fjx49euDqq6/G+vXr0aNHDwBAbW0tOnQQaqqdO3fiq6++wscffyy5z/feew/Z2dn89+nTpwMA5s2bh/nz52Pz5s34+uuvAQAXXHCBYNuamhoMGDDAqtOzFb2RaNtbcCXyVhys+ZW8iJzTrVqHK5cPyGudMAkMJ7ZomA3tr+RYK4UZy5DUPuXEVXtqDxihgauCZdmyZYq/f/bZZwHLBg8eDI7jZLe5//77cf/998v+ft111yluz9CO1X4sVuK1zjAYsSr0vZT/htVh9dWGbZSOR8Lpq1lFaOiI03rFhVpZ5+4/AvLKZcWwluz2VF4mAhMx2mD15A6ux2Fpb7iVsbW9OfIxzKMkKLQOA8mtZ3UAOrETKxm2IcuUjmdE3JLnSetzRdeDWhtAl9WJ55YMS2X7K1hGaYan8ZTTbbCiZxaOVcrciOOt28NCbjneeo1eh8957h7uFeiHFQx4UQBLzrTRKEa0nI8ZJ2G5YSWvRbw12j6QtkUcS+XD1EEB64UK7TFWjtswC4tFaG3I3BqqaC9+HMHQgASrSDGCVZ2xF66rVCZp8lGzOInLLzU7yDbnZamghCYiJethYtVuwWf0pHEY3TYbqKEgh/8EI151Ng9lmGBpR3jhTY5u9OkQ8V50wmQIkZslRDptNcw08F68N+gyKXW64rqRCukPQJCF3XbEqSBMYMRqMnrSOIGQCUYaCnJCymIUDLAhIQcRJ0VzAzUzJu18SFCKFYGqLVifOkJ3GZzEyzOFeh2u12VxkUqXYCe0s6qcH4hW07gXBLNeaOfahoKcgNlOWhELdTlIHSk+c0YgwQZtCjro9eCZduL2UHt7ggkWB3G6wSYdNd3JqQU8aijIgU/mrUFpeqRXZwt5FSJSaH8WNZwWK3qwWoRaGVTOjJ+I0nYBiQz9FabLTbbPbtuXLSKAFi8W0V4DqTEri7MwwWIT9E1sl/reUzxT8fciAKAaPa0P1midESfFjnVmaG+ObFqtK14WK3agpdPXKg7oFAlGxYTUM0zECum01JIeqkGS6hGkXgIMOa3T4kRKqFhkcXEzWq0eKwdpB61ql5l1xTmYD4uFxBWW8B96qmB+eqYnVDh7sIITq8WKnuExq6cfi5Hq5LX6w+gVH2rra4lgS0PHbaEtMXT55fx7pJZJ+bWIGZNXwH+kUC0/ESu0aLHI0uJm+6J2bKm22QttMkMfzMJiEeWpU5HtFw29eBA7xponVu1Go8X7ZLRih2XFS9YaYlEjYkJsZZDDjuFVMgyjNBVanLDQaPA4vdFvpaBFC7G8NBTkSJeftqJYPByUtO8a1Pb70rL96aU2LR6oCVxOBEm2v0LSd5C9wFlHS0sL5s+fj7fffht1dXXo3bs37r//fhQUFCAsLMyy4zALi0kmbXsPU6rKMKWqTCBSaAuLOF+IF2c8OIVeB12rcLOTNnJsck8B8rNz7Ebv0JxRke52pmK63ErPJvlNyvFWvA/yXYt11YqXG9ryojhriwgXCx1vx+163DWLxaqZg7Dz4ljJGYdSeZrKU6fyFkany3veUy87ejwnWbhwIZYsWYJXXnkFO3bswMKFC/H8889j8eLFlh6HCRaTLP5ipaCBoGMzSH3IOl7GSp8UNbxeF24gFjh2D8tYRTDNAtIrEsRihXR2UrPqyLRlglK9iC02RstHQywvWuLDWMHqC1+w/RhiVs0chFUzB+GG0t24oXS3oqiXa2OsvF/VxE9cYQnu/jx027q1a9ciKysLmZmZGDBgAG677TbceOON2LBhg6XHYYLFQtRMjF6wrJC8KV5Bqk68UE9WQywmWj5ewenroDWeixXoSWgo1emT4SPyzJO/5NlScx6n0waoCR4zKPrF7E4692nDSNswbtfjRosnQPyitHFyiuy6RKgQNq08FrCO1P1Eni8nwxxIidpQ46qrrsLq1atRXV0NAKiqqsJXX32FCRMmWHoc5sPiAu1tJowSTtbD7JOH+P+XRCXy/0+pKuPf0IxaM8TDgeLf1CKa0vE3tDRu9HpKx/YKWmbo2P1caJ0lJFW3kpYKan8BU5xF+yLnRTt98uEDRNeM7HO9ttPShDjBowAqNovbfh3dJp8TTCNXVFu2X2GyyjL7poyLCHax0tTUJPgeERGBiIiIgPV++9vfoqmpCRdddBHCw8PR0tKC5557DnfddZel5WGCxUL0NrhuBRxyM8jTmuJCrLH5GOJOn1yTOdS12UOtXwQAKWmYs7TAeL3QM0MkfiuSWRcAFs0qRLZEuelps1LHK6L+p4/tRQuVeLhDbZjEjnPQuk+x9YUEjQOEFgg6EKSUWMlPz+R/J8cuaotz1FCQg3yZ7Yi4GFJvbfh8WYdcgBctTrZJxKISV1iCufuPoOzO54F12uMSqUGfCzl3WjyK17EaNy3ZZT8WI7JTJ8PbnzpzBgDQr18/wfJ58+Zh/vz5Aeu/++67+Nvf/oa///3vuOSSS7B161Y8+uij6N27N+677z7D5RDDBItJHr42AzFRUbK/K4kYN99mnGqY3Eh2aOSNZs5S9wLfLejbE76+rZ2ikrDRCrnf7BQuim/sKqgFY3MCJdEk9ZvYgiL+nX6WeHHSJrzEf+Gv4IWDVBnIOnY4qIstPQAsdcBd//5qwXctbUxDQQ42JT9p6rh9k7cHLJN7MRPcYza8vPF1G8SWFcK+ffsQExPDf5eyrgDAnDlz8Nvf/hbTp08HAAwbNgw//vgjFixYwASLl7FiumIwQgsTqwMzhSrBXE/56ZnwiZZJWbaC8b4XiwjyXUloCd6mRVYVqdlFbkOLY1q8GLkXpcQrbZWyk1UzW6002f5AwULjVFoUL/kHWkFMTIxAsMjxyy+/oEMHoUtseHg4zp49a2l5mNOtA3ipodKKkZlCZFrlkPpaVzthr8bAkSIYxQpBrmMnyN33wXR9COIyi7+b8VOQmz3olHWSOOaa8R8S38dOiZXY+nBVi504sB9Bb6BANWj/pPbGpEmT8Nxzz6GyshJ79+5FeXk5/vSnP2HKlCmWHodZWCxA75ukXHAsRZ8FizHix0KLGHGkzTEWlMkqFMfqPYQT13l/zVBJc7mbeKFB1+pDQ6xGxPchX2Eox+h5iS0wpB1YXJNk6LlyYxjWLbTOqqOHSXlhRg2PmXkWg92x1goWL16Mp556Cr/+9a9x5MgR9O7dGw8++CB+//vfW3ocZmFxAbmbmw4ZTT52oSUY2YepgwQftbDgNCwZ4jnsvpZq7K8Z6tqxjeC0BUZ8PPG1ooPAadneKOJpzg/XLLFkv8HAFRndWiPWqnBsRQ7/UYPUJ93WeS2sQ6jQrVs3vPjii/jxxx9x8uRJ7N69G4WFhejcubOlx2EWFguwasgnISUNddXrhIJGtG/xjAWxs594SiaZ5RBbH86vVw5gCYDZswqxIuqUJWVnSOOmn4ovPYuPVUGLFqctLqRD1/oWasZCJmXtJM+VuEy0b4r4ux6k1jfilCyO+OvWTD63SGqbIaRFjADnMsuLZ/7QFPkrUQfhzD1St+SlaoeJMjPrirMwweIhtMQAyaZmGNCzDQix9eF8UKTY+tYASbHWzRRk6MCtaeuEbH8F9sMe64qe2C9W5dmRQixQpLbV/FzpWK6GlFMyQW0IuT3GaJqztADHqnarryjDmLwCw0NhJNt2MPuTtRfYkJCH0OsERq/rS8/SHb1xQd+emHwyUtc2wYLW/DB2QIaAvNoA7q8ZaskwkdYAd3YO8Ri9tk6+FYvPX6nMweiQ7BYTRQKHDUOHPszCYhPityi6IZLqyOTGzRU7PVHwsNi8Ul1ljK0PR131OtsSEpp56zGL0463AtNw21+vm/TNOORqHT4RT3X1kvlcz1CV3rLrGWKSGrIKRqywDCnNTqRfAuj2sshfibj0LNlAe1Llyk/PhC/+XPwZIy8XbDjIeZhgsQhxg0YHmmooyFENAkY/MEWAoaBhR+NbBL4qDGcI5oaLWFqc8GvxWh3ZVZ4if2Xr86sy7CO2tDgVu8Sr0JFv5SC/0X5HRWhrP9smBEi9JEnFyWnPdR2sMMFiEVL5YwBnH4q5+48IcuRooTx1KhJRY1kZRldtEQxNuZ03ye63ejr8ejBj5fRnr1lSrEA8rRmQP09NQz7UM0GsK8Q/rT36sAiECLSJSbKOljYm4IXQAkLtHg8GmA+LTbhxM7thVh5dtQWHkMx/nMyCyrCW/TVDLbl+odqQi4WI0SzP2f4KRVFD/9aeYqooDaFp8YVaU1yINcWFjk1bZv5GzsMsLDbjZedLvYitJwBQnpqsuE156lTDOXGswK7OM5SuK83IFdUAdUnttJZY7bvhNcuOl8riJcSCQuo5CrBQkzZEg1+aU88lu77OwwSLjZAb2innyyJ/JQYaeEOefDISK6JOSQoSGjVx4iR0oyfXQFmdyyYg+yu810laAT08lO2vwOoLX0Btvy8tz7BstUUwmK6DFrFmRBR7zSIjdQ5S52Q08Wd7HD5rz7AhIQfwemTFJVGJmoZz9hTP5D9OI44W21CQw3/cxO3jK2GVyXrr60NUxYBb+bLsNMur5Q8yg5JYCaVO2M7nw80hGa+36aEKEywO4OSb39H4FseOZRdSjYFZcWJFA+NlcWIXpFMo8ld6csxey7NlRADQ563nWFbUkdupHIKF9vg8tnfYkBBDMwN1xnkxitUNET390Q68PCxEhnaMBoqj640222udys3XvcXDc3owclz+3DRsSyfWs+I+oFNrxBWWYAeEz4SVAdKC0RfL7enfwRzGINhhgiXEaCjI0R1Azm7ItMNgaxy1Tsn2anZooV+A8DzMigc6j4sS5Pe4wpKQmP4tRqsQ02PlofdHwsYD56yE4tw3Q+prTYWlDxZIvbhdZiZW3COM4zjO7UIEI01NTejevTve/mQX7vphVcDvbr4FOGUJoaHTvIsbZzeFCv02ZKdvgNRbl9tvgmYhHYRavZFzN2pp0rodXQ43rDVy5SS+X1OqygTWFppQ8ktxisXJs/mM1VrvRScweu81nTyJ7nn5aGxsRExMjMWlajtGW79UOOVGRHbqZHg/p86cQUH5x7aW1QjMwmIB5alTMaWqTNhBufhgORHxlhYogHJD0h6Si3nVymIWrRamIgD50Dc8xnfuGsvidhBCufMSPwsMayBihcEgMMFiEeWpU5HtL/N8/hgz0G+QwXaevvQsVREZ6qLKbor8lZrFB40ekeOWHwxBraxul4/BCGWYYAlBjPixkLdEpWGMYBMpNEpOt/yQhoPH9Dpq1gw5cUd8lbQIEL5z95hPgJIokVqu5MfihSGMUEHLS4fdMEHqLrqnNd9333344osv7ChL0FOeOjVopyP60rNQ5K+0zcJAOw86idbzscLfRMuU1sXJs00dwysohZcn/ixuUeSvxPrUEYbLoGf6si89S1APRf5Kfgo4EyvW4rT1M66wBPnpmYIPw110W1gaGxsxfvx49O/fH9nZ2bjvvvvQp08fO8rGcJDsC3sHrTVADfLGLLYK0JYVKxpDKT8WcbK8eQCy/YENH+nclEQd7diqRWDZOcQl1xnTWcqdnu69PnUEAGBM298h9bVYnzoCO+KTdJdDrexyv9FWo1B9npwmrrAERQ6KFa9a/hgGLCwrVqzAgQMHMHv2bLzzzjsYMGAAJkyYgH/+8584c+aMHWVkOED5+sNuF8FxnLYEKHWAcsHCaMFBCwE73zbNvkmS84ytD7e8fhNS0mSX74hPsuw4eq0sjNAgWC3k7QXT05o3b94Mn8+H//u//0PXrl1x991349e//jUuvPBCq8roSehpzV2iu/HLaV8QOxFbCsTL8tMzdWXeDZjlFEJINUJarRR68dJ0VqMWFqNTSOWEDm2tMFIfegQUsbJIMbpqi+5jA+eeZbGIoX1XpCwybEjIGpxwhndiuMfJac0f//1rRHfpang/J345jhvvHIWUlBSEh4cjNzcXubm5FpbUGKacbg8dOoRVq1Zh1apVCA8Px8SJE7Ft2zZcfPHFeP7555GXl2dVOYMGMsXZ7mnF2ZTpnUDM8Q0FOa2NpY4G0xfCM2SI/wzdoYSqOCM4/aaoFBiOHsryUjwNrZDy01F74wpLBDOixMN1LLiYMlICQeqZzE/PtGU4iPmjaGPjxo3BHYflzJkzeO+99+Dz+fDxxx/j0ksvxaOPPoo777yTP7Hy8nL86le/apeCxUnED3cR4LoXfbAQymIF8NZwV5G/EnE6y+LFDoWcY356puSMMiZWzOHUrDov3lsMbej2YUlMTMQDDzyA/v37Y8OGDdi0aRNmzZolUGHXX389YmNjrSxnUEGsLMFEqHfgNE693TtpRSA+MGYT55Ft9ZRdy/Gk3pyVkDu+GRGmNFykdiyxdU7LtGfWMZrDykCBbKZPaKDbwlJcXIxp06YhMjJSdp3Y2FjU1NSYKhhDmfLUqZZbU5wYK3Y6OBs/FORAeH6ClceIKyzB06VbMG/mCOU3eIllRt5YjVgHtG5jhfXB7PZ6Zg3picWihFLHS8QeGWpq75BhbSusVEychB66Bcs999xjRzlCDj0Or+0Jpy05wWyeJ2IrOxmAvxZA8J2P08G+dsQnYUh9reI6Q+prbR26Ee9bXAeCjjTIrqcRaFHGW61ETu+CiQP+Sk2JNeVgQiV0YckPDSI3S8hJjsa3WCoAnLJ+uOH1T2Z02OlsKzVby+z+zHaqes7XbKJIqY5CvB+tnQk9M0evuNAy9KNnxpDWl4+RK6rRN3m7YJlUPSrVgZHowqGIOBgfILw/rRKcco6+dhCMs4RY8sN2xJSqsqCytIRKYyiesUJ3AsF0jlYkVDRyvkatInKZigP2DXVLEf271k6KdD5jdPqq2IHZ4Z2JVbvxYeogwbJgunetRDysC5izNIqT1I7JK+B/W1NcaHi/DPthgoXBEwpvcGKrhLjjsPscrZzpoDRVWM8+nL6map211PRyLdYk1Tgnbd/XFBcKOiEp7BoSWpswFod7xfNTnqXqQin3ECMQK66T4Dq0/a92jzC8BxMsNkJmC9llZcn2V1gaP8Wpjo10UFYfT02s8HEybOrErXactMLCoheno7Zm+ytaz5G6bgkpaairXie7jdPOqXqe4aR19UhCPfZjKGrT4pGfbqy8tHVFytpiBYtmFWLOUu912kbFnNzw55i8Ak1WtzXFhUxIehzd05oZ2pkyupfbRWg3iKfWSnUSdguyYJ/l4RXrmpJY0UqwmvalpojbIVYAeFKsGJmSL5e4dUxegWYryo74JCZWggBmYTFJAn5ENKIlf1u/vgaTU9KwxOEytTf4JIYaM+TaaWXxIhOrdsv+1m3yuQ7inZqFThSHx82hEbWZREbYODklYFl5L+nwA3LnLndv2mVl8dIwcL7I0qYEbU0ZkzoCMDi8Q6a4j4axtA0MZ2EWFoZrWBE+nhYrjHMU+StVZwjRYgUA7kh+0u5i6SYUrqve+1zKZ8MuKwsZnnUbrcK1yF8psKaY8UMhyTJJ2oVgt5C2B5hgsZk5Swtsi3prh2/MolnOmNLNvNWJG1jSqWnZZ7B0gGYdAkkHoNQZHVuRw3/IdzuRKoseB13Avetn9Bnudbhe9r5kHaR2xIJCz3CPFMSyku2vQENBDkZPGqdoiWR4AyZYgpxsf4Wlb0gL+va0bF92Qd4K89Mz+QZH3CkMf3CH7LaA9wOwueWDMXrSONv2Ta4VQWuodKMdu1odOiF+DveK15SGgP4AzgY/s9PKQoQFERfi7+Q5FkMESpG/EutTR2BIfW3AtkbYEZ/Ex+Ah+6eFSrC80LRXmGCxGTZ1znq0TIHd+voQ2d+C5c3WSCdCd3qAcUuW2Q5Mantfela7dGw0YwkVv/VPrNptiyXASgFPixOp5WqYGfIhwzxi1hQX8lYVX3oWb1FhVpXggjndMoIOr1tHrELPeUq9mZMpwzuqXlbdXjwcZDaejFgoGRVAvvQsPqaJG3gh8KNdDrc0RkW8nKDQIjTG5BVgtERMHjMveXLO1MShl4gVRnDCLCwOkJCShqPxLbbs2wsNqhOQLMTikN1mrCVWm8HNWA/o85Mzk6sdW2qbhJQ0zftY//5qrH9/NRoKckyZxsUZo9106lQaFrJjppAc4mtK6kgpdUFcYUmAUPkwdRC/LBSsA/R9RoZ9rIIM/5AhILV7ev37q9vNy1CwwiwsIUCwTtPVW16vNCZSU0FJVFr6N9L58AHrlKKrWhR23ArIkJsVFhazYkVcF07f41YFfiTnwd8TCLRiyYlUOeuK1VYXpazSduNLz7JcQEo9R3L3z4epgxBn6dEZdsCSHxqEJJn65JNPEB0tHYeFMPlkJOqq11luDaFnLojfHoJNvMhBZ3oVo2d2kNx+yfZj8gr4t3Hylkd/F/8mhZ6Eek6hxwS+/v3Vgu9m/F/EgoVOqmh1JFMt5ZHrDLVeM73PrnhWUbD4TRnBa356xFdFCvHz8GHqIEuSjGqBJT80D7OwhCjiN1uvChi5wFXiji4hJQ0L+va0tGEhVg8tToJea5TtYvSkcQHCxQzZ/gqUp051ZfYLoaEgB6PTMyWzOBOrl1o6AGJpkZreXCRKoAdIZIwOYcHiFYwEgXNKrDCsgQkWB5iztMC2nDBiywo99ED/pkfAeCX6JX0uddXrgGph0jovlDGUsNoZ0YrkjVYhN+RAlmlJB5CIGknRY3d2aK88j15GyapCk+2vgI8S5EysBBeuCpb58+fj6aefFiwbPHgwvv/+e8n1r7vuOnz++ecByydOnIjKytY3mLKyMixduhTffPMNGhoasGXLFgwfPlywfklJCf7+979j8+bNOHbsGH7++WfExsZack5SjMkrABwaLiAiRc3BzAvRLQHpRIh0iO65+49gLuU4OqcgBz4L3orcSCwo94ZuFeSai+uGtpjIxdwgYsWKsXziU8UngxRZF9SsGWKISDXbaZMpr0SkkO+HUpNlt7HqetHDinpxWqwEk0BaU1yo20rCRIo9HDhwAE8++ST+3//7f/jll19wwQUXwOfz4YorrrDsGK7PErrkkktw6NAh/vPVV1/JrltWViZYd/v27QgPD8e0adP4dU6cOIGrr74aCxfK50X55ZdfcNNNN+F///d/LT0XJfTM1tBKKAU5IrMo1IYM8tMzTc9iocn2VzgapM3pWV3ixllOqJIZQlaayKX8NtSeA6nraqY8ZDbO06XnXhh2xCfJxutgeB9y/UZXbeGDRzLc5eeff8aYMWPQqVMn/L//9//w3XffoaioCOedd56lx3F9SKhjx45ISEjQtG5cnPDdb9myZejSpYtAsNxzzz0AgL1798ru59FHHwUAfPbZZ7rK6jVi68Ntmy7t5FsWOU4RhL4r4s5tztICflbF3P1HMMei48cVlgAOTHG107oCyHfsWhp08QwmYiUhSM36kfU9ovZDBCi5lmqWFSOdD12mgO3bvmcnAz6MkCxzdnqmqpC0YxaLV9H73K8pLrTVx4uIS3JtWaJC77Fw4UL069cPPp+PX5acLG+5NIrrFpZdu3ahd+/eGDhwIO666y7U1mpvFEpLSzF9+nTVWTpW0NzcjKamJsFHD3pM4HoIxbeL0ZPGwZeehbrqdYKP1Q6boWShsgOSayXbX8Fbv+j7TRxvRfy7Ew625BiknHZhxb6DyXHbK0PGYrHCcBZxn9fc3Cy53nvvvYcrrrgC06ZNQ8+ePTFixAj8+c9/trw8rlpYRo0ahTfeeAODBw/GoUOH8PTTT+Oaa67B9u3b0a1bN8VtN2zYgO3bt6O0tNSRsi5YsCDA30YP61NHWBbTIZQhb3ejJ43jnePomUJz/JVYNKuw1ZHZIrL9FZLOlO0JtQ6BtsAExJSRECbi/Vkt2PkOVYdQCRa/jGDESisLLVJGY4slLxaKMZBCkFGHv0JMVJTh7ZtOngQA9OvXT7B83rx5mD9/fsD6e/bswZIlS/DYY4/hf//3f7Fx40Y88sgj6Ny5M+677z7D5RDjqoVlwoQJmDZtGi699FJkZGTgww8/xNGjR/Huu++qbltaWophw4bhyiuvdKCkwNy5c9HY2Mh/9u3bZ2g/Vg8LEAEUig/j6EnjMHrSOOwofplvtKwUK1b6woQSvvQswQcIvL+suN/01j1tsXFDfLQnvxcjCRH1+oIRXxTxR2wts+JeC8X20Qn27dsn6Pfmzp0rud7Zs2dx2WWX4Q9/+ANGjBiBnJwcPPDAA1i6dKml5XF9SIgmNjYWKSkp+OGHHxTXO3HiBJYtW4aZM2c6VDIgIiICMTExgo9XoN98vfRgiocMzDB60jjMWVpgqWWFIY1T95De49gVfE3rfo3WC+nIrXDudnKoxg5RSJIQ0uKPbre81H4xENDnRURESK6XmJiIiy++WLBsyJAhulw8tOC60y3N8ePHsXv3bt5xVo7ly5ejubkZd999t0MlswYS5dOuoSGvWQusbvBI7hSrQpITx2LiXGqFU2WRv1IxOq+XEQ/72LFfo0iJCr1T0610JNcrPqyaiRYMU5x3xCdJPks74pMUn41ge14Y5xgzZgx27twpWFZdXY3+/ftbehxXBcvjjz+OSZMmoX///jh48CDmzZuH8PBwzJgxAwBw7733ok+fPliwYIFgu9LSUkyePBnx8fEB+2xoaEBtbS0OHjwIAHwlJiQk8LOR6urqUFdXx1tytm3bhm7duiEpKSlgJpKVjMkrQFFxIRbNKsQSG/YvDhbnJFZ1BloSutHrmBEvVjb+O+KTsMZfKNivXC4eUldeEzZ6yqFHhHjp/OSuidaXiNFVW0I6zL4Uep5tEhdFbEEB2OyeUCYvLw9XXXUV/vCHP+D222/Hhg0bUFJSgpISay2Crg4J7d+/HzNmzMDgwYNx++23Iz4+HuvXr0ePHj0AALW1tTh06JBgm507d+Krr76SHQ567733MGLECGRmtr55TZ8+HSNGjBCMpS1duhQjRozAAw88AAC49tprMWLECLz33nt2nKaAMXmtwxqzTx5SX1kjXrCsuOXQaFXG2mx/hWM+CqMnjcPEqt28jw7JOu12R6g16CDgHRHCsBe9zzWJ40N/GKHPyJEjUV5ejn/84x8YOnQonn32Wbz44ou46667LD2OqxaWZcuWKf4uFSdl8ODBUMrXeP/99+P+++9X3O/8+fMlPZ2dYkxeAfKrhLMmzAwR6TWvekHgWIlZiwsZWnBytlC3ySU4tqK1M6DLvz95KL/8w9RBjuXeKfJXIh9tM7EKcmSzCMs54XqKQbXAbmPic0/xTAzMc2bmYbCgR7S4EUGa4Q1uvvlm3HzzzbYew1M+LO2J9akjePPymLwCJKJG1/Yky+z61BFYnzqCHyOP02Cq1zKFtb1B/Ivkxt+VIDMb5IYbxHSbXML/JeKEQL53m1yCiStygHRdRTEMESV11etUOxxPixXAkFgp8ldiIAs5YAlmMnIzGEp4apZQe8PMEAARKoQxeQUYk1dgieMoMeUSHwuvBJHSgtEhovz0TMPXQ08Hrqd83SaXoMhf6SkB6XmxYoIpVWWarCvB9Dy4hdvDm4zQhAkWFxmTV4BFswodyWVjJJcRES3BFnBrYtVu/qMVIgqMzIgA9DfQx1bk4NiKHN7aQiDfye93JD+JG0p3294BsICG0pSnTg2om1AWbVbCRAvDaphgaScYiTRa5K8MOrEiRo9wsduMbcT6Q4aI7kh+UpdTrF7sznNkBi9ZmLwEG3ZhtDeYD4sFiNPW62FB357ITs/EeqsLpZHy1Kme6aysmvGjdd9SDrr56Znw6fRjMWJdkfpf6jttcRm9AtgBYHTxy9iB1gzLWt72SfnEw15qHZ6R+Cm+9CyByM1Pz0RCSpptubSsROzHsqe4dSbiwLxSTz0nALA4eTbi0kfwPmu0qJO7Zm5YPNpbSHyGvTDBYpKdcX1BMjYYnRabkJKGFThlXaEk9q+nw2gvTnPiQHRuNK7E8ZYWJjTi7zRS+ZakGJhXaqiztaougkGsEHodrse6vz/h6ZlCcYUl2OuvAPznRLVXRQGbNcSwEiZYLOaG0t1YNVN+au0NpcI3faV1rUKpw5DqyNqDWKGZWLUbmDSu9UveI7qmN2sdMpOzHhFBoiRMlBjdVm6fgrWFvsbt7drq5XCveF6sKIkWM07aJEmgE75rNGbKzGB4ASZYbEAsSuQgYmVB355Y09bxjckrkGzInE5N70vPAtph40asLKOrtqiKFi8lwxs9aRx2UN+H5D3iWlmsxogfFT2EQ1vO1JzIlSLeioeFzD6Tcs+6Gl61psjRXiy2DPthgsVipCwmRMCsmjlIVsyQt5/JJyMxB61ZiWkWnZQ+XjCZ24MNtZgsemKvOI3R4S2zw2LiOhH7tAD6UxMoiQwtnWGwdfBKLE6ejXxYm1COwQgW2CwhB1g1cxAvZJSGgOiGl2Qmjlx5AJErDwjWI8usFivMXHxuiAVQ7ui8ZF2xCiIurLwPpIQGWdZQkMMfT+6YemYI0ZYRMw6yxNnWayxOno15M52JxCwFiz/DcBsmWCwgtj4csfXhmtfbODmFXya2uNRVr0N+eib/IRCRsmnlMXyFGHyFGOtOoI389EzNHYRWEy/dyAVjg6ckTPR0puJ4K06hpYy+9KwAS4hXxGu2v0J1SIiUlRYpRuIOkX3Rviti8UKLIhJt2i7iCkv4T356JvYm15q2Fml5bsXHJZ9sf4XhoR2v3E8YpG6dIs8Dm07vPZhgsYCj8S04Gt+ieT2yrpSDrtJDciqjD/omb8cVGd3QN3m7uULLoLVB1NoA0Z2NXMdDhIyZzMt2oVQfZh1unUDr9Qz2eDtaOxcjHb6caPGlZ1luaaOFgtMJBN06rmNozDFl17kv/mKl5ftsbzAfFpPc/XklYqKi1FdsgzSsRKioPRh7k6k3gurW/53wW3HSP4N0lno7diMCRzyVmV6+vm2K8HoIr4u4U5q7/wiw/wjmQN2Jk2B0FpDdSPmYBCMNooSNc/yVtk6nLU+dimz/OadeoykxaKtjQ0GOIyJB1kqi8djBGP0awDmxIiNcxE7VJL6N2WsSKs+YF2CCxWHEN784RkrIvdXYiDhLs1TWZvEyejn9v1IQNvHybPJPemZrI6/QMfrSs2SDAo6eNI4XScR3Riohop242ZDaPXPEytkpdBA5o0gFmBQInbwCwOZhJgZ4sSIWI2SGmFi0mIWJFetggsVlvDLLh34LCMZ4DVLWGfEyKesKWZbtr+BN/VZGNFVs8PIewRDyOz8NeTv1vxBxNFMzY+z8tjZfZ7ens4rv47jCEkPnPDCvVNYZVy5uD5lltiM+SdBprYH8lOhgiAzr5dlxZvFSNGNGIEywMADAkw6XZlAaXiK/0QLme8qZUi0Mu1R4eyeSB8bWn/u/PHWq4LsU4jLRcUm0vPXZdR+42SkbfdvdUzxT1rpCC0fx/tfI7G9NcaGkaBlSXxsUoiUUsLuOQ6Ed9RrM6ZbRLrDSoVdqFlcw4baJ2uudMS1WlaLe0oJQy2wmMXJB49y+Pmr40rOCcsafkzCxYg/MwsLwBHGFJefC45tAarhH/L/ksUXWCj3J7pywrphlSlVZUDaiXoi4LCVWplSVISElDUdtsIaMyStAUXGhZwWx3uFIr56HVqSGFZWueTA+Z8ECs7Awgg5alBBHWqMWlA9TB3n+jd8swSpW3EIuhsuUqjL+U+SvxJylBQJriJVWB6dTcehFS3TiYLZCEqSeGyULGHvO7IVZWBieQUl0yFlL1GYGmUGLlSUYrCsJKWmt03wZmpiztABHRW/RRf5KWUfT9porR2p6M18PQf4SoOaULuVnxMSK/TDBwggK5IZ61H6T2g/tbJufnqkoOvQMDXkNUu49rCHVjTiui1b0xiiRc74FvD9jKNtfAZ9I2JGO3svlVoIXHTqfGa+JlZ2vLkXXcPXo63Icb2kNbjpy5EiEh4cjNzcXubm5VhXPMEywMAyjNparFb3Tc8WiQw9iQeNLz1KdbROMELHidkMqd/xQtEjM3X8EC/r2tGx/wTBjiJTtnOhv8XR5pTAS2E18jkEbTE+FjRs3IibG+jQwRmGChaGZgE6Gil1iBhIxVM8brRWzfuIKSwJyQB2Nb9GUF8rLeEWstAeI30pRQU7rsFtbaP1Q7LzkoEV/exArQOBQcLa/jA8gySLb2gcTLAwAgcHiaHFCHs5yG49v1WwQuQi34mU04oBgsSaimboJLVSMBkhj6EPcMTUU5Oh2vlUaFgomK0uwIBAUBoMIiqEFTGx9axuiN+4RQx0mWNohUlaRKVVlARaUYHAoNYNWS4qcH0uRvzKgwXO7Dn3pWZhY/LJsOoBggjX0rTQU5AT4ijCMY+aeyk/P1PziRp59Yn1pOnkSBeUfGz42gwmWkEdrhxlq4kRtyOjD1EEYiEDrihxanW8DhmE0vMFZIXKmVJVhR/HLGF38MgDvBx/TgpUh4J0eprHS+XZMXgHWFOTYmswxlLFK+Ko56DPshwmWIKO9TqE0g9RQEAkWp5QjRg2rOkElkSN1raVC7vvSs3ixEkpYVcdOihUjw0JqjGGJEQ1hJt+WGCZW3IcJliCD+JqEmmgJBouAVCZXu5PASTrOti2j74HRFkQJ9iLZEtmw26szsdd9WbyKm21LsIZE8CpMsAQhoSZW7EbsdLv+/dUC/xW5pHZeh3TccYUlQWddkXPwDiW0WIe8HtE2WDEaT0UOqfQdajCxYj0sNH8Q017fNO3E6PCQm0hZV4IuOd2g2nOfEEHOGjImr4D/aGVNcSGzrmjAl55lS7vI6t4bMAtLEKPlzZSofDb+2sr691dLLt9TPBMD80oVrS1Sb0zi6eBeQWm4ykjAPy+eo5chM3vgrzRtRVlTXNg2TZ11mnJYbVGhMeJsy6wr9sAsLEHO/pqhssnaaOjEbe0d8XRmIlaM4qY1w0jeJPa26BxWDfmwayaP3WKavex5ByZYPEKRv9LQg9c3eTvqqtfZUCJnIDNcnEBuqrNesbL6whcE31lnYo4ifyWwO0nz+sHi89JQkIMd8drPS46gG94LIYLlXmsvsCEhl0hISeOFRrDP+jFjtUlIScMC2BcnY2LVbl6omGn4yTkSsSKeseFGOPa4whIgRGcHhRI74pMwpN6Yb86a4kIAgWkrgrm9sBo7h2WNxkRi2AMTLEGElzMHG20w6gD4+uqzsMiJAylBsh5AHPU922T+o3G7Hm/9Z5fQquLEFGc9WJXqwFF2J2l2uvWq75DVjMkr4EULQ572cj+0d5hg8QBa35a8KlbMkJCShjk6LRNisaJkOZEargnFehSj29ozqFbXsIxteKEMFOJnU2+naEcQOQajvcIEi4vQw0LtlTlLrXFKlOug7bB6yAlML73l6R6i8phQ0IIV9a13xpSRYzYU5AAmnG+lrCzBPoxsB/npmZbmnzLiiN8eXobchAkWl3BKqDAPd+spkog0S/CSaGFII7huHnGYNuLnwiLfBpLtr2idTg7nkhwSmFixHzZLiMEwCJnZVeSvFMx0yk/PZG+/DhEswy1qfihqYkVqenRDQY5jM+yCiWx/BbL9FchPz0RcYYnue4TFXfEuzMLC4BFHeQ3WkPVu0CCRTdfumUNK+w6G3Ew0Roc4gjHXkFJmZr1I3XeMcxALlI8SLcH2bDDOwQSLB1Cb/UPUPlPxwUVsfTiyLR5X18KHqYNcmWbdXjA67EesLFbmD2IRcLVBD535RBYX+jmJKyxBuSiwJMM7MMHiErTDrZoQcUqoMIuKOaSsBOWpUxFbD8TmlfLX0UoBs/791XwuIZJ2IE5pA6qs7ZVgdViVcr5tKMhBEVhcFj2I/X5oAUN+Y75/3oQJFpew0+nWjdlHRhvMUOs4lTpD0ghm+8vgs8gC0lCQI8iPRBpcJ+u1PToau3XOLC6L9SiFPpASLlOqygTLmeVbyB//+EfMnTsXv/nNb/Diiy9aum8mWEIQIlZ86VmI1ZkS3So0v6FY0Oh7beiDiBa5Ro+2ugCtDZ7Rzi8/PRM+uJ8egIg0LechN1ylNPtKDi3DpXo7eRLNmA8SaDFW+rAAwOLk2chH6GS5dhOpmVf0vVWeOtWwWFn8xUrzBfQ4GzduxOuvv45LL73Ulv2zWUIO46RXf7a/QpD0UCoBIvl/yuheht4U2NuFNHTHrVZH5alTDc8s8pplQ8s5WCkw22NCTyJ24gpLkJ+eib3JTKxYhZJYId+NJJL12nNqB8ePH8ddd92FP//5zzjvvPNsOQYTLA7gS8/ihYobb8JSiRXpB25KVRnw+hLB8vbYEdjJnuKZqo7VRLjoxU0Lk9O+E/SzJCf+6TIZsWSM2/W4bdYVgplhnTXFhchPz3TdqsYIfZqamgSf5uZm2XVzc3ORmZmJ8ePH21YeNiRkksVfrMTvMiYrruN2w7JoVqFhnxaxOZShHbF5uchfKRgCk4r3UJ46FQNFJmctb2ehHkSM+GXR56jlfOWEgRccb/UMDe2IT+LPd7REuel7RG/0Xoa9uGFduS+/I8KjjM92ajkZBswG+vXrJ1g+b948zJ8/P2D9ZcuWYfPmzdi4caPhY2qBCRaTPHxthttFUMWt8P9H41sQ246nCNIxMqT8NoiAUZqdVZ46Ffn0+grH8oVQR5WQksb/X9bUGXXVn7fLVBY74ltTJshd1/Yw1MBwj3379iEmJob/HhERIbnOb37zG6xatQqRkZG2locJlnaAuKHX2vCTxjCusARz9x/BgvgWwe9KnaN4+KPVATh4xYvRuCa8Iynk8xrRAfvkrC5ahue0BhELtkzOV9UJxQotZqTua196FuI0TB03YmWxWiAQQUIYUl8rtKZgi+5js2ByDKuIiYkRCBYpvvnmGxw5cgSXXXYZv6ylpQVffPEFXnnlFTQ3NyM83Jq2nwmWdoaet1QydbOhIAdzADS0LSedN52zQ63hp8UNPbPDjuSEdmCFn4iWqbDE6mIkPDiNksDK9ldYUu92Dan40rOwoO1/KZErd//WVa9rvb/9FUFheSBDN+LhPCJSiI+O12bBMRg048aNw7Zt2wTLsrOzcdFFF+HJJ5+0TKwATLC0O/hG3YRpnTSgdEO6o/hl/v8PUwcBkB9Lb4/OvKRT0hq/Q8twkRg66qmSKPGyhYVM05aCWFaU7l3yW356Jr++FRnBrRRAWnPbMKES/Hj5WbOKbt26YejQoYJl0dHRiI+PD1huFiZYLMSpMXa9xxGva3cZJ1btbv1n0jjskPj9w9RBmFi1G0PyHpF9S7c7nH2cBRld9UD7mOgJOraneGZruPA2Z9yj8S3n8qOI3sDF4jAYA7rJOQ+Lh36WRCVi9slDkvsg6/LbmLAE2SFUBPeczGwfsx2dVLmZM67zWGXNZLTCpjVbAJk27KRDID2Or7TMixBBoxSTRmu2VSPZeknDTY7hFHR2XaPHja0P56dAk3NQqqNgyWZM0NqhSokV8vztrxmKhJQ07K8Zyv9Po/U5sV2sKGCHsGAWG3cItmfQCj777DPLo9wCTLBYwh3JT+KO5CcdO15d9Tp+aEe8PNSwQ1iILRRONih6RUtcYYmsszIRLrH14bIdnN1v1ESsS8X6MYLewIrkWQDOWR77Jm8HAFyR0Q1XZHTjfyMiJnLlAdPl1INRa57b065DATpuD/nuNMyqZR1hHMdxbhciGGlqakL37t3RWFyEmKgoV8ogNXPCStGipwPih4F0MiTvEUPb0Q2P2Y7AjWETugxKxzfqfKvmJ+TVoSItnTRddvH69H0h7ijIbCsts67M1g8tgrXcn2R9pc7NimvWHoaF3AzSqcRrV6Yj97KL0NjYqDrzxiikXxqyZIjJOCwt2DF7h61lNQKzsDjE+tQRsh+j0FYW+k3TCG68eZiBWF4A8EMieoeO3Dxn+thK5TY6zKckcrwqViQZVCv8K4O4kyKzb+jP0fgW/q8TNBTkaBbTTvpShTqSQuXB2a0fF7n78yB67jwKEyxBhrizscqiQj/kvvQs3Z0amRlkJ+WpU1Hkrwx4i6Y7KZKTh3zE5njyvchfyXdqbowxNxTk8HXcUJDD54URY+b6hkRk4t1Jwr8y0AJFaR36frEaWjQbFQZOiOhgezmxhNeX8OlHGMELEyweQI84sHNcm3RwXjOlEnodrscdyU/KdgZSDTEtYmhhQupR7LjqtHjxpWexvDAW4YU6NGPBUNvWqme/vVhZpNqDkBDx7Rg2rdkhlPKGjMkrQFFbQjM38Xp8lMO94pGEev478UWgg60podSh0Q2cXv8DM7CopOfQe//HFZYIYrY0FOQgTiUxoh1YOUXeC6IrVGAxoEIPJlhsRqv1ZExeAVC1RX3FEENP0r6RK6oF3/cUz0QRwAdXK6JC3BP0dIJyHY6U1cVKIVPkr+SdIenOj5SdOIqGOlpC5Ss9T3LXyS6rGYkmbOW9oPY8WBFbx+0XIwbDKEyw2ICRBmVNcaFkFlY70ZqjxquIG2+pqLDl0P5WJdcZ0B0SP8ui7VpZHeCO76wsvheCIZuz2Y5USZxYfe5Gc0up4YTFzQuZqr2GV2cWMYS46sMyf/58hIWFCT4XXXSR7PrXXXddwPphYWHIzDz38JWVleHGG29EfHw8wsLCsHXr1oD9nDp1Crm5uYiPj0fXrl1x66234vDhw4bOYfEXKy2PReEUSh25Vxu0Yyvse2MGwPu7yEGcZcmHduYVO/vqKScdn0WMWesKKWew3Z9akEoTAQg7HiuFhRMRktWukRXPpt33gZoDtNew0xmbYR2uW1guueQSfPLJJ/z3jh3li1RWVobTp0/z3+vr65Gamopp06bxy06cOIGrr74at99+Ox544AHJ/eTl5aGyshLLly9H9+7d8dBDD2Hq1KlYs2aNBWekjzXFhY4fM1ipTYsH0v7Ffy9PnWpbng69pveGghwUQRhFF4AllhgiLNvDsJARpOqVrm86x5IW5K67XVaVUCMYrHmM4MR1wdKxY0ckJCRoWjcuLk7wfdmyZejSpYtAsNxzzz0AgL1790ruo7GxEaWlpfj73/+O9PR0AIDP58OQIUOwfv16jB492sBZGIOJFWMm8Gx/Bd9560kOqBcj/gJEuND7ABAwjESvryVoGMCEixhxnhbZ4aAfFwNQnhathtNixYlO365jGN0nEzoMNVwXLLt27ULv3r0RGRmJtLQ0LFiwAElJ2hqX0tJSTJ8+HdHR0ZqP98033+DMmTMYP348v+yiiy5CUlIS1q1bJytYmpub0dzczH9vamrSfEwCmSkkJ1SkOkerh2bEjcLqC1/AuF2PW7JvktRQDxOrdsNXqN5QtQZQO40lUYlAnYlC6iTfpIVEUvC0LctPz2wVMTobaamhPCkRM6WqzFASPa1ReN2GPjel4Tdf/4eRvVt/R0iLFKctK074shBx7eTwL3mOpI4pjgUlXsZguOrDMmrUKLzxxhv46KOPsGTJEtTU1OCaa67BsWPHVLfdsGEDtm/fjv/5n//Rdcy6ujp07twZsbGxguW9evVCXZ18T7hgwQJ0796d//Tr10/XcQHw05rH5BXITnEe/qAwv7HVHYa4AbBKrDjBkqhEV45LRJ7VDTvtC6N3vH/1hS8Ivk+pKrPFgVrNp8fK45jZNttfISkqjCbH9KoPl9U4GXeIfo7U7ndxvi+3EfspelnIhzKuCpYJEyZg2rRpuPTSS5GRkYEPP/wQR48exbvvvqu6bWlpKYYNG4Yrr7zSgZICc+fORWNjI//Zt2+fLcfZ+vqQgGXs4TCOFZ24OGGhOAidFeh9g5cTmrRwsbKxd0q4mEW1HlVC/APnYvKEur9KXGEJni71bigFMmXcK6JFjFjArL7wBc+WNVRwfUiIJjY2FikpKfjhhx8U1ztx4gSWLVuGZ555RvcxEhIScPr0aRw9elRgZTl8+LCiL01ERAQiIiJ0H88qyFREu6ckmhVH9LAQHa5faahIyfydkJKGBX17os5F0zCdMI7UP+2TQvCSsKSFWpHCesFEkb8yYEg1rrAERaK0C1Ycxy5nbr3lkHvWrYjHku2vQHayqV3oPp44c7J4GIisQ1ti3B4W0lrPrS+bQud7hrV4KjT/8ePHsXv3biQmKpv+ly9fjubmZtx99926j3H55ZejU6dOWL16Nb9s586dqK2tRVqasURzTmKXWLHKzEkLk4lVu/mPEotmCX166HLUVa/D3P1HkJCShrUJY02XTy90g0nKJR7Koa0vXiSusASLk2c7Yv4XX0urkfL/kptCHuDMPKj2XE4iGUtLML0he/V+U0IpnxOdE4zGSy8CDHdx1cLy+OOPY9KkSejfvz8OHjyIefPmITw8HDNmzAAA3HvvvejTpw8WLFgg2K60tBSTJ09GfHx8wD4bGhpQW1uLgwcPAmgVI0CrZSUhIQHdu3fHzJkz8dhjjyEuLg4xMTF4+OGHkZaW5ugMIS9gR0MgdryVcsRd/36rWCQNkzjBH21JSkhJsyzBox5opz+leiLDBlIzg+yoXyNvnPybtL/WtoB3hAV9e6JB4XeznSzx/doRb2DWD51AkfpfUBce6hy1TMc2Ymnxytu/UhlI9GcgeIUZw3pctbDs378fM2bMwODBg3H77bcjPj4e69evR48ePQAAtbW1OHTokGCbnTt34quvvsLMmYFh2AHgvffew4gRI/hgctOnT8eIESOwdOlSfp3i4mLcfPPNuPXWW3HttdciISEBZWXBG/HVyxCxsv791fxHS5Am0ki5IVYAc4GkiOXFjobWqoYw21+BxcmzLdmX0xAri3gGj1EB5kVfFT2iQs995hWxogSzqDDkcNXCsmzZMsXfP/vss4BlgwcPBsdxstvcf//9uP/++xX3GxkZiVdffRWvvvqqlmLaQnuIwUL7sKAt3ojXG0sxRqYFA+f8cuy0tphlb3ItkJxpKsiaLcg5xvrlnxujOYOMXl87cTpjuNfgBZjb96EJWPoDe/CU022o0x5ESlxhCTBpHNa/vxr54gbHZAPkRsA0cXAyJcTBxYhIiSssQb4NZbMKgQOxA8HK5OJw8Kj4mYgxKlQaCnI8JVZ4QW/gGoiHhsQvB/xQYhCLAAaDCZZ2jB3RO7P9FUDeIxjSDhtGubp0IghYsCA1u0oLRX/exv9PBIqaUFGy5nltGMgK6yMd30S8Ly9ZNsWOzV4qW6iwPvEmxEQbn9XadKIZ3bEDI0eORHh4OHJzc5Gbm2thCY3hqVlCDGWsClpEgo6ZbbTJ7Aw66Z9X2FM8E3uKpf2c9OLlZHNem9WiLWKxfvIfGKb5GHLr+NKzPBf0izw/VvomKe2LtlJ6IcVDMIiV9jxEt3HjRnz33XeeECsAEyxBi95Gl17fbHRbupGl8/q4BS1MiFAZmFdqaZ4hvdmXpbCjoxTHtggWaOEiVX5BXe0OnBGkND1WDq9ZVQB3Ouzy1KmuPrPBmBm5PYsWL8EEi0ew2zohtX+9x6SFyv6aofxn5Ipqq4ppGCstKlKQRtZsw2WHuPBK46+1bohYSUhJk52mnZ+e2SpUKLEiZ8XTIl68ZFUhONkJSokUO1I56MEr960aZmYLMqyF+bA4gJaZIk7d3HrimpBy768ZCgDYWB/O/0/TN3m7dQVUQC5bsZ0Zm8WIsy7rfWsPlkZaDuInIT5vrT4YK6JOCZzPGwBtCfgkrCxSBEvQMS/MmCtPneq6aAkW9DjfM+yDWVgsIlhMhkSsKPkS0G+yvFiZnCKwpPRN3s5/vIydpm+3Oxy3kLI0aRVuTs2UI/4qjHNozfLNYHgVZmGxCKUGOxgaTrk3XCJINiLF8+LEDUjH7UX/CDshliYv3tvtIXGhXpglhREKMMHSDilPnYq6tgYsPz2zzRel9Tc5UeKlBo841UqRiNYTGV3lTBZa3soiM1QS6sj5Ronf3Ml1sdrCIlnnHhRRYtya6k4/x2xIiBFsMMESgqhFWaQbKeIEekPp7qCxoOSnZwIebGiz/RXwUUMlUn4e7TVw1yG0pgUWC809xTM9NR2+PcHECiPYYD4sQQjxMZHzQ9HTAZDZFcEiVrwOPWNF7OfRnnxeplSV4Wh8C6ZUlSl2jHSws/aGXckx6QzijFbKU6diWORrbheDYRJmYQkiiBAh5vayw/VuFoehAvHz4DuPdiRYAKFAk5vhxbCe9iSMtTJyRTX+H17DfrROIPj9zvHYdurXuvZhR2Rwhj6YYPE4tEgpF/12uFc8UOd8mbyM+K3VC8MNbnUgcjFOQvW4DHfFSpG/0hPTtaUgIuX/7XhNIF7o3wHlYTLxCwgTL87DBIuHIA+7IHy2aB0lh1OGNwSKV3Cr41A6rlSHYKacrNMwjxUC05eehTgPD0NNqSrDFPwaSN4uCNUgRosjMqkrFpfFeZgPi0fIT89EbH24QKxIRW5lYoXBYFiJ1cLW6/4zfZO3Y9XMQW4Xg2EAZmHxAGPyClDeNosCCMyNw0SKM7ChDEZ7xKrpzcTaFQxBNKWeczbN2/swC4sHUIpNwcSKc4SyWPH6W68RvBi0LpjwpWfZ4gQdrMN0esSK1nuP3aPWwgSLB2EihWE1XhVjUkJKPF2/yF+JhJQ0JKSkochfyX8Y5oitD+f/Z7O37IPdq9bBhoQ8QFxhCWBghjIzXzKCHSkhJZWcc87SAieKwzAICZpIrCv08KpUhx3MzvG+9Czd0ZR96Vm4tXKZTSVqPzALiwcQN9rEb2VgXin2FM+UdL51ExaYimEWqXuItpwMqNGWnZlhDVa//DQU5CgmoAxmK1mwDnmFAszC4gHKU6cKRAkZEiLLvDREVOSv5N8uSBh6rw43MLwL3+jLvGnvTa51sDQMq6CDq2np2EPN+iJHQ0EOkJbudjGCHiZYPIJUjhUpoeLWMJBUw0IapCLAswGjGM4jFbxPKtiWUm6lYH371ota3i+78KVnIbbe2vYk21/RGo/FZERYt+pEK0bP7+2xmQDyrS9QO4IJFo8iFitu+qto6TwaCnKYxaWdI5etmrbKyUHfY+1FrLiNXW1KqA+ZBKTckCHU68ENmGDxKF5wqNXbcfAOd8zaEvJIihOd94uSUybDXqx8PgXXrx1dS9U6FFmJmj6vRK6N5XGTBQsWoKysDN9//z2ioqJw1VVXYeHChRg8eLClx2FOty4jNn2SDLdewEwAKOaUG3oQR9kifyV7e7QQpwWblc8me84ZAPD5558jNzcX69evx6pVq3DmzBnceOONOHHihKXHYRYWlynyV2KgRyMsiqcqaqWhICcool16ES9G2+WtKe3o7TmUsfL+YsKVAQAfffSR4Psbb7yBnj174ptvvsG1115r2XGYYDHJw9dmICYqynAGz7jCEkzxe0+sEMyIFuaMqx8360r2HrZJqMj5vDCCh/z0TFssRHbs08uOvF6lqalJ8D0iIgIRERGq2zU2NgIA4uLiLC0PEywWQBr6UE0/blS0AG11wBoKTbhtXQmV+zVYcfv6hzpen31kJe93/TW6RHczvP0vYccAFKNfv36C5fPmzcP8+fMVtz179iweffRRjBkzBkOHDjVcBimYYLEAcSPDf6ceDnqslx4yCZYGKttfYTidOmuItUHqyIn6EohshusU+SsR1+YjxK6JfbQn0WIF+/btQ0xMDP9di3UlNzcX27dvx1dffWV5eZhgcQi6EWpv03/JlOf2cr5msbOeAvxR2hpvX3oW4hwcomE+Tgw3YGJFHzExMQLBosZDDz2EDz74AF988QX69u1reXnYLCEXyPZXBGXnzTqZ4EcsSGhLS7a/wtFrHIzPgN0EY50wEcDgOA4PPfQQysvL4ff7kZycbMtxmIWFoRkzw0LECVeqcdPiYMcaRWsQR+mkrV9kOMLoNdZThmx/BYu/IiIYxYpXYe2Fs+Tm5uLvf/87Kioq0K1bN9TV1QEAunfvjqioKMuOwwQLQxdmw24bdUhmY8/2IR6yM3uNrcALZWBoJ5Sul1YhzdqjcyxZsgQAcN111wmW+3w+3H///ZYdhw0JMYIG9kZuHrW3eK8EAguVzk8P4rongfq8ck2UCBXrkJ42JpgzTlsNx3GSHyvFCgCEcRzHWbrHdkJTUxO6d++OxuIixFho8goG3I6fwd5szCHXyOZTDriAfaKBHEdLY0+GjwbUJGHezBHtUsgQguG+90oHrqeurCqz2jGbTp5E97x8NDY26nJk1QPpl97+ZJe5ac0njuHu8RfaWlYjMAsLwxXMOHd6pVEMNeg3ea+8MZNy7E2uVS1Tfnqm5MduR2Kyf3I8K5hYtdvwtuQ6BoNlJpRgFhf7YT4sDN1Y4ZjZUJBjOEpmXGEJitq2Z+hHzt9A7IBrR4Rbs9dMbXup+ykfMBz4UAtkv1Z2Vh+mDuKvEy+4tIjIQbXnrh+cj7fjNV+WchfSnpD7gLVP1sMEC8M1jHaKXmoQQxUz0Y2dQOuwFek0nJj9JAVt3ZHLTk3WIedCb6PVOiQOOEeLFidxq57lcDNHG5soYD1MsDBcg7w9erVTDGXUrCx2YEXjzXf2HjS9iy0i2f4KgJouTgREPrUNLSqIv44P+i0igvUH1QK7kwS/O2lpcfqZHv7gDmx9fYhjx9MDEy3WwpxuDdKenW4JVpjAxW+XemGNgX60OE3Tb/ZmOh9x8ku689ZqHTFzn9H3h9p+lBJ1FvkrA6wdXvHzIfjSs5D94+JzC9pEi5SlxYmyG7luE6t248PUQZK/6REmWtsFJ31Oon5bhNzLLmJOtyZgFhaGYax4kyJvpMzS4ixa6tuKYQW5jtFpsSL1PQCJstLHDwh25zGx3FrXSa0WFgVi68Nd8e2gMeK/5lUrilZ+fvYRt4sQ9DALi0HssrDQb6Bee4OTwu0pzgCzshhBiw8I6VSMiEml5J5KxzYrVJTuBTumaytZZdyAbzdEw0JSwjO2PtxW0aLUNhh1uNeDlnbBSQvLqTNnUFD+MbOwmIBZWDwELVK81Agqke2vABxofBjWosV6YtQpWi0TuVQ2czNoFax8NmyLhru8ikC0tJH942JgdxJ86VmIrQ/H0fgW28uh5oArJ4TJlO4PUwcJ/mcwWBwWDxEsIsUuWHJFZ9GS7DA/PVNXp04sDmbuZT3iV0qsrL7wBcVtSPmcTvaoFStm9/jSs+Dr/7BwYZuAIWJl5Ipqz8VqoePPmIlFowX2khV8sCEhgzCn23PQjZ4bb6xsSMgcZodK1CwqRqA7E6evLxnK0DIU5rUhIeDc9byhdDdWzRwkdMQFeEvLDaXnBMGqmYMsPw+14WI5h3taqBi1rHhtOAhgQ0JWwCwsDMtw642VvSmZg056qBcrLCpS0JFqnSbbX4H89Ez+fqY/wUBsfThi68OxcXIKbijd3WppEU1zFl+v2PpwJ4uoCaNiZUxegWqbwNqM4IQJFoZpxB0WEy3BhxHR4kXrgtXQw0dSgtzL5z9yRbUt62pFrW7krC8fpg7SLVbG5BXwH/KdEXqwISGDsCEhZdyaPcSGh4yj5M9AT+nNT88Mmlls7RW5a8kPD0kMC22cnGL5rCGldkDOoVYpFgtBiyAZXbVF9jc3XnDYkJB5mIWFYQtWDA8Fiwk+1CHChB6iYWLFOayIhSM1bJftr8CqmfbOvtFyn0ys2q3Zb4W2ojDaH2xaM8M2yJRno9YWI9uwUNjGcCpTs9ybLbtm8hi5HnLbkJlD2bsrziVKnNl67WPrW5MFHo1vsfQeoJ2X5Wb+kCnMYrHCxAmDhllYGI7gpLXEa1M1gwU7nGcZHqdNtNBY7YBLW1uVrCfkN7E/CoNBYIKFYSurL3zB8ZgXoRgMLJiQE4xMSHoHqWtBHG+dCConh9dEChNP3oINCTFsZdyux/n/s/0V8DmUM4gNDWnDjIiQdVz0V8LXDmYQOYlUXRuZpSWIcLy7Le/QoFpk/7gYvpkPA7BHrNBRb4klRRwkzslotuLUAHKCZEd8EobUK+dmYjgHEywMBkM3amH7GwpyUATmm2IGtZksDQU5ptIbCLI7704C+hvelW7kfFnWFBc6Ys1YnzoCY1JHqK5Hi5UxeQVYU1xoZ7EsY+4HW9Ahoovh7c82/wIAGDlyJMLDw5Gbm4vc3FyrimcYJlgYjmLWEVcLrJO0BnGHSTqSHfGtQcj0JkVkQ3XaMZrHSQt8TqX0LEFAObstYvT9QucJIjhtZWGos3HjRk9Na2aCheEKaonRjBJXWAKwoQhNiIeD1EQkebukhyLsuIYMZ/DCkB0TKAw9MKdbhmtY6YRLYoR4oREOVtQsIMTCQtbzpWdpvoZKvjIs3k77QMrxnlhZ7E50aBXM+dZdmGBhuIZRcZGfnom4whJX880EO8SaQn+UkGqo9Vw/pf0/XSofkbS9orVug23mFX1eUhFuJ1btdsRPhAxrMoILJlgYrhBsDW17RGpKp5E3TLVrvTeZzcJoT9BWFrFocWqIiFligxPmw8JwBTMZgsECnJlGiwOs0owNPbmE7PJXYoRmxxtXWIIdgKnpxGuKCzGaWV5DDiZYGK4Sig2u11GbgaLFikKm1JqNrRPqTtJ2J4ks8lcGXdZsKQE7JO+R1r8AigpyEFdYonuKc7BMOWYYx9Uhofnz5yMsLEzwueiii2TXv+666wLWDwsLQ2bmOSXNcRx+//vfIzExEVFRURg/fjx27dol2M/mzZtxww03IDY2FvHx8cjJycHx48dtO08Gw0uodW5qDT8ZJiryV2oa2lNaJ1T9V3zpWfx5Gxn+1LPNkPraoBtijSssEfihidEqgNcUF/IfMWpxbJSyOSsdi+EerltYLrnkEnzyySf8944d5YtUVlaG06dP89/r6+uRmpqKadOm8cuef/55vPzyy/jrX/+K5ORkPPXUU8jIyMB3332HyMhIHDx4EOPHj8cdd9yBV155BU1NTXj00Udx//3345///Kc9J8lgeAypGCpGZ0DIWVlIRyTX+eSnZyIf9vqvkI7caQsEiShr9Lh6h9GG1NdivUIgNOJkarZcVkEfX0lYrCkuRL6JuE1KEa9JPaxPHcGESJDgumDp2LEjEhISNK0bFxcn+L5s2TJ06dKFFywcx+HFF19EQUEBsrJaG6o333wTvXr1wooVKzB9+nR88MEH6NSpE1599VV06NBqYFq6dCkuvfRS/PDDD7jgggssPDsGw5tYkSZhTF4B1qhEW7UzAJpW3OiczVo87Ko3ImrE5XOjjtQsIIL1TNSFWpoOJlaCB9dnCe3atQu9e/fGwIEDcdddd6G2VvsbV2lpKaZPn47o6GgAQE1NDerq6jB+/Hh+ne7du2PUqFFYt24dAKC5uRmdO3fmxQoAREVFAQC++uor2WM1NzejqalJ8GEwghkrOyknk1tqxc1hEq9lvqYdWIfU1wo+gHAIywm0ihU78dL1YWjDVcEyatQovPHGG/joo4+wZMkS1NTU4JprrsGxY8dUt92wYQO2b9+O//mf/+GX1dXVAQB69eolWLdXr178b+np6airq8OiRYtw+vRp/Pzzz/jtb38LADh06JDs8RYsWIDu3bvzn379+uk+XwbDa5iNYTMmr8BQR2eHuKF9Rrww7KGGkkiwo+xys25o8bI+dQT/IeWzWsi4IVa0+lsxvI2rgmXChAmYNm0aLr30UmRkZODDDz/E0aNH8e6776puW1paimHDhuHKK6/UdcxLLrkEf/3rX1FUVIQuXbogISEBycnJ6NWrl8DqImbu3LlobGzkP/v27dN1XAajPSAWImpDTlZ2InKdvNPWA3JMp7BrSMNtK4zVuJHLio5lNDr3CcePH2q47sNCExsbi5SUFPzwww+K6504cQLLli3DM888I1hOfGEOHz6MxMREfvnhw4cxfPhw/vudd96JO++8E4cPH0Z0dDTCwsLwpz/9CQMHDpQ9ZkREBCIiIgycFYPhbfLTM1HkrzScKVcwxbmtQ1Oarkym4RJHSp9N03K93LlqsQDpTS5pJ+tTR/DChfjB0I68WnF7KEjNn8UoLGS/M7juw0Jz/Phx7N69WyA2pFi+fDmam5tx9913C5YnJycjISEBq1ev5pc1NTXh66+/RlpaWsB+evXqha5du+Kdd95BZGQkbrjhBmtOxON4uSFnuAOxjBh5WydTnIFzb7FKnRiZykzWtapTlpsR5JY/idJz5vXhKi3Q1hcthGK7I44EzbAXVwXL448/js8//xx79+7F2rVrMWXKFISHh2PGjBkAgHvvvRdz584N2K60tBSTJ09GfHy8YHlYWBgeffRRFBYW4r333sO2bdtw7733onfv3pg8eTK/3iuvvILNmzejuroar776Kh566CEsWLAAsbGxdp6uJ5DK0MtgWNWBqr29xhWW2BaKnz4HNwWBlVOpvebIbAavWIsYwYurQ0L79+/HjBkzUF9fjx49euDqq6/G+vXr0aNHDwBAbW1tgF/Jzp078dVXX+Hjjz+W3OcTTzyBEydOICcnB0ePHsXVV1+Njz76CJGRkfw6GzZswLx583D8+HFcdNFFeP3113HPPffYd6IWYYUjodTbZzA4KDoFLeBYnWhnTF4BiooL24aC5M3+TtYpPUSlJCKsvv+zf1wM7BYm15M7vlK5+GVtItDt4ZRQhQyJMryPq4Jl2bJlir9/9tlnAcsGDx4MjuNktwkLC8MzzzwT4N9C8+abb2ouo5ewq7FnHfM57BRwXheGVpi2G9rCqquF23cqPgupb6fqXe0ai3+nRZUSXu1QWc4ehpN4yoeFwXADevqmnUNmXhYrgLL/ipaw5ETwaDlP8fCA1UOT9P7krqsbUXAVLSkyaKkbuRD1dgdFC6UhK4b38dQsIQbDacgbL/2XLBevY2b/ZvfjBEpZcrVaX8bkFQAyOVqIf4uUdaVBJWKuXrT4s1htTStPnQqgBQAC7ietlhQxRkLSGxEtRq1rWp1uvWohYgQXzMLCYGjAaAyKYBErdkO/ict1wE46gNs1VCQnTLx+/dcUF/LTlPVgZBsvwixFwQGzsNhEe/WDCDbourTTGqJ1X3ZfX7n902/ya2DOn0Uq1gVdr3K+K1ZbWZxmSlUZgHOiJdgcuBsKcrBGYrncvbCGOFmrwKwrDKtgFhabCIYGinEOr+V+sRIj/hpmfB/EHZwW60qoYdW95IUcTXL3QpxNAf+CBRZ/JZBXX30VAwYMQGRkJEaNGoUNGzZYun8mWIKMUG0gWDyYVuy4vkacYM1i9K06lOIEERFs5JrS9ecV0aLF8VpMsFhXQrVddZJ33nkHjz32GObNm4fNmzcjNTUVGRkZOHLkiGXHCOOU5ggzZGlqakL37t3RWFyEmLZsz2LUGlv2kAgJNhN6MCC+B9WGg2jMvkGOlnC+1dKB0cNJUuu31zd7ci29YqXSEuLeSsEivh+NWgHlyq23rHqfjxMnTmD8+PFobGxETEyMrm21Qvqlfo++iw4RXQzv52zzL9j34u26yjpq1CiMHDkSr7zySus+zp5Fv3798PDDD/MJhs3CfFgMQnRe06lTsuucPC7MOn33560PxNtjWx+YppMnbSpdcELXF6sb87w9NhNoq9O7P6/E22MzJev14JPZktuvfn6eqYRtr12Zzt/zhFNnzujaLuq3Rfj52UcEvx98MhuvPfVywL5DFdJe3F3ZGrfqbYk6cQMtz6iW660GuQdPnDhhyb6lyv322EycWrlC137E5dG6vhM2grPNv1iyfVNTk2C5XE6906dP45tvvhFEpu/QoQPGjx+PdevWmSqLAI5hiH379nEA2Id92Id92Id9NH/27dtnW7908uRJLiEhwZJydu3aNWDZvHnzJI974MABDgC3du1awfI5c+ZwV155pWXnxywsBunduzf27duHbt26ISwszLVyNDU1oV+/fti3b59tZsZQhNWbflidGYPVm35Csc44jsOxY8fQu3dv244RGRmJmpoanD592vS+OI4L6NukrCtOwgSLQTp06IC+ffu6XQyemJiYkHmwnYTVm35YnRmD1Zt+Qq3OunfvbvsxIiMjBbnznOD8889HeHg4Dh8+LFh++PBhJCQkWHYcNkuIwWAwGAyGYTp37ozLL78cq1ev5pedPXsWq1evRlpammXHYRYWBoPBYDAYpnjsscdw33334YorrsCVV16JF198ESdOnEB2trRTvxGYYAlyIiIiMG/ePNfHFoMNVm/6YXVmDFZv+mF1Fnzccccd+Omnn/D73/8edXV1GD58OD766CP06tXLsmOwOCwMBoPBYDA8D/NhYTAYDAaD4XmYYGEwGAwGg+F5mGBhMBgMBoPheZhgYTAYDAaD4XmYYHGQP/7xjwgLC8Ojjz7KL7vuuusQFhYm+MyaNUuw3SOPPILLL78cERERGD58uOS+v/32W1xzzTWIjIxEv3798Pzzzwess3z5clx00UWIjIzEsGHD8OGHHwp+5zgOv//975GYmIioqCiMHz8eu3btMn3eZjFSb1VVVZgxYwb69euHqKgoDBkyBC+99FLAvj/77DNcdtlliIiIwAUXXIA33ngjYB21lOmnTp1Cbm4u4uPj0bVrV9x6660BAZScxkid1dfX46abbkLv3r0RERGBfv364aGHHgrIJxKqdQYYf0YJ9fX16Nu3L8LCwnD06FHBb6Fab0brTPx7WFgYli1bJlgnVOuMYRDLgvwzFNmwYQM3YMAA7tJLL+V+85vf8MvHjh3LPfDAA9yhQ4f4T2Njo2Dbhx9+mHvllVe4e+65h0tNTQ3Yd2NjI9erVy/urrvu4rZv38794x//4KKiorjXX3+dX2fNmjVceHg49/zzz3PfffcdV1BQwHXq1Inbtm0bv84f//hHrnv37tyKFSu4qqoq7pZbbuGSk5O5kydPWl4fWjFab6WlpdwjjzzCffbZZ9zu3bu5t956i4uKiuIWL17Mr7Nnzx6uS5cu3GOPPcZ999133OLFi7nw8HDuo48+4tdZtmwZ17lzZ+4vf/kL9+9//5t74IEHuNjYWO7w4cP8OrNmzeL69evHrV69mtu0aRM3evRo7qqrrrK3YhQwWmcNDQ3ca6+9xm3cuJHbu3cv98knn3CDBw/mZsyYwa8TqnXGceaeUUJWVhY3YcIEDgD3888/88tDtd7M1BkAzufzCdah25pQrTOGcZhgcYBjx45xF154Ibdq1Spu7NixAQ82/V2JefPmSQqW1157jTvvvPO45uZmftmTTz7JDR48mP9+++23c5mZmYLtRo0axT344IMcx3Hc2bNnuYSEBG7RokX870ePHuUiIiK4f/zjH5rKZzVW1Rvh17/+NXf99dfz35944gnukksuEaxzxx13cBkZGfz3K6+8ksvNzeW/t7S0cL179+YWLFjAcVxrHXXq1Ilbvnw5v86OHTs4ANy6det0lc8KrK6zl156ievbty//PRTrjOOsqbfXXnuNGzt2LLd69eoAwRKK9Wa2zgBw5eXlsr+HYp0xzMGGhBwgNzcXmZmZGD9+vOTvf/vb33D++edj6NChmDt3Ln75RV9q8HXr1uHaa69F586d+WUZGRnYuXMnfv75Z34d8fEzMjL41N81NTWoq6sTrNO9e3eMGjXK2vTgOrC63hobGxEXF8d/V6sTkjKdXkecMv2bb77BmTNnBOtcdNFFSEpKcqXerKyzgwcPoqysDGPHjuWXhWKdAebr7bvvvsMzzzyDN998Ex06BDaroVhvVtxrubm5OP/883HllVfiL3/5CzgqLFgo1hnDHCzSrc0sW7YMmzdvxsaNGyV/v/POO9G/f3/07t0b3377LZ588kns3LkTZWVlmo9RV1eH5ORkwTISXbCurg7nnXce6urqAiIO9urVC3V1dfx69HZS6ziJ1fW2du1avPPOO6isrOSXydVJU1MTTp48iZ9//hktLS2S63z//ff8Pjp37ozY2NiAdZyuN6vqbMaMGaioqMDJkycxadIk/N///R//W6jVGWC+3pqbmzFjxgwsWrQISUlJ2LNnT8A+Qq3erLjXnnnmGaSnp6NLly74+OOP8etf/xrHjx/HI488AiD06oxhHiZYbGTfvn34zW9+g1WrVslmz8zJyeH/HzZsGBITEzFu3Djs3r0bgwYNcqqonsLqetu+fTuysrIwb9483HjjjbaW3S2srLPi4mLMmzcP1dXVmDt3Lh577DG89tprtp+DG1hRb3PnzsWQIUNw9913O1VsV7HqXnvqqaf4dUaMGIETJ05g0aJFvGBhMMSwISEb+eabb3DkyBFcdtll6NixIzp27IjPP/8cL7/8Mjp27IiWlpaAbUaNGgUA+OGHHzQfJyEhQTKtN/lNaR36d3o7qXWcwsp6++677zBu3Djk5OSgoKBA8JtcncTExCAqKkpTyvSEhAScPn06YEaI0/VmZZ0lJCTgoosuwi233ILXX38dS5YswaFDh/jfQqXOAGvqze/3Y/ny5fz248aNAwCcf/75mDdvHoDQqje72rVRo0Zh//79aG5uBhBadcawBiZYbGTcuHHYtm0btm7dyn+uuOIK3HXXXdi6dSvCw8MDttm6dSsAIDExUfNx0tLS8MUXX+DMmTP8slWrVmHw4ME477zz+HXo1N9kHZL6Ozk5GQkJCYJ1mpqa8PXXX1uaHlwLVtXbv//9b1x//fW477778NxzzwVso1YnWlKmX3755ejUqZNgnZ07d6K2ttbRerPrXjt79iwA8J1IKNUZYE29/etf/0JVVRW/PRlC+/LLL5GbmwsgtOrNrntt69atOO+88/iEh6FUZwyLcNvrt71Be8//8MMP3DPPPMNt2rSJq6mp4SoqKriBAwdy1157rWCbXbt2cVu2bOEefPBBLiUlhduyZQu3ZcsWflbQ0aNHuV69enH33HMPt337dm7ZsmVcly5dAqY1d+zYkXvhhRe4HTt2cPPmzZOc1hwbG8tVVFRw3377LZeVleX6tGaC3nrbtm0b16NHD+7uu+8WTJs8cuQIvw6ZNjlnzhxux44d3Kuvvio5bTIiIoJ74403uO+++47LycnhYmNjubq6On6dWbNmcUlJSZzf7+c2bdrEpaWlcWlpafZXigp666yyspL7y1/+wm3bto2rqanhPvjgA27IkCHcmDFj+HVCvc44ztgzSvPpp5/KTmsO1XrTW2fvvfce9+c//5nbtm0bt2vXLu61117junTpwv3+97/n1wn1OmPohwkWh6Ef7NraWu7aa6/l4uLiuIiICO6CCy7g5syZExCvYOzYsRyAgE9NTQ2/TlVVFXf11VdzERERXJ8+fbg//vGPAcd+9913uZSUFK5z587cJZdcwlVWVgp+P3v2LPfUU09xvXr14iIiIrhx48ZxO3futLwOjKC33ubNmydZZ/379xfs99NPP+WGDx/Ode7cmRs4cCDn8/kCjr148WIuKSmJ69y5M3fllVdy69evF/z+/9u7Y5VGoigAw2ctNJhgsAm+gKSJZAoRrHwE9TW0Ft/AUtJpn9YyaCMiCGnEQlILgqCFDxAQ9G61i7LbRAfmMnxfOUU4HAj5uTNhptNp2tvbS8vLy2lxcTHt7u6ml5eXslcws1l3dnV1lTY3N1O73U6NRiOtrq6mw8PDLz+8KdV7Zyl97zv62f+C5c/1uu5t1p1dXFykoihSq9VKzWYz9fv9dHp6mt7f3798bp13xux+pfTpf2QAABnyDAsAkD3BAgBkT7AAANkTLABA9gQLAJA9wQIAZE+wAADZEywAQPYECwCQPcECAGRPsAA/9vr6GisrK3F0dPT32ng8jvn5+X/euAvwHd4lBJTi/Pw8dnZ2YjweR7fbjaIoYnt7O46Pj6seDagBwQKUZn9/Py4vL2N9fT0mk0nc3t7GwsJC1WMBNSBYgNJMp9Po9Xrx9PQUd3d3sba2VvVIQE14hgUozcPDQzw/P8fHx0c8Pj5WPQ5QI05YgFK8vb3FxsZGFEUR3W43BoNBTCaT6HQ6VY8G1IBgAUpxcHAQZ2dncX9/H61WK7a2tqLdbsdoNKp6NKAG3BICfuz6+joGg0EMh8NYWlqKubm5GA6HcXNzEycnJ1WPB9SAExYAIHtOWACA7AkWACB7ggUAyJ5gAQCyJ1gAgOwJFgAge4IFAMieYAEAsidYAIDsCRYAIHuCBQDInmABALL3G2ziC68aLhp/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8BUlEQVR4nO2df1wVVf7/X4iK+AMIUtAUQxKzNLRSISsNLTMy1LJ0+7Wsn9haqpXI+vpZTDPKygj7abEfln7sD8tdkIq2Mm4/VdJKSVdXTHHRFG0hQE3RcL5/4Bnnzp2ZO79n7r3v5+NxH8rcuTNnzsyc8zrv9/u8TxjHcRwIgiAIgiBcTBenC0AQBEEQBOEPEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwu4dxzz8Wvf/1rp4tBEESQ8+tf/xrnnnuurt861U4dPHgQN910E+Li4hAWFobly5fbXgbCeUiw2Mi6deuwePFitLS0OF0UW9m4cSPuvfdeXHjhhejVqxcSExNx8803o66uTnL/7du349prr0Xv3r0RGxuL22+/HT/++KPXPv/+97/x0EMPYdSoUejTpw/69++PzMxMfP311z7H27FjB/Ly8nDZZZehR48eCAsLw549ezRdw4oVKzBr1iwkJiYiLCxMsdFuaWlBTk4O+vbti169euGqq67Ct99+q+l8paWlGD58OHr06IGhQ4fihRde0HVdv/71rxEWFub3I7wes+tfiXXr1uHyyy9Hz549kZCQgPvvvx9Hjhzx2a+9vR0PP/wwBgwYgMjISIwbNw5r1qzRdC41dQoAP/zwA26++WbExMQgKioKWVlZ2L17t6ZzOc3+/fuxePFibN682emimEJeXh4+/PBDLFiwAG+++SauvfZa286t9hklbIAjbGPZsmUcAK6+vt7nu+PHj3MnTpywv1A2cOONN3IJCQncfffdx/3xj3/kHnvsMS4+Pp7r1asXt2XLFq999+7dy5199tlccnIy99xzz3GPP/44d9ZZZ3Gpqalce3s7v19+fj4XExPDzZ07l3v11Ve5p59+mktOTubCw8O5NWvWeB2zrKyM69KlCzdixAhu1KhRsvdAicGDB3OxsbHctddey3Xt2pW78847Jffr6OjgLrvsMq5Xr17c4sWLuRdffJG74IILuD59+nB1dXWqzvXKK69wALgbb7yRKykp4W6//XYOAPfkk09qvq5169Zxb775Jv9ZsmQJB4DLycnx2r5u3TqO46ypfzk2bdrE9ejRgxs9ejS3YsUK7g9/+AMXERHBXXvttT77zp49m+vatSv34IMPcq+++iqXnp7Ode3alfviiy9MrdPDhw9zQ4cO5fr168c99dRT3LPPPssNGjSIGzhwIPff//5X1bncwMaNGzkAXFlZmc93J06c4I4fP67ruIMHD5Z99q0kPj6eu/XWW20/r5ZnlLAeEiw2oiRYgpm1a9d6dXYcx3F1dXVcRESETyN0zz33cJGRkdx//vMfftuaNWs4ANyrr77Kb/v666+5w4cPe/32v//9L9e3b19u/PjxXtubmpq4trY2juP034M9e/Zwp06d4jiO43r16iXbaL/11lscAG7VqlX8tkOHDnExMTHcnDlz/J7n559/5uLi4rjMzEyv7bfeeivXq1cvrrm52dB1KXVkHGdN/csxdepUrn///lxrayu/7Y9//CMHgPvwww/5bV999RUHgFu2bBm/7dixY1xycjKXnp7u9zxa6vSpp57iAHAbNmzgt23fvp0LDw/nFixYoOq63IC/+6wXMwRLR0cHd+zYMU2/CQsL43Jzcw2dVw9qn1HCHkiw2MSiRYs4AD4f1sGIG4KysjIOAPfFF19w9913H3f22Wdz0dHRXE5ODtfe3s799NNP3O23387FxMRwMTEx3Pz58/kOldHR0cEVFxdzF1xwARcREcH169ePy8nJ8WqgneTiiy/mLr74Yq9t/fr142bNmuWzb0pKCjdp0iS/x5w5cyYXGxsr+70ZolFJsMyaNYuLj4/nOjo6vLbn5ORwPXv29Duyraqq4gBwVVVVXtvXrVvHAeDefPNNyd+ZJVisqP+jR49y27dv53788Ud+W2trK9e1a1du/vz5Xvu2t7dzvXv35ubOnctvmz9/PhceHu7VaXAcxz3xxBMcAK6hoYHf9uOPP3Lbt2/njh49ym/TUqdjxozhxowZ43Nd11xzDZecnOz3+qU4cOAA9+tf/5o755xzuO7du3MJCQncDTfc4HWvBg8ezGVmZnIffvghl5qaykVERHDDhw/n/vGPf3gdq6mpicvPz+dGjBjB9erVi+vTpw937bXXcps3b+b3+eSTTyTbGnbP77zzTm7w4MFex122bBmXnp7OxcbGcj169OAuvvhiL9EtLKdWwQKAy83N5f785z9zF1xwAde1a1euoqKC4ziO27dvH5ednc3169eP6969O3fBBRdwpaWl/G9ZOyj+2IGWZ5SwB4phsYmZM2dizpw5AIDi4mK8+eabePPNN9G3b1/F3913333YuXMnHn30Udxwww0oKSnBwoULMW3aNHR0dOCJJ57A5ZdfjmXLluHNN9/0+u1vf/tbzJ8/H+PHj8dzzz2H7Oxs/OUvf8GUKVNw8uRJxfO2t7fjv//9r6qPHjiOw8GDB3H22Wfz23744QccOnQIl156qc/+Y8eOxaZNm/wet7Gx0euYdrNp0yZcfPHF6NLF+9UaO3Ysfv75Z9m4HeHvAfjUwSWXXIIuXbqoqgO9WFX/GzZswPDhw/Hiiy/y27Zs2YJffvnF51zdu3fHqFGjvM61adMmpKSkICoqyqdMALziNF588UUMHz4cGzZs8Po94L9OT506he+++072+nft2oXDhw/7rQMxN954IyoqKpCdnY2XX34Z999/Pw4fPoyGhgav/Xbu3IlbbrkFU6dOxdKlS9G1a1fMmjXLK1Zn9+7dWL16Na6//no8++yzmD9/PrZs2YIJEyZg//79AIDhw4djyZIlAICcnBy+rbnyyitly/jcc89h9OjRWLJkCZ544gn+3FVVVZqvVwqPx4O8vDzccssteO6553Duuefi4MGDSEtLw8cff4x7770Xzz33HM477zzMnTuXD6q98sor+Xbt6quv5q9FiZ9++klVu/Xzzz8rHkfLM0rYhNOKKZRQGgXLWVimTJniZTlJT0/nwsLCuLvvvpvf9ssvv3ADBw7kJkyYwG/74osvOADcX/7yF6/zfPDBB5LbxciNbKQ+enjzzTc5AF6jKTb6f+ONN3z2nz9/PgdA0ULx+eefc2FhYdzChQtl97HawtKrVy/uN7/5jc92Nsr/4IMPFI+dm5vLhYeHS37Xt29fbvbs2ZLfmWFhsar+2Yh/0aJF/LZVq1ZxALjPP//c5zizZs3iEhIS+L8vvPBCLiMjw2e/f/3rXxwA7pVXXuG3MUvmJ598wm9TW6c//vgjB4BbsmSJz34vvfQSB4D797//LX3xMvz0008+7iwpBg8ezAHwsqi0trZy/fv350aPHs1vO378uI/1rr6+nouIiPAqt9J9lrKw/Pzzz15/nzhxghsxYoRPveu1sHTp0oX717/+5bV97ty5XP/+/X1ig2bPns1FR0d7lQmnrTRqYHXp7yN8HqXQ8owS9tDVGhlEmMXcuXMRFhbG/z1u3DisX78ec+fO5beFh4fj0ksvxTfffMNvW7VqFaKjo3H11Vd7WUEuueQS9O7dG5988gl+9atfyZ53ypQpmmdhqOXf//43cnNzkZ6ejjvvvJPffuzYMQBARESEz2969OjB7yP1/aFDh/CrX/0KSUlJeOihhywptxrkyicsv7/fd+/eXfK7Hj16+P29Eayq/4kTJ4LjOE3nEl6nljpdvHgxFi9e7HMuNXWq9vq1EBkZie7du+PTTz/F3LlzcdZZZ8nuO2DAAMyYMYP/OyoqCnfccQeeeuopNDY2IiEhwatsHR0daGlpQe/evTFs2DDNM9HE5WT89NNP6OjowBVXXIG//e1vuo8pZMKECbjgggv4vzmOwz/+8Q/cfPPN4DjOq42aMmUKVq5ciW+//Rbjx4/XfK6//OUvqu7TkCFDFL/X8owS9kCCxeUkJiZ6/R0dHQ0AGDRokM/2n376if97586daG1tRb9+/SSPe+jQIcXz9u/fH/3799dTZEUaGxuRmZmJ6Oho/P3vf0d4eDj/HWs029vbfX53/Phxr32EHD16FNdffz0OHz6ML7/8Er1799ZVth9//BEdHR38371799Z8rMjISFXllztXZGQkTpw4IXns48ePS16/WdhZ//7OJTyP2jpVOpeaOtV7/UpERETgqaeeQn5+PuLj45GWlobrr78ed9xxBxISErz2Pe+887wGJwCQkpICANizZw8SEhJw6tQpPPfcc3j55ZdRX1/v9QzFxcVpKpuQ9957D4WFhdi8ebPX9YvLo5ekpCSvv3/88Ue0tLSgpKQEJSUlkr/x10bJoUfkSKHlGSXsgQSLyxF26P62C0exp06dQr9+/fCXv/xF8vf+YmeOHTuG1tZWVWUUN7xytLa2YurUqWhpacEXX3yBAQMGeH3PBNKBAwd8fnvgwAHExsb6jHZOnDiBmTNn4rvvvsOHH36IESNGqCqLFGPGjMF//vMf/u9Fixb5jNb90b9/f9nyA+CvWe5c/fv3R0dHBw4dOuQlNk+cOIGmpiafOjMTO+vf37mE19m/f3/88MMPkvsB8FsnauuUXZ+a+6eFefPmYdq0aVi9ejU+/PBDLFy4EEuXLoXH48Ho0aM1HeuJJ57AwoUL8Zvf/AaPPfYYYmNj0aVLF8ybNw+nTp3SXDYA+OKLL3DDDTfgyiuvxMsvv4z+/fujW7duKCsrw1//+lddxxQj7txZWW+77TYvK6uQiy66SNe5xIMBOfwNSLQ8o4Q9kGCxEbNGK2pITk7Gxx9/jPHjx+saCbz11lvIzs5Wta/Y3C/F8ePHMW3aNNTV1eHjjz/2Mg8zzjnnHPTt21cy+diGDRswatQor22nTp3CHXfcgerqarz99tuYMGGCqvLKITYl+zMZSzFq1Ch88cUXOHXqlFfg7VdffYWePXvyI2a5c7Fr/Prrr3Hdddfx33/99dc4deqUTx2YiZ31P2LECHTt2hVff/01br75Zn77iRMnsHnzZq9to0aNwieffIK2tjavwNuvvvqK/14JtXXapUsXjBw5UvL6v/rqKwwZMgR9+vRRfY1CkpOTkZ+fj/z8fOzcuROjRo1CUVER/vznP/P7fP/99+A4zqudYEHaLDPt3//+d1x11VUoLS31On5LS4tXsLOWtuYf//gHevTogQ8//NBLkJaVlWm6Ri307dsXffr0QUdHByZPnmzqscWDATn8DUi0PKOEPZBgsZFevXoBgC2Zbm+++Wa8/PLLeOyxx/DEE094fffLL7/gyJEjiImJkf29mTEsHR0duOWWW7B+/XpUVlYiPT1ddt8bb7wRr7/+Ovbu3cu7vaqrq1FXV4e8vDyvfe+77z689dZbePXVVzFz5kzD5TTDlHzTTTfh73//O8rLy3HTTTcBAP773/9i1apVmDZtGt8hyJ0rIyMDsbGxWLFihVfnumLFCvTs2ROZmZmGy6iEFfX/888/o6GhAWeffTbfqUZHR2Py5Mn485//jIULF/JC4M0338SRI0cwa9Ys/vc33XQTnnnmGZSUlODBBx8E0GmmLysrw7hx47zco2wGSGJiInr27AlAW53edNNN+H//7//h66+/5meH7NixAx6Phz+3Fn7++Wd06dKFj4EBOsVLnz59fFwN+/fvR0VFBV+XbW1teOONNzBq1CjeihkeHu4zQFi1ahV++OEHnHfeefw2LW1NeHg4wsLCvKwSe/bswerVqzVdqxbCw8Nx44034q9//Su2bt3qY5n78ccf/VqB5TArhkXLM0rYAwkWG7nkkksAAH/4wx8we/ZsdOvWDdOmTeMbFzOZMGECfvvb32Lp0qXYvHkzrrnmGnTr1g07d+7EqlWr8Nxzz/EdqhRmxrDk5+fjnXfewbRp09Dc3Ow1qgQ6zcKM//3f/8WqVatw1VVX4fe//z2OHDmCZcuWYeTIkV4Wn+XLl+Pll19Geno6evbs6XPMGTNm8PXa2trKp2Ffu3YtgM7przExMYiJicG9997r9xreffdd1NbWAgBOnjyJ7777DoWFhQCAG264gTdf33TTTUhLS0N2dja2bduGs88+Gy+//DI6Ojrw6KOP+j1PZGQkHnvsMeTm5mLWrFmYMmUKvvjiC/z5z3/G448/jtjYWH5fM65LjBX1v2HDBlx11VU+I9rHH38cl112GSZMmICcnBzs27cPRUVFuOaaa7xSr48bNw6zZs3CggULcOjQIZx33nl4/fXXsWfPHh9Lw4svvohHH30Un3zyCSZOnKi5Tn/3u9/hj3/8IzIzM/Hggw+iW7duePbZZxEfH4/8/Hyvc02cOBGfffaZooWxrq4OkyZNws0334wLLrgAXbt2RUVFBQ4ePIjZs2d77ZuSkoK5c+di48aNiI+Px5/+9CccPHjQy9Jx/fXXY8mSJcjOzsZll12GLVu24C9/+YtP55ucnIyYmBi88sor6NOnD3r16oVx48b5xJIAQGZmJp599llce+21+NWvfoVDhw7hpZdewnnnnYfvvvtO9tqM8uSTT+KTTz7BuHHjcNddd+GCCy5Ac3Mzvv32W3z88cdobm7WdVyzYlgA9c8oYRPOTVAKTR577DHunHPO4bp06aIqcdzGjRu9fs+mbQqTcHFc51TFXr16+ZyvpKSEu+SSS7jIyEiuT58+3MiRI7mHHnqI279/v+nXJseECRM0TYveunUrd80113A9e/bkYmJiuFtvvZVrbGz02ufOO+9UPKZwem99fb3sfuLpnXIonU88dbS5uZmbO3cuFxcXx/Xs2ZObMGGCz330R0lJCTds2DCue/fuXHJyMldcXOyTGFDPdanJgGp2/UtNa2Z88cUX3GWXXcb16NGD69u3L5ebm8tn7xVy7Ngx7sEHH+QSEhK4iIgIbsyYMZJTxKWmNTPU1CnHdS5PcNNNN3FRUVFc7969ueuvv57buXOnz36XXHKJ36mt//3vf7nc3Fzu/PPP53r16sVFR0dz48aN495++22v/YSJ4y666CIuIiKCO//8832Stx0/fpzLz8/n+vfvz0VGRnLjx4/n1q9fz02YMMErrQHHcVxlZSWfqE14z6WmNZeWlnJDhw7lz1tWVsbXpbicehPHSXHw4EEuNzeXGzRoENetWzcuISGBmzRpEldSUqL6GFaj9hklrCeM41QEIBAEQRA8hw8fRmxsLJYvX47c3FzDxzv33HMxYsQIvPfeeyaUjiCCE8p0SxAEoZHPP/8c55xzDu666y6ni0IQIQPFsBAEQWgkMzPT8gBot9PY2Kj4fWRkJJ83iiDMgAQLQRAEoRl/Qfl33nknXnvtNXsKQ4QEJFgIgiAcZs+ePU4XQTP+0h5QYjXCbCjoliAIgiAI10NBtwRBEARBuB4SLARBEARBuB4SLARBEARBuB4SLAb5/PPPMW3aNAwYMABhYWG61t/gOA7PPPMMUlJSEBERgXPOOQePP/64+YUlCIIgiACFZgkZ5OjRo0hNTcVvfvMb3Qvw/f73v8dHH32EZ555BiNHjkRzc7PudTQIgiAIIhihWUImEhYWhoqKCkyfPp3f1t7ejj/84Q/429/+hpaWFowYMQJPPfUUvzDb9u3bcdFFF2Hr1q0YNmyYMwUnCIIgCJdDLiGLuffee7F+/XqsXLkS3333HWbNmoVrr70WO3fuBNC5CvCQIUPw3nvvISkpCeeeey7+53/+hywsBEEQBCGABIuFNDQ0oKysDKtWrcIVV1yB5ORkPPjgg7j88sv5JeN3796N//znP1i1ahXeeOMNvPbaa/jmm29w0003OVx6giAIgnAPFMNiIVu2bEFHRwdSUlK8tre3tyMuLg4AcOrUKbS3t+ONN97g9ystLcUll1yCHTt2kJuIIAiCIECCxVKOHDmC8PBwfPPNNwgPD/f6rnfv3gA61+Po2rWrl6gZPnw4gE4LDQkWgiAIgiDBYimjR49GR0cHDh06hCuuuEJyn/Hjx+OXX37Brl27kJycDACoq6sDAAwePNi2shIEQRCEm6FZQgY5cuQIvv/+ewCdAuXZZ5/FVVddhdjYWCQmJuK2227D2rVrUVRUhNGjR+PHH39EdXU1LrroImRmZuLUqVMYM2YMevfujeXLl+PUqVPIzc1FVFQUPvroI4evjiAIgiDcAQkWg3z66ae46qqrfLazpdVPnjyJwsJCvPHGG/jhhx9w9tlnIy0tDY8++ihGjhwJANi/fz/uu+8+fPTRR+jVqxemTp2KoqIixMbG2n05BEEQBOFKSLAQBEEQBKGbzz//HMuWLcM333yDAwcO+OQjE3L33Xfj1VdfRXFxMebNm6fpPDStmSAIgiAI3bCM7y+99JLifhUVFaipqcGAAQN0nYeCbgmCIAiC0M3UqVMxdepUxX1++OEH3Hffffjwww+RmZmp6zwkWHRy6tQp7N+/H3369EFYWJjTxSEIgiBcDMdxOHz4MAYMGIAuXaxxbhw/fhwnTpww5Vgcx/n0bREREYiIiNB8rFOnTuH222/H/PnzceGFF+ouEwkWnezfvx+DBg1yuhgEQRBEALF3714MHDjQ9OMeP34cCYmD0frjIVOO17t3bxw5csRr26JFi7B48WLNx3rqqafQtWtX3H///YbKRIJFJ3369AEAFFyfgR7dOqvxviunSO777sgbMG3LO7aVTQ9/npCJnx4z9jBpYebgPMXvzxm8DS98/qFNpbEHuedDiPCa2f47XnrFtDJ8NDJJ1X5puQ+Zdk4t1Lz0tM+2+66c4vMsnLXwefz02P0+dbpxZKop5RizpRYAVD+D4nK8O/IGzee8+L3vNf9GzCd3dN5fLe8yu9c7YgdiWPM+yX2k7ovSsbT8xghSz4ZbOX7yFxS+5+H7DrM5ceIEWn88hGc+34jI3sbOcezIYTx45Rjs3bsXUVFR/HY91pVvvvkGzz33HL799lvD3ggSLDphFd+jW1f06NYNABAVGSm5763frwFkvnMLv9vgQdlTnesbNRfkmHbcW5Ie1vW7tsYxGPDUbFVliS0sQban0mtbkadK13mtIrawBFGny1iWkeVTXsYfpkz32bb1/U+RNm2SKeVgz6o/evXqZcr5tDLpoUeRVrsJZRlZ/L2Pioz0qhdWfwn3PYUXADTWrQcA1KSOhhml3h6XiEnf16HIU6W6vsTvfs9e2juMf98yGgAwZnWd5t8CwMCkrajpfRGaC3JUl3t8XgGAzmu+uKkBkLjva4sLVR0vtrAEvZoa+L8nPfQo/3ur+ON6DwZY0G5ZidUhBJG9+xgWLIyoqCgvwaKHL774AocOHUJiYiK/raOjA/n5+Vi+fDn27Nmj+lg0S8hE3NZJaiXbU4lsTyXyMzKRn6EvKMpMri7d5bcc+RmZkp1/bGGJVcXShLAua1JHoyZ1NIYLGnVCmmxPpew9FN/vsows1KSONvXcTrJxego2Tk/xv6OANXOTNZ+HiRUAlj6TwvPIEVtYwn+00lyQ4/g9I+S5/fbb8d1332Hz5s38Z8CAAZg/fz4+/FCbdYwsLAFGkadKdUPuD6WRPtDZiBgdtQxM2op99SN0/77zt/6FoPhasj2VKNJ9Vn1IWXqE5dHbqWZ7KlGUmozrancZKV7AIKwnJcHaWLe+c18TO9u02k0AtA8+/L1LemCixZ/FZWDSVgDJXlYpLWyPS5QVLFqsI80FOYCMOBFacoAzbRVfb8K6y8hEWUbWmWOqoCwjCwjwAWMgI8z4DgD19fXYvHkzn/GdLfbL6NatGxISEjSvlUeCxcWwlxbofHGvq92F6wDgtHug5t1qyf3NajizPZV846FXuBR5qpCfAUOiRQ1OjLCW3V2IpQP72VKG2MIS/r7r5f1UdaNwNSNiOxje1GCJELCC5oIcQCCuZtSWoyJ1pinH3jg9RVG0sDrSIrKEAsIMsaIW1o7wgwlPFcokhH62pxJlGVmqB02B4g4KVr7++muvjO8PPPAAgDMZ382CBIsLYcJDHLfAOhx/ZlO1jby/fRJS0jH/lQLkA4asFZ1WoSxcXarPQpCfkSnZGMcWlniPzGxm/isFyFbpOivLyPLqGGpSR/OjeUIecWda5KnCsrsL+biVUEFJtGgVK3q4rnaXX8EbW1iiy9rVXJDj1b4wqxoTLYT7mThxIrQkzdcStyKEUvPrpK2tDdHR0SiccY1PQJqa+A+xa4eNEMRmf6EVRe1IU/yS6xqhJjeg6I9bvDZJlVcL+RmZqi0tG6enYEZtudc2OSFWlpGFBfs6p/KJOzKrG3K1sT5iwSKHkojZXvy86nJJEWgWFsb2uETZ+2527IWw/rU+O2KXoFkWFjla4joAaHsXhffWbOtKbGGJ3/uh5bjC+gz0+EAAOH7yJAoqPkJra6vhQFYpWJ/00rf/NmWWUO7F51tWVr1Q0K0F+Hu5hBYU9rmudpdsjAILhlUL219PTEtZRhaKPFWKYsUOE73UaFLpvEsH9vNyzzCcCL6V66iY/14JFphLdGLlDBOzkRIOeau/dqAk/lESK26huSCHbyvVvMduCbQnrIMEi0PIiRPhKLjm3WrD4kDr75mlQoiUZUXPTKIiT5XX7AetMyHkULpGJ+IfxJYhPZhtCldrXXGKtcWFkh8lzL63YuuWGTPliqdfavgYUrTEdWi+frdZztTARIvSrDHhvkRwQzEsDsE6ELFvOLawBDWn/29FZ6sU35LtqUQ2zsSrCAPe+N+IGnHWqKs12c6oLUfZ3M54FqEVRUq8DKzdquqYTvq5O4OKzZ8CbvboV6qxZzECVjb0RiwkrMxK74FQZIgtU3LuNSkLllnxRMLnwczAWzFG7p3dgbZGj81iXIzG0hGBD1lYLMJfJyp2AYn/ttIy4K9ssYUlfH4Tpam6eijyVCHbU3l6KqZvzomWuA7MqC3XZaVYsO8QElLSNf8uUEaeNe9Wo890/WZvoauQ3VOWd8cMtFpIlBCLFeaqVHp2haJDLED0xECYETfB4kysQGvsyva4RGyPS7RMoFpt4Qj0OBY1ma4JZSjoVidKQbcMuY5AqdFVEgf+hIbcb8W/S5s2iQ/mNVOMqJleaWYsTEJKuqrZIm4KvNWSj0Vq1K838HZ4nv9U7ayemIBzKn5ELJLF90+riJayggnvgZx1xchzIzyfmVYW5grSO4UZkLbemXGv/QXdmnEOuRmDgUBCznLcNnkoBd0agFxCDqB2up54HzaCkfPlqpnOnO2pxHZ4ixYzUHM9dgfuMtzSyDmVT+T91GQM17C/04Gu/upJnPNECbn7nla7KSCDm40+Q24PtHUDcq5IN7QhoQ4JFodQaw2RQs70qhSUxgRKWUYWkJHFz04q0xnY6/Pynv5bjY/ZjI5bj+snGKh5t9q0dYWEuKUxFufWMVIuf79Vilsxsz5a4joQ0xRu+DjMTaolq6uaBHGBhhkZuNlxxG1RRepMoEnwfyEGnonYwhKg4Wfdvyc6IcHiYrSafpWCabeLtrGOL23aJP47ObeBGY232bEwbkocZlXgrRQsTb8WnE6wpwbhqNasQGA3rIcFnHkvjbiGhGJFa934m07vtEVNC0WeKsSaFGTfXJCDirxS1fsPOb3v7uK5ppyf0A4F3boUJ9ORC608esWKcDEzs8UKEZywZ8RfhxxK+TbEAeh6xEqwvXvNBTl+nwG1z4ie4H49QtgMCxtBFhbHKMvIQkxTOB9EJ3YF8QmTTselGB11SsWrMCsL+264oMPQMn1Q3Dj4LGZmIWoDb60mUNa8kcLJheN4Masyo6lc9lMzRbEZFkUzrG7CzlTr+8+f+3TbESzuILUwUeOvzoo8VcDpe6XWAlaROrNzirXK56RzyQJVuxJ+IAuLQe67coquEZ+wcfUXt2JlnhGxkNHTWEtNl7UDq1OfW0Va7SY+fkLOHK8UX+EWV4dRxO+NmmdPOM1ZSLAlDTOSfFByACFDILmDhJi9IGKRp0pTnVekzgya9zCQIAuLCbBVjbV29nLWFTnEDZGRRlrc8NuxgJpZCIWKG6Y16yWtdhOm312I/FprLUSqZt3YjNgiosXKY2WyOzOfFb1WN6mOU8v1Sp1TLIADcYaU1RR5qjBEwyCoInUmYi1OvEh4Q4LFIC98/qFsHhap/BHMVClO3sVQuzggACDpYQDAmrmdQZhlUA689bfdLdN//SE3EnKy7EpTbZXcA25wZ9mNlFhR2+gr7WuVi0gvWqZfM6QW/ASgSsxpGfHzFj71RXMdamcLaZlVpDU7cUxTOKBw/PF5BThA8SumQYLFRthD3VyQg32nxYYZXF0qWJcoydix8jMyNY9g2crTTncQbqQsIwv5ThfCRYithFqfNbX76hELVqDFyiKXFVfNNcuJFaGIs9qFYXecTLanUlWsnda2LB+B624OdiiGJcjYVz9Cm5VGAj3p2oUrqzqFG2ePsOUCijxVAWG9shstnYkb768/2PWpeTfEwsbs94k9g8JPqKDl2dEaz6KEmhXaCfWQYCFk0SNanMTtFp5QDtITTm9n8VJaO0ytzxfr8NV0/FZ34HqmtTYX5Biyrlj1OymcEJNaZmJpfXaKPFWYkRavp1heuL1NCjRIsAQZwsUEyzKyDI/StDZqoTRqU0Nj3Xo01q1Xvap1qI18rcQNVj+1mDWiFxOIVimtWDUQKLrlelWiRUkMkWvJXCiGJYjYOD2Fb/iYL1Y3yWf80fmQjmvRE+9CKGO3FcZqcSTOs2L388Kfy8XWLalAW7V1FChWO6umT1udZbrolusBnMlyK8bK1bgJX8jCEiQIxYoVZHsqvUZrrJGQMnk6aSHIz8i0bVSZn5Hp9VH7GzMIlJGz3tlAwYRVVh6jz4CZ5XI6M7fVwo3S8bsDsrAEAWKxwmbtGMo2u8s3WEwYlS8c2UhNG7RzfR0xamcPENYifgZDUawAZ9ZH8hfHwmYUZXsqUaZiKq4akRAKdU5xIt4s/uFHdOl1zNAxTh09AgAYM2YMwsPDkZubi9zcXDOKZwiysAQgLE5lYNJWDEzaihm15SjLyPKKf7DqJRZaMITnkhrtOWFpsTMGpMhT5VXv7BMocRNWIV4/KhDicix1K3iqZN9H9u4C2mJuzCiv2WJGKTuzldj1bO0unot7jh3w2hbsgnDjxo3Ytm2bK8QKQIIl4GABtUbWGTGKsPEVihYn/elOdYpS9e6mRswJ15EwKaIbhIrb3Wdasl1rxY5rd0McjV2DhPmvFPCiheJX7IcES4DALCps9VbhyF7cQTrZSIm3WykkQjGfhFbsNpcL778b7guz9FSkzvTbqTnR8QqtK+xff8nmtLzf2Z5Kr4DRIXmlsgGkRnEy3b+dgwQmWmhVcfshweJimOuHWVUA8ELFTaN4tXkuzDyfGzpDLbAyy9WVvynoYreTm+6/EC25T6xGKFaAzlwoTpWrLCNLMihej3VFLsGc0hRaoVChAFLjzH+lwOkihCQkWAIEZlVxU0fFRqRi37vcSNWszsJNdaAWFucjN6uKJQmTykaqV5zZPcJj1+eW51QoVhhOiRa5+pCqK635YyjotBOyaAQ/JFhcDnMBAeo7ajsbMKFoEa9bYtbq0uLAVrWMzyvgP27A7ing/p4Ds84dW1iC/IxM14gVVh45i4OTlhYh/mIgpDpgJbeVlWkN/OGG1Z/dJtz0ZDcmlCHBEiC4oYFVg7ATNKuD1tIBukWkBMr9MgPhfXaDWFHbcYnvkZX3TG70b3V9SYk2s2NYQulZVwtZe6yBBItLEWetVduwue1FkRoRap366++a/ImU7XGJ/FRbu2BmfSX3jpXWFTsCSJklA3BHXJEwZsVfSvSYpnAfS4uVI3QpN4/S+aTedz3Pr5NWFydwW/tHmAsJFhciDrJVi5bRpWkkN/g0EuIyG3UPyV2TGkuKk6ulKsUtON25G8Usd5+Z6Hn2xWZ7Kzs8YR2pERLi6zH6bu8unhv0AbducwsR5kKCxWUI86y4IR5AjoSU9M5P+C0+OVjkRpP+hI0Swt+qdfkwscLygsgluLMbq++p1dfIju+mXCsMo4vN2dnhqXn+WV3rvafC+mAzhZwQLW547+yE4lesgVLzuxC3ixUAKG/rjplRJzr/SG5ARe95/GKLzIVVBG/XRLanEsjI5Ds4qX2kqEkdjeFNDYBKawrrdNLgm3lTXIZgRE2nW5aRBeisA3Z8Nz2jSkG2/qhInYmWuA7+uoRuLrOvj73basSKme4qq0RKbGFJ57vph+FNDVhrSQnO4C9/jZ3MqC2nlZotgCwsLiNQsicejI/z+nvGkeWqfyuVXE4Of7MPtscl8h9hhlWnEcbVuCUQWIjejli4LINbxEpsYYnhzkFq5pBVz5La47qlfgMNN1hzgnlA5CRkYTEZ1S9L6S7Jzawx09NY2dlZz6gtB1Jn4p5jB5AQfgsAoBHrfUbuehdBdMM0STW4SYQAvgsOmn5s+DbGUrFTrPMXJkazogMWJ4czAjPjC0fqUgt7mkG2p1JVp9ZckGPpPTVKtqcyYN5Vu9ldPNeyrMKhCgkWk1HduCU97LNp4/QUDKzdqttcb7dJdEZtOWYAQPJpk3AykP2fF1B2uhNhDTL7Vyhc8kVuGbbCdHNBjuJsH8BbmEm5fczCbDGytrjQ1OOJO1O1Qddany9hzIpUQLVUZyosB/t/xenGm1kRhccT+vzZ92repZimcFNN7xWpMxHTdOZvtnKy2vKoxYhLTgtWx6uUZWSpcgnZgVusq0LuOXYAKyL7O12MoIFcQi7DTXEBapDqLFjno8X1Ayh3CFJixWysdN+YLVYYsYUlmsuq5flSshhqsZwJnxM2pbhTHIT7BCiybWwqulQZhFOqrcCq6c6UsyS0EC6WSBiHLCwOMD6vAFh90msby7sSaL7PGbXlQLJo25Hlndt2JfpYAYQuIvav+JpZPIrQYmS2JYWd2+3m7Otqd+H91GTJv5m7YHtcoqylQy9CqwoTGxWpM5HtKQc0CgW9FhChkImRsM5YGdTIBBWbfswsLUYHE1auzOwEbrGuCHFiwBerYIWb/0oBQK4hUyALiwNIjbZb4joCtiGr6D1P+ovkBsmpxGKBInYVMeww8Zpt+VhbXCj50YtYrIhJmzYJadMmqU7Gp0UQS9W/1mfUbFER0xTuuqnHhDrcEAxrFUyoBPM1ugESLC5AmCguEJlRWy4vWiCdg0VKtDCx4sRaSHowU5jIISVS2Hbxd8LFE40gjIWRWjzQDdg1ZVQ4e8isPD5ujLWwA6uv22lxyRYwFUMixjzIJWQTPnEGp11CG6enoCWuQ5cZU/wiONkQdprOE/mcLABzDXX+zVwJ4kBbO1LI+2NtcaHX/bEq3kQrTJAIhYnQ4qKElGjpnG0iL2Z4oWKxu8UITuS3YO4hPldLRmbAxJqJg9tZ4jjxdjuoSR1taaCxW4SgUPCXZWS5RuQHAyRYbELcCd6S9LCXZYV1Smo7JEfS8Kugovc8n5wsM44sR0XqPMl05G4QLfkZmShyiUixEn8drBufJ7fB4qqyPZUocrowKrFqajYhTXNBDh/nZXWsVahBLiGHYGKlJa4DadMm8dvlXABi3NoAya2RwqwtUusKuSHQOJDMtmqfES0Ir1+pgXV6MT0nG3/hgollGVm6nhkpt4XVz55w6YxgX0vILbihTQtGSLBYCIvLEH9iC0vQEteh2xUEnGnkqoc+Y2aRTUEYz1LRe55PfItb1vQRYqV1wWkLkj/cdi/cDjPxm/Uc2zX4EMaJEdbjdEyNnXz++eeYNm0aBgwYgLCwMKxevZr/7uTJk3j44YcxcuRI9OrVCwMGDMAdd9yB/fv3az4PCRaD3HflFFlhIocwhbx4tKzWJWQnWl888ShcmIdAGMAoxA0jErd33HLPhtFnRvg8mm3BmFFb7rhVxkr0iBanOzISLYTZHD16FKmpqXjppZd8vvv555/x7bffYuHChfj2229RXl6OHTt24IYbbtB8HophcYgiTxWuK37ea5uejmfSzgfNKpIsuqwPuzoDcGccWd6ZDVcAiwOQynbrZGNqRq4NqSRuZsbHCAVun+klOLza2OhcWN9WuFv4+yu4z7GFJQEfiCiePaQlnsWuXCziHENptdZlhVbL+LwC1wS1W40wliXYmTp1KqZOnSr5XXR0NNasWeO17cUXX8TYsWPR0NCAxMRE1echweIAdqXldpzToqVs8H0ATo/kd3mLH6XEcnZjdOaHmdlx1capuNEix5CzmjUX5KD59P/ZvQ7EwMSYpnBXLlbqpnT5duO2trVzlpDTpdBPW1ub198RERGIiIgwfNzW1laEhYUhJiZG0+9IsDiEFYGTrmRXoo9IEeKG2RZiK4A4u6wcblv4UCvCRfWYYBizug4bp6dgzOo6r3395QrSK/b4daZO/x1owoVZWvLhDrcmIJ991u61xghY5mpV4v+429GLMxbtcZQ7hSwAgwYN8tq+aNEiLF682NCxjx8/jocffhhz5sxBVFSUpt86GsOyePFihIWFeX3OP/982f0nTpzos39YWBgyM8+MyDmOwyOPPIL+/fsjMjISkydPxs6dO72OU1dXh6ysLJx99tmIiorC5Zdfjk8++cSy6xRiVv4GYZIw4ScQ0brmkBko1ZmSWLFqrSE1iEWuUXeQuPNiIkUoVoRChS0dIfUx+kyz4+wunouWuI6Ain0RruzsNNVDn+HX3RIzvKnBdFeUHvdOoAt9LQRqm8zYu3cvWltb+c+CBQsMHe/kyZO4+eabwXEcVqxYofn3jltYLrzwQnz88cf83127yhepvLwcJ06c4P9uampCamoqZs2axW97+umn8fzzz+P1119HUlISFi5ciClTpmDbtm3o0aMHAOD666/H0KFD4fF4EBkZieXLl+P666/Hrl27kJCQYMFVemOldSUYR1HCNV2MorcBsbORtdv6Jh79CUUKEy92rnPVXJDDr/jtRKI4f7BnkV+NnH2hon6sfjcn7XwQ2Fkp6xZioiXY2giGGyy2wURUVJRmK4gcTKz85z//gcfj0XVcxwVL165dVYuE2NhYr79XrlyJnj178oKF4zgsX74cBQUFyMrqHEm88cYbiI+Px+rVqzF79mz897//xc6dO1FaWoqLLroIAPDkk0/i5ZdfxtatWy0VLGUZWV45V4gzCGNZxBYXI2JFTycrHCnrjQUwO7Dw/dRkS2aUCcWAlNuHbduIFMTalN2VLeQozhKqR7yw3yg9Q8JnZNndnfdt/ivyAtVIh2h1sK0wsR0gvbgnb2kJ8NF/oNB5T8rxl/OudroojsHEys6dO/HJJ58gLi5O13EcFyw7d+7EgAED0KNHD6Snp2Pp0qWqo4ZLS0sxe/Zs9OrVCwBQX1+PxsZGTJ48md8nOjoa48aNw/r16zF79mzExcVh2LBheOONN3DxxRcjIiICr776Kvr164dLLrlE9lzt7e1ob2/n/xYHI7kFN46c1IzoWMpzM/EnVoQrrApFirCsWlZzNkOkuDm2KaYpHDF5pYbyB6mlLCMLV5fu8hJRcmJFSowInzmxdchf5lclsWIWVtWf2vd/eFMDtpuUAVe8tEUwojauTQpmMbyxaqXJpXIPR44cwffff8//XV9fj82bNyM2Nhb9+/fHTTfdhG+//RbvvfceOjo60NjYCKDTCNG9e3fV53FUsIwbNw6vvfYahg0bhgMHDuDRRx/FFVdcga1bt6JPnz6Kv92wYQO2bt2K0tIzy3azSoiPj/faNz4+nv8uLCwMH3/8MaZPn44+ffqgS5cu6NevHz744AOcddZZsudbunQpHn30Ub2XCsC92WmtxAnzsxqritfSBqdH9EYIhqmabMaLvynHdgiXq0u1CTefe+6pkrWEhNJ7uD0uUdZKyIS6E/URassFNBfk4IWTJ50uhmV8/fXXuOqqq/i/H3jgAQDAnXfeicWLF+Odd94BAIwaNcrrd5988gkmTpyo+jyOChbhvO2LLroI48aNw+DBg/H2229j7lzlFNKlpaUYOXIkxo4dq+mcHMchNzcX/fr1wxdffIHIyEj83//9H6ZNm4aNGzeif//+kr9bsGABfxOATguLOIJaibKMLJ+8K0LcPD3VCHaKFTVChXc3qSwXy10htrTYKVCsdgepFSpimHBhmCFg8k8vLKipPL+9xzT3RmPdektjINj7oOUcRvJ5ZHsqZa2E4/MKABMtLcFMsLbPZjFx4kRwHCf7vdJ3WnBVptuYmBikpKR4mZakOHr0KFauXOkjalj8ycGDB722Hzx4kP/O4/Hgvffew8qVKzF+/HhcfPHFePnllxEZGYnXX39d9pwRERF8AJKZgUgMN7sCrMYsv76/WRpG8ruwmRdriwuDwpoSW1iCGbXlusWKFDFN4Ybq2A2zbOzA6Uy3YpzI2WLm8hyxhSWWPzuh3D67CVcJliNHjmDXrl2yVg7GqlWr0N7ejttuu81re1JSEhISElBdXc1va2trw1dffYX09HQAnWmCAaBLF+9L79KlC06dOmXGZYQkbEE4K/EXcCm25sQWlqhaKkEN2Z5KRzKFWj2yYwv6mUVF6kwMySvlP2o7kvyMTJ8MsGqTslXUHPS/k0rMmgnFnj3x9bPr0/I8Gu2M02o3+X12jXb6WkW8mfVsB2RhcQeOCpYHH3wQn332Gfbs2YN169ZhxowZCA8Px5w5cwAAd9xxh+S879LSUkyfPt0n0jgsLAzz5s1DYWEh3nnnHWzZsgV33HEHBgwYgOnTpwMA0tPTcdZZZ+HOO+9EbW0t6urqMH/+fNTX13vlcyHUI7c+kNQ+UqhxG2mZ2swaX/Fx3TaydRo76iOmKdxvZyj8TmvsipuRq9+YpnBUpM501Zo+ZgXfqmV8XoGp7mLe1UYzn4IaR2NY9u3bhzlz5qCpqQl9+/bF5ZdfjpqaGvTt2xcA0NDQ4GMJ2bFjB7788kt89NFHksd86KGHcPToUeTk5KClpQWXX345PvjgAz4Hy9lnn40PPvgAf/jDH5CRkYGTJ0/iwgsvRGVlJVJTUy27VjumMwszl9qJmobHaOOkVqzk+wmgNRoE7ESwoFXmaLuycPIWHMGsLIZYWK6ZG1wjWaW8IBWpMxErEDVyz5Uda9KMzyvAWgPPNS86NbqXjLxP7JxunBlJWIOjgmXlSuVpXp9++qnPtmHDhikG8ISFhWHJkiVYsmSJ7D6XXnopPvzwQ9XltINQNDnaPYOIuRyMnJdNvzYrY7EQO/3kTizMxoQLC9RtiesIms5GzoIkzHcSW1jiM1Vb6RhmP19ptZsUp+mPzyvA9rhEzecVik4taQCKPFVegk0rblzxnbAWx/OwEOYRaI1/oJVXiB0ZNeVEbLCIW2HMSqA9C8wyoCaGQjjzSQlhHTjlvjQiVrTCfqv1PeLrPMCeGcI4JFiIkCKQOsZQmJnAOsiyAJohxDpMLQGfTJyJrSvCgGeh5S/bU4kyoSgy6bk128qi930SrnekxbIk5wYi60poQILFBsoyspCmkIOFCEzyLXINMaTyr6iBBXMWeaqQn5Gp2JiztOF2r9czo7bcy13C6tCNU5uVysQ6TrUWFJbBd83cZJ/ZWVeX7sI+jPDe34L68Cdahjc1YK3Jx2YChdVXGs7MWvIRPTIWqWxPpaRwo2UGQgdXTWsmiEAgISWd/7+Z+STEGLWwsHVx5CjyVLnO4iQUf1qmW5udGp7NbFIjVvwh7HzZLCi3z4Yy8kwzcbI9LhHb4xKRVrvJa30jNbD9hR+lfYnQgASLxdi14KEbR6bBBgvYbaxb79UJWSlajNBYt171vmathq0FxVkxUJ+HxSz8uSb8dZpKHSx7XuQCbqXYVz/CNGFTkTrTy4pmRU6hhJR0FHmqENMUrkukEIQ/SLBYzIJ9h1TtFwrxCnpgDb1TQYhCawoArxgDqe1uw1+9udX3r9XNpjVxmdiCIp5ey/7P/pW7v3IJE8XbhL9nomXM6jqvf61GiyhVG1AsfH4a69bzGZQJwgpIsJiMuIMDgKtW/M2BkgQHMU3hjomWhJR0LyuFP1HiNiuLW8WIFuyyssh10OJtYguKGitC9tABnesd6UScAdgslESeWhebOPmdU8Ldbe8eYQ0UdGsSLMBR2MEVeaqwOnU01hYX8lNRrU4CFmyw0ZpdOVuEIqWxbr2XAJVysQj3ZzlazBIKeoNuGfkZmUjYdwjz/ezHypt/+m+7A3DNwGhCP7nf63nmxM9qGU5P3YYg2FjAxukpilaWffUj0FyQw0//1ZMhV8rqkZ+RiRrRtrXFhfzx07DJKwBWHBjtpjbHjjQDhPOQhcUgL3z+IS9WpFhbXOg1Wnk/NVk2jwa5heSxS6yI/xaKFLnvpaxqbkFLHIvbUOtOBYwnWRNn32UfPZYNYYJCf7/X4w4y03LGYlnYekNS7RizIrHv7IpNcfN7RTgDWVgM8txvFuLQD1u8tomnukqZXoMl+ZfVCEf7ZlhbWCMo7silxIfwbz7QVtS/sO+F4sbfVGK1mCVgtVofWD0LhbiWDKZqkJqKel3tLq/3Yv4rBXw6f8buYu8V2o0irhe/roXkBmDXmRwi7Fksy8jiZzW1xHUgpincayXslrgOft9sTyXK5mZ5BdT6s7KInyneKmZCtmKpANyyjCws2HfIx2Ks9nxsX7n3Tc1vzRTbwvuq5GIzInzFzy9hPmRhMchn1Uewr36EV0dn91ozoYDQpG3V6E4oPoQNrZfLRyVmrBCtt/Er8lTpEkxSHaLeY+lB6nqbC3Iwo7Ycu4vnmi5W2P2UmsIsO51WIFYSUtKxYN8hL7EiBRMwchgJurXq3mR7KiWti1rPJ3x/9GDk+WP3VPweCrMrSwlW9hxcV7vL76CBfU/WcXsgwWKQcwZvw6VT+vAj8GAIdHQTM2rLTZ11oNSAGmlc5X7nphV51cCeX9Zou6H8et4pJhiVhGNZRpZk0Kg4Rb6Sa2fpwH4+24TWFam/2XnECz1eOqUPNk5PkZz6vK9+hOx12NHmNNatR35Gpt/cPgwnnpv8jEzZ/DnCIOmYpnBcXboLFakzcV3tLqRNm4Tmghw0F+R4iViGkhjxF2dmxsCFOEMYp7SSICFLW1sboqOj8dK3/8axJ/P9/8Bi6KXQhtg/rkaoiGNatKCmU1E7StNiedGbjVe4RkxZRhaGa1yF1x96FtnTir+ORmxRYWiJW1mw7xCWDuwn6QIS7yN1HqFb6NIpffD1h4cV3UMDk7YqPktWtQNGnn0jGHF9VaTOVGW9Orxa+jkcnne/bF0L3T9yriBWZvb+HT95EgUVH6G1tRVRUVFqL0M1rE+qfOdc9OplzBZx9OgpZN2wx7Ky6oUsLAb56bH7nS4CoQJ/AkUpwE+tH97sIEEn/eFCMeGm2SBKCAWKWlO+EKElRW1gqdjCInb9CP8WTtFn5xBbWYBOF5GWBHNCrLK2iJMl2oW/bMNiyjKysK9+BPbVjzCc32Z78fOqBhH+3tNsT6VqyxShDAXdEiGLmhk+WkaWbD8pgWNWIK4e3DjlU691RY8QUYO4M/bXOYutKOz/wngV9q9Y1AiDxuUy2ertbGMLS1BUkGOJpcUJ4ar2nPvqO9dgsmLJA/ZMGRlANNatx+NmFcgPvXr+H3r17GXsINxRAJMxZswYhIeHIzc3F7m5uaaUzwjkEtIJM78VzrgGPbp1c7QsRpZ4DyXkcqromcng7zzsWOIZTUqixQqXEODtj28uyFGdFEw4e8Rst5DWzLRWBDUOz+u0jqqxHAgtJXKuH3/7S72jYreQv9lCgH+3ECMY3cRMmJiNnFtICTXvofAetB07hui8fMtdQh9//DF69TImWI4ePYrJkyeTS4gg1KA2j4Ve9MSwqDmO+FjiTkpLJ2KWS4gFE2Z7KnUvEpjtqeQXtbOb2MISx6eLtsR1+IgTNVl4hfuY9Syr7bTtsOiZcU1qj2GVWFGL8BnU8zz+eULwCUi7IcES4DhtXbFKUIjX7DErPoSJiR4f/uCzDdDWKLo9sRWb0mlW2nKnRIvadW20IuzQ5aYdxzSFe32E24SI38F7jh2QFDRSawwJ41iE1hW9cSxCrBYtWpL7yeEG67CcAGGJPtn3Sok/pWAzR7cXP48xN08zpayhDAmWAMepl11uwTczBYxQrJjlrjm33juPhlh0DEza6vcY7Hf+pkGz/cTnkLKyWJnHQZh5VS1yq/m6oXMxG3HMiXi7EnLBueVt3RXPJT6GXPCtHFosdVaKFrtmDlltXbkl6WH0me4tis2w6qVNm0Q5WkyEBEsA44SPWjiLQviv+P/CfY1iRaN4fMo5uvKuaLGqiONkhOJF7b0zyxXiNqHh1GJ1bITc+lqZ5Pfi2BNmJZFKWqd3xW6nVh4PRNisHzs4vDrHx6KiB5ZwjoSK+dAsIUITwtwcct8LU5DrRSyMpL7XevzGuvVImGLcWiOX1l/NvkKEM4dYAipxQ2lmo5ftqTQ9xb7VCIVNzbvVSJs2SXI/rR2MUtCv2ArSEtfRWY4m721SsOf/YHwcAPmAXCnhvw/qO+bORHLqrSda0upLIZ6OreX9M5JLRWu96GVg0lYUGRQphPWQYAlQ3DoDQM3oUW1jp7SPXjGkRWz4+72ZMSz5GZkoK8xCvqcSRZ6qMx21TAetBqusKmm1mzQlo5ML9GXXqCVGxY7gWzXBtHqPoZSmf83cZEum5ZoJK7vWZSoqUmeiLK5DccacXJsWCPVC2ANNa9aJU9Oa9QbZ+rNY6DmWFG5zPUghFBo9PvwBe5LMzeJqJqxRF47g1Hbacs8KE4xK1ha5GBa58mlFi0tIuFid2dlxWSbgYdtavLbvuCAGgPT0ZJa5VulZF78jwoURxYitllo6Z7VTnBlWD3T0WD6F5VdaRsFq0fJW/VOGfu/PynKkowNjv99J05oNQDEsAYZeQWDGkvBKbiDhv2ZgtZ9fOEtIiBqrSUXqTK9VpK1CWAdafetKgoDdp7TaTbIftbjV0qeXHRfE4GB8nJfAYJ8F+w7xwkbr7BipadEMI8+6E/EwdpzT7TPwCGcgwRJA6Okc/DYuyfLWBeFv2f/9iRazsNpSc3zKOZKiRY17SM+CjFKzhRjCFWnZNMgiT5Uua8L4vAKMzysIqhXDrewgWb0fjI/zEirAGavIsG0tvECZGXUCALAisr/sMaWmLguPJ4eeZ16r1cGMGUOsnFKiXc81iBepLPJUYf4rBV5lzfZUmjLN2185jOB0rqBQgFxCOrHbJaTFFSTXYBpBj6nXCbSW89z6ROxJavAKDDSS+TYhJd2Qm8mKoFihxcRo8KUcWjtC9jxrFSNWCLEheaX8/6WsIEJri1B0yIlWpWvy5xqS+62SMNHqFgIC1zJm5YyhhvQ4rP/rQ4aOoeQWIpeQccjCEiD485cLLSDM/WOGG0jN+d0AqwMt5UxIScfxKef4bAOcESuBQrBNyxWKB71TlbWcSymoV+r82Z5KVfmBAhE3PUuJ65v87+QHsrJYCwmWAMBfgKJQmLhdWFiFHnEmlYeFbdPbkGoRK0IXkR1p1NnsI6OdhFQ9O5VXxQyUnhuh20PN82VWB2zmYEMKM583I27nUG2vCH2QYHE5+RmZ9FIroKWDYMvOSyH0oQP6GlI1Vhlhpl3xas5WUZM6GjWpozE+rwDDmxowvKnBdNdTtqdS88wfNzGjttxrkcJsTyVimsJ94pX8xS7pHTwoJWBkwlbOytKZk8UZF48qq+Yu5eUcqoc+o/p8UhmBidCBBAsR0Ghdfh5wzgwd7DMftIoQN7kDhLByzagt9/q/8Du1mJX9Vs2zo1W06LWyCAPDzWDSzgdNOY5bILeQdVDiOMJVWBXcOzBpqyC+x9p4ALlkdI1164EkS0/tOLGFJaoCY4s8VYANbjA1sEBkqQyuMU3hqEidyQuWmKZw7+Db5AZgV6LXPgylZ1kp+FZMY916XrDIJVHbVz9CV5yLliDsIk8Vb6UDSwbY1GBrQH62pxJlc+VzsjSkxxmKRRFmnybcB1lYCFdhZcNndaMqFbDrViuCGpRG0XZNb3cCuYU9WTyL1PRkrTOGhMG3wuPJ7c+eKaX6tco1VOSp4l2KSjj5rLMpzwfj4yyf/qwGsrJYAwkWl8M6DVL9+rDaDcOOL3ceuQ4m0O+nUscZyAG4crlS1KzcLESNcBNPl2aWCnHHL/7bzhlDzKqixPCmBj5vkFmiRen9kKpbtrK10grXaliXMMHQ7wlroTwsOnEqNT9Db4r+UEAoHqxY6VnqXP7WKFJrerd7cUItWW0Z/sSWMAFYIMHS9APenSKzrAhdQS1sXRw2A0YmsFRtB85cTQx/77ZSPhI9KeaVnk21z6RwQUm2kKcw30726XWy/J1PDVLLKQDmTE3Wk9dGDmFeFsrDYhyysAQoJFaUkZqybBQpK4rcecRZdJUaaJZDxokOXq5DFV+rFksfO2YgJSdbdveZzlYqk6tsrImfGTDC48khFitAYLsSgTOrjzOrC6sD8Ww8MWqvW65O3eAOIqyDLCw6YWq2tbgIUZGRAOwdUQZSZxDIKFlQlLYzwSLOy6JmET9/JngzsWqRQ+HzGSiWFmYNYEJFOEtIKCp8OsvkBlT0nicZdCuHUBTJiSG9Vha1FgKh685fYsrhTeryCwmtLIzraneh5t1qn5WajbZhQveNGZYVhhkZb8VcV7uLLCwmQBYWE/E3eiACD7EFRWlNIPF2oVhhVpTmghxXrfNjlZhQswKvW2DrLw0/PeMFgKQ4kY1j2ZUoGXQrzq3iFqtobGEJL1ZimsItWeNIjJnxLXZgxTP70cggnyJoAyRYLMDtDTThH3FHztwhjXXreeuJkstpT9KZzs+NQsVu3PROMIHCPkKyPZWS4kOYQE64FIY/pDp7FmArdDmJRYMakSCXRE1utpBQqIjP6W/18e1x/l1fSojX2NH6PFQPfcYnwdzB+Dj+/2a6gsy01jCCfdbQ559/jmnTpmHAgAEICwvD6tWrvb7nOA6PPPII+vfvj8jISEyePBk7d+7UfB7Kw2IRVs7njy0sAVwyWhOilI9BKpjRDci5dqQaVLZtT1IDUOdrIl86sB8fWFgEAIJ/3cr4vAJAR+CtGsRmf7U5WszCTNea8NlWdAmdzssiRC6/i9L/1bwv2Z5K7IO0W6gsIwuxIlGlZEkZs7oOFdNn8m4wcZnFs5fYfWR1zASNeIZYc0EOat6t9jqGnjZAKrncjNpy3i0Uf9BckdF5XPe+t27j6NGjSE1NxW9+8xvMnOkrfp9++mk8//zzeP3115GUlISFCxdiypQp2LZtG3r06KH6PCRYLCRUkhD5G226daVntliheAFEOfz53ZsLcjoFShBixrOc7akEBDNx1P5GTdwPYK5AkerclcrNixUBwmRywo7fnzWDzUBSs6DnwKStPrEsA5O2ItuzlS8vS7KmZIUQf8cS+3k9zxL3XxyzIiVK2d9FAGJ1LFIqRfXQZzBp54M4GB+H+INNllhFCPVMnToVU6dOlfyO4zgsX74cBQUFyMrqfCbfeOMNxMfHY/Xq1Zg9e7bq85BLyGLcZAo3G2GDquSjd4NYkets9iQ1yLp21HbQoZInR8+zLFUvWp4Hf+JGzrVjFH9rBnmVa1ei7PRmoTiRuhYWK8P+FZ5Xa9zLmrnJfI6WsowsPj5l4/QUVS6T3cVz/YopOZjLx5+oNMvCxiwuLXEdlogVEkCdtLW1eX3a29s1H6O+vh6NjY2YPHkyvy06Ohrjxo3D+vXaZnKShSUAcZsAEP6flU1uFOWEtSUhJR3YdwjZwr/hP0eLsINm/5eaMTH+dJ4KqRkSelhbXGjrTCHA2vsilXtDeC61FpfYwhLVs1WMouQO8SkvcwPJrEp8RgScESXC48tl1lV7P5hIES45cXXpLtVxHWNW1/H77i6ei/yMTGw/nUdFDeL4FC0IBZI/kShFtqcSFdNnGk4YF0yMbOmJqBPGZgm1/dw5eXjQoEFe2xctWoTFixdrOlZjYyMAID4+3mt7fHw8/51ayMJiIaEy8hZ3PsJgU6V97YLN9GEzfMQ5UtTA8qTY1WHaSU3qaNWzOKywGLpBgAthYkG1tUFkVdHi8pKLVTGjTtR24mJhU5E6k8+jYgVSeW7Y33otPIQ17N27F62trfxnwYIFjpaHLCwBhhsCbsWjP38NtDDXhJOdE29RSYJk0KwQNrOHWTq8FnwLMphlSBiDY0UmZaF4Fx9fj8XFCoQBpzEyXgGfRG+nLSsVvedhBsr5a5HKjCt0oUpZbcyydG2cnoIxq+t40aLG2jIkrxRAp5UltrAEmDbJ72+EouY6lVYZ5q6SQ2ohSSVm1JbLBh8bIVRiEJWIiooynIclISEBAHDw4EH079+f337w4EGMGjVK07HIwkIYQk3ALZ/GXMX+boBZUux2y7gJOYuLWQ14c0EOijxVmqYI24lUhyq1wnJZRhYwealkLhZ/OVzUCBO99cPKojZ+RQo14uP91GSvjxrUCjKnxQKtK2QOSUlJSEhIQHV1Nb+tra0NX331FdLTta31RoKF0IUWdw/LO+F21K5KawdmxcMYOY8dU5BZfhomXgD5YFOrrHNriwv5jxCptX2kylZRc1D22EIRU5E6U5MlSTFuxmKyPZWGF7FkeV/EHy3XotatLpeThrCHI0eOYPPmzdi8eTOAzkDbzZs3o6GhAWFhYZg3bx4KCwvxzjvvYMuWLbjjjjswYMAATJ8+XdN5yCVEaMaftSSmKRwz0uJRtnM/AOmG32lY2YUxKeNtXnjQadSIItZZ2JFDRc4lJXSX6I0h0iIAO90y5XxyNyY6xDN42L8VqTOB396Dsp37/QadCxFfn7+pzHYGrBd5qpAPSE7Tl8q1wvAS+zL3Kq12k+ZYFSV3InAm+BYwvmIzI3F9Ey4jt5Aqvv76a1x11VX83w888AAA4M4778Rrr72Ghx56CEePHkVOTg5aWlpw+eWX44MPPtCUgwUgwUKYSFlGFrKHDgCGntnmRleQkY4vVLE7S29zQQ7KTndMep4hMyxUasVBS1wHL84BX2HBYlnEriRxIjU1FhWts4c2Qrs7aEheKXYXzwVwRqiOzyvg69Tn3bHZIsmErTgAnAlKM2cNUQI5dUycOBFKyxKGhYVhyZIlWLJkiaHzkGAJAvbVj+CnNtqJOHAw21OJiqbOEWlF6kzEIJwfoZo5MhQ29uy8aqg5bUEhsRIYsI4pViRcakyeRm4UZmVpieuQFBRngnil41j45/g/LwAAygbfx39nFKmgW+E0ZiU6XVjlqDktSMxylSoFNAvPHXs68F0OofVPWFczass7A+tPH8eIeElc3wRz13wnjEAxLA5gxDcs1Yg5saS6eATIGl4p87nZqBUrZRlZqEkdzX+IM7ils1eDOABYKt7EDSgtJCgnYtj/Y5rCO6dHn54iLd7fCQsls7KYjVohpnY/cQyUkBm15Ybbx2BO/hlokGCxELZ6szDgjD38bLtRmC/YrvwFSnlW7JyaqiYLaCgvNqiEGzt7f7BOyY7zGEXuXWQJ4/yJbTsCjv1ZHYbklWJIXmlA5UWRe0Zm1JZTUG6QQC4hCxGugcJyFLD1NIDToyyZYEahz5ghlYOFuV+cQEqgyC4Q5wCxhSWygX/BTiCKErXkn16PyEpBaiTA1Z91Ueq4kr8RZs5lyekkFldUgq01ZMQtkla7yVQLZZGnCkMsbLOkAnSzPZW63USdazVRHIsbIMFiMsKFyNJEiZf4JEvTJmE726f4ea99Wl8r4/8vFi0sEBGAr8/WJoSmbMUVbAlbCWaBIkSYeM2qhSabC3IMWT+VEp+pfk/Eaf6ZUNEgVhhSCySGCs0FOYBUcG6SNuFCSeTcAQkWg/zwnwvQFmFs3QYlWKAbv75MUwPWFhf6NNZ2+lkDRZwwcWVlkK1VQkEY4Lg9LtEr666V53U7Uh2QG85jqaVTQaQYneqsNgDXTCvL+LwCHFCxX0XqTMkVorUit8q6VRlyCesgwRIgCDsrcbT+2uJC2Yh5wlzsEgpptZvO/B+bgIxMFIWoSBFT5KnqjAlzmVtIjaWTLbwJ+F98k19QUWYlaCQ3aJriLGVlUSNW2CzE7XGJATvDTmgdEYoXNrtSyQLVkB6HBtD0ZjdAQbcBjrgDpUBTcxFmQQ1Vq4ZbsVqYW/kuqRYrQsR/63APGcGM+nbDeyTl2mHCpSE9Dg3pcV7fJa73MwebsA0SLEHE+LwCjM8rcFWSNqfR2si6RaBINapmzCoLFtSuLu02GuvWY0Vkf/87AmdiVkSxK0qroSvBOmU96wvtqx+BsowsL8ufFpx+n8SwlP/COhyYtBU7LojBwfg4r/oRCxjCOcglFMAIGwChmyhQzbZO4qbGVA4rA00J+9AdJC/K0aLX4qFlBWfhfleX1vEzbZSQepeEqzoDwL9Vndl6xFlzveo06cwU9fiDZGVxAyRYXMT7qckYr3LfQOhgA4FAq0c71vShchgjISXdv8tHI/zMI43TmsXomTEknEnDppMLJwMIua52F67TXTrnYBZNuXT/ACjjrQsgwRLguGFlYbfDz7BC4AkUMUq5e+yETf11shxK04+VFuhzEqUpz6p+Y0Lcypq5ybi6dJfPDCG5GUPCbTFNAApLEH06ZYPV4sTu6cRyM4oId0CCJUARd8Bi4UIvnjdahIrTHbE/3OIackMdMQFnFXqmDUtZV9jsoEYd7iAr8iwJRQugL64lWJGytpRlZJkyxZowhqNBt4sXL0ZYWJjX5/zzz5fdf+LEiT77h4WFITPzzIPFcRweeeQR9O/fH5GRkZg8eTJ27tzJf//pp59KHiMsLAwbN2609HqtgAXaSm1XMzJhwWdSn1DFDR0xIB14G2iw5SnEHzMRCgq5tXz0Biyb8SwUeaow/5UCRSFjJyzxnl6RcnXpLtS8W22oDMKVq92KsC10S5sQ6jhuYbnwwgvx8ccf83937SpfpPLycpw4cYL/u6mpCampqZg1axa/7emnn8bzzz+P119/HUlJSVi4cCGmTJmCbdu2oUePHrjssstw4IB32qKFCxeiuroal156qYlXZh9Cl4eQ8XkFgERUfzB0hFpwu8UkmLDbqieeKRMIHSFwJs7F7FgXrRhJ2a+V91PPrOcTq/I3ZNkghDguWLp27YqEhARV+8bGej/mK1euRM+ePXnBwnEcli9fjoKCAmRldTZkb7zxBuLj47F69WrMnj0b3bt39zrfyZMnUVlZifvuuw9hYWEmXZU3faaX4PBq/x2mlfEooSZSggWWJM2tyQBjJZaKsPvcbkco4twiVIywcXoKri6tw2GZ74XCRI5sT6WqzMAxTeFo1lg+InhxPA/Lzp07MWDAAAwZMgS33norGhrUT8ktLS3F7Nmz0atXZ2r8+vp6NDY2YvLkyfw+0dHRGDduHNavl24g3nnnHTQ1NSE7O1vxXO3t7Whra/P6qEWNWNELs67IxWiEunsHCJylBORwc/mbC3IcK1+2pxLNBTmqy6BX4Jj5/jTWrXfEDSTFjNpyvy4hJQtMzbvVeD812edDEFbhqGAZN24cXnvtNXzwwQdYsWIF6uvrccUVV+DwYTntfoYNGzZg69at+J//+R9+W2NjIwAgPj7ea9/4+Hj+OzGlpaWYMmUKBg4cqHi+pUuXIjo6mv8MGjTIbxntgGYJEYGImdaR2MKSgEoi57R1RUtdWRWIq6UMNHmAYDgqWKZOnYpZs2bhoosuwpQpU/D++++jpaUFb7/9tt/flpaWYuTIkRg7dqzu8+/btw8ffvgh5s6d63ffBQsWoLW1lf/s3btX07n6TC/h/2X/NxMSLsGL2y1kespnplWG4pO0Iaz7lrgOn6nN7CPeJmTj9BTZAGeCsArHY1iExMTEICUlBd9//73ifkePHsXKlSuxZMkSr+0sNuXgwYPo3/9M+uuDBw9i1KhRPscpKytDXFwcbrjhBr9li4iIQEREhIqrkIa5hax0D0lBAaed0PLw1iKXeMsqYgtLUAbwAZnNBTnIz8i0zNISrGkChKJDOMVZKFLk/gaAFhXtizjLLQDUmFJ6QoqmL1txIuIXQ8c43H4UADBmzBiEh4cjNzcXubm5ZhTPEI7HsAg5cuQIdu3a5SU2pFi1ahXa29tx2223eW1PSkpCQkICqqvPTLlra2vDV199hfR0b78xx3EoKyvDHXfcgW7dupl3EQYQxqH4yxuiNq8IpekPDsRiy62dp12iUIuFJqYpnP8ESqCuVtQEsPr7DZvmLBW3ouQaEtbpdbW7fD5G0XNthDls3LgR27Ztc4VYARy2sDz44IOYNm0aBg8ejP3792PRokUIDw/HnDlzAAB33HEHzjnnHCxdutTrd6WlpZg+fTri4rwXpQoLC8O8efNQWFiIoUOH8tOaBwwYgOnTp3vt6/F4UF9f7xUDo4dzBm9DW+MYQ8eQQpgYzq4srU7O+CCCBz3J1rQQW1gCyBzfn5si2GadMItStqfcZ7v4Hqjt+Jk4kct8K9wnpqnTraRVmDQX5ACn25u001lzldhNwbwEHBYs+/btw5w5c9DU1IS+ffvi8ssvR01NDfr27QsAaGhoQJcu3kagHTt24Msvv8RHH30kecyHHnoIR48eRU5ODlpaWnD55Zfjgw8+QI8ePbz2Ky0txWWXXaaYqM5O3k9N9opDYUJFuM0K4SJ0GZFQIcyguSAHsMgCxEQ1W9MmlDkjVnzfW+E2vRYKObEitMDI7aN2anMgBUsTzuOoYFm5cqXi959++qnPtmHDhoHjONnfhIWFYcmSJT7xLWL++te/qiqjGgYmbUVZRhauLjVu/lSLmUG2bnUvEMq4OS7HKisL6+TkxEpLXEfIBINa2eFrXdG55t3qkBeQhPW4KoYlEHnh8w8NdxriWUNyFhS5dYP8IfbbxxaW8CnSyaoSOCjl74gtLOE/bqC5IMf0zpRNX5bqGNl3wfQ8q83XUpE6k7eiSFlTzFiLSGqW0Bm3UGgIRMJ5SLCYRHNBDgYmbdX1W/HMIbFryAzc1qER2pn/iq9QZdYxtj5MIHXYWp5Flu1XbhTvZAI7synLyOLFXkJKOsoysnhRIvwwgdYS18GLEjlxonXJAiXLihOLJAZiu0WWa/Nx1bTmQKfT0tI5/XF78fOGjsVEi1QMix6MNuZK/nLCfoTTbN3aMPqLZVGz6jS/LAFzf8hYM1kgbudzao1byIqpzUpWoaUD+wHw/86peSfVpsKXQxiIK0VMUziyNbootVrg3OwClaIsIwv5cH8epUCCLCwWUOSpohTVhOkIBatbRYqZiNdQknMFiUffgSCqizxVqEkdrZh2wA0WMylXkBx6BJHa61Mzk8htUEyP+ZBgsRC21obTyDWKWkY4rPGkqH7nWFtcGDKjNbFYkbtuPa6wIXmluspkRk6RmtTRqEkdrWgttUukSGWwFWKH60dLexKobU8oDC7sggSLhTQX5CC2sAQ171b73deJ1PrChlFtY+D0iM8IgeQHZ1Paxc/F+LyCgBYtahLgKa1OzYLF2UeM1c+nmvekLCOLFybijxRS260YHIjjW4RuHrFwYdvYPjNqy/0KHEDdO8ae62CKO5KjyFPV6Roi0WIKJFhswg2WFjmCbXZFICMUKVYnCrQboVgR/t+fS6fIU6U5YNyMmTFCrqvdhfdTkyXN/GKBoie7tJxoMRtx8K1wtg8TI2JRwn4jXnNICmGZhaJbToBrIVBdLIFabjdCQbcWwx7W2MIS1MA5X2xN6mik1W4C4CtQQkWsZHsqUeaytZWkGnClJRoCTcTIiWHhiDPbUwmcXgdIdl/B9oSUdFtWPGYiBfAecIjFRSAtf8EsN1eX7vISIFIp+ZWmLcu5iypSZ2K8jCVJjFLGYimuq92F4Xn385YnN73H/ghkq6ibIMFiM++nJpviCzdCqAgUOZxeENKfSFHaj+e0+Awk/JnF1T6XasXKjNpyPhCUWQlYh63mGXCzVdRMmOtHLGD87S9HWu0mWfeXEL0Zkdlz4rbBB2E95BKyCaGlJVQaQsIbsUlcjbUk0CwqbqMlrsNLrJiBI/ck2TwrTranEmvmJsvGpPgLtm1Ij5P8nVJ8y9riQmyPS/T6GI0pC/WBVyhCFhYbYaIlPyMTRahy3NISitg900lvEsDxeQX8/mxdKbWZjp22IAnRM4o2K99JkaeKz9sidkG50UQvdNv6sCtR9XGYVUkcx1OROpPflu2pxD6MkMyvIiVYKlJnoiWuAw3pnQvONqTHIf5gEy5r/OzMTknAwNrO5JlSz7pk/E9hCdIM5KwKtNwshDFIsDgACyLsU7rLJ8ut1eelaHVrkRMTWkflcrErTswmsxszn1GpDs3NHZyiaFGJ1oDj+INNXn+LLSVr5iYj21PZuVRAVKdLjon+HRdk+V3fSYlsTyW2a/4VEaqQYHGIbE8lyuZmIW210yUhzCLQxITQEmPWlG/WeQn/1YpeYS3+nZWZgJnVK5BZMzcZV5f6unEGJm31FnUF6MxInJLeuTzE6fpkz04RIJuBmCDMJIxTWvqYkKWtrQ3R0dEonHENenTrpvs4sYUlSJs2Ce+nJtvSABodvQUDekeDatBqYdHi6hGi5j4aScXOEAauavlOuA/DDdPnzbz3Vr6vVrynzK0jvgdqAmQBa2J3tC5jUvNuteQz5GarGeP4yZMoqPgIra2tiIqKMv34rE/aNu+f6BPRy9CxDrcfxQXLp1pWVr2QhcUF2BWEu7a4EGnkElK1ho2ZKDX0wvgUpf2cGs37EytyokXKLSHV0dg1RZkXKgHQsfmQ3KAphkUOqXvCXDtqpmYLxbVTpE2bBOTd72gZCOegWUIOw7LhxhaWYHuc8UZJiUA3YZuJGS4QqURYTHgIP2qPJbdN6hxKWD3aFK8MPKO23OejhrKMLHvFSgDhZfVQIVaMBJL7s3oJnzdqQ3wJpAzagQ5ZWFwAEy1AcPjGgxUn7ovwnEzQ+ku4tezuQiwDsMLEcpidOdZM/MW82G1RcwK2GrPW+6TGRceeQSsGVGUZWUBGVsAtbui1fIQg8SEQWAntAg2ysLgEtq6G1Wrd6Oi7eugzJpXE/ahJKW6FiZydT5y7AgCuLlWeCl/kqcL8Vwo6gyNNgnWCZk8HVxvPkpCSrvg9zXzrxIio9GcVZM+fGzpjqefQzmfghaR7JJ9dtghnKFpcOjo6sHDhQiQlJSEyMhLJycl47LHHYHaILAkWF8HEhLCDMhujL9OknQ+aVBL/+OuorMRJK5eaxFpy4iE/IxPL7i403IBLuXesDpiVi5exw22kB6vjOdQGw5pBfkamlzgXCxerFipcsO+Q5t84aY3Jz8jEniT/8T6hJlqeeuoprFixAi+++CK2b9+Op556Ck8//TReeOEFU89DLiGXIRzBbC8sCah1SszG6o7KaBChWR0WO46aRq5zKuourJnrHajNxF1j3XrD9eZm9w9hHdvjEvn2RvxujM8rQA3ArxNk1rM//5UCIMQ692Bk3bp1yMrKQmZm50Dp3HPPxd/+9jds2LDB1POQhcXFNBfkmG5tCWUBJEZu/R411hUzY420rkTMEnkx5FZB1io8tATMWoFV5w6EKa9yWGllEVu0xBYUJTeo03F2dmarFqLmWQpF19Bll12G6upq1NV15vWpra3Fl19+ialTp5p6HhIsAUC2p9LyGURW4VTDohZhw6ulEWYjULsb7qtLd+Hq0l0oy8ji6zY/I5O3rARCPIfdAiIQ6kQJs0SLWKCwNZaEqMn/YvYzr8fV5IZYmlCgra3N69Pe3i653//7f/8Ps2fPxvnnn49u3bph9OjRmDdvHm699VZTy0MuIZfTXJCDsgBW6k7m3hCiJmmZXgHiVH4Kdj1mLLlgl2WlInUm8m050xmsFEhusDaoRXiPK1JnItvjDtdfWUaW5vWErqvdBWRYVCALiC0swbEjh4GK8y0/V/l/ig0lMwU6k9wBwKBBg7y2L1q0CIsXL/bZ/+2338Zf/vIX/PWvf8WFF16IzZs3Y968eRgwYADuvPNOQ2URQhaWAKC5IMdU95AbTOT+AmrNDLiVsvKwzt6o0BBmqdXbcakdLbIZQix+RXhdRZ4qFHmqkJCSjoSUdNX32Aw3ELP2KFnT5BbkMwK7ZuFH6vtQQq1F04z7YJZQczr7sVbUPlPC62ouyMFPjwVewru9e/eitbWV/yxYsEByv/nz5/NWlpEjR+L2229HXl4eli5damp5yMISQDQX5PAj6bKMLN3xKG4wkStZWJhYsdoSI17VWKkBlkqfL5fszYgIUlrbZ+P0FJ+F6coyspAPX4HH7rG/1PpaEHaGXvUmcFnIWXvUnEuNFSzUBIhWAq3zD0a8RGOAP69RUVGqUvP//PPP6NLF2/4RHh6OU6dOmVoeEiwBBlvpOdtTqdu37fSqzUsH9gN811zjaaxbb6pokWvE1SYUczodOaMlrsNndpAcwnpTEgv+6leYut1LIMuIu/F5BYAgDoI9a2qeOfF9Ys86oN4K5cR6RXa4hcxYxVktabWbLJ9SbUb749ZEbW4rjx1MmzYNjz/+OBITE3HhhRdi06ZNePbZZ/Gb3/zG1POQYAlAmgtyUAQgH/oC8lin4tRidGrOKe5E7SirVMdjV4yCcIkGPUgmivPTKSScXn23CN7WImHHaHRWmXDFZOHIU5x/Y+nAfpINvdbGn70bwJlspMFilbFCtBhdWVuMUIgoLYxZIfj/jNpy1LxbrTm/ipuEQbA8Y3p54YUXsHDhQvzud7/DoUOHMGDAAPz2t7/FI488Yup5SLAEMFoWLpPCCgGgNGLXY9kRdnJmi5ayjCy/Jls7g3CFSzTIIY5jUeqQ2XZhnYvvz7K7C7E68rjmssqtMC23wGaRpwqxgnvZWLfeq9zNmkvgHxawHhuAawnZBRMrMU3hut6v8XkFSKvdxIuTCj/7BxOhLlKE9OnTB8uXL8fy5cstPQ8JlgCGNcLbT8diuGG2wtKB/ZAAadGiVawkpKSj0SKrSpGnSlKsiIWGG+pUyJkcLGdysTCXixqE96Wxbr2khU5qm9jSJPy/GnEmjheya20fNSIwkGBWFrG44P/WsbIzO47QIsIsOWosuEWeKgxRsKZYxXW1u2xb6V6M+H1zsiyhBM0SCgKEwbhOk+2pdG0qdaCzYQ/EkZE4NboZliat9aDWasRmDBV5qlxR38EmWgDf+88sJP7EitwsoorUmWiJ63B93iQ3c12t8jpfhHHIwhIkGHUPmY0wVbxezBQ+fKcZQGJF7MYw2yWmNVGeWoTlZv8nl4x5SMWyzKgtVyU25J6flrgO3j0kRJiuX47xeQU44PfM8gSSSPInSsjSYi1kYQkSWK4WLaNgKzFjTRutZWSjeX/5OaQw2/VjJCcL+6hFz710opNw0sphtWByy0wy8X2VCnwVbmP/j2kKBwAf0ZLtqZRdwVnIPceMSJYzvJ+a7PfjBEyoOFkGggRLUBKoafzFaLEmFHmqDHdKbotXEaKls1ezrxOWOLKyWEu2p5IXHv6QEjJSIlatsNUauC1cDZy952qFgBPihUSKOyCXUBDSXJCD7X5ytbjFdaQHrTERTIjIBdQKR5Bmptk341jCYFWlfDJlgv38CQM1SQeVyu1mYeckdqbpl3ILdYoL7/WBWuI6UJE6k3cZZXsqvdxHLEcP+1ecsp/lKlJzXbuL52JIXqmq8gsFk9SaRm6HCRih5YXcQdZDgiVIaS7IATIybUkC5XZYRyInXMT7OoWcZYRtV5oWnu2pBES5TnhUWqrkpiozSKi4H6npySyYVmh90WK9zM/IBFS0I3pjWWKawl0rWoQxK1JihAkV4fckXKyDBEuQozSadjrjrT+ElhSpcopXTPYnRNh+dixWqHR8odVEKFLkOhHhqsz+UNsRCd2Gw5sagsaNGEqIrSzs3rNZWuJnQc3yCGwpB7sWw3QK8TR7I0iJExIt1hDGcRzndCECkba2NkRHR6NwxjWGV8a0ktjCEkXzv13pvqUQrn8jDtCVcvv4W0dJSiSosQr4Ey9mHINlXXUqu7ARygSJ16Tqwi0Bp27BTkuUtFvoDMLEcAw2I0hOmLDtbKqzcFVwf9d2AEm6rqMlrsPUGCfWVogHPcJn2UrEVhegcwXkgoqP0Nraqmp9Hq2Y2SdZXVa9kIUlyDGy5pDVqJ1FxDeSgsZZKl5Aq+XE6DHUJkwDzox+pcSKv8DGtGmTUPNutc92uwQQczcBQJmKaa6EfYgTyUlNTQa840RimsLPZKYViBOheOkUOfASOvkZmajxU557jh3Aisj+xi7KZPIzMlGROhMVAGKaAJhoXZFD6CoizIMEC+EI4hTxcin9mf9ciNpFC/WgRoRoEUVSYsLHenT6b6UGTrjOilC82G2tkesQCQdJbtD0HLTEdXgJESZOhIGwcnEl/gKL579SAKgMvGXcc+wAlqKfpt+oZUheqc9yATFN4ZYsBUFYDwmWEELc2GyPS0QanHEJMXHC3EJsET4hSjEbsYUlgMGRvhrTfWxhCdJEncFamX2F5WWmZyuyvMpZXNTAxIbQzK8G4bX5dI6i6xanjA+16cxqBa3a+DEpN49we1ptouS+SlY9vQgHEHLPzu7iuZLXJoyZE/62MSMTZQN9RbC/OBNh/BfLZsyEmL81jfTEsEi5eZSgGBbzIcES5LBF54Rm/O1xicj2VGJ7hrOBlsIYlmV3F0qvOGwQvVNNxa4c8XfCxk4YW8Nv1yhU7DIf6+285DonZm5nxDR5ixahO0nN8ezilqSH8Vb9U6Ydjz0vWjpB1XUg3u90fUrdS7PEiVIMmZpgfX8LcgqRE7X+6jJt2iQMz7u/84+MTFSozEEDkJUlUKGgW50EStAtw41Bn/vqR/CdhliwqCmvXBCg1uDbtcWFumZLmd3pahEtNe9W67qP1UOfQcOgLwCYk8hNLFgYu4vnqvotQ2z5AdTVr5pZVmLExxWWQ+mcUtNXhX+HCloW21SD3hk7rP6ZtVFt0jwhap5T8fkAffecgm6NQxaWEMMNYiUhJR1LB/brLEt957alA/sBEnlIxO4Ftq0sIwuxGVmq3UJmJfUKBhdH4t4reNFiBTNqy1XFGAlne7F/vdwfKjpFr3uhc4r+9uLn/XZAws4q1KesMguL01YyBovv+vdrnzpbEMJySLCEOEoWDKlRrxksHdiPP37s6fOXqTy/uCxaZwX5Q87czcoS6GIFgKViRQvNBTmASEQOb2o4M1VXY6eotwNVk0dDPOsj1GeAuEWsEKEFCZYQID8jE5CZ3aEkRpSEjFLH7c+9osf3zsruI2JUjqr9NbDC79n/vRLSuayBTps2CWD+ew00DPrC1Jk+FakzNaVkF2NnOnsljAiQULe4GMXJQYAWdxSl33cezYsf3nnnnfj888+tKAthMSxPg/Cj9zhKFHmq+GybaklISfcKwpU6p5Eyq4Wl8Bd2om7oUM0mce8VTheBx62J58QihnVU1GG5A/F9OP/XE20/J2EvmgVLa2srJk+ejKFDh+KJJ57ADz/8YEW5CJ3kZ2QiPyMTsYUliC0scST1fn5GpmZxwaY5n1ufaGqeD39CKJDRU0/snkza+aDZxeExWt81qaP5j11iUez+EW9T+o46scAlpilc00rogHZrXKi7D81Es0to9erV+PHHH/Hmm2/i9ddfx6JFizB58mTMnTsXWVlZ6BYAM2aCHatiT/zBv/g6z9tYtx5IAuBRDqTVKoScEizB3lDlZ2RK5ruwYnq63VCuDfU4GYArji0SJ8VTg9YpzlrvOT0j5qErhqVv37544IEH8MADD+Dbb79FWVkZbr/9dvTu3Ru33XYbfve732Ho0KFml5VQiTixlNXChbfiGDyPXLZbMVqva0Vkf8ywqFF1UpSkTZuEstPTm7XWSVlGlmlxOXrjV4S4wS3EOj/hdOVQj1kQLlUhZ+0qKi7UlYfGCtKmTdI1W0jr1Go3PxdjZz2GXj17GzrG0Z+PABUfYcyYMQgPD0dubi5yc3NNKqF+NLuEhBw4cABr1qzBmjVrEB4ejuuuuw5btmzBBRdcgOLiYrPKSBiExZNYkVJdjctJ7XnVri2k1d2kZeVZuY6TNdasQxN2bE4iTNmfNm0Sthc/r+p32Z5Kr3gdcdxOqPJ+arJXnhWlNWGCfb0Y4ermSs/G+LwCR4WKGbEsWl1DUrPG3NImmMnGjRuxbds2V4gVQIeF5eTJk3jnnXdQVlaGjz76CBdddBHmzZuHX/3qV3yCmYqKCvzmN79BXl6e6QUm1GH1ei8ssZtWmHtGLE6kVm4W7yv8W+44VhJsjZEUch2TlJCTShgXDORnZKIIVaoSw7l1lG0mYguL7KKhAT7lX0/2W6Glhf2rNxEe4R/NFpb+/fvjrrvuwuDBg7FhwwZ8/fXXuPvuu72y4V111VWIiYkxs5yERmxZwVeCdQkTFGcJNdat1yQyhPuK/y91HKNBtoFmZZBaU0itWN0ep35pBql60WK5ChSG5JWiInUm8t96DwAUR83BOqoG4DNLzmuK/+l/xSLWyXfHCeEotsQxSKxYh+bU/G+++SZmzZqFHj16WFWmgMDNqfnFbhqpBdHchJR1RS376kdg4/QUvvNUioOpSR0te5ztcYmKDc34vAJE/zpbU9nsoEYQwyJ0Dw1XkaOFPRfDDS4iKSStdpOkW8rNlgilGByhe8HN10B4W0Br3q22PFW/VuxKzf/RX78yJYblml+NC/zU/LfffrsV5SBswuq1hNQsjGYEcfkvndIHK9DpnphRW67bRcTEyrK7C6WPUbsJZe9We4kCqxF3kFIjeRZ4Ky6XmvssXvbADOFSkzoa0RLbja7D4hSBVFaG2Brib5sQNwQ/Owm5c9wNZboNQsSdlXARQStjWxJS0tEo+hvwjUFhsO1aRIa4EzYrhoVvvIsLdK9Jo4Sa9O/+YibEi+4pIZ5BpEW8AMrWKKP4K7+bRMKQvFJLR93+FuU0cgzhDB+pY/kTL04gXBHaCHpnC9Eqzu7G0Cwhwp1IjRBYh2SXS0gqjkQoUKwIljUaBLpWMD3TDNiME38CRLy/2uMy1NxTrUI1rXZTp3tHQ5yLWbgtJsQsi2FsYQmG5JUiPyNT1awsM2Zu+Zvdw/A3ddlKWLJLYT3rqXPxu9MS16GrPGa2AULSch+y5LihBAkWwhWYkdzN30iYX1RPASNuEaFAscNKwM4hJ0bSpk3yWrRRb2ZcJ0SLm9ArhFmm6SF5pRiSV8rHVFg1uyqQ3DlSIsVs9Lpv9cS+EPZALiHCNORm9EjBgmOZu0Juxo8WS4wVjR8TUmyFabdNXZSaJSQkbdokDM+7H2Wny1sk+E5tfUlZcORiXtYWF+I6VUdVRs2UYjtZdnehbAZfNiL36eia5MXJ9rhEU2KGhG4fwPzVy40gfEdYHWmx8OrJoGtG5lvAGldgzUtPm3q8UIQEC2E7ZRlZaFThotLrNhIG/moJMmaNf5rAjz7/dIMp9mu7QayoRc6yUuSp0p1PR/wbs4J2xbhFGIrxEilN2n+f7an0GyfkT1Aoxa6o+b14X7MFTHNBji6hYiZ6Y1kId6J5WjPRid5pzVoaEyPHk5vabHXD4URCNzn4ax46AAmfbOYtOqxjdcKELu5kjJYhtrBElembWWKUOn/hMyO2DKjNueJvRKw2PqXP9BIcXt1ZVjZFuywjyxLxojSteczqOqyZm4xsT6Xprpz+qFe1n9Qz4i/WRE/ArlXvg15RDOi/58LnTK9gMcPC8kLSPbivfgUAmtZsBhTDYjHitOdWjGTUHE9rOnu9qA2o9RezovS9lngXds2NV41CRepMZHsqMf1YD9vFilwApZEgRy3BgWpEDUv4J4VZnbXaOB8mVuxmRm05ZtSW455jB7C7eC4Or86xdSq7FFJZZdX8xi3LLRgRmU7mjTIj+JaJFcIcHBUsixcvRlhYmNfn/PPPl91/4sSJPvuHhYUhM/PMyJDjODzyyCPo378/IiMjMXnyZOzcudPnWFVVVRg3bhwiIyNx1llnYfr06VZcIi9QrOog5Y7r1OqpQoTCQi4DrXC7+Hu9gbg+WXZfXdH5AYDf3qPrmFoxY40es2fLqOl49QbnMrTGEakRMFYvM3HPsQO8QCnyVGF78fP45J45XvVvxfvkL5hZqu3QalmRSqMvdQ43Y9WsHX9Q8K37cDyG5cILL8THH3/M/921q3yRysvLceLECf7vpqYmpKamYtasWfy2p59+Gs8//zxef/11JCUlYeHChZgyZQq2bdvGZ+f9xz/+gbvuugtPPPEEMjIy8Msvv2Dr1q0WXF0ny+4uxIrI/pLfWZnjweokcf4QW1q+/vAwkNRZrqUAUKccqLt0YD+g7szfagWMUr6ZipqDssGTejBjBCu0vqlNsJafkYkyaJ8JYUVMiJnuRqlrzhfEOxX5fGucT+6Z4xOsacfChmriWBhqnzO9z6PVosVIQslsTyUfNK6H8389UbdbyK0xVKGK44Kla9euSEhIULVvbGys198rV65Ez549ecHCcRyWL1+OgoICZGV1NqJvvPEG4uPjsXr1asyePRu//PILfv/732PZsmWYO/eMWLjgggtMuiJvxucVYAikxUoo8fWHh7FxegrWxKmb9dFYt95LrLBt/ho+5rrI9pTzlhZxR6pn9oGY2MISS4JMGVIdt1dnpGKKthRp0yah5t1qyUZYdraLimMCwHZ0xsrEWhRrYhXixevsygNTkTpTMY7FqBhWShrnBEZFixGxqne2ECWScxeOx7Ds3LkTAwYMwJAhQ3DrrbeioUF9J1BaWorZs2ejV69eAID6+no0NjZi8uTJ/D7R0dEYN24c1q/vHL1/++23+OGHH9ClSxeMHj0a/fv3x9SpU/1aWNrb29HW1ub1UYOTjYVb1g0qy8jCmrnJaInr8IqlYYLCn8lfaFnx1+DtLp6L3cVzvY7JzuH2xfrG5xV4uUbMcCvJITazxxaWIKYp3BQzeLan0jIzvl3uAbdNqwbks9WKXUeB4ObRg5Z7L75vRgS0lbliCG04Okvon//8J44cOYJhw4bhwIEDePTRR/HDDz9g69at6NOnj+JvN2zYgHHjxuGrr77C2LFjAQDr1q3D+PHjsX//fvTvf8aqcfPNNyMsLAxvvfUWVq5ciTlz5iAxMRHPPvsszj33XBQVFeGjjz5CXV2djxWHsXjxYjz66KM+29XMElKahWCGS0hvFL6clcFIVL8TsOtQaljElha3W1j8sT0u0VAwKJs1pEagKAk9qYUO2YKMgDmxH1L31Y4YLbZ0AhMvVkyPVTtTSEygCxK9IkDLfRdbyozcv5a4DsNWQ5olZBxHLSxTp07FrFmzcNFFF2HKlCl4//330dLSgrffftvvb0tLSzFy5EherKjl1KlTAIA//OEPuPHGG3HJJZegrKwMYWFhWLVqlezvFixYgNbWVv6zd+9eTeeV45akhw0fw0yxYidWB1MKMVuABZLLQ4q0aZNkxQqbKdMS14GWuA4UeapkP3LHtvre2mFpcZN1RQyN+v1jVqp+gAJw3YLjMSxCYmJikJKSgu+//15xv6NHj2LlypVYsmSJ13YWC3Pw4EEvC8vBgwcxatQoAOC3C2NWIiIiMGTIEEV3VEREBCIiIjRdjxreqn/K8DGkrAeyqw7Dv1hpLsixZAFAMXpEhFT2Wyca79jCEqTZuGCgFTAXHYM9F3ysgIGcKmzxxXwYE8dy99ZoIKYWWMeXX1tuWVp9KYSziKTeFTNisQINI0GwRpPIUQCu8zgewyLkyJEj2LVrl5fYkGLVqlVob2/Hbbfd5rU9KSkJCQkJqK4+k668ra0NX331FdLTO+MgLrnkEkRERGDHjh38PidPnsSePXswePBgE69GHcvuNm7alQoqZankAYlpvn6wUwAojdSBToGyr36E7LRoNxFoa+6kTZuEhJR0lGVkWdLxMZeVU9NSAwHhM7M9LtHrA3QOHqiTPIPWQY7YymLEBR9IbvJgxVHB8uCDD+Kzzz7Dnj17sG7dOsyYMQPh4eGYM2cOAOCOO+7AggULfH5XWlqK6dOnIy4uzmt7WFgY5s2bh8LCQrzzzjvYsmUL7rjjDgwYMIDPsxIVFYW7774bixYtwkcffYQdO3bgnns6c3MIp0cHEuIAU+DM1F7WEQXay8ZEytcfHsalUzrjmaxa5TmUEQpbq7AqCNfOZ9qsmUPM3TZmdR3vomBBskycXF26C2nTJiFt2iTXrVxtB/4GWEaeJSP1WZE6k1xxDuOoS2jfvn2YM2cOmpqa0LdvX1x++eWoqalB3759AQANDQ3o0sVbU+3YsQNffvklPvroI8ljPvTQQzh69ChycnLQ0tKCyy+/HB988AGfgwUAli1bhq5du+L222/HsWPHMG7cOHg8Hpx11lnWXawMKyL7Y7fBY3gtauep8jHpC/OSuG20xhoAsatnYNJWNNYBSELnvy6EueJYun8ng3D1wqwgclOd5VDb8LM6siqHil28n5qM9z1VGKLCJXTPsQOyuX7O1EEVINqF1enh2hzf7RkaC+xylHJEqRGi+RmZsvl/hGLH7PauInWmYTdnsPLDDz/g4Ycfxj//+U/8/PPPOO+881BWVoZLL73UtHM4KlhWrlyp+P2nn37qs23YsGFQmtgUFhaGJUuW+MS3COnWrRueeeYZPPPMM6rLGsgUear8xiMwYgtLAAesMYFmOWkuyMH4vALUpI4OSKFihNjCErxfkBOSo/8ZCnEsbCbJfB3HDcW6VJPYUmof4d/CFAns/177Z2SiCJ1tn1l1XJE6U3V7Gir89NNPGD9+PK666ir885//RN++fbFz507TjQCuCroNZpjvVGmKs9ME2nTmQEM8FVVtbhVxBlwAwLvV0jvrRCmhHADvVXc9lZ1B2adH/WxEKzXNmgXf6nmu1JjfrQw8ZdOalZhRW274/KEoVpoLclTdX6XnRrggZUyT/HpXzCo2/PT0/OE2B0+HAk899RQGDRqEsrIyfltSUpLp5yHBQvCQWDEPpTwZataDEXZi15lWKv/IxQdkeyo712HyyHwHoOzdascXCjQTf2Jld/Fcv24uNaKH0I+WDLZMpJiRQDJUZmiJE6TKzZZ95513MGXKFMyaNQufffYZzjnnHPzud7/DXXfdZWp5SLDYhJstK4Q5GEnmxX57Xe0uWwWKEGZlkRWur9LKs4wZteWqYnLEYkWPgOkzvQRlGcm2DijYFF63T+UVWlm0oOTaU4Ob3ULjDn6JqMhIQ8doO3YMADBo0CCv7YsWLcLixYt99t+9ezdWrFiBBx54AP/7v/+LjRs34v7770f37t1x5513GiqLEBIsFrPs7kLobebH5xXYmtHS6cUS7cSMhtiMexP962wA2qwoNRZaMtKmTQLy7tf/WwewY7QrFBosmZ4elMSK+DuhG6654CnbgpZ513BGJu/+K3Px+lBaxUdF6kw+MaKRhHBD8kpNcQm6mb1793plupXLRXbq1ClceumleOKJJwAAo0ePxtatW/HKK6+YKlhclYeFOIOS2yA/I5Om1/mBxVXYmU1XLW5f68XsOrNDyFid64WJiSJPlekdt3D9KCFsmrMbOkQr14cyAz1unlAZnBkhKirK6yMnWPr37++zgPDw4cM1rQ2oBhIsFqN39otUpxZbWGJpo+HWEZRe3Gwxys/IRJrOFZfdxvbi5xVFTs271ZYLR6vvs9XvXijipBAzK+iWcrN0Mn78eK9krABQV1dnejJWcglZgLBhK0NnBLsZMEFhpWnYzZ28Flh+FLlcDVbnBRmfV4DtcYk+IjAYZ2INz7sf8GNFsVoMl2VkWRJTwN8vFljs8pgOM5BbmiPQc+mIqUidadgtxI7j1ngWu8jLy8Nll12GJ554AjfffDM2bNiAkpISlJSYK/JJsJiA1MiLBawRzqEkDKzq4IDO52Ht6U5NvLjlGkvOGHwI8wEJR+JKawtZ0Znata4W4Qx6g3bFhMqsITnGjBmDiooKLFiwAEuWLEFSUhKWL1+OW2+91dTzkGAxyFkLn+f/Lx55sVwDgTTnv7kgB2UioRVsFgFA3+J5agJ1x+cVAE0NGCgQKg3pnUtIJK5vMqUDNCsmpEZDLpeyjCyf876fmty5CKRCebRm0BUTyp0AoQ72jOSf/ltre2uWlSXUM+Bef/31uP766y09BwkWg/z02P041q2b08UwFXEHUyZMGhbCqOl41xYXqk4I5yRMrBi5p9fV7vLrCtJLtqcypBt/N2KlVVIPZj0fZllZSLRYDwXdugw3BnCx2QosJsSNM29CBaNJyGrerdZkWWHotZIEQ7wHW1E8lJ57dr1WrsujBi1CQs89MvueBpI1PRAhC4uDtMR1+Pje3azOhQ2WsMyxAWqB0eMW0kpDehwS1zfh8OocvCWYGsuwK0mcUKSw69USY6U1fbwRV1BsYQmKXCh0gkF8acGqIH8tgzLhdGU1bWNzQQ5QWKLaxcP2M5pITog4noVZXI8ePQpUSC/aS6iDBItDzKgtR1lGlqsFilpYwxaIriMrOiGv6ej1QJe8AmB6GcZLfa+D91OTNQmI91OTEXv6/3Z0uixbrt6OTqmMRZ4qV1ohzULttQVyu1HkqdI8yAm06w31IFyrIMFiA1LZEIsAV/mDjcKCTQHvxsWJabxuayhYXIsRoSJ0BcUWlqiOHal5txo47dITY/Z9YVac5oIcS6e/BrJoEZdbPKqvUHmcWBdnnlWDcJAj9RwaeYebC3KQrWOygxlWFpYFeXxeAcanjjZ0LMIXimExiHCWkBTM/x3syHXGdse+uLWu9YgVlgFVHLeipqOqebca76cm29apsTIaFUFaLAx2PE/X1e4yZTVlcXbqitSZFO8A6efFzneYWbrNgLn4AyHoPlAhC4uJ5J9ecwMIPX83oCxaGFIj70AdLVuB0aBa/vd+nj9hnhOj1LxbjVjY7wq0OkeKkZWWfeKDTJqJwgiW9kWYqNJsoeLPYsKvtu2pkrX0aDlXkaeKPx6JFmsgwWKQ2z6rQhR1uK7ArdYVJfR2iFJBtGrR6qYry8hCWrG3JVF4fuGxjNwDPX5/PgfHaQuGmYv0qbk3cmK7QhT0SdYUecy8Z+JcSVKiZXfxXNnfa3ULsaBgqSBbwnzIJWQioTTt0UzMCj4OFUtNfkYmP9XcarGiRLan0rRjGc0KzZ4fuxbpuyXpYdnnLSEl3fLzE77kZ2Qi21Mpe19m1JbLihXmutYCb1UJwIFSoEIWFhNgy5UT+gkVsWEEM+rIDIHBZgGJ8ZdYTKn8ZSp+7w/mXrBjuvrApK38/9clTMDB+Dj+7xWWndVahPfHTKuHlaiZbdQS12F6ILjURArCesI4juOcLkQg0tbWhujoaLQWFyEqMpLfHsoxLHoxc9QfLI2I2EogXJvKSH4TqXpmJnCh6BZ2WEoWC7c/50brTO6YZmVH1YuSW0MvSoJSz3vFjpeQku531Xqtx1fTZgifa7UCjJVZ7t6qFSpSbqGjR49i8uTJaG1tRVRUlN9jaEWuT9J1rGPHEJ2Xb1lZ9UIWFhMhlxBhFKE4sKKT9UtyA7ArUVaspE2bZDgw2E7cLqgCBaGY0Sou/IkVLYhXz5ZDLDjMsLppsaoEyhIdgQYJFoOcd95YdOnVG4116ztfigAxpbqJUFsRV8p6IvV/KXTHrChYVgDv6Z3Nf/RdaZyd121iReuUYzPKzxYIjWkyfChXoTa/jRHxonRMuWN5iW0FoSJnFTmzvUPVAqaAd/DtjNpyJKSkY3eQWG8DGQq6NRGysBgjFOpP2PhqDZq1KsBW6ApiridhQG0wCXAzcqo4jZvi5cT5ZcSofafl9mOBtEqozWmjdUXmGbXlvFVl/ivarSVGM1oTvpCFxSDff7+B9xcyCwvhPLckPYy36p/yu5/aEZcRxNYKO6xw/sSKuIFnz62S9Ycg5JCykBR5qgCWm0QGoTjW6rLRE0O0YN8hzNewf7DExAULJFgI12Bm4jGhWFGaftqoc80bKaEj19mb0elrEVb5GZmqTOfxB5twWeNnvFgRC26js3bcCrOyGHEPNRfkICav1KwiacYOoW0HzL2W7alETFO4b50qWJPUWpqEosOfWBG6xUisuA8SLCbhxPomUrM3gqERM4KWe6A2GFBYz0xUlQnOxSwmVtW9lrwiajLYMv+8UKwAoeGSM5OWuA7NbgazMLK4pBJuW6fJaMoIp0UHBd+aCwkWk7DjJWejKsXcAyZn+wxFfNwpEvWc7ak80xha2ChqmZbrz7KC5AZU9J6HGUeW85vEz5Cwg7Ajn4mTmGFpIc6gd4ViK4LujQgVfjVpsrC4DhIsLmLZ3YWY/0qB5IgeQGdnpNApCUfIwWIytgMfsanCNaWmQTSyFo0QLfkjZDktVgDw/wphSdf40WxyA8oG36expISdhMo7rtXKYoZVxcx6JSuLedAsIRORMqnHFpaoNuk31q33iopnMQXsw9JAK5nuha4Jdm47UpW7EStSpGtJxW3HyN3fLA1A+rkUdgAVqTN510ZZRlZnLhYA2f95AYDxtPluJ1BnDlklVpx2o+jF7DT5ZlrNacaQOZCFxWSEjYjWht7rZROs/Cl5Dj8vk7/GzKoEZU4hXPWVYWbCKsD+hlxpBK26MU1uQExTOG9VEY9UO8XM6ViM0/sCZ6wwMU2nE2bpuYAAItDcQ8EWEN35/sovPKhkZbHqvTT7uDUvPW3q8eTY8dIr6B1uLLbqSEcHAGDMmDEIDw9Hbm4ucnNzzSieIUiwmIi4c7FbCBjN6aE088WOaxE2EFpHN2bOMJIiIEedpy0lSmR7Knl3kZSraMaR5SjLuC+oOkczmZEWj4qag04XI2jQulpyQL6XAcTGjRtdlZqfXEIEj5QoCQbrixL+ZsaYtZK0HozWvVCEsCRYPvukzuQDcdkHgNf/s//zQtC7hXTzqjNLHQbbe6nmesRChsRK6EEWFsIvC/YdwtLCEq8pnC1xHZL7+rN0iGcw8R2hwrLwWpByDSmhtK9Ts63krFpqVqaVQs6ULkw9XpHqPXvIX7nstLzZiRbXkBMp+t2U5dZJSKyEJiRYCL/Mf6XAJ6GTXP4Jf+bc5oK5or99160xgtWuIatREgJ6rs2rgzu9sKHkd37I/s8LXrOG3CJU3k9NtiRo1qwZXqGG3qnNamDPq9LxQ2XmVKhCgiWIsLqx0JMKOxDhLSsOjOK88rvoQOjiyvaUe1ucBGIF8F38UGhl4V1Jp/9OCL8FjSxpXhB3CjXvVgPoFGT+RAvL1yN2K6ZNm2R6mQJdiKuBJa1jbY2UoJZ7N3jr7OnUD2SBCU4ohsWlBNq8fX/uBDciF7/ixs5YjbvMW6xoW9dKKF68gm93JQK7ErF0YD9+er0b68dsYgtLNFlY0qZN4j9mwgSU3Tjd4ZPri5CCLCwuRWnevpr063ZglkhhsQBC7BhRSp3DyYaaiRKhpUztisticcL+Tps2CWUaRugsAHfd0dtxWeNnZ8oRImn7vepJsPQC4C1khVmFsz2VKHu32jKxEgrWFTX4ta4QQQ8JlgDDb/p1iyjyVCH/9P/XJUzAwfg4fiR+z7EDKG/rDvRWPsbu4rmy3/mM2m1shLw6e4cEi7jR9TJx+0HKkiLsPNOmTcL20/8fnne/4rFa4jpQVLwFwENYf7ocgWhV0Rt/MlxiGy8YFJ7JbE8lik6f08yYmkAUK0Zc01JrGSkdi8RKaEEuIZMIhYXj2DUejI9D/MEm/lPe1h0zo074/f0QB1e3ZUjdJ5Yd2OwAYLUYaXTFbiBAOYaCuXXkyPZUemVI1iNW7K7D91OTfT5OkZ+RaZobR0msxBaW8FmOreq0nXYLuaUMhHsgC4tJWLV6qhh/q6laGXh7Zin4MwG48QfVz+mckRavuo60Tk9Wi79j2m1J0NPZyAmO7cXPI634ecXfpk2bxHeoM2rLfdwdctmVtSCX7TnQrDRaYfdSaG0B9Flcat6txnCFZzUQLS9mQ9aV0IMsLIRqhPEULBHZZY2f4WB8HFZE9kdLXIdsfhYAmpJsCTs3q61XgZQUTa4u9MRPFHmqvNaesoJAEylqEgmqQdiZarW4OBVoayZWiwml44eCtTtUIcFCqEKpU2fiJdtTya/4O6O2HC1xHV7/am1IhIuZmd0ICV0jToxWmUlfC+I6YPWtlbRpk2w3tQeKRcCfwNJyHfkZmbzIr3m3WpUQ0RtoG0ii2x/+3vlldysvJBhoIplQD7mEAhCr3CVK6DmfcNVpPTD3VnNBjqoVidWeR2pfqeOLO/V8hVkjWtATOC0lVqS2q8HuGA9+FliAxiP4c8Mq4fMO5N2PsowsSYuYkVlBZrmk3eRmkbum+a8UoAjq3lkiuCDB4gK0ZmdUs1pzsKC2AbVSwImnFvNiwYEEasJyCMWKVRlfCfPJ9lQqChc7UDtd3inUiETxwIPESvBDgsUFBIIJ0wmrjlWovQ42pdfp65ZyXYmtPOPzCvB+cSGJFgvw13EmpKSjsW695uOK87dY8ZzJlj1A3mWloO3mghxbJjoQ7oEESxBixXoaZ2YI2dPQWWmaZiMxdg7hyEx8XrnkcvkZmZ3f6ZiVVeSp0jTCFe8nN9V4fF4BWtGZdJCEi360uoD0iBUGs7aYgZvcOWbBnn2ynhAABd0SNuIWS5IwFkVtQygMADbaMRgxx6uNWZGLU3EqR4lb7r0agimANRCxMrcMEdiQhcUFaLWIOPUyMxOssMNV6zJx4whJqs7lRtdia4wR0WFErAxvagAArBVsl1p3irmIAHMzr+rF6VV0pc7PhInP/QgQd4nbEda54eSILmw/CPshweIQXo2lygj/8XkFimsMMaxOYicM+vXX+boxrbsW8SQlYJxYHoHVoz+hwp4P4XMSqgG5YkuJj8gkYWIpzGVqxnEoVoUASLCYir9RpLABVTvKduOqzVoWX3SbWNE6WpNd40cnRhauVCtYpX7jZLp6OxC/W24IliYIwlxIsJiIUufsb1QeW1iC4U0Nfjuk8XkFQO0mv2WxKkW/ltWD3ShWzCyT1vrVm3+luSAH41NHez0bckLWLQJXnLNGzyhZk8AXfU9iJbgw06XotHuS0A8F3ZqIVLCe2gAyNQ3s2uJCTSNsK2JdlMrJOic3ihXA3E5Ma8I2PfeiyFN1Jmbl9H3XIki0Pi9mIhQqrN6l3g/hQovCD5uFpTebLxFcmPEMsLbYqefpviunOHJeu3nyyScRFhaGefPmmX7sMI7jONOPGgK0tbUhOjoarcVFiIqMNOWYNamjFb9nnY/WgE+zLC0+501uAHYleu1jllixK7BYqrxy59Z7bXoCdKXumVbriVNiRYhsYCtB6EBLW8beO7ZQq5gZteWWTwYQrlD/89HDuG3yULS2tiIqKsr0c7E+acN5Q9E7PNzQsY50dGDs9zs1l3Xjxo24+eabERUVhauuugrLly83VA4xZGEJEISdj9ZO06xpmj6djkissH3YKNkMzGxQpKwiat1bbIkAPWjtrINp8TZWZ8F0TW6nJnU0/wlV8jMyEdMULitWACh+Z5TYwhIvsRIKHDlyBLfeeiv++Mc/4qyzzrLkHCRYXITUiFjKFaBVDJgxutVyTmbGZyZY9rEiv4XVIyQjQgXQbimSO5/cjCAlK8r4vAL+4xRslEsWFusQCpRQFinAmUVF1YoRI5Zcud/GFpYgpsmYhcMttLW1eX3a29tl983NzUVmZiYmT55sWXnIJaQTK1xCws7XClO6kUX7zHbRqBEadrkTrBA9eupL7HJiM3yMCg4nXUOUAMxalARKmorg/EBEblFSvRYTI64h8eQGJbFkl0to+IrhCI80Jpg6jnVg+z3bfbYvWrQIixcv9tm+cuVKPP7449i4cSN69OiBiRMnYtSoUaa7hGiWkIsQ52YxG+GifYD7phyLUbNKs17clsiOnw0kECdmiBUnMTKFm5An1K0oDGHbYNS9o3dWZVlGFvINndnd7N2710tcRURESO7z+9//HmvWrEGPHj0sLQ8JFhdhl9mcP4/ghbdzZo+RzJVG8msYsTBZhbBMQouKWrGiZj89+VsI95JWuwk1qaOD1oLiD2bFqDDhWEYDb+1eY81uoqKi/FqDvvnmGxw6dAgXX3wxv62jowOff/45XnzxRbS3tyPcYBAwg2JYCADewbLieBOn1laROi9LCqYF4ejLTWKFIbSsiC0s7F/hR7hNjHibk1Ob3d6Il2VkWRIMbEeAMRMrbrMUBgozasuxu3iuKfXnxjbFTiZNmoQtW7Zg8+bN/OfSSy/Frbfeis2bN5smVgCysLgGYd4KpxCe2yuttsllMppqW08dVaTORLan3HUpvsVuIDWoESqEfxbsOwQAyFaxr1rLnt2zoUI1RmhGbbluN9Du4rmuawcCmT59+mDEiBFe23r16oW4uDif7UYhweIS3D4aNZv8jEy/Lhoz6qQidSZm1JYbPo4W1HYiQteYXGI48XZ/YkX8e6fcQYEQv9JYtx4AkJCS7vW3FHLPoljIhNp7HAjYkW+FsAdHXUKLFy9GWFiY1+f888+X3X/ixIk++4eFhSEz80wHwXEcHnnkEfTv3x+RkZGYPHkydu7c6XWcc8891+cYTz75pGXXSUgjnP4szHIKmOeGcqtYESOefix0EYm3uz0Q18hK1k7QWLdeUazIwaagU2foXqwWK+xdLPJUUa4hAZ9++qnpM4QAF8SwXHjhhThw4AD/+fLLL2X3LS8v99p369atCA8Px6xZs/h9nn76aTz//PN45ZVX8NVXX6FXr16YMmUKjh8/7nWsJUuWeB3rvvvus+waCV/EL7cwDbtTMTNG0SNW5MSHUjCtksVkbXEhtsclev1rJ1rESqA38MIcQ4S7mFFbbotlRfieMkux3YOkUMJxl1DXrl2RkJCgat/Y2Fivv1euXImePXvygoXjOCxfvhwFBQXIyupsDN944w3Ex8dj9erVmD17Nv/bPn36qD4vYT5KnVogjc4ZWl0grLPWIiiE+yp2kiz+6PS/dlgAeKEiqoMiTxVfVp9yeKr4WALq9N1DoK50zYRCkeC5sgP2XrLZS0wsWZlJN1Rx3MKyc+dODBgwAEOGDMGtt96KhoYG1b8tLS3F7Nmz0atXLwBAfX09GhsbvTLtRUdHY9y4cVi/3tvk++STTyIuLg6jR4/GsmXL8Msvvyieq7293SfrHxF4qO0YtXagWht4LfsLhYqeZQ+stljJLSjHBEqRp4rcJgGAVbOm7EAoVpxg2d2FfN0xoUKWFvNx1MIybtw4vPbaaxg2bBgOHDiARx99FFdccQW2bt2KPn36KP52w4YN2Lp1K0pLz6zX0NjYCACIj4/32jc+Pp7/DgDuv/9+XHzxxYiNjcW6deuwYMECHDhwAM8++6zs+ZYuXYpHH31Uz2USDqAUbGvmaN5qywATK2m1m5DGrCYaYTO+zM61I3ftwSJOhNYhqb+DjeaCnIByx1ptUYktLFH9viwd2M8rHb8Twf6hgKMWlqlTp2LWrFm46KKLMGXKFLz//vtoaWnB22+/7fe3paWlGDlyJMaOHav5vA888AAmTpyIiy66CHfffTeKiorwwgsvKK6TsGDBArS2tvKfvXv3aj5vKJOQks7PxrADYWMRqKbZtcWFpsZIiOOD9B6X5eohfLHLmlSROtP088hZytyKHXWtVsBJrR0UqO2Om3HcJSQkJiYGKSkp+P777xX3O3r0KFauXIm5c+d6bWcxKQcPHvTafvDgQcV4lXHjxuGXX37Bnj17ZPeJiIjgs/6pyf4XykiZlvXMwjCLQBzpGBEqSmZ94aKUgHZ3kVUzgNxqlRGXi3WScuW1Kwh3Rm25qvPo6dQDSbRYiRnWyEBse9yM40G3Qo4cOYJdu3bh9ttvV9xv1apVaG9vx2233ea1PSkpCQkJCaiursaoUaMAdC4I9dVXX+Gee+6RPd7mzZvRpUsX9OvXz/A1EII1iwTBe2UZWVgKAHXOlctsjHZM2Z5K1OQVmJ5iXUuHo8Zd5CVS/BzbiPBwW7Cn3P112rqkxTWltB+7V05fjx7sFLhaXENSsNlKx0+eNLFUoYmjguXBBx/EtGnTMHjwYOzfvx+LFi1CeHg45syZAwC44447cM4552Dp0qVevystLcX06dMRFxfntT0sLAzz5s1DYWEhhg4diqSkJCxcuBADBgzA9OnTAQDr16/HV199hauuugp9+vTB+vXrkZeXh9tuuw1nnXWW6dcY7H5vtbipIzKKmVYGt6wHI5V9WG7mj1U0F+R4rW/lNtzyHpuVlM8t1+NmjFpZWCxLfkYmHv9wtTmFCmEcFSz79u3DnDlz0NTUhL59++Lyyy9HTU0N+vbtCwBoaGhAly7eXqsdO3bgyy+/xEcffSR5zIceeghHjx5FTk4OWlpacPnll+ODDz7gV5GMiIjAypUrsXjxYrS3tyMpKQl5eXl44IEHLLnGUG4U2Lo/gSpWpFZwzdcZ+BoI+DyrOq6TuZj0NvSB/LzYRajXj9vch0PyShW/Z6LlviunoKBCut8i1BHGcRzndCECkba2NkRHR6O1uAhRkZFOF8cQgWwa1oLeyH1hAxnsdWQGLIbm0dJNuK9+harfBFp2XMI5Ak2wMCbV/AXReflobW21JAaS9UnDVwxHeKSxBQc7jnVg+z3bLSurXlwVwxLokPsnOKF7qh6hhSQ7CSib69/i4haxUpE6Ey1xHa4oCxEY5GdkokLlvu+OvAFAvpXFCXrIwqKTYLKwENIkpKQ7OrspkBAH7UqJPLaPkwLQjEGFP4vkuoQJuKzxM0PnIKQxO5eQUdRaVwCysJgBWViIoMLMGAgSK+oRdyJS94HNSHISM8SSXYLL3/R0wlm0WFdm1JaDcqMbhwQLEVRQQ24/UjEFzQU5KHOJq8dsijxVim4srdYVsTDhxZ9CrEYR3ONKI+ShPCzmQoLFZWgJgKVgUMJp5AIgAynFuxLs+oTiQM1MMWG9COtCLDCKPFWKwkSJ5oIcFCGw3n0mzvQKLbe4g9RMLSexYj4kWFyG1FRapX0JwimUxIrbRv56YleE16fGYiRXH1av0RNIwf5uey6sgISKdZBgcSGB0vgEAm5szJlLwekAVL2IAx/FnbEbOyUjYoXBEtsxK4Ge0T6794C59UTWVnuRu3ckVqyFBAsR1Igbb7c07Kyzk0xMZwCjJnc1x5frqN0oVPSgZOE04sIBYIlYEeNGkR5sSAWVk1ixHhIsREjBGnKpRe3E3znR6Cstqqdq/9N/WxHbINdZB4tQsQqhBYqJvTK2zaIkaFaJFspE3Amrgxm15boTUhLaoTwsOqE8LIQe7M4jYVanJSx3MI/ezcqiyurI6bwhwSZahC41pwNwtdZt27FjlIfFIGRhIQgbCUSxIjyenWnRAzlxX0XqTABATBPQ7HBZrMBJ0eK0UHE7Nf2vRVSvCEPHaDvajmhsx5gxYxAeHo7c3Fzk5uaaVEL9kGAhCBH+4lz0mtvtXgPFTLeA15Rem3BCrIivj3XMTltK5HDC2iUWKlbHTbkRPfX+wucfWlASa9m4cSNZWAjCSdR25MJ9hHEtwewSCSWYFYQhFYdgRidshmXKjmBdvbixTG7BbQs1BjokWAhCQLA1MBQkKY1YrDgNy10jzHrrdd/oHrri3dSSY8gN5Q02SLAQIYec5YT9K9XQmGFVYY2dUw0Zsyz5Sy0fjNgtUHYXz/VaGM9vfbMVrkPongQKXvdOR+JAwjxIsBAhjZQQsTq4lCWNs4O0aZOw/fT/rwOwvfZ5XAcAp7cPz7vflnI4iRqxsrt4ruGp4MLZK/kZmYDAxURCJPDghYqKe0dixR5IsBCEBFbEqQg7LStF0XW1u1TvG6wuI3ZdasWKEXziSyjGKShQ+16UZWRZlk+H8IYEC0HYDFu0zgyG5JXi/F9P1PXbmnerg1KsAEBMU7iiWNEjUmRFbJDWYaii1V3qxtljwQoJFoKAvdlt83WuRyO2nPz7tU81n7vm3WoAnaPH4UHa0fqzqiiJlWC1OBHq0XL/ybpiLyRYCMIBWKNYppC1059rh1lW5IRLS1yHT+NLIkUZuVWZScQ4i13CQOuAhawr9kKChSAchE1lFa5jpCUGRQq165o4uWaSWaiJURmzug67VR7vlqSHsbHJWFpzwjjimWwkDAiABAtBAHC20xaO3mMLS/B+QY4m0bK7eK7f8ofiLAZmVVErVobklWLj6f/Tgnb2Ifdsut2qRe4g+yHBQhAuIttT2TnLJMO3IZcTJcMVjheMQsUs9w9DmC9FDMW0GIPVn5Hn0Gph4JW0j4JtXQ0JFoJwKXqtPlo6h0BzB5k584dNR0aT/D4kVvTBP4OeKl0z4mILS3jxYLYwEK6kDZyZURaj8BwQ7oAEC0EEOMFoRRFTlpGFGJnYEt0WFZkOakZtOcoyssi6ohO7n0cl0S1eN6wsIwsVp58jIwKF3EHOQIKFIAIUIx1DoFlWTBcrKiCxoh0jz+T4vAIAwNriQtm6F4sPf/eIpRCIMUGkEM5DgoUgAgyjI9hAEyudHY73NiuFinABQjNhHazU8dn2YBdJ4/MKsLa4UPI7tl3oDlLi6tJdKJvrXaes/pjrcMzqOlmxSwQeJFgIIoCwQ6y4bYbM1aW7sHF6CgBrhQqgfkq4GsQChP1fTpSEglhh/8qJFuBMPUg962zbLUkPA+h8NvZhBK4u7ZxVtw8jAABj6uvMK7gEFHDrDF2cLgBBEOqxwzriJrGyr34EL1bGrNbWCWkVK2ZjtwBJSEl3bTyT0N2jJFYCBT5gm7AVEiwEEWAEmktHL/vqR3j9zYSLGpwWK07QWLfe0WdDSSypFSpqhEAgiYX8jMyQeV/tgFxCIQTz67ppBE3oQ8tqz4HWYFakztRsTQFCU6S4DaElhf2f/a0GJXcQg7l/iNCDLCwhxIzachIrQUSgCRG1MLGycXqKKqvKkLxSy8WKVYG4wYJYYAjFilqY5URJrGh95rVY5bSgNYYlWN9VuyHB4mLc6o/WQpGnihp7C1EyOednZPrtyIs8Va56zipSZyoKFeH1mC1UlMR8oAXEOnVPha4f9n+t1hUlxG5CJawSK3q578opThfBMpYuXYoxY8agT58+6NevH6ZPn44dO3aYfh5yCRGWE2iNfSAiJ1rUWNQCbfRHrh91iJOm2Y0Wl5DaqcyEO/nss8+Qm5uLMWPG4JdffsH//u//4pprrsG2bdvQq1cv085DgsXFBFpHQpiP1Z2Om54xNSsvW0WwuUrtvK/MmiOcriwUKOPzCnxcRGIB45ZBTSjkwrGCDz74wOvv1157Df369cM333yDK6+80rTzkGAhLMVNHWIgEir151axIk5IRnhTkzoa8FR55VhRg1DcCJ9xs1xZet1BdJ+9aWtr8/o7IiICERERfn/X2toKAIiNjTW1PCRYCCJAYY17qIgaJ5DLTEucQU+ALWEd7/b+HXr26mPoGD+HHQZQjEGDBnltX7RoERYvXqz421OnTmHevHkYP348RoxQH3OkBgq6JfjRrVmjXDcFcQYrzFUU6GKlLCPLUeuKGmjUbQ1ioeOv3WDZbZ0mWNMJSLF37160trbynwULFvj9TW5uLrZu3YqVK1eaXh6ysBCm+++D4UV1O8I8LFTf+lH77FNsgy81qaOdLoIpBFv8kplERUUhKipK9f733nsv3nvvPXz++ecYOHCg6eUhCwvBQy9uYBHMQqUlrsPyc2h93s10DSkdK5BcUEbT7KvJvSLczwoqUmfyH3+ota4EUjZeM+A4Dvfeey8qKirg8XiQlJRkyXnIwkL4QIGGgUOgi5ZsT6VkR2HlCrtOChWp44nft0B475h1xWj8itprzfZU8gsb+sNI/hUl0TKjtpx/3/wJl0C4h2aSm5uLv/71r6isrESfPn3Q2NgIAIiOjkZkZKRp5yELC+GD+GULpBEfEXjYadnTcy6zhUS2p9JnFedQ6+DWFhdie1wigMBpX4RWGKWBQqAPIvSwYsUKtLa2YuLEiejfvz//eeutt0w9D1lYCElCrQElghujoojeB3MZn1eA7af/rybNvdoMt3Zkt61InclbW2iCQSccx9lyHrKwhDhq/Lb+Gmu3z/IIBoR+9mCsb6usLC1xHbbEwxDaWFtcqHk9Hn+oEStmPWfsPRySV4r8jMyQi1lxChIsAYYbOysK1rUes+vYjSNDs6+xJa4DMU3hiGkKDxi3QygRLBaKitSZyPZUknCxAXIJBRhmN+pWi42ElHQ01q239ByhwozaclMEq9NrzCjh73ncVz8Ca+YmI6YpnLecsMBdcf0IA3fJpeMe1hYX8s9fbGGJX0tLfkYm9tUbP69Z748U7LjZHhq8WQkJFoIIQFgHrQe3ihU1DEzaimzPVp/tVnZGhHVkeyqBjEwkpKTz2xrr1ps+0GHvipXPCVmarYcEC6EZLZ2lsNGh5FvGoY5ZGqoTe2H5V8xKyy8UKULxAjD3pbLrSGkFbxISwUMYZ1d4b5DR1taG6OhotBYXISoy0tVmdoIIZvyJFeqwrEFvptvtcYmmB9wCnaJFy702U+SqOW/bsWOIzstHa2urpuyxamF90p8/3ml8LaGjh3Hb5KGWlVUvFHRrkBc+/zAoAseIwIIsCp34qweaIeQujGbGVUJONFDAdfBAgsUg9105xdFF6OzouMQmWsJ5zLIaaBHbgdjwkwvSOpj4WFtcqChEWJK47XGJqoJs9aDU/rJnINhTA4QCJFgCEOELZ4e5m2b5uBMzGl+1qcYZgSRayBVkLbGFJUir3cT/zYQL+6TVbuKz2TKR4pSAJIESHFDQLUEEGFKNr5FZQ4EKdULOwsRHfkYmH1DPBG3i3itQNqgzJwnLTUJihTAKCRYLYaNWs91FodYxBRNmBGdbcf/9lUk8w8vpBTKd7IRotpsvvustPQjs9F2TzAp3UGxhCSCziCYRXJBgsRCr41ooKVvgEagzycQddCh32KF87UYseWrEinimjxpXZSjfj1CDYlhMwMlZQhQQSxCdzKgt59cOIiuk+RixYKhpI5mY1xObpbdsM2rLDT8r9KzZB1lYTMCpUTNZV4hQRa6TEI+2mRsitrCERuIGsbpjFouOGbXlKPLzG+YOMorw2rSIHxIr9kIWFgcwy9dKPluCOEORp8rnw9wQVsROhCp62h2rBnVWiFC1IoTEiv2QhcVm7M6uSLgP4TNA91AbegM3AzV2yI1YtYZVhejvsowsQIUryYw2Vcq6o3R8em+dgSwsBGEz1NjphywloYMd91ouVkZpUEHvr3OQYLEZM4K8iMBH7hmgLJwEYR5G2lqyhLoPRwXL4sWLERYW5vU5//zzZfefOHGiz/5hYWHIzDxjauQ4Do888gj69++PyMhITJ48GTt37pQ8Xnt7O0aNGoWwsDBs3rzZ8PVQR0NoQaoRDAZBG0jZcAl3YsbMHaVjqD2+OKt4oL+bgY7jMSwXXnghPv74Y/7vrl3li1ReXo4TJ07wfzc1NSE1NRWzZs3itz399NN4/vnn8frrryMpKQkLFy7ElClTsG3bNvTo0cPreA899BAGDBiA2tpaU67FroeZ+fHJL09Yid4kdzQbh1CDVSvc+2uH2fczasuDcpC54L1N6BLR09AxTrX/DAAYM2YMwsPDkZubi9zcXDOKZwjHBUvXrl2RkJCgat/Y2Fivv1euXImePXvygoXjOCxfvhwFBQXIyuoc5b3xxhuIj4/H6tWrMXv2bP63//znP/HRRx/hH//4B/75z3+adDX2kO2pBEisBAVWNdpmoDX7rVtxa/2GOuy+JKSkY0Vkf6/vElLSMV9FwG2Rpwr5Os+vNc+LkQFpWUYWbqxaqfv3TrFx40ZERUU5XQwex2NYdu7ciQEDBmDIkCG49dZb0dDQoPq3paWlmD17Nnr16gUAqK+vR2NjIyZPnszvEx0djXHjxmH9+jM5Sw4ePIi77roLb775Jnr2NKZECSLUYEnASKwQVqE2x1Sg3N9AeFcCAUcFy7hx4/Daa6/hgw8+wIoVK1BfX48rrrgChw8f9vvbDRs2YOvWrfif//kffltjYyMAID4+3mvf+Ph4/juO4/DrX/8ad999Ny699FLVZW1vb0dbW5vXhyCMEigNLsPNFiEisGBZuqXESTCuHk4Yx1GX0NSpU/n/X3TRRRg3bhwGDx6Mt99+G3PnzlX8bWlpKUaOHImxY8dqOucLL7yAw4cPY8GCBZp+t3TpUjz66KOafkMQarBqkUwzcFPZnFwCgzAfJlT0ZLg1gjCIVo1biAJt3YPjLiEhMTExSElJwffff6+439GjR7Fy5UofUcNiYQ4ePOi1/eDBg/x3Ho8H69evR0REBLp27YrzzjsPAHDppZfizjvvlD3nggUL0Nrayn/27t2r+fqcIhgDy4IBoRhwgyCQQlw2t5ZTCmFZSewQYkisBB6OB90KOXLkCHbt2oXbb79dcb9Vq1ahvb0dt912m9f2pKQkJCQkoLq6GqNGjQIAtLW14auvvsI999wDAHj++edRWFjI/2b//v2YMmUK3nrrLYwbN072nBEREYiIiNB5Zc5CLx0RyrCMqW6yFoUyZg6gjMaGKFlZqN10H44KlgcffBDTpk3D4MGDsX//fixatAjh4eGYM2cOAOCOO+7AOeecg6VLl3r9rrS0FNOnT0dcXJzX9rCwMMybNw+FhYUYOnQoP615wIABmD59OgAgMTHR6ze9e/cGACQnJ2PgwIEWXSlhB8yfne2pDIgZLNRxWkdsYQnKcDpbqsi6IrS20KKI9qJGrJhpDSMrSnDhqEto3759mDNnDoYNG4abb74ZcXFxqKmpQd++fQEADQ0NOHDggNdvduzYgS+//FI2xuWhhx7Cfffdh5ycHIwZMwZHjhzBBx984JODhQhuqBOyjrKMLBR5qvigSTeS7alUldqdUv0HLrGFJU4XgbAZRy0sK1cqz0v/9NNPfbYNGzYMHMfJ/iYsLAxLlizBkiVLVJXh3HPPVTweETiQSLGH5oIcLLu7062akJKuegqqEbSMupl1Rc3CeeJjk9VLP3bPINP7vpNFJXBxVdAtQRDuJz8j0xaRopX8jEx+1K3XckLTZIMHmmwQfJBgIQhCF41167Eisr/rOgZy8ziDGusKrcdDGMFVs4QIgggs7Oh8tCQRMypWyK1oD0rPjVU5WEgoBT5kYSEIEwlVl4IbAnDJshI6xBaW+H3XhAKFxEpwQBYWiwmE6bWEfkJVoIixKqalInWm6uBZIrRQ066SUAkuyMJiMSRW1OG2OAi10P0NHmiarHlYmVmY7lPoQoLFRMoysmjErZNAHgnJiRa35ypxAq3viNrnwoxOjMSneRiZ3ixcDkJ8X1miP7pXoQm5hEyEXqLQRere52dkIt+F03+dwiso1sR8HfkZmZ15Vwweg3AX+RmZgKfS+1mhNjakIQsLQRC2IAyKLRKs7eM0JFYIIjAgwUIQhGOYJVpohhBBBD/kEiJCHuGiiYT9MNFCCxESBKEEWViIkIeC+NxBc0GOZECulS4bcgcRROBAFhYiqGDTowN51lEo01yQgyL4WluYsJC7v/kZmZrdS7GFJRTESRABBFlYbCBQc4wEIrRWSXDQXJCDIk+Vj8VF6f5qtZaQVU0dNDWfUMNLL72Ec889Fz169MC4ceOwYcMG089BgsUGqAMNfEh0OoNQuKjJ36I2HwslH1OP0SzGJHiCn7feegsPPPAAFi1ahG+//RapqamYMmUKDh06ZOp5SLBYgFumaxLmUJE6k0SnwzQX5KiaCZTtqeQTj8mJEgrutReh4KG2MTh59tlncddddyE7OxsXXHABXnnlFfTs2RN/+tOfTD0PxbDohOM4AEDb8eM+392VnoG2Y8fsLhJhEZNq/oI2k4/55wne7ovbPjPWkP95QqbhY1jN8ZMnDf3+rIXPo03DNd5YtRJIzwAAvPD5h/z2Y0cO0/vpEKHcNrK+gvUdVnGq/WfTjtHW5t3yRUREICIiwmvbiRMn8M0332DBggX8ti5dumDy5MlYv97kxJkcoYu9e/dyAOhDH/rQhz70Uf3Zu3evJX3SsWPHuISEBNPK2bt3b59tixYt8jnvDz/8wAHg1q1b57V9/vz53NixY029RrKw6GTAgAHYu3cv+vTpg7CwMKeLY5i2tjYMGjQIe/fuRVRUlNPFCRio3rRDdaYPqjftuKnOOI7D4cOHMWDAAEuO36NHD9TX1+PEiROmHI/jOJ++TWxdsRsSLDrp0qULBg4c6HQxTCcqKsrxFzsQoXrTDtWZPqjetOOWOouOjrb0+D169ECPHj0sPYeYs88+G+Hh4Th48KDX9oMHDyIhIcHUc1HQLUEQBEEQuujevTsuueQSVFdX89tOnTqF6upqpKebO0OMLCwEQRAEQejmgQcewJ133olLL70UY8eOxfLly3H06FFkZ2ebeh4SLASATt/kokWLHPdRBhpUb9qhOtMH1Zt2qM7s4ZZbbsGPP/6IRx55BI2NjRg1ahQ++OADxMfHm3qeMI6zeI4VQRAEQRCEQSiGhSAIgiAI10OChSAIgiAI10OChSAIgiAI10OChSAIgiAI10OCJUB58sknERYWhnnz5vl8x3Ecpk6dirCwMKxevdrru/vvvx+XXHIJIiIiMGrUKMljf/fdd7jiiivQo0cPDBo0CE8//bTPPqtWrcL555+PHj16YOTIkXj//fd9yvDII4+gf//+iIyMxOTJk7Fz5069l2sKeuqstrYWc+bMwaBBgxAZGYnhw4fjueee8/n9p59+iosvvhgRERE477zz8Nprr/ns42/59ePHjyM3NxdxcXHo3bs3brzxRp9kTE6gp96amppw7bXXYsCAAYiIiMCgQYNw7733+qxNEqz1pvf9ZDQ1NWHgwIEICwtDS0uL13fBWmeA/noLCwvz+axcudJrn2Cut5DB1ET/hC1s2LCBO/fcc7mLLrqI+/3vf+/z/bPPPstNnTqVA8BVVFR4fXffffdxL774Inf77bdzqampPr9tbW3l4uPjuVtvvZXbunUr97e//Y2LjIzkXn31VX6ftWvXcuHh4dzTTz/Nbdu2jSsoKOC6devGbdmyhd/nySef5KKjo7nVq1dztbW13A033MAlJSVxx44dM6saNKG3zkpLS7n777+f+/TTT7ldu3Zxb775JhcZGcm98MIL/D67d+/mevbsyT3wwAPctm3buBdeeIELDw/nPvjgA36flStXct27d+f+9Kc/cf/617+4u+66i4uJieEOHjzI73P33XdzgwYN4qqrq7mvv/6aS0tL4y677DJL6kMteuutubmZe/nll7mNGzdye/bs4T7++GNu2LBh3Jw5c/h9grXejLyfjKysLH6fn376id8erHXGccbqDQBXVlbGHThwgP8I25pgrrdQggRLgHH48GFu6NCh3Jo1a7gJEyb4vNibNm3izjnnHO7AgQOKDeKiRYskBcvLL7/MnXXWWVx7ezu/7eGHH+aGDRvG/33zzTdzmZmZXr8bN24c99vf/pbjOI47deoUl5CQwC1btoz/vqWlhYuIiOD+9re/abxi45hVZ4zf/e533FVXXcX//dBDD3EXXnih1z633HILN2XKFP7vsWPHcrm5ufzfHR0d3IABA7ilS5dyHNdZP926deNWrVrF77N9+3YOALd+/Xqtl2wKZtfbc889xw0cOJD/OxjrzYw6e/nll7kJEyZw1dXVPoIlGOuM44zXm7/nL1jrLdQgl1CAkZubi8zMTEyePNnnu59//hm/+tWv8NJLL+lew2H9+vW48sor0b17d37blClTsGPHDvz000/8PuLzT5kyhV9KvL6+Ho2NjV77REdHY9y4ceYvN64Cs+ustbUVsbGx/N/+6oMtvy7cR7z8+jfffIOTJ0967XP++ecjMTHRkToDzK23/fv3o7y8HBMmTOC3BWO9Ga2zbdu2YcmSJXjjjTfQpYtv8xyMdQaY86zl5ubi7LPPxtixY/GnP/0JnCDFWLDWW6hBmW4DiJUrV+Lbb7/Fxo0bJb/Py8vDZZddhqysLN3naGxsRFJSktc2lq2wsbERZ511FhobG30yGMbHx6OxsZHfT/g7qX3swuw6W7duHd566y1UVVXx2+Tqo62tDceOHcNPP/2Ejo4OyX3+/e9/88fo3r07YmJifPaxu84A8+ptzpw5qKysxLFjxzBt2jT83//9H/9dsNWb0Tprb2/HnDlzsGzZMiQmJmL37t0++wRbnQHmPGtLlixBRkYGevbsiY8++gi/+93vcOTIEdx///0AgrPeQhESLAHC3r178fvf/x5r1qyRXI3znXfegcfjwaZNmxwonTsxu862bt2KrKwsLFq0CNdcc43ZxXUNZtZbcXExFi1ahLq6OixYsAAPPPAAXn75ZSuK7Shm1NmCBQswfPhw3HbbbVYW1VWY9awtXLiQ///o0aNx9OhRLFu2jBcsRHBALqEA4ZtvvsGhQ4dw8cUXo2vXrujatSs+++wzPP/88+jatSvWrFmDXbt2ISYmhv8eAG688UZMnDhR9XkSEhIklwln3yntI/xe+DupfezAzDrbtm0bJk2ahJycHBQUFHh9J1cfUVFRiIyMVLX8ekJCAk6cOOEzI8TuOgPMrbeEhAScf/75uOGGG/Dqq69ixYoVOHDgAP9dsNSbGXXm8XiwatUq/vtJkyYBAM4++2wsWrSIv95gqTPAunZt3Lhx2LdvH9rb2wEEX72FKmRhCRAmTZqELVu2eG3Lzs7G+eefj4cffhhnn302fvvb33p9P3LkSBQXF2PatGmqz5Oeno4//OEPOHnyJLp16wYAWLNmDYYNG4azzjqL36e6utpr6uGaNWv4pcSTkpKQkJCA6upqfup0W1sbvvrqK9xzzz1aL103ZtXZv/71L2RkZODOO+/E448/7nOe9PR0n2ndwvoQLr8+ffp0AGeWX7/33nsBAJdccgm6deuG6upq3HjjjQCAHTt2oKGhwfQl2v1h1bN26tQpAOA7kWCqNzPq7B//+AeOHTvGf79x40b85je/wRdffIHk5GQAwVVngHXP2ubNm3HWWWfxix4GW72FLE5H/RL6kYqmFwKJyPmdO3dymzZt4n77299yKSkp3KZNm7hNmzbxs4JaWlq4+Ph47vbbb+e2bt3KrVy5kuvZs6fPtOauXbtyzzzzDLd9+3Zu0aJFktOaY2JiuMrKSu67777jsrKyHJ3WzNBaZ1u2bOH69u3L3XbbbV5TJg8dOsTvw6ZMzp8/n9u+fTv30ksvSU6ZjIiI4F577TVu27ZtXE5ODhcTE8M1Njby+9x9991cYmIi5/F4uK+//ppLT0/n0tPTTb1+vWitt6qqKu5Pf/oTt2XLFq6+vp577733uOHDh3Pjx4/n9wn2etPzfgr55JNPZKc1B2udcZz2envnnXe4P/7xj9yWLVu4nTt3ci+//DLXs2dP7pFHHuH3CYV6CwVIsAQwehrECRMmcAB8PvX19fw+tbW13OWXX85FRERw55xzDvfkk0/6HPvtt9/mUlJSuO7du3MXXnghV1VV5fX9qVOnuIULF3Lx8fFcREQEN2nSJG7Hjh1GLtcUtNbZokWLJOtr8ODBXr/75JNPuFGjRnHdu3fnhgwZwpWVlfkc+4UXXuASExO57t27c2PHjuVqamq8vj927Bj3u9/9jjvrrLO4nj17cjNmzOAOHDhg4GrNQ2u9eTweLj09nYuOjuZ69OjBDR06lHv44Ye9Ol+OC+56s0KwsO3BWmccp73e/vnPf3KjRo3ievfuzfXq1YtLTU3lXnnlFa6jo8Prd8Feb6FAGMcJ5n4RBEEQBEG4EAq6JQiCIAjC9ZBgIQiCIAjC9ZBgIQiCIAjC9ZBgIQiCIAjC9ZBgIQiCIAjC9ZBgIQiCIAjC9ZBgIQiCIAjC9ZBgIQiCIAjC9ZBgIQiCIAjC9ZBgIQiCIAjC9ZBgIQjCED/++CMSEhLwxBNP8NvWrVuH7t27o7q62sGSEQQRTNBaQgRBGOb999/H9OnTsW7dOgwbNgyjRo1CVlYWnn32WaeLRhBEkECChSAIU8jNzcXHH3+MSy+9FFu2bMHGjRsRERHhdLEIgggSSLAQBGEKx44dw4gRI7B371588803GDlypNNFIggiiKAYFoIgTGHXrl3Yv38/Tp06hT179jhdHIIgggyysBAEYZgTJ05g7NixGDVqFIYNG4bly5djy5Yt6Nevn9NFIwgiSCDBQhCEYebPn4+///3vqK2tRe/evTFhwgRER0fjvffec7poBEEECeQSIgjCEJ9++imWL1+ON998E1FRUejSpQvefPNNfPHFF1ixYoXTxSMIIkggCwtBEARBEK6HLCwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbgeEiwEQRAEQbie/w/UEMhmGAHIyAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBAklEQVR4nOyde1wVdf7/X4iKeAGCFDAvoYlZGlqZklZGlqtkIGXZdmX5RrlsbUTm+lvMS5SZEVZbFn35YrWV5i6XWtzKPF1NkkopNhJTXDQFC0K8azi/P/AzzMyZmTOXz1zO4fN8PHjomTNn5jO3z+c179sniOM4DgwGg8FgMBguppvTDWAwGAwGg8HwBRMsDAaDwWAwXA8TLAwGg8FgMFwPEywMBoPBYDBcDxMsDAaDwWAwXA8TLAwGg8FgMFwPEywMBoPBYDBcDxMsDAaDwWAwXA8TLAwGg8FgMFwPEywu4dxzz8Xdd9/tdDMYDEaAc/fdd+Pcc8819Fun+qmmpibcdNNNiIqKQlBQEFauXGl7GxjOwwSLjXzxxRdYvHgxWltbnW6KrVRVVeFPf/oTLrzwQvTp0wdDhgzBzTffjLq6Otn1a2tr8bvf/Q59+/ZFZGQk7rjjDvz888+idX744Qc88sgjGDt2LPr164fY2FgkJyfjq6++8tre9u3bkZ2djcsvvxy9evVCUFAQdu/eresYVq1ahdmzZ2PIkCEICgpS7bRbW1uRmZmJ/v37o0+fPrj66qvxzTff6NpfUVERRo0ahV69emHEiBF4/vnnDR3X3XffjaCgIJ9/wuOhff7V+OKLLzB58mT07t0bMTExeOCBB3D48GGv9U6cOIH58+dj4MCBCA0NxYQJE7BhwwZd+9JyTgHgp59+ws0334yIiAiEhYUhJSUFu3bt0rUvp9m3bx8WL16Mbdu2Od0UKmRnZ+P999/HggUL8Prrr+N3v/udbfvWeo8ybIBj2MaKFSs4AFx9fb3Xd8ePH+dOnjxpf6Ns4MYbb+RiYmK4+++/n3vllVe4xx57jIuOjub69OnDfffdd6J19+zZw5199tnc8OHDuWeffZZ7/PHHubPOOotLSEjgTpw4wa+Xk5PDRUREcBkZGdzLL7/MPfXUU9zw4cO54OBgbsOGDaJtFhcXc926deNGjx7NjR07VvEaqDF06FAuMjKS+93vfsd1796du+uuu2TXa29v5y6//HKuT58+3OLFi7m//e1v3AUXXMD169ePq6ur07Svl156iQPA3XjjjVxhYSF3xx13cAC4J598UvdxffHFF9zrr7/O/y1dupQDwGVmZoqWf/HFFxzHWXP+ldi6dSvXq1cvbty4cdyqVau4v/71r1xISAj3u9/9zmvdOXPmcN27d+cefvhh7uWXX+YSExO57t27c5999hnVc3ro0CFuxIgR3IABA7jly5dzzzzzDDd48GBu0KBB3C+//KJpX26gqqqKA8AVFxd7fXfy5Enu+PHjhrY7dOhQxXvfSqKjo7nbbrvN9v3quUcZ1sMEi42oCZZAZtOmTaLBjuM4rq6ujgsJCfHqhObOncuFhoZy//3vf/llGzZs4ABwL7/8Mr/sq6++4g4dOiT67S+//ML179+fmzRpkmh5c3Mz19bWxnGc8Wuwe/du7vTp0xzHcVyfPn0UO+21a9dyALh169bxyw4cOMBFRERwt956q8/9HD16lIuKiuKSk5NFy2+77TauT58+XEtLi6njUhvIOM6a86/E9OnTudjYWO7gwYP8sldeeYUDwL3//vv8si+//JIDwK1YsYJfduzYMW748OFcYmKiz/3oOafLly/nAHBbtmzhl9XW1nLBwcHcggULNB2XG/B1nY1CQ7C0t7dzx44d0/WboKAgLisry9R+jaD1HmXYAxMsNrFo0SIOgNcfGWCkHUFxcTEHgPvss8+4+++/nzv77LO58PBwLjMzkztx4gT366+/cnfccQcXERHBRUREcPPmzeMHVEJ7eztXUFDAXXDBBVxISAg3YMAALjMzU9RBO8nFF1/MXXzxxaJlAwYM4GbPnu21bnx8PHfNNdf43GZaWhoXGRmp+D0N0agmWGbPns1FR0dz7e3touWZmZlc7969fb7ZVlRUcAC4iooK0fIvvviCA8C9/vrrsr+jJVisOP9HjhzhamtruZ9//plfdvDgQa579+7cvHnzROueOHGC69u3L5eRkcEvmzdvHhccHCwaNDiO45544gkOANfQ0MAv+/nnn7na2lruyJEj/DI953T8+PHc+PHjvY7ruuuu44YPH+7z+OXYv38/d/fdd3PnnHMO17NnTy4mJoa74YYbRNdq6NChXHJyMvf+++9zCQkJXEhICDdq1Cjun//8p2hbzc3NXE5ODjd69GiuT58+XL9+/bjf/e533LZt2/h1PvroI9m+hlzzu+66ixs6dKhouytWrOASExO5yMhIrlevXtzFF18sEt3CduoVLAC4rKws7u9//zt3wQUXcN27d+dKS0s5juO4vXv3cunp6dyAAQO4nj17chdccAFXVFTE/5b0g9I/O9BzjzLsgcWw2ERaWhpuvfVWAEBBQQFef/11vP766+jfv7/q7+6//37s2LEDS5YswQ033IDCwkIsXLgQM2fORHt7O5544glMnjwZK1aswOuvvy767b333ot58+Zh0qRJePbZZ5Geno433ngD06ZNw6lTp1T3e+LECfzyyy+a/ozAcRyamppw9tln88t++uknHDhwAJdeeqnX+pdddhm2bt3qc7uNjY2ibdrN1q1bcfHFF6NbN/Gjddlll+Ho0aOKcTvC3wPwOgeXXHIJunXrpukcGMWq879lyxaMGjUKf/vb3/hl3333HX777TevffXs2RNjx44V7Wvr1q2Ij49HWFiYV5sAiOI0/va3v2HUqFHYsmWL6PeA73N6+vRpfPvtt4rHv3PnThw6dMjnOZBy4403orS0FOnp6XjxxRfxwAMP4NChQ2hoaBCtt2PHDtxyyy2YPn06li1bhu7du2P27NmiWJ1du3ahrKwM119/PZ555hnMmzcP3333Ha666irs27cPADBq1CgsXboUAJCZmcn3NVdeeaViG5999lmMGzcOS5cuxRNPPMHvu6KiQvfxyuHxeJCdnY1bbrkFzz77LM4991w0NTVh4sSJ+PDDD/GnP/0Jzz77LM477zxkZGTwQbVXXnkl369de+21/LGo8euvv2rqt44ePaq6HT33KMMmnFZMXQm1t2AlC8u0adNElpPExEQuKCiIu++++/hlv/32Gzdo0CDuqquu4pd99tlnHADujTfeEO3nvffek10uRenNRu7PCK+//joHQPQ2Rd7+X3vtNa/1582bxwFQtVB8+umnXFBQELdw4ULFday2sPTp04f7wx/+4LWcvOW/9957qtvOysrigoODZb/r378/N2fOHNnvaFhYrDr/5I1/0aJF/LJ169ZxALhPP/3UazuzZ8/mYmJi+M8XXnghl5SU5LXef/7zHw4A99JLL/HLiCXzo48+4pdpPac///wzB4BbunSp13ovvPACB4D74Ycf5A9egV9//dXLnSXH0KFDOQAii8rBgwe52NhYbty4cfyy48ePe1nv6uvruZCQEFG71a6znIXl6NGjos8nT57kRo8e7XXejVpYunXrxv3nP/8RLc/IyOBiY2O9YoPmzJnDhYeHi9qEM1YaLZBz6etPeD/KoeceZdhDd2tkEIMWGRkZCAoK4j9PmDABmzdvRkZGBr8sODgYl156Kb7++mt+2bp16xAeHo5rr71WZAW55JJL0LdvX3z00Uf4/e9/r7jfadOm6c7C0MoPP/yArKwsJCYm4q677uKXHzt2DAAQEhLi9ZtevXrx68h9f+DAAfz+979HXFwcHnnkEUvarQWl9gnb7+v3PXv2lP2uV69ePn9vBqvO/5QpU8BxnK59CY9TzzldvHgxFi9e7LUvLedU6/HrITQ0FD179sTHH3+MjIwMnHXWWYrrDhw4ELNmzeI/h4WF4c4778Ty5cvR2NiImJgYUdva29vR2tqKvn37YuTIkboz0aTtJPz6669ob2/HFVdcgbfeesvwNoVcddVVuOCCC/jPHMfhn//8J26++WZwHCfqo6ZNm4Y1a9bgm2++waRJk3Tv64033tB0nYYNG6b6vZ57lGEPTLC4nCFDhog+h4eHAwAGDx7stfzXX3/lP+/YsQMHDx7EgAEDZLd74MAB1f3GxsYiNjbWSJNVaWxsRHJyMsLDw/GPf/wDwcHB/Hek0zxx4oTX744fPy5aR8iRI0dw/fXX49ChQ/j888/Rt29fQ237+eef0d7ezn/u27ev7m2FhoZqar/SvkJDQ3Hy5EnZbR8/flz2+Glh5/n3tS/hfrSeU7V9aTmnRo9fjZCQECxfvhw5OTmIjo7GxIkTcf311+POO+9ETEyMaN3zzjtP9HICAPHx8QCA3bt3IyYmBqdPn8azzz6LF198EfX19aJ7KCoqSlfbhPzrX/9CXl4etm3bJjp+aXuMEhcXJ/r8888/o7W1FYWFhSgsLJT9ja8+SgkjIkcOPfcowx6YYHE5wgHd13LhW+zp06cxYMAAvPHGG7K/9xU7c+zYMRw8eFBTG6UdrxIHDx7E9OnT0drais8++wwDBw4UfU8E0v79+71+u3//fkRGRnq97Zw8eRJpaWn49ttv8f7772P06NGa2iLH+PHj8d///pf/vGjRIq+3dV/ExsYqth8Af8xK+4qNjUV7ezsOHDggEpsnT55Ec3Oz1zmjiZ3n39e+hMcZGxuLn376SXY9AD7PidZzSo5Py/XTw4MPPoiZM2eirKwM77//PhYuXIhly5bB4/Fg3Lhxurb1xBNPYOHChfjDH/6Axx57DJGRkejWrRsefPBBnD59WnfbAOCzzz7DDTfcgCuvvBIvvvgiYmNj0aNHDxQXF+PNN980tE0p0sGdtPX2228XWVmFXHTRRYb2JX0ZUMLXC4mee5RhD0yw2AittxUtDB8+HB9++CEmTZpk6E1g7dq1SE9P17Su1Nwvx/HjxzFz5kzU1dXhww8/FJmHCeeccw769+8vW3xsy5YtGDt2rGjZ6dOnceedd2Ljxo14++23cdVVV2lqrxJSU7Ivk7EcY8eOxWeffYbTp0+LAm+//PJL9O7dm39jVtoXOcavvvoKM2bM4L//6quvcPr0aa9zQBM7z//o0aPRvXt3fPXVV7j55pv55SdPnsS2bdtEy8aOHYuPPvoIbW1tosDbL7/8kv9eDa3ntFu3bhgzZozs8X/55ZcYNmwY+vXrp/kYhQwfPhw5OTnIycnBjh07MHbsWOTn5+Pvf/87v86PP/4IjuNE/QQJ0iaVaf/xj3/g6quvRlFRkWj7ra2tomBnPX3NP//5T/Tq1Qvvv/++SJAWFxfrOkY99O/fH/369UN7ezumTp1KddvSlwElfL2Q6LlHGfbABIuN9OnTBwBsqXR7880348UXX8Rjjz2GJ554QvTdb7/9hsOHDyMiIkLx9zRjWNrb23HLLbdg8+bNKC8vR2JiouK6N954I1599VXs2bOHd3tt3LgRdXV1yM7OFq17//33Y+3atXj55ZeRlpZmup00TMk33XQT/vGPf6CkpAQ33XQTAOCXX37BunXrMHPmTH5AUNpXUlISIiMjsWrVKtHgumrVKvTu3RvJycmm26iGFef/6NGjaGhowNlnn80PquHh4Zg6dSr+/ve/Y+HChbwQeP3113H48GHMnj2b//1NN92Ep59+GoWFhXj44YcBdJjpi4uLMWHCBJF7lGSADBkyBL179wag75zedNNN+Mtf/oKvvvqKzw7Zvn07PB4Pv289HD16FN26deNjYIAO8dKvXz8vV8O+fftQWlrKn8u2tja89tprGDt2LG/FDA4O9npBWLduHX766Secd955/DI9fU1wcDCCgoJEVondu3ejrKxM17HqITg4GDfeeCPefPNN1NTUeFnmfv75Z59WYCVoxbDouUcZ9sAEi41ccsklAIC//vWvmDNnDnr06IGZM2fynQtNrrrqKtx7771YtmwZtm3bhuuuuw49evTAjh07sG7dOjz77LP8gCoHzRiWnJwcvPPOO5g5cyZaWlpEb5VAh1mY8P/+3//DunXrcPXVV+PPf/4zDh8+jBUrVmDMmDEii8/KlSvx4osvIjExEb179/ba5qxZs/jzevDgQb4M+6ZNmwB0pL9GREQgIiICf/rTn3wew7vvvovq6moAwKlTp/Dtt98iLy8PAHDDDTfw5uubbroJEydORHp6Or7//nucffbZePHFF9He3o4lS5b43E9oaCgee+wxZGVlYfbs2Zg2bRo+++wz/P3vf8fjjz+OyMhIfl0axyXFivO/ZcsWXH311V5vtI8//jguv/xyXHXVVcjMzMTevXuRn5+P6667TlR6fcKECZg9ezYWLFiAAwcO4LzzzsOrr76K3bt3e1ka/va3v2HJkiX46KOPMGXKFN3n9I9//CNeeeUVJCcn4+GHH0aPHj3wzDPPIDo6Gjk5OaJ9TZkyBZ988omqhbGurg7XXHMNbr75ZlxwwQXo3r07SktL0dTUhDlz5ojWjY+PR0ZGBqqqqhAdHY3/+7//Q1NTk8jScf3112Pp0qVIT0/H5Zdfju+++w5vvPGG1+A7fPhwRERE4KWXXkK/fv3Qp08fTJgwwSuWBACSk5PxzDPP4He/+x1+//vf48CBA3jhhRdw3nnn4dtvv1U8NrM8+eST+OijjzBhwgTcc889uOCCC9DS0oJvvvkGH374IVpaWgxtl1YMC6D9HmXYhHMJSl2Txx57jDvnnHO4bt26aSocV1VVJfo9SdsUFuHiuI5UxT59+njtr7CwkLvkkku40NBQrl+/ftyYMWO4Rx55hNu3bx/1Y1Piqquu0pUWXVNTw1133XVc7969uYiICO62227jGhsbRevcddddqtsUpvfW19crridN71RCbX/S1NGWlhYuIyODi4qK4nr37s1dddVVXtfRF4WFhdzIkSO5nj17csOHD+cKCgq8CgMaOS4tFVBpn3+5tGbCZ599xl1++eVcr169uP79+3NZWVl89V4hx44d4x5++GEuJiaGCwkJ4caPHy+bIi6X1kzQck45rmN6gptuuokLCwvj+vbty11//fXcjh07vNa75JJLfKa2/vLLL1xWVhZ3/vnnc3369OHCw8O5CRMmcG+//bZoPWHhuIsuuogLCQnhzj//fK/ibcePH+dycnK42NhYLjQ0lJs0aRK3efNm7qqrrhKVNeA4jisvL+cLtQmvuVxac1FRETdixAh+v8XFxfy5lLbTaOE4OZqamrisrCxu8ODBXI8ePbiYmBjummuu4QoLCzVvw2q03qMM6wniOA0BCAwGg8HgOXToECIjI7Fy5UpkZWWZ3t65556L0aNH41//+heF1jEYgQmrdMtgMBg6+fTTT3HOOefgnnvucbopDEaXgcWwMBgMhk6Sk5MtD4B2O42Njarfh4aG8nWjGAwaMMHCYDAYDN34Csq/6667sHr1ansaw+gSMMHCYDAYDrN7926nm6AbX2UPWGE1Bm1Y0C2DwWAwGAzXw4JuGQwGg8FguB4mWBgMBoPBYLgeJlgYDAaDwWC4HiZYTPLpp59i5syZGDhwIIKCggzNv8FxHJ5++mnEx8cjJCQE55xzDh5//HH6jWUwGAwGw09hWUImOXLkCBISEvCHP/zB8AR8f/7zn/HBBx/g6aefxpgxY9DS0mJ4Hg0Gg8FgMAIRliVEkaCgIJSWliI1NZVfduLECfz1r3/FW2+9hdbWVowePRrLly/nJ2arra3FRRddhJqaGowcOdKZhjMYDAaD4XKYS8hi/vSnP2Hz5s1Ys2YNvv32W8yePRu/+93vsGPHDgAdswAPGzYM//rXvxAXF4dzzz0X//M//8MsLAwGg8FgCGCCxUIaGhpQXFyMdevW4YorrsDw4cPx8MMPY/LkyfyU8bt27cJ///tfrFu3Dq+99hpWr16Nr7/+GjfddJPDrWcwGAwGwz2wGBYL+e6779De3o74+HjR8hMnTiAqKgoAcPr0aZw4cQKvvfYav15RUREuueQSbN++nbmJGAwGg8EAEyyWcvjwYQQHB+Prr79GcHCw6Lu+ffsC6JiPo3v37iJRM2rUKAAdFhomWBgMBoPBYILFUsaNG4f29nYcOHAAV1xxhew6kyZNwm+//YadO3di+PDhAIC6ujoAwNChQ21rK4PBYDAYboZlCZnk8OHD+PHHHwF0CJRnnnkGV199NSIjIzFkyBDcfvvt2LRpE/Lz8zFu3Dj8/PPP2LhxIy666CIkJyfj9OnTGD9+PPr27YuVK1fi9OnTyMrKQlhYGD744AOHj47BYDAYDHfABItJPv74Y1x99dVey8nU6qdOnUJeXh5ee+01/PTTTzj77LMxceJELFmyBGPGjAEA7Nu3D/fffz8++OAD9OnTB9OnT0d+fj4iIyPtPhwGg8FgMFwJEywMBoPBYDAM8+mnn2LFihX4+uuvsX//fq96ZELuu+8+vPzyyygoKMCDDz6oaz8srZnBYDAYDIZhSMX3F154QXW90tJSVFZWYuDAgYb2w4JuGQwGg8FgGGb69OmYPn266jo//fQT7r//frz//vtITk42tB8mWAxy+vRp7Nu3D/369UNQUJDTzWEwGAyGi+E4DocOHcLAgQPRrZs1zo3jx4/j5MmTVLbFcZzX2BYSEoKQkBDd2zp9+jTuuOMOzJs3DxdeeKHhNjHBYpB9+/Zh8ODBTjeDwWAwGH7Enj17MGjQIOrbPX78OGKGDMXBnw9Q2V7fvn1x+PBh0bJFixZh8eLFure1fPlydO/eHQ888ICpNjHBYpB+/foBAHKvT0KvHsZO48SsR0SfK194ymuZESpfeMr0NpS4/8ppit/9/apk/PrYAzhr4XMAgF8fe0B1fQbw/Kfvq35/3Xf1luz3gzFxOGvhc7j9kwp+2btjbtD025nfveO1TPjbg5Ht/HarxiR4rTv+u2pd+/J1jghpQ7Nllx/+l3onOTLrPs3tkXLxv35EyX8LRPsv+W+BqC1XXdNRJPKTjYdxztDv+eVaj0sIeZ6U2qvnfKlx1sLnEN4SzG/T6PkREn/fDHwwJs70dgjk/iX9jq/1nKbt+HEMXvBXfuygzcmTJ3Hw5wN4+tMqhPY1t49jhw/h4SvHY8+ePQgLC+OXG7GufP3113j22WfxzTffmPZGMMFiEHLie/Xojl49euj+/aTsXK9l1zyyxHS7NhXkGWqPFiLzChHmKVf8PrRvPxzr0YN/WI716IGw0FBL2hIoSK9VTlKnb7e24DlAUiGZFmnfN6Cybz/R9endx3cnN6u6BJBc09KENPQWfL5tS+c61/zYUQSxMmEcAGBQ2SlsTL1NtL4aYaGhmu/n9fv+BgCYUb1TtLzvmXPYL7UQh8oyvX73z+Q5iGg2dp77hfTBXfGdz/La+uXo1aMH+oX04Zd98/mZRMyQPggLDUVxUgpacjMNPaevbPYgJykZt/24AQCQ7xEPxK/A+54ywh+3eFCakAag4xoI741Z1SX8d3qIvbEIaWWZWJ8w3FTbJmXnYlNBHv64xQOEhuLYkzmqx0zWE0KuASB+5uzA6hCC0L79TAsWQlhYmEiwGOGzzz7DgQMHMGTIEH5Ze3s7cnJysHLlSuzevVvztphgcYhNBXmyosXsNq2kJTcTsPnh7sqsTxjuNfjSRM/1nFVdIrtcOnDJrUfEysTqrdiL0T73Nb6sQ+RUpcajOCkF8Oh7O1YcEOuXY4auLennlrj5WFu/3NJ9SEWK1RQnpSCimd72ZlTvNCxaiFgBzJ0HIlYY1nPHHXdg6tSpomXTpk3DHXfcgfT0dF3bYoIlQLBarOgh3VNue6fqj/gajCPzCoGZ11jahnxPhc83TKkIUXq7JusRgSJHVWq87PLxZXVe382qLuk4RxSRGyhzPOWGLAZC1tYvF4kVJdESmVFoaj+ReYW2PV+tUe2IaA42bH2SUpUaj/PL9P1mUnYuJlZvBQDsrR8NlJ1CZF6hKcGxt340IvM6LSzkXNptaQkkhBXfAaC+vh7btm3jK76TyX4JPXr0QExMjO658lgdFgZ1aA8ygYqvTjfdU47Kdzda3g6166VkWVFaT02sAJ3WE+kyoVhpSIwSDfiReYUd4s3FzKjeiUNlmbxF7Ja4+V7rELFhBrO/p7EvM+KuX6q26zgpO9dbrFBiQ4Y5lxTDm6+++grjxo3DuHEdz/9DDz2EcePG4dFHH6W6HyZYGLZTnJTCD5JM3PjGrM9fbnvCbep5W5UbrGZVl6AyYZxPsVKclOJlRYluasaGjOFojWrn/za/2Rl43pKbyf8BneLFjQJGOBhb5Ray63lx+rncVJCHTQV52Fs/2kusXFu009T1J0JMug1mFTbOlClTwHGc19/q1atl19+9e7fuKrcAEyyOIufGMeLacYs7iHQE6Z5yxQ6lNCFNZGK2841RDiKe7Oygi5NSNHeO6Z5y5CQlUxUtxAowo3qnaoyM1LoibfOs6hJerAghb8UAUBs1BBOrt6I2qiPgTihMdhVkYPObj4hESUtuJt8uuXMkFTBGEN6bJI4suslckAYJ6CVxR8LzKj3HZu55u2Iv3BLjMSiuRnb5tUXmYruUrgETLe6GCRYHceNbIg18uRhao9odFyqAdzvtEi1Kx652P9C+V6SDqK9jL01Iw7DsIv6zLxcQESpk21JRQgZEOdFE26IkBzmfmwryUJyUgssbP9Hs/pKDWFTIsQiPwY7jsQoz50QOpRgmJWgICCZCAgcmWGyAvMURU3ZOUjK1Acgt1hUpZFCWGwjdKFbsxEgHavc50zJQyYkVcj+S9qpZQ9SsEFYibVNLbibyPRXI91Tw1h9iPZpVXYLopmafFphb4uajX2qhojiRi2kxSiAMwHqut2IAs8k+lFlZ/A+WJWSS+6+cxtdWUIqm3w90vJ2e6fM63CId/6+NGoJRzQ2i9bWmPDshVoqTUnwOnsJ0WX9KhRaKLHItab9hmqHy3Y2YaFHWULokU0btOkvdQLVRQ0SZK+TfyLxCPgvKTCqrnfCZI6Kl8gNYTlIyijPEwjcShagEEClZd8OZf3mh7AeDopYMMr1ENzUbug9IFpaQa4t2YlBSsiaBoXQsOQq/Z5lD7oRZWEzy7pgbvOIy9OAGa4MefLXXH9xcvqw+5FqOL6ujmp0QCBABR2JSJlZv5S0UUtI95bglbj5vfVBy/0iDgP0F4TGne8pFf4ECLUtkdFMz5h7bLwqo1otcPIue9sndo8VJKap9FrO2uIsgjuM4pxvhj7S1tSE8PBx//3CHpgqharRGtfNWlonVW1GclMJ/llpRhA+XVYFxxLoj3LewYJMS5G0k31PBt9NMNUkt1hwj2xQi3T75noiW1qh21fXNtEN4/bSmvBYnpVC1sqxPGM5fK6Hobo1qx5A9V+CaHQ/z+xW2T9p+JeRcIUITv1zMh9wyf0Tunif3l1uCWn0RmVdo+GUsuqkZaWEnMe8legUylVxrWrOylPohLfezWWtL27FjCM/OwcGDB01Xj5Xd/pkx6YVvfqBSmj/r4vMta6tRmEvIBUQ0B/NmddKhKYkD6UOlJiR8fecL6TpyQkYIL1Q8FWjJzbTMx2wULW9jwmsgXUazPemeciApmd+X1m2ne8pRTMk1VPnuRkSi8/hIobDO9jwsbq8AKwdcfxcqBOnbuT+6F1pyMxEhCLbWSnRTMza/+QjmWdAmObQWk7PCzcWwDyZYXEJEc7Dmt1YpRJjIiRCpaKE9HYCUdE+5xP/fgRXWEpoI26ckWqzAiXNCBAERK3raQctEriXocsV9eVTfzp0m31OBSD+sOyQUsr6YVV2CmPhEzHvTmus2KK5G1k17bdFOrDWx3XRPOYp9iB4W1+I8TLC4iIjmYLQY/K2cECFCxWqRooQ0E8Op4NvipBRR3YaI5mBRMK0vMeU2sZXuKUe+jnmGSLVcaWfckpuJ4jOuKCWxLOycaYgVEjx5qNq3MA8ksSLEX9xBBGlANoEImVnVJZ0B1wDmWRj30bGfClNZV0pWFi2ipbMNTLg4AQu6DWBIeeuuDLGUCMtxa4lLcXvwpBZ32/qE4ah8d6NqarHdg6d0oPHXgNuuDEn7TveUY1dBhmsCU1fcpy1rUu3ZUSt6KcXpasBdEWZhYeiiNmqIYiqgL6RvNsL04fFldbyooBnYCngHk0prxKjtz62iRRjLIkx3Fs49NKw5GGiGJqudkitPeM2MXHdS/VXILXHzmUjxI2LiE9EosUjy/zokVoRpziR7qLEOfFyYkhDXEtxO4st83estuZn8M8OsLfbABAtDF74edqNvW4PiapDukS/DTQM9fnh/gggUoVCRli3fZWuLlCEDjJaMDn+p29IVWDZoACCYs5IM1E7H4yiV7VcS3+Q7rUgzHRnOw1xCDF34muBOL8S8TBupuTaiOVjWukJr+04g7HzTPeW4tmin6TlWGAwhUpey9L53qu6S3v2SCuN6UJokUQ63uMUCHWZh8WOcik+hZQq2yt1CgmRJ50piVqQDvBnschWpBfySisnjy+qwF8oF7nylfFoZVFz57kbgzL71zmDMrCzOIe1b+AFZ8Ny35GZ2uAltapPInePjfhW6L3OSkn2urwS/P0GNKSVYyrT1MMHix2gt4U97n26oZit805MOtnpTdc22Qbqf0oQ0XVajmPhENNZtlv1OTayML6uT/U4vVmdwyd0vvszs63VkQTHoIu1TRjU3YJPK+lproMihJS6KFyo6n2crxEOOBuHCsA4mWBh+h9PuGGKRUJtrRw9KYkWKU+mUZt4c5c6RlutnhVhxQ0wCrX2bEQlq6H0BMvss+hr4zVhHrMRo4gHDHEywuIhZ1SW6zat21lpxi3VFbRCkaVWR26ZdNVl8lXDXY13RUlTLzowPEhR5S9x83k0kTXdei47lagOzr4wPr9ohZyYcNVrryE24JRCUVLQ2M4BLr7FeceyUkGfuH/thgsXPsdslZLbkPs0B31d1WjPbJduUItyPFcJl44in0TD4M58xJ3qDa616IzcCEUdKYoUwo3pnx8zHSsJEoaAZwxmMihaSRmwEZuXoWjDBwtAMEUe1JrahZh3RPaB6KjrSKylbfeTEj1QcGUUaEOw9oWAFAPXz0JKbCeis9KmW6slvUwNmTeH5ngqRJcdXxdIFew9gVWhswAgTNwlHWpA055ykZF3HR8NCoTaZoVtrKDGMwwSLH+OGkvtmkMs8MIKwPUTAGO2slKw0wnRosx2hcNAm7W3JzbTUJdMx/4rv4Eala0sjA0IodEiMyqHqjsJyt8TNx6Anr+ho618+49drrNscMGIFcI8rxwrIs6HFrc3cKQwjMMHiEoTzcQQadr9V8oWtzlhe9AgMLeuacQnJnYdAHsTIPU1m8Qa8A2pnVO/EoLVXeC0DSDVkGxrKMA3JNlOzwtklVLqydWXxTz+jW59jprZx+shhAMD48eMRHByMrKwsZGVl0WieKZhgYQCAaEZnK7HaVDv23lpse3kUgE4hIHzjo9VhGjkGmoJUadZaNXy5c3yVJCdWFisyJPb+5TPewhKo0BTuOT5K0BtF66zvSpDn26sOig9i4hP5/2vNmmNYT1VVFcLCwpxuBg+rdMuwHDstCESsKJHvqTA12BqdFNFfrGe+ApfJ90S46I0fUkpXHvTkFSJXEICAKxpHU6jneypcaZkTHiO5RxgMWjDB4gIC2R0kxS2m2nxPhW31XKzYj5Ft+rLIaNlmS26mSPSRt2k18aLFskDEilC0sMJx/oeW5yrfU4GY+ERZqwqzrjDUYILFBThdCM1O3HSsdr2hWrEfN2xTKrLTPeVeokX6OdCsJgxvWnIzVZ/zFfd1upaEooXB8AUTLAyGhVgp0DZk0B/85USHGnKihbgBzKabM3ETmMhZUYhwYQKGoQYTLC7ASV/0poI82wJugU6XkFtcYFa3w8pra5V7Te925eKCcpKS+XgfoQjSMqHh2vrl6JdaiGHZRYhoDgYARDdZlypkR5xFZF4hdfFKo91WVa72ZWVprNvMCxcWcMvQCssSchgj5fhpojX6nxZdaUZTO8vdy1GVGs//f3xZXcfnAvXfmLk+ar9N95SjOK8Q688IOC/RUr9cVERO2HYAaIqOwtxj+7EqNFa0nMzETYSNUaQDN6noLBSc0rmIhL8RLlOqyguA6rNOQ2xbKahbcjNR7KMmklC0MLHC8AUTLA6id5I8K7BTrAjpCpOHWW056xAI8sG00gGffLa6Jo5a2joRLdL9E6sLKdU/LLtI9vdyReSMCJVh2UWYVV3Cb6sU8Kr1EpFdBDSf+ZfQLPhO8BkA0olQs3DeKTkxSOMZWnFfHua9pFyEcmL1VsPWIaWZwIUCReoOaqzbLPo/g0FgLiFGlyfQhJNUrAixOksr3VOOvfWjddWIEVpblMQKIDOZocuQDupWixVaqImV2qghplOo5Z6vXu//JLuuUKwwGFKYYGEwLMDJbKjxZXW6ZnMWYiamITKvUCQqlASGG2b8tkL8uCVl3yy1UUP42DZa1jjp83B82jm8MClp68n/K7Ws2Cle3C6IGcwl5BhdqfaKFDdOTObGNmlBzS1ERAuxuIwvq8NeqM8pRM6B3Bu93sqq48vqUJraMQgQ9yc/J5MkHkTNsuIPaBnsrHABm3XxReYVYsHeAyIri1Up88J4FqGrJy3spJcbyImYFje46BnqMAsLgwH6nbTdmV+D4moUv5NaW9QKvKkhTFnWCtm3VFCRgcsN1ha7cOMbfEtupqpLiPa+AOCLmKtEy+WKxi0bNMCWNjH8CyZYHKArW1fcjJuK2umBpBUPiqtRFC5C0aIWFEu2p4aSyLi2aKdoP1Wp8aJ4mr31o0XnuCuKFrNYGSdjB/meClze+IlXpVtAHIjrb8fFsAcmWGyGplhxKsPHLG6cAwVwb7u0QoTL2vrlWFu/XFHAyAkzoWiQs6KUJqTxFgJhOX7h76XBvkS8CEXMtUU7RcJFz9xMXdlkT64tmRqB4I8iO99TIarDQmAZQQxfMMFiI125w/UXaAwAbhlEhJYXYVXca4uMz9EjdWuQOYSk1hWCUvAvES56YNkj2mAWK+soTkrhn2+3POddCRZ0axNWuIHkpoF3O8K3cjfWYlGqG6F7Gy4i31MBeCqw9sznnKRkoL7j/2RwU3MHSS0uRLQIA2k7gnnFVKXG+8xWkm5LuEzKqtBYRDc1oyk6SnWbXR233X9yuC3IXa0fyklK9hInUtHipmMJZJhgsQm3DcxAh0vJikq3VhcnczNOV7fVArkXpVVZle7R4qQUr8JqQIewULIayhWuk8a3CD+rbUsIEyud+PMbvpYquLQw2/fmeyoQ6eNcy8VmMejDXEIM6vi7WDE6EPjzAKJGS26mopiQs4YI06jllgu/E9aMIXEys6pLHHGfkjL//oAbX4D04mu+ITNZVcQdGgjnidEJs7B0YZxwKflDB2Lk7Y+4XfwJLdYVLZQmpAEJ3svlXEJkmVKALgDevTQLJZ3btwGz8xHZDe/Gc7gdZlBzwQqnT1ATsG7qU2i4lBnKMMFiA1ZNcEhcOgz6+BIreououRmtHb5wAFFDS5VdaVE7IUTUCK0tdokWFiPjLvxFqDDsgQkWi3F7zRWnU6PdGHg7KTsXlWf+r3h+XNZmqyEzMWsRD0ouIa1ZREJ30V6MxqC4GttES1rYSUBmVmg3Qq6J0ZixFfd13Nt2FY5Tgjz/eooSuq3PECJsW1eZmd4uWAyLxbj5wQKczzRy0/lx+lzYCelInTj/apMzqmFHXMuq0NguUw9k3ku5josVIzjVZyzYe8CR/foDn376KWbOnImBAwciKCgIZWVl/HenTp3C/PnzMWbMGPTp0wcDBw7EnXfeiX379uneDxMsXRynLSxuQypaAlnE6A0SNjpQqMWraEFvvZauAhGdgZCVotUS4aYXHEYnR44cQUJCAl544QWv744ePYpvvvkGCxcuxDfffIOSkhJs374dN9xwg+79MJeQhewqyHC6CdQI1FTlQBYkcggHBiPXM99TgRxoC4RVik8BtIsWEs9CRIsdgbhunPNHDuISAjqua0x8ot9YTCLzCkVBzqWC7+QsaUaEyozqnVifMNz3ihpI95QDAZoFSIPp06dj+vTpst+Fh4djw4YNomV/+9vfcNlll6GhoQFDhgzRvB8mWBiaYGKFQRMtReXUIIOav4gLqxDGf7hdrJAihRHNwYBMXR8lrLSqaBU1WmqxBCJtbW2izyEhIQgJCTG93YMHDyIoKAgRERG6fscEC6NL0tXFitlBQE/GkJI40SJapCnQg6qVZ6XuysTEJ2KeS90lvDVFh0ghWO0ComWBcRP/y92BPpy5aI8j3GmkABg8eLBo+aJFi7B48WJT2z5+/Djmz5+PW2+9FWFhYbp+62gMy+LFixEUFCT6O//88xXXnzJlitf6QUFBSE7uNHNzHIdHH30UsbGxCA0NxdSpU7Fjxw7Rdurq6pCSkoKzzz4bYWFhmDx5Mj766COqx8bmDXInk7JzXSVWyCSCwj8rKU5KoVL5E9B2jxOxQWZuFhaK04qoRkv9aFFMi1NF5oxi1fV1yroSmVfIZyqRz5F5hRiWXcT/6a1vQ4Sw2fs0EMWI3ezZswcHDx7k/xYsWGBqe6dOncLNN98MjuOwatUq3b93POj2wgsvxP79+/m/zz//XHHdkpIS0bo1NTUIDg7G7Nmz+XWeeuopPPfcc3jppZfw5Zdfok+fPpg2bRqOHz/Or3P99dfjt99+g8fjwddff42EhARcf/31aGxspHZcLDjMPbhZpKh9bwW0XXt6xQIRLsLPWpCKHGkgLhMt9pOTlIx0Tzk/L1BOUjIimoOpFOArTUjzu/MUiG7zsLAw0Z8ZdxARK//973+xYcMG3dYVwAUuoe7duyMmJkbTupGRkaLPa9asQe/evXnBwnEcVq5cidzcXKSkdPgbX3vtNURHR6OsrAxz5szBL7/8gh07dqCoqAgXXXQRAODJJ5/Eiy++iJqaGs1tUcPtwbbCzCAWTGsvkXmFgMasDidTj30hDPg0gx5ri5JoGRTX4SYibqpdBRkYll1kum0A/UJyWudMciNK1zuiOdiSWKLShLQuV+8oUCFiZceOHfjoo48QFWXsmXLcwrJjxw4MHDgQw4YNw2233YaGhgbNvy0qKsKcOXPQp08fAEB9fT0aGxsxdepUfp3w8HBMmDABmzd31FaIiorCyJEj8dprr+HIkSP47bff8PLLL2PAgAG45JJLFPd14sQJtLW1if7cgJa05NqoIZhYvZX/E77hkzcjp6HZBiWxYlTE0BQ/RlJQ7XAVGcENQqoqNd7LRURLrFiFv1kPnLz//Ok8dWUOHz6Mbdu2Ydu2bQA6xuJt27ahoaEBp06dwk033YSvvvoKb7zxBtrb29HY2IjGxkacPHlS134ctbBMmDABq1evxsiRI7F//34sWbIEV1xxBWpqatCvXz/V327ZsgU1NTUoKursnIhLJzo6WrRudHQ0/11QUBA+/PBDpKamol+/fujWrRsGDBiA9957D2eddZbi/pYtW4YlS5Z4LZ/53TsICw0VzXnh9NwetVFDRAPjRGx1sDX24lbLCg3cWBXYLGazhchv99aPFllaADoZRFaV6S9NSEMO3CH65OhKQoHE3wSipdkuvvrqK1x99dX854ceeggAcNddd2Hx4sV45513AABjx44V/e6jjz7ClClTNO8niOM4znRrKdHa2oqhQ4fimWeeQUaGulvl3nvvxebNm/Htt9/yy7744gtMmjQJ+/btQ2xsZ2ntm2++GUFBQVi7di04jkNqaipOnTqFv/71rwgNDcX//u//4p133kFVVZXod0JOnDiBEydO8J/b2towePBg5M26Dr169ADQeeMD9t78tDoXt3aeerBKsNAssEd7MHD6uuUkJWsSB3JCQq9Y0SJwiHCR7ssIs6pLUJyUYtnEiGpTd8jdJ1ZeazP3pdXp5VZNcSJ3zErzhBnp34Xbbzt2DOHZOTh48KCh+A1ftLW1ITw8HOXvnIs+fUxmCR05jZQbdlvWVqM4HsMiJCIiAvHx8fjxxx9V1zty5AjWrFmDpUuXipaT+JOmpiaR8GhqauKVncfjwb/+9S/8+uuv/IV48cUXsWHDBrz66qv4y1/+IrtPLfnnLbmZ/A1aHKCxIVbh5ngNhnnIwA8A6Z4Sy6rXVqXGowrx/D7NzEHUGtUOoNONZ9WgTCxnTlg1/MWSUpyUgkiBkKARe6cUT9ZRJI71R27EVYLl8OHD2LlzJ+644w7V9datW4cTJ07g9ttvFy2Pi4tDTEwMNm7cyAuUtrY2fPnll5g7dy6AjjLBANCtm1iBduvWDadPnzZ9DMJy59LOgHwnfdCUOg0tD4uVHc7zcXOxO65Bc1vMQKvDDuQZrOUmiXN7h0qsKsK31nwAOUkd3+sRLsIUacD3ZIqlqWmitGetlhKloFgritWRIFyt974vt6DaQG5lX2H15JTkuqWTY/CUm3K95yQlawp+F56zYmi3rIy9txYNgz8T7ePvVyUDyNHbVIYARwXLww8/jJkzZ2Lo0KHYt28fFi1ahODgYNx6660AgDvvvBPnnHMOli1bJvpdUVERUlNTvSKNg4KC8OCDDyIvLw8jRoxAXFwcFi5ciIEDByI1NRUAkJiYiLPOOgt33XUXHn30UYSGhuKVV15BfX29qJ6LUYQ3NHmghDc9Ue9KZkch0g5G2lHpyThRQ6kDJGLFa59g/l67EV4jN4oU6YAlFAlyEIE6KK5Gt7VFT9G60tQ0jC+rw6C4GmqWEtqDM83MIbnnUu2FSE78utnqQlKojTKjeicq391oqN/U0+dte3kUcpLE+/j1sQd075MhxlHBsnfvXtx6661obm5G//79MXnyZFRWVqJ///4AgIaGBi9LyPbt2/H555/jgw8+kN3mI488giNHjiAzMxOtra2YPHky3nvvPfTq1QsAcPbZZ+O9997DX//6VyQlJeHUqVO48MILUV5ejoSEBEuOkx9gPBW8qVFodpSi9FB6dSSUJj3TEsyZI3izAcC3XYvwYhiHH/BdKFKUIINvvqdCtd16RQsRHmQfe6HtN1Wp8Zor5GoVDq1R7ZbFtdBATXQoiV9/CuouTkox9EysTxiOnACYLLKr4qqgW3+CBDgJg2614qszsdOnTXM/wm0R0aW1A5QzZUfmFerahhDabiEngm6F1gk3i0JynQDjAvaWuPma1x0UVwPcOxd4eZVm64ywQJ2aa0ePpYO2C0TrvrU+D77uM7XtGOkT7JzXqTWqXfd9RqzDRi00evohuXCAffPTkVv6AQu6NYHjdVgY3tj5lkNTFAkDZ1tyM3Udh1wnoncbDGegIaaEmT2+2Fs/GqWVTQCMV8oFvAWCWwq65Xsq/PK+t/P8GRUdZtxJZnDzC4c/wQSLA/gKmlP7nds7MqPtU4p1YHSgdl+4CTMds1bRQlKb99aPxqzqEl1iZ3xZnVesjdH5iEgWkV3Y+ey7va8xYs0xI1bMWFcY9HBVllBXJSY+EY11HZV4RUG7Ph6SzjRR532ybu7caDApO5eqW0iKXMAjmaelK9B5/L4zh6STIWqF/K41qt108CYAkRtMSzyL3rgX6aA8LCEN0JFR5Au1mBWhtdStA7DeUgh6g4ppxecZjbdheMMsLA5CHiAiVvQO+umeclGn68+ioSubTJWumz+JFXIMZi1B+Z4KXRYTPZCJF6XPTWlCmqn4i3RPuSZri5pYEf5eOqCasQKZxU1ihZwjMuM3uWZWWR9p9UlduW+jDbOwOATp4GmaGp3qXNwolPylHgsp0S60snV1Ot7qO/5Pq8AciXVRC7g1k15M28qZk5QM6AjC1RLI73N/LoKIk4jmYMXKxuPL6rAXo3Ft0U5s0FFITqvVSG9xOmHwOYFZV+jCLCwM07its/MnZlWXqIoVN7j7tJLvqaDWXiKCaVpbyCCoZk2xM9PFLtSeT9oTG9KyAkU0B6uKFSl67zut7vbIvELNFpwlRd5ztjHrCl2YYPEjaLgI3GgN6eoQsSIdLP1JrFgBrXu1KjWejx/pKoJE2FfY/czrdV8J3WGtUe28y0fPPFNG+kZf50XowvMlWoRVwaVMys71C2uvP8AEi4XQ9q3SUOvMGuJefHXybrx2OUnJovu8OCmFajtJTMuGjOGGfn/ptH6Ggl3dJGyMCA6h2HXivtEjIK4t2skLlGuLdhra37VFOw0dp1I2VLqnnG/PtUU7EdEcjGHZRYoWF6lYKU5KQb6nQiRUJmY9ort9DDFMsFiI1eZA4cNG/m/HnD9W7sNf0ndpIndOhZ/dXFGV1NwhkP/TFi3pnnLdoqUqNR7LBg0wdP6crMkiHeytFBzCfsNOS4wRK4oWjPYfcscuvN+Eguraop0i4aK0T2ZVoQ8LuvUz5B4spwrN5XsqOh9WSm1oyc2kMhOrm5Gm1MoNSDlJyXwQqGheHj9w6ZHjo1nqPd9TgRxAUzl+IXJixUkxoiW1Vs4VaNU8P1aKIeLqMWo10UtpQhoimoEWg7+XC8ZdW78ckXmFuLZop2jSTXJMg2QmUcz3VGBSwjiDrWCowSwsAYid6bBujrOgXTeF1hsTqeBrZDB3o1tIilVi00jKszAl2KnUYCH+cP1oQawRdmPmHJNnUliDpSU3ExsyhvPWICJc5Cx+xUkpzLJiIUywMAxjVecbyNYVKUqiJSY+UTS4CjtSf8BKq59W0eK0OJHDyHnJ91RgWHYRhmUXId9TYfgeUNs3retF4n+cECq0XExSNyfQ2ScJ9yGbwsywFOYSCkBacjNFM0FbPW18uqcc+ZS3ScstVBs1xHQMyK6CDNPt0IIw0LOxugSlCWm8WT3SD2fFJiZ2mjN6CyviAsp1WvTM0GwnRp9BXnzJuCCUkHNxSJfR6BukAcq041L0srd+NCLz6D8va+uXA5Cvt+LLDVQbNQTHQg5RbU9XhAmWLoAdZmi5jtGN6OlMtU6sZwXSQcDfxIqQdE85iinHJfkq/jW+rA6Io7Y7v8Sq5154b849th+rJN8LYz0CEekLYXFSCotZsQkmWBiWINdZ6hExNMtiXxs339Bvx5fVoSo1nmrwqBqzqkv4/dwSNx+XTuuHZRjg12KFBODStsKR+2tDxnBZ94NV5f2FmKmM6wuhIPMlPLTOi6R0H2sVNnKp3qtCY2XXdVqsLNh7APNs2A9vPfQRt5LuKceLlyXZ0CKgT+//RZ/efcxthDsCYCrGjx+P4OBgZGVlISsri0r7zMAEC2VmVMv7btcnGKsjYTfCzk/vxGdKgzoxocqZou2AzO5rBDve1IXnnJyj0oT4jjfXZiDdJsFkBS25mciH8bd9cu+cWz8EALAo48ybrGCA3pAx3JHgb6tjZEoT0rCrIIN3qykdo55jl14HtetiphaNmWeOBssGDQAszjYsTkrBqOYGn2JlYvVWFCel4Nf56Za1xSqqqqoQFhbmdDN4mGChhJJQcQqjvmkyQ7AwLVXLNtQG1JbcTFRKHmqhCdXKWZABaJqYzg0IYz2GuahwGQ2Kk1KQA+X7RPEe85SjNCENBQkd7oeI5mBENzXzg2lEs0UNdgGzqktErgc7cFPBPDNcW7TTcLFBLWi1rNRGDUFt0hC/tpK6iSCO4zinG+GPtLW1ITw8HFvOG4G+wb6DOt1kYZELGpOiZzI+X2//RtL8aIuYWwy6hYCOt0WrA287LSveA4bQVeTPCAtsLdh7QPb+iolPRElbT13bbYqOAuDOrCC3oGShsVKg2GlhOVTmLQjWJwynXtOJWLtGNcuX4ZdSG9UpVo6fOoXc0g9w8OBBS6wWZEz68MMP0aePOZfQkSNHMHXqVMvaahSW1mwTbrLAaDEhOz1zMO1aBla+bVkNrXRJ2hPdGYHEs0jvr5j4RJQmpCmKlaboKF6YSJczfCN95q2efsAOsXKoLJP/k2NG9U5MnHkNtf09HzdX1/q1UUOo7ZvRARMsNhIoZeeLk1JsqTlAU7S4ucAdoC5K3N52NYhIyklKlk0vJwMnESpSASL3Wfjnb8TEJ9q+T+m9ZbXbx2qxoiZSrGR3XIPuFH3mCqILcwkZRK9LiOAG15Det2wadTTMiI9NBXmKbdbjKjHjFhoUV2P5HErpZ+I1hMw9th+NdZup7XvFfXlYNshc5pH0WhgZAKXuG+E2opu8A1OaoqN8DoR2ZAa5EbfFndAULDSESeW7G6kJB639WG3UkI7MOMFzy1xC5mFBt10QM6mNTjApOxeV6Ii2l/tOyMTqrX4Z70FqO8w9th8AUNLWE2lhJ6m75hrrNiP/JXPnh8YAqZYSTCwnwoFvCAI4ulYBYdwJ+b/w3M86U1zQbZjNENqQMZyKK6fy3Y2mtyFEr1hh0IcJFpuZUb2TquLXi1IQmt4UZieo1FCcqTJhnGIGktOplr4oTkpB45mOjgQ9ExfCPIqTCLoFMtiSOX5KE9JcfX3sQpgBJfd/IUT0uU24aH3W5MTJxDJj+yQChYiFUULRYLI0gB6xQnDTsxYoMMHSxTAilKwovW8Xk7JzOy0z1SUozkhxZJ4TPeR7KjDPU4F80BMqbkY0K3Wccrl9X+ytH+3XbiE9okNonXKbWNECcfUYFScEkgkE+I71MpoxZESs+MvM6v4GC7p1AJqR6wzfCC0zRucV8sdBwZ9g59f/Ec6GrWRdWVu/nEpcyvqE4ah8dyMf+6XFBaNlHWlihF6xIpzhmUEfZmHpQqiVmPflDrKrPL1VVCaMw8TqrYbf4seX1WGXRW0jSOco6WoQS8uguBqvWA2GGCunBdCLXDuqUuNx/t1TvJbPMLB9OSvKKEDzJJBC5KwskXmFWFK0FYsyxnVs32CtFb50xcxrXJFcEYgwwdJFiMwrNPSABypVqfFojWrX5R7yd9HmVuQGPKXB2Jclxi2DeFdC7prQqC5NhEok6Kf2iwSQpxzpcQA82gSKEGJZcVOdrUCGCRZGl4FYWQBBsGKq9kDPmPhES2NKno+bixw0UK/O6RakYoKIP2l8lFrVX4YYt54jM25vEjxrhVAhM4eT/5tB6gZiWA8TLA5hZ7YQ8fOatQ4EooWBuIiEKLmLGus2Wxp8fH/9KiAu2e+CnJWEiBQ7jslNrhKrcatY2VWQgfN1rK+a3WMBvoSKFncQyT5UsqzMqN7J3EIWwARLF4GW0PD3t3+hlYVhDKEgyD+TzUQTUnPErXVGGOYR1khxsmaJsF8klj01scJcQM7CBItDrE8YDtg08GsVGFoGh3RPCYoDQLTsR5zumh92pCoqTVLnJqy2snX14GN/ZVZ1iewUE7JBsy4RKdLlpJ1S0bKpII//riU3E5XvbvTp9hJaWSLzCnFjxRrkln5gtvldGpbWbDPrE4a70lSodW6g0oQ0QwMq7dmXzWKkQJlcSvSK+9x1XIFKLOqdbgJDhlnVJdhVkIFdBRnI91SIXmSMpB5bSb6nwqfYJu2X9lfEskyygYhoYdgLs7DYiBNCRasLx2h9kq7OvJfozipN8HfXGyOwkLoB+f/LrBuZV4hKADlnMnCcRo9FkFhRIvMKgTNWFjKXWT46XUEzqneK0peVXERErMFTjjYTx8DogAkWC3GDJcWKAM7ShDRHqzhqtdaoBQmbmQiRYT/7pZHRDKrMqi5RHdj19iFOWlPMTNZKfheZV+hVZl9OlJBl6xOGs7gWG2AuIcoQl48bxIq0aqM/s6kgj/+jwYYM/dfHjnlumFVFjNsyfgItS45A87icuoeLk1K83FJGacnNRLqnnHcBScWIXP/uln4/kGEWFgq49SalkcqsBLFeaC1d7QSBOrh0BcwEH1uZ2uymCUJpZVHNqi7xqzR6ISJrCuXnnQThrhdWsT2D0mciWrTOb8TQB7OwmOSDMe40VUfmFbIBWwU3dyT+kClkNyzo1hqIsMtJSnaVGNMCLWuKGi25mR0xORoDbIVChj3D9GGCJUCx8mER+rvdlv0jxd86YYY8LIbFGxrWFek2nHxeNo54WvO6dr6MEVGk1eVDsoi0Zl4GAp9++ilmzpyJgQMHIigoCGVlZaLvOY7Do48+itjYWISGhmLq1KnYsWOH7v0wl1CAoveB3lWQoX3behvjILRrpwRitV83wt5O1WmNake6p5yaaBG60IhoIQOuXiuGr3nLNo54Gg2DP5P5JgXYIf87p5+5Uc0NQHYuNhXkaQqwJVlEyH7AphY6y5EjR5CQkIA//OEPSEvzviefeuopPPfcc3j11VcRFxeHhQsXYtq0afj+++/Rq1cvzfthgoXBcBmkcBoTR+4tP08ToQtwfFkdqlLjAXROIEhKDmiZJNLo+ZKL+yFCRWp1UbMcpEtSmeXX1W55cPr+l8bokc/rC/JYVpCA6dOnY/r06bLfcRyHlStXIjc3FykpHdf+tddeQ3R0NMrKyjBnzhzN+2GChRGwqGVJ5XsqcEuc/JxBbkIoWoQDh9MdOcMYcgM4EagkC438S4QL+bwXyvfrhozhllmlvO41PenPBmqgyO7TAXwlFPiytKxPGI5RtBtlM21t4uoxISEhCAkJ0bWN+vp6NDY2YurUqfyy8PBwTJgwAZs3b2aCpatj95v5poI8V2YLWRGQZ2cNmpj4RFFhOjd04gx5hEJENTtPYXlxUgquLRIPfnrS6K8t2uk1iacUvZlTRCDbdd+15Ga6yt2s1q8JLS2AfOG4GdU7gSTr2qfEmNbeCDvZx9Q22o5yAIDBgweLli9atAiLFy/Wta3GxkYAQHR0tGh5dHQ0/51WmGBh+AWTzviPaTIorkZxZmY3YFUVXbcjjIEQpu5K03hjUS+ayNIu95HUStKSmykSIkYG3XRPuaoFxShSkaI3LqXjWjChrISvfsnfM/727NmDsLAw/rNe6wptmGBxAUIVb3ZQdirKn7SbhqWFtjChaXEaX1aHXRS246v0fnFSCiLlBkYLsEIMyiE85ufj5gIA7q9f5fN3wkFX+P8OgbJV9jutkDoeSu5D2XPu0gF8b/1ozEKJeul8hbYrujYEE/y5td6UlWixHk/KzpWNaVmfMByR6LzHQv+SDyDHusZaQFhYmEiwGCEmJgYA0NTUhNjYWH55U1MTxo4dq2tbTLA4iBvdKFbh9vRnPay4L8+09cOX+GjJzRSJz+KkFL+7X56Pm4tFGeP4z+mechSfEQa7z7x1FmcUir/X8Ua6qyADxWSuFh/4ctEESoVhK2cUFxZHI3SFOa+MihYyjxCxav36WNfIGJISFxeHmJgYbNy4kRcobW1t+PLLLzF37lxd22KCxQGsHnicjHUIJGGiRGPdZlWzv7QTJ5+FHZiWKsSkoxvV3OA13b1bicwrxJKirdgd14AcNAAecbul4sLXZzVykpJdMbmeWzAy3YQRhIPy+gAXK3ohgbjEugJ0CvV989MdbZuVHD58GD/++CP/ub6+Htu2bUNkZCSGDBmCBx98EHl5eRgxYgSf1jxw4ECkpqbq2g8TLBZDzO12vB2zNFh5lN46rcgU4gdRoWuOfD4zuJJB2df1slOkmHUL8dYgTznSWY033cgF3erl2qKdGBRXY2vgalewsADarSwAMKp6a0d2UBcS01999RWuvvpq/vNDDz0EALjrrruwevVqPPLIIzhy5AgyMzPR2tqKyZMn47333tNVgwVglW4thdzAdokVhjxdoUN1M2RSOiO/i4lP7BIVQ0mtFX+DPVveyN2v/hx4q4UpU6aA4zivv9WrVwMAgoKCsHTpUjQ2NuL48eP48MMPER8fr3s/TLBQZlJ2Lv/HcD+D4mp0/8bNmUVO4UtUGBHU6Z5yNNZtDvjO3g0vG10xoFYvWi2Qo5obZJ+HsxY+R7tJXQ4mWFyGGaHD3EEMp1B70zYqOLqCZYU2TEy7AyXRwjAHEywOsqkgr0sEqXYl9HZSatV4/e3eIK4f8ic9F8VJKZrPj7/Xr9CLniJxbsLO8vRqz4qbqI0agtqoIV737+2fsBdKszDBQhkjg4zbBiZ/6RicRMmM35KbqWrpkg7YgTQoS60s5FyQv3RPueh4hd9Jz5mWLCpGYCPth6SZd3ai1c1PhEogPddugmUJuQA74l2GZRfxMzJHSmpXeFUIbQbSu0jGkVVzCsnN/wO4U6DYJZh93U/5ngrR+aIZ29FVslkCASJG1K6XXNkAK9DTN8tZVRh0YYLFArSmMdMWKnL1P4Azg2R1CUqzizq+aPZdxtzOOXMCGSXhYifhd6fj4OpiAJ3iRGjKn3Hm30AOvEz3lLtqnhojSCdDDGTcIC6ZWHEfTLBYhBMTAkY0ByOCiBIAaO74x645VroSeiuKCq0LesSL0n0ktYr4iiUIv7ujaNUM1bWcgzfxd8FOn8TrSCdQlDKo+kxGm686N/UUGyfASkErtKroFSs0xY3RPpuJFXtggiVAYKLEXq4t2om1Bn+r19Um57KxM9jRDgK1w9fi3gC8Y5uEn+V+S0SvbBCzQcsoqdJK/m8XtF06RrfHSlG4HyZYXIhdk9Ex/INAEiduqDliJxMFkwfKQYSB3gGWF72U3bZ2CRUSR5fvqaDu/iHTYGjZLi2R0tWy2pyCCRYLMeoWMiJWWqPaqVfL7OqBilWp8V0iXsBKhAKlNCENMDCjsj8QSKLSLpwK6rfCksLEij2wtGaLYZYS/6MqNZ4PcBT+n6GNnKRk5CQlY1h2EfbWj+b/xpfVoTQhzbHiZrStOzOqd/J/ZuhKLwWReYXISUq2/JiJlUWKFWJlYvVW6ttkyMMsLC6EPFR6xE66p5x6HEtEczBaqG7RvRBR0hrVjmuL6rAhYzj/1qQ2wI69txbbXh5laduEsQVWQmaZNcMtcfOx90zQ5/h6b+uUGyxWOUnJPkXToLgaFCel+HTpmGVG9U5Uvrsx4EULEYv5uZm2ZWsR0WLFJKJMpDgDs7AwujxCC4p0xtzipBQMiqvBhgzvgXzFfXkisdLV4jP8jb31o88IKneVr+8KYkWuOKAd0D63E6u3MrHiII5aWBYvXowlS5aIlo0cORI//PCD7PpTpkzBJ5984rV8xowZqKjoeBg4jsOiRYvwyiuvoLW1FZMmTcKqVaswYsQIAMDHH38smgZbyJYtWzB+/HgzhySLXSnOs6pLqFtZukIcyyxhXMWZlNF0T82Zf8s7/5WkkzbWAZCIlK5wvtyCr0waoMPiY4S99aOR7ilHraFfM4Q4XYByU0GeyNIi/SylNmqI6DsmUNyD4y6hCy+8EB9++CH/uXt35SaVlJTg5MmT/Ofm5mYkJCRg9uzZ/LKnnnoKzz33HF599VXExcVh4cKFmDZtGr7//nv06tULl19+Ofbv3y/a7sKFC7Fx40ZceumlFI/MPG7IFrLaLZQTYBV10z3lQIAdkxXsrR+taaZsIkqkdUpacjNdUdiwX2pHnMShMnMiNZCELu/+ccH1IbTkZmLTmf8LK31XJoxT/A0TKu7DcZdQ9+7dERMTw/+dffbZiutGRkaK1t2wYQN69+7NCxaO47By5Urk5uYiJSUFF110EV577TXs27cPZWVlAICePXuKthEVFYXy8nKkp6cjKCjIsuN0Wni4EdKxBaIrJScp2S/rOrgt24UMLMVJKXxRMTcN7IfKMk2LlUDCjWJFiq+MnpbcTCZWXIrjgmXHjh0YOHAghg0bhttuuw0NDdoDpIqKijBnzhz06dMHAFBfX4/GxkZMnTqVXyc8PBwTJkzA5s2bZbfxzjvvoLm5Genp6ar7OnHiBNra2kR/XQWrBIXwjdkfRIvemZgnVm/lM2bMEshl832R7il3RKTsrR/NW1CADmuK9DMN3CYSjSAUKm4WK4B40k0yszL5I8+sdH2t29T7O4Y+HHUJTZgwAatXr8bIkSOxf/9+LFmyBFdccQVqamrQr18/1d9u2bIFNTU1KCrqLEXf2NgIAIiOjhatGx0dzX8npaioCNOmTcOgQYNU97ds2TKveBu9OFGu359wu3uI1VroeqytXy6azkBoTXGTZUWpX7HasutkQC0NtMwA7euFw1+P3R9xVLBMnz6d//9FF12ECRMmYOjQoXj77beRkZGh+tuioiKMGTMGl112meH97927F++//z7efvttn+suWLAADz30EP+5ra0NgwcPNrxvq7CigJxVEyG25GZ6Ba26UbR0zOg8X1PMhRKBFKNAC61xLG7BSYHixhcdNz6rZmjxkXItmkz2DDHxiZjnqcAwMoebIIDfH6zG/objQbdCIiIiEB8fjx9//FF1vSNHjmDNmjVYunSpaHlMTAwAoKmpCbGxsfzypqYmjB071ms7xcXFiIqKwg033OCzbSEhIQgJCdFwFOpYbWWxoh6L3bitI+zoeMwNrCQYF3D/G5mZeixr65cbzsxRwynBF5lXCFhciwXoGCzdKEqUsPIZFbrI3OQKJfdfPjrFSyN5rl1Uwbn584M4GfKbqW0cOnEEADB+/HgEBwcjKysLWVlZNJpnCsdjWIQcPnwYO3fuFIkNOdatW4cTJ07g9ttvFy2Pi4tDTEwMNm7cyC9ra2vDl19+icTERNG6HMehuLgYd955J3r06EHvICjjT50YTdjbiX/ituu2tn65qd/b5Qb0tziW4qQURReKGfzpPGi5N/TGvbmNqqoqfP/9964QK4DDFpaHH34YM2fOxNChQ7Fv3z4sWrQIwcHBuPXWWwEAd955J8455xwsW7ZM9LuioiKkpqYiKipKtDwoKAgPPvgg8vLyMGLECD6teeDAgUhNTRWt6/F4UF9fj//5n/+x9BjlIH5lmmIk31PhusFCC2rtzklK5rNDAgmjmRR2Vbw1Q4f7jH5htnRPuW0VUoXsrR/tF+fdaqR91SaF0vd68LdzKkyHhkYhy+Le6OKoYNm7dy9uvfVWNDc3o3///pg8eTIqKyvRv39/AEBDQwO6dRMbgbZv347PP/8cH3zwgew2H3nkERw5cgSZmZlobW3F5MmT8d5776FXr16i9YqKinD55Zfj/PPPt+bgfNBVLSd6EbpSAPe7Uxj60BPH4pSrkJZbqF9qoWocjLRgmVuQ66smZedik4kXCX8SK3KxK1KE96U/vjj6C44KljVr1qh+//HHH3stGzlyJDiOU/xNUFAQli5d6hXfIuXNN9/U1EaGu3BbfIsZjBwLe9t3BrPnnVYKtJ34eqmalJ2L2qghuiyges8hjfmtjKIkVIqTUpjlxCFcFcPSlbAi3dDKgZyPgrcAve3uym8wVsQNMNShMTj5U4G5Sdm5mi3A6Z5yxXtSOJu12VmtaVikI/MK+T+1dUjtpHRPOX/tY+I7YyCl94PQrc2eT2txVZYQQx43lOh3G1riQLQWgBKWf7cSuXgdEqejhXRPOYoBVL670fJZhBmd7K0fjci8FMuzhUj5eJruYj3ZVUb2m++pQKTM/UvTCjijeifWm+j/5CwlcvFQOUnJirEpjXWdhUeVLCxqv2fQgQkWB2GF5MxDBIBcKnep5PMwpXTvZihuQ0hrVLspUaNkGdKzTbIujUn5Kt/tzKZrkQZR2hjo7G/1WKxiRvVOjMp+AJU27U9tAkCtkFiWyLxC14poYTqyHsgLDnHdkudX+rzKPdf+mgThdphgcRh/Ei1uLX5mV92ZiOZglCakiWZ3tss6YwahMFFClAEBACqWHyfvASKq9LSBRm2YQJy5mWaAb7qnHPkWxlfZEcsiFRmkvzPiamdixRqYYPET9LiFrKh2C9BPLfUaJP0IvhM7828+7O2khG4hLYJEiHTmYzmUzN5y9Tek4mFQXA321mtPba5Kjcegam0WFtJ2pVgBNwpqPRAXCy0xMaq5AbWCFw1aL0fCvmhSdi5QvdW2Int2Ic1QZDgPEywBiGXVbu+dS7VEv3AmXj3C5dz6Idgd18D/blZ1ia3VffVMVUDqyNAWM+mechS/u7FjINI5SBcrWClEYtRTwX+WigOvrAkZ4anHxaMmVmTfbjWee2Hswt56zc2RRY8AM8OM6p1UXUK1UUM67hUK7h8hUuGjFMviL/jzy1NXggkWF0DTLUTenCOaqWzOFvR2FESsAO5PMSSiQGjRoNVeo9YEvb9TFTaASNxoRU3A0cp2E57nqtR4AMD4sjoq27aSltxM1FISGKOaG2yrtqrnviJp4nalLAvFK7m/jBSCYzgLEywBhJm3BC0WitLKJlvroMgFrkk7XxJXYietUe2yy6XiSXiehJ15sYw7Q8n9IrdeINShseMYyP2T76ngrTK70CGWjFhM7MrOmlG9E+tzMwE/iW0DOl3WegQITbEinX+IfCb7ED5ffJ9CSaTkeyqw4r48USYRwxqYYHEJWqwsPt0KOh7AmPhEVz1gcpaSFfflIedMG4WDtxXxOXpQiuXRKhblprQXvvWp/caJ8vR2QtvyIvebjmUVhoWLHUTmFQIurHrrDwjFC/l/Puhm7Ujvq3kv5doex9YVYYKli2JUrOiJ39CD3GBP2liakOYqF1dxUorPc6B1cJWa0f09aNQswlRSe/bVsT8rZpg2QwtFC8uo5gbURg2hsi0p/lIfakb1TiDJ3DYCwbLp7zDB4idMrN6q+n1MfCKWDRqg+JYfE5+IeS91dIBmBwO3pjcDsCUAV0+2VGReIa4t6njLMztzcFdCbnAw6o7Ucr8Kr40bLC8zqnei0iVzC/mLKKGBWVHiD2UO/BlWmt9FCDuGidVbURs1BBOrt2oSK4D4IZEO2o11m5GTlIwV98l3PsLaIr5w88MorZNiBcIy3b4gYgXoeIt325u8P2G0GJdecZ3vqcDa+uVYW79clO10bdFO3Snk/sqmgjz+D/CvyQrlUIqXyfdUiP70MvZecXUeYeYjgz7MwuJCaqOGYCK2mhIGVg/adkKOxe7gWiUa6zabiiUhoqUqNR67CjJk1yFWAWFMi1utWnZiZN4po2/Nt8TNR75nOXKSOmO+WnL900qmxVIjZ0mRxoM4NRGhFny1zQqXzraXRwEQW60X7D0gcrmTF5z8030B5FBvQ1ciiFOb+pihSFtbG8LDw5E36zr06tHD9Pa0TGGuBnH5CEvVk4Fea4CtHkGgNNDqRe8bs9Y2Wu0a0nL8QncQDZhLSR9kniajQu+WuPnYkNE5CEoL7rXkZhq2PGgd+GmUzyf4EiRacLNgsQNhf1WclKKYACCthh3RHIyjRw7h9qkjcPDgQYSFhVFvGxmTvn/w3+gX0sfUtg6dOIILVk63rK1GYRYWhzErVIQIHyZ/tLBomchQq7XFaWvMLXHzAYpihaGPyLxC5OdmGg4Qj8wr5K/ftUU7eeEifE6L8wpRCd/CxelBXipU/N29YzfSchFEgGhNBCC/feO8a61oXpeCCRabkBYu4h8CDUJFS3E0YUaNVKzIWVeE4sDJGgJazbSyxZ4cRBjIaXdcipuDnp1EeF70nB+h2y2iOZivs7MhYzhvIbu2aCeKM8TPIf//pGQU54ktLzSpNRB8KxQpdggUI3M8uRnRpKrN4hcgoxmLM797h0bTujRMsNiEV+EiH4Ou2uygaui1rNwSN5+vdTKrukS0X6etFHK05GYCScmaXT5WuYYimoPRQn2rDKMYEXG8y05gQRGix50nDLZ0WlBaGShL4liEIk/04mVjYUnakJeh0oQ0r5neGe6ACRYXY+UU5WS7+Z7lyIkT74NNjc7wF4g40CMQeIuYjCDZVZCBYdlFXiX8O0r7y1c4FsILF5PB0npFj10WlfUJwzW9cPkLwn6u1IGq2YFCe3s7Fi9ejL///e9obGzEwIEDcffddyM3NxdBQUHU9sOCbg2iFHRLMyaFFkI3EXkgieVhV0GGojjxFVTm9JtUTlKyox2MMPDWDrcQC7o17nqQXh+hu0crGzKGG3qu9aa4yk0KKvesORWLMir7Af7/Si83TvcNUoSuZLv6DKm1u+3YMYRn5wRk0O0TTzyBZ555Bq+++iouvPBCfPXVV0hPT8fjjz+OBx54wOfvtcIsLBYg7dTsqA2ihnDfakGrJP2usW6zX9QRyPdUYJiDgmVYdhG1bCmGMiTbBzAvVAhErBgRLnpREzlqk2IKPwstLm4KmpWb68sNL2siy4lMHAqDLl988QVSUlKQnNxx3s8991y89dZb2LJlC9X9MMFCCaFpmtTokGa2OIWSpaQ1ql30YPNC5Yw1XG3OHqtK9Psb5LqvrV9uuZXF6dgIK1Gy8vEFvTTca8K4CjURIpy5WatYMWpd8YXQmkJeGJYNGiD6juAmoSJEZE0xMHO3HqT3iZIIYTEo9nL55ZejsLAQdXV1iI+PR3V1NT7//HM888wzVPfDBAslzA4kWko6CzuGzhgU33OvKAkPpeVqriB/ZtbEaJRWNlHdpp3Bt4Ea6EtjqgiCUICQQFolUVKVGu8VqyIMvhX+7tqinUCcqWaqsmDvAQCdYkUOu2aL1oPVrh+tAoVhDW1tbaLPISEhCAkJ8VrvL3/5C9ra2nD++ecjODgY7e3tePzxx3HbbbdRbQ8TLBaj5g4SmbnPPPjSGT+VOgRaHYW0A9CTsmemiqgT0BYrdkPSbQMBrSLF1z0mnd1aLtuHCBNiWZFD7ndSrHZ3qM0F5ibseuaHZRcxS4kBSv5bYLqY6fFTpwAAgwcPFi1ftGgRFi9e7LX+22+/jTfeeANvvvkmLrzwQmzbtg0PPvggBg4ciLvuustUW4QwwWIh+Z4KvhCzcPJBHovFiNUwt1AHJJbFqFtIbiAdX1YnCrKdUb0TE8ucL0JmBlqZZySmJd1TjmKIa6cIIRaSqtR40TkWWlXUhIoWEUMb4TxVcrWRnLCyOHHP5SQl+71YcTp2kQZ79uwRBd3KWVcAYN68efjLX/6COXPmAADGjBmD//73v1i2bBkTLP6Il1hhOIYVriG1AFxhzIR0OVlGLABEqOxCZ8zC+oThfilUSMwNDaEizL7jxcoZC6WS5YmcTzW3jx6stH401m0G6oB0lX2bmWZAL07fb04H1DM6CAsL05QldPToUXTrJp5LOTg4GKdPn6baHiZYLMaumiZO1U7xN7cQYK1raG39cq86HuT/QuEitaqsrV8OFAC7NO7HXwJwzd6TxUkpiBRk0mjNXotoDvYSKoC2eirCCsbC2ZqtRi1jiBCZV4j1JuYwUsJpgcLwb2bOnInHH38cQ4YMwYUXXoitW7fimWeewR/+8Aeq+2GCxQb8bUBnmEctXoKIE+CMQCmQX09tEHGzWDFTi8jrWTkjxKVCRU64SINrhZaUTrdRO/+ZCBrpBIfgRZY1YoVMRiosIyDavwKionQG3EJMlDCs4vnnn8fChQvxxz/+EQcOHMDAgQNx77334tFHH6W6HyZYAgihlUVL1lEgYLT0vhVuIYKwWioRLlrqtZCy577WAdw9+FARKj5QyvxRcvcI3UbC2JYO2m15ToqTUjDy+1YAJ/llcmJFLbhXb30kN98nvrB6xnUGPfr164eVK1di5cqVlu6HVbo1iFKlWyWcMuFH5hVanqLsdPG0YdlFhn5nhWgxci6E5n3hACM1+1e+u5G/lmQAdpOlRc/ElHoEijQTSM2SooScwLHT3UOQExzSc+YrG6k4KUUUeOvPokQNpytZm0Eu2NauSrdaxyQ1jp86hdzSDyxrq1GYhSXAacnNRLofP/hWUlrZZIloEVpK5GINtAwwwm0Q0Wl0llg70CpWzLpH5eqsaFlXiBNCRYj0PBEXkZ7f5weoSAkE/D0zyM0wwWIj/hIoqZdAPS69nH/3FJx/5v9qQZG+BE1kXiF+aA7GMLLAxUJFCbUih3ppyc3krSxGM3ysqlSrF7k2zHspV1R/yQ3tdAP+lCnERIo9MMFiE3x6px9m1bid1qh2w24vI9aV8++eomt9OXFCRIvQzQOgQ6RoECjpnnLX3EdETFhd5FCYyqwFIm7SPeVI9zhrVVFClAVlgTuNQQ/ihpV79opdOOltIMIEi80UJ6UEXLG1dE+5pfOHuIXWqHZDRbvkYlEAYFhzsF9aT6TYYV1ryc3kBwUt+MvAIQy01YrRGasZxhFaUOT6cHIt8qEvlouhDyZYbMaKwV2LS8aMFcLttORmIsJg4K0Seq0ocqxPGM4PLsJz7+ZYFH/GnwcJPW3n1z2T7s2ECz2E2WSjmhv4/1cmjAMAbCrI8/nCSSbAjcwrFG3jyJEjdBvbBenmexUGLfI9FbrTErXgq7Ozeg6UQAnobY1q74hDoSBWKt/diGHZRWeCZekLRSvuI39COEh3uHz8V6yYId1T7pVFxdDPrOoS7CrIQEtuJkY1N4iEBsM9MAtLAEDqryj5tltyMwXFsBgM/0QYfJuTlKw55oMmcsHETpPuKUcxC3zXzazqEt5yUpkwDpPO/F+JTQV5djSLoQKzsNgMrblV5MhJSlbcdr6nwtLZfp1+y6MRpU/TEmL3BHVdBbutKfmeCtGf9DsrKU5Kkd2vHOmecuQkJTv+HLqJ1qh23nISi3r+rzWqHbsKMnixYhVd1epnJczCEgBIRYqStWXB3gNYFRprV7NshVYK5KjsB1Bb8ByFFlmPdHAiFggzb9okYJDFRmgTJLTdraLzLti/dD9KbtiIZgBdzNqyqyBD1AcKr1tldq6X5aQlNxOTsq2fjLY4KYW5lijDBIsfozcafd5LuZi19l+WlKSPaA5GC/Wt2k9xUgomUhIs5989BT+s/pjKtqQIU3yFQZg4MxeOEcEhvJ/szvxSqvbrBHosJ2bdrV7Xyce+tcSLdRUXEbEYK9X5kRMlRt06Rn7XkpsJ2CCMuhJMsDgAjdRmX2JFycqSf8v1hkvZa2mTv3eS/pRJ5WuiPDemmpN7xOhsw1YFkFvh3tEkGjXuN91Trjm4vTQhDRHNQER2EVqj2l3/TE7KzsWmgjwFq0e96JOccJC7z5XEijRzRw0Ws+I+WAyLnyLXCRUnpYj+lLAylsVJaM1pROqk0IBGxpGQWdUltlTVLE5KcWU8BM3BVyk2xch2hM8b2SbNthrNxCOxLU4zKTtXVkSQZdLvNhXkURcMOUnJuq6JUpsZzsEsLA6hltUjXQ8ANo54GtfseFj0nbCTbMnN1Py2ZtX8QhHNwUiXOS7pwKc2E60b3gYjmoNR+e5GaoGzRl1DUmGS76ngTf1a3IF6LV56i7MZQUt7fM1abcTKIveskWdQOqCbETBuKwxJnvFhCWm2W1vMDPZm3DnS384pa8aijHHY5FGy4shjVjDlJCUD1Vv5z23HjpnaHoMJFkcgfm+5AUXpbahh8GcoHqywLQPkeyqQA/o1VEoT0jpLjeOMOPHDaPl0TzlqHdq3UKhIB0891ztdQzwLEZNLirbi/vpV/O/cXOdFb9yIklgR/qu2rhVt0kNkXqHpisizqku6bEn/jvvaXmthZF6hX/Z7bocJFgchcQbSTtPXYEHrLak4KcWSqqssnc84RKzQtjYpugVIkG0cgLjO2iZusHSZRWmAlhMpQoun0cka8z0ViDzjSnPD+ZtVXYLaguewPmE48tEZ2OxkULNeCwdZ36h1BegU5cy94/8EcRzHOd0If6StrQ3h4eHIm3UdevXoofl35OERDupKAsWuTi+HsnvITIyF2YGaZkCx0bmD5JBOcih3jvQOkMQtpHbtjF4LO9xzaoG3WgZVpVRWpXWNWBiM/o4mkXmFqsHgwjgppzOsCDTFgR7XjNx+a6OGGEovNuMSkntBaDt2DOHZOTh48CDCwsIMb1sJo2OSHMdPnUJu6QeWtdUoui0sd911FzIyMnDllVda0Z6ARq46p1SsOPFmZpV7yN+xKmNoVnWJd/yRDkinXAvz16w0IU1W1DidZeQrjoWgJiaElhKjosNpsaIEsZ6Myn4A+S4RKU6jGveiU0CxDCF3otvCkpqaivXr12Po0KFIT0/HXXfdhXPOOceq9rkWNTVLOkqlQUkYMOmWQFOArqXFjJXFzCBBw8LSGtXOx3FotbCQIF1phpHUPWbkequ9rU6s3urzmgmvhdK6StdL77XQa5Hwld5stcVA6grSYqkB7BMyQvfSLXHzsbZ+uWYx5xRusa7oTWM2sk85lNyvzMJiHt1pzWVlZfjpp58wd+5crF27Fueeey6mT5+Of/zjHzh16pQVbfQbhKXxycBE/oRIJ25zC/meCltSZn3hRDotKeM9q7oELbmZqEwYh5bcTJ8DQ+W7G3mRQv4l5eOllUlLE9J0XW+taZXRTeqBSGTfasKGfLdxxNOa2yeHWy0SBPKMCoWH2pQW0t+Scvm+IELM7L1M+ooZ1TtxqKyzfo1U6LklBV2vWLHSkmHknNBuj5uD1/0RQ0G3/fv3x0MPPYSHHnoI33zzDYqLi3HHHXegb9++uP322/HHP/4RI0aMoN1W1yPqyHx0albPoKwXodVnV0GGaUuFkqvBalqj2lVdOaQGDRkISAcb29w5hTwp5U0KWilZT4BOt5H0WM1aqnx1/BPPpEuWJqRh7rH9WGVqb51IU+d9YTbGY33CcFUrixZrgh7LCOAtqrQE5/JuJYV15Y5hRvVOYOY1VKwhvrbhFiutHnyJAzPiwah1hTZO9PGXzX4MfXr3NbWNI0cPA6UfYPz48QgODkZWVhaysrIotdA4poJu9+/fj9deew3FxcXYu3cvbrzxRvz000/45JNP8NRTTyE7O5tmW12FWfObUCDY/VYq7IhLE9IwvqxO9H1Vajy1fRkVLWbOCTk+tcnNhJ2hL3FQGzWE/z+NuBahaNLyRlobNYS/V6yMM9LqFrIqEFVJuGgNwKURVCt8Nsjb8ajmBtnBU2u1Xje7b2hi1BWkXOVWX3YQWXdSdq6hQFta1hWp0CWf7XIJffDml1QEy3W/n+D/LqFTp07hn//8J66//noMHToU69atw4MPPoh9+/bh1VdfxYcffoi3334bS5cutaK9DBMITd9760djb/1oL7ECQHaZP6HFbK+ncyVvr7SCcNM95RjV3KDahk0FeZhYvRUTq7fymUBWB0Vr2b4bsmakCE3/eqq6Ctclz0ZxUgoqE8ahMmEcRjU3yA56M6p36ppawOg0BG5Geg6sKhJH3KJ606HdYnFyQ5XhQEK3Syg2NhanT5/Grbfeii1btmDs2LFe61x99dWIiIig0DyGWaQPzN760Zp+N76sjqqlxU5oz8Y6KTsXE3XM5WKWidVbMVFiBXMaIlTcKFZacjNF9Yz0iiph3JnSW/mk7FyE351uqI2BYGFREl1keeUZKyQNF4ySpUNoRfH1GzfF0jDooVuwFBQUYPbs2ejVq5fiOhEREaivr1f8ntEBzTgWOSVfmpCGvSasJcTS4q/CxRd6OrXKhHGYNTGaykzXpWfKpI9qbuBjUYTflSbE6d7mrOoSKsJGKfbISaEijGMh1hRelDY38CmrlegYeIi1RC02RTj/DxlkfQ22vuJthOv5O3qtQi25mV7uNKN92yaIn02hy0hOtMgG1zocu8KwBt2C5Y477rCiHQwDKM0nQ6wo4+udce2QtGAnkVbJpGJxeXkVQNHaIQycdStusqgQa8qk7FzFuhqTsnOB6q2q7S5OSukIrNY5qE3KzgVUrCy0hIpbKuXqYUb1TiDJmm0LZ3PWIlZacjN1112hhbQkv/A+PN7Fs2hpwCrdGoRG0C1Ba+ckFSha3Ts00GploZUZZLY+jRVluGujhlhWTM6NkGtJW7QomfaFb/XCwd/ItSTbJ3EpNLNFNhXkWVoLRU6wSAdmOwSNXitL5bsbZV9UhM+yXKVv6brkWsm9aAjvG0WxAnP3jFmUztvh9nZc9uMOFnRrAjaXkENonWBO7qGUy+yxGq0xLU6lM9vBqOYG7Id+dw1DjNrAYFaoCLFCrBCsdPuQQff5uLnYHdcg6if4zELL9m6ciTOvAbIf8FouFFfk//nwFi9E2AhdQkaso07OGRSIAdZuQneWEIMuarPoyomV4qQUv8/isYKcM7Nf3xI3H7fEzbcsiG7WxGhLtutG7HZVERGgNytEjknZuXymD21oD4hKBc52x3W0Xa4QoR1YHYsj7fvI8UlTlPVsj01wGNgwC4tD8EFpkjL+5CFuyc1UVuupdKtaKllOpMJIj5VFCa3Wl3RPOYoVfPm3xM33Wra3Hri2yPq3m+Id+4Ao6+YZciN2pDKLprNwacCkVSK4JTeTdwOpxa+4KZ5IK8VJKT6LaAqPKzKvEJvOHH9OUjLyzxSA8+UiA8wJSRrX9pa4+ThU7V+xR/4GEywugIgVrfPWbMgYTnVwlssGUrLiOJXuLCdSnIBkQ7g5UJYmdrj45ObechtWp7225Gbi+bi5WCRZ7o8iRSt8TJ7g+gs/A4IJYyWimYg7IdKMOzmschEy7IEF3RqE1kRTkXmFmoWKkMp3N+oWLVWp8dTcSUZFi9rgJxywaAiyvanmJgBTglSedVq0aJnU0Mx27bSqCC1WJOXbaeyuzWH3xIpa0ROXsT5huOo0CASlDEc9kP6ClqvM7Hn3dZ5Y0K15mIXFYayO9h8UV9P5/+oaIE49u4imqJFD+MYuFSh2uHRoMKq54cwg63RLOpCKFaM1WewSKoCyWCEYKa1OC6eKiOV7Ks6kxbpLsOhhRvVOFOeldCYVKByLXpERE5+IxrrNprZhJcwdZA+OBt0uXrwYQUFBor/zzz9fcf0pU6Z4rR8UFITk5E5Fz3EcHn30UcTGxiI0NBRTp07Fjh07vLZVUVGBCRMmIDQ0FGeddRZSU1OtOERNGAlu82WVGRRXw4uV4qQU/s8XWsWKGVFDBlMiUvxFqEhxMhtKuG+z7SCzVNtVydaXWHEyPsjpiqf+Vn9FDl99k5FZlJcNGmC0OZrROmu3HIfK/P+6+QOOW1guvPBCfPjhh/zn7t2Vm1RSUoKTJ0/yn5ubm5GQkIDZs2fzy5566ik899xzePXVVxEXF4eFCxdi2rRp+P777/nqvP/85z9xzz334IknnkBSUhJ+++031NTUeO3PLiLzCgEDbqENGcP5zl06CzGEhYYFg1A+gFvi6NRvMRPPUpqQ5lhhOxo47bJQs6AQK5bcOkJxQ8SJXSmy0sFATZhENAfbamURTnDJMEfluxtReeb/UnGS7ikXFVbTip3WFCXR4kvMy1VCJi+jLN2ZDo4Llu7duyMmJkbTupGRkaLPa9asQe/evXnBwnEcVq5cidzcXKSkdFgTXnvtNURHR6OsrAxz5szBb7/9hj//+c9YsWIFMjIy+G1dcMEFlI7IXryEis3485xDZnGTW8gXdrp7tKLFdUWtSrEPRjU3oDZqiF9WmXWSync3yi53k7uGFmqxOUSYaJ2+gWEMxwXLjh07MHDgQPTq1QuJiYlYtmwZhgzR9rZTVFSEOXPmoE+fPgCA+vp6NDY2YurUqfw64eHhmDBhAjZv3ow5c+bgm2++wU8//YRu3bph3LhxaGxsxNixY7FixQqMHq1seThx4gROnDjBf25razN4xN605GYautEnzrwGle9u1N3BDoqroVIlt6sKFbdDxImcNcUpjJjaI5qDkZ6UzL+tM5xB2jcJRYobhQnNOdqUIKn+bpy9PJBxVLBMmDABq1evxsiRI7F//34sWbIEV1xxBWpqatCvXz/V327ZsgU1NTUoKirilzU2NgIAoqPFxb2io6P573bt2gWgI37mmWeewbnnnov8/HxMmTIFdXV1XlYcwrJly7BkyRLDx6oF0jHoMSMaeRskD7RZ0SKMYzEiXqwO8LWKTWdqQwDieZOcyhqSWk/cVAXVl1AhbSf3ovQ+EpZ1Z0XBnCEyrxCV6BQnREC6UawA2tolVz1YL0r3tjAmkVlb6OKoYJk+fTr//4suuggTJkzA0KFD8fbbb4vcNXIUFRVhzJgxuOyyy3Tt8/Tp0wCAv/71r7jxxhsBAMXFxRg0aBDWrVuHe++9V/Z3CxYswEMPPcR/bmtrw+DBg3Xt2xdGYlmMzGnSkpspqnVAA6MzO/ubaCFBmdI6EE6IFTe6eWgT0RwMWOymIXNERTR3ulgZ3vEn0qB9OywZUoTPmZoFUTZ2RuZzvqeCF/hGA24Z9uG4S0hIREQE4uPj8eOPP6qud+TIEaxZswZLly4VLSexME1NTYiNjeWXNzU1YezYsQDALxfGrISEhGDYsGFoaFAO8AsJCUFISIjmYzHiCyfr61XlRkRLhzmT/gSKboppoRn/oDZLrF2xLG62pMihZwBQu2dI1eNNlEqvT6zeKspQEl474oYKZBEoh+y1EszxQ/Dq0xwa5MeX1WEvOvouYekGgrSdWp8VuRIBauR7KiydCJMhxlVzCR0+fBg7d+4UiQ051q1bhxMnTuD2228XLY+Li0NMTAw2buz0sba1teHLL79EYmIiAOCSSy5BSEgItm/fzq9z6tQp7N69G0OHDqV4NMaw88a3orJoVWo8ZlWXoDWqXfPbqlsEjhJaprS3ErvTjmmj5T5TGxhKE9KQ7imnct4nVm9FaUKaaoZSaUKa7ddYDTKvWGReIZ6Pm4vn4+ZSbZ+SsBSWQmjJzXRVMLKwz3CyQnJkXqFqn70+YTgTMxRxVLA8/PDD+OSTT7B792588cUXmDVrFoKDg3HrrbcCAO68804sWLDA63dFRUVITU1FVFSUaHlQUBAefPBB5OXl4Z133sF3332HO++8EwMHDuTrrISFheG+++7DokWL8MEHH2D79u2YO3cuAIjSo81i9OG2s6O0qgMSxh34u4ldq1ixoiYLEX7+KFSEg6DWmcmtZGL1VuxHnGbXndNzRc2o3ullaU33lGN3XAN2xzUg3VNu2oUhrTsirNfkVqEix7VFOx0VmG4St4GOoy6hvXv34tZbb0VzczP69++PyZMno7KyEv379wcANDQ0oFs3sabavn07Pv/8c3zwwQey23zkkUdw5MgRZGZmorW1FZMnT8Z7773H12ABgBUrVqB79+644447cOzYMUyYMAEejwdnnXWWdQerkZbcTFS+u1F3uX6jZkkaGUNVqfF88OmGqOGiCRwBoAWdD7XcQGBVDMstcfOx1+Bv5QqIyXVM5BiL8wqpuIVao9r5beYDfln1VG4gJaJFLeZBLc25wyqirx37ESf4fZzKmvIMyy7CrgL1WDpa+HIDK503PVkqctdFKiT1ihOSKWM30j4j3VNu2kWqNw4t31Oh+flcnzAcoX/JBy5WLozq7/z000+YP38+/v3vf+Po0aM477zzUFxcjEsvvZTaPhwVLGvWrFH9/uOPP/ZaNnLkSKhNfxQUFISlS5d6xbcI6dGjB55++mk8/fTTmtsayGgRLcQEKycueHcFAJDy4hB3fuT/EdmdWV12BNsaiWPRalWRHp/w2PTQFYJnhVgdrEncPv6AmlCpfHcj5HMW9dNR8l/5nLvdikJQErWlCWmmxb3RKS208utjD1i2baf59ddfMWnSJFx99dX497//jf79+2PHjh3UjQBs8kOD0Jr8UAm1SRHV0p6NWFlykpJ1W1kGxdWIXD927NMIa+uX6xIsUrGSk5QsMo+roXUW50AVKL4mtIuJ74gjI2XWldb1dQ5jRWWcO7BSpAitXmZREyjrE4aLxLFWUScVgML7Ss36QfP+s9PKUpqQJvuys7Z+ueFtKlmflK6BkXN3/NQp5JZ+EJCTH/7lL3/Bpk2b8Nlnn5nary9clSXE6MRXMTma+f16MoZIUC1po5l90poigBZylpViaD9OX9lCgSpUCFoH2AV7D3hNZKeHidVbUZkwDkCn28eIy8durBArcusK52qSWlW0im83M6u6hM8QoolU8KZ7nJsrzC1IC6QqZcu+8847mDZtGmbPno1PPvkE55xzDv74xz/innvuodoeJlhcTGReIdbnZnp1dGodH60UO2l9FOISmlVdYsqyIuTSaf3w1fuHTG/HLEoT3hk5RiWz8q6CDNenIRtF69s1ESnE0mIUtbmSrMDKWjCkamwk6BdikwY7t+Rm+mVMlBx21G8SzizvT0xo+hxhoaGmttF27BgAeNUaW7RoERYvXuy1/q5du7Bq1So89NBD+H//7/+hqqoKDzzwAHr27Im77rrLVFuEMJeQQax2CUnRa1ExIlqGZRfJdgIkqBaw7s3slrj51LdJTMRqLiGl4FozWV7+/PaqBzmhEhOf6GU9IYOmcEAmokW4rl4BEt3UjKboKN8rUoJWAC6xpOipyKpXzDhhSbE7+FbqGhoUV2PYeqnFnWt2qgu7XEIHC/KpCJbw7Bzs2bNH1FYlC0vPnj1x6aWX4osvvuCXPfDAA6iqqsLmzcatqVJcVYeFoYwdufxybxO0XEC+MON/lm5nbf1y7E3tgUnZubaKFcC/Te20iIlPFFlR0j3lnQPu8I7ijI1XjxX9xi5rSXST8VQuGumrJM5HKkDk0r6JJVPPPUVSkv0hHdlNaLn/yDqB6tKVIywsTPSnVDw1NjbWawLhUaNGqRZjNQJzCQUgZsSNtIhbp+nd+noqa+uXGw7G1WJNEaKUCcQ6ee3IpbQ21m3mxYrUisKb2Ic3AC+vQqPJ/RuxrthpkdGKmljR+3sn718nSvX729QegcqkSZNExVgBoK6ujnoxVuYSMojdLiFAn1vIqGghA5BciWo73yzUhIvezB8hclYVNuOqcYSZQdIsoAV7D4jWbazbzN9XxGpn1rJCLCb+5Boi50zq7vElUrSk1zsNyapTKxYoFDVyYstXtpkQcv8Q0aLmFiJ9mzSLSs89aKYf9EeXkNa2VlVV4fLLL8eSJUtw8803Y8uWLbjnnntQWFiI2267zVRbhDALS4BiNPhW7S3JzvgM0pFdW7RT5C6alJ2LSaAnVkgmUKAEI7oBkgW0ID4RJW09AQCXN37SEd8icDvScAM1RUeZcvMYgcZzIBzU9cSbjGruMLHXRg0xtX8r8SU2fFmEaE/OSiu2xh8DcO1i/PjxKC0txYIFC7B06VLExcVh5cqVVMUKwCwshrHLwiJMUdRb/RYwXpcFkLey0MoQ0gp5qyQdtVHkXEDCGVsDFTlLlFJWlBGkg0FpQhrmHtuvuL7QPeTPmLU46nFBKlkTaV5HWtCyAumxshB8WVbk1humo9gj6f8AY1atQLaw2AWzsLgYobky3VOCWpv261S5bTVqo4boEi2kwq0bO3WroTVDtRFmVZdgrkLaspVixe6MIbOVVVtyM30G8fq6jm6/v00Hr/vog5ysKdOVsgHdBMsSciHSScnMQLPAHM1Zc30RmVeInKRkRDQH81kVWs3gpBNX68wD1bqiRazQvH5ycQpqReGssqzYHUxLY1JPGgOek+JUDpKdZPVgnu+pcDwTik16aD/MwuIypEJFNE+PSuVb2uR7KjBMYc6OdE+JZUXQeHdUczA/uJF/I5o7qpwWJ6XIWlu0zBtEOpn8AHk7MjJgjWpuwCYL2iJEak2xs9CbVdgxEaLbBIiTyFl6nXzBEMb3EaHOsgvthVlYXIKSVcXJB1RLkBnNtwyl2BkhxMojtLZsKsjrci4gXzVmfGHX2+Gs6hJbghWjm5pVY2eMMqu6BK1R7a4WK4EqcqT3qNN9oTCmxu70bUYHzMLiAqQDtVpAn9r8QkqYKdcv92ZcmpCGyDNvGzQsFSRWp1Rje4DODqMyYRzfYSuJFeFbkL++CdEelCyxstw7F3h5lexXVllXopua+Qykj+bein6phV61hPQwa2I0infs4+8TMgO5VdC6rsLt+Lto5wNuPeWOiRQtIptkeflrn+KPMAuLSSZmPWJ6G+ShJG+jVjykRlxJau1Ip9CZkDgVLSi9qddGDeEtLEr78Hfc/AYtetNUECtWkhZ2EnvrR+Or9w+hX6rxaz1rYnTHs3fL9X4/AJm1vjmN1O1iJXJ9ih6LoNZ7JScpGfdfOU3zdhnyMMHiMrSIAKPWElqDNw1RRd6iShPSdM3hobQtteVOWFbMDhp+O+DcO1d2sVVuoY/m3opDZeJrq7fyaWtUO/Jvud72t3mrr7E/3kPC4m52PLNEFI0vq+P/aEJc/aUJaXh3zA1Ut90VYXVYDEJy3j/88EP06dPHETOsEauJ0boswplLzXTsWuJUAP0DnBtMs0bqZQjjbuweYMzes3prZdB0C51/9xSvZVILi5JryI54FCWcFBFudxU5kSocmVeIa4vE/ahwZnqCtHqvLwuzXAXdo0cO4fapI1gdFhOwGJYuhpFOId9TgRzB/83sG2esKlZhd9S+lgFILhhY+Dt/EypOMr6szsuiQoTKobJMkWiR1mZpjWp3VNT6o8XDTpy4NumecuyFeAqQ8WV1imJX5K5S6QtJn+nvmXFug7mEKOEvnZGRarl8KrBJk3m6RrFi1H0gFCtu9uM71S61WB8j6M2UMOsWao1qVxQr0v8fKstEWthJ/ne7CjK6vFhxQxv8BalryEhWUL6ngpXzpwxzCRlE6hICnHlztcstRAu1UthmH26l+iwEGtfH7KSLdg4aVt6PRkqnE/S+dcq5f4RIhYoQJ+91wN0iwZ8tbbRQm2R1UFwNAO/51Yy4n3OSki13s3QFlxCzsDAUsSLDRkmU0BArvjAbBEtj8LFjkKBtSaGN1mvdGtXuU6wIkYoVgG6lZyO4+TowlBG6hGjUXMn3VOD5T983vZ2uDothoYgThcusqstiVQCcMB5GWHdG7za88FRoEli+arZI16MFuTeseuO2877LSUoGVDrxjSOexjU7Hja07VnVJfwbr5wAIfRLLeS/V1sPYPO+KKH1WehqKMWvEEtLuqfcskrfDHWYhaWLoiZyrK5dIq07Y+S3ZlGymFgZ+0Jb0BJLCo1tarnmWuvmaBEr0us+q7oEuwoykO+p8ClAAN8iRYiRuC2auF0QuNltZTcisaKQos9wDmZhoYy/WFmUsOtt1MiM0FbUybDa8kEbpwY/MzErQKffnwgj4bbmHtuPXYJruz5hOGacyfjRI0wYDCMoWVRKK5sAQbxVuocF0DoNC7o1iFzQrRC7BxajgkXoGspJSralnoleoaKnTf4iPPTg9Bt6TlKyIYFJ4oqM3k80408q393ouFvIH+5Np+81u5FLAiDWP7ngcDO1qI6fOoXc0g9Y0K0JmEvIAvzxoberhL3eQQ/QPuAFQhl+IW4Ins1JSkZMfKKu61aclOJTrPjbtYrMK+T/jOL0tWQoI5w4UxhbN/fYftF3MfGJKE1IM9SPMczDLCwGcUtasxAjb6SV724UVXocFFdjiZXFyAOutx2ReYWqac1uQc4F5fS9I0R4rYRvklquodo1E5Zd14oZK8v6hOEiF5Te+0muWilgrgCdP1hZADr3o9CN6ORMy2qsuE98nKtCY0XxVTHxiaq/J+trOT5mYTEPi2GhgJsGGz1IxQoA7K0f7YooeDeU2rcLN90/Rt8cfVlUiFvJDohQiRS2x8dxCS0nEc3BAKA4e7gbng9/gEY6sNuZe2w/5sYnovHMZ7cKs0CBCRaTVL7wFHr16OF0MwDoC76tfHejxa3pgJlOvXEiMFsvpOMVWkVIHItSPIucWLHz+pN7OlKhPWpCgwyuWoralSakqZZlZ1iPltIMWlgVGity+RiFzLWmJszPWvgcUHq+6X11ZZhLyCDE/JY36zrXCBaCL9EiZ1mRMiiuxvTbgpnBysi+/cUlBLjLqiJEmg0kFC5SESOFWMWUXEpGUbufpcLblztKWrXUzFwvRidR9Be3EGD8PlW6j9yG1CXUWLeZ/79wwleha0hO5KwKjRV9FgbnknNhV6XbLeeNQN/gYFPbOtzejst+3IH4+HgEBwcjKysLWVlZlFpqHGZh6WJoESsAzhTvMj8rsxHc2rnRxI1WlknZuYAJwZfuKeddL1JhQBOtIkUK72ZUiE2xC39KozeKVddezrJCy9oipDQhjXf3CJEKE6VlQosLKbL47pgbAL5spn9QVVXFYlgY1qLkGtIqVpzE1yyovugKgwFtpOdLKdBWjwhtyc2kHuch58ZUEyskTZ8E3JJlbAZd7RgR1mRWdukyGjFppG8TChQzYkUoNny5hoTr+nIlSQsjliakAUcOGWwlg8AESxeACBW9YsVooKRR60q+p8KwWBEGTQo7WDeLFyesLFrOx6TsXEys3mp4H7QtZCSIVm/GWPGZ/wuL1hUnpSCimWrzDNHVhDXNQGWrLCxylhI5ZlWXoDQhDY11m1VrtRCYQKYHEyxdADNWFb2iRe7tykn8RbzYAc3jJxYLOzNBlESLr9oowt+ke8qpDSB2Zj4x3AO5fzQHaDOowYJuDeLmoFugI5hs2aABpl1AZIp1LR2zk3Eret7A3SRcrLSw6DlOaTu01lwhSIWLFQM5uca+BMqQPVcAABoGf8YvI/cGbZeQmZosgLvuRTX03Ke+grLNQtzdNKwqpNKtnFXEV2CtFOE25O6xo0cO4fapI/wq6NZtdVhYpdsAhGYVUTJzrtX7NJv+qudN30wFWTdUn/WF1gkc1SZPFIoRJcjMtXZbWYQIB8Ahe67gxYpwmZX1fLpCrRFAWVjpqf5L61ytTxhORazkJCVrmoBVKQNIih7LC8MYTLAEEGQ23XRPOVaFxvIFsOyARmeUk5Rsa90ON4gPWm/YRKRo3Z7Tx20EofBoyc30aW1pyc0UWVmADsuP3hnCGfTwtykZlDKAGM7AYlj8GK/qnM3eD1NVajzGl9UpbsPX94B6irPZWXxpEJlXiHwTb9Fa4lykAzztoEkzWRRarSl2YqQMvxzS8yL8v3Tw2/byKK/fy51TmoG3pQlpyIHx4/T34Fvp+fUVw0ZS361wGdKOKSJixVf2EBPA9sEEix9DI4DQl1ghSDsDXqhQFitGOhyaJn8ysNs5iEzKzkUt5W2aFSgtuZkoNiBGSRqx1uso5+Ihy4gVRe03XWX6hkCDVpqzECtEEI0quAx6sKBbgzgRdEveWvWKFK2iRImq1HivadWtct34U9YFTVGzqSDPtJXFCiuK1uusVLtFScAIRYeeiQmFYsYoVtRiMVr1luAvVha1e8xIn+DU867Ul5J+Tsv9IWdZUfsdC7o1D7Ow+AHEmmG0k9Xi9lFjfFkdSlM7y1RbmbpMy5Xgb5i1stAWK3pcfdJrJfrsqfBZf0NP9giNt3K31GIJJIy+wGgR6bTqrAjbSPpSr34xrvO/c4/t591CpPaKFGH5fob1MMHicnKSklHaHOx4oNf4sjogDqJS01bhL2KFdvyBW9wb0ntOrkM2c42scAfooSU3ExFn0llp4fQxOYkZa6u0oJySONErWuTECZl9e3xZHcbX+36B01JIjokVe2GCxWVE5hWKsnuUprjXi1krC6nHYiX+IlSswqn5haQuErl7zqxAAToFmRsGdqU3ZqOYreTqL8G30nuUhmuYTKHQkpspmlZEz+zzQoZlF2GvoK+TipOq1HjRZyXRoVZXRa87iEEHJlhcBHmzdRPC+BUrIdkWgPbB0Q1vtW7KFtILESq+RHFpQpqhKRPIsTh9jeygNCENkZQKo7kdKzIDaZbul0MoUmZVl4j6GOF+hQIsJj5Rc7l+hj0wweICjAbT6kWvlcUusUIgx28mTZShjvBeo2W9k0IjMNYfsXrQdQtWlTEgAldqWdEbvzKrugSlqZ3uzHxPBVDQ+b2ea6TVEsesK/bAsoQMYjZLaBhlH7pW5AQLefsYX1Znu0ghqE0iJide3BacS8vKYjZbSA4aWTFmS9C7DbOB7EoEcql+4gqysrijMACbVrCtHoSCXkmsGHUHsSwh8zALi81IY1TsRsnKMqu6BIgDBlVbH6sipTJhnGznILS4AN4p1W4RKzQh2UI0RAtNy52c9cCfLSktuZmABQNvIFpZ7IyrEp4/u8WKFnzFuzBLi7UwwWIxXgLFBemUUn+uEyJFSmXCOMSinv+8X5BfSDqBYYIUQreJFZqxLKOaG1AbNcTw74n1jqbLJyY+EY0Qn3d/FCpSaAffmo1lcVPwrZJQyfdUWGplsTs2zQ3VuhnaYILFQoZlF7lCoEix0+VTmTAOADCxequu38WiXiRaGM4xq7oEc+MTEROfiHkuE4pmIEXtaBMIVhZfVhWrRYuVSNutlMKvJTOIYS9MsFCGmMmddPuo4YRYEf5fj3AhFhepcHGbdSUQEVqy8oGAEioMZfS4f/xBtHiJE0GwOXGNi9Ke2TuSq2GChQKioMYublEBxEJF7TsiXiZWb1X9DREueq00/syo5gbUGjSNG3VzCNM9/d1CoAWr4liMpoET7HYLmYlRiYlPRGPdZoqtoUdOUvKZiVs78VUwjgTbmnmGWByLdXRzugH+zrlZL7j2BiUPnlupTBjH/2ld3804UfRNDr0WqFnVJdhVkNElLVfFSSlON8FRzNyzk7JzMe8leWHlr/eS2XnXGMCTTz6JoKAgPPjgg9S3zSwsAYTT4sRKQVEbNUTXLMBOQfPt2Ezgoa+UTKXCWQw6SGc314tVVhaaoppsS87K4nZXkRJVqfGySQhO963+QlVVFV5++WVcdNFFlmyfCZYAoCs8TFaJFWHH6jYxNCk7F7VRQ6hkTLg1uypQMesWsgKrLIDzXsql6lqjmSGkp1hmVWo8WqPa+WDsrtCv0uTw4cO47bbb8MorryAvz5p7jQkWP8YtD5Q0wp62paU2aggmgm78ilyNkkCpsEtm0xbeH4FwXFZgxUSIBDdMHQHY46r0hwBcJcg8aWsLlncuNHEsgRTH0tbWJvocEhKCkJAQ2XWzsrKQnJyMqVOnMsHCcI9AUUL4kNIULzRST7VM8EfrrZh6TRYfAx/JTAPOnCs/cJ25CasGmIjmYLSY+L3R+8iJWKrIvELk52a6TrTMqi7BXogDb9fWdwqTSdm52ItxXufMbMq7k6LlrpzuCA41l6XafiwImAsMHjxYtHzRokVYvHix1/pr1qzBN998g6qqKlP79QUTLH6C28WKFPKwtka1Y1Rzg+HtbCrIw0SDnaCReXPMxh5YhdzbulCoENzY9q6MXVYWpwO+W3IzecteTHwiALgie6g0IY3PDCIun0nNvkUgjQyyQLC07NmzR1SaX866smfPHvz5z3/Ghg0b0KtXL0vbwwSLi/EXkaJWljqiOZivozKrukSXxaU2aoiuNzYtVhR/hFS+lRMobnA5OAmZJM9tZdx3FWRYun2nBQpBKPBbcjMRc1+eK4SKEmZenroiYWFhPucS+vrrr3HgwAFcfPHF/LL29nZ8+umn+Nvf/oYTJ04g2OTcRgQmWFyGv4gUOXy9UZAaB1pFixaTLO3Zh90YLElIP/P22li3uUtbUoQz+QqXuUG0dBWhIkQoWpYNGoDiQR2p4k6Xu+9w63i7hOSYlJ1rybkV9udtx45R374buOaaa/Ddd9+JlqWnp+P888/H/PnzqYkVgAkWV+HPYkUrtFxFAJ1ZiK2CVhwLSefe5MkDkpKxbNAA5L/ExIrbsEqokPvIjUJFDqdFii9qo4YwKwtl+vXrh9GjxaKwT58+iIqK8lpuFiZYHKQrCBQliKtIyeJSGzUEtUlDRB2gXJltKxiWXWR6AMpJSgZ8VPBVg0x+GHFmnpNhCWkojmp3nQvIysHUreIEsN6SIsTNYkVq6XNLtlBOUjJwpu+oSo3nJ3nt6oUC/R1HK90uXrwYQUFBor/zzz9fcf0pU6Z4rR8UFITk5M4HhOM4PProo4iNjUVoaCimTp2KHTt2iLZz7rnnem3jySeftOw45ejKYkVIaUKa7CSHLbmZPgdnUsnXLRV9c5KS+T+jYmpTQR5vVZHOR+XGt1eag2lkXiFmVO/k/9wGqQhsp1hh6EcqmIR9gxufoUDk448/xsqVK6lv1/HS/BdeeCH279/P/33++eeK65aUlIjWrampQXBwMGbPns2v89RTT+G5557DSy+9hC+//BJ9+vTBtGnTcPz4cdG2li5dKtrW/fffb9kxCiGDa76nIiDjEIwKh/2Ic9VcQXrfEolIIX+APgvQpoI8TKzeimHZRbxVpasxceY1pn5vlcixeuoCuWBqf8apfo28LPhiYvVWn0I70K5JoOC4S6h79+6IiYnRtG5kZKTo85o1a9C7d29esHAch5UrVyI3NxcpKR2mv9deew3R0dEoKyvDnDlz+N/269dP837N0tUmlTMKCcoVlY3XYWKmmUaoFnwrV3ROKeBXaWLHTQV5IkvMsOwin0HDbg4I1ovbLCjk3pHef4C1z+yk7FyguQHwozgVLZhxDekpLWBmH1KXLaksTWoZMdyH4xaWHTt2YODAgRg2bBhuu+02NDRoD4gqKirCnDlz0KdPHwBAfX09GhsbMXXqVH6d8PBwTJgwAZs3i1PtnnzySURFRWHcuHFYsWIFfvvtN9V9nThxAm1tbaI/X8yqLkFrVHtAWlKswg0+ZvJGLYfQkqKF0oQ0TKzeyluPaqOGYGL1VsNuIzfEBwjR+yZqpbvHbJaQ0xNA2jlDs9vRcp/TfBaIhZO5jNyNoxaWCRMmYPXq1Rg5ciT279+PJUuW4IorrkBNTQ369eun+tstW7agpqYGRUWdZbUbGxsBANHR0aJ1o6Oj+e8A4IEHHsDFF1+MyMhIfPHFF1iwYAH279+PZ555RnF/y5Ytw5IlS1TbJJ2vJR8ImDdiO2h1KKg0FvWit1vhG7XUmqIndVrqHtuPOEQ0mwsWLk1Ic9UUAlqul1sFihuwapJDp6ApIqSWFivEOnmRMFqckmEvjgqW6dOn8/+/6KKLMGHCBAwdOhRvv/02MjLUA9uKioowZswYXHbZZbr3+9BDD4n227NnT9x7771YtmyZ4jwJCxYsEP2ura2NL1vMJpYzj5wp3uh2tAgCkp20qSAPu3ysa0RgqBXTM829c/1CCPuLUOGtei44p/6UwizFCkHhNosiw1kcj2EREhERgfj4ePz444+q6x05cgRr1qzB0qVLRctJTEpTUxNiY2P55U1NTRg7dqzi9iZMmIDffvsNu3fvxsiRI2XXUZr0aeZ37yB/s0e1vQzfFCelKA4YNFMliVDJ91RYMkBZKlTOUFrZZNm2aUFLrASCFcUX/m5lYaKCYReuEiyHDx/Gzp07cccdd6iut27dOpw4cQK33367aHlcXBxiYmKwceNGXqC0tbXhyy+/xNy5cxW3t23bNnTr1g0DBgzQ3ebnP30fvXr00P27QCUmPhGrDPzOl2vBSPCtnOVLr5su31OBHCgLEKHbR09si1ncMhOwEusThpsWLV1BrMjhD1YWJlIYTuCoYHn44Ycxc+ZMDB06FPv27cOiRYsQHByMW2+9FQBw55134pxzzsGyZctEvysqKkJqaiqioqJEy4OCgvDggw8iLy8PI0aMQFxcHBYuXIiBAwciNTUVALB582Z8+eWXuPrqq9GvXz9s3rwZ2dnZuP3223HWWWfZctyBTGPdZlek5NJyMaltH7DWkqJGuqc8YDPO7BYqbhB+UiuLm0ULEysMp3BUsOzduxe33normpub0b9/f0yePBmVlZXo378/AKChoQHduokTmbZv347PP/8cH3zwgew2H3nkERw5cgSZmZlobW3F5MmT8d577/GzSIaEhGDNmjVYvHgxTpw4gbi4OGRnZ4viUxjm0JtePKu6RNPgqzblu6U1Mjzl8gHVAIY5JFjcFnwrZ/HRamVx0pLidkuVW2AixThq/RZDH44KljVr1qh+//HHH3stGzlyJDiOU/xNUFAQli5d6hXfQrj44otRWVmpq50M/egJflWLXxEinPKddAJWD9jCjkZuX4EwhbxTCIWK3RaFyLzCjvuHiRWfMLFiDiZW6OGqGBZG10TPG25xUkrH+p4K6i4RYpKXVtwVxsO4CbcVktNqrZBaVMh5t1O0kEGE1JFJ95R33lsMAEyoMNxHEKdmrmAo0tbWhvDwcLzwzQ/44xaWJSSH1PKgNug75dogb9oENWuJUlyMk7NGWx2rowc5wTKjeicvULRkwtASLKSGh7SwnfRt1y3njiA9R1YLuOfj5uL++s4weSZSrKPt2DGEZ+fg4MGDCAsLo7/9M2PSqFWjEBwa7PsHKrQfa0ft3FrL2moUZmExye2fVKA4eQ4z+8mgxypBOkq7BhBeqHjKTYuNfE+Fo7EskS6xDMi14eDqYkzSsQ2zVhYiUIoB3vpE2kW+I9fbjVYzK5EreU/EChMqDH/A8dL8DIadROYVIicpmReYesSKlVYUM4OnW8WynbVFhNdVONO3UERJz1NpQprrBmorLCrk3ADywoTGOXCbpSomPtHpJjAsgLmEDELMbwcL8hEWGup0cxwlJj4RjXWbfa+oESs6P2F8ihnhoeaCGZZdJLtcaTvSSRHNtE1p7iO7oSFS9AzacoOtXCyK3ISVBLecOyHC82hUxFglxoSTRA7LLupyliqjMJeQeZiFhWGaeS/luvKNZlJ2Lv9HkJs52U5mVZcgFvWy7XC6bTSwK2hWaDWQ4laLk13kJCVbajkiAi8nKdmVcWmMwIVZWAzCLCx0iIlPxLyXcr06WCOdnZ63+/2I0719gp7gW9KhaxUjRtvlpuBbs1YWJdEjDZD2hTDoNqLZ+43T7XOA6bGyuM215W8o3QM0zyuzsJiHBd0yHGfFfXnIMehScuscLMTlEwhWE7uRBt4KA6T1IBQ4ejLW/A0mVszhVsHK8IYJFoajNNZt7ugwdHa6gSpUjBaiK05KcVXlW60QYSJ3PYU1Uowg/Z10jim3ouXezklKZhVUKaC1aCXDHTCXkEGUXEJkwNBrvg4UhJ0oORdG3gDlBl6aIsWMSwjodMFYIZyMtq01qh2A83Pj+DonQusJWVe4zE6LgVsFnvC8dNW+xA60XH8t96OWyVmZS8g8zMJCEeHNLywj31WRq/ug57dCaLtWzJbUL01IwySL3D1G2xbRHKx5XiYrkU7kJ4dUqDgxKLtVrACdQoWJFf/ATW65ytjfIaxPiKlttB05gXDUYvz48QgODkZWVhaysrIotdA4TLCY5PlP30evHj2cboZrkHauRq0r0t9NrN5KVbRUJowzJAz0BtEawWjbAPeV61eCTH8wkVznLi5WZN1fTKhYitvuATdSVVXlKgsLS2u2kOKkFKeb4JcoiRzpHD92Mqu6hI9PyfdU2DpRXyBRGzXE8bdRNw1UwoJ3zJJiH3ruATfdL10dJlgsxOlYgkCcRZimaNFiJSFCJd9TYatQMWPBkc6f4wTS87SpIA8Tq7eyQVmAsOIywx7Ic8zwT5hLyEKcfpN0ezaEG5C6XqT1TNTiQbTEajhBuqfc8TgWoOP8kGdgokw8kxPPh1ODldN9AUMbwjnN2DVzH0ywWAC70a2FZjwLiRcBzrx9Udmq88jNnGwXWosA2j0oOCFWWNCs/yC8F43cl0pFMBn0YC4hilhdEttfcGOZfjXMmImtdBEZtZCVJqS5YpAsTkpxjfndznaQuBS3uHzccg3cgFL/TKPfbqzbzPp/i2EWFkqwG7WTZYMGAHXW7oPEsgRyJVmz2UKRMpMAWgmJnSk+81mLa8pKK4udA7XoGCiIFJpF4VjfJGbFfXmY9xJ9V65wUkiAnXcrYIKFQR3S0fpLJU5pKXi9dPVYFmGQ78SZ12BU9gMAnK0iase+aQ9IIoFloPozQxuNdZv554LmNZx7bD9mUd4mQwwTLJSwwx+v9MboVj857TaRNHGR1cCiarNuwWy9GKuJzCvExJnXyH4nFExqRQRpPjv8PiiLFSesQIEU+GmHJU3P9pXWNWMdaTQ4HxpDOyyGxU8gg7VcympLbmZA13whMSYtuZmWuTiI6DEqfqyMZdHr9rKjuJ2eeC27Bl0rngEr4tJIbI8Wl1UgxJ9YIVb0xMnpiVEj19vX+lrvtXxPBYqTUgK6f7YTZmHxE1pyMzseek85byqWTgWQj65pjjTrkhGKDX8tCCcUKUKhYtbdJUdkXiEfp6FkXZFix8BLW8wKj5MW+Z4K3dYff7e0WNF2oTXDiu372qaS9dhLmHgq+HVfvCoZQA6N5nVZmGDxE+Q6T7nUVX+JG6GN2qy/UkjArj+9vcaiXjQpotSKYkfwMXE9FgOoLXhO8++UzjOtgabYouBiGvOBWdW2ro6S64aIO7tEnte9rdKn3P5JBZyfjce/YS4hilg5AGoVIVL3UCBWuzXKfsRhP+JQmpCG0oQ0v3trJVV3yRQBdmVICcvHFyelaLaq2IFbBQFx+9Bqmz+Ja7tQq/cjdOs4XW6CXTt6BHEcxzndCH+ETOWdN+s6r8kP7Xg4YuITO6LdLX57dQN6H3hiZRFaJJSQVrY1i1sDgPW6haT3jx6LCskSAqy1rtghVvS0023tCXR8WVGE1hbA97mz2irTduwYwrNzcPDgQUsmFCRj0sGybDqzNacWWNZWozALi5/SWLcZxUkprpg3xmr0HuOmgjxNYgWgb4FyawyM1nNIrCkEtwYMuk0c2GXpYW/rnfi6PuR7rRYWWiKaYR1MsFiAXZ2K1E0UmVfI/3V12DxKYrS4FJXS42m7gGgMDFaKA6lo84XdbikmWjrQk2nlVJ/MoAsTLBZh1wOyYO8BURnwQHxg0j3lukWYnvM/LLuIqinYjVaWyoRxiudQGKMiJd1Tjsp3N1Jrh9nzbHW5fz3l9IXp9gxnEN5P5HrITbIpve+snD7ErVbJQIAJFj+HuIaEBKJoMcKuggxmaVFBTahYgdvjL/S0j4ZoYtZQ7ShZScgyN1mdAvXF0Q0wweLHECUvfTgCUd1b3QH4Y9aQXkY1N/D/d2t1ZF9YZc1wQqyQgc1IFoubBmizKFk7pFk/audIGq/i6/ywqrT+CavD4seke8r5FN25x/aj1/s/AQB2e8oRE5+IZYMG+OWgRBNSqGtYdpHPdUsT0jAsIQ27CjJsaJkz8J2+jvsi3VOOWlr7dRl6hBsNkWDk/CtuI0BQEg85Scn8hIJK3xO0XBu1bTH8AyZYLIA38xrolKQWE1+pduQBHF8/GlWpl3YsrG7o6AQsnjHZLmgMFEZnPTaKmyZEJIXyzDAq+wFNqc2V727EKMl978YBljyjWsQKLWuG3sq5bjxvdqNVYEjPldy5Y2LF/2GCxQWozdJKHjypedT7txVAwZn/BkBHR9vkne+pwDCNgmVYdhH1+iz+TnFSCibqqMVCcOOgq9WqQuv6a7Wq6KkZ0tWhXdHb36c/cJply5ahpKQEP/zwA0JDQ3H55Zdj+fLlGDlyJNX9sBgWizBjZhYuI1YBt000ZyVWxeDY/YblxmwhfxZhtO4LR8SKjvUD4Rm2Gre6ugMxflALn3zyCbKyslBZWYkNGzbg1KlTuO6663DkyBGq+2EWFsrwExRqQEunSAZZ4bpuKTlNE/KgW9kR5XsqkANtxeJKE9KQA/8e4AnSip9WvsW7dSDRg1NixUpIZWyncIMFw7eV2jyBcP8b4b333hN9Xr16NQYMGICvv/4aV155JbX9MMFikvuvnIaw0FBdv9Fa7EhqupZzD7kBmp0RMfXmU9maN0ZEi/T3enAqlkVq3VGy5Gm9bmqBt8JS/G5GyRVE+3lyUwaWMAOH/N8J4UJTrBh1BylNlOi0kHIzbW1tos8hISEICfFd9v/gwYMAgMjISKrtYYLFZvR0jtLZYkk20DydHaw/RMeTifWAM9YWC0WZnngWobBx+zkk6HFF6REtle9udHTiQ9pC1grhr8fCyjAGLTEYqELl3b5/RO8+/Uxt42jQIQAFGDx4sGj5okWLsHjxYtXfnj59Gg8++CAmTZqE0aNHm2qHFDb5oUH4iaYK8jVZWIx2jr6CbgMNoQ/YygqiJGVSL0ZTnu2wspiJmfGXe8roc0SsHlaV0XfT+RNaVRrrNnvVOXFzDRK3ueM2jnga1+x42Gu5kWKddk1++PcPd5gXLEcO4fapI7Bnzx5RW7VYWObOnYt///vf+PzzzzFo0CBT7ZDCLCw2QMNi4KYO0UqElhYrIa4hgP4EiE5gNsDXDTEGWtBSFEwJUpOHNv5w3tyO29zcBKFYIW2MzCv0Er1Cy5/c95F5hTh2+BDg5WR2N2FhYbrE1Z/+9Cf861//wqeffkpdrABMsNiCmTc6fxlIaELeVqTmf2FsAI0OLlDOrRuzkdyGFVYVN8WqCJFaUIiVxa2WFbeKFUC+bb7uJbnvW3IzcfzUKWrtchscx+H+++9HaWkpPv74Y8TFxVmyHyZYKKEUCObmh9HteIkJwfmVe4sxgvCtW4ubaFh2keOVcDcV5FE7fsD/LAQ0j12KXGCmUhvcKFaUcKtYsQq5CRCN/lYPM6p38v9fnzDc8Hb8jaysLLz55psoLy9Hv3790NjYCAAIDw9HqM6kFDVYHRZKWClWnBA9pOS/W90lVgwWlQnjqG+TQNMKQiYspDFxnr+JFcDa2CZf2D1hpL/hxskI9aDWbpJRpPbMrE8Yzv91JVatWoWDBw9iypQpiI2N5f/Wrl1LdT/MwsLwQipSyGd/yZIBOkuvWxVg6VSHLCyzn+4pR7EBa4O/WQesRq1Mv1f1WT8+b3YE7pPt6p2GwEmUArHlnhMSXxcp+Y2voPpAd9valbvDsoQM4itLiHY2gh2DjF5rihsEjLATFroKyPnSKyykbqFY1PP/n1i9VSTejIgWI9lCeucCUrv3/NGiIoWmWOyK4s1X7JZcYUGlZTTuJzdZY+TuB9I+s5l+R44cwdSpU/0qS8iqthqFWVgswsriZwx5hIM0qWFD0xpSmTDOtEiTKyRXGzWE/z+NwTPdU87X77EqjdffcNIqRgNfxdKkqczC5b3e/wnHp53DL5cTGWr3iVCsSKtsOxm4Lty/lnbIHYdwWwBQjM5zTVzEkyx0FTP0wSwsBtFSh4V2B2lXx6DF0uIG6wrg2+cM6B+0h2UX8f+fVV0iim2hZdoNBEuHExh5pqRvzaSKNOA/pdS1VHeVq2R7bn2nGN4d1wBA+zmUWikD+Z4tTkrBqOYGr+U0K1UzC4t5WNAtw4tZ1SX8XyDgtkEpkDt+NxGZV6jq8rHivsj3VLjKknN82jmif3VX2j6Dnns2kCYA1CpWNhXkBXycihtggoWhituFi9WDv9Ta5MS8QP6C0wO1MGuKCBWlQFqrRKxVc9Noaa9S6vLuuAY01m02dH2Kk1J0H4/bXhC0kO4px8TqrSL3rBEmVm8V/TEhQxcWw8LQhFtFi9ZO2EwMw8TqrYZTnrtSUKcdliO1GizC2B25DBV/LhToqxQ8cRktGzQAxYM61m3JzcQ8T4WpWDrpfGa0oXFNzNRckSI8r1I3kVrw+0SFffJtqd6KFy9LMtwuRgfMwuJHOP0Gy9BPIIoVJ+9DpfRTLYOUv4oVoPM+krMaiSYNRcc56sqB1rTuT2J1IX9muf0T1n+bhVlYLIR2Rc6cpGTDU6sHEsLMAD1ovR6zqktErqDShDRRevOk7FxNZl5/HiDV0HtcNC0b5BkgpHvK/abehxXYkQVmZZ9j9L4Q3lNat7FxxNMA4DWZIbmfunq/6g8wweJH8GXk/XQgNFuATihQjLxFmUk11+sWClSxYgTa56IrDSxCsSB1V9iF1W4hJb6IuQqXN34i+52vOjJy38vNugx0rfvJ32GChWELUosFoF24GE1lNfrmne+pwDCXTkngD3SFNFi7kBtMnait40T8z+WNn6iKFiXYfRe4MMFiIVYUjwukh1FJuJjxQeeoBF2S77Vs35dbSFMbuihuOH47ZieOiU/EV+8fwqXT+lm2L2FcCo9DMUR2uqOJQNIrVpxE6lpirib6sKBbi7CiHoMbBgIroDHBotbAS7KuWeTSm/W0oashvcZ760d3Vme9d67p7ZPnLSY+EfmeCttmJ750mrkCXWoQS4pbAmjtbIfZZ9SJwHChUCHijokVujDB4gd0tYFQb2elt66GlnXlOjxfmQKsc1JGakUbFFfTKSpeXmVq28JrNe+lXK/AXKuxSxx1JZSeJa3X1an+kogU1hdYAxMsFjEsu8jUW4JwKnO1m5+GdcINlCak8ceidLykcql0mVWDk3SQVTrXVhULCySsfOMVPivE5UfbGiBtf76nAvNeyhWJlUCp8KrWbzldWkGtL3S6bQzrYTEsFkEGO70xLHoKjQWKWPGFdN6X4jPpyTOqdwIzr8H6hOEodqhAGxMq6tgVgCudlI9AK5bF18zFgP9b2ITPGe3YOzvuA6eeRRZkbh9MsFiIniqsPDrcFTmGWuVuiAgTHZsknZMXK2cgwqX43Y2qg4be7Apf2UKsg/KNnedIrk4RESu0a8HYgZUzvsu+GFksuGicN7fVoWJWHXthLiEH6WqxKWYpTkrBxJnXKH6v9F1xUoolbgKGb+zq0MlzpDSYBdpzZsTdTFyqWmK+aASmC6F1/t0kVoDO4wq0+8utMAuLA/BvNwYfPvJwlCakuXaOHyFmXFfkGIViRWhdkSJ8A+MtKhQHzYnVW133ludmSEwJ69DNIxe/Bahn70h/o/W+lVp3utKcWHph97Z9BHEcxzm188WLF2PJkiWiZSNHjsQPP/wgu/6UKVPwySfeefkzZsxARUXHoMRxHBYtWoRXXnkFra2tmDRpElatWoURI0Z4/e7EiROYMGECqqursXXrVowdO1Zz29va2hAeHo6DBfkICw3V/Dta+NsgoFe0CIWYsF5LbcFzPn+7PmG4vsapMCy7SLFdDH0QocfqU9BF6uoUipRAOcf+1t/J0XbsGMKzc3Dw4EGEhYXR3/6ZMenvH+5A7z7m0u2PHjmE26eOsKytRnHcwnLhhRfiww8/5D93767cpJKSEpw8eZL/3NzcjISEBMyePZtf9tRTT+G5557Dq6++iri4OCxcuBDTpk3D999/j169eom298gjj2DgwIGorq6meER0UbKi+NvDK3cMSiJGSRSUJqQBq9Nw/t1TVPc1o3onVdHiq10MbciVmGeYJ91TzgedB5r1j8WI6GfBv7aiW0hvU9s4feIoAGD8+PEIDg5GVlYWsrKyaDTPFI4Llu7duyMmJkbTupGRkaLPa9asQe/evXnBwnEcVq5cidzcXKSkdLzFvfbaa4iOjkZZWRnmzJnD//bf//43PvjgA/zzn//Ev//9b0pHQx8ySPqL+0cPWo9HWnX2h9Uf2yZaAu2cMwKTQBaDbnw5CzRhqERVVZWrLCyOB93u2LEDAwcOxLBhw3DbbbehoaFB82+LioowZ84c9OnTBwBQX1+PxsZGTJ06lV8nPDwcEyZMwObNnamNTU1NuOeee/D666+jd29zStQOAqW+A00q392Iync3qq6jFuvCYDDcjxvFChCYwtAfcFSwTJgwAatXr8Z7772HVatWob6+HldccQUOHTrk87dbtmxBTU0N/ud//odf1tjYCACIjo4WrRsdHc1/x3Ec7r77btx333249NJLNbf1xIkTaGtrE/3ZRbqnvMu/6UuP3+oOQ65IHYPBYEjZWz/a6SZ0GRwVLNOnT8fs2bNx0UUXYdq0aVi/fj1aW1vx9ttv+/xtUVERxowZg8suu0zXPp9//nkcOnQICxYs0PW7ZcuWITw8nP8bPHiwrt+bpasUiVODiBbyb7qnXJOVRa+lhaR9srcoBoPhi0FxNcwKbhOOu4SEREREID4+Hj/++KPqekeOHMGaNWuQkZEhWk5iYZqamkTLm5qa+O88Hg82b96MkJAQdO/eHeeddx4A4NJLL8Vdd92luM8FCxbg4MGD/N+ePXt0H58ZurqFhSBnafElWgDt7iFmVWEw6MBPbqlCoAz07OXGHlwlWA4fPoydO3ciNjZWdb1169bhxIkTuP3220XL4+LiEBMTg40bOwewtrY2fPnll0hM7Hh4nnvuOVRXV2Pbtm3Ytm0b1q9fDwBYu3YtHn/8ccV9hoSEICwsTPTHcAdaRQuDwbCPVaHq/TggP9CzzCCGEo4KlocffhiffPIJdu/ejS+++AKzZs1CcHAwbr31VgDAnXfeKeu6KSoqQmpqKqKiokTLg4KC8OCDDyIvLw/vvPMOvvvuO9x5550YOHAgUlNTAQBDhgzB6NGj+b/4+HgAwPDhwzFo0CBDx0Gmtmc4R7qnHKOyH1BdR83KQmJW2JsSoytQnJRiuXXDiFVYWG+F9akMKY6mNe/duxe33normpub0b9/f0yePBmVlZXo378/AKChoQHduok11fbt2/H555/jgw8+kN3mI488giNHjiAzMxOtra2YPHky3nvvPa8aLDRxayR7V4RYWpTK9M+o3onKdzeKCm3lJCVbPo9KIBEIRby6MpUJ4zCquQGbCvKQD3f1X8K2uKldDHfgaKVbf8bpSrdGCMRaLr6Qe4tkVhRtMGESmJDKuJOyc/llE6u3OtgiMYE6+7FdlW4HP/g2lcJxe1be7LpKt66KYWFYi1Vixc2mW5LtE8iFtaxCOGC4+Roz9CE391CgBL/qhWVf+hdMsDBM4y9vQkysGMdfrjHDN3KZcG6ayTwnKdm2OJauZnH2dxwvzc9gMBgM+yBzD6G5s6r4pOxcVErW21SQ57hQdXr/DHfBLCx+Tlc15TIYXfnet8OVIYxxoQlzLzKMwgSLn8PcHGJYZ9h16Ar3fmlCGi9OhP8nn7VAhJ3w2dBy7qwIxGWB3AwzMMESIPj7QE2r/awzdBesRhEdpOJET+wFESdan41NBXmWZQ35akNXtpoxfMMES4Dg7wM1K4kfuPj7vekURKTMqi4RCRThci3keyqwccTTPterjRqC2qghll0vLcK1K1jNGMZhgoXhCtI95eztKgCxWqwEsvVGKlTIZ72ZLTlJybhmx8NeoqU2aojo/1ZP+JmTlCz7jAfyNWTQhRWOM4g/Fo5jMGjA4hDswYwbSCukiJzbr6deq5IbYYXjzMMsLAwGw69hcTLGSfeUe4kVdi4ZboUJFgaDoQutb+N2DHyBWsYdMOACGt7gex0NuDGezIgrjBF4sMJxDAbDEuwQEYEoVJSg7RYpTkoRxazw4o/K1hkM+jDBwmAwGC6ATE4qN0mpT5EyvAHYOUR9HQnSANuuJP4Y/glzCTEYDIaLmFVdoitjrjgpBcVD77ewRQyGb1544QWce+656NWrFyZMmIAtW7ZQ3wcTLAFATHyi001gMBgmEVpR9KYXs/olDCdZu3YtHnroISxatAjffPMNEhISMG3aNBw4cIDqfphgCQAa6zY73QS/QksRrUCF1bpxF3rK6xcnpXitX5qQpipWpOX8uzrkfLBzQpdnnnkG99xzD9LT03HBBRfgpZdeQu/evfF///d/VPfDYlgMQsrXtB0/7nBLGHoZ/20W2nDM6WY4wo0Va9DmdCNcznnnXYYffzRnzn53zA0AgJnfvaO63jWVb2i6HjdWrOG323as8949euSQ6LOUo0cOYeZ377BrjjPX5MghALD0nLw75gbZ607GCqtLn50+cZTaNtraxGcpJCQEISEhomUnT57E119/jQULFvDLunXrhqlTp2LzZsov0xzDEHv27OEAsD/2x/7YH/tjf5r/9uzZY8mYdOzYMS4mJoZaO/v27eu1bNGiRV77/emnnzgA3BdffCFaPm/ePO6yyy6jeozMwmKQgQMHYs+ePejXrx+CgoKcbo4qbW1tGDx4MPbs2eOqqoVuh503/bBzZgx23vTjb+eM4zgcOnQIAwcOtGT7vXr1Qn19PU6ePEllexzHeY1tUuuK3TDBYpBu3bph0KBBTjdDF2FhYX7xYLsNdt70w86ZMdh5048/nbPw8HBLt9+rVy/06tXL0n1IOfvssxEcHIympibR8qamJsTExFDdFwu6ZTAYDAaDYYiePXvikksuwcaNG/llp0+fxsaNG5GYSDeDlVlYGAwGg8FgGOahhx7CXXfdhUsvvRSXXXYZVq5ciSNHjiA9PZ3qfphg6QKEhIRg0aJFjvsf/Q123vTDzpkx2HnTDztn7uGWW27Bzz//jEcffRSNjY0YO3Ys3nvvPURHR1PdTxDHWZxjxWAwGAwGg2ESFsPCYDAYDAbD9TDBwmAwGAwGw/UwwcJgMBgMBsP1MMHCYDAYDAbD9TDB4kKefPJJBAUF4cEHH/T6juM4TJ8+HUFBQSgrK/P6fvXq1bjooovQq1cvDBgwAFlZWaLvv/32W1xxxRXo1asXBg8ejKeeesprG+vWrcP555+PXr16YcyYMVi/fr1XGx599FHExsYiNDQUU6dOxY4dO0wds1mMnLPVq1cjKChI9k84y+jHH3+Miy++GCEhITjvvPOwevVqr334mlr9+PHjyMrKQlRUFPr27Ysbb7zRq9CSExi916qqqnDNNdcgIiICZ511FqZNm4bq6mrROuxeKxN9t3HjRlx++eXo168fYmJiMH/+fPz222+idQL1nAHy523KlClez959990n+l1DQwOSk5PRu3dvDBgwAPPmzfM6b4H8jDIEUC30zzDNli1buHPPPZe76KKLuD//+c9e3z/zzDPc9OnTOQBcaWmp6Lv8/Hxu4MCB3BtvvMH9+OOPXHV1NVdeXs5/f/DgQS46Opq77bbbuJqaGu6tt97iQkNDuZdffplfZ9OmTVxwcDD31FNPcd9//z2Xm5vL9ejRg/vuu+/4dZ588kkuPDycKysr46qrq7kbbriBi4uL444dO0b9fGjB6Dk7evQot3//ftHftGnTuKuuuopfZ9euXVzv3r25hx56iPv++++5559/ngsODubee+89fp01a9ZwPXv25P7v//6P+89//sPdc889XEREBNfU1MSvc99993GDBw/mNm7cyH311VfcxIkTucsvv9yK06EZo+ft0KFDXGRkJHf33XdzP/zwA1dTU8PdeOONXHR0NHfy5EmO49i9Jj1n27Zt43r27MktWbKE27FjB/fxxx9z559/PpeTk8OvE6jnjOOUz9tVV13F3XPPPaJn8ODBg/z3v/32Gzd69Ghu6tSp3NatW7n169dzZ599NrdgwQJ+nUB+RhlimGBxEYcOHeJGjBjBbdiwgbvqqqu8OsStW7dy55xzDrd//36vDrGlpYULDQ3lPvzwQ8Xtv/jii9xZZ53FnThxgl82f/58buTIkfznm2++mUtOThb9bsKECdy9997LcRzHnT59mouJieFWrFjBf9/a2sqFhIRwb731lpHDNoWZcyblwIEDXI8ePbjXXnuNX/bII49wF154oWi9W265hZs2bRr/+bLLLuOysrL4z+3t7dzAgQO5ZcuWcRzXcX569OjBrVu3jl+ntraWA8Bt3rzZyGGbxsx5q6qq4gBwDQ0N/LJvv/2WA8Dt2LGD4zh2r0nP2YIFC7hLL71UtP4777zD9erVi2tra+M4LjDPGcepnze58yhk/fr1XLdu3bjGxkZ+2apVq7iwsDD+PAXqM8rwhrmEXERWVhaSk5MxdepUr++OHj2K3//+93jhhRdk52fYsGEDTp8+jZ9++gmjRo3CoEGDcPPNN2PPnj38Ops3b8aVV16Jnj178sumTZuG7du349dff+XXke5/2rRp/DTh9fX1aGxsFK0THh6OCRMm0J9KXANmzpmU1157Db1798ZNN93EL/N1PsjU6sJ1pFOrf/311zh16pRonfPPPx9Dhgxx5JwB5s7byJEjERUVhaKiIpw8eRLHjh1DUVERRo0ahXPPPRcAu9eknDhxwmuOl9DQUBw/fhxff/01gMA8Z4D6eQOAN954A2effTZGjx6NBQsW4OjRo/x3mzdvxpgxY0QFyKZNm4a2tjb85z//4dcJxGeU4Q2rdOsS1qxZg2+++QZVVVWy32dnZ+Pyyy9HSkqK7Pe7du3C6dOn8cQTT+DZZ59FeHg4cnNzce211+Lbb79Fz5490djYiLi4ONHvSEfQ2NiIs846C42NjV7VCaOjo9HY2MivJ/yd3Dp2YfacSSkqKsLvf/97hIaG8suUzkdbWxuOHTuGX3/9Fe3t7bLr/PDDD/w2evbsiYiICK917D5ngPnz1q9fP3z88cdITU3FY489BgAYMWIE3n//fXTv3tGlsHtNzLRp07By5Uq89dZbuPnmm9HY2IilS5cCAPbv3w8g8M4Z4Pu8/f73v8fQoUMxcOBAfPvtt5g/fz62b9+OkpISAMrPH/lObR1/fkYZ8jDB4gL27NmDP//5z9iwYYPsTJvvvPMOPB4Ptm7dqriN06dP49SpU3juuedw3XXXAQDeeustxMTE4KOPPsK0adMsa78T0DhnQjZv3oza2lq8/vrrtJvqKmict2PHjiEjIwOTJk3CW2+9hfb2djz99NNITk5GVVWVSPAFAjTO2XXXXYcVK1bgvvvuwx133IGQkBAsXLgQn332Gbp1C0xDt6/zBgCZmZn8/8eMGYPY2Fhcc8012LlzJ4YPH25XUxl+QmA+KX7G119/jQMHDuDiiy9G9+7d0b17d3zyySd47rnn0L17d2zYsAE7d+5EREQE/z0A3HjjjZgyZQoAIDY2FgBwwQUX8Nvt378/zj77bDQ0NAAAYmJiZKcAJ9+prSP8Xvg7uXXsgMY5E/K///u/GDt2LC655BLRcqXzERYWhtDQUE1Tq8fExODkyZNobW1VXMcuaJy3N998E7t370ZxcTHGjx+PiRMn4s0330R9fT3Ky8sBsHsN8L7XHnroIbS2tqKhoQG//PILb40ZNmwYgMA6Z4Dv89be3u71mwkTJgAAfvzxRwDmzom/PqMMZZhgcQHXXHMNvvvuO2zbto3/u/TSS3Hbbbdh27Zt+Otf/4pvv/1W9D0AFBQUoLi4GAAwadIkAMD27dv57ba0tOCXX37B0KFDAQCJiYn49NNPcerUKX6dDRs2YOTIkTjrrLP4dYTThJN1yDThcXFxiImJEa3T1taGL7/8kvpU4mrQOGeEw4cP4+2330ZGRobXfnydDy1Tq19yySXo0aOHaJ3t27ejoaHB1nMG0DlvR48eRbdu3RAUFMRvl3w+ffo0AHavAfL3WlBQEAYOHIjQ0FC89dZbGDx4MC6++GIAgXXOAN/nLTg42Os35NyRF7DExER89913ojIDGzZsQFhYGP9yFmjPKEMFp6N+GfL4ip6HTMZLSkoKd+GFF3KbNm3ivvvuO+7666/nLrjgAj7VtLW1lYuOjubuuOMOrqamhluzZg3Xu3dvr7TJ7t27c08//TRXW1vLLVq0SDZtMiIigisvL+e+/fZbLiUlxfG0SY4zds44juP+93//l+vVqxf366+/en1HUibnzZvH1dbWci+88IJsymRISAi3evVq7vvvv+cyMzO5iIgIUWbDfffdxw0ZMoTzeDzcV199xSUmJnKJiYlmDpcaes9bbW0tFxISws2dO5f7/vvvuZqaGu7222/nwsPDuX379nEcx+41uXvtqaee4r799luupqaGW7p0KdejRw/ROoF+zjhOfN5+/PFHbunSpdxXX33F1dfXc+Xl5dywYcO4K6+8kl+fpDVfd9113LZt27j33nuP69+/v2xacyA/o4wOmGBxKUY6xIMHD3J/+MMfuIiICC4yMpKbNWuWKPWU4ziuurqamzx5MhcSEsKdc8453JNPPum17bfffpuLj4/nevbsyV144YVcRUWF6PvTp09zCxcu5KKjo7mQkBDummuu4bZv3274WGlhVLAk/v/27pillSwMwPBZi0RFDBERKwsR0iikkMhFULSzUlt/gpaSv3BLCVhYWqQVtpEUIigIQRALSS0EBS38AQEFv1ssLIgsu1xdcgjPU05m4MuQwMvJZObHj9jZ2fnH4y4uLqJarUahUIjZ2dk4Pj7+tM/h4WHMzMxEoVCIWq0W19fXH17v9Xqxu7sb5XI5RkdHY3t7O56fn//rW/tf/c55Ozs7i+Xl5SiVSlEul2N9ff3T3z991v78sG1tbS1KpVIMDw/H0tJStFqtT8cN8jmL+HjeHh4eYmVlJSYmJqJYLMbc3FzU6/UP92GJiOh2u7GxsREjIyMxOTkZ+/v78fb29mGfQf+O8pc/IiL6t74DAPDvXMMCAGRPsAAA2RMsAED2BAsAkD3BAgBkT7AAANkTLABA9gQLAJA9wQIAZE+wAADZEyzAl7y8vKTp6en08+fPv7e12+1UKBQ+PUUX4Hd5lhDwZa1WK21tbaV2u50qlUqqVqtpc3MzHRwc9Hs0YEAIFuBb7O3tpfPz87S4uJg6nU66ublJxWKx32MBA0KwAN+i1+ul+fn59Pj4mG5vb9PCwkK/RwIGiGtYgG9xf3+fnp6e0vv7e+p2u/0eBxgwVliAL3t9fU21Wi1Vq9VUqVRSo9FInU4nTU1N9Xs0YEAIFuDL6vV6Ojk5SXd3d2lsbCytrq6mUqmUTk9P+z0aMCD8JAR8yeXlZWo0GqnZbKbx8fE0NDSUms1murq6SkdHR/0eDxgQVlgAgOxZYQEAsidYAIDsCRYAIHuCBQDInmABALInWACA7AkWACB7ggUAyJ5gAQCyJ1gAgOwJFgAge4IFAMjeL2gKMKGs9J8AAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6YUlEQVR4nO2de1wVdf7/X4gJiCJBBnhBycQsDa0MCctCd83IUMvS7eKyfpcs1jYia/0trmaUlRFWWxotS5e9WG4qFW1mnq4mXkpJNxIzXLyhLaSoKRrO7w/4jDNzZs6Z+8w55/18PM4Dzpy5fOYzM5/Pa97v9+f9CeM4jgNBEARBEISL6eR0AQiCIAiCIPxBgoUgCIIgCNdDgoUgCIIgCNdDgoUgCIIgCNdDgoUgCIIgCNdDgoUgCIIgCNdDgoUgCIIgCNdDgoUgCIIgCNdDgoUgCIIgCNdDgsUl9O/fH7/+9a+dLgZBEEHOr3/9a/Tv31/Xtk61UwcPHsQtt9yC+Ph4hIWFYfHixbaXgXAeEiw28sUXX2D+/Pk4fPiw00WxlU2bNuF3v/sdLrnkEkRHRyM5ORm33nor6urqZNevra3F9ddfj27duiEuLg533nknfvjhB9E63377LR566CEMGzYM3bt3R1JSErKzs7F582av/e3YsQMFBQW46qqrEBkZibCwMOzevVvTOSxZsgRTpkxBcnIywsLCfDbahw8fRl5eHnr27Ino6Ghcd911+OqrrzQdr7y8HIMHD0ZkZCQGDhyI559/Xtd5/frXv0ZYWJjfj/B8zK5/X3zxxRcYNWoUunbtisTERNx33304duyY13qtra14+OGH0atXL0RFRSE9PR1r1qzRdCw1dQoA+/btw6233orY2FjExMQgJycH33//vaZjOc3+/fsxf/58bN261emimEJBQQFWr16NOXPm4PXXX8f1119v27HV3qOEDXCEbSxatIgDwNXX13v9dvLkSe7UqVP2F8oGbr75Zi4xMZGbNWsW9/LLL3OPPvool5CQwEVHR3Pbtm0Trbtnzx7uvPPO4wYMGMA9++yz3GOPPcade+65XFpaGtfa2sqvV1hYyMXGxnIzZszgXnrpJe6pp57iBgwYwIWHh3Nr1qwR7bOiooLr1KkTN2TIEG7YsGGK18AX/fr14+Li4rjrr7+e69y5Mzd9+nTZ9dra2rirrrqKi46O5ubPn8/9+c9/5i6++GKue/fuXF1dnapjLV26lAPA3XzzzVxZWRl35513cgC4J554QvN5ffHFF9zrr7/OfxYsWMAB4PLy8kTLv/jiC47jrKl/JbZs2cJFRkZyw4cP55YsWcL98Y9/5CIiIrjrr7/ea92pU6dynTt35h588EHupZde4jIyMrjOnTtzn332mal1evToUW7gwIHc+eefzz355JPcM888w/Xt25fr06cP97///U/VsdzApk2bOABcRUWF12+nTp3iTp48qWu//fr1U7z3rSQhIYG7/fbbbT+ulnuUsB4SLDbiS7AEM+vWrRN1dhzHcXV1dVxERIRXI3TPPfdwUVFR3H//+19+2Zo1azgA3EsvvcQv27x5M3f06FHRtv/73/+4nj17cpmZmaLlTU1NXEtLC8dx+q/B7t27uTNnznAcx3HR0dGKjfYbb7zBAeCWL1/OLzt06BAXGxvLTZs2ze9xfvrpJy4+Pp7Lzs4WLb/99tu56Ohorrm52dB5+erIOM6a+ldi/PjxXFJSEnfkyBF+2csvv8wB4FavXs0v27BhAweAW7RoEb/sxIkT3IABA7iMjAy/x9FSp08++SQHgNu4cSO/rLa2lgsPD+fmzJmj6rzcgL/rrBczBEtbWxt34sQJTduEhYVx+fn5ho6rB7X3KGEPJFhsYt68eRwArw/rYKQNQUVFBQeA++yzz7hZs2Zx5513HtejRw8uLy+Pa21t5X788Ufuzjvv5GJjY7nY2Fhu9uzZfIfKaGtr40pLS7mLL76Yi4iI4M4//3wuLy9P1EA7yWWXXcZddtllomXnn38+N2XKFK91U1NTuTFjxvjd5+TJk7m4uDjF380Qjb4Ey5QpU7iEhASura1NtDwvL4/r2rWr3zfbqqoqDgBXVVUlWv7FF19wALjXX39ddjuzBIsV9X/8+HGutraW++GHH/hlR44c4Tp37szNnj1btG5rayvXrVs3bsaMGfyy2bNnc+Hh4aJOg+M47vHHH+cAcA0NDfyyH374gautreWOHz/OL9NSpyNGjOBGjBjhdV6//OUvuQEDBvg9fzkOHDjA/frXv+Z69+7NdenShUtMTORuuukm0bXq168fl52dza1evZpLS0vjIiIiuMGDB3NvvfWWaF9NTU1cYWEhN2TIEC46Oprr3r07d/3113Nbt27l1/noo49k2xp2zadPn87169dPtN9FixZxGRkZXFxcHBcZGclddtllItEtLKdWwQKAy8/P5/72t79xF198Mde5c2du5cqVHMdx3N69e7nc3Fzu/PPP57p06cJdfPHFXHl5Ob8tawelHzvQco8S9kAxLDYxefJkTJs2DQBQWlqK119/Ha+//jp69uzpc7tZs2Zh586deOSRR3DTTTehrKwMc+fOxYQJE9DW1obHH38co0aNwqJFi/D666+Ltr377rsxe/ZsZGZm4tlnn0Vubi7+/ve/Y9y4cTh9+rTP47a2tuJ///ufqo8eOI7DwYMHcd555/HL9u3bh0OHDuGKK67wWv/KK6/Eli1b/O63sbFRtE+72bJlCy677DJ06iR+tK688kr89NNPinE7wu0BeNXB5Zdfjk6dOqmqA71YVf8bN27E4MGD8ec//5lftm3bNvz8889ex+rSpQuGDRsmOtaWLVuQmpqKmJgYrzIBEMVp/PnPf8bgwYOxceNG0faA/zo9c+YMvv76a8Xz37VrF44ePeq3DqTcfPPNWLlyJXJzc/Hiiy/ivvvuw9GjR9HQ0CBab+fOnbjtttswfvx4LFy4EJ07d8aUKVNEsTrff/89Vq1ahRtvvBHPPPMMZs+ejW3btmH06NHYv38/AGDw4MFYsGABACAvL49va6655hrFMj777LMYPnw4FixYgMcff5w/dlVVlebzlcPj8aCgoAC33XYbnn32WfTv3x8HDx7EyJEj8eGHH+J3v/sdnn32WVx44YWYMWMGH1R7zTXX8O3aL37xC/5cfPHjjz+qard++uknn/vRco8SNuG0YgolfL0FK1lYxo0bJ7KcZGRkcGFhYdzMmTP5ZT///DPXp08fbvTo0fyyzz77jAPA/f3vfxcd5/3335ddLkXpzUbuo4fXX3+dAyB6m2Jv/6+99prX+rNnz+YA+LRQfPrpp1xYWBg3d+5cxXWstrBER0dzv/nNb7yWs7f8999/3+e+8/PzufDwcNnfevbsyU2dOlX2NzMsLFbVP3vjnzdvHr9s+fLlHADu008/9drPlClTuMTERP77JZdcwmVlZXmt95///IcDwC1dupRfxiyZH330Eb9MbZ3+8MMPHABuwYIFXuu98MILHADu22+/lT95BX788Ucvd5Yc/fr14wCILCpHjhzhkpKSuOHDh/PLTp486WW9q6+v5yIiIkTl9nWd5SwsP/30k+j7qVOnuCFDhnjVu14LS6dOnbj//Oc/ouUzZszgkpKSvGKDpk6dyvXo0UNUJnRYadTA6tLfR3g/yqHlHiXsobM1MogwixkzZiAsLIz/np6ejvXr12PGjBn8svDwcFxxxRX48ssv+WXLly9Hjx498Itf/EJkBbn88svRrVs3fPTRR/jVr36leNxx48ZpHoWhlm+//Rb5+fnIyMjA9OnT+eUnTpwAAERERHhtExkZya8j9/uhQ4fwq1/9CikpKXjooYcsKbcalMonLL+/7bt06SL7W2RkpN/tjWBV/V977bXgOE7TsYTnqaVO58+fj/nz53sdS02dqj1/LURFRaFLly74+OOPMWPGDJx77rmK6/bq1QuTJk3iv8fExOCuu+7Ck08+icbGRiQmJorK1tbWhsOHD6Nbt24YNGiQ5pFo0nIyfvzxR7S1teHqq6/GP//5T937FDJ69GhcfPHF/HeO4/DWW2/h1ltvBcdxojZq3LhxWLZsGb766itkZmZqPtbf//53Vdfpggsu8Pm7lnuUsAcSLC4nOTlZ9L1Hjx4AgL59+3ot//HHH/nvO3fuxJEjR3D++efL7vfQoUM+j5uUlISkpCQ9RfZJY2MjsrOz0aNHD/zrX/9CeHg4/xtrNFtbW722O3nypGgdIcePH8eNN96Io0eP4vPPP0e3bt10le2HH35AW1sb/71bt26a9xUVFaWq/ErHioqKwqlTp2T3ffLkSdnzNws769/fsYTHUVunvo6lpk71nr8vIiIi8OSTT6KwsBAJCQkYOXIkbrzxRtx1111ITEwUrXvhhReKXk4AIDU1FQCwe/duJCYm4syZM3j22Wfx4osvor6+XnQPxcfHayqbkHfffRfFxcXYunWr6Pyl5dFLSkqK6PsPP/yAw4cPo6ysDGVlZbLb+GujlNAjcuTQco8S9kCCxeUIO3R/y4VvsWfOnMH555+Pv//977Lb+4udOXHiBI4cOaKqjNKGV4kjR45g/PjxOHz4MD777DP06tVL9DsTSAcOHPDa9sCBA4iLi/N62zl16hQmT56Mr7/+GqtXr8aQIUNUlUWOESNG4L///S//fd68eV5v6/5ISkpSLD8A/pyVjpWUlIS2tjYcOnRIJDZPnTqFpqYmrzozEzvr39+xhOeZlJSEffv2ya4HwG+dqK1Tdn5qrp8W7r//fkyYMAGrVq3C6tWrMXfuXCxcuBAejwfDhw/XtK/HH38cc+fOxW9+8xs8+uijiIuLQ6dOnXD//ffjzJkzmssGAJ999hluuukmXHPNNXjxxReRlJSEc845BxUVFfjHP/6ha59SpJ07K+sdd9whsrIKufTSS3UdS/oyoIS/FxIt9yhhDyRYbMSstxU1DBgwAB9++CEyMzN1vQm88cYbyM3NVbWu1Nwvx8mTJzFhwgTU1dXhww8/FJmHGb1790bPnj1lk49t3LgRw4YNEy07c+YM7rrrLqxduxZvvvkmRo8eraq8SkhNyf5MxnIMGzYMn332Gc6cOSMKvN2wYQO6du3KvzErHYud4+bNm3HDDTfwv2/evBlnzpzxqgMzsbP+hwwZgs6dO2Pz5s249dZb+eWnTp3C1q1bRcuGDRuGjz76CC0tLaLA2w0bNvC/+0JtnXbq1AlDhw6VPf8NGzbgggsuQPfu3VWfo5ABAwagsLAQhYWF2LlzJ4YNG4aSkhL87W9/49f57rvvwHGcqJ1gQdosM+2//vUvXHfddSgvLxft//Dhw6JgZy1tzVtvvYXIyEisXr1aJEgrKio0naMWevbsie7du6OtrQ1jx441dd/SlwEl/L2QaLlHCXsgwWIj0dHRAGBLpttbb70VL774Ih599FE8/vjjot9+/vlnHDt2DLGxsYrbmxnD0tbWhttuuw3r169HZWUlMjIyFNe9+eab8eqrr2LPnj2822vt2rWoq6tDQUGBaN1Zs2bhjTfewEsvvYTJkycbLqcZpuRbbrkF//rXv7BixQrccsstAID//e9/WL58OSZMmMB3CErHysrKQlxcHJYsWSLqXJcsWYKuXbsiOzvbcBl9YUX9//TTT2hoaMB5553Hd6o9evTA2LFj8be//Q1z587lhcDrr7+OY8eOYcqUKfz2t9xyC55++mmUlZXhwQcfBNBupq+oqEB6errIPcpGgCQnJ6Nr164AtNXpLbfcgj/84Q/YvHkzPzpkx44d8Hg8/LG18NNPP6FTp058DAzQLl66d+/u5WrYv38/Vq5cyddlS0sLXnvtNQwbNoy3YoaHh3u9ICxfvhz79u3DhRdeyC/T0taEh4cjLCxMZJXYvXs3Vq1apelctRAeHo6bb74Z//jHP7B9+3Yvy9wPP/zg1wqshFkxLFruUcIeSLDYyOWXXw4A+OMf/4ipU6finHPOwYQJE/jGxUxGjx6Nu+++GwsXLsTWrVvxy1/+Eueccw527tyJ5cuX49lnn+U7VDnMjGEpLCzE22+/jQkTJqC5uVn0Vgm0m4UZ/+///T8sX74c1113HX7/+9/j2LFjWLRoEYYOHSqy+CxevBgvvvgiMjIy0LVrV699Tpo0ia/XI0eO8GnY161bB6B9+GtsbCxiY2Pxu9/9zu85vPPOO6ipqQEAnD59Gl9//TWKi4sBADfddBNvvr7lllswcuRI5Obm4ptvvsF5552HF198EW1tbXjkkUf8HicqKgqPPvoo8vPzMWXKFIwbNw6fffYZ/va3v+Gxxx5DXFwcv64Z5yXFivrfuHEjrrvuOq832sceewxXXXUVRo8ejby8POzduxclJSX45S9/KUq9np6ejilTpmDOnDk4dOgQLrzwQrz66qvYvXu3l6Xhz3/+Mx555BF89NFHuPbaazXX6b333ouXX34Z2dnZePDBB3HOOefgmWeeQUJCAgoLC0XHuvbaa/HJJ5/4tDDW1dVhzJgxuPXWW3HxxRejc+fOWLlyJQ4ePIipU6eK1k1NTcWMGTOwadMmJCQk4K9//SsOHjwosnTceOONWLBgAXJzc3HVVVdh27Zt+Pvf/+7V+Q4YMACxsbFYunQpunfvjujoaKSnp3vFkgBAdnY2nnnmGVx//fX41a9+hUOHDuGFF17AhRdeiK+//lrx3IzyxBNP4KOPPkJ6ejp++9vf4uKLL0ZzczO++uorfPjhh2hubta1X7NiWAD19yhhE84NUApNHn30Ua53795cp06dVCWO27Rpk2h7NmxTmISL49qHKkZHR3sdr6ysjLv88su5qKgornv37tzQoUO5hx56iNu/f7/p56bE6NGjNQ2L3r59O/fLX/6S69q1KxcbG8vdfvvtXGNjo2id6dOn+9yncHhvfX294nrS4Z1K+DqedOhoc3MzN2PGDC4+Pp7r2rUrN3r0aK/r6I+ysjJu0KBBXJcuXbgBAwZwpaWlXokB9ZyXmgyoZte/3LBmxmeffcZdddVVXGRkJNezZ08uPz+fz94r5MSJE9yDDz7IJSYmchEREdyIESNkh4jLDWtmqKlTjmufnuCWW27hYmJiuG7dunE33ngjt3PnTq/1Lr/8cr9DW//3v/9x+fn53EUXXcRFR0dzPXr04NLT07k333xTtJ4wcdyll17KRUREcBdddJFX8raTJ09yhYWFXFJSEhcVFcVlZmZy69ev50aPHi1Ka8BxHFdZWcknahNec7lhzeXl5dzAgQP541ZUVPB1KS2n3sRxchw8eJDLz8/n+vbty51zzjlcYmIiN2bMGK6srEz1PqxG7T1KWE8Yx6kIQCAIgiB4jh49iri4OCxevBj5+fmG99e/f38MGTIE7777rgmlI4jghDLdEgRBaOTTTz9F79698dvf/tbpohBEyEAxLARBEBrJzs62PADa7TQ2Nvr8PSoqis8bRRBmQIKFIAiC0Iy/oPzp06fjlVdesacwREhAgoUgCMJhdu/e7XQRNOMv7QElViPMhoJuCYIgCIJwPRR0SxAEQRCE6yHBQhAEQRCE6yHBQhAEQRCE6yHBYpBPP/0UEyZMQK9evRAWFqZr/g2O4/D0008jNTUVERER6N27Nx577DHzC0sQBEEQAQqNEjLI8ePHkZaWht/85je6J+D7/e9/jw8++ABPP/00hg4diubmZt3zaBAEQRBEMEKjhEwkLCwMK1euxMSJE/llra2t+OMf/4h//vOfOHz4MIYMGYInn3ySn5ittrYWl156KbZv345BgwY5U3CCIAiCcDnkErKY3/3ud1i/fj2WLVuGr7/+GlOmTMH111+PnTt3AmifBfiCCy7Au+++i5SUFPTv3x//93//RxYWgiAIghBAgsVCGhoaUFFRgeXLl+Pqq6/GgAED8OCDD2LUqFH8lPHff/89/vvf/2L58uV47bXX8Morr+DLL7/ELbfc4nDpCYIgCMI9UAyLhWzbtg1tbW1ITU0VLW9tbUV8fDwA4MyZM2htbcVrr73Gr1deXo7LL78cO3bsIDcRQRAEQYAEi6UcO3YM4eHh+PLLLxEeHi76rVu3bgDa5+Po3LmzSNQMHjwYQLuFhgQLQRAEQZBgsZThw4ejra0Nhw4dwtVXXy27TmZmJn7++Wfs2rULAwYMAADU1dUBAPr162dbWQmCIAjCzdAoIYMcO3YM3333HYB2gfLMM8/guuuuQ1xcHJKTk3HHHXdg3bp1KCkpwfDhw/HDDz9g7dq1uPTSS5GdnY0zZ85gxIgR6NatGxYvXowzZ84gPz8fMTEx+OCDDxw+O4IgCIJwByRYDPLxxx/juuuu81rOplY/ffo0iouL8dprr2Hfvn0477zzMHLkSDzyyCMYOnQoAGD//v2YNWsWPvjgA0RHR2P8+PEoKSlBXFyc3adDEARBEK6EBAtBEARBELr59NNPsWjRInz55Zc4cOCAVz4yITNnzsRLL72E0tJS3H///ZqOQ8OaCYIgCILQDcv4/sILL/hcb+XKlaiurkavXr10HYeCbgmCIAiC0M348eMxfvx4n+vs27cPs2bNwurVq5Gdna3rOCRYdHLmzBns378f3bt3R1hYmNPFIQiCIFwMx3E4evQoevXqhU6drHFunDx5EqdOnTJlXxzHefVtERERiIiI0LyvM2fO4M4778Ts2bNxySWX6C4TCRad7N+/H3379nW6GARBEEQAsWfPHvTp08f0/Z48eRKJyf1w5IdDpuyvW7duOHbsmGjZvHnzMH/+fM37evLJJ9G5c2fcd999hspEgkUn3bt3BwDsWfgYYiIjZdf522j/Zq87PqkypTx/G51t2r6sQlhGYd3c8UmVV125/VyCiec/Xa3428j8h3Tvt/qFpzDrmnGqjiNEuM3fRmfjx0flG7lz5z4XEvcJezaE5+qrXuxCeJ3kUHu9feHr/qt+4Sld+5Qrt5761PpsHD9+HDk5OXzfYTanTp3CkR8O4elPNyGqm7FjnDh2FA9eMwJ79uxBTEwMv1yPdeXLL7/Es88+i6+++sqwN4IEi05YxcdERiImKkp2nXs3egAAFVk5/LJcTyUqsnKQ66lsX6CwrVbu3egxbV9Wce9GDyqypwIAWElzPZWoyJ6KezvqhaFUp4R/WD3y95gPSjxViDznHMXft5aVIrOgSFc5xjz0CGJqtvDffR1HiPDa37vRgxKF7U48UYiYLH2+8ECCtSOQ1AvGTURFVg6ai/JsL1NccRli/Nxfaq83Q+t9NuahR7CutFjTNoB82xLVrTtOaCxvdHS0qvVYGU+ePg0AlocQRHXrbliwMGJiYkSCRQ+fffYZDh06hOTkZH5ZW1sbCgsLsXjxYuzevVv1vmiUkIkIO1ypSBEuV9ORBCu5nkr+A5ytJ6X6IvQjrFM9vzP0dArS45R4jFlC4orLDG0fyPi6TrmeyoCvm8yCIt2i2AjCtsds0beutJj/hDp33nknvv76a2zdupX/9OrVC7Nnz8bq1dqscGRhMQm5jlcoTqgT9sZInYS68FOLr3qy4s1c2kDXFpch11OJEh37KvFUoTArG4VZ2ShxwIrgFvzd53rr1whGnz2zBEpmQZFuUSBsm/XUH4mRswgzvgNAfX09tm7dymd8Z5P9Ms455xwkJiZqniuPBIuFUIdqHVS3yuQK3Gt21JOvhru5KA8VxWWASgtLXHEZQNdWlpVpkwEAk2pWYGXaZEyqWeFwibTjhCWFsJ7NmzeLMr4/8MADAM5mfDcLcglZjJzlhTAG1WU7FVk5inUhdblZgVqTtxZLziPl7TEvzIXE/haGQKyKWgJRrFjp9iER5DzXXnstOI7z+iiJld27d2vOcguQhcUU5DoFqSuILAL6YW4NO60GbkWuDoRuH2FdKdUTf79qiCuxw/wdV1yG3T6ubVxxmZf4WTvwaYzZ+aDVRXMFvkSKXN04TWFWNqrThjtdDCKIIMFiAmZ3oBSf4Q3VSTtqhJu/usr1VBoOgrWC5qI8ICu7/fxkyqc21iCURAzRjhsFG2E+JFiIgIDEylnUBGEGIsztY6TjWTvwabOK4wqYsIzrCF4miFCGBItLkbqZhG/W7Duhj2Cux2A7H0Acx6L0Ji21qgSalcXf0FpmfVLCiZFCbmJwUwPWqVyXjT4TUpiV7UqrIyGGgm5dgJw4kUMatxAqwadmdcIUA+NeQjWoluWoIXeG84TqPRhIkIXFIaSdp5q4BCGh0OlaITCciIUx482tsCO2Q2ppA7TXj1KMiNsp8VShEJC1JDBritutKl73gonXIdTjOLTkZFEafUaWFndDgsUh9AZM+tpWC4FgbZCOfDFrf0ICoR6AjgbWU9XeWUsa1IoQjm9wu0ABrMmkGijUxidjcFODbcczkkiOwUQMCRf3QS4hlyI3HFqY0t6M/bu9k7NSTATC+VuFmztPf52EWjeoG4JvrXD3rEybzH+cRO11CORnjGVZJtwDWVhcgJOjPtw2XFgoUpSSn5lpYZL7brYLymr3i7+AzGCDuT6EWXGlQbZOW16YRcxM/ImUUA+8BbTlC1IrRshN5B7IwhIghEKALRNPVgsoX4n+zEb6dv18yj2WHEctgXIfxRWX8R8hrD4Ls7L5a1biqcLWlwajxFPllVk6UM5XDYGW3dZu1IoVPZYTsrS4A7KwuAjZgDyWSAv+LQ1C64S/lO1K3+1GzqLClltVVrmssFZZmqSBkLPql1hyDLXz77jNHSTMLyK8/32VU2594XYszkf4N1Q6nFAJvNViSdGTw0Zu6LMQsro4AwkWGxF2impvdn9viHIjR5SEi9PiRA6pSJFbLucaMjMI1431EiroqXu3uTHdRK6nUpV7kD1LdoibdaXFps33o8WKwoKd1dwr0nvKn1hhf0m02AsJFptgD48eH7PS0Geh5UVpRI2/eWXchK9RPEq/E8GD2g4g1GJ2lFA7CaJc7EtsU4eLSeeIGC3PYlxxGWBwpJBWiwqYxVblfaLmfOREDIkWeyHB4nKai/JQIfHjy1ldfMV/BEpHr9aNFUjY8QYrFMIs5kOuzoKtYaXOwj++AnXZb9+XzsAFBeWi35gQMqN+cz2VmiZBNDIsuTArW7V7VA9yL3/+7kMmdB5bvcqycoUKJFhsItdTiQqd/mU2IkJp1Azbf6ATDOcgxe6YAnYsadyGW5PFSWMF1IoQfzEGTuLWulZCKlaAs2KmEAovEhY8q0bzp2QWFKEiPpmf3JPdS07cJ3LHnHXNOBSt/MD2sgQTJFgCEK0de6DNq0KYg3DiPLcGYhrpTNwmDIJpRBJjZdrks+4jtJ9jbFO4qccwIlSksTEsSZ0wzsRMlNpet4rnYIMEi40YtbIwf6xSw6i4X89gbEWVT3cBYQ1GrrkZmCVWzMz+aVbjzs7LKUHmFbhqsXgq8VThAocSxjGLS67H+NBqMwWKHNVpwzGyZovuY/jCzZa9UIAEi80Y6cCUgmfV7kvoLpAjlARNddpw1HaYj63GyYReZooV9r8R0WJFY6/mHIUuAi3lkJ5roeClgR2XdaJGXRr+yCwowgFLj+AftYG+UqwWKUKsEiuA+L4h8WI/YRzHcU4XIhBpaWlBjx49cKS0BDFRUZq3D5RgQV85DAJl9JGUEk+VqBG0soETHtNJbkt5mP//jfon/a6v1BDbYWFxuq78wYSP2o7UTCGjFBzrDzNT+esRLP3rkzXlINIzDNqO51gNSqK45cQJ9CgoxJEjRxATE2P6cVmf9MJX3yKqW3dD+zpx7CjyL7vIsrLqhTLdEj5pLsoTZRAVEohiBfBuDLWMYNCLXNZWuxCKFbnvUqx+awzGWA9fZBYUmZaHJFBRI1ZYPemtKzfdV2R5sQZyCRGqYENnA/1BLPFUIVNGoDDRYtVbmq/sw05wW8rDspYWX5aVuOIyxJkw87BSHhW3W1aMYsZMwlpxepJENZgl5tySn8fpNnL+vh/QKfqEoX2cOX4MADBixAiEh4cjPz8f+fn5ZhTPECRYHMLNIzd8IexUAinmhZnw5cSKEKG1xWzx4nQArhqE57+utJjPGFoI8ENZmXBNTM3A7KXmWQ4or4r5OOEykkMYtG1l1lu5+8dpAcF4/tPVThdBM5s2bSKXENHeeTnlIjCL5qI8V3e+FVk5KPFUoTptuK5GsjptuC3uIieQs65I6yizoAjVacMxuKlB1jpkplgh2mET87mlkzUTvc+hkHWlxfzHLQhFki/BPeuacXYUJ6ghC4vDBKqlRYgw30cgWFv0oHd0hBDeHSVotK1ueOXiVdQE3UoZ3NTAi7dFqRkorFtvqFxKIyyEc8Dogd2DzIXFYMkXzXjWzLQS+EJYP9Vpw23rpK2YFboiK4fPkaIFM87Z6tE80lF0hHWQYHEQt8U1GIVNI+AW0cJcMEbnMWHmcvZXT4NekZUj645yIq7BKAv7nA/UGd+PcOJOoZAohPLQe3/wU1l4qrzESSC/GNTGJyOuuAyTPCsscd9YIVKEaEnPH2jPA2Ef5BIiTMVtnUKupxK18ckAwP/Vglwcy8q0yZo7DV/1YtUoEn+jgYxghtBmI9Dk6saIu9Rt96AZKM0TFky4zdVDuA+ysDiMk0nFrELNRGB2whr62iztgkXN5HEMX2+pagSJHQnIlNxBbhp2W+KpQlxWjiEXTjAH8E6qWREUScvsFCfBUF8ECRZXEAxxLGpRyhxqB8LJI/X40/Wi9XhmCBcrrSu5gtFCVtFclNcuOnRuH6xiRYjWrL1uwe1WlMTUDDSqjNEiIWQv5BJyAcEwYsgKrIrvyfVUYmTNFr8uogNI0bRf5ipilpeKrBxD2YD1uoq0ihUtx9DjVtOLUdERKs9UiadK9ElMzXC6SLI47fJRez/JiRWltogFiRP2QILFJZBo8cbqoGRhfIsUox0zi81gcRpG9mdWjIue0UG+sPp+NfrmGuwxH0qoHW4eClYos/B1L/EWR6pPyyHBQrgWO+YqUtp/c1GeqSMnmovyDL9hWhFn4lbrCuCumaGtQlr/ZnV6vvbDLDFurxunIOHhXmjyQ50YnfxQiVB7WJQaTaFYsXOSRaUcIKyc/kYHsYBIf5iRQEsJLblX1JZDKFYCJd5KeG+ZPfmfkYSC/kSrGiGhtZ1wgzhxS9vmVF3YNflhz3c+Q6fobob2deb4Mfww4WrXTX5IQbcBjrTDcXtAmxb4Bs5ThRLYMxWA0qgtlogstsn39tVpwwEVDfO60mJDokUpMFdL/IquGXEnjOH/fy9tgObtidCAWXDIkkOYCbmEXIaauABfs5q6aXiqEZqL8rzOkcWEsGBWaXyL1cFvzUV5OBzfpugqOhzfpkkwmiEu7bzeUsvKDTW7bDs2YRzmCrKDYB5WTjgHWVhcSFxxmaFht4GYPVWKsCP26pQFdWP3tABs1mp0vDkKXQ16XCXS62SFADEj2La5KC/gBAq93Yuxuy6EEx4G+nXwN9Q5GM4xECALi8vgk5zZHOAYqDArDBuNY4aVRe3olxJPFQ7Htxk+nhGkgueN+idNHw0EKFtTrBAxQgtiZkERdQQmoGTtCEUriL9zlvvdX14WukftgSwsLkRoKbA7yZmd+HrIa+OTdSVbQ1OD4YRauZ5KQPB26Ivmojw06zqKPEIBYsTa4k+0aB0dNFJ3SdThqzxCK5rQiiUVlr4mOJxUY80cPHZgZA4rIXLPhVUdrdDiEGidub/y2jkIgBBDFhaX4ytXiC8CPZaFJXfTA3szN8Pi4mRj68+tZ5fbz6pRQb5isdQgVy6poBFef6etYXqZVLPC8skJzYbFsNgZN2MXJFacgwRLAKBXtAQDLCOtXtE2uKlBNkBXC4VZ2Y4l9bMiO6iWczHz2EJxokWk+FqXBWJLhQqztLAgbQCIbQrXWXKCIXyOAjHD6/Mp9wScxYc4C+Vh0YlVeVh8occ95ObgW70NhxE3GRM+et+SlPK0WA0LKmbnrve6SoOTWaejVJ/rSov9xqkoDW8228pXG5/cPuxc8sbOBJiv66I2j45aklCve1s1187fs2HEaqH1uRMKk5ETxqD6nbX8/4zqd9Z6PVNSV5ZTlhajAflmuYAoD4txyMJiIlabQNXOgSMk0F1DcrB60OMyGtzUwFtd9B7byTc0I64ytr30u9I+1YoiOUHj777TI7iE1hLpcn8ikm0XaK4VtzBywhiRQFHDpJoV+L50hqOxQ4VZ2YbFhtHtA9ES5VZIsJiEVKRY+TahR7i4DbM6/XWlxaiNT9bcAQ5uakB12nDdjYndokXaITM3FfvoRdiZMBHI7q244jLVo4DYeoVZ2apEsh4hzbYRnu8NNbv4jy8CJTuvm6jIykFt6XOqhMrICWNkn6XCrGxeJFr9zMQVl6EwK1v0cQMU82IeJFgCGKlw0RvrYTdmNySsM9Lz1h6II7CYFU+NZcEfShaHXE+l5n3b0UHobfyFIkcaxMosAewTCEGuVtd1RVaOZouK05AwcI5PP/0UEyZMQK9evRAWFoZVq1bxv50+fRoPP/wwhg4diujoaPTq1Qt33XUX9u/fr/k4JFgCCCVrABMuzLzPhEugCBgzcXoKe6tRcomoQaslRmuOFTtiFJhQ04pcZ8aEiZx1tMRTxYuXUMSXWDEiZMwWWmZYGeUItpFNVnP8+HGkpaXhhRde8Prtp59+wldffYW5c+fiq6++wooVK7Bjxw7cdNNNmo9DeVhsROkhUPsQq32DkK5XoZCbwgnsMtMy0RJMMTxGA35Vv4HefQ9qLxqsef831OxCCaqQaWBiQLUo5VsxO+NxiadKdm6o7zv+BtP9xajIysHI0uc0bzdywhjUSpYNLrjPaz3WBmi9nwuzsvkAWD4Q1qRrLc1R4xZ3UqAwfvx4jB8/Xva3Hj16YM2aNaJlf/7zn3HllVeioaEBycnqX6pJsLgMfymgCW0Ek3AxIlbiisvUN+4vLdF9HKuQWs2EdSEcpdRclMcn/bOrXMFwbzHsdAWxBI3Maqh0fwvFA7u+Zrt/SKDI09LSIvoeERGBiIgIw/s9cuQIwsLCEBsbq2k7EiwuJDE1A4D/dNChjhlm2/YsrvpG3Si95bsRO/z776UNQGFWNqpN3Kc/957ckGq753UJFtFihVhRMySY/13G8iK9jsLvwuffjuttNIO2XfyFuxPRnLFoj+PcGeQA6Nu3r2j5vHnzMH/+fEP7PnnyJB5++GFMmzZN85BpR2NY5s+fj7CwMNHnoosuUlz/2muv9Vo/LCwM2dlnbyCO4/CnP/0JSUlJiIqKwtixY7Fz507Rfurq6pCTk4PzzjsPMTExGDVqFD766CPd52Gk45T6Xhvr1vMfwhyUOhOW10MvbIizFT50OfQeQ892gwvuQ/U7axVzrJh1HCksBklNLJKvjsPNMQhOj2Bx+zBb9lz5qyO7RwM5fd2cYM+ePThy5Aj/mTNnjqH9nT59Grfeeis4jsOSJdotuY4H3V5yySU4cOAA//n8888V112xYoVo3e3btyM8PBxTpkzh13nqqafw3HPPYenSpdiwYQOio6Mxbtw4nDx5kl/nxhtvxM8//wyPx4Mvv/wSaWlpuPHGG9HY2Gj6+bGG080NqJ24pbFcV1qM5qI8VKcNN5zCnwU7uxW9ZWMdhxrR8l7aAEN1oCdY2t8z5ZZ7LZTRYrGh6+U+YmJiRB8j7iAmVv773/9izZo1uhLSOS5YOnfujMTERP5z3nnnKa4bFxcnWnfNmjXo2rUrL1g4jsPixYtRVFSEnJwcXHrppXjttdewf/9+fpjV//73P+zcuRN/+MMfcOmll2LgwIF44okn8NNPP2H79u2mnptTYqUiK0eUxI5NCkeIEaaJZ3lZ2EdPOn+rrS1udj8Jz9kto7TYDN6+nj+znk23nLMa5O4jLe4glumW/fWH2ufILtFf4qlC//pk9K9PDtgJMQMNJlZ27tyJDz/8EPHx8br243gMy86dO9GrVy9ERkYiIyMDCxcuVB01XF5ejqlTpyI6OhoAUF9fj8bGRowdO5Zfp0ePHkhPT8f69esxdepUxMfHY9CgQXjttddw2WWXISIiAi+99BLOP/98XH755YrHam1tRWtrK/9dGozkNKKG18XWHLuDIvWiNz8La3RLzCyMA2jpyN9LGwAU5YnOWWtcR2ZBkaWdvh0z7NoZy2LYDS1TF0op9+Xg7/O0AZqHvztNYVY2CtHxfNcEXh4mN3Ls2DF89913/Pf6+nps3boVcXFxSEpKwi233IKvvvoK7777Ltra2nhvRlxcHLp06aL6OI4KlvT0dLzyyisYNGgQDhw4gEceeQRXX301tm/fju7du/vcduPGjdi+fTvKy8v5ZawSEhISROsmJCTwv4WFheHDDz/ExIkT0b17d3Tq1Annn38+3n//fZx77rmKx1u4cCEeeeQRr+XPf7oakeeco/qczYTcTPpR27FUpw3XlQqfDcF0g1VESxAqexu+QcewVjfTXJSHCpOHPMuhRrTouS+0POvSYHD2nVnB/NUBcwHKWQql2xZmZaOi2NxgXbODpn3VXajFpFjF5s2bcd111/HfH3jgAQDA9OnTMX/+fLz99tsAgGHDhom2++ijj3DttdeqPo6rJj88fPgw+vXrh2eeeQYzZszwue7dd9+N9evX4+uvv+aXffHFF8jMzMT+/fuRlJTEL7/11lsRFhaGN954AxzHYeLEiTh9+jT++Mc/IioqCn/5y1/w9ttvY9OmTaLthMhZWPr27YviSb/ULViUcka4paOzCjMaCbUNuJlvvCNrtuh+U3fLNfVV96yMWt+YfcW4aK1/O1wrevOAaMHXeQuTOTIhIVcOPfeu0mSVwmvk6/oqiRV2zwvvf3/DkYX7Yeso7ZchdR8ZFZhq2olFM9vvOasHOtg1+WHl2/0RHW1wlNDxM8i5abfrJj903CUkJDY2FqmpqSLTkhzHjx/HsmXLsGDBAtHyxMREAMDBgwdFwuPgwYO8svN4PHj33Xfx448/8hfixRdfxJo1a/Dqq6/iD3/4g+wxzRp/7g+lRFWE81SnDTcUwAqNVhfWYQVSfISQuOIywIapDwqzsgPG2siuJeu4hR24le4krXNCQeIWEgoJrxm+fZVbsA4LdM8sKJIdoScX62JEwFRk5ahqS2cvLSJLS4DgKsFy7Ngx7Nq1C3feeafP9ZYvX47W1lbccccdouUpKSlITEzE2rVreYHS0tKCDRs24J577gHQniYYADp1EivQTp064cyZMyadiXbseAN3S94QM+IJhI27nR16dUcWV70zJjPhwvDV0UrPy4zr5yuXhNnWlVxPJV9fatETy8JcCGpFC7v/cj2VlsUa+TsH4XXMLCjy3elrILOgCO+Z/TxI7jm9wkq4HQtyF6Lm3vZ1veQs1tJlgSJsCXkcHSX04IMP4pNPPsHu3bvxxRdfYNKkSQgPD8e0adMAAHfddZfsuO/y8nJMnDjRK9I4LCwM999/P4qLi/H2229j27ZtuOuuu9CrVy9MnDgRAJCRkYFzzz0X06dPR01NDerq6jB79mzU19eL8rkYRetIkVxPJY3k0UlmQRH/sQu9I4mkOJXbQVruiqwcXcGT/u5Zu+ay0tIRuUG0E9Yhd28zyJIS2DgqWPbu3Ytp06Zh0KBBuPXWWxEfH4/q6mr07NkTANDQ0IADBw6IttmxYwc+//xzxRiXhx56CLNmzUJeXh5GjBiBY8eO4f3330dkZCQA4LzzzsP777+PY8eOISsrC1dccQU+//xzVFZWIi0tzbRzc2Oj6MYymY1QvFgtYAY3NfBvikbf3OxuSM26F3xZyux+m9Ui+IM150egug/NQHovsu9yVhd2r7BUBHpYO/BprB34tK5tCX24Kug2kGABTmYH3bolONNqjHTQFVk5uocdM9ibP5tIzej+5FhXWqx6ZIYc0g7f7FgN6f2nNTW7cGI7XxN7lniqXBt864bnzUxhbUe9WfkioLf8voKEpculgcN25X+hoFvjOJ44jvAmFFxDTvuSm4vy2oe6djRoI2u26I5LUYIlpBvc1OA3gZkcQneRXRaY6nfWqk4IphY3m+HdnKGYUIfS/aU1iJe5eIPV+hYMuCroljj7BuCWANlgh9VxhUQkstEMZlPiqVIczq4EswQI45zMuDfkTOissX7PT0Kw99IGYHDH/2qEWLBMEEhYi5z4EA6flraLWsSK0u/svhfutwTKaScI5yDB4kJ4cyWJFtuQq+d1pcWiBtEs11FzR1ZYLQ2ilz9ehztDjUtJuL/BBffJ5mZhszKrQW8SML2Zb9mx1IgovtMKkpEjwRq/IprNWTDKriIrBxWCdfRYRuTECoM9pwyh5ZuEjDOQS8gG3GwSD0RyPZUYWbNFdwOtZTvmymEWjtr4ZNNGvrC5bvQinC1aLYtmFqsemVTiqTJl9Bo7R63Xy2qLTHNRHnU8LkPrMHijE49qETlCUSN0H/nbB5ufbNNQ8wZ1hCpkYbEBvZ2SlXkigoHCrGxAEnfildRKYTut14R/2xIEkAqDan0dU6mjHnZ3Lba+NFhUFi3illkv/CWlE+7TVzZPuTphiQyFcS2FOvJa8JYPk11Dcq5TLXlZ1CYXCwSsno/JbSiNCgK8XT5KaLXKKD3jWoUWoQ8SLBbiLw5FzZsBxbJoQ9poyTUwZgX8ZhYU8Zk8a+OT+dT9wvgXXx3I1pcGey1jZVPjLpKKGyZcrAhoZvegHmuhEQujv05YGmtU0uHGczqo225CRaioHdVDlrPghFxCFuJLaKhtxM188EJh9JEQ5joyO3mZXOcgzdxp1HVkRKTqyS2htoM3I9+MGZ2rUq6dzIIiSiIXxFghROgeCBzIwmKQkfkPYWtZqdPFCEi05kBYmTYZk2pWaD6O9BgjDb6B+3JpDG5qaE+zLplDRSgg1DaQRnJESKcAYMi5n7TWhTCQViq85XLHyG1breI4wnl3tIza0uoacdKKSSOn1GNnzhTCnZCFxQG0vv0Gq2VEayfBxMrKtMmGjsv81nbVa2ZBEZ/3BVBvATFjplp/YsRs14m/c2PuGl+CYl1pMUbWbBEFB1PHHtrITb5IhB5kYTFI9QtPacp06+TYfjeaPvW8NemxsggRWUEkAbRW1RHf4Xa4jlgZhG4jNfkltMDyt6CjfqXiRK9YYWVLTM3glwmDeZWsO1776Ij5GdzUIJq9d6RkWz1DyTMLikQxRURw4YS1hUSz85BgsRk9D1mup5JyslhMpkDACF04Vte5sDOu7bjGccVlvMjwRWJqhs9RPww7GncmXtSURyjGeJECc7MME4HN2oFPY8zOBwGIpythI/X4/wXECZ8fHwhztlCbGliQYDHIuXOfw4knClWtq7YjCiWai/L8vo3bDRMvckGzVr5lDW5qaLcuqLxH1IiDOXsPqVpPK0LrinT5kqgkTKpZIRJK/mJbrKDEU4VCeHdshH7ssjLIiRV/sPX8rS8UPURgQTEsBvnx0fv8rwSczZehk2AONmOxFixBm97tzUbOFbGutBi18cmWDSNlSabMyusgFCtmiIS44jKUeKowe2mRohC658QBJKZmYM7eQ0hMzUBiaoZs8K3VQ4/ZiKFgT9wYzEOarbSABGtsYDBDgiWA0PuAhcqDaUcnCJxtRJlwMXvYNMONyaiEwpkJFzUoWWRCLV8KoR4KriWkkEsogDCS+dZoQKlU9KhNjqYV5iIyEnehN3OsVlhsESunFQKjOm246bNI60XOpVmYlY3CDkuLkigB4FPYWGkFySwoQomf+5NdR+F3QL7DpJgHwu1Ed/0LortGG9sJdxzAWIwYMQLh4eHIz89Hfn6+KeUzAgkWi9E6Kog1ktJtjMzWa0YjO3LCGNH3I69UKKx5Fi0T5Em/Fyr8phXp9mb64KWiSsnSonaUS218suHJFa0MsGX7Vcq90oh20bKipQsAYHLMqfbldev9Cm22D6fcN3J1JluPkskwgdARMXbFr/BxKxZb30Lluhlh06ZNiImJcboYPCRYLEaPWBH+rzQ/hpsozMqWzY2yUu0OAtgtILxOwgZQKFTVzG80smYLP1LGiKVGbTp/M10xLLdKiadKJFqWRCXhnhMHHHf7WDXHjnTmbOlyNeftq1w0jNY6aMqTwIQEi4WY8bYoFSlOPGQ31Ozy+bvRRG6BivBaSC0IoqnpPVWIKy4T5RphyIkTufXk8GVN8WdpEd6bZggKoRBqZAsbgUlQP0rHKuuKP7EinL9J7fMltZzK1bXROY3cFExrl3gSnrOVkzmquc7S+1FNdmbCWkiwuAg533movgUE2+gOYR4J4XkxNxKzrrBrr8a14+t3LZY9M60u0k7ajGu4TscMz1Z39kyQBtM96haE19rXdfd1X+i9/nQ93Q0JFpdhdmZOLW+NSkG076UN8GtlMYKvN9FgNN2WdFhccj2VPgM8zY5HYftTihexoq7NEEFxxWWo7fjfX4yPEaGi59x9xd60ZxkOXHcnwy7rSm18sqZj+VrX129uCWIntEOCxQK0BtqKGnUTG7i44rKzaegDFCMjo9yM9A3djHmD/L0dCsUK24ZRmJXtFYOjV7yY7W4SihR/MR/+3sitQk64mCn+jLqX3I4ZAef+YBmsKaty4EKCxQJ0ixWTsboBsAMn31LdFEPgD6OmbOl9yFKcuy1hodsDUa0a7RTMYgUIjraKsB4SLCaipYGnSdn8Y/aoKLd1dm6fqkEYOGy1b19oQWD/s2MyE77RPDdW5A1Swk6BIYxBUkoSydqaOJl8M35R4UKRGyWl9PxKRz7aJVYyC4owUufz5sYkjqEICRYT0fI2arVYcVvn7Ab0BG9ajVLeHcLbZeXG6+cWmCXSX7via2SbEK0C1VceG1+xWLmeShIDhGpIsBAhBXu7dkvHxzoQlmk1WISLHguDsJNcNLO4PeEcm5k3yF0ieuDv4ZotrrXW2jFTuFrWlRa3Ty5KBCwkWExCyxtJsIweCGSkbgGpgLHabSA31QHQ/tbrptgRQwHkBmATKwrdHWaKTLtHnym1D2bkaXFrJyx1CcmJFzutK0bcmiNrtpAlyAXQ5IcmoHVyQbe+DenlcHyb00UwzLrSYv4TzKi9V+OKy2TFih3Zlu2awNKuSUFDZfJRKcJh++y7EDutZizfERMdFVk5mu/lkTVbMLJmC2rjkzF1VZPmMlS/8JTmbQgxZGExyLlzn9Oefp+sK67GDtEiHWIs/c1K1CSKkysDCxSvsNACtDJtMj+PlFWwDKp2vTi4xVqmFsWcMh1oPR+pMMj1VKIiKweZNloshLEy1WnDDQX65noqkZsCVCNe1frB/hJkJyRYDHLHJ1VAVJTq9d1gXRE+QHJvf3LLpGmpheehNJeQUVjD5iRWuIriistQAcgKV18jh1amTcakmhX8d3+5VyqycjBn7yF+pmTp/EaFknV9dUTCUW2iaQdgPFOu8ByE5yfE7JijzIIi1MYn2/I8uimOQyv8NRXm79G6E8l9UdHhjlsns6oVsWW+3DnS5WqnxWD7lYPirayDBEuQEgyq3o1Dv80aGqv1vEo8VbhAoyjM9VQCWTnIlUk6Jm2UzehQrUpuVuKpsuRt3K57q7koTzTLs5txOjW90yPBAlVYhgoUw2IjTlsLzIJM6WezqprduCqdc2FWtqJ1JTE1w+/+CrOyeYuVkftw0UxvocZmarZq/ierOjC3jBQzihntSmFWtte1s8pSYPdLiNCKsq60mFLzBzAkWGzEbdYCwhy0dHy+RqdoCc4szMpGYmoGElMz+BE1apAGQmqFuZeU0NrJuTUg1WlLg13ICZVgggXbMtizKl3OoJFA7oYEC+FaAsUipcU9lOup5EfgmIWchcWX1UUNcqn6g5HMgiLZaxFss4XL4ev8zLauOCVM5cS50aBbwjkohsVGrMz9IJ1N+b20AZYcBwjOGZSNoDUwl29EpR2GisygQpQsKxVZOVgIAHV+d6GIHZ21Uo4XFrtkl8tG6V42s9OWzpRtJlqeRadEmBPthZHcKW6MnyNIsNhKrqeSz2hqxsMgFSmEO2DDZpVYO/Bp/v8xOx/0+t1o7I7ZsT9mDcWXzuLsq5zBEl/iJoLdYiSEZbWlhG/BBQkWm5G+XatR8qEqTHI9ldqHUJqIkU7Tl9VFTqT4woh7QmuMi1nHVdqfGuw21/sTmEZhlqT+9cmYZcH+1VpX5epfLuNyXHEZChXW14LV9SoHC6gVZv+VC7L1JWJI4LgXEiwO46tTNiJUgsFtU5GVgziJoGMNLBN+gZLzgDXeekSAv/V9iZKFfc7X7BpiItrq2aSlkxsGO7tTGlBSb/1x1LYb76UNwMgJY/j/GVqHYQuPJ9yPE6kVpLmKlPA3A7jTL0uEPCRYXIBQXISaNUUurb/0rU/63c3DnX3BrC4lpcWG5wtiwocF1yqJFr3HEJbPKuErtEJVQzAxZZC94br1fhW2NV7tTpb6/chZdG6o2YXqd9ba/tKkRqwIkVpfyLqij08//RSLFi3Cl19+iQMHDmDlypWYOHEi/zvHcZg3bx5efvllHD58GJmZmViyZAkGDhyo6Tg0SsgF5HoqUZiV7dohnv4o8VSJGorvS2eIPkmol/18XzqjPWuqjJWEDb+VzkUi/G71KCKr3hAzC4owuKnBkHWIWSQa69bzHzPhZ5G2caSWFXlttBzbaozUJRt+bFcbofbevKFml5fYuaFml+6gfzOug5F6ZvMFEdo4fvw40tLS8MILL8j+/tRTT+G5557D0qVLsWHDBkRHR2PcuHE4efKkpuOQhcVF5HoqUWvSvux8s7mgoBwrLdy/Uop+O87RX+ZNI5k5nXaDyI1GYvVstTvIjTgRc6EVFrjP7v1FM4sBH7lxhGKi+p21vAvIKoRiRc/zqVT/7Nr4etZq45NRm6U+tT5hHuPHj8f48eNlf+M4DosXL0ZRURFyctrbl9deew0JCQlYtWoVpk6dqvo4JFhchlmNipG3HH+whiiuuAyxTeGWHEOI0/lYeFeFTGOpV6zUxidjJPy/yZkV+MrqUGqxkr5Jxwnq2ul6J87CrkVzUZ5oxFZj3XrU+njWq99Zy//fXJSH99IGmOp2tjJ9ghD2DPoSlEbdrIQ3LS0tou8RERGIiIjQtI/6+no0NjZi7Nix/LIePXogPT0d69evJ8ESyOR6KoGC+wC0N1JWvxHp4YKC8vZ/tM+wrgrpjMDClPJOBtsKG0sjpuuRNVtUiRXAHCuMnFgB5OvQLsucE64fX8JTSGFWtil5OKQdqJFATl+5Ym6Aj9g3E9sPNS9BdgkYOUistDP0cFfEnIo2tI+WnzgAQN++fUXL582bh/nz52vaV2NjIwAgISFBtDwhIYH/TS0kWFyMmS4is7DDogIoNz5umflWbeenBruyqlpxHNa5A+7Phiu8Vr7EZ4mnqn1Yr10FcxlS0cHEkJNixAmCYaSlUfbs2YOYmBj+u1britmQYHE5gwvuc4WlxYhQMWMGVmEci5uGMmu1usi5glinb5UQk8v9Y9axSjxVvItCOpO10Qbfypl7lfYrHH5upPxC64owc6+ZI6BYPesREnIWGbYf6Xm7XahYJfZpaDMQExMjEix6SExMBAAcPHgQSUlJ/PKDBw9i2LBhmvZFgiUAyPVUokJHbIsZcSx2WVSCATXiRdiJSd0FdmH2saTnyn9vasA66BcuTo4YGlmzBRUG9iGs48FNDYDLMvf6ahdC3apAmEtKSgoSExOxdu1aXqC0tLRgw4YNuOeeezTti4Y1G+T5T1fbchwn3CB6xYpVQy/d4ApSw6KZxe0jFgQf6XBJpZFPVmO3dYoN4Q60VPslnirquAlCJceOHcPWrVuxdetWAO2Btlu3bkVDQwPCwsJw//33o7i4GG+//Ta2bduGu+66C7169RLlalEDWVhMgHUCVschMPdQc1Ge6kh/PVYWsqoYY/bSIjTDv3BjokWNEFO7nj9BIhyuXJiVbauAURItZgUzmwlzDclZh5TqTfj8C2fLXgVtuSYI9Vjd5tr9jAQqmzdvxnXXXcd/f+CBBwAA06dPxyuvvIKHHnoIx48fR15eHg4fPoxRo0bh/fffR2RkpKbjkGAJMFgehmpAk3BRixliJbYpHM2SZVrjEZQ66EDyKws7ugqFIZdqRYtZ1qXmojyUwF0BhUrBsIy44jLb5xfSilAIlniqMFvYyblEhAUbTucxIs5y7bXXguM4xd/DwsKwYMECLFiwwNBxSLAEIKIgyqyOoY0GhYsTVhU9iboqsnJkAxeV9uOWjlk6VFuIqQGwGsoTKDQX5WGdzHLhtbXCMpNZUISRkkRtAGQDcgNtbivCfKSzkRPmQzEsJuJUoi3pm8Z7aQNQ/c5aDC64D4M7crr4wo0uoOaiPFOy27qpY3ZTWQDrYo3sQlif60qLsa70bOyQnccGQquDCvT7xipC6R5wCrKwmIjWWU7NhMWpFGZlYzCgKq26lZlq7bRsuD2dOiOuuAyJew8pzvtjZLgxNZbtsHuOjU4y6koq8VQhLitH1f1M18BelJL7mZnxNjE1A0jNwGwf0x8IoXvAWkiwBAm+/Llyje0FBeWWZaoFzIljkZvnJtBn8l3Y53ygTv43X42sv6RvwRAcaLbw9OVKYqgRNLy7R2Y/ctMbSDH7vJyc80gpCBkQCwiry+hLQKp9cWQznLMAabkXCbYsUOLmgh0SLISjaGnYmovyAjqAkW9gdVjh3Bpg6JZRPVoQuZIkvwnPR8m1xASPksC0Wjw6aVGUEwnsXIXzUFlZxsKsbJT4sXapsVYKXx7Mnu2csAaKYTHIuXOfc7oIuhixSuE136UodQCB4g4yQomniv/QhITWIo2DEVpj4orLeKuKXGdYmJXtWmFpFDVxKyybb6DArqGVYqUwK5tifkyELCwmY9e8MFrI9VQCkre+N+qfxAUot/S4RuNYWF1WZOWIZqgNBZT882xYMuBtdZG+2fuzBBjJ5Go2bhKewnoX1rGcixIQWBY6fk9MzUCjZD2z47nsFAbrSotVl9+O66jGemV2PKG0LdPSxgdSKga3Q4LFBNwydFYOoWnUzeX0BXvgA+ntzShqGjlhw80aUJFIsTgzcChdDynCOZQA3xaIQO+wnIyZMYKZc2axlz7CWUiwGOSOT6rwVvZUUyPTjSCcOZelRa9OGy4ycTPRMmJVHTZNTNV1nISDTTiYEO+1DIDXciFaGj5hMF9cVg4/c7XToks6yZ8WhAnGzIQ1zm64B92MVtEuZzGVe8MXWr4WZuUoBlbbwciaLag2KTjdLUKFCUIt185X7iO7KczKxmOrVzldjICHBIsJuOGBAMSzwkqDU5uL8rxcBg0Z8Tgc34bYpnAcjm8DAAz65jCuavzE79tJYmoGGmtW8AJJmDjLTEuO9E3WaYRWBamFwV/jzkSt0EVghftQGOei6A4yGAsTytYVf7COErC/bZCbDVwvbhErDD1tipOpJgjzIcESYCgJiYqsHFWzwhZmZSMxNQML+5yPqzyV2HFxDg7Ht/GNwfqODzxVPs3Ys9nvHWJCuK7TFhCnkDOdy1ljpFlTAeO5I0RCSCDwhNfFLVZAp9EiqDMLioAasQBQsz37nb3h2zns3AzripvESmFWNhDgbjXCHEiwBCDMiiHMISGXT0La6LDtGj2VSEQG5qRmYLZLxYUb84qosSr4WseXWBC6FPSgxhIlOkbHvaCHQLauaBXTchYLNp+Xmn1Jr6vQzamnPP4wkijPjgzBWnHbAAY9WBF0HarQsOYAoCIrBxVZOahOG47BTQ18bIov/L0hNdatR+TqfWYW01TcJlYAY2+dUnFwQ80u0yeuJMyHWa6k96ORjMTCeCPpsGk34JbO1Syx4kQqAGEqArfUZzAQxvmaYtFi5s+fj0ceeUS0bNCgQfj2229l17/22mvxySefeC2/4YYbUFXV3qBwHId58+bh5ZdfxuHDh5GZmYklS5Zg4MCBAICPP/5YNA22kI0bN2LEiBGqyt7S0oIePXrgSGkJYqKiVG2jFd7NowI3mXBDBS2WhpEdboWKrByMnDBG9Nt7aQNE4oVNs2A1ZsUaGbW4uPHeFWaxZedXG58sEipmiWphbBPD33Ux28pVG5/smo5VSagYsVSY5Q41UoaTp0+jaOUHOHLkCGJiYgyXRQrrkw7+6wvEdO1mbF8/HUPCLVdZVla9OO4SuuSSS/Dhhx/y3zt3Vi7SihUrcOrUKf57U1MT0tLSMGXKFH7ZU089heeeew6vvvoqUlJSMHfuXIwbNw7ffPMNIiMjcdVVV+HAgQOi/c6dOxdr167FFVdcYeKZGceoFYWwFqV4FV+4pVMwEz314HZY5yY8l8FNDbxIMdNVIRukK9i/Ve4jaRncjpHh4WYE37ptAEAo4rhg6dy5MxITE1WtGxcXJ/q+bNkydO3alRcsHMdh8eLFKCoqQk5O+0P+2muvISEhAatWrcLUqVPRpUsX0fFOnz6NyspKzJo1C2FhYSadlTn4Gp5IYsV9CK+JNNh2pKCxZBaUG2p2OWZdsZJAFjDSkVzSuavYuVTEJyPOxNgEth9pkDSgIGLikw1P7BhqmJmXhXAGxwXLzp070atXL0RGRiIjIwMLFy5EcrK64K/y8nJMnToV0dHRAID6+no0NjZi7Nix/Do9evRAeno61q9fj6lTp3rt4+2330ZTUxNyc3N9Hqu1tRWtra3895aWFlVlNBMSKYGDr4ke3RC7Yme8hNP37fMp92BW/RLF34XWkpKiPFSzGDEfQmtwUwNq45MtTcYoJ2J4PFX8PEiFWdm6Rwa5yRVk9Sg2o3lZ3DgQINRwNOg2PT0dr7zyCt5//30sWbIE9fX1uPrqq3H06FG/227cuBHbt2/H//3f//HLGhvbE2InJCSI1k1ISOB/k1JeXo5x48ahT58+Po+3cOFC9OjRg//07dvXbxmV0HLTj6zZgnWlxY43+oT5BIM1JRBQEitxxWVisSKIVwkkSjxV7aOZarZgZM0W1aN9tKTcDxZC7XyDDUctLOPHj+f/v/TSS5Geno5+/frhzTffxIwZM3xuW15ejqFDh+LKK6/Uffy9e/di9erVePPNN/2uO2fOHDzwwAP895aWFt2iRYv/222KXu7NnBoBeURWlpotomspFCtSt5AdNBfluWZUihUwy4fPt/aO5aKEiwaO5SSiOaY6/pqV7dZKjNSd9P51+hoQ1uO4S0hIbGwsUlNT8d133/lc7/jx41i2bBkWLFggWs5iUw4ePIikpCR++cGDBzFs2DCv/VRUVCA+Ph433XST37JFREQgIiJCxVkYxw6RUpiVjZVpk7Vv2OS9KLagHN+X+haYoYpQtDCTslssK4HawPsSIcKRNqwzlLpUpMJETcJFJaSje9wA3374aEfcIlbZPajWHSQncNhoLrUEeyxL0+dHcCriZ0P7ONp6HAAwYsQIhIeHIz8/H/n5+WYUzxCuEizHjh3Drl27cOedd/pcb/ny5WhtbcUdd9whWp6SkoLExESsXbuWFygtLS3YsGED7rnnHtG6HMehoqICd911F8455xxTz4PB5iFZmTYZk2pW+FxH+J0ITnxdWyesLIEIy3rKYJ2Pmk4aMDcAWDi6J9CQWtj8iVc3WJEAcTl9xvhYQGJqBpCagdlLfd9Di2a2u+/9rRcIbNq0iYY1Mx588EFMmDAB/fr1w/79+zFv3jyEh4dj2rRpAIC77roLvXv3xsKFC0XblZeXY+LEiYiPF0+yFxYWhvvvvx/FxcUYOHAgP6y5V69emDhxomhdj8eD+vp6UQyM2TAhoiRWhOsEOhSQpsy60mLRKCE52Ighu5BmSlbCLbFT0lwlfMflZwoJK8ksKMI6NkeXQ2UwgtaJBK1ErcXDDOHkL/hWyQLTWLcegH+BFAxCxa04Klj27t2LadOmoampCT179sSoUaNQXV2Nnj17AgAaGhrQqZM4LnjHjh34/PPP8cEHH8ju86GHHsLx48eRl5eHw4cPY9SoUXj//fcRGRkpWq+8vBxXXXUVLrroImtODuI3arXCxK6Ov8RThYzE0T5nVtbCyrTJlKNABUoTJtrtJmouysM6mfJI0TrBoxUIrSpueMsXkllQhIr45KC+9622rmiZwdxILhZ/qJ3xXE0bvWhmMQkXC3BUsCxbtszn7x9//LHXskGDBsFXct6wsDAsWLDAK75Fyj/+8Q9VZTQCu7G1WlEC1VrhFrNxICEUBHaKAb3XyqnyBtN8LGwC0kDp0Jj7KJDqX0+MjplxLUuikvC9aXsjGI6m5g9k/KXmNyOwSymrplliZtHMYiyJSvK/okqEsz4TZ2GNp5tcMIVZ2fw9qmUKCC0YPRdhenyzsGrY8kjJKDBCPXrd4tJgZ6VZ7NUEaEvx13brudZ2peb/5v5/o3tEtKF9HW09josXj6fU/KGC0g2vJbW30jpmWWBmLy1Cwq+ewlWN7fMzJaZmoLFuPf+XLRPC+3GpcVYNEwW+ksnZjbCxls6ZYxbSbL9a4WNWAuBeC5RyBgtSIcImiBUi/V36XYlgHkEU6JCFRSd2TH7oCxIMgQMTmGoEgR0WFq+U7x3YlbdDzTma7RYViicrRCNL1kYWRu2YOSuzkpVFipbh6HL7JAuLMzia6ZbQT2ZBkWve1gll5BpjN4y8kWuw1WZINYLaczdbkEuzRbPvZl2LwU0NlgemFmZluyZ/ij+0tE3MOqInn42/7Xy5hNhyf4G2wv3rLSdhDuQSCiDk3oAzC4pc0QESvokrLgM64kScFppS0zifvCsrh59bxukyWsm60mJxx29i/I5ayxATsmqFmbBzDYQh1KxN8tc+LZpZjIVQ74aRChCl/5moUBO/4k+AiJIPkmXbUcglpBNmfnvhq28R1a07AGt8n2rM9CRY3Iswg6c/t5Bd19HfiA8jk+n5wi33qVxKd7MEWm18ss9AYTmLm7ATVvP27m9dYTvkVtexdNivkptSLb7qzS1uOnIJGYcsLAa545MqvJU9VdQpmeWTVdtpkJUlcBBeJ6esGGoa8Nr4ZEtGDoUiIoEk0yErWQmE+LMICF18/qwLbkA6pNtw1lqXCjPCXEiwmAB7oyrMyjYkVgJhsjJCG0IhK8UJkakmn0aJp4qfQC9QZzD2RfKeqwEADX0/07W98LopxZSI2gEThIM/8aHVSkMQgQgF3Rrk+U9XAzAe6e5W0y2hHzcGSKo1j7NOL1imjpCjuShPk7ugNj5ZFJi8aGYx5uw9xO9nzt5DVhRThBo3kL91CSJQIcFikFnXjDNlP8HcMZgNmyTwhppd/MeNuNkk7w9hR253Bl6rkbOsyJ0jG0XEhIpQ4LAYDKFrY/bSIlkBJM1lZBSpENEiYggikCGXkAXozXLrZGIxN6be9iVEpL/ZPXmgP7TMj+JWhG7OaqcLYyLNRXloxmCv5Uy0yAXlCsksKAJKfT+ne+uHAACuGNcds5cWoQTaX0qUYlXULGO44bmWlsENZXKCWdeMQ9FK+TnwCHWQYDEJYXZYvW82ZncMrGHwJ4IoYNd8WBBkoL/lmhlEHigIO1O9LxBv1D8JAFgSVY5JHfUnbCPUIIxJ0XIfSYN4KxwWCMJjF2Zlo8Ki4yya2d6ONdatd6WLnYUPEPohwWKQd4behK7R3YETByzZv9rRGrINa1MDoKLBzSwoQq2ewhE+8RVw62ak91JFR9xGMI4aiisuw8gJY3Ddkn8CaHfrmGnlnFSzwvA+tIpeqcAxQ6wUZmVj7cCnAQBjdj4oOpaW/Zs5iSUbHSkcJcmsWURwQnlYdGJXan47Rw65zdKiNTbFTS4hrYnB7EKt1U0Km9zPSGeu9v6y0mWgtG/2dr4q6qTqfSmdj/TaL5pZrMmy4gu5Icv+JgE0eg/6srAxEQOcFTKsPNJ6DlVXEIPysBiHLCwmo2VyQ8CcWZ0JQgt6RYcwW2+gwjpMYR2sKxUkMTPJuiIUCWaIFakoEYpHJctXiaeqPTjYJtHM3Id8e9YxI3hzUZ4rR8wRgQdZWHSiZGFhDZUww6k/hI2bUiZMO8zxbCSE25BaWtxkSVHC7Mn7zEaraBGmWteDFusde3aknbTRe9NfluG44jJNz5k/C4scWu4JreUR4qS1lN37w+5udzSP2fmgq58FhtUWILKwGIcsLCbDN1YarCb+rDG5nsqQTioXCAIl2LF6tmOnySwowrqiPNMsLIAxV4zR8givl92w8976UvtIrIbiHNdnouVfMDusQoB7UvoTZ6E8LAGCHTPpEuahtbOKKy4LCLO5HrGiptMUWtECfYSVrxl91c6y7rZ4smDD1/PGZm8OlGfSDbS1tWHu3LlISUlBVFQUBgwYgEcffRRmO3DIwhIgsMbbSksLvVE4g8h92GFtWzvwaVEQI4sDEP41ghssJXK5dABgZcFk5HraR9fIuYaswo760CJEnL4+wYzc86M4E7TAAh4Iri0nePLJJ7FkyRK8+uqruOSSS7B582bk5uaiR48euO+++0w7DgkWCwnkt0TCPfCmargz3b8cRiwEI1bVASn6j81G/Egn2As0zBCVTk+MGigjg/gy+nHPu3X0n9N88cUXyMnJQXZ2e/30798f//znP7Fx40ZTj0OCxULMECsr0yYDOJvPYWTNFl1BuGRidi/NRXmolsQcxGV9hoq+MknATMxjYQSlIFzWyRqJoVgzYwB+Ud7+f5+U7Zq3Z6Ny3JiPI5SsJkbEtTDHihxWtWcr0ybjcHwbAPdnEHYTV111FcrKylBXV4fU1FTU1NTg888/xzPPPGPqcUiwuBy5xFOhHoQbbAgbZf7/pgasKy326nTjXDKhXWZBESaeiJRNUa/WMvBe2gDZXDsjJ4wBJrZ3dnvrh+hyC1VkORfoKTd0OlTRk/OH4Ws7Ky1HbBLLOT4yE+d6Kl0piM2mpaVF9D0iIgIRERFe6/3hD39AS0sLLrroIoSHh6OtrQ2PPfYYbr/9dlPLQ4LFIYSCY2TNFlXbkIsptJBrsNcF2FudGR0Lm5dH7VttiafK8VEpwZCzxgwCXbQJJ65srFsvm7jPbaz4bykizznH0D5Onj4NAOjbt69o+bx58zB//nyv9d988038/e9/xz/+8Q9ccskl2Lp1K+6//3706tUL06dPN1QWISRYLEStFaTEUyUKvBS+TQpdP0YsK077su3A7blP3IbWGAnp/TPb7AL54Bflu7BmBg1v14qTz7yVuaOsPK8lUUkYsaoOV4zrLlqemJqBhWi3wORC+2SWLSdOBNzkh3v27BHlYZGzrgDA7Nmz8Yc//AFTp04FAAwdOhT//e9/sXDhQlMFCw1rthC1lpPMgiIMbmpAddpwVKcNx+CmBv4jRK9YWVdaHPRiRSuBErzqFtaVFmuaKsHo/XZ0VWBZkggxgf58bZqYiiVRSfyHwdxFvoauBxMxMTGij5Jg+emnn9Cpk1hOhIeH48yZM6aWhywsQYLbBIlbrB2KGYc7Rt64oYxuRO5+0pvAz5d1TymORY5flO/CG7pKYC5ue9YI61kSlYR7Oia4XRKVBDQBh+PbyE3fwYQJE/DYY48hOTkZl1xyCbZs2YJnnnkGv/nNb0w9DgkWixlZs8WSAFmrG81AiYIvzMrmR1KtBHBBx/88TWdHWskhXX9SzQpbRYzTPv5A6Hw3TUxtH+pMyCJ17QlnML6goFzVPpJQz2+rl+dT7sGs+iW2WFescnEfjm9Dc1EeX2/3nDjAW1iElhZGbFO46WUIRJ5//nnMnTsX9957Lw4dOoRevXrh7rvvxp/+9CdTj0OCxQasEC1WxqQwq0SJ4LtbxYsvMRIIuCWBmxunP3ij/knclvKwafszOh+SkEUzi33meWnWmVZf7zMt3U7rfg50JL65oKAcSajXVQ45saInQ3eup9Lvc82GHptNbFM4YgUiT06kWHn8QKV79+5YvHgxFi9ebOlxSLCYjDBDaaDSXJQnGrKnJFZ8JVGyw0rRPhLD8sOoRk/HbyTo1SzMEivS8xeKMT1uoRtqdgEpMN26YlS4FGZlA36S0sUVl1k6osvKFxY9E1XydAxBj20KxwGkIFbH86nmJcTJYcUkVpyDgm5NRkmsqA3AVYu0UWHJuuQ+VuKkhcMKc6wRocU6ay3BqW5B64gHITfU7OLP2exz3zQxVfTdTHeD3mD0iqwcv/VltUXSTa48YQAqEyuBij8xIvzdrVbnYIYsLC6hNj7Za1SQmxolXzgRYOs264oQqcXAje4WowSiKFNCj1vOycR0VqLHeuBE0KlT9S8UY7Eq44MI8yDBYjLsTWNwR6ZS9kboLyeBlTkLrGRSzQpHGg8r3uIm1aywxMws17kzESMnSu2OaVk0sxhYWuQzVkmLQGHrmi3UNk1MRWwT0GzqXtthz6qa55Bfx8d1GlmzJSBHoGmxGshZuwLZugJoK//h+DZ+fTVTZrBkbIR+SLCYgDCgNlCFhxHsNo0WZmVjpa1HNIYvV5F02XtpA2y3rM1e2u46HOmpRIVAtBixopglVr4vnYERksBbs4LA+eDyDmGhN1BWjoqsHMS5YN4n4SgXNYRCgkmzEIobp69zqECCxSCbhqYhWuE31gkA+pO+qcXMERBqCcQ3SF9YdT4sGFWuE5e6j3yJBDNEgJr7I664rH0+Hw0olc3ofckCb4H24Nt2K0u4l5VFMd+OL2TWd8OoLTPRIlbuOXEAs5fqi+nJ5YNtNW/uKoRWE8J9kGAJElgcSbA1uHKYEegrN6mkUXeQcJSMP3FhdwyI2ntCz0SDaoSUv7d2LQnkDse38VYWPvjVxDgKs56hYH/rnrP3EBb2Od/pYhAhBAkWi7FzVmW3ZJe1GqHYEJ6vlvMPhZlWGWo73xJPlerRQk4FErOYqdyOTMVuJRBn8/WVV0aJ5qI8xBWXoSIrB3P2HtJk0QkWgjUA243QsOYgIhTECtB+nuwjXe4k0k5cyWKgtFytdUYramMSMguKFFONM5eWkmvLbKrfWct/+qRs5z+APaNSgiGOQ8tQdTmLoz+YwGkuygtZsQK4e+bmYIMsLEFEqFhY3II0UZp0dIxaAaO0P7l9Ww0LGnfCgsKOWZiVjcEu6ASMuIbcEnSrlkBrN+TimMxATZZdwjnIwkIQJhNMOUrsIq64DIVZ2YYS2BFi7Ox4G+vW23YsgLLNhipkYQkSWPxBYVY20JEDItiDb92EXFp+4TK1IkbtiCGtaLEWVKcNt9Q6ILRE6Q2aXZk2WZcbwy6YmyDQ4lj0IJyA1C6ssrBImVSzwutekwalB5p1KpAhwWIhtfHJyPVU2hp4y1g0sxiZOGn7cbUiTD5lZgdpR6ZZNrLFnygJRIuLlUGjrN5uqNmFimL5mBl/2CVW9LqF+E7Noc7MzlxFwTCcWYj03mKB3sxdKsy1FQyxToEECRaDjNhWg5ioKNnfRsLc+YN8kVlQhGqcfYBme6pMS4JlFbelPAyUn+3M3zBx33bFYAjjVfwF0waacDE7JkpoWeGvT1Geq0f7APpyybAh18FuYYkrLguIvCVKc1BJE31WK2wfiglB3QgJliAjUNxAhVnZ2FsvXnZBQTm+L53hTIFMQEsuEbejNFrICEIRye7TdaXFmoZTE+ZjZEoKp0YHqY1h4adbIMERFFDQLWE7Sj7vEavqHCiNuUiH/QpnMhauEyhomR3Zn1iTm0HcyhnFV6ZN5j92w87JKSFm1zlbnTiOCZPD8W2ij1qsHqUVKC+IwQJZWEwkMTVDNlp+ZM0WR+JY3AgTK0ri5LaUh/FG/ZM2l8p8fIkSrVYYsyw3euIx/DX4sm4eAVY36HaKEWG8gprzqk4bjpE1W0yb+0gtWmcyN+L2Ew4DlosrSkzN4P/Xk5gOMDbZJQmK4EKzYJk+fTpmzJiBa665xoryBBwXXnglDu3bBkB5aJ8wYMtu3BYU5kusBDtKIkZNfhan8NfZCgNo2Xe9QapqXVBmixQ9gkKt+GPnZWcsi5ZcIkZnKC/xVPGBxXL7me3gCJq44jLUguJPggnNguXIkSMYO3Ys+vXrh9zcXEyfPh29e/e2omwBwXffbQQUgm4ZekYKaRUabhMmclxQUA4A2DQxFcDZyezY/wwtVhbmspB2OFJXhrAz5DsRlwxHdKOLiM0p1FyU55UQT4pQpGQaOKacaHFzEi/2zPFxEjKw5cw1JHfPsXtVeo9Kl6m9X7XWmfRZUSve7LYcyR1fDbXxyfz/zUV5qoRmbXwyCR0XolmwrFq1Cj/88ANef/11vPrqq5g3bx7Gjh2LGTNmICcnB+ecc44V5QwIlIIH9VhYgm2adyZWgLPiZNPEVJFoYTRkxAOCgFwlUaK0TPqb9JqwTkC6nHUSgZKd1Amk+WaMmtyFnQnDbpFi1ALSXJSHWgWBXJGVg9qsZH6ZbEyLzISTUuFmZeZcL8tWRxm1ToLpBML6kN6L7N5ibW9tfLJqq4tT6SgI34RxHMcZ2cFXX32FiooK/OUvf0G3bt1wxx134N5778XAgQPNKqMraWlpQY8ePXCktERxWDMjMTUDq6L850QJJoHCUJNUKuGgt8N9/T8eMrUMeqkIoPTqalEjMkbWbPE6dzPiAVhuooqsHPyiXOzqWjOjXQhZMUzWX94Ws61tSm//cveSL+EcV1zmJSh8lVXrMGOWYwSQt/D4w+5nQ1ivRi0gcm49dn8C6ieuVdtunzx9GkUrP8CRI0cQExOjrbAqYH3SB//YgOiu3Qzt6/hPx/DLX6UjNTUV4eHhyM/PR35+vkkl1Y8hwXLgwAG89tprqKiowN69e3HzzTdj3759+OSTT/DUU0+hoKDAzLK6CjWCJTE1Q3egWbCgN/7CTDeJXKOvFmnG4GAQlUrCQ3puvlwdahlZ056LSE6gKLFmxgDTRYvdgkWKUfeJ9B6WE9JaM85K60SrRcUJsTJywhj++5FXKgzvU2jhk7YRJFjSLSurXjS7hE6fPo23334bFRUV+OCDD3DppZfi/vvvx69+9Sv+xFauXInf/OY3QS1Y1CAnVoT5J4jAIxjEi1y5b6jZhRsE36vfWat7/6wTyPVUYm/9EADAL8p34eiq9g6u+8Qy0f9SflG+yxLR4jRGEvExqxTrVHM9lagQuErjiss0T28gZ1lxI75cwkYZ3NQg65Yk3IlmwZKUlIQzZ85g2rRp2LhxI4YNG+a1znXXXYfY2FgTihdchNoQOyOjW+Tm5nECX9cs0MWnFaOP1pUW8x1MbelzInEiRE6oCGGiBbDGRWQ3zQYz+soFJPPfs7LBbA1s7hurmbP3EGZbfpSzlikrR8qRaAkcNAuW0tJSTJkyBZGRkYrrxMbGor6+XvF3Irgxq3HRKloUXT9G3EEqzMJMuAjjMxhOx78YuRb+3EFKQo1/4wdkxYp0WfU7a3lTv1DIMBeSNCg7UKnIytE9t1BzUR5KoByPxX4H4PMYi2a2X7PGuvWi+1TOHSS16oh+A5A4s9gylzcTKkIXkJUYsTJlFhRh4onIkHf/24FmwXLnnXdaUY6A5flPVyMyhEdGuQkzTdtGOhchVpqz/WHVW6nZFiVhp3R0VZ6X9eVwfFtQWFmsRG2MDOtUSwAUwnfcipxYqcjKwZy9h9BYtx6NdestyS8jjVUJBEis2ANlujXIL7fVo1u4fGMqtQ7onfk1kAiWuXTU5muQIjc8tSIrR3XOCKctMkpoFSnNRXkiy4lWhMJF6B6yIt7CLHFqB0qpE3I9lYCGGBlhzIsW0ZLrqUSuxjJrJdDECtBuuSLRYj00lxBhGsEiVvTmn8j1VHp92PJA4r20AWguysO60mL+YyfMZbRmxgBeqKgdYWQlckKhMCsbccVl/F9fmCVGfd2fWobwC/ej5h5l65udn0XLfFVuZUVLF97dRlgHCRbCFIJFrAD6rSvBglkdSHNRHgYX3Kd7+5ETxiC2KVwkXJykIisHhVnZvChgf+0WpkaFj9z19SdCpCOUzMStVkUtTI455XQRQgJyCRGGWTSzGDfcM830/bphlJAZBELGUOBsfceZuM/a0ud0bcfcQcKsyP5yqVgN66iV3C52TvXga+4lv1YWTyVw9z1I/GgrAHUzLqs9ltK97mZRUhufjJHYYmgfK1q6YHLMKcenKwh2SLBYRPeJZYDGWYe1ZmQVDl/8vnSGpm2tRio2pPPRuGXYshx6rCvrSov59Oy+3kBZY+YGM7gb65/FvbBpGwCgT8p29KnZbtkxtabm56eZcFhAGaFi537+/zl7D3n9vrDP+fzy3LvvaV/40hJV+5a7/7XUr1mzk6sl0Fy2oQwJFocQZqVkDfNejSPBR9S3z8OTcLAJ35tdwA7iisuQvOdqbH1psGiZ8C1i9tIiv52f9Hc3dpZGUBIg0jdOO4UKa/i11rWZswtr6XxYsrr2v22CQFvrxIoelCw9SonhhC8iZllhjHSyiakZgIxIESIUMcwSg9QMLOxzvs9jh2rnPznmlCpLFWEMimGxCLn8E3IIZynWw4hVdTiYEK864Iv54JUCCNmHBRIKJwpU2o5wL24Qhkay5gLewZ7S/CH+8onYhVtm/7aKJVFJurazql4CNWEjoR9HBcv8+fMRFhYm+lx00UWK61977bVe64eFhSE7+2wnynEc/vSnPyEpKQlRUVEYO3Ysdu7c6bWvqqoqpKenIyoqCueeey4mTpxoyjmxDsJfJk+zZwJtrFsvEhVKHyFCcRJXXIa1A5/G2oFP8/5x1viP2fkgv00wTgYoxGiHp/UN041vpFZ0+v5EC/tdaaTVyrTJiG0K5/9K08obSTNvpciRe+acZklUki5rwOH4Ns3bWCniQjkwPlRx3CV0ySWX4MMPP+S/d+6sXKQVK1bg1Kmz0dhNTU1IS0vDlClT+GVPPfUUnnvuObz66qtISUnB3LlzMW7cOHzzzTd8dt633noLv/3tb/H4448jKysLP//8M7ZvN8fszMzfR1flAT7ebteVFuO2lIdNOeaIVXVAivdypcA8oSARdgpAhzDZKT8aINjFCkP45qamURSmo5frOIV1JnUJBUpArhGEmW+VhIsvoSGXNI6Jl/b/25etTJusOzC3MCtbNEuyFD1z9SiJEzNcRL6Cbv1tF9vkXacsaNQXc/YeUi10AsXaxCbnlKM2PlnT5J/MjWbHlAWhiuOCpXPnzkhMTFS1blycePzCsmXL0LVrV16wcByHxYsXo6ioCDk57Y3Pa6+9hoSEBKxatQpTp07Fzz//jN///vdYtGgRZsw4G6h68cUXGz4XYUCpPzILioBVpw0fEwAaMuLRp9F7uVKDprehCwWxAojnCGLiRevbnLBDEcb8CDtvrTyfcg/mzRhu+XWwYv8skZwbkQ7XrVB5fRJTMwC0WzcBY5MbasWIZe5wfBtyB/bCJCSgYud+xDaFY0efNr9xLWoIFKFCBCaOx7Ds3LkTvXr1wgUXXIDbb78dDQ3qFW15eTmmTp2K6OhoAEB9fT0aGxsxduxYfp0ePXogPT0d69e3NypfffUV9u3bh06dOmH48OFISkrC+PHj/VpYWltb0dLSIvpIuaFml+oAQzP9r8nrmzRvs3bg00jec7Xq9UNFrAjfqKQzMytdM7UBt1p5PuUe/lOYlY3dKQ2udCHpJbYpnP+YhRkT/8m5pADv68nS0wtxe6wXfz4vLeFHCjFXz8I+5/MWFOn/7DzlRhQx7BYrVsewBNOzFiw4amFJT0/HK6+8gkGDBuHAgQN45JFHcPXVV2P79u3o3r27z203btyI7du3o7y8nF/W2NhuZkhISBCtm5CQwP/2/fft42nmz5+PZ555Bv3790dJSQmuvfZa1NXVeVlxGAsXLsQjjzyi+1ylmGFhEU4Kp3XYpzAuxRehZFmRm+xQalnR6i4CvMWer6HNwo6uEPLi3c43eaMIz9Gt8wElpmZ4CQ8hwo5rZdrkdgtFAHdmfhPACYRZY916oGNcABMwFX3arYdW3oN2D202inAYOGEdjgqW8ePH8/9feumlSE9PR79+/fDmm2+K3DVylJeXY+jQobjyyis1HfPMmTMAgD/+8Y+4+eabAQAVFRXo06cPli9fjrvvvlt2uzlz5uCBBx7gv7e0tKBv374+j2VHEqERq+osm802kMSKGW+0agSInIBxQ06VYMbqyQ99iRUpTievswM1rmS7519yg4DxF9PSWLeedxNKiSsuw/6HrZ6FKfhxPIZFSGxsLFJTU/Hdd9/5XO/48eNYtmwZFixYIFrOYmEOHjyIpKSzQ/AOHjyIYcOGAQC/XBizEhERgQsuuMCnOyoiIgIRERGazscXtfHJ6AP/D2BDRrzibwkHm9CQEY+Eg01IVJEjQWn2VYa0QXK7WDHT7F7iqQI8VZaMPBDO2BwKmTCFAk54rrEF5XKr+yXXU6nJ1WMk+JahNMkgw59VRu0x1CB3z7DnkwUL53oqTSmTGuxuG95LG4C44jK8V5RnimipjU8++39WsmikmbR9FK7LviudewmA2QrXNNifebtwlWA5duwYdu3ahTvvvNPnesuXL0drayvuuOMO0fKUlBQkJiZi7dq1vEBpaWnBhg0bcM897dkaL7/8ckRERGDHjh0YNWoUAOD06dPYvXs3+vXrZ/o5SRsbptJzPZWyI3sYrPHp0wiRaleaEXQ2gGZ4Z5QUHd9ThYqO72x5nEycRSiMXJEjs6BI14zaci4e4bBwBvtdySITyG4GIcHQOC+aWYzCuvUiUeFUXIpcfbLZmfn/oc1S5Eakz0U1zp47f75ZZ38fDACCUT7C5421cbmeStSWPicaNu8rDb9QtEj3RziPo4LlwQcfxIQJE9CvXz/s378f8+bNQ3h4OKZNa5+X5q677kLv3r2xcOFC0Xbl5eWYOHEi4uPF1oewsDDcf//9KC4uxsCBA/lhzb169eLzrMTExGDmzJmYN28e+vbti379+mHRokUAIBoebQb8G5DkQayNT8Y6j++AsdmeKl58KKl2tWWQ+y79CwDoeFtjvtiFKl0d9DC3I6wHpZEmco0hv43OoaqEeUitFFbGCwVSLJIapIJdiHC4v9y9n+upBASpFtg2WkXiyAljzn6ZMAYlaQNwQ8dyf6PU5J49pfISzuCoYNm7dy+mTZuGpqYm9OzZE6NGjUJ1dTV69uwJAGhoaECnTuKBTDt27MDnn3+ODz74QHafDz30EI4fP468vDwcPnwYo0aNwvvvv8/nYAGARYsWoXPnzrjzzjtx4sQJpKenw+Px4Nxzz9V8DoPyZyImKgoARJ09o7BufcB06OzBZFacZoX1pG9C7E1GuB+ljtmNdVEicAWZ5RJSyuVBjZ88ZrhxzNifXByCXKcZyNYMI0n2+O3khITKlP1qU/vrScJYK1kmdCGp2Z/0+aTnVT379u3Dww8/jH//+9/46aefcOGFF6KiogJXXHGFacdwVLAsW7bM5+8ff/yx17JBgwaB4zjFbcLCwrBgwQKv+BYh55xzDp5++mk8/fTTqsuqxPOfrsYfx00E0DEc0vAenUOtmJBbj1mDpAnUhOR6KnmXVCjiK4Ec4ZtJNStMGbKsBiZG7IoJsRvWcbO4N2YJ9he3E2oIX7pCIfbMCD/++CMyMzNx3XXX4d///jd69uyJnTt36jIC+MJVMSyByKxrxvn1cweb6dcXvh7qEgDwVHkFZTpdP3qtKkbyQChmU3WYRTOLFeOkjGKn6DADqVhxs8vOn7hSGr0yZ+8hNHa0WSxuR7ov4bbSY5R4qrBoZrHssaXPtNViqCIrByNLn7P0GIQ8Tz75JPr27YuKigp+WUqKjyBNnTieOC7Qef7T1aLvcpYFpcYiVGkuyuM/wNmGTe0EjoR1WCVWgMA3r7tVrKhFLtGd8Dv7X+oWEy5X2q8ci2YWiz5CAeNW4Sp1bQf6PWsUabLU1tZW2fXefvttXHHFFZgyZQrOP/98DB8+HC+//LLp5SELiw1Y2QkEC1a+2RPuoLkoT/fQZkB9PpZAT+ymBqm1x5/ryohry5fFBakZKFTYt9zzzG974gCQNhnfl84QDc12A75SPwQC6Qc/5+Mq9dJy4gQAeOUamzdvHubPn++1/vfff48lS5bggQcewP/7f/8PmzZtwn333YcuXbpg+vTphsoihASLyTQX5XkFpDnt8ggE9IgVuTrVanaWy25LWIcvt5C/QFm5fCyhkMjNbNSIlyVRSfz18LX+7KVF8gG4AoQuo0Ud+55UswJ764dgRMrDKPE8iUJNZ2A9QgHFRgqFYhzLnj17EBMTw39XykV25swZXHHFFXj88ccBAMOHD8f27duxdOlSEiwEoQbq3IIPu6+hm9787URNPUeu3qdqX3Jup8TUDGyuP6qvcNA+Cqz6nbUYHILX0SgxMTEiwaJEUlKS1wTCgwcPxltvvWVqeSiGxQbcGMMSV1zmiiBPO1mZNpn/MAqzsi2fRI0IXPSIFbfGZ5jNyXG9fVo0C7OysWhmMRJTM1DiqeItoiWeKsxeWoRNE1PRJ0XbHGgMObEiysFiEsI4llxPZci1mWrJzMzEjh07RMvq6upMT8ZKgsUC2MPJPm6LzZDmTQk0WKMhbSy1uIOE4qUwKxsja7agNj7ZKxW3WwnU4aeh4Bq12wqUmJrBvxT5ejmSrte/PlnXyxQL3lXjWmLrCWewZn/vOXGA/+7GOBFpvho3ltEtFBQUoLq6Go8//ji+++47/OMf/0BZWRny8/NNPQ4JlhAlkB8+lnZbeA5GOnD2RswaJiZcAkW8BBOhYp0wG38jedQiFDVa0XrthGV18wuU1C1IVhZvRowYgZUrV+Kf//wnhgwZgkcffRSLFy/G7bffbupxKIYlRJA+ZOwBlM49FAgwCxF7WzfD2sAa29gm8fIDHRM+HY5vA2Btpl65gG0hgTAhpRoCLR9LsOFPkEhFD1vfX0K9STUrvJ7JxNQMzF5a5JWrJdAshIH8gmcXN954I2688UZLj0EWliCFxagoxaq44QHU+6YinN/Drred2KZwxDaF25Irhp1bRVaOyLUYDGKFEGNGx63WqiJ145wc11v0u5IQ2bz6KDavPqrK+iJ0/QiXCY/hBCMnjFHd5rmhbSTkIcESwjj9YBrpgEWzuHag9Nb+fekM3cexGyZMfAkU4fwoBKFVBAhjUIRWEy3b68HJwQf+Jj4kAgNyCVkMc1+wYXh6zfrsLUWuUxaaYoMZf8HCwTpsOdgESomnChcoiMtgvYZmw9yHFVk5aPRUqk7Nz4YinxzX20usKG3PRvI01mkvp3RIs5OiRc/kh0qEYk4WN0AWFosozMrGBQXliG0KF4kMrcFlbD/S4bhmEUgBZMK6kzM9K3GBgeyqUla0dDFtX0Q7h+PbcDi+Dd+XzggJ4W0m7JnQavVQm0NFih7BsXbg02isW4+KrBws7HO+5u2NWoKr31nr6qBeQj1kYTHIrGvG8WmQhYJipcy67Pc4k4MnV6ZNBoK4oTd7GHbCwSYcTIj3u96IVd6vlG/UP2laOUIZX246q5K1rR34NMbsfND0/TpBXHEZ0BHLldthYYlcvU9kORHCL1OYjy5y9T7F32T3I4PcbM/tYiMH2Fkpij3rX5+MWfVL+PX8vXzUGpjUUO29pFUYkZXFfsjCYpB3ht6k2fpBal8bVtfXiFV1/Ef43Q0EmzvISRr6fqZqPadju/RyclxvRK7ep2tosjQAV4pZrhz2LO9OaVC9jRUJ4aQE6jUPNUiwOEhmgf+EcmQi14cvAenLuuIWoRLKWPXWqkX42tmB6RkpJJznRohQeKgRGf7iV5TW9/d7iadK9YgiK4c4v5c2wLJ9E/ZDLiGHiCsuwzqVDbPVeSvcatr01ZBJOxRpw+2vzpSEyaaJqa4SLe+lDbDFyhLsE3RqnXtGmOdHiLCenMwlIuc20zN6R802e+uHYHP9UexF+18511FiagYgzLbbEQTcf3Uydqc0aK5/s2CuMyv376vtFD67x9ra4K6c54EHCRaHaC7Kww01uyx7A2DZYAMVtZ0BaywqZM+1zWtJbFO4z/25SawA9rmE9tYPAeAewWJFHIvaTpMdV07EycVpsOVS7BQ0QuGhZDXpX382c7PQJeNvhNEotAAAPofyJHgsOZy0PPNmDAc8DY6IlffSBqDQBve7kmghd675kEvIIehm1o/UusKE2S/Kd3l9pLCMtYGMFSL36Cp3Wdj0iBU5Nw5bds+JA5o6TbadUHQoCRUly5Sv36xEKbfKyXG9+Y/c+kqUTrwCpROvwKaJqdg0MVV2ncKsbGxefRSzlxbxc6f5c6vJWUDNtCRreWEzSxzfULOL/xDmQxYWm2A5WEZOGINajdv6ylvBCBaTvlbLilCsSDvd7hPLeNFydFUeuk8sw5oZA1xnRXEaNzWuWkeEie55T5X3VBMdy2Z7qlChY9/CGAvhbMPseZP+5ms/St8B//e9dP/+zkNOhCyJSgJwdtJBs3mj/knRefgro5yAlFs2uOA+Xvwwy7Q/3ksbgDi/a53FaMySm56hYIYsLAaZsO1tn79PqlmBSTUrUFv6nGy0O93oZ1EjVuQaFjmxIqX7xMB1j4UKbpxFXChSpMv9WV+UUFpXOsu78JhKAapqLRJCdxCDjSbyN8OzHqT1ZWSUEXMP5noqLXOzue2+I+QhC4tBnv90NSLXewCIs9Gy7LO1JgkSf0GkcrlYtMSxOB14qyXAVljOkRPG4KjCdr4sLnrYNDEVKNW9uS7Uun/0Xr+44jJ0VyH4rKYwK1tzcKRWi6K/ySWlsDpVOo7wvvTVmQrFh3QdpX0zC46vAN/247eJxEDk6n2ahgwzq4tSHAv7XQ1yAo4JpUaIY2y0BAjrERN2x+9Vv7PWluHXoQ4JFhPhG5eO705bT9Q8tMJkTk7h761JqSOOKy4DqJEA0DE5Y0G5rEldaE6XMnLCGMBh65OekRwVWTm6kiWaGcwrfCHwJTyEyFlm5LZV627K9VRijkCwnBzXG6jzFiy7UxqQeMI71wpzD+mdH0gOYXlPdgTiJqK34jqBNnMz4RwkWCzAihEO/uJYJtWsQEXHG6GWtwu3ixUl9LxBrZkxALFN4bpjWEasqsP3ura0DzkrXGxTx1/BFAUspqoa7aLFqXwVet1Aeq2BclaWlWmTcTi+TbYcwvtM+Gyx4/srh5IYUYM0hobBvivVm5wFQ84lY6ZIYZR4qvjRQsIAXAb7bdHMYn5uoUILymE2rK59tZdkZbEeEiwmwk902DF/0OF3cky9gYVvz14+dbSn/A+kocxaAw2FsI5C2tGaff7CvCxrZgxAsCRSaBc2bY43sFrFit7JQ33ha/SQV/3I1JeVYk9qiZC6iNTGhmideLB/fXJ75txVm71GFU2SrCu8JsKhzQw2l9f3pTN4kVQiCIbW4qZTi9lpHdS+hJJosRYSLCbCZmVmxDaFm3oD+3szcyL3it7YCSNixRe+ylKYla1p2KTSEE63EVdcBjTp27b7xDLH4lf0uIKsjLMSWia0uEp9uX7NFDPsmZDWW2PdelFQrVyafV8ZbeUsMnL74K0lkmfX3zWRmzdq0cxiL+uL23HaGk2QYDHMuXOfQ1S37l5ihRHbFI5vX/kYF/36Wn6ZXeZ3q+NT9IgV1SOBLBqirdYdJM14u2liKpqLlCfsC0R8BSxbjZ4gW7NgHT9zS7Dvs6XDok24B7XEsRlpF4QCQ84dtHn10fYEcCni5Y116326hvzNMQScfab31g/BIpnl/evbs90K3T+NdetVW1ZYOggt3FCzC9WwbiJNwhloWLNB7vikSlGsCBlccB/eSxtga6xAoIoVJ0crCZNjsf/7pGwPioRzSph5T/qz8LnJZTl7aZGrchcJk44ZCdiXDlWOXL1Pdj1fQsWfkNECEytSKrJy/LZResSKXvwJG7XCp/qdtWYUh5CBBIsJqHEzrEybbGs0vNveKtSce4mnynKxIidI2P99UrZjUs0KfF86A9+XzsDh+DYcjm/jRZTTo76UcNO1ZtePTeyZWVAkmuSzuSiPRoWoRCpg5ISMMDZFKDCE/6uxkqhh0cxi2RgVxhXjuiv+JhVA7Fl34xxmSmix1lS/s5YXLiRgzINcQgZ5Z+hN6KpyXblcKWbD4ljcYl1R2znZ8abL8lY0F+W1j/bpyKnC/pdmSZWeo1tnftWbzvy9tAHtgsLk8jDUzEZOaMfX6CA52i0sMYpDnv0hnCdIyepS4qniJz8EvPO3CONk3DZvlRB/bnR/7apcmxGHdtFy4thR4LKLzCimT3a8sBTdwn3PmeaPY23tFuURI0YgPDwc+fn5yM/PN6N4hiDBYiOTalZ4pw63EDVD8YQ4nTzOaoL53PRAgsI/LC28XEfmptEgQrePWRYVM9HrXjJax3qsj3pi/3y1Ley3k6dPay6L02zatAkxMcqTXtoNCZYgx2xLi5YYBDdZVwgxk2pWoDptuOXHWVcqdiEEojuIdXrSzq8kbYDs82ClkHkvbQAGS5Y11q1H4jjlIcsnx/VGQ0sXAKc0HYtZbHy5gRgXFJRj86o63i30fekMxaDaPinbgXpNRdHFyAljgIL7dG2rRbTQi5B9kGCxkcTUjPa8AzYgbGTNEi1qLTDBLFRuqNnlWteQFiqycjC4Sbt7QAtSsWIGZsQRvacgNBhqE+kpjnSSdJK1pc9pLqMSN9TsQkWxOJaif30yoDACPzE1A5Gr9yEZMViREY8vEkfjV+vrVafvj1y9j7fYRK7eh8Rx8mn1J9WsQEl9FRrrOp59P20AG6FlNbWlz2GwAdEiRNiOkkhxBhIsQYyZQ/rcNLrDSb595WPExbc5mh02VKnIysFIEzp/X0OqK7JyMLjgPi8rhhS53CVsDjGrkWbrtcoF1Fi3Hkg5m1b/5LjehkUGy967efVRlNQrz5PkRnI9lQH5khVM0Cghm5hUs8K2REnNRXm6xYovYeLvrUIujbgcFVk5AfngxxWXYcSqOvyifBe6TywLmIZWihVDtNeVFntZVKQxMoEoepUCWZWsDEZQI4Cr31nrdd+x+BX2VzpaaHdKA/qkbMdVjZ/gqsZPNE2OyPahZpizmueBrdMnZbvf9sJtidoCsc0KNsjCEuToeejlOhY1YkU6sZsSbjenKp6DpxJ7MYT/urd+CG5LGYI36p+0qWTeFGZlY6XGbcxwE46s2SL+zuqsZotibIxRa58d9420jHa4LRhmuLvsLC/gPZkjQVgJCZYgxSxXENuPr9FNLFW42lwrbsGshva2lIfRJ2W7q87NKFJBYhQ9afiDBanlxKgw8ScS5NxVVmGlWHHbi43SzNqEfZBgsZHMgiLFQET2m691tGD0DVo4JNpfw+GmxGW+0NK4KtXfL8rlOxtmbbliXPeAmCPFzmumd0Zmt8I6rYxfPYUdF8dqPjc1rh85UfNe2gAUeiq9AlpZDAvLs+JLrDAXlzCY1ixxY7a1xYiwY3VcmJVtaiyf8Py0ipdZ14xD0coPTClHqEKCxUZ8CRH2mxUjK9yC295OrPCRb159FGtszGejN2lcoFGRlYMbTBxto4XE1AzMXlrEu0oL2fKYU1gIa+arURI1cscSig8pctYWYayLUoyOFiuNcAZp4TxN7BjSYGQ1wcl6A6yF9cbEhVVimYkhtSMnW06csKQcoQQJFgKAOK6BdwN5qvxm5pV7o5JrVN0gVuwK4vtF+S5sKijH4fg215m1rYY14Czg1izripF6NDojNbOYsTIw9+hsTxWaO/6XukzZc2HmRJ5Kdbk7pQEVfYbL/ibNOMtG/oi+y2DE6sLEypKoJFlBrTY4WSg+5KwtLKmfkDjYaz3M7bB4ybVvwWZZdAMkWAgA5nbm9JC2zwq9aWIqfhGE8S0M4T0zuKkBtfHJIrECmH8v+OvEpHSf6H9kkhXDkfnrbXPeJSlmnpedsTH+psWIKy7DYE+lK9oaOVHKxIr0JZAwBgkWm7AzaZwe9IwcCbVASqX4FSVGrKoD4O65U/QgtKAJk88NbmoABGKlNj4ZI2FO8C4TJ1rjGtRYVuzInWIGTnd6jXXrZeNUhN8XzSzmXU73jGtfFrl6HyalwFSai/J4qxZz1TlVP7meSlQI3MDCPD9OX7NggwSLTSyJSmqfZM8m2CSIWhA+XGpM2WofxmC0LmjltpSHAQBrZgwIeDeRv+teG5+MXE+laWKlxFMFpA3gxcp7gv/Vwiwtal1DIvHugvvX6aHDwlgNX8+z6KVsafsfrWXX2l5IXXUMO+uMuYYIayHBYiPCoDSzRgOZiXCSNzV5VwIJtyQt+0X5LlwxszggRhKpoTY+WWRlYWLFTKTixJ9YqX5nrei70DLWLly2i36X7SA7lsUVlwX9pKBWQy8shFmQYLGRlWmT+YbQrWKFsB6zRhLFFZcBTSYVSiNCC0RtfDL/vxX3UPU7azFywhgvISLlF+W72pP4FeXxFi052l107fRJ2a64HuC+XCBOQfVAuAESLDaj923Nzrc8M49Db1fy/KJ8F5DysKNZcvUiF+tkhVARHsefWGkuysMbgu+q69WGWYMJgjAHmkvIZmKbwjW5J+KK2+es0dMh6BEebpu/g3A/VosVf9DbP0GEBmRhcYDYpnA+f4MvfM0qayYsbkVLEiQnkU6qx3Cbm81qYpvCdW1ndBiv1a5Df/l/nIgpEb5k2H1sp583gnALJFhcip2NlDDYNpBREjLCGAutCKcoIJQRiiAr8poIcdqiomQhNbtcbhEqZia/cytW37OEOZBgcRlOZke0wroSSCMshPXOMnSyv7EOBbcGAsJspkanCnBrzJPcPSwVLk5aYawkEM9Faztlh1h5/tPVlh8j2CHB4hCKD5SCWNHbkCvlY2EWFavFUa6n0udMz3aQ66lU1ZGGyrw8WlFbL8EqVoSIhlRPGOOVeVfNxIb+ELYNrE6dfPsvzMpGddpw0QzeJZ4qr5eRYXfXYutLg50oomsJhHs6kCDBEgBYZZKlYcyEEmrFB5uCQMjh+DYriuQ4cvlfjMwoLIcwe7SbBLRQrABn4+uqC4p4l2t0UwMKs9rXq04bLrufUIozC1Wx8sQTT2DOnDn4/e9/j8WLF5u6bxIsDqDlbakiKwcjJ4wBoG5aen8oiRQ1oijUUvG7jThJ+u+Vgt/U3lNynaDWjpFNObBpYqqXWNFjCQiGhl2YfVevpUUYZC+8Jm6JrWAiZGTNFpEgYYkDa+OTUZslzskjFS5KcWYMo4LGDXE/wXA/62XTpk146aWXcOmll1qyfxIsNuGGRkcqVrRktpXbnjDGpompQKm2bXj3Xse1mFSzAmsHPg3gQVXbC+9DLUKFiRQAXiLFCIHcuEtFiZEXCjdaVoQuY6HwULKeyG0PtLulC7OyUZGVI8qKbDZuECuhEKCsxLFjx3D77bfj5ZdfRnGxNZY0Eiw2YESsmBnwxhog4UyyFRpywgRqNly3dABStLpO2L0QV1zWcS3a76sxO32LFSMzxgqtKb4IVcuKGQhjzNxyryqJFSWYWyh5z9UAgK0vDcZtHYkR44rLUGFdUV2FG2L2zKSlpUX0PSIiAhEREbLr5ufnIzs7G2PHjiXBEkiYaU25LeVhHK0xJlqYSwkAagFA8iaoVhQFolixEn9p3YUdsnTuqPa3QX1v5NLJ3vzNVqt2yLqcFUWNNSVUxApz+zBLipLrR4+lRSkw3CnLrHA2ZAjmP1OCdwv1/QwAUJhViRLPk/y+/G1PmMf0ws4Ij9KXo4nRdiIMuAfo27evaPm8efMwf/58r/WXLVuGr776Cps2bTJ0XH+QYDERN7h95BA2sOyvGfEwocSkmhVAytnv7W40cfp3aYOc6cN/X2EgN4wU1iFUKAgXf2JFrRUlVGCuBdl6E4j/YH6GhBO1qkWY76giKwdxApeQGoIlIFdP3bmVPXv2ICYmhv8uZ13Zs2cPfv/732PNmjWIjIy0tDwkWAwyYdvbiImKMn2/wmBbhl6h4Wskg9U5Fpx+cEfWbMHKtBT/K8K34JT63wc3NQAG3xjNrnslywsgL2JYbplQEypqYx3k6sxskcICbd3kClK6L4WCQs5a4s+St660OGSsLFLREldchpurlqFo5QcOlko7MTExIsEix5dffolDhw7hsssu45e1tbXh008/xZ///Ge0trYiPNyYxYdBgsWlSBuN7hPLcHSVvg5OOIJB+D2Y3xDZ295IbPG5nlutYmYgHFEkRW1uGl/wLiR1epBQwNd1sDsDqxFryDqAt6rI7UtOrJhlVXFDwK0STJS2+F81IBkzZgy2bdsmWpabm4uLLroIDz/8sGliBSDB4hqEQW4VWTm4ofQ5U/bry7oSSFlo1cKEitLbntYh5QwrRzdYjZnB0ma4j5y2urkJrQkN3SywvSx6EiuDPwtNsOFmEWUm3bt3x5AhQ0TLoqOjER8f77XcKCRYXIBUrEhdQQB464qSZURtAiuhdSVOQxn15mAxWxTFFZcBAvEgnSdI2DHnCob+SpGKGWEZWWNqlUhZV1qsacZuo4gCKDuIKy5TNd2AMBBXbrm/wGM5CrOyFTO4Cjvn70tnaN63leR6KlFh0v3MT8HRcf7tLrpw0XxMclgZmGtUSApfEvztK1jiVQh7cVSwzJ8/H4888oho2aBBg/Dtt9/Krn/ttdfik08+8Vp+ww03oKqq/QHhOA7z5s3Dyy+/jMOHDyMzMxNLlizBwIED+fX79++P//73v6J9LFy4EH/4wx+MnpJhtDSGakVK94lnO8fbABytkU/XHygIRYqvRHhag0+B0HjzA9rvs9iCctnflESKWcjNPTSpZoVr4jj8YVSEy83CbsQCZkb6fjOsXv5m2SZCh48//tiS/XayZK8auOSSS3DgwAH+8/nnnyuuu2LFCtG627dvR3h4OKZMmcKv89RTT+G5557D0qVLsWHDBkRHR2PcuHE4efKkaF8LFiwQ7WvWrFmWnaM/hI2VGhFyW8rDuKFml0iIaIFZaOxyB2kVR9L1C7OyEVdc5jV8l73RsQ8A0f9u5pHyLY6LRmkemBGr6iwXK0oEilhx89D+QKlDswkV1wvhApdQ586dkZiYqGrduDixE2PZsmXo2rUrL1g4jsPixYtRVFSEnJz2Tuu1115DQkICVq1ahalTp/Lbdu/eXfVx7UQpuFa6nIkV9pf9pkbEsI7SjhgWvoGXDBX1Oflih/9bbj9ScSLE33fhPqTYaVmJKy7Dbk8lKqAuY6hVZWDXILZJe1CcHleQFibVrHAkAZeaIFe5+Ayzy2B0WzfHupiNkcSIRGDhuGDZuXMnevXqhcjISGRkZGDhwoVITlaXo6K8vBxTp05FdHQ0AKC+vh6NjY0YO3Ysv06PHj2Qnp6O9evXiwTLE088gUcffRTJycn41a9+hYKCAnTurFwdra2taG1t5b9LMwAKMRLkqDQS6OiqPC8xIidgrKK5KM9LROhBLsbEF3J1KfyuJEp87Y8hEmsOuIKczIrJrmeupxJ764eoCqLdNDEVh+PbDHcMSu4fN3SyasugNwW7XdYAu0cXOQkJldDBUcGSnp6OV155BYMGDcKBAwfwyCOP4Oqrr8b27dvRvXt3n9tu3LgR27dvR3n5WT98Y2MjACAhIUG0bkJCAv8bANx333247LLLEBcXhy+++AJz5szBgQMH8Mwzzygeb+HChV7xNkrofYBKPFW4wcfvb9S3JyqTcxvJCRrhbwzpOszaosbSUuKpsqXBFb4x+RIrct997a+5KE+czM3heBWnR8uUeKp4S0ufmu3YC+WI/j4p29Gnxjyriq/ONFg7WzXPjlluHa31569sTt+rSgSSO2jT0DSnixDwOCpYxo8fz/9/6aWXIj09Hf369cObb76JGTN8jxAoLy/H0KFDceWVV2o+7gMPPCA6bpcuXXD33Xdj4cKFivMkzJkzR7RdS0uLV9piM5DmTNECEzQA+Hk8AABpAxTjJbS6hKyaT0irpUTLfik1uDLNRXmoYCNWCNVotY4FUscqxa0T+gXS7PEVWTlIbqh1uhgBj+MuISGxsbFITU3Fd99953O948ePY9myZViwYIFoOYtJOXjwIJKSkvjlBw8exLBhwxT3l56ejp9//hm7d+/GoEGDZNfxNemTXfgTMsLf1xQPQBzEIoXNmsrQ89Zklmso1HFbJ8BiWZwKuhXCrAPBkuLcbrFitnXKyVxNwhctaTncLLLXDnwaY3Y+ePaFyVOF/adPO12sgMdVguXYsWPYtWsX7rzzTp/rLV++HK2trbjjjjtEy1NSUpCYmIi1a9fyAqWlpQUbNmzAPffco7i/rVu3olOnTjj//PMNnwNDqyVCb8MszMniKxU7ANOEhtmuIX+jeuTqRlN69Y6p7eGS5G9qJyO0C9YR5GZlAynA3npzkz0ZQXqdhfUmDNwWuv38YYdrUzQfkeBZlKZrFz6noTrKR1oPIoTLXf6iJGqnPIOxFTTM22wcFSwPPvggJkyYgH79+mH//v2YN28ewsPDMW3aNADAXXfdhd69e2PhwoWi7crLyzFx4kTEx8eLloeFheH+++9HcXExBg4ciJSUFMydOxe9evXCxIkTAQDr16/Hhg0bcN1116F79+5Yv349CgoKcMcdd+Dcc8817dysECtyCeNEQ31d/MahhFJH48/crlUQ5noqUS2ZjJAITITD2QF1+XXsJK64DBWQj8ESIkzoFwguIy3xbmZhlQvabILBEhgIOCpY9u7di2nTpqGpqQk9e/bEqFGjUF1djZ49ewIAGhoa0KmTOFXMjh078Pnnn+ODD+QnkXrooYdw/Phx5OXl4fDhwxg1ahTef/99fhbJiIgILFu2DPPnz0draytSUlJQUFAgik9xGjlhUpiVjcFyKzv0MBtpSNi2RhJNaXVNSScvDDZYZ/JI+RbMql8iWgaotzywbX5R7u1+TEzNQGPdejOKqxthDh457BQAcmkBpLmChPhyAwono3QLwvgvUbI7DXUr7chlr4sk3YDWkYRuIFjcl27HUcGybNkyn7/LZcsbNGgQOI5T3CYsLAwLFizwim9hXHbZZaiurtZUTqthsSfvpQ1AIXNfwN0Pq95YFiZSzBjO689VJPw90yXWldr4ZL8TMsrBOkdh/hTR/cE68hQAKdmiZQC88uDI4UvUuEGsqMGoUJG6ZbTGg7BrJMWuLLBmxq+YaUlRc13c3N6pgUSL9bgqhiVUGVxwX/vfju+B8uBqtbLYEWjK3gozC4ocEynrSotFDbRSQjulkVs+k+n5sTD4Q5g8z2vqAkEsQcWMHN7K0idlOxodisXVGm+ix/KnFDvia54jJWEgl3ZfTSfma6qEQCYQXF1E4ECCJQTR+hZgJCOu0KxsVwCa1uHL0rmJ/MVE+OsQRypk6XUT0qy/0niLXE8lkOJI0USozQ/C1tNi+fOXvM5XEOzKtMnI9azweyy3jQbTwvMp9/DuRSsIlPgULQgt5ICzI6yCERIshGqEwkXuTVIOJx7Y2vhkWeEhXcYaS6GLRjpztt0NqnTUi9XHD9YOQ+956RmpY1dCRX9YmWzPinMMtnuPwc6L3EPmQ4IlhBBZOzTA8rdUwBkTL4vbUNMA+AvY89dIOh3wpxRUaqV4CuQ3Xbn7Ueu5GJkpuiIrB4U+fg/kN+zdKQ0oqTd3n4F8r2nFjrnaQg0SLCEA39EbVPx6GhpTBE7Hcd3wFmsnUmuLVYRKByLFiEWCbas4Wsnmt2s7pjIw5ZxUBNwHy3Pu5FxhwUon/6sQgYjZDabbcl24EZYbxKy6Elpb3CIqgu0+YNdLbYc/qWaFK+c5CtWkc0RoQRaWIIX58o2aJPm3HZd0mG7GLaLCSrSOCnNjnawd+DQAoKHvZ/wyfx2+G0WK1VAMBuE2SLAEMVrFSrCYYp1CbnSA3+kSghi152uXsKnIykHynqtlfzsc34bYpnCv5XqESqB29IFSbmFAuptF8ZidDzpdjKCDBEuQImx8mBAxMicPoQ25HCtubVydxledJKZmYGGf802pt/YO7jNF0SIMvg1Ei8rKtMkBWW4tCBPwlQCimBg3tWUkVqwhjPOVNpZQpKWlBT169EDxpF/ij+MmOl0cRwiU7Kd2sHbg0yIXAxB6FhUzsXKoMHMJAWfdQmZdK7mh9L6OK11HbyyKGUIlUCwsSrhJsDBYnd5QswvH2tpw5Xc7ceTIEcTExJh+LNYnDV4yGOFR3tZCLbSdaEPtPbWWlVUvZGExyKxrxjldBEMYSUVOYkVM8p6r6c0qAGjo+9lZkbDzrFgwwwLma3vRvbFTfj01z18oWFKCBSeGNlcnXY+Y6AhD+2g53ooeqMWIESMQHh6O/Px85Ofnm1RC/ZBgCTFWpk3GiFVn86yPqD/7/6aJqU4UKShwi1AJFreTlW/LSvUTKPXmlFgx45oEuhVHCSVrc6APbd60aRNZWEIROd+4NK2404xYVeeKdOyEfgKl0yW8CTSx6ct9FWoWILI22wPlYbEJ9gCvTJtsec4EI28xwZZngwhthHEjbsdpsaLlxYnyvqhHaZJTQjskWAzy/KerVQsElnRqUs0K0TZqtk9MzdBdRi3IDe30BzVehBwlniq/AtioQPb37LjFVRcoqBEtap539mJGbUO7EB1ccB82vfmO00UJeMglZCFKjWlhVrZmN5CbTY6hZv4NBNzgXlAzQaa/MvobLeQWdyrRjpF5mYKdOz6pgvNhq4ENWVhMQEujaUcDS424NoIxENBpsaKEVosK3cuEEKWXPekyuyzShL2QhcUgvoY1u7GxnVSzAnsxRPa3UB0l5MbrFEyIBGFHoi+q88CDWe2EFlU5a4owXk/410xLrHC4MN1LoQMJFpuxMiGWGlamTcaI+jr0SdnOfwfaG5M+NdsdKxcRvAgzLbMAxIqO35qL8qjDcRmFWdleVkcl957UBaQkYMxwE8UVl/FlmLP3EDCzWNFVHrl6HxLHUWLLYIMy3eqEZRU8UlqCmKgoU/fthvgDtaidYJE6JcIXQjHDCJRnINRQazGRS0qp1F4ozbnF1veVgE3YtjBXUGPdetdl4m45cQI9Cgotz3R7ZFWBOYnjJpZSplvCP4HQUPNvYA7EfwSSoCPUIXyDF15futbuw5dQUWNJkRUnnkqRwOCFTUf74uulSHqPsH24SawQ5kCCJcRR2yG4peNITM0A9h5CrtMFISxDeJ+RcHEfQlHiK55FTtj4cgE2XjcMqFuvOTC7uSgP6NgniZTghgRLCMMaBrUNhHBad6cQvoGx6eWlCJdTJxccSN0EatYjrEHJwiLN4l1RXHb2etx9DwCgULKNSORUH8RhlS5mOYQjgyJX78PJcb359sLp2EHCHEiwEAEHm2KeTS8vJK64TNSh0Zu5udhRn/6OIf2NxKl7EMaoSK/HyuqDgJ90/npSDEiFyObVR7Fp4hUiAeUGsfK30dnwlmyEFkiwEJqpyMpxJHZFDbJvZy5orIIFO0SB0jHkOrPCrGzVZXJbEGag4lNUKPy2svqgJWURChEWaDsKLTh54gAmdSwXWl6cvP6UOM44lDiOCChoriN7SEzNcCz5lq9rvGhmMQDt2aJDKZGYlYkQrXz+9Oxb7lxPjust+k5BuMEDWVgIEf5iBdjvTk2ZHujTtQcKTjbuviwms5cWGdo3WVmCC6Fo7V+fDHTkvpReY7rmwQEJlhDGnynd1+++8iJYiVZ3lBt814Q5yCU0U8vspUWuvBdWpk02fS4ureepJS7JqmdeS/yK8PyEZd+d0oBE9FbajAgCyCVE6CIQAhzd2EERxtB7Td16L9g5caiSy8XuZ5nNWK8HqVgR/lVLKLkHgw0SLARBWIYVnYNbxYfbyfVUumKiT7nkcnrKpXaouxRyDwUuJFgI3ajtOKQp140QCJYd4iyRq/e5opMk2jEi9swMuBW6woxYmYTtgT9xXOKpQmJqBko8VfzHCoT7F36e/3S1JccLJUiwEJbTXJRHo3tClJPjeptqEbGyo1FiZdpk3ipA4ss8zJgQkaHmRWZRx2SJbKSZViqycqgdcxgKuiUMYSQQ0gyY9caJAGDCPwv7nA/UmbMvJ7KVsiSFwuNS1lTtMCuK2okT5ZDWeWJqRvuoMU8VEv2IELZuCYDZnqqzokVDMDZZd5VZuHAhVqxYgW+//RZRUVG46qqr8OSTT2LQoEGmHocsLIRhzHT5mFUGN5SJsKaRd0Igs2Nqzf9iJ26z/khdIkoYsVrclvIwbkt5mP/eWLfeK0aFgmyt55NPPkF+fj6qq6uxZs0anD59Gr/85S9x/PhxU49DgiUAcLsZMtdTaatAKMzKRlxxmaxIYR0KvQ0FBloS1DGhYKdguKCgHBcUlFu2fzPdIlbXixlWTLNGRSWmZiBy9T5cMa47rhjXXdO2QoFjRp25vX22g/fffx+//vWvcckllyAtLQ2vvPIKGhoa8OWXX5p6HHIJBQCB0PnmeiqBrGzRpIRWzrQbCHVC+MftIzb4DlamYzMjh8qkmhUhn8xOjRBiwsKfuGW/y9WnUKiYjWgyVpdZuozQ0tIi+h4REYGIiAi/2x05cgQAEBcXZ2p5SLAQpsKEhFBQkLggghUjMRnS/diZk8Up9FiUlKwg0hT8TtJclCc7GasTvNPtXnSN1mZ1kvJT2FEApejbt69o+bx58zB//nyf2545cwb3338/MjMzMWTIEEPlkEKCxQRotlgxNEMyEQpMqllhitAIBetKXHEZVjaFa97Ol8tmSVQS7jlxAED7DM19UrZ7XY8STxWWdIikTROTAAAjVp2NAjdq3WJB2cHKnj17EBMTw39XY13Jz8/H9u3b8fnnn5teHhIsBvnb6GxEdfxPwqUdM85f6BcO9fok3EsoWEXMINdTqTteRzgqa/Pqo3zMChMrjXXrgRR5K1VhVjYgWFaRlYM+KduxJMq40HRbkLMVxMTEiASLP373u9/h3Xffxaeffoo+ffqYXh4SLAb58dH7cOKccwCcHZlCwkUfFLxGqIEseIGNGqEgTJegZGVZ0dIFk2NOaTo2u29IrJgLx3GYNWsWVq5ciY8//hgpKSmWHIcEi4kIg8duqNmFinfWhmTDqkWw+ZrfhARMcOErIFILofhMuQE7cy6x47C/FxSUY1LNCvRJ2Q7gbODtipYu2Fs/BH1StpO1y0Hy8/Pxj3/8A5WVlejevTsaGxsBAD169EBUVJSfrdVDgoWwBLWdinQ94dszdUzuQG7klxRpLICcOIlcva/9t3GhPSomkJGKFq0iRk5UMAsK249cJtpGwXaNdeuRmJqBqxo/AcDuJ9VFMAWnE2a6jSVLlgAArr32WtHyiooK/PrXvzbtOCRYTCCzoAjrSsUP2XtpA2DugK7AwYjQIJHiLko8VSjs+N+XWIlcvY8XIuz7yXG90b8++exojtR20UJiJbCREy1C2G+iPEmeSt0WELn7RbiM/W93BmKp0AplOI6z5ThhnF1HCjJaWlrQo0cPfPjhh4iOjpZdRyhi4orLqDMmQgaRUBFgpVgJ9XwmdsBEgVx8SUlHynsmWrVcC7a/21IeFiWCM3o9nRguruQSbzlxAj0KCnHkyBFNgaxqYX3S3z7caXxY8/GjuGPsQMvKqheysNgIjXwhAgGlt+e99e05FdrjCORhHZVUrNghJJwQK2blYXEDvoJchb8pWRQKs7KxCGfvATm3oJLQEWLmdbTyuihaVlj8DezNyhwKkGCxkMyCorNfmhqwrrTYayQRQOIlWAjE0SuswxXmprgtpV2YvFH/pOhNmb35sngBpSBaYTZS5hqSW1+atTTQrCNmptV3A/46VzVTIwiv7eyl7e1f4sxi/n+Gsktpu+J6Ssd2wrKm1g0UiG2Cm6G5hGwks6AIg5sa+A8bVUSjYYKDQGmY1M7fI0xl7ktsJKZmoH99sqwAEVpaNq8+qun4hDOsTJvMX6P+9ckAtFsKlkQl8f9LxYrc8ZRQc9xAE7qEfsjCYhLSoFtAbGFhv4usLgAGd1he5OYqIQizkb6Nfl86AwBwz8xiXlBsmpiqeY4buXgVqSjxN0mdWcOe7YJlug02JtWswPeC4cQlpUtU5UWR7kPapkmtKqzuvi+d4bP9kwvqtdPVMjTyRWw7ea/o+GoJlJeYQIGCbnUiF3QrFC1yI4f8Qf5Owk5YkOSSqCRMqlnhM0YlMTWDf2tmYgYQu3wYbJnwN2FMgz8CRbCEAnLiwNcIIV/70bK+G6nIytE8Y7XwfCno1jjkEjLIjriz6Yel1hOtkGuIsBuh6V4J1tkI41wa69ajsW49ZtUvweylRfx3oRvo5LjessNPlb4zgsFdFAznIKTEU2V4+K5UrASadUqrWCHMhywsOmFq9khpCWL8ZPKjwCvCKdhboVzOiAsKynmXkNBED3iPrkhMzeBdRn1Stpv+xizXwWu1tCi5sOx2IQQ7wnoOlbrVK9bIwmIuFMNiAyRWCKfI9VS2T3sv4IKCcq/19tYPwSS0i5QST5XskEwWgzJ7qTs7qUBzJUk7+0BxmzTWrZctq5acJ4EkdCqycoJ6RuZAglxCBEHgjfonff7OxMDspUXiDKYBgFs7RreWSy9yVjkhgZoR1ogrKFDP2a2QhYUgghxhxyi0rkyqWYGVHd+ZawgQpFSXWAYb69a3j+awwGLoyzpiNM+G2Xk6rLSEuFXECF2Laq0j0jq/LeVhJKZ25PKxpJTmQ4LDXVAMi060xLAQBEFowW0uEz0jg4QIrS1udN0JBzxYEVxbmJVNMSwmQBYWgiCCHquzoaoRGGrKINyPW2JapFaGEk+V19xoSvPnMNwoUkTnRZaUgIAEC0EQrsNsgSHN0MtyxJh1DLMysqpJfy/FCWtMc1GeKJi7UHFNgjAPCrolCMJVWGkNaaxbj8jV+yzZtxS74h+UxIqd8RcsTwvFfMhD9WIOZGGxmLUDn8aYnQ86XQyCCBiMihV/gmd3SkP7P3UNho4jPSYgLruWAFUrMOO4ejpauW2cdmvJ4WvGaMKdkIXFYkJZrFiZyZKyAhNugmX5ZbDJAwO5UzSzvEILjBvrQaug0rJ+oKUBcDNkYQkS3JhNV20SKatwY50Q1uN0gKdwREz/+mTeomOVlcEtwbmBjlmiRfgyleupBDyVqCguA6qWGSof4bCFZf78+QgLCxN9LrroIsX1r732Wq/1w8LCkJ199sbhOA5/+tOfkJSUhKioKIwdOxY7d+6U3V9rayuGDRuGsLAwbN261ezTs5VQ7Zh9WVpCtU4IZxEKJrlZrM2mMCvbdLFipRUk2C0OuZ5K/iNcRhjHcQvLJZdcgg8//JD/3rmzcpFWrFiBU6dO8d+bmpqQlpaGKVOm8MueeuopPPfcc3j11VeRkpKCuXPnYty4cfjmm28QGRkp2t9DDz2EXr16oaamxsQzIuyCLCiEWxGKFrflVFEDi7+xArOeWV/lC7T6NpM5725Bp4iuhvZxpvUnAMCIESMQHh6O/Px85Ofnm1E8QzguWDp37ozExERV68bFxYm+L1u2DF27duUFC8dxWLx4MYqKipCT0/7m/dprryEhIQGrVq3C1KlT+W3//e9/44MPPsBbb72Ff//73yadDWEmJEhCF7XX3u0JyYDA7TzlJswMFJQS3WlJgMey+6pdPxjZtGkTJY4TsnPnTvTq1QuRkZHIyMjAwoULkZycrGrb8vJyTJ06FdHR0QCA+vp6NDY2YuzYsfw6PXr0QHp6OtavX88LloMHD+K3v/0tVq1aha5djSlRK6ERRkSoEkpC1e0xKHHFZZZkf7ULJcHFlgtdVOy+k4oVwh04GsOSnp6OV155Be+//z6WLFmC+vp6XH311Th69KjfbTdu3Ijt27fj//7v//hljY3tM1QkJCSI1k1ISOB/4zgOv/71rzFz5kxcccUVqsva2tqKlpYW0cdqSKx4I5dRsyIrh0YNhSjMquJW6woQmBYKIbmeyqCOO2kuyuM/bBSTnFgJ9OsYDDhqYRk/fjz//6WXXor09HT069cPb775JmbMmOFjy3brytChQ3HllVdqOubzzz+Po0ePYs6cOZq2W7hwIR555BH5Hwc0ALvUWYUI9ci9ZcsFsoXS2zjhjd1iZWXaZFUj4FjsijAeRM6K4lbLipBcT2X7xJegjptwDlflYYmNjUVqaiq+++47n+sdP34cy5Yt8xI1LBbm4MGDouUHDx7kf/N4PFi/fj0iIiLQuXNnXHjhhQCAK664AtOnT1c85pw5c3DkyBH+s2fPnrM/klghggDqiNShdri+UIhIhYtRnLxWVoxKIgg1uEqwHDt2DLt27UJSUpLP9ZYvX47W1lbccccdouUpKSlITEzE2rVr+WUtLS3YsGEDMjLag/Oee+451NTUYOvWrdi6dSvee+89AMAbb7yBxx57TPGYERERiImJEX0IIpigTsgezMoe6zQkXAi7cdQl9OCDD2LChAno168f9u/fj3nz5iE8PBzTpk0DANx1113o3bs3Fi5cKNquvLwcEydORHx8vGh5WFgY7r//fhQXF2PgwIH8sOZevXph4sSJAOAV0NutWzcAwIABA9CnTx+LzpQgCEK/KJRu5yah4Ia5jOyCjV6jARHO4Khg2bt3L6ZNm4ampib07NkTo0aNQnV1NXr27AkAaGhoQKdOYiPQjh078Pnnn+ODDz6Q3edDDz2E48ePIy8vD4cPH8aoUaPw/vvve+VgcRP+pmYPFGgYMkE4y8q0yfi+tN1VvmhmsaPByEIhEyxtHNA+epNwhjCO4zinCxGItLS0oEePHjhSWoKYqCini0MQIYeVszpLURto6wR21oPb0GLFkQooPcOW44rLdIuulhMn0KOgEEeOHLEkpID1SX3vf9OUxHF7Ft9qWVn14qoYllDAygkBCSKUCNVOWkoo14Ne11iup9JVbjVCHY4njgsFVqZNxqRji4FdyZhUsyKkXSfSNyJqNIhAYFLNCldbWUIZf22Ir6kR2HLmsqJkce6GBIsNtDdyZ4N9pWIllAQMCRSCIOxETZvDt7/+1hW001JrOXsZVRI9J0+f9lsOwjfkEiJMhTLOEsEKWVcIX6xMm0wWGoshweICzLauMLeLE8MKfZ0LiRmCIAhCLyRYXILZnbnbciCw8wtF0RKK50wQBGE2JFiCGIoXIQiCsAdyGVoPBd26BDPdQm4TKkILg9XBxULLklvqIVQCqgkilFmZNhlwmWU72CDBQliKnWKFIAjj+BoGTJxFzqJSUVxGgbcWQoLFpQRLvhISKQRBhAq5nkrFodEtJ06gaKX8lDKEOkiwuBQmUNwWPOt2AlXYBQKUOM1c2LPttnvWbeVxklCe9sCNUNCty6Ep3Amr8CWG5X4jsWIu9Gy7HxIr7oIEC0GEKEqdZYmnCnHFZTaXhvAHWVuJUIcEC0EQIgqzsr1ij6izdB6yxhBu5oUXXkD//v0RGRmJ9PR0bNy40fRjkGAhCMIv1FkSBKHEG2+8gQceeADz5s3DV199hbS0NIwbNw6HDh0y9TgkWAhZhJlpKVMrQXhDVieCaOeZZ57Bb3/7W+Tm5uLiiy/G0qVL0bVrV/z1r3819Tg0SkgnHMcBAFpOnnS4JNZw4thRvHhlFnDsKID2IXlEaPP8p6sBALOuGedwSdzBydOn6bkgVMP6CtZ3WMWZ1p9M20dLS4toeUREBCIiIkTLTp06hS+//BJz5szhl3Xq1Aljx47F+vUmBy1zhC727NnDAaAPfehDH/rQR/Vnz549lvRJJ06c4BITE00rZ7du3byWzZs3z+u4+/bt4wBwX3zxhWj57NmzuSuvvNLUcyQLi0569eqFPXv2oHv37ggLC3OsHC0tLejbty/27NmDmJgYx8oRSFCd6YPqTTtUZ/oIxnrjOA5Hjx5Fr169LNl/ZGQk6uvrcerUKVP2x3GcV98mta7YDQkWnXTq1Al9+vRxuhg8MTExQfNg2wXVmT6o3rRDdaaPYKu3Hj16WLr/yMhIREZGWnoMKeeddx7Cw8Nx8OBB0fKDBw8iMTHR1GNR0C1BEARBELro0qULLr/8cqxdu5ZfdubMGaxduxYZGRmmHossLARBEARB6OaBBx7A9OnTccUVV+DKK6/E4sWLcfz4ceTm5pp6HBIsAU5ERATmzZvnuG8xkKA60wfVm3aozvRB9RZY3Hbbbfjhhx/wpz/9CY2NjRg2bBjef/99JCQkmHqcMI6zeIwVQRAEQRCEQSiGhSAIgiAI10OChSAIgiAI10OChSAIgiAI10OChSAIgiAI10OCxUaeeOIJhIWF4f777+eXXXvttQgLCxN9Zs6cKdruvvvuw+WXX46IiAgMGzZMdt9ff/01rr76akRGRqJv37546qmnvNZZvnw5LrroIkRGRmLo0KF47733RL9zHIc//elPSEpKQlRUFMaOHYudO3caPm+j6Km3mpoaTJs2DX379kVUVBQGDx6MZ5991mvfH3/8MS677DJERETgwgsvxCuvvOK1jr9p00+ePIn8/HzEx8ejW7duuPnmm72SKNmNnjpramrC9ddfj169eiEiIgJ9+/bF7373O6/5RIK1zgD9zyijqakJffr0QVhYGA4fPiz6LVjrTW+dSX8PCwvDsmXLROsEa50ROjE10T+hyMaNG7n+/ftzl156Kff73/+eXz569Gjut7/9LXfgwAH+c+TIEdG2s2bN4v785z9zd955J5eWlua17yNHjnAJCQnc7bffzm3fvp375z//yUVFRXEvvfQSv866deu48PBw7qmnnuK++eYbrqioiDvnnHO4bdu28es88cQTXI8ePbhVq1ZxNTU13E033cSlpKRwJ06cML0+1KK33srLy7n77ruP+/jjj7ldu3Zxr7/+OhcVFcU9//zz/Drff/8917VrV+6BBx7gvvnmG+7555/nwsPDuffff59fZ9myZVyXLl24v/71r9x//vMf7re//S0XGxvLHTx4kF9n5syZXN++fbm1a9dymzdv5kaOHMldddVV1laMD/TWWXNzM/fiiy9ymzZt4nbv3s19+OGH3KBBg7hp06bx6wRrnXGcsWeUkZOTw40fP54DwP3444/88mCtNyN1BoCrqKgQrSNsa4K1zgj9kGCxgaNHj3IDBw7k1qxZw40ePdrrwRZ+98W8efNkBcuLL77InXvuuVxrayu/7OGHH+YGDRrEf7/11lu57Oxs0Xbp6enc3XffzXEcx505c4ZLTEzkFi1axP9++PBhLiIigvvnP/+pqnxmY1a9Me69917uuuuu478/9NBD3CWXXCJa57bbbuPGjRvHf7/yyiu5/Px8/ntbWxvXq1cvbuHChRzHtdfROeecwy1fvpxfp7a2lgPArV+/XlP5zMDsOnv22We5Pn368N+Dsc44zpx6e/HFF7nRo0dza9eu9RIswVhvRusMALdy5UrF34OxzghjkEvIBvLz85GdnY2xY8fK/v73v/8d5513HoYMGYI5c+bgp5+0TQ++fv16XHPNNejSpQu/bNy4cdixYwd+/PFHfh3p8ceNG8dP/11fX4/GxkbROj169EB6err5U4SrxOx6O3LkCOLi4vjv/uqETZsuXEc6bfqXX36J06dPi9a56KKLkJyc7Ei9mVln+/fvx4oVKzB69Gh+WTDWGWC83r755hssWLAAr732Gjp18m5Wg7HezLjX8vPzcd555+HKK6/EX//6V3CCtGDBWGeEMSjTrcUsW7YMX331FTZt2iT7+69+9Sv069cPvXr1wtdff42HH34YO3bswIoVK1Qfo7GxESkpKaJlLMNgY2Mjzj33XDQ2NnplHUxISEBjYyO/nnA7uXXsxOx6++KLL/DGG2+gqqqKX6ZUJy0tLThx4gR+/PFHtLW1ya7z7bff8vvo0qULYmNjvdaxu97MqrNp06ahsrISJ06cwIQJE/CXv/yF/y3Y6gwwXm+tra2YNm0aFi1ahOTkZHz//fde+wi2ejPjXluwYAGysrLQtWtXfPDBB7j33ntx7Ngx3HfffQCCr84I45BgsZA9e/bg97//PdasWaM4g2ZeXh7//9ChQ5GUlIQxY8Zg165dGDBggF1FdRVm19v27duRk5ODefPm4Ze//KWlZXcKM+ustLQU8+bNQ11dHebMmYMHHngAL774ouXn4ARm1NucOXMwePBg3HHHHXYV21HMutfmzp3LrzN8+HAcP34cixYt4gULQUghl5CFfPnllzh06BAuu+wydO7cGZ07d8Ynn3yC5557Dp07d0ZbW5vXNunp6QCA7777TvVxEhMTZaf2Zr/5Wkf4u3A7uXXswsx6++abbzBmzBjk5eWhqKhI9JtSncTExCAqKkrVtOmJiYk4deqU14gQu+vNzDpLTEzERRddhJtuugkvvfQSlixZggMHDvC/BUudAebUm8fjwfLly/ntx4wZAwA477zzMG/ePADBVW9WtWvp6enYu3cvWltbAQRXnRHmQILFQsaMGYNt27Zh69at/OeKK67A7bffjq1btyI8PNxrm61btwIAkpKSVB8nIyMDn376KU6fPs0vW7NmDQYNGoRzzz2XX0c4/Tdbh03/nZKSgsTERNE6LS0t2LBhg+lThPvDrHr7z3/+g+uuuw7Tp0/HY4895rWNvzpRM2365ZdfjnPOOUe0zo4dO9DQ0GBrvVl1r505cwYA+E4kmOoMMKfe3nrrLdTU1PDbMxfaZ599hvz8fADBVW9W3Wtbt27Fueeey094GEx1RpiE01G/oYYwev67777jFixYwG3evJmrr6/nKisruQsuuIC75pprRNvs3LmT27JlC3f33Xdzqamp3JYtW7gtW7bwo4IOHz7MJSQkcHfeeSe3fft2btmyZVzXrl29hjV37tyZe/rpp7na2lpu3rx5ssOaY2NjucrKSu7rr7/mcnJyHB/WzNBab9u2beN69uzJ3XHHHaJhk4cOHeLXYcMmZ8+ezdXW1nIvvPCC7LDJiIgI7pVXXuG++eYbLi8vj4uNjeUaGxv5dWbOnMklJydzHo+H27x5M5eRkcFlZGRYXyl+0FpnVVVV3F//+ldu27ZtXH19Pffuu+9ygwcP5jIzM/l1gr3OOE7fMyrko48+UhzWHKz1prXO3n77be7ll1/mtm3bxu3cuZN78cUXua5du3J/+tOf+HWCvc4I7ZBgsRnhg93Q0MBdc801XFxcHBcREcFdeOGF3OzZs73yFYwePZoD4PWpr6/n16mpqeFGjRrFRUREcL179+aeeOIJr2O/+eabXGpqKtelSxfukksu4aqqqkS/nzlzhps7dy6XkJDARUREcGPGjOF27Nhheh3oQWu9zZs3T7bO+vXrJ9rvRx99xA0bNozr0qULd8EFF3AVFRVex37++ee55ORkrkuXLtyVV17JVVdXi34/ceIEd++993Lnnnsu17VrV27SpEncgQMHzK4CzWitM4/Hw2VkZHA9evTgIiMjuYEDB3IPP/ywqOPluOCuM47T94wKkRMsbHmw1pvWOvv3v//NDRs2jOvWrRsXHR3NpaWlcUuXLuXa2tpE+w3mOiO0E8ZxgnFkBEEQBEEQLoRiWAiCIAiCcD0kWAiCIAiCcD0kWAiCIAiCcD0kWAiCIAiCcD0kWAiCIAiCcD0kWAiCIAiCcD0kWAiCIAiCcD0kWAiCIAiCcD0kWAiCIAiCcD0kWAiCIAiCcD0kWAiCMMQPP/yAxMREPP744/yyL774Al26dPGabZcgCEIvNJcQQRCGee+99zBx4kR88cUXGDRoEIYNG4acnBw888wzTheNIIgggQQLQRCmkJ+fjw8//BBXXHEFtm3bhk2bNiEiIsLpYhEEESSQYCEIwhROnDiBIUOGYM+ePfjyyy8xdOhQp4tEEEQQQTEsBEGYwq5du7B//36cOXMGu3fvdro4BEEEGWRhIQjCMKdOncKVV16JYcOGYdCgQVi8eDG2bduG888/3+miEQQRJJBgIQjCMLNnz8a//vUv1NTUoFu3bhg9ejR69OiBd9991+miEQQRJJBLiCAIQ3z88cdYvHgxXn/9dcTExKBTp054/fXX8dlnn2HJkiVOF48giCCBLCwEQRAEQbgesrAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6SLAQBEEQBOF6/j9W97rOskzO3wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4tklEQVR4nO3dd3wUdf4/8FcIkAZJDCUFAQENnYAIMYACkRMwYgBB4WiX44ynsYABPX6CQQxgi2ADjF8MigVBKZ7xUCQWPLoCwqEQ2lEDHCEJiSFg8vn9wc3ebG8zuzOzr+fjsQ/I7OzMZ2Zn5/OeTw0SQggQERERaVg9fyeAiIiIyBkGLERERKR5DFiIiIhI8xiwEBERkeYxYCEiIiLNY8BCREREmseAhYiIiDSPAQsRERFpHgMWIiIi0jwGLBpxww034E9/+pO/k0FEBvenP/0JN9xwg0ef9dd96uzZsxg1ahSaNGmCoKAgLFy40OdpIP9jwOJDmzdvxuzZs1FWVubvpPjUjh078Mgjj6Bz586IiIhAq1atcN999+HgwYM21//ll18wZMgQNGrUCDExMZgwYQLOnz9vts6vv/6KJ598Et27d0fjxo0RHx+PtLQ07Ny502p7Bw4cwNSpU9GnTx+EhoYiKCgIx44dc+sYFi9ejNGjR6NVq1YICgpyeNMuKytDZmYmmjVrhoiICAwcOBA//fSTW/tbunQpOnbsiNDQUNx00014/fXXPTquP/3pTwgKCnL6kh+P0uffkc2bN6Nfv34IDw9HXFwcHnvsMVRWVlqtV1NTg6eeegoJCQkICwtDcnIyNmzY4Na+XDmnAHDq1Cncd999iI6ORmRkJNLT03HkyBG39uVvp0+fxuzZs7F7925/J0URU6dOxZdffokZM2Zg+fLlGDJkiM/27eo1Sj4gyGdeeuklAUAcPXrU6r3Lly+LK1eu+D5RPnDvvfeKuLg48eijj4q3335bPPfccyI2NlZERESIvXv3mq174sQJ0bRpU9GuXTvx6quvirlz54rrrrtOJCUliZqaGtN62dnZIjo6WkyePFm89dZb4sUXXxTt2rUTwcHBYsOGDWbbLCgoEPXq1RNdunQR3bt3t/sdONK6dWsRExMjhgwZIurXry8mTZpkc73a2lrRp08fERERIWbPni3eeOMN0alTJ9G4cWNx8OBBl/a1ZMkSAUDce++9Ij8/X0yYMEEAEM8//7zbx7V582axfPly02vOnDkCgMjMzDRbvnnzZiGEOuffnl27donQ0FDRo0cPsXjxYvH000+LkJAQMWTIEKt1x4wZI+rXry+mTZsm3nrrLZGSkiLq168vNm3apOg5vXTpkrjppptE8+bNxQsvvCBeeeUV0bJlS3H99deL//znPy7tSwt27NghAIiCggKr965cuSIuX77s0XZbt25t99pXU2xsrBg3bpzP9+vONUrqY8DiQ44CFiP75z//aZbZCSHEwYMHRUhIiNVN6KGHHhJhYWHi3//+t2nZhg0bBADx1ltvmZbt3LlTXLp0yeyz//nPf0SzZs1E3759zZZfuHBBVFRUCCE8/w6OHTsm6urqhBBCRERE2L1pf/zxxwKAWLVqlWnZuXPnRHR0tBg7dqzT/fz222+iSZMmIi0tzWz5uHHjREREhCgtLfXquBxlZEKoc/7tGTp0qIiPjxfl5eWmZW+//bYAIL788kvTsm3btgkA4qWXXjItq66uFu3atRMpKSlO9+POOX3hhRcEALF9+3bTsl9++UUEBweLGTNmuHRcWuDse/aUEgFLbW2tqK6uduszQUFBIisry6v9esLVa5R8gwGLj+Tk5AgAVi8pg7G8ERQUFAgAYtOmTeLRRx8VTZs2FVFRUSIzM1PU1NSIixcvigkTJojo6GgRHR0tpk+fbspQJbW1tWLBggWiU6dOIiQkRDRv3lxkZmaa3aD96eabbxY333yz2bLmzZuL0aNHW62bmJgo7rjjDqfbHDlypIiJibH7vhJBo6OAZfTo0SI2NlbU1taaLc/MzBTh4eFOn2wLCwsFAFFYWGi2fPPmzQKAWL58uc3PKRWwqHH+q6qqxC+//CLOnz9vWlZeXi7q168vpk+fbrZuTU2NaNSokZg8ebJp2fTp00VwcLBZpiGEEPPmzRMAxPHjx03Lzp8/L3755RdRVVVlWubOOe3Vq5fo1auX1XHdeeedol27dk6P35YzZ86IP/3pT6JFixaiYcOGIi4uTtxzzz1m31Xr1q1FWlqa+PLLL0VSUpIICQkRHTt2FJ9++qnZti5cuCCys7NFly5dREREhGjcuLEYMmSI2L17t2mdb775xua9RvrOJ02aJFq3bm223ZdeekmkpKSImJgYERoaKm6++WazoFueTncDFgAiKytLvP/++6JTp06ifv36Ys2aNUIIIU6ePCkyMjJE8+bNRcOGDUWnTp3E0qVLTZ+V7oOWL19w5xol32AbFh8ZOXIkxo4dCwBYsGABli9fjuXLl6NZs2YOP/foo4+iuLgYzz77LO655x7k5+dj1qxZGDZsGGprazFv3jz069cPL730EpYvX2722QcffBDTp09H37598eqrryIjIwMffPABBg8ejKtXrzrcb01NDf7zn/+49PKEEAJnz55F06ZNTctOnTqFc+fO4ZZbbrFav3fv3ti1a5fT7ZaUlJht09d27dqFm2++GfXqmf+0evfujd9++81uux355wFYnYOePXuiXr16Lp0DT6l1/rdv346OHTvijTfeMC3bu3cvfv/9d6t9NWzYEN27dzfb165du5CYmIjIyEirNAEwa6fxxhtvoGPHjti+fbvZ5wHn57Surg4///yz3eM/fPgwLl265PQcWLr33nuxZs0aZGRkYNGiRXjsscdw6dIlHD9+3Gy94uJi3H///Rg6dCjmz5+P+vXrY/To0WZtdY4cOYK1a9fi7rvvxiuvvILp06dj79696N+/P06fPg0A6NixI+bMmQMAyMzMNN1rbr/9drtpfPXVV9GjRw/MmTMH8+bNM+27sLDQ7eO1paioCFOnTsX999+PV199FTfccAPOnj2LW2+9FV9//TUeeeQRvPrqq7jxxhsxefJkU6Pa22+/3XRf+8Mf/mA6FkcuXrzo0n3rt99+c7gdd65R8hF/R0yBxNFTsL0SlsGDB5uVnKSkpIigoCDx17/+1bTs999/F9dff73o37+/admmTZsEAPHBBx+Y7Wf9+vU2l1uy92Rj6+WJ5cuXCwBmT1PS0/97771ntf706dMFAIclFN9//70ICgoSs2bNsruO2iUsERER4s9//rPVcukpf/369Q63nZWVJYKDg22+16xZMzFmzBib7ylRwqLW+Zee+HNyckzLVq1aJQCI77//3mo7o0ePFnFxcaa/O3fuLFJTU63W+9e//iUAiCVLlpiWSSWZ33zzjWmZq+f0/PnzAoCYM2eO1XpvvvmmACB+/fVX2wdvx8WLF62qs2xp3bq1AGBWolJeXi7i4+NFjx49TMsuX75sVXp39OhRERISYpZuR9+zrRKW3377zezvK1euiC5dulidd09LWOrVqyf+9a9/mS2fPHmyiI+Pt2obNGbMGBEVFWWWJvy3lMYV0rl09pJfj7a4c42Sb9RXJwwipUyePBlBQUGmv5OTk7FlyxZMnjzZtCw4OBi33HILfvzxR9OyVatWISoqCn/4wx/MSkF69uyJRo0a4ZtvvsEf//hHu/sdPHiw270wXPXrr78iKysLKSkpmDRpkml5dXU1ACAkJMTqM6GhoaZ1bL1/7tw5/PGPf0SbNm3w5JNPqpJuV9hLnzz9zj7fsGFDm++FhoY6/bw31Dr/AwYMgBDCrX3Jj9Odczp79mzMnj3bal+unFNXj98dYWFhaNiwIb799ltMnjwZ1113nd11ExISMGLECNPfkZGRmDhxIl544QWUlJQgLi7OLG21tbUoKytDo0aN0L59e7d7olmmU3Lx4kXU1tbitttuw0cffeTxNuX69++PTp06mf4WQuDTTz/FfffdByGE2T1q8ODBWLFiBX766Sf07dvX7X198MEHLn1Pbdu2dfi+O9co+QYDFo1r1aqV2d9RUVEAgJYtW1otv3jxounv4uJilJeXo3nz5ja3e+7cOYf7jY+PR3x8vCdJdqikpARpaWmIiorCJ598guDgYNN70k2zpqbG6nOXL182W0euqqoKd999Ny5duoQffvgBjRo18iht58+fR21trenvRo0aub2tsLAwl9Jvb19hYWG4cuWKzW1fvnzZ5vErxZfn39m+5Ptx9Zw62pcr59TT43ckJCQEL7zwArKzsxEbG4tbb70Vd999NyZOnIi4uDizdW+88UazhxMASExMBAAcO3YMcXFxqKurw6uvvopFixbh6NGjZtdQkyZN3Eqb3Oeff47c3Fzs3r3b7Pgt0+OpNm3amP19/vx5lJWVIT8/H/n5+TY/4+weZY8nQY4t7lyj5BsMWDROnqE7Wy5/iq2rq0Pz5s3xwQcf2Py8s7Yz1dXVKC8vdymNljdee8rLyzF06FCUlZVh06ZNSEhIMHtfCpDOnDlj9dkzZ84gJibG6mnnypUrGDlyJH7++Wd8+eWX6NKli0tpsaVXr17497//bfo7JyfH6mndmfj4eLvpB2A6Znv7io+PR21tLc6dO2cWbF65cgUXLlywOmdK8uX5d7Yv+XHGx8fj1KlTNtcD4PScuHpOpeNz5ftzx5QpUzBs2DCsXbsWX375JWbNmoX58+ejqKgIPXr0cGtb8+bNw6xZs/DnP/8Zzz33HGJiYlCvXj1MmTIFdXV1bqcNADZt2oR77rkHt99+OxYtWoT4+Hg0aNAABQUF+PDDDz3apiXLzF1K6/jx481KWeW6devm0b4sHwbscfZA4s41Sr7BgMWHlHpacUW7du3w9ddfo2/fvh49CXz88cfIyMhwaV3L4n5bLl++jGHDhuHgwYP4+uuvzYqHJS1atECzZs1sDj62fft2dO/e3WxZXV0dJk6ciI0bN2LlypXo37+/S+m1x7Io2VmRsS3du3fHpk2bUFdXZ9bwdtu2bQgPDzc9Mdvbl3SMO3fuxF133WV6f+fOnairq7M6B0ry5fnv0qUL6tevj507d+K+++4zLb9y5Qp2795ttqx79+745ptvUFFRYdbwdtu2bab3HXH1nNarVw9du3a1efzbtm1D27Zt0bhxY5ePUa5du3bIzs5GdnY2iouL0b17d+Tl5eH99983rXPo0CEIIczuE1IjbWlk2k8++QQDBw7E0qVLzbZfVlZm1tjZnXvNp59+itDQUHz55ZdmAWlBQYFbx+iOZs2aoXHjxqitrcWgQYMU3bblw4A9zh5I3LlGyTcYsPhQREQEAPhkpNv77rsPixYtwnPPPYd58+aZvff777+jsrIS0dHRdj+vZBuW2tpa3H///diyZQvWrVuHlJQUu+vee++9ePfdd3HixAlTtdfGjRtx8OBBTJ061WzdRx99FB9//DHeeustjBw50ut0KlGUPGrUKHzyySdYvXo1Ro0aBQD4z3/+g1WrVmHYsGGmDMHevlJTUxETE4PFixebZa6LFy9GeHg40tLSvE6jI2qc/99++w3Hjx9H06ZNTZlqVFQUBg0ahPfffx+zZs0yBQLLly9HZWUlRo8ebfr8qFGj8PLLLyM/Px/Tpk0DcK2YvqCgAMnJyWbVo1IPkFatWiE8PByAe+d01KhR+Nvf/oadO3eaeoccOHAARUVFpn2747fffkO9evVMbWCAa8FL48aNraoaTp8+jTVr1pjOZUVFBd577z10797dVIoZHBxs9YCwatUqnDp1CjfeeKNpmTv3muDgYAQFBZmVShw7dgxr165161jdERwcjHvvvRcffvgh9u3bZ1Uyd/78eaelwPYo1YbFnWuUfIMBiw/17NkTAPD0009jzJgxaNCgAYYNG2a6uSipf//+ePDBBzF//nzs3r0bd955Jxo0aIDi4mKsWrUKr776qilDtUXJNizZ2dn47LPPMGzYMJSWlpo9VQLXioUl/+///T+sWrUKAwcOxOOPP47Kykq89NJL6Nq1q1mJz8KFC7Fo0SKkpKQgPDzcapsjRowwndfy8nLTMOz//Oc/AVzr/hodHY3o6Gg88sgjTo/h73//O/bs2QMAuHr1Kn7++Wfk5uYCAO655x5T8fWoUaNw6623IiMjA/v370fTpk2xaNEi1NbW4tlnn3W6n7CwMDz33HPIysrC6NGjMXjwYGzatAnvv/8+5s6di5iYGNO6ShyXJTXO//bt2zFw4ECrJ9q5c+eiT58+6N+/PzIzM3Hy5Enk5eXhzjvvNBt6PTk5GaNHj8aMGTNw7tw53HjjjXj33Xdx7Ngxq5KGN954A88++yy++eYbDBgwwO1z+vDDD+Ptt99GWloapk2bhgYNGuCVV15BbGwssrOzzfY1YMAAfPfddw5LGA8ePIg77rgD9913Hzp16oT69etjzZo1OHv2LMaMGWO2bmJiIiZPnowdO3YgNjYW77zzDs6ePWtW0nH33Xdjzpw5yMjIQJ8+fbB371588MEHVplvu3btEB0djSVLlqBx48aIiIhAcnKyVVsSAEhLS8Mrr7yCIUOG4I9//CPOnTuHN998EzfeeCN+/vlnu8fmreeffx7ffPMNkpOT8cADD6BTp04oLS3FTz/9hK+//hqlpaUebVepNiyA69co+Yj/OigFpueee060aNFC1KtXz6WB43bs2GH2eanbpnwQLiGudVWMiIiw2l9+fr7o2bOnCAsLE40bNxZdu3YVTz75pDh9+rTix2ZP//793eoWvW/fPnHnnXeK8PBwER0dLcaNGydKSkrM1pk0aZLDbcq79x49etTuepbdO+1xtD/LrqOlpaVi8uTJokmTJiI8PFz079/f6nt0Jj8/X7Rv3140bNhQtGvXTixYsMBqYEBPjsuVEVCVPv+2ujVLNm3aJPr06SNCQ0NFs2bNRFZWlmn0Xrnq6moxbdo0ERcXJ0JCQkSvXr1sdhG31a1Z4so5FeLa9ASjRo0SkZGRolGjRuLuu+8WxcXFVuv17NnTadfW//znPyIrK0t06NBBREREiKioKJGcnCxWrlxptp584Lhu3bqJkJAQ0aFDB6vB2y5fviyys7NFfHy8CAsLE3379hVbtmwR/fv3NxvWQAgh1q1bZxqoTf6d2+rWvHTpUnHTTTeZ9ltQUGA6l5bp9HTgOFvOnj0rsrKyRMuWLUWDBg1EXFycuOOOO0R+fr7L21Cbq9coqS9ICBcaIBARkcmlS5cQExODhQsXIisry+vt3XDDDejSpQs+//xzBVJHZEwc6ZaIyE3ff/89WrRogQceeMDfSSEKGGzDQkTkprS0NNUbQGtdSUmJw/fDwsJM40YRKYEBCxERuc1Zo/xJkyZh2bJlvkkMBQQGLEREfnbs2DF/J8FtzoY94MBqpDQ2uiUiIiLNY6NbIiIi0jwGLERERKR5DFiIiIhI8xiwKOD777/HsGHDkJCQgKCgII/m4BBC4OWXX0ZiYiJCQkLQokULzJ07V/nEEhER6RB7CSmgqqoKSUlJ+POf/+zxJHyPP/44vvrqK7z88svo2rUrSktLPZ5Lg4iIyGjYS0hhQUFBWLNmDYYPH25aVlNTg6effhofffQRysrK0KVLF7zwwgumydl++eUXdOvWDfv27UP79u39k3AiIiINY5WQDzzyyCPYsmULVqxYgZ9//hmjR4/GkCFDUFxcDODaTMBt27bF559/jjZt2uCGG27AX/7yF5awEBER/RcDFpUdP34cBQUFWLVqFW677Ta0a9cO06ZNQ79+/UzTxh85cgT//ve/sWrVKrz33ntYtmwZfvzxR4waNcrPqSciItIGtmFR2d69e1FbW4vExESz5TU1NWjSpAkAoK6uDjU1NXjvvfdM6y1duhQ9e/bEgQMHWE1EREQBjwGLyiorKxEcHIwff/wRwcHBZu81atQIwLU5OerXr28W1HTs2BHAtRIaBixERBToGLCorEePHqitrcW5c+dw22232Vynb9+++P3333H48GG0a9cOAHDw4EEAQOvWrX2WViIiIq1iLyEFVFZW4tChQwCuBSivvPIKBg4ciJiYGLRq1Qrjx4/HP//5T+Tl5aFHjx44f/48Nm7ciG7duiEtLQ11dXXo1asXGjVqhIULF6Kurg5ZWVmIjIzEV1995eejIyIi8j8GLAr49ttvMXDgQKvl0vTqV69eRW5uLt577z2cOnUKTZs2xa233opnn30WXbt2BQCcPn0ajz76KL766itERERg6NChyMvLQ0xMjK8Ph4iISHMYsBAREZHHvv/+e7z00kv48ccfcebMGauxyOT++te/4q233sKCBQswZcoUt/bDbs1ERETkMWm09zfffNPhemvWrMHWrVuRkJDg0X7Y6JaIiIg8NnToUAwdOtThOqdOncKjjz6KL7/8EmlpaR7thwGLh+rq6nD69Gk0btwYQUFB/k4OERFpmBACly5dQkJCAurVU69y4/Lly7hy5YrX2xFCWOVtISEhCAkJcXtbdXV1mDBhAqZPn47OnTt7nCYGLB46ffo0WrZs6e9kEBGRjpw4cQLXX3+9Ktu+fPky4lq1Rvn5c15vq1GjRqisrDRblpOTg9mzZ7u9rRdeeAH169fHY4895lWaGLB4qHHjxgCAE/PnIjI01M+pIb15v795kej47wr9lBLXvP79l3j09sE2lwOw+Z4l6ZgvPuf+TcuV7TsjpVWp7QU6e9cE2VZx+TJaznjalHeo4cqVKyg/fw4vf78DYY0830915SVMu70XTpw4gcjISNNyT0pXfvzxR7z66qv46aefvK6NYMDiIenER4aGIjIszM+pIb15eHuR+QKNX0NPDx5uc3logwYA4NJvIKxRY2QUrQMGD0dBarrV+6UzM+1+VonfmL1jIM+ofT7zigqRnepZWwct80UTgrBGjb0KWCSRkZFmAYsnNm3ahHPnzqFVq1amZbW1tcjOzsbChQtx7Ngxl7fFgIXIoKSgIKNonZ9Tco08HbbSlOfLxJBP5BVdKzn0JPAwYrASiCZMmIBBgwaZLRs8eDAmTJiAjIwMt7bFgIXMSJmc9LSr9ZvGmqSRGLFntb+ToUm+DFSUeBqWf17K6CyXk77wuwsM8tHeAeDo0aPYvXu3abR3aaJfSYMGDRAXF+f2PHkMWMhK9IVgRE9diiMLJvs7KU4ZLVjRWqkI4J+ieWZ0RPqxc+dOs9Hen3jiCQD/G+1dKQxYyEpZk1p/JyFgZRStQ0FqOgpS0zUTtLgSPDDAIApcAwYMgDuD5rvTbkWOI92STY4aQJK6MorWmYIVW41TtSQ7NY3BCrlMXtVH5C4GLAHOMkOUMsqY3HzE5Ob7I0kko0Ypi9aDINIXd4IQBrfkDVYJBThbGaJWqiJIHY6+X6N2JSXledMDiMgTLGEhr/GJ3TiY+ZCrslPTzEph84oK7Za2BFpVkHQuAu241caAhbzGEhkisgxgLN8LZAxclMGAhYiIPGL5sMKHF9sCPWBTCgMWsrImaaS/k0BEOhWXmOLvJGgKS1eUw4CFrBxZMJk/MiJyW0FqOuZf39zldY2KJSrqYC8hssIfGxG5wnKAQ3eqhIxefcT7qPJYwqIBrIIhIj0yetBB2sKARQOMNh8OEZEr8ooKDV01RMpiwKIxLG0hokCRnZrGUhpyGQMWDeITBxERkTk2utUYVg8RERFZYwkLEZEN7NrvPp4zUhMDFiIiG9gt1ThYzW4MDFiIiEgRzoI8f5XAsGGvMTBgISIin2CpFXmDAQsRERFpHgMWIo1gg0XSA723B9F7+gMZuzUTaQSLy0kL8ooKHV6Lem8PIqXfch4kI5l96jzqRVR7/Pm6qkoAQK9evRAcHIysrCxkZWUplTyPMWAhIiKTQAic4xJTgJPnkOHvhGjcjh07EBkZ6e9kmLBKiIiIiDSPAQuRytg2hUhbSg5uQcnBLf5OBrmJAQuRHUoFGoFQxG50cYkpppf0t7/5cqJUNlQlLWAbFiI7GGiQnPyJPNCezo3aOJX0hSUsREROaDFA4USpFGgYsBBRwMsrKmRbIwJwraqN14I2MWDxEV/WNxMZkZpBBav/1KeXdjAj9qzm9aBRDFh8hMW3ZGS+CMiVykTsZZzy7eslc9UTPbaDYUmLtjBgISKvjdiz2ieZvBJBiysZp6111iSNNHuRvngSfLCkRVvYS4hctiZpJEuKKGDx2tc3Bh/6x4CFiGySl5h4WiqhF9LTNzM1Iu1ilRC5jE+YZM/Jo138nQSXFaSmW1UPZKemMVjxklbae2hhUD9SBwMWg2Idu3IC9VxmFK0zvZy5vs0+H6RIGRlF6xicqEA6p/4OXLQ4Zg4pgwGLQbE0RDk8l0SuYzBIamHAQkRERJrHgIWIfIpjnJAvBWqVrhH5NWCZPXs2goKCzF4dOnSwu/6AAQOs1g8KCkJa2v+KIIUQeOaZZxAfH4+wsDAMGjQIxcXFZtu555570KpVK4SGhiI+Ph4TJkzA6dOnVTtOIrKPAQyphcGKsfi9hKVz5844c+aM6fXDDz/YXXf16tVm6+7btw/BwcEYPXq0aZ0XX3wRr732GpYsWYJt27YhIiICgwcPxuXLl03rDBw4ECtXrsSBAwfw6aef4vDhwxg1apSqx6k0/hADl70MXi8Zv2UjXj13hyZtG7FnNdugGYjfx2GpX78+4uLiXFo3JibG7O8VK1YgPDzcFLAIIbBw4ULMnDkT6enXbt7vvfceYmNjsXbtWowZMwYAMHXqVNM2Wrdujb/97W8YPnw4rl69igYNGihxWESqkTL4gtR0ZvZEDnCwS2PxewlLcXExEhIS0LZtW4wbNw7Hjx93+bNLly7FmDFjEBERAQA4evQoSkpKMGjQINM6UVFRSE5OxpYttru6lZaW4oMPPkCfPn0cBis1NTWoqKgwe/kTf4QU6CUVeilRIv/x5D4pL71mSba2+DVgSU5OxrJly7B+/XosXrwYR48exW233YZLly45/ez27duxb98+/OUvfzEtKykpAQDExsaarRsbG2t6T/LUU08hIiICTZo0wfHjx7FuneOb/fz58xEVFWV6tWzZ0tXDJCIVZBStQ0FqOgMXUoR8jijp/3wwdM3333+PYcOGISEhAUFBQVi7dq3pvatXr+Kpp55C165dERERgYSEBEycONGjdqN+DViGDh2K0aNHo1u3bhg8eDC++OILlJWVYeXKlU4/u3TpUnTt2hW9e/f2aN/Tp0/Hrl278NVXXyE4OBgTJ06EEMLu+jNmzEB5ebnpdeLECat1/D1gElEgsAxQAq1kidQhD07Y9sU9VVVVSEpKwptvvmn13m+//YaffvoJs2bNwk8//YTVq1fjwIEDuOeee9zej9/bsMhFR0cjMTERhw4dcrheVVUVVqxYgTlz5pgtl9rCnD17FvHx8ablZ8+eRffu3c3Wbdq0KZo2bYrExER07NgRLVu2xNatW5GSYntY55CQEISEhDhMlx4GTOJTA+mdrTY8bM9DrsorKrR7r5ZmHZeCYstrSiqBObJgsi7u974ydOhQDB061OZ7UVFR2LBhg9myN954A71798bx48fRqlUrl/ejqYClsrIShw8fxoQJExyut2rVKtTU1GD8+PFmy9u0aYO4uDhs3LjRFKBUVFRg27ZteOihh+xur66uDsC1dipGx2CFjERv1UGcZNE/5KXfjs79tYCkFgAQfSHY5jqBFKxYttV05cHdFeXl5QgKCkJ0dLRbn/NrwDJt2jQMGzYMrVu3xunTp5GTk4Pg4GCMHTsWADBx4kS0aNEC8+fPN/vc0qVLMXz4cDRp0sRseVBQEKZMmYLc3FzcdNNNaNOmDWbNmoWEhAQMHz4cALBt2zbs2LED/fr1w3XXXYfDhw9j1qxZaNeund3SlUDCEhjSG6ktiyccPW2rITs1jVXHKrP1nbr6HY/Ys/p/309uvs33IduWVkv2/k9MQITwvMVHlahDOmDVVjMnJwezZ8/2Km2XL1/GU089hbFjxyIyMtKtz/o1YDl58iTGjh2LCxcuoFmzZujXrx+2bt2KZs2aAQCOHz+OevXMT/qBAwfwww8/4KuvvrK5zSeffBJVVVXIzMxEWVkZ+vXrh/Xr1yM0NBQAEB4ejtWrVyMnJwdVVVWIj4/HkCFDMHPmTEUiR3fYK3b0JyMEK+7eRKRiXiMceyCRN7p15fu2tZ4/npQD5encV+SzM09fMhMv/TUXWDLT4/Ns+pyN6iDpHrEmaSSOLJiMGJ2V8LnrxIkTZkGFt3nk1atXcd9990EIgcWLF7v9eb8GLCtWrHD4/rfffmu1rH379g4bxwYFBWHOnDlW7VskXbt2RVFRkVvpJH3RUgCoBF+XAuiJO6UrSl4XWnzYCDTyQKXk4BazvwHlfzcj9qw26+Yck5tv+O8/MjLS7VIQe6Rg5d///jeKioo82q6m2rAYiSt11Ua/2PWi19qDuL7NPn8nwyFX6+ADjRQ4+Lpo3lf7YrBqrSA1HaUzMzFfFqgWXJ8OnDyH7NQ0ZB/cAihY9Wavmpz3b9dJwUpxcTG++eYbq+YcrvL7wHFGxZuMfmg9WMlOTTO7nvKKCs1uxoHcJkLKNIw6JgvvI66bf31zxCWmWJW0eMNWsMIuz9YqKyuxe/du7N69G8C1QVx3796N48eP4+rVqxg1ahR27tyJDz74ALW1tSgpKUFJSQmuXLni1n4YsKiAPQHIlwK9Iaflk67RgpZA4c73FiNrEFs6MxMAMOPkOZQcvDaieVxiisf3X/ngcfJltpa7s82/d3V/3BG92LlzJ3r06IEePXoAAJ544gn06NEDzzzzDE6dOoXPPvsMJ0+eRPfu3REfH296bd682a39BAlHDULIroqKCkRFRaF8QR4iw8L8nRwKcLYCFiMHzK5kbkoV2bNaxjdcHRBQvp60jmV7Fl+nyZXPn34qAzPXfIXy8nLF2oVYkvKldZ/dgIgIL3oJVdUh/Z5jqqbVE2zDQqRzUoYayKUsErXaFbANke+50i5J+l6mq1SqLW/U7c61ZeszFbcPxsw1tnu3kmsYsCiAT2DkT7auPaNfj7YyD7WqguTBoNHPqz/Jv1N5Y2pb65TOzERMbr7qPXXkA8nZGv5AKtlZHBZvtpwNctXBgMVLr3//JUIdzPJM5CueZqZGCbjVzCSMcH6MQApgpDYsvggMoi8Eo6xJrVkapICphIGJT7HRrZcevX0wb2akW3oJVhxVdxmxd1CgcyUQKZ2Z6fC6ULKKVApapMBFCph43fkWAxYyPLbtsE8KVuS9IApS0zV3zpwFVWo+aWvtXAQKy+/U3ncsdfO3fHkaiEvXf15RIcqa1OLIgslmJSwSqXcS+Q4DFjI8PZQg2OOrzPLIgsmmOnit3ojtPc06yshI3yzH2ZH+n1G0zqxrs0Qas8ib37yr17+t/ZO62K3ZQ+zWTL5g2djTUY8gPQdmRLbkFRUiJjffFES89Ndcs27LliUpUs8iT6dOkAfFlm1X7HF1HxXV1Yiams1uzV5go1sijXI3KLFcP5ADGPbqMQapFEP6dz6uDcMvBQkxufkosPiMN+1KpGBHClbkpS32SlS0OmOzEbFKiEijHGW2rmTEgVwlEuiBilG+e3vtWGw1tFYjaLAMmNzBxuDKYwlLgOPTgXb5qpRALz2F7HHWU0TPx+YpvR2zq1U47gQp3tzX5FVBzoKV0pmZKLAxHow8uMooWof3+6cByPY4TcSAJeAxWNE2WxmPq5mw3jItTzgrSQiEc6BnUmbu6n1I3j7F0TrecPR5W/t2FNCYDYBXecmrdBEDFiLNcieztZzNWSsCtYTDCHxR+urJ9tUqVZHYOm53gyRWBamDvYQ8xF5CpAX2qo2M3ujU1aDMqMevNHtzJfkiaHElQLA3FYNaafO0l5Gtz0v/r668hKybO7CXkBdYwkJuW5M00mzeDPIfe1VGWqX0JIKc9FEZzr4LaTh6V9Z1lbelEGoGUp5s29Ys0vL/L+qd6n3CAhwDFh2Sz2VhyRdtUhis6IM3cwt583lHlNgmS1d8R8mSDVcCFFvr6KGdnXz8F3vpHf9dIbJ8nC6jYcCic5bjBLDXD+kxo3Y0hoyjdjD2ghc9ngOtk5dm2StNsMfV0hR5zxo98LbqiNzDgEVn5D9krQ6hTvpjWc3n7wyf1TzaIh+oTantOQpK/B0AyB/83HkI9He6jY4Dx+mYoyohvTyhkHukSdmU5s9gxZXjkU9qR77n7XmXui7LuzDL/+9s+7ZKdtRkqw2KJXtp4b1XPSxh0Sn5/BoSV35kpG/+LvnQOp4fdUjnVX5fUTJjlobYt3ff0tr3annslnMYkTpYwqIj8kGW7M1WShSotJapeWtN0ki/739N0kiXSle8nb9H/q+97ZoNwuYm6Vz645xK5+/aSLe+ERH+f4gI/8CL1/8BAHr16oVOnTrhzTff9FnaHeE4LB7yxzgs9hq6seGXsbg72JoaXU59Rd4jydPeP0YfcyYQeNtZwJWhFqRgxZtejt60u/HlbM1ff/01IiIiPN5OVVUVBg0apLlxWFjColPSxFosggxseUWFNoMVo10bziaCZLCiHl9cR46qmixLRaSSH1v/d0bJIRkspxQw0u9Nq1jC4iFfl7BYlq7In0bv2nMYANBx6mOqp4N8w9VSFr11Y7d3XJwTiFxhryRFClbKmtR6/XtwVlpjq0Tbld8hS1i8x0a3OmCrKkje6PaLpHYAgI6+TxqpxNUM2t4TntaCGG+qbRis+J9WAmPLQEKJah5n+7Bk6zxo4dwEAlYJ6YS8+NGy6DEmN9/lm7q/G/KROiyf+oxSPM1gRRu0liHLq4L8MfK2UX5fesMqIQ/5a/JDVyYF8xU29tUepefq8QWOVqsuqYrDV3OAGWGuMTVKlFgl5D1WCemAZVG/VqJ7BirasiZpJLLhfi8jf+EgcL7lbRDhaiZuhGCFtIlVQjrgqJ0Cf1zG5MnIrlJGoYdgxRkjHIPRuPOAouf7kjvVqno+Tj1iwKJz7FZnPJZBitFKIjjEvm/5ssRDugeVzsw0RNd6Kf2WXaelNjTRF4L9lrZAxCohnTBaY0qyzV5GLq/m0WM7FYm9WZkZwKjLV+1KjFJNbHkc0rmz/FeilV5URscSFp1xNIw1fzD65soEcEYKVqRlDFbUN2LPap+d54LUdKtBDI2O917fYMCiQ/xxkJHpLRDTC1+fV8uRYIm8xYCFSIf0mKm7mmaWuKjDciJDtcZksgxS2DmAlMKAhUhn1ApWHAUKSgUR0rw/9o6B8wKpp6xJLdpOXWr629M2LZ5cC4FS0mKEhsZaxoBFx/T6w+ATtOf8lZm7u19XvmMGJr6lVNCg5+/N1j1Tvsyde6p8AlrpFSiBmb8wYNExf/84PA2Y9HzDU5NRzounAalRjl8tjn5vrv4Wy5rUBtT0HJbHaq+3ZUFqOvKKCq0mlnVE3qVZ3l5Hvg+WuCiLAQt5zN8BU6DRU4aup7TqheXvTWqTImWwrmSMzn6zRiv9LGtSa3O5/DxIwYb8mnWl99qIPatNn7U890Y7j1rBgIVIQxy17fDXvn2BAY5nYnLzAcA0c7srT/V6HzpfSfZKm9xtS2UZCFp+lqUsymDAQqRhemyE6k569Xh8WiE94QNA26lLrTJNd6sjpFIBI42N46xEyVbw5un1aOtcsxRaWRzplohIx7JT0wAXSk2cTYrpTrdzowSZSjaUddSdO6NoHSoU2UtgYwkLkQbIn26JPGWZacobhkrVR7a4UxJjlGAF8F0JSEFqOt7vb5zz5i8MWEjXjNLjITs1jcEKmVHieihrUmuq4gmU6glf3xOc7Y8j/iqHAQuRBlgWs+uxbQcDLmV5+v1LDXAzitahdGamS9eSowxVbw1Gfd2o2NH+5Od1/HfG/X18//33GDZsGBISEhAUFIS1a9eavS+EwDPPPIP4+HiEhYVh0KBBKC4udns/DFgMzCilD44YrceDHgMViV7TbTTZqWmmjDI7Nc3r+wBLB7xn9CqhqqoqJCUl4c0337T5/osvvojXXnsNS5YswbZt2xAREYHBgwfj8uXLbu2HAYuBGS0zNzqWUJBa1iSN1F1JCenH0KFDkZubixEjRli9J4TAwoULMXPmTKSnp6Nbt2547733cPr0aauSGGfYS4hII/ReQiEFXHo/Dkvu9iTRyhDta5JGYsSe1Xxw8SGjBYUVFeZ9m0JCQhASEuLWNo4ePYqSkhIMGjTItCwqKgrJycnYsmULxowZ4/K2WMJC5GdGKVnRQnWWGufS3eBDC8EKoP0SVn9k7mr/1qT2Q5b/B4CLzz2m6r7lupaFo/vFCI9fXcvCAQAtW7ZEVFSU6TV//ny301JSUgIAiI2NNVseGxtres9VLGEh8jN/Z/JGY9SSHqPxdWBXkJqObBW3L113joIWvTlx4gQiIyNNf7tbuqI0lrCQIjjJF2kFAxWyRe0ASSphlI93I///o7cPVnX/aoiMjDR7eRKwxMXFAQDOnj1rtvzs2bOm91zFgIUUZy9wYUBDvmCkkVhJfzKK1pnN8aSFqlJ/atOmDeLi4rBx40bTsoqKCmzbtg0pKSlubYsBCynClcGRtFK3T0SBxVdDPMhLmqWgxSht1ByprKzE7t27sXv3bgDXGtru3r0bx48fR1BQEKZMmYLc3Fx89tln2Lt3LyZOnIiEhAQMHz7crf2wDQspzh+BidQjgohIIgUqvr43SPMIZaemXQtiAFRXXgJUbUXjPzt37sTAgQNNfz/xxBMAgEmTJmHZsmV48sknUVVVhczMTJSVlaFfv35Yv349QkND3doPAxbSvUAYII/IKKQSiOgLwaoHEv4IVOQKUtNROjPT4TxORjBgwAAIIey+HxQUhDlz5mDOnDle7YcBC6lG+rE6q7+Vxq3wdPwKlqwQqWdN0kiUNak1m31YztXfrPT7lq9v5JJR03GmpgFF61BRXY0s/yZJ99iGhVQh3ZxcaWwm/bDZxoVIO+TVKWr9Nn0VrLDBvzEwYCFVeDL+QCA0TiP18PpRlpFKPvgwZAysEiJVxOTmA27eJAK56x8pR34dyYMYXl/us2y0aivjtyy9sBccyKt97VUtScv1EmAUpKb7pC0OXePXEpbZs2cjKCjI7NWhQwe76w8YMMBq/aCgIKSl/e9G5Gwa62PHjmHy5Mlo06YNwsLC0K5dO+Tk5ODKlSuqHmug0csNh4zFMiiRxsBgsOIZV+YikrdLsRfQSC9H9wU9Bit6H8lWb/xewtK5c2d8/fXXpr/r17efpNWrV5sFFhcuXEBSUhJGjx5tWiZNY/3uu++iTZs2mDVrFgYPHoz9+/cjNDQUv/76K+rq6vDWW2/hxhtvxL59+/DAAw+gqqoKL7/8sjoHSRwunVTHa8s/bDWmdbSuUURfCEb01KUsXfEhvwcs9evXd3l43piYGLO/V6xYgfDwcFPAYjmNNQC89957iI2Nxdq1azFmzBgMGTIEQ4YMMW2jbdu2OHDgABYvXsyARUXeZiZamQHXUxx9lYzKk9+l9BlXq5O0xsi9m7TM741ui4uLkZCQgLZt22LcuHE4fvy4y59dunQpxowZg4iICADOp7G2p7y83CoYslRTU4OKigqzF/mWnp/OGKxQoHJUXeSsOkmrGKz4h18DluTkZCxbtgzr16/H4sWLcfToUdx22224dOmS089u374d+/btw1/+8hfTMk+msT506BBef/11PPjggw73N3/+fLNptlu2bOk0jeSYq7069Fa37Sr2avGels5hQWo68ooKzdKUV1SIuET35ksxIum3G30h2G7gQuSMXwOWoUOHYvTo0ejWrRsGDx6ML774AmVlZVi5cqXTzy5duhRdu3ZF7969Pd7/qVOnMGTIEIwePRoPPPCAw3VnzJiB8vJy0+vEiRMe79eftHSDd6XUwajBCnDt+C0zONIvadyhl/6aa9Zma/qSmX5OmbK8Lel0NjI1R64me/xeJSQXHR2NxMREHDp0yOF6VVVVWLFiBSZPnmy23J1prE+fPo2BAweiT58+yM93PmxySEiI1VTb5BtGDFZIHzwJKEsObjELxo1YHehJ0CK1+3BWneJpdYueq4zJNX5vdCtXWVmJw4cPY8KECQ7XW7VqFWpqajB+/Hiz5fJprLt37w7gf9NYP/TQQ6b1Tp06hYEDB6Jnz54oKChAvXqaittUpbebp9GDFb19H1rgyx5nRvp+lGq47uk2XAlEbJWuuBrASOliA3fj8mtOPW3aNHz33Xc4duwYNm/ejBEjRiA4OBhjx44FAEycOBEzZsyw+tzSpUsxfPhwNGnSxGy5K9NYnzp1CgMGDECrVq3w8ssv4/z58ygpKbHbxoVIbawWcs7eAHBay5i0+j3qpfTBXgmMO+nX2jVByvFrCcvJkycxduxYXLhwAc2aNUO/fv2wdetWNGvWDABw/Phxq9KPAwcO4IcffsBXX31lc5vOprHesGEDDh06hEOHDuH66683+6yj2SaJ1BaoY9VoNZP3hFa/O72VVFoGLbZmQdbbMZH3ggRzaY9UVFQgKioK5QvyEBkW5u/kkI7JAxU1irP1cHN3FrRoNRAgclVFdTWipmajvLxctTaQUr509pPNiAxv5Pl2fqtE7Kg+qqbVE4HTeINIQywzaClDVqPnkNaDFUA/AYk734uRSo60ak3SSM33KtJLdZwesITFQyxhIaWoNUGfHkpW7AnUSQs9OW69NzL1xXWqhXPEEhbvsYSFyI/UfArXa7ASyOQTNQZKCQ2vU3IVAxYiH7NXHUTWAvXcuHPcejpH/qrC0dM5IvtYJeQhVgn5j9EmHtNCcTUpy8gjNAcapaqsfFkltH/KP9A4JMLj7VyqqUKnhUORmJiI4OBgZGVlISsrS8GUeoYlLKQbUiZgtGCFjIeBinEE8ne5Y8cO7N+/XxPBCqCxkW7Je3puaOmIUVvas2TFuIz4O1SL/Pet1Hlz9WGAv0H9YMBiMEa9SRr1uIjoGrV+49JQAfbeI/1glZCOGbXUgchXpIxM6ao5VvW5xx/BCukPAxYdY6kDGYk/Mhb5gH1xiSkep8GIPb887c2jlQBB/t1afh+2lpH2MWAhIr9Tq6TD3f37+rNa5mnjdgYCpBYGLMSqJR8yaubmDflcSv7K7GJy81FycItH+5d/ht+vfvC70h82uiVWLZFf+fuJ3N2edfbGzXGUAXKsHf+zVS1E+sISFiIfU+LJjqViyvBkGADLjE4ejHiTCcqvC36/ypOfX6UnGCXf4Ei3HuJIt+Qrzm6sfFIk8g159aW79DjSLSc/JApg3jzVSW08GKCoT17CIT2Nu/vd8Qlem5x9L85Kt/j78x+WsHiIJSzkDnm1AdszaJvlXFW++r4C/brw5Sjd3pSUeIolLN5jCQuRyow4RoeRjdizGnlFhaYn7bZTl/pkv4F+Xfiy8b/84YH0gwELkcoCPSPytzVJI10eBE2+bvSFYNP/PR1EjbSLv0v9YcBiEHxS0DY+0fnPiD2rcWTBZFMwIn8BsBmU2MrM7AUtcYkpiqTT28HreG25j0GLvnAcFoPgD0/75KO58vvynYLUdOC/5/7IgslW515qr2I5squrI72WHNzidRrzigoRk5sPuFktYmogqqNrSjpWo47/xN+3eljCQkSGVjoz0+USE1vLLEsuLNdRomTD3QxOKlEpnZmJ0pmZiqVDbRxfhrzBXkIekvcSentLEdpOXerx3BsUWOQ3baM+ZWqNZc8fW+9LnP2OnW3LG1JPGXkphHS9SIGXrSd4vTzV2wpYAuE3UJCajurKS8i6uQN7CXmBAYuH2K2ZfMGXXT2NSgpGlAoy1AxY5OQlJvYCFC0FL1Iw4ux6dWc9o1z7DFiUwTYsKlLrxuHqD570j9+x96RuylDot1jWpFaR7bjC0cSK9qqAfB2suNsmRen19CCjaB0W9U71dzJ0j21YdCijaJ2hfsxEavN2LBV5cBB9Idit9V1hq6pEL5P1Zaem8X5EPsGARUVavcGQb+ihESQ5V5Cafq0Hz3+5Uh3k7m9fyvDXJI20e93YGoDQ3/eYQLrGvWkwXJCajvHfGfdc1dbWYtasWWjTpg3CwsLQrl07PPfcc1C6xQnbsHiIbVjIFXppDKkkT9oe6Km9gr02LFLmbeQuu4B717Sevlc1Gb0Ny7x58/DKK6/g3XffRefOnbFz505kZGRg7ty5eOyxxzxOhyWWsPgYu/UFlkALVjxhlN+E9F0bPYN25ZouSE1X/HvV83Vi9Gti8+bNSE9PR1paGm644QaMGjUKd955J7Zv367ofhiw+JiWLlx3hiw3CjVupGRO6oorf9ljtAbkRg5Q3RlNV2pnJ40RoxRvfrv+Hg3YyFVCffr0wcaNG3Hw4EEAwJ49e/DDDz9g6NChiu6HvYR8TEs36EAcN0YL5z0QWI4fYtlDx9bvQC/VZ678bvRyLO7w5HiUPAelMzPN2hK5w1GgYsTvSikVFRVmf4eEhCAkJMRqvb/97W+oqKhAhw4dEBwcjNraWsydOxfjxo1TND0MWPyAmSYFAuk6L7Ax5Lw8oJHE5OajAMb4fRgpA/SmHYqSbVg8DVYAx9+Hkb4ryep/L0BogwYef/7y1asAgJYtW5otz8nJwezZs63WX7lyJT744AN8+OGH6Ny5M3bv3o0pU6YgISEBkyZN8jgdllgl5GNGuBmTY3lFhax2coHlb8Hyb/k5dKV6idRh+b140mVbie9ND/dOo1WxnzhxAuXl5abXjBkzbK43ffp0/O1vf8OYMWPQtWtXTJgwAVOnTsX8+fMVTQ8DlgARSN0P/Uk6z0rX3euJ5bXmTkbjKGhxZfwho2UYSlA6yHOnREL6zpQKNrQetBitmj0yMtLsZas6CAB+++031KtnHk4EBwejrq5O0fQwYAkQRiz21KqY3Hyviq/1St6oUekA2dWMytUMw18lNf7YrxYyeZaMGduwYcMwd+5cFBYW4tixY1izZg1eeeUVjBgxQtH9MGAhTTDKk3FMbr7ZDLqBzNNeGfIGuWpmtv7oNWKr7Y5WqHk+tBA0kXpef/11jBo1Cg8//DA6duyIadOm4cEHH8Rzzz2n6H4YsJAm6K0o1V6mw0DFmrsZoTcNPJXYhz8DCn/uWwsj5zqi1UCPgMaNG2PhwoX497//jerqahw+fBi5ublo2LChovthwEKaIg1NLmVwWi15MfWAkd1EjdxOyJVjc5Th+SIj1Es7CXlQa5kJsyTCNo6YSwADFtI4rZe82ApcjMjbgMPIwZw3mAk7Z/TfFrmOAQtpyog9qzVdLG2P/Kk5Jjdfl8fgjKtBh9arFohInxiwkCbpLcOTMuns1DRNN6z0hrvfifycSLRW0uKP68yTfRrxenKVrVIorVYVk7oYsBCpgEX92uePYMXTwIPXExEDFiK3FKSmWz3dBfLTrzvUGqNFa6U2jqjVA0pP58BdthrcOmrbpkT3bCOfTz1jwELkhoyidWY3y4LUdHZldpGtKiIlxOTm6z5otJd+KeN0Vs2otypUd/ijdMnI51PPGLAQeUEKVvhE5pjaGYBeq0yczbMjP296PUYipXC2ZiIvBNKTmBSUae2Y9ZyRe5v2vKJCzX0f/sbzYVwMWIhUYrTBrnyVEciH5ifHmDmbk5d08twYDwMWIpUww/WM1F7DcqZmImcYpBgbAxYiMpFX+/izCogBChFZYqNbIpXoueeKltqrSF3JpRe5Ts/XIJElBixEdnh7szfCiLf+7P0krxYqa1KLsia1mp9bSmuUKqmSvoe4xBS77ynNWQ8qCjysEiKyw9ubvZZutu42RtRCyQrwv27jMbn5rCaywxc9haIvBAMASg5usXqP3wv5CktYiFSkxZu5s1ITy8zPn6UsMbn5DFY0wNclW1oK9rWUlkDHgIVUY6v4OJBoJZO1DDgcPY3bek9apsSQ5/bYyhRsnT8tDNBneR5cTZP0OWl96Zi9zRC1UhrmKvnx2jp2rQUIWvkdkwcBy6RJk/D999+rkRYi8gFPMn3LDFrp4CX6QrDdNguWGYblOt6mY+NNL7u8rmX1ixLVMWpniFoOAPQUDGjtPAYit9uwlJeXY9CgQWjdujUyMjIwadIktGjRQo20kc7Zqu+2x2iDrGmJUlU8trajVPsJy/mZpGvB8ppQo3rojuJpLq9reaxS929puaPr2DLQQVEhICu9UqukRG+/K62m117grNX0GpHbJSxr167FqVOn8NBDD+Hjjz/GDTfcgKFDh+KTTz7B1atX1UgjGZytonE+zWiLs6oitTnKHPxVJWKv67crvVt8Uc1G6mKg4ntBQgjhzQZ++uknFBQU4P/+7//QqFEjjB8/Hg8//DBuuukmpdKoSRUVFYiKikL5gjxEhoX5Ozm6J816rLf6+EDlTrsYJRm1JE5L494YidrXizvbr6iuRtTUbJSXlyMyMlKV9Ej50lcfbkNEeCOPt1P1WyXu/GMyEhMTERwcjKysLGRlZSmYUs94FbCcOXMG7733HgoKCnDy5Ence++9OHXqFL777ju8+OKLmDp1qpJp1RQGLKQkrU9iZ6tbdKDP2+LOd+bKurZKWuQjDtsTiOfeHWpW3bjzG9BjwKJmWj3hdpXQ1atX8emnn+Luu+9G69atsWrVKkyZMgWnT5/Gu+++i6+//horV67EnDlz1EgvkSHpIdPJTk0zS6f0fz2kXQ2+PG7Lc0+uUbudSaD/BnzN7Ua38fHxqKurw9ixY7F9+3Z0797dap2BAwciOjpageQRkRbwhuyd7NQ0xCWmOGyIbtmAV77c1v8tBXqJlz1qVyGyxNF33K4SWr58OUaPHo3Q0FCvdz579mw8++yzZsvat2+PX3/91eb6AwYMwHfffWe1/K677kJh4bWLRQiBnJwcvP322ygrK0Pfvn2xePFiszY1c+fORWFhIXbv3o2GDRuirKzM7bSzSoiItIqZp/awSsh7blcJTZgwQZFgRdK5c2ecOXPG9Prhhx/srrt69Wqzdfft24fg4GCMHj3atM6LL76I1157DUuWLMG2bdsQERGBwYMH4/Lly6Z1rly5gtGjR+Ohhx5S7DiIiLylVI8hBilkRH6fS6h+/fqIi4tzad2YmBizv1esWIHw8HBTwCKEwMKFCzFz5kykp1+ru3zvvfcQGxuLtWvXYsyYMQBgKtVZtmyZQkdxjdYbTpK2rUkaycn9ApyS9w/ei8ho/D40f3FxMRISEtC2bVuMGzcOx48fd/mzS5cuxZgxYxAREQEAOHr0KEpKSjBo0CDTOlFRUUhOTsaWLa4PYuYp3iDIGwxWyBmO2UKBzK8BS3JyMpYtW4b169dj8eLFOHr0KG677TZcunTJ6We3b9+Offv24S9/+YtpWUlJCQAgNjbWbN3Y2FjTe56qqalBRUWF2YuI/MedIfWJSP/8WiU0dOhQ0/+7deuG5ORktG7dGitXrsTkyZMdfnbp0qXo2rUrevfurXYyAQDz58+3aiBMRP7jzpD6emXZeFarpbisDidf8HuVkFx0dDQSExNx6NAhh+tVVVVhxYoVVkGN1Bbm7NmzZsvPnj3rcjsZe2bMmIHy8nLT68SJE15tj4jIFVKgouXqIAYr5AuaClgqKytx+PBhxMfHO1xv1apVqKmpwfjx482Wt2nTBnFxcdi4caNpWUVFBbZt24aUlBSv0hYSEoLIyEizF5FSXJl/hvTNk+/X1hgstmbLtjeDtvS3FoMdT+ZR8uY4OG+T/vk1YJk2bRq+++47HDt2DJs3b8aIESMQHByMsWPHAgAmTpyIGTNmWH1u6dKlGD58OJo0aWK2PCgoCFOmTEFubi4+++wz7N27FxMnTkRCQgKGDx9uWu/48ePYvXs3jh8/jtraWuzevRu7d+9GZWWlqsdLZE/pzEwA2sxYyH/sDddvb5m9kg6jlIAY5TjIM35tw3Ly5EmMHTsWFy5cQLNmzdCvXz9s3boVzZo1A3AtsKhXzzymOnDgAH744Qd89dVXNrf55JNPoqqqCpmZmSgrK0O/fv2wfv16s7FjnnnmGbz77rumv3v06AEA+OabbzBgwACFj5LIPnmGJE3+yPYAxuTqiKvS928veLU3UaKjQEaLfJ02LZ8Lco3XszUHKo50S+7KKypETG4+AONPTW/UWZX9zVYwy5me9YEj3XrP7wPHEQUKKVjRE08DDwYr6pAHJaw+pEDDgIWI7HIWeKg9Gy6ZcxSkyEtaWK1IRsSAhchHjJipOzomW6UzrCrynL1gxbLUxVbPIAYvZASa6tZMRMZhKzBRI1gJ5O7grjS8BVh9JMdzoV8MWIjIK/4OGAKlxEYaQM6VLsy2RsXVa0atdLpZ2qRfDFjIcPR6Y7ZHKub3d2AgkZ9fraTJqOydX1czXXtBi54GUZPa5OgpzaQOBixkOEZ9gpIGl/M3eW+njKJ1yChax8BFJUqUHultfBZb7JUaUWBhwKKiNUkj/Z2EgMSnMO/ZC0DyigptBk6BUi2jV8zwSW2nTp3C+PHj0aRJE4SFhaFr167YuXOnovtgwEKGo/ebsmWwYK/NgtKlGvLt2Ss1YaZnHPweSSkXL15E37590aBBA/zjH//A/v37kZeXh+uuu07R/XCkWw9xpFsiMip2P1eekUe6/dvf/oZ//vOf2LRpk8f7dAVLWIhIcayWI9K/iooKs1dNTY3N9T777DPccsstGD16NJo3b44ePXrg7bffVjw9HDiOiBTH6gYi/0k++4NXJf8V1dUAgJYtW5otz8nJwezZs63WP3LkCBYvXownnngC/+///T/s2LEDjz32GBo2bIhJkyZ5nA5LLGEh8gC7WPqGnnofsbu3dvG36pkTJ06gvLzc9JoxY4bN9erq6nDzzTdj3rx56NGjBzIzM/HAAw9gyZIliqaHAQsRaZae2lHIS5X0lG5b9J5+Syzx80xkZKTZKyQkxOZ68fHx6NSpk9myjh074vjx44qmhwELkQssB67S8g1QerrXw1M+u/4T6V/fvn1x4MABs2UHDx5E69atFd0PAxYiD2h1NlzLrslaN2LPan8nwUogVPfJR7wtSE3XRXBL2jV16lRs3boV8+bNw6FDh/Dhhx8iPz8fWVlZiu6HAQuRB7QerOiVEY4B0E+biezUNGQUrdPMKMqkT7169cKaNWvw0UcfoUuXLnjuueewcOFCjBs3TtH9cBwWD3EcFtI6vY6lodd0Ezniy3FYvM2XfJFWT7CEhUhF/mqjIW/HomSphS9KQAIpWHGlJMYopU5E3mLAQqQif7XRkGf60v+VyPjUCiakwCrQMmctVi0SaRUDFiIn9JqJSjMpA9o8BnkpkJTWQCpdcYcWvz81BdrxkmsYsJBT8i69emlMqCStNkj05LvQUkZgb4JFJWjpOC3Z+t4C8XflCANXsoVD85NT9oqt2TjSP6Qu1e58L1r/npTujq3l47X1vTmqGtLysRD5EktYyGOBciPVWjsDZ+nR+/ei5dIRf+E50ReWmKmDAQvpwsabXvZ3EnRBrw1X5e1X9B5wuStQq1qNTGsPOUbBKiHShTuKp5n9LWXKgZa5OaOH8yGvstJb1ZUaXMncAvG8EFliwEK6xBu4fvG7IyJPsEqIXKLFSer0WPVBRESeYcBCLtHiJHW+eFJXa8RYJWk1XURESmLAQvRftoISaQyW0pmZmq3K0Gq6yHvSbMpExICFDMTbG7utkVazU9NQkJpu+lfLJS2kDUpWn2anpqF0ZiavOSIwYCGDkFfdqLHdvKJCzY54K8eMzf+Urj5tO3Wpotsj0isGLD7GDEUdasxFk1dUaNpeTG6+YttVE6uHtEte8uJqKUxeUSGOLJisVpKIdIXdmn0s0DIUaRh5PZLSbfrOUtOAonXXBvnS6TGR/3hS8mL67QTYfYPIFpawkKr0Gqw44ukxWZaurUkaqVijSpbc6YsWe90RaR1LWMjwbGXmliVdvpjIUb79a/tbbSq18Xb/gVZyR0SBhyUsFJD8USIhzRlja94YvQQcWhxAkIgCAwMW8ooeJm2zbJAr/7/UTTnjv6Uc3rD1efmymNx8p413td5tmlUZ/6OHa5/ISIKEEMLfidCjiooKREVFoXxBHiLDwgA4r1bwRbUDaYc8Q4vJzbfbLTomN5/XhYFI37sR22+R5yqqqxE1NRvl5eWIjIxUZx//zZe233gTGgUHe7ydytpa9D5UjMTERAQHByMrKwtZWVkKptQzbMOiIGY6JClITQeKCs1KVORBi3x56cxM5IGBizfkpVKlMzM1FyzoubccBa4dO3aoFlx5ggGLDzEzMiYps5R/v/Ih/YH/BStSplVgsQ1TMMNMzS5b51kir9LTWmAglbjIS9y0lkYiPWDAQuQlVwJRKViRqgXNPpOaZgpgWG3ouQyNjJFjGYxkp6ZZtXexFbywFIbIMQYsRAqTqoPkpGDFnoyidaYuzhRY2HiXyDUMWHzEsjuoXntb8CnQuYyidciD+ZNzXlEhYv5bemLZGFf6DDnmSk8urV6b8nQ5ClAs39Pq8eiBvArRsuTS8jri708f2K1ZYWuSRtocq8JWgBKIY1oEytOkPFiRujOXzsw0C/jkDW+l86J2l2Zvtq+FLtd6zljsjcFjSbo+GKy4x971KZ8Y1dY6tgaRJG1iCYtKpGDEXknKmqSRuixl8fYmatSbsL22J9nyah6LY7912B3Y+veNKJ2ZiZjcfKuGuGrwJsOX0ukKX7bFUWNfamzTVlsWy/fJPZa9w2Jy852ObC1/P/qCe11/5Z/Vc/CsVxyHxUO2xmEhsqUgNd1mV1sp87prz2F8kdTOtFwr3Zsti9QdkXpDMdN1ja3ARR7Q8DzaZxmkOGLrtyQFo2uSRqKsSa1bvzV7vwN5MC8flFK+bT2Ow6JmWj3BKiHyi0CoGpKqAOzdVKVM6Yukdrhrz2Gz9/xV/WJvn/a6EkvLpWov6fOuVn8EKnsBSXZqmt33ArEK2RlHo0fbWy5dsyP2rHY5WHH0W7T8fWuh6tSoWMLiIZawkDvsVTFINzbLm578Zuuv0hZXGybaGh/F8rhYYqB/WqsOcRYUqJFGdwMReWlLdeUlZN3cgSUsXmAJC5GP2Ktbt1UCUzoz03q8FhXT48oTpKPSF2fp1OsTp15KiQpS05FXVKjaebbcrha+T8s5wiTRF4Kt5grzNL2ufNbeta+FoM5oGLAQ+YCjm5eSpQ+e3JidfUZe2uNsgkdnn9cTf3fhdyezddaWw1uW16/WMmN5eqTODI6CLGfnVT4pqq2/Lfer9fNjFKwS8hCrhEhJ0pO81P3ZWcNb+QzT8puqnDulHo6qq2xxljbAca8iPdzQ/dEA1rJBqa0G2dJ7cvJ5qtQIgC0bXmvp+7P1G7DX0Fa+jkSJY3GlV9mi3qmsEvISS1iINCA7Nc2UGUn/OgsYLG/C8qc9d27CnhZpOysBsDconpYyO0ccNYBVmmV1jjwguWvPYatG2dJyW+t7y3IsKS1/f866MLuyPukHAxYijbCVMbhaymGvaNrZ/pytr1Q7Gi1lclph2e7EWZBiOfP31r9vNPWSkQe73g4OOGLPalO1iuU1puXv0ZXjdjWo97RxLamLA8cRaYhWn2Ytgydb7QNcqTbQyvH4izQmz117DqP0v1VO8hm95X/Lbf37RqcjsjpqK+Ropmt729MLeRDiTtBi+X976yhl/HeFyFJ8q4GFAQtRgHJ3NFdnGYKSwYpR53qR5pmy1S5FOr8xufn4Qha0OGoHZKstk5yr7U5cCWi0xlF1EGc9NyYGLEQBypMbur2gRcmMwlFPJPm2pV48esqcflnwGu6CecASfSHYVAVjrzGts8bLzoKV0pmZyPvv/221y9HD+XMniNXD8ZD72IaF3KbXomNP+fN4tThqprOMwl565Y10nbXNkbcxsDcPjJ4Go8srKsQvC14DYD2ycVmTWgC2rzMlGtOWulBaoweuVOXIae13Q95jCQu5zVERtBH5+zhLZ2ZaTZyoFdK14Ox6cHX8FmfVHP7+LjyRV1Ro1j3Zsqsy4Frm6slvTu3xWfxBS9eAUasutYrjsHiI47CQmvKKCjUzCaIjlo1tnQWztsbDsFfl4Wo1k6fjxahBSqt8YktnLIMX+ee+SGrncOwVexyVdGn9mlKD0m103O1ODXDyQyWwhIXIB9wdNVUPRfeWY79YLnNVdmoaYKPax9VSB4mjth6+IKXF0XD+tia6tGT5vmWgIpXQWFb1mK2XmsYGqDLykkDpb0+4O3heoJ77559/HjNmzMDjjz+OhQsXKrZdBixEPuBuewvLxqX2BmHzN/kIvWoOWCcvyTHLmO0EB74KXiwzJCltd+05jK1/34iORevM2q7I/7UkBR3yUhXY6eIcA5hKcu7ac9i6V5Gb7T0CgbNSP3e7RDsjD7wD6TvYsWMH3nrrLXTr1k3xbfu10e3s2bMRFBRk9urQoYPd9QcMGGC1flBQENLS/pcZCCHwzDPPID4+HmFhYRg0aBCKi4vNtlNaWopx48YhMjIS0dHRmDx5MiorK1U7TiJveBIMqM1emxTL0gV5I1tnEwl62kjSXmCidvuNvKJCq4ag0ojFW/++0WxdeZAilaDIB32zF9BK78mPUZoYU3rfVhdpvfFnA1lnjcgtG4G7s12t/W7VVllZiXHjxuHtt9/Gddddp/j2/V7C0rlzZ3z99demv+vXt5+k1atX48qVK6a/L1y4gKSkJIwePdq07MUXX8Rrr72Gd999F23atMGsWbMwePBg7N+/H6GhoQCAcePG4cyZM9iwYQOuXr2KjIwMZGZm4sMPP1ThCIncY/lEpsUbnnzMEEvOeru4W41jWQyfZ2MdywzdtEylBuLuzOK89e8bgf8eZ+nMTHSc+hg6AqZSEHk1hXRsthob50F2nLLjkp8P03nWaCNtV/ljXBhWoVmrqKgw+zskJAQhISF218/KykJaWhoGDRqE3NxcxdPj10a3s2fPxtq1a7F7926PPr9w4UI888wzOHPmDCIiIiCEQEJCArKzszFt2jQAQHl5OWJjY7Fs2TKMGTMGv/zyCzp16oQdO3bglltuAQCsX78ed911F06ePImEhASX9s1Gt6QGvd4s5UHFrcPuMP1/69832uxWKw9UnE3aZ2voevm2XOGLc+rryQH1cq1oddJEX/Nlo9uOizsiOMzzRre11bX45aFfrJbn5ORg9uzZNj+zYsUKzJ07Fzt27EBoaCgGDBiA7t27K9qGxe/jsBQXFyMhIQFt27bFuHHjcPz4cZc/u3TpUowZMwYREREAgKNHj6KkpASDBg0yrRMVFYXk5GRs2bIFALBlyxZER0ebghUAGDRoEOrVq4dt27bZ3VdNTQ0qKirMXkTesnxS1+sNXd74duvfN5pe9qplLOfFsQw+7FURWFaP2Ct2d6WESo1qCE+qACwnPnRnX1rirOt66cxMTY4rRPadOHEC5eXlpteMGTPsrvf444/jgw8+MNVkqMGvJSz/+Mc/UFlZifbt2+PMmTN49tlncerUKezbtw+NGzd2+Nnt27cjOTkZ27ZtQ+/evQEAmzdvRt++fXH69GnEx8eb1r3vvvsQFBSEjz/+GPPmzcO7776LAwcOmG2vefPmePbZZ/HQQw/Z3N/s2bPx7LPPWi1Xu4RF6l0i72Uiz+T8OXiWrXRIy+Tpsuwh4+tj0suTqN44K7a3VfXj7HuwV5oisbUNy2tH7eoEy+vJVtduy/X0OPS9O6TG0PLeSlptKO4veixhcTWta9euxYgRIxAs60pdW1uLoKAg1KtXDzU1NWbvecqvbViGDh1q+n+3bt2QnJyM1q1bY+XKlZg8ebLDzy5duhRdu3Y1BStqmzFjBp544gnT3xUVFWjZsqXq+5Uyb3kmrpURPm2lw5Vlvj4m3jC9Zy/oc/XcehOsWJao+Ju90hxHvZvsvW8UGUXrrrWbKVqHAgYqAeeOO+7A3r17zZZlZGSgQ4cOeOqppxQJVgANVAnJRUdHIzExEYcOHXK4XlVVFVasWGEV1MTFxQEAzp49a7b87Nmzpvfi4uJw7tw5s/d///13lJaWmtaxJSQkBJGRkWYvIncZqTjcWYZkb3h9Z9uzrCJytbdFTG6+wxmlnS13la2Zqu01wjXiSLPOBFrPGAIaN26MLl26mL0iIiLQpEkTdOnSRbH9+L2XkFxlZSUOHz6MCRMmOFxv1apVqKmpwfjx482Wt2nTBnFxcdi4cSO6d+8O4FpJyLZt20xVPSkpKSgrK8OPP/6Inj17AgCKiopQV1eH5ORk5Q+KSMZfI696y5tteDo2i/SkXgDzkVtLZ2Zalcj5ogGudC4tq4Ns/V8efIEZuNu0OOR9QWo6oi9cKymQJqsk3/JrwDJt2jQMGzYMrVu3xunTp5GTk4Pg4GCMHTsWADBx4kS0aNEC8+fPN/vc0qVLMXz4cDRp0sRseVBQEKZMmYLc3FzcdNNNpm7NCQkJGD58OACgY8eOGDJkCB544AEsWbIEV69exSOPPIIxY8a43EMoELDdh3H4ov2Er64XWyUWlu0mLNuNKMXR8dmq8nJ1MDJ3R0EOBGpfS/ba1TkjTVRJzn377beKb9OvVUInT57E2LFj0b59e9x3331o0qQJtm7dimbNmgEAjh8/jjNnzph95sCBA/jhhx/stnF58skn8eijjyIzMxO9evVCZWUl1q9fb9Zy+YMPPkCHDh1wxx134K677kK/fv2Qn6/PAZfUZKTqC9I3+SBt8qofeWNPy1IWNeeNke/DURWIK2lgsOIbltV20t+ujqmTUbQuIKv4tISTH3qI47CQHtgqXVGjNMTRWBueFO9bfkaqBrIamh/qN8plaaOxOAtQnPVo9JSRewn5iqbasBCRsrzp2ePtfuTvyUtC7DHLHGA+T1FMbj4K/rueWiUp9jBYMQZ3RieWSNcjaQMDFtIsPT3ZrkkayYZ4drhatWjZ3d30RGujTYpergt3sT2LeuRjPrkTiPD70A5NdWsm/csrKgzIJxIGK/aZ9ZiB522jjBqkyFlmpP74La1JGunzfSrB1XTLA2IGI/rCEhbyiuUNVckbQCBkUFrji5IiX3WR1it/DxKpxPdva8RrQN1SU1vptlea4uqgl9I2HL1PvsOAhbzCH7F9eqjSsqyCGLFnNfKKCl0amdad7SvV1TiQhrvXMlvfo6PvwdZ14Iuuy/J/7XF2D+M9TjsYsBCpRA8Zqd0nTTfSbi/zKUhNNzWeNT3lFhWiwItgSA/n1EikahZHpS62vhPLUg35HE/OeBvMBGKVdKBgGxYywx+7MqTzaOTZaZ2VcEjLLdsMSL2GLEeJlb9s7cvyfQ4B7ztrkkaatRGJvhBsetljrzeXK1M6eMrb+xfvf9rGEhYyo9SYA4FGykSjLwTjyILJZufPqJmqUm1RPAno9FDdZgRSyYrl+ZZGfHX3O1BzIkh7bU3cCUJ439M2lrCQZunpaUd62i9rUhsQwYqSXCkpkWd0pTMzOeKon6k1/YE37AUblr2BGJToF0e69RBHuiXyLZb8OebrUiepiqisSa0qIydHXwjGQ9VnUHJwC/KKCtF26lJdDx/AkW69xyohItIMR+1ijBqsyI9ZPiM1YHtSRVuf90d7HrWCB3ngNeK/f8ekpmNEkX6DFVIGAxYi0oxArEKzNauzoykMtEbpkh1fTSdB+sOAhYjIz+w1RrXsSSVfx1H7EV9OY+CP7bPRdWBio1tSla2Gs3pqTEv6oKXGn84oMXieM1IVkREzdQYrgYslLKQq+YRjlsuIlKLkqLxqsTe+jLOZrm3939bfStPqhJ56DFbyigrxQEqqv5OheyxhIZ9hoEJaptb16WjwQC1nvloMVvSK9z5lMGAJUL6ulpGPdkqkF6y+JNIOBiwBioEDkXPSyM/eBC5aLkUh5TC4VR/bsJDX1iSNtBqOnsgolLiuLXv2+LIXDwWerfFDEBkR4vHnK6pqEIVf0KtXLwQHByMrKwtZWVkKptAzLGEhr43Ys9ruTV166pAmT5NPoEa+p6feNO7iEy75kxEf2Hbs2IH9+/drIlgBGLCQSiwnIhuxZ7VZIz5vi9nJM0Z+mtdThmHk74FILawSIr/QU+ZCpBT5qLYMWojcwxIWMskrKlS9yoBdJSkQWf6uHHV1JnWxZFe/GLCQSXZqmmnSNbXwZkH0P7aG3id1sXRXvxiwkBmlfsxSd1AitcUlpvg7CV5jsELkHAMWckpqICsVY9sbYtzy/856DhEpYfqSmf5OglOW3ZotJzs06rw/gYr3OHUwYCGH7P3wLIOW0pmZNte1XC87NY1FsjrFnl1EruE9Th0MWMglMbn5Zk+Alm1d5IGIvQnbpMyOGZ/+FKSmOw02/dWQVE+Zg7wkRd5jiJTB82lsDFjIIVuZgRSsuHtz0FPGQtacfd+s1nAfz5dvnDzaxd9JIAUwYCG3ZBStQ0xuvun/nmC1kLJ88VRp2QaDSIss70knj3bByaNdsGN4op9SREpiwEI2yatspO7OUsPbjKJ1yE5N41gSGuGrqgV/lKC4Un2YV1SoSk8hXtv6d32bfbi+zT674z+xalpfGLCQTZYlIPbap7BIWxuM/D24UhqnRk8hI59To+PDlDExYCGnLOcFIvIVV645VjGSJVcfpqTxolwtaWEQ5F+cS4icajt1KaDCkPprkkZyqH4i8itnwa48mIlhwOJXLGEhpxhUEFGgYgmedjBgIb8ZsWc11iSN9HcyyM/Y8NGY5FUtRhh7yRdzrZFjDFhIMZ4EHyy9IT69apM3AYblZ1lKQUpgwEJ+xdb8RKQXDLr8iwELKcbd0hLLCRMtAxcGMkT6Z4TqINIGBiykKCW7B3IcDCL/YrBBWsKAhRRneYOz1bZFGieBg8/5jxQ0siSLbJGqPzypBrE38CQZ0/z589GrVy80btwYzZs3x/Dhw3HgwAHF98OAhTzmzpPXmqSR7BGkMfJZg0ldeg0KvQk0pIa2DFaM77vvvkNWVha2bt2KDRs24OrVq7jzzjtRVVWl6H44cBwpwjJ4ySsqRExuPjKK1rEnEHklr6jQEJmeFLQ4CxCNcrwUONavX2/297Jly9C8eXP8+OOPuP322xXbDwMW8pj8pmp5g5UCGGmyRFfwSZ9sMULm7c61reTxuvP7CwScZsQ9FRUVZn+HhIQgJCTE6efKy8sBADExMYqmJ0gIIRTdYoCoqKhAVFQUyhfkITIszN/JISIiDauorkbU1GyUl5cjMjJSnX38N196/+tihEc09ng7v1VdwvhBN1ktz8nJwezZsx1+tq6uDvfccw/Kysrwww8/eJwGW1jCQmRQfLomidR+jNWz1zhqf8fSl/85ceKEWXDlSulKVlYW9u3bp3iwAjBgITIsBitEjjE4cSwyMtKt0qBHHnkEn3/+Ob7//ntcf/31iqeHvYSIiHTOWS+kEXtWs3TFBo4xowwhBB555BGsWbMGRUVFaNOmjSr7YQkLkUEUpKajdGamqXcWKc/Vnj6+prX0aB1LVpSVlZWFDz/8EOvWrUPjxo1RUlICAIiKikKYgm08WcJCZCAxufn+ToLh6Sk40Ov4L1rBEhjXLF68GOXl5RgwYADi4+NNr48//ljR/bCEhcggpIyUmRRJ9BRcaQ2DFdf5qrMxAxYig/FVJhWIvZAC7XgDmVRtxLFbtINVQkTkNpbiBK64xBR/J8EhZxM2ultywukFtIMBC2kC5xnSH5Y2BKaSg1v8nQSvMPjQLwYsZCh88vcdnmtjUut79VWbEAYkxsWAhTRBqTEiLJ/62XBOHRlF61jCQi6RV9Hw90jeYKNbMjQ+bXkvEBvXBjJPv2t7jVNtTYyq9u+Sv3tjYgkLUYBj1Q4pwbJXjS0sYSFvMGAhCnCWT9SWAUwgla6w8bd37PWokZe+aL30g0GVdrFKiIjMBFKAYonz7agjOzXNLBDQctCi5bQFOpaw+BCL3omIiDzj14Bl9uzZCAoKMnt16NDB4WfKysqQlZWF+Ph4hISEIDExEV988YXp/UuXLmHKlClo3bo1wsLC0KdPH+zYscNsG2fPnsWf/vQnJCQkIDw8HEOGDEFxcbEqxygXyE+uRBTYpOoglmCQp/xewtK5c2ecOXPG9Prhhx/srnvlyhX84Q9/wLFjx/DJJ5/gwIEDePvtt9GiRQvTOn/5y1+wYcMGLF++HHv37sWdd96JQYMG4dSpUwCuzXkwfPhwHDlyBOvWrcOuXbvQunVrDBo0CFVVVaofLxEZF0tR2QaE1OP3gKV+/fqIi4szvZo2bWp33XfeeQelpaVYu3Yt+vbtixtuuAH9+/dHUlISAKC6uhqffvopXnzxRdx+++248cYbMXv2bNx4441YvHgxAKC4uBhbt27F4sWL0atXL7Rv3x6LFy9GdXU1PvroI58cMxEZk9KlqHoIgGwFKAxaSA1+D1iKi4uRkJCAtm3bYty4cTh+/LjddT/77DOkpKQgKysLsbGx6NKlC+bNm4fa2loAwO+//47a2lqEhoaafS4sLMxUclNTUwMAZuvUq1cPISEhDkt3ampqUFFRYfZyhx5uPERawN/K/+ihGtnWuCus9iE1+DVgSU5OxrJly7B+/XosXrwYR48exW233YZLly7ZXP/IkSP45JNPUFtbiy+++AKzZs1CXl4ecnNzAQCNGzdGSkoKnnvuOZw+fRq1tbV4//33sWXLFpw5cwYA0KFDB7Rq1QozZszAxYsXceXKFbzwwgs4efKkaR1b5s+fj6ioKNOrZcuWbh2rHm48RM4UpKYzoAgw/L5JK/wasAwdOhSjR49Gt27dMHjwYHzxxRcoKyvDypUrba5fV1eH5s2bIz8/Hz179sT999+Pp59+GkuWLDGts3z5cggh0KJFC4SEhOC1117D2LFjUa/etUNt0KABVq9ejYMHDyImJgbh4eH45ptvMHToUNM6tsyYMQPl5eWm14kTJ5Q9GUR+5Gog4m3g7Yt9kLL4fZBWaGoclujoaCQmJuLQoUM234+Pj0eDBg0QHBxsWtaxY0eUlJTgypUraNiwIdq1a4fvvvsOVVVVqKioQHx8PO6//360bdvW9JmePXti9+7dKC8vx5UrV9CsWTMkJyfjlltusZu2kJAQhISEKHewRBrhy6H3mfkRkaf83oZFrrKyEocPH0Z8fLzN9/v27YtDhw6hrq7OtOzgwYOIj49Hw4YNzdaNiIhAfHw8Ll68iC+//BLp6dZPdlFRUWjWrBmKi4uxc+dOm+sQGZ0nQQSrCcgoeC3rh18DlmnTpuG7777DsWPHsHnzZowYMQLBwcEYO3YsAGDixImYMWOGaf2HHnoIpaWlePzxx3Hw4EEUFhZi3rx5yMrKMq3z5ZdfYv369Th69Cg2bNiAgQMHokOHDsjIyDCts2rVKnz77bemrs1/+MMfMHz4cNx5552KHZuzHwF/JORv3lyDLCkho7A1w7t8hmnSDr9WCZ08eRJjx47FhQsX0KxZM/Tr1w9bt25Fs2bNAADHjx83a1fSsmVLfPnll5g6dSq6deuGFi1a4PHHH8dTTz1lWqe8vBwzZszAyZMnERMTg3vvvRdz585FgwYNTOucOXMGTzzxBM6ePYv4+HhMnDgRs2bNUvTYnN3QecMnf3N0DXKGZjIKd69ly2kE9GjG57tQLyTc48/X1fwGAOjVqxeCg4ORlZVlVjDgL0FCCOHvROhRRUUFoqKiUL4gD5FhYf5ODnmIGbNypBIbnk/SO/lkjUqpqK5G1NRslJeXIzIyUrHtmu3jv/lSyykrvQ5YTiy8T9W0ekJTjW6JfC2QMldPAgp3AjqjnksGtYFHClT0MmFjoNBUo1siUhczXiL3MVjRBgYsFFAKUtMDtkGdJ8GKu6UxRuSPIG9N0kisSRqp6j6M+BuQrkFPz53lOeGovdrCKiEyPOkmVjozEzH//X9Mbj7A0gbFsNpEWSP2rFZt23lFhYbNhKVr0NH5c9Q+xdl5YRWRf7GEhQzJ8kmpdGYmgGs3NN5ojE3Jkgm1SzlIHc5K+zy9B/De4V/sJeQh9hLSFyM/VarJnZITlrLoi9F/EwWp6aYHFUD5YMPdnkTsJeQ9VgmRZqxJGql4Ubh001LjxhwIGbQ7x2f0c2E0Rg5WJGoeo+W21egKTeZYJUSaoUa9fUbRumvtVVSQUbTO1IjXCIzaaJbVOoHJ1wE0G+iqjwELaZ63GY6aNy6jtIkxarACXAuEGbQQ6R8DFtI8NXtM+IujAMEfwUNG0TpDV+kY8RoiCjQMWEgXtPSErHZAYeTAgcgfjFyCGEgYsJBu+GIwLVcoEVAwKCHyHf7ejIEBC+nCkQWTUdakFmVNalV/WnK2faX3b5RGu0REamLAQrrkSdCQV1To0uccPY1Jn1cyaDFCo10tlHwRkbExYCFNk4KM7NQ0lM7MNGsc6k7QUJCajpjcfLOBpGyt44yn+zc69sTRFpbakRExYCFNi8nNN4130nbqUtNyT3u1SGOyeFvtY/ReNZ7wtCdOQWo6gz+FZaemBewkn2RcDFjIIX/f8KSgQPpXiad4V6p1jDYonCUGCMbHgcyUx9+NfzFgIYeMesOzVa1jWWLiyii5rAbxjlEDQiJSHgMW0o2yJrWKbOfWYXcgr6gQtw67A6UzM716apKqQaRqDb1kwFqpzjJqQEzGYHlv0MrvJlBx8kPSDU9vFvKbjtTo9q49h/FFUjtF0iUXk5sP6OimJp0bf96ImQmQVvHa1BYGLAZi9OniPZFXVIgYWcASk5uPrdL/LdaT3ges2864KqNone6+B7VvyoEwqzURqY9VQhTwSmdmIiY3X5FZnfOKClWbHVoNUuNitfdBRMb35ptv4oYbbkBoaCiSk5Oxfft2RbfPgMVA3H2q10t7C2/E5OYj+kKw03W8JXVzbjt1qe4yaL2ll4i05+OPP8YTTzyBnJwc/PTTT0hKSsLgwYNx7tw5xfbBgCWASQGOFLgYMYDJKFpnt7Gu5SByUiNcb3BWYCLt4Zg06nvllVfwwAMPICMjA506dcKSJUsQHh6Od955R7F9sA2Lh4QQAICKy5f9nBLPvP79lwCAR28fjAdSUlFRXW3612juLVyB9/unYfx3hXi///9KoR5IScX7lZdMf6/u1AqPpqQChStQ4eG+pP0QkXZcvnoVj94+2K/3NymvkPIONdXV/KbI5ysqzO+EISEhCAkJsVr/ypUr+PHHHzFjxgzTsnr16mHQoEHYsmWLV2kxI8gjJ06cEAD44osvvvjiy+XXiRMnVMuXqqurRVxcnCLpbNSokdWynJwcm/s9deqUACA2b95stnz69Omid+/eih0fS1g8lJCQgBMnTqBx48YICgryd3IUUVFRgZYtW+LEiROIjIz0d3J0gefMMzxv7uM584xWzpsQApcuXUJCQoJq+wgNDcXRo0dx5coVr7clhLDK22yVrvgSAxYP1atXD9dff72/k6GKyMhI3hDdxHPmGZ439/GceUYL5y0qKkr1fYSGhiI0NFT1/cg1bdoUwcHBOHv2rNnys2fPIi4uTrH9sNEtEREReaxhw4bo2bMnNm7caFpWV1eHjRs3IiUlRbH9sISFiIiIvPLEE09g0qRJuOWWW9C7d28sXLgQVVVVyMjIUGwfDFjIJCQkBDk5OX6vp9QTnjPP8Ly5j+fMMzxvvnH//ffj/PnzeOaZZ1BSUoLu3btj/fr1iI2NVWwfQUL4oI8VERERkRfYhoWIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYdOr5559HUFAQpkyZYvWeEAJDhw5FUFAQ1q5da/beY489hp49eyIkJATdu3e3ue2ff/4Zt912G0JDQ9GyZUu8+OKLVuusWrUKHTp0QGhoKLp27YovvvjCKg3PPPMM4uPjERYWhkGDBqG4uNjTw1WMJ+dtz549GDt2LFq2bImwsDB07NgRr776qtXnv/32W9x8880ICQnBjTfeiGXLllmt42z69cuXLyMrKwtNmjRBo0aNcO+991oNxuRrnpyzCxcuYMiQIUhISEBISAhatmyJRx55xGpuEqOeM8Dz36jkwoULuP766xEUFISysjKz94x63jw9Z0FBQVavFStWmK1j1HMWUBQb5J98Zvv27eKGG24Q3bp1E48//rjV+6+88ooYOnSoACDWrFlj9t6jjz4q3njjDTFhwgSRlJRk9dny8nIRGxsrxo0bJ/bt2yc++ugjERYWJt566y3TOv/85z9FcHCwePHFF8X+/fvFzJkzRYMGDcTevXtN6zz//PMiKipKrF27VuzZs0fcc889ok2bNqK6ulqp0+A2T8/b0qVLxWOPPSa+/fZbcfjwYbF8+XIRFhYmXn/9ddM6R44cEeHh4eKJJ54Q+/fvF6+//roIDg4W69evN62zYsUK0bBhQ/HOO++If/3rX+KBBx4Q0dHR4uzZs6Z1/vrXv4qWLVuKjRs3ip07d4pbb71V9OnTR5Xz4QpPz1lpaalYtGiR2LFjhzh27Jj4+uuvRfv27cXYsWNN6xj1nAnh3W9Ukp6eblrn4sWLpuVGPW/enDMAoqCgQJw5c8b0kt9rjHrOAg0DFp25dOmSuOmmm8SGDRtE//79rX7Yu3btEi1atBBnzpxxeDPMycmxGbAsWrRIXHfddaKmpsa07KmnnhLt27c3/X3fffeJtLQ0s88lJyeLBx98UAghRF1dnYiLixMvvfSS6f2ysjIREhIiPvroIzePWBlKnTfJww8/LAYOHGj6+8knnxSdO3c2W+f+++8XgwcPNv3du3dvkZWVZfq7trZWJCQkiPnz5wshrp2jBg0aiFWrVpnW+eWXXwQAsWXLFncP2WtKn7NXX31VXH/99aa/jXjOhFDmvC1atEj0799fbNy40SpgMeJ58/acObv+jHjOAhGrhHQmKysLaWlpGDRokNV7v/32G/74xz/izTff9Hj+hi1btuD2229Hw4YNTcsGDx6MAwcO4OLFi6Z1LPc/ePBg0zTiR48eRUlJidk6UVFRSE5OVnaqcTcofd7Ky8sRExNj+tvZOZGmX5evYzn9+o8//oirV6+ardOhQwe0atXKL+dNyXN2+vRprF69Gv379zctM+I5A7w/b/v378ecOXPw3nvvoV4961u0Ec+bEtdaVlYWmjZtit69e+Odd96BkA0xZsRzFog40q2OrFixAj/99BN27Nhh8/2pU6eiT58+SE9P93gfJSUlaNOmjdkyaaTCkpISXHfddSgpKbEavTA2NhYlJSWm9eSfs7WOLyl93jZv3oyPP/4YhYWFpmX2zklFRQWqq6tx8eJF1NbW2lzn119/NW2jYcOGiI6OtlrH1+dNqXM2duxYrFu3DtXV1Rg2bBj+7//+z/Se0c4Z4P15q6mpwdixY/HSSy+hVatWOHLkiNU6RjtvSlxrc+bMQWpqKsLDw/HVV1/h4YcfRmVlJR577DEAxjtngYoBi06cOHECjz/+ODZs2GBzJs7PPvsMRUVF2LVrlx9Sp11Kn7d9+/YhPT0dOTk5uPPOO5VOriYoec4WLFiAnJwcHDx4EDNmzMATTzyBRYsWqZFsv1PivM2YMQMdO3bE+PHj1UyqZih1rc2aNcv0/x49eqCqqgovvfSSKWAhY2CVkE78+OOPOHfuHG6++WbUr18f9evXx3fffYfXXnsN9evXx4YNG3D48GFER0eb3geAe++9FwMGDHB5P3FxcTanCJfec7SO/H3552yt4ytKnrf9+/fjjjvuQGZmJmbOnGn2nr1zEhkZibCwMJemX4+Li8OVK1eseoT4+rwpec7i4uLQoUMH3HPPPXjrrbewePFinDlzxvSeUc4ZoMx5KyoqwqpVq0zv33HHHQCApk2bIicnB4Cxzpta97Xk5GScPHkSNTU1AIx1zgIZS1h04o477sDevXvNlmVkZKBDhw546qmn0LRpUzz44INm73ft2hULFizAsGHDXN5PSkoKnn76aVy9ehUNGjQAAGzYsAHt27fHddddZ1pn48aNZl0PN2zYYJpGvE2bNoiLi8PGjRtNXacrKiqwbds2PPTQQ+4euleUOm//+te/kJqaikmTJmHu3LlW+0lJSbHq2i0/J/Lp14cPHw7gf9OvP/LIIwCAnj17okGDBti4cSPuvfdeAMCBAwdw/PhxRadod0ata62urg4ATJmIkc4ZoMx5+/TTT1FdXW16f8eOHfjzn/+MTZs2oV27dgCMdd7UutZ2796N6667zjThoZHOWUDzd6tf8pyt1vRysNFyvri4WOzatUs8+OCDIjExUezatUvs2rXL1CuorKxMxMbGigkTJoh9+/aJFStWiPDwcKtuzfXr1xcvv/yy+OWXX0ROTo7Nbs3R0dFi3bp14ueffxbp6el+79Yscfe87d27VzRr1kyMHz/erNvkuXPnTOtI3SanT58ufvnlF/Hmm2/a7DYZEhIili1bJvbv3y8yMzNFdHS0KCkpMa3z17/+VbRq1UoUFRWJnTt3ipSUFJGSkqLo8XvC3XNWWFgo3nnnHbF3715x9OhR8fnnn4uOHTuKvn37mtYx+jkTwrPfqNw333xjt1uzUc+bu+fss88+E2+//bbYu3evKC4uFosWLRLh4eHimWeeMa1j9HMWKBiw6JgnN8P+/fsLAFavo0ePmtbZs2eP6NevnwgJCREtWrQQzz//vNW2V65cKRITE0XDhg1F586dRWFhodn7dXV1YtasWSI2NlaEhISIO+64Qxw4cMCbw1WMu+ctJyfH5jlr3bq12ee++eYb0b17d9GwYUPRtm1bUVBQYLXt119/XbRq1Uo0bNhQ9O7dW2zdutXs/erqavHwww+L6667ToSHh4sRI0aIM2fOeHG0ynD3nBUVFYmUlBQRFRUlQkNDxU033SSeeuops4xXCGOfMyHUCVik5UY9b+6es3/84x+ie/fuolGjRiIiIkIkJSWJJUuWiNraWrPPGfmcBYogIWR9v4iIiIg0iI1uiYiISPMYsBAREZHmMWAhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYiIiISPMYsBAREZHmMWAhIq+dP38ecXFxmDdvnmnZ5s2b0bBhQ2zcuNGPKSMio+BcQkSkiC+++ALDhw/H5s2b0b59e3Tv3h3p6el45ZVX/J00IjIABixEpJisrCx8/fXXuOWWW7B3717s2LEDISEh/k4WERkAAxYiUkx1dTW6dOmCEydO4Mcff0TXrl39nSQiMgi2YSEixRw+fBinT59GXV0djh075u/kEJGBsISFiBRx5coV9O7dG927d0f79u2xcOFC7N27F82bN/d30ojIABiwEJEipk+fjk8++QR79uxBo0aN0L9/f0RFReHzzz/3d9KIyABYJUREXvv222+xcOFCLF++HJGRkahXrx6WL1+OTZs2YfHixf5OHhEZAEtYiIiISPNYwkJERESax4CFiIiINI8BCxEREWkeAxYiIiLSPAYsREREpHkMWIiIiEjzGLAQERGR5jFgISIiIs1jwEJERESax4CFiIiINI8BCxEREWkeAxYiIiLSvP8P8/3e/IlH6xcAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPNUlEQVR4nO2deXwURfr/PyFAEgJJDEcO5NYAAgIKYkAFIktkI3IICKJoljWrGw8wIMtvucQoqxjBE4ybDauiKErANSyIRgXkRrlWhADhG64AEpNwBkzq9wf22NPTPdPd00f1zPN+veYF6a7urq7urvrUU089FcIYYyAIgiAIguCYOnZngCAIgiAIwhckWAiCIAiC4B4SLARBEARBcA8JFoIgCIIguIcEC0EQBEEQ3EOChSAIgiAI7iHBQhAEQRAE95BgIQiCIAiCe0iwEARBEATBPSRYOKF169Z4+OGH7c4GQRABzsMPP4zWrVvrOtaueurkyZMYMWIEGjdujJCQEMyfP9/yPBD2Q4LFQjZs2IBZs2ahoqLC7qxYytatW/H444+jU6dOiIyMRMuWLTFq1Cjs379fNv3evXtx1113oWHDhoiNjcWDDz6I06dPu6X56aef8Mwzz6Bbt25o1KgREhISkJaWhm3btnmcb9++fZg4cSJ69+6N8PBwhISE4PDhw5ruYcGCBRg5ciRatmyJkJAQr5V2RUUFMjIy0LRpU0RGRqJ///74/vvvNV0vLy8PHTt2RHh4OK6//nq8/vrruu7r4YcfRkhIiM+f+H6MLn9vbNiwAbfddhsaNGiA+Ph4PPnkkzh37pxHuurqakyZMgWJiYmIiIhAr169sGbNGk3XUlOmAHDs2DGMGjUKMTExiIqKwpAhQ3Do0CFN17Kb48ePY9asWdixY4fdWTGEiRMnYvXq1Zg6dSree+893HXXXZZdW+07SlgAIyxj7ty5DAArKSnx2Hfp0iV2+fJl6zNlAffeey+Lj49nTzzxBHvnnXfYc889x+Li4lhkZCTbvXu3W9ojR46wJk2asHbt2rFXX32VPf/88+yaa65hXbt2ZdXV1a50WVlZLCYmho0fP569/fbb7KWXXmLt2rVjoaGhbM2aNW7nzM/PZ3Xq1GGdO3dm3bp1U3wG3mjVqhWLjY1ld911F6tbty576KGHZNPV1NSw3r17s8jISDZr1iz2xhtvsBtuuIE1atSI7d+/X9W1Fi5cyACwe++9l+Xm5rIHH3yQAWD/+Mc/NN/Xhg0b2Hvvvef6zZ49mwFgGRkZbts3bNjAGDOn/JX44YcfWHh4OOvevTtbsGAB+/vf/87CwsLYXXfd5ZF29OjRrG7dumzSpEns7bffZsnJyaxu3bps3bp1hpbp2bNn2fXXX8+aNWvGXnzxRfbKK6+wFi1asGuvvZb9/PPPqq7FA1u3bmUAWH5+vse+y5cvs0uXLuk6b6tWrRTffTOJi4tjY8eOtfy6Wt5RwnxIsFiIN8ESyHz33XdujR1jjO3fv5+FhYV5VEKPPfYYi4iIYP/3f//n2rZmzRoGgL399tuubdu2bWNnz551O/bnn39mTZs2ZX369HHbfubMGVZVVcUY0/8MDh8+zGpraxljjEVGRipW2h999BEDwJYuXeradurUKRYTE8PGjBnj8zoXLlxgjRs3ZmlpaW7bx44dyyIjI1l5eblf9+WtIWPMnPJXYtCgQSwhIYFVVla6tr3zzjsMAFu9erVr2+bNmxkANnfuXNe2ixcvsnbt2rHk5GSf19FSpi+++CIDwLZs2eLatnfvXhYaGsqmTp2q6r54wNdz1osRgqWmpoZdvHhR0zEhISEsMzPTr+vqQe07SlgDCRaLmDlzJgPg8RMaGGlFkJ+fzwCwdevWsSeeeII1adKERUdHs4yMDFZdXc1++eUX9uCDD7KYmBgWExPDJk+e7GpQBWpqati8efPYDTfcwMLCwlizZs1YRkaGWwVtJzfddBO76aab3LY1a9aMjRw50iNtUlISu/POO32ec/jw4Sw2NlZxvxGi0ZtgGTlyJIuLi2M1NTVu2zMyMliDBg189mwLCwsZAFZYWOi2fcOGDQwAe++992SPM0qwmFH+58+fZ3v37mWnT592bausrGR169ZlkydPdktbXV3NGjZsyMaPH+/aNnnyZBYaGurWaDDG2AsvvMAAsNLSUte206dPs71797Lz58+7tmkp0549e7KePXt63NfAgQNZu3btfN6/HCdOnGAPP/wwa968Oatfvz6Lj49n99xzj9uzatWqFUtLS2OrV69mXbt2ZWFhYaxjx47s008/dTvXmTNnWFZWFuvcuTOLjIxkjRo1YnfddRfbsWOHK83XX38tW9cIz/yhhx5irVq1cjvv3LlzWXJyMouNjWXh4eHspptuchPd4nxqFSwAWGZmJnv//ffZDTfcwOrWrcsKCgoYY4wdPXqUpaens2bNmrH69euzG264geXl5bmOFepB6c8KtLyjhDWQD4tFDB8+HGPGjAEAzJs3D++99x7ee+89NG3a1OtxTzzxBIqLi/Hss8/innvuQW5uLqZPn47BgwejpqYGL7zwAm677TbMnTsX7733ntuxf/nLXzB58mT06dMHr776KtLT07F48WKkpqbiypUrXq9bXV2Nn3/+WdVPD4wxnDx5Ek2aNHFtO3bsGE6dOoUePXp4pL/lllvwww8/+DxvWVmZ2zmt5ocffsBNN92EOnXcP61bbrkFFy5cUPTbER8PwKMMbr75ZtSpU0dVGejFrPLfsmULOnbsiDfeeMO1bffu3fj11189rlW/fn1069bN7Vo//PADkpKSEBUV5ZEnAG5+Gm+88QY6duyILVu2uB0P+C7T2tpa7Nq1S/H+Dx48iLNnz/osAyn33nsvCgoKkJ6ejrfeegtPPvkkzp49i9LSUrd0xcXFuO+++zBo0CDMmTMHdevWxciRI918dQ4dOoTly5fj7rvvxiuvvILJkydj9+7d6Nu3L44fPw4A6NixI2bPng0AyMjIcNU1d9xxh2IeX331VXTv3h2zZ8/GCy+84Lp2YWGh5vuVo6ioCBMnTsR9992HV199Fa1bt8bJkydx66234ssvv8Tjjz+OV199Fddddx3Gjx/vcqq94447XPXaH/7wB9e9eOOXX35RVW9duHDB63m0vKOERditmIIJb71gJQtLamqqm+UkOTmZhYSEsEcffdS17ddff2XXXnst69u3r2vbunXrGAC2ePFit+usWrVKdrsUpZ6N3E8P7733HgPg1psSev/vvvuuR/rJkyczAF4tFGvXrmUhISFs+vTpimnMtrBERkayP/3pTx7bhV7+qlWrvJ47MzOThYaGyu5r2rQpGz16tOw+IywsZpW/0OOfOXOma9vSpUsZALZ27VqP84wcOZLFx8e7/u7UqRNLSUnxSPe///2PAWALFy50bRMsmV9//bVrm9oyPX36NAPAZs+e7ZHuzTffZADYTz/9JH/zCvzyyy8ew1lytGrVigFws6hUVlayhIQE1r17d9e2S5cueVjvSkpKWFhYmFu+vT1nOQvLhQsX3P6+fPky69y5s0e567Ww1KlTh/3vf/9z2z5+/HiWkJDg4Rs0evRoFh0d7ZYn/GalUYNQlr5+4vdRDi3vKGENdc2RQYRRjB8/HiEhIa6/e/XqhY0bN2L8+PGubaGhoejRowe2b9/u2rZ06VJER0fjD3/4g5sV5Oabb0bDhg3x9ddf4/7771e8bmpqquZZGGr56aefkJmZieTkZDz00EOu7RcvXgQAhIWFeRwTHh7uSiO3/9SpU7j//vvRpk0bPPPMM6bkWw1K+RPn39fx9evXl90XHh7u83h/MKv8+/XrB8aYpmuJ71NLmc6aNQuzZs3yuJaaMlV7/1qIiIhA/fr18c0332D8+PG45pprFNMmJiZi2LBhrr+joqIwbtw4vPjiiygrK0N8fLxb3mpqalBRUYGGDRuiffv2mmeiSfMp8Msvv6Cmpga33347PvzwQ93nFNO3b1/ccMMNrr8ZY/j0008xatQoMMbc6qjU1FQsWbIE33//Pfr06aP5WosXL1b1nNq2bet1v5Z3lLAGEiyc07JlS7e/o6OjAQAtWrTw2P7LL7+4/i4uLkZlZSWaNWsme95Tp055vW5CQgISEhL0ZNkrZWVlSEtLQ3R0ND755BOEhoa69gmVZnV1tcdxly5dcksj5vz587j77rtx9uxZrF+/Hg0bNtSVt9OnT6Ompsb1d8OGDTWfKyIiQlX+la4VERGBy5cvy5770qVLsvdvFFaWv69ria+jtky9XUtNmeq9f2+EhYXhxRdfRFZWFuLi4nDrrbfi7rvvxrhx4xAfH++W9rrrrnPrnABAUlISAODw4cOIj49HbW0tXn31Vbz11lsoKSlxe4caN26sKW9iPv/8c2RnZ2PHjh1u9y/Nj17atGnj9vfp06dRUVGB3Nxc5Obmyh7jq45SQo/IkUPLO0pYAwkWzhE36L62i3uxtbW1aNasGRYvXix7vC/fmYsXL6KyslJVHqUVrxKVlZUYNGgQKioqsG7dOiQmJrrtFwTSiRMnPI49ceIEYmNjPXo7ly9fxvDhw7Fr1y6sXr0anTt3VpUXOXr27In/+7//c/09c+ZMj966LxISEhTzD8B1z0rXSkhIQE1NDU6dOuUmNi9fvowzZ854lJmRWFn+vq4lvs+EhAQcO3ZMNh0An2WitkyF+1Pz/LQwYcIEDB48GMuXL8fq1asxffp0zJkzB0VFRejevbumc73wwguYPn06/vSnP+G5555DbGws6tSpgwkTJqC2tlZz3gBg3bp1uOeee3DHHXfgrbfeQkJCAurVq4f8/Hx88MEHus4pRdq4C3l94IEH3KysYm688UZd15J2BpTw1SHR8o4S1kCCxUKM6q2ooV27dvjyyy/Rp08fXT2Bjz76COnp6arSSs39cly6dAmDBw/G/v378eWXX7qZhwWaN2+Opk2bygYf27JlC7p16+a2rba2FuPGjcNXX32Fjz/+GH379lWVXyWkpmRfJmM5unXrhnXr1qG2ttbN8Xbz5s1o0KCBq8esdC3hHrdt24Y//vGPrv3btm1DbW2tRxkYiZXl37lzZ9StWxfbtm3DqFGjXNsvX76MHTt2uG3r1q0bvv76a1RVVbk53m7evNm13xtqy7ROnTro0qWL7P1v3rwZbdu2RaNGjVTfo5h27dohKysLWVlZKC4uRrdu3ZCTk4P333/flebAgQNgjLnVE4KTthCZ9pNPPkH//v2Rl5fndv6Kigo3Z2ctdc2nn36K8PBwrF692k2Q5ufna7pHLTRt2hSNGjVCTU0NBgwYYOi5pZ0BJXx1SLS8o4Q1kGCxkMjISACwJNLtqFGj8NZbb+G5557DCy+84Lbv119/xblz5xATE6N4vJE+LDU1NbjvvvuwceNGrFixAsnJyYpp7733Xvz73//GkSNHXMNeX331Ffbv34+JEye6pX3iiSfw0Ucf4e2338bw4cP9zqcRpuQRI0bgk08+wbJlyzBixAgAwM8//4ylS5di8ODBrgZB6VopKSmIjY3FggUL3BrXBQsWoEGDBkhLS/M7j94wo/wvXLiA0tJSNGnSxNWoRkdHY8CAAXj//fcxffp0lxB47733cO7cOYwcOdJ1/IgRI/Dyyy8jNzcXkyZNAnDVTJ+fn49evXq5DY8KM0BatmyJBg0aANBWpiNGjMDf/vY3bNu2zTU7ZN++fSgqKnJdWwsXLlxAnTp1XD4wwFXx0qhRI4+hhuPHj6OgoMBVllVVVXj33XfRrVs3lxUzNDTUo4OwdOlSHDt2DNddd51rm5a6JjQ0FCEhIW5WicOHD2P58uWa7lULoaGhuPfee/HBBx9gz549Hpa506dP+7QCK2GUD4uWd5SwBhIsFnLzzTcDAP7+979j9OjRqFevHgYPHuyqXIykb9+++Mtf/oI5c+Zgx44dGDhwIOrVq4fi4mIsXboUr776qqtBlcNIH5asrCx89tlnGDx4MMrLy916lcBVs7DA//t//w9Lly5F//798dRTT+HcuXOYO3cuunTp4mbxmT9/Pt566y0kJyejQYMGHuccNmyYq1wrKytdYdi/++47AFenv8bExCAmJgaPP/64z3v4z3/+g507dwIArly5gl27diE7OxsAcM8997jM1yNGjMCtt96K9PR0/Pjjj2jSpAneeust1NTU4Nlnn/V5nYiICDz33HPIzMzEyJEjkZqainXr1uH999/H888/j9jYWFdaI+5Lihnlv2XLFvTv39+jR/v888+jd+/e6Nu3LzIyMnD06FHk5ORg4MCBbqHXe/XqhZEjR2Lq1Kk4deoUrrvuOvz73//G4cOHPSwNb7zxBp599ll8/fXX6Nevn+Yy/etf/4p33nkHaWlpmDRpEurVq4dXXnkFcXFxyMrKcrtWv3798O2333q1MO7fvx933nknRo0ahRtuuAF169ZFQUEBTp48idGjR7ulTUpKwvjx47F161bExcXhX//6F06ePOlm6bj77rsxe/ZspKeno3fv3ti9ezcWL17s0fi2a9cOMTExWLhwIRo1aoTIyEj06tXLw5cEANLS0vDKK6/grrvuwv33349Tp07hzTffxHXXXYddu3Yp3pu//OMf/8DXX3+NXr164ZFHHsENN9yA8vJyfP/99/jyyy9RXl6u67xG+bAA6t9RwiLsm6AUnDz33HOsefPmrE6dOqoCx23dutXteGHapjgIF2NXpypGRkZ6XC83N5fdfPPNLCIigjVq1Ih16dKFPfPMM+z48eOG35sSffv21TQtes+ePWzgwIGsQYMGLCYmho0dO5aVlZW5pXnooYe8nlM8vbekpEQxnXR6pxLeriedOlpeXs7Gjx/PGjduzBo0aMD69u3r8Rx9kZuby9q3b8/q16/P2rVrx+bNm+cRGFDPfamJgGp0+ctNaxZYt24d6927NwsPD2dNmzZlmZmZrui9Yi5evMgmTZrE4uPjWVhYGOvZs6fsFHG5ac0CasqUsavLE4wYMYJFRUWxhg0bsrvvvpsVFxd7pLv55pt9Tm39+eefWWZmJuvQoQOLjIxk0dHRrFevXuzjjz92SycOHHfjjTeysLAw1qFDB4/gbZcuXWJZWVksISGBRUREsD59+rCNGzeyvn37uoU1YIyxFStWuAK1iZ+53LTmvLw8dv3117uum5+f7ypLaT71Bo6T4+TJkywzM5O1aNGC1atXj8XHx7M777yT5ebmqj6H2ah9RwnzCWFMhQMCQRAE4eLs2bOIjY3F/PnzkZmZ6ff5Wrdujc6dO+Pzzz83IHcEEZhQpFuCIAiNrF27Fs2bN8cjjzxid1YIImggHxaCIAiNpKWlme4AzTtlZWVe90dERLjiRhGEEZBgIQiCIDTjyyn/oYcewqJFi6zJDBEUkGAhCIKwmcOHD9udBc34CntAgdUIoyGnW4IgCIIguIecbgmCIAiC4B4SLARBEARBcA8JFoIgCIIguIcEiwGsXbsWgwcPRmJiIkJCQnStwcEYw8svv4ykpCSEhYWhefPmeP75543PLEEQBEE4EJolZADnz59H165d8ac//Un3InxPPfUUvvjiC7z88svo0qULysvLda+lQRAEQRCBBs0SMpiQkBAUFBRg6NChrm3V1dX4+9//jg8//BAVFRXo3LkzXnzxRdfibHv37sWNN96IPXv2oH379vZknCAIgiA4hoaELODxxx/Hxo0bsWTJEuzatQsjR47EXXfdheLiYgBXVwJu27YtPv/8c7Rp0watW7fGn//8Z7KwEARBEMRvkGAxmdLSUuTn52Pp0qW4/fbb0a5dO0yaNAm33Xaba9n4Q4cO4f/+7/+wdOlSvPvuu1i0aBG2b9+OESNG2Jx7giAIguAD8mExmd27d6OmpgZJSUlu26urq9G4cWMAQG1tLaqrq/Huu++60uXl5eHmm2/Gvn37aJiIIAiCCHpIsJjMuXPnEBoaiu3btyM0NNRtX8OGDQFcXZOjbt26bqKmY8eOAK5aaEiwEARBEMEOCRaT6d69O2pqanDq1Cncfvvtsmn69OmDX3/9FQcPHkS7du0AAPv37wcAtGrVyrK8EgRBEASv0CwhAzh37hwOHDgA4KpAeeWVV9C/f3/ExsaiZcuWeOCBB/Ddd98hJycH3bt3x+nTp/HVV1/hxhtvRFpaGmpra9GzZ080bNgQ8+fPR21tLTIzMxEVFYUvvvjC5rsjCIIgCPshwWIA33zzDfr37++xXVhe/cqVK8jOzsa7776LY8eOoUmTJrj11lvx7LPPokuXLgCA48eP44knnsAXX3yByMhIDBo0CDk5OYiNjbX6dgiCIAiCO0iwEARBEAShm7Vr12Lu3LnYvn07Tpw44RGLTMyjjz6Kt99+G/PmzcOECRM0XYemNRMEQRAEoRsh2vubb77pNV1BQQE2bdqExMREXdchp1uCIAiCIHQzaNAgDBo0yGuaY8eO4YknnsDq1auRlpam6zokWHRSW1uL48ePo1GjRggJCbE7OwRBEATHMMZw9uxZJCYmok4d8wY3Ll26hMuXL/t9HsaYR9sWFhaGsLAwzeeqra3Fgw8+iMmTJ6NTp06680SCRSfHjx9HixYt7M4GQRAE4SCOHDmCa6+91pRzX7p0CfEtW6Hy9Cm/z9WwYUOcO3fObdvMmTMxa9Yszed68cUXUbduXTz55JN+5YkEi04aNWoEADgy53lEhYfbnBuCIIzi9bWr8cQdqX6d4z9d7gEADN79mRFZUuT9vml44NtCU68RKFj1TJSounQJLab+3dV2mMHly5dRefoUXl67FREN9V/n4rmzmHRHTxw5cgRRUVGu7XqsK9u3b8err76K77//3u/RCBIsOhEKPio8HFERETbnhiCcSU5RIbJS9I1nm8XfU4f6fY6xB9Zc/Y/JdcNftxSZfg0jsfp5F3Qd7vr/2J3Lrv7H5vKywoUgomEjvwSLQFRUlJtg0cO6detw6tQptGzZ0rWtpqYGWVlZmD9/Pg4fPqz6XDRLiCAI28hKSUN+yhC7s+GGIfn5y2P+n4NzxGJALVaKlfikZADAsJ3LMEwQK4TlPPjgg9i1axd27Njh+iUmJmLy5MlYvXq1pnORhYUgggzerBrpRSvszoIb3vKTU/T78IvXMnx7gZFZ4hKxCBDEizdhUNB1uGHCwdu54pOSUVbzEcr2G39dvRR0HY47Ny22NQ9mIo72DgAlJSXYsWOHK9q7sNCvQL169RAfH695nTyysBBEECJueAl5cooKPcpJEClyYiVQy1TNfamxYhgpGpTOVdB1OMr2b0RBwwmmXFcvPOTBTLZt24bu3buje/fuAICnn34a3bt3x4wZMwy9DgkWgggyhMY2UBtYM8hPGeIaKlKyrPBktTISu+9L89BTu1JzMkIo0q9fPzDGPH6LFi2STX/48GHNUW4BEiwE4WgEK4BW8aFGtASjoJEO+QjllF60gruhq2BBbujJa9qDLQPeohGskGAhCAcjblQBbSJDeqzc/mAjGO/ZG3rEsJmQEAluSLAQhMMRO9HKWU6E//MwG4eHPBiJnpkyTkSvJc8MCroOD5pyJ9whwcIZwsdY0HU48lOGID4p2TU9T0qgVf6EsQiNi3hYQymN1nPqxaxhFbsasGDs8UvfAatFjNppykK9qTZ/JIL4J4QxxuzOhBOpqqpCdHQ0socNNCTQFEHYAW9TnLWiZ8qqIPTJJ8U3So29Nx8ou94nX++CVMBbTdXFi4iemIXKykq/g7EpXuO3dunN73/yO9Jt5k0dTM2rHsjC4if+hvA2E+ED5cGMS/CJnsqbp/dJj4WDHGjVYeRztuKd8fUu+PLZIviHBIsBeBuaEYsGOyp6M3rQZDoNbgKh0qfh1N9RKgtvz9mX5UXLuQhCLSRYDCC9aIXXRlzOAdIKzIq3EYzj9gRf+NsBIAvL7+gtC7ssbWI/PyK4IMFiEBWNa1SntVq0GNm7ETsAe3MIJpwDWRsIf7FyuIXWBgpeSLAYiLTi52ms318EYVK2f6NLqJTt34iy/RttzhnhL061NnhrIKn3bR12DfeQaAk+aPFDgxBX+mrHdwX/EtULqnGCWKS0LmmJw20oFHawIJ5p4c0/yuzZR77OTY2ZMUjrJ7n9diHMChKLU3rugQ1ZWDiDV6uMkiXlUmpzi3NC2Ikv07906qgZ7zOv30iwYXfnShAnwhARiZXAhwSLwRhRmVpdIes1nwvDROTHEjyInV3lGizpNl89dK3XVrqu2mN5idbqJLw9Z/J/IqyEAsfpRAjQUzkvB1EREa7tWs2nvipPu3sxBAHoH+LxdRzPgevMCjCXnzLEsX5DUqSCxfb7alcKHGxpbx4UoMBx/kMWFoMxuvKl3iDBA3rfa8HCYnQ4dyvWthECzPnrwBvIVghpED47nZ0Lug5HQcMJtucD4GvtpUCCBItJSMf69VhXxOno5ddOIDcUTkLOn0W6WKOec1plmdESskCK3DdruxUiQBF8WMTOuHbEbBGshrxaDp0MDQnpRGlISCtaRQh9BL4JJJN7IMHz8I+Z0NpFfCAnWqx01KUhIf8hC4ufvL52tV/HW1mBB4uFRqlhCJb7dyqBakUUv49k9fsdQUBYZQWh2UTOhywsOjHKwiKHND5LMPZKzUQIekfwhTTGi/B/M65jxzclWP7IAhickIXFf8jCwimB2NPkAZqKzRdSvxap35cZVhezxIov64kgVgiC0AdFunUAwTr2bzRikUIWFnuQvsvi/4utKry972osPmqsJkZYVsjySvhi1rHTqBN5UffxtefPAQB69uyJ0NBQZGZmIjMz06js6YaGhHRi5pAQ4D4sRBWTcdBwkP3QO209VOb2Y+WQUNP/rEOdyIa6z1N7/hxOD76dhoQIdcRm5wKgXpTRCIs3EvbhzxR/Qh9GRhwmCLsgwcIp5JRnHmRh8fS3MNK3Ij9lCE3X5wzx0gQE4VRIsBCyBHvFZnekTLORCmKjBbIvARLs75fVCH5B3lbXJgjeIcFCyBLsPV6K1aAfNeLHyiGKQI3vYjQUUZvgHRIsDiCnqJCmQwYpZj53u98pq0RxVkqayyeMkMfumVkklgg10LRmB5CVkgaQT0tQYqYvk7eIwEY0XjxNvyWfMHXY+ax4eE8IviELC0EQHhjR29XaayfH0OCFxAqhBhIsBEHIYnUjQlNvrUXrMIxTnk2gO8wHMyRYghCnVDyEPdjpzyBcm95R85ATKVrLm2d/E3KYD1zIhyUIUWqMBCdMGu8n7IaGCMxDbjkELcdZLVQKug4nEUIAIAsLIWLq0VOYevSU3dkgCM3YPeMpENAjRKwQLyRWCAESLBbBq/lUTNn+jZhzbTO7s0EQmiGroDtq6xvx8J9Wq5bdU6HNQur8TVOu+YEEi0U45cM2ouI3q7dLvWjzoLIFWpe0NOxc4vK0smyFhtXs+sYp9ZkepALOV5RgwjpIsBCGY1Zvl3rR5hHsZRuflIxLqc0NP68gVqyauWJFo0oNN2EXJFgIN/zpDVIvXRs8mph5zJMVlO3f6FoU04jVvMunZQC4KgTTi1ZY6ofhU1C0K/39JzrG6GGPYH2XCPMIYYwxuzPhRKqqqhAdHY3KeTmIioiwOzuEwxB63MN2LkN+yhC/LRxGnIMIcNqVAgdbchWBOJioungR0ROzUFlZiaioKHOu8Vu71PQ/61AnsqHu89SeP4fTg283Na96sNXCMmvWLISEhLj9OnTooJi+X79+HulDQkKQlvb7h8cYw4wZM5CQkICIiAgMGDAAxcXFbue555570LJlS4SHhyMhIQEPPvggjh8/btp9EoQ30otW+D1kkF60AvkpQwLSymV1Tz1gLQMHr/ro2OGPEbBlSliK7UNCnTp1wokTJ1y/9evXK6ZdtmyZW9o9e/YgNDQUI0eOdKV56aWX8Nprr2HhwoXYvHkzIiMjkZqaikuXLrnS9O/fHx9//DH27duHTz/9FAcPHsSIESNMvU+CEDNs5zK3YYKKxjVuokVOfPiq9IXhh0DDjoi7/hCIolEMD7NmKJptcGLrkNCsWbOwfPly7NixQ9fx8+fPx4wZM3DixAlERkaCMYbExERkZWVh0qRJAIDKykrExcVh0aJFGD16tOx5PvvsMwwdOhTV1dWoV6+eqmvTkBBhNNJhHQrkxwdWzLrh8dr+YsfQE89B5mhIyH9st7AUFxcjMTERbdu2xdixY1FaWur7oN/Iy8vD6NGjERkZCQAoKSlBWVkZBgwY4EoTHR2NXr16YePGjbLnKC8vx+LFi9G7d2+vYqW6uhpVVVVuPyI4sKonKRUmYouJYHExs/fub6/ZCGdVKUph5IWfFdYMvUsFGPHeaG3s7bZ8iPMBqIuOa2R+eRUrhDHYKlh69eqFRYsWYdWqVViwYAFKSkpw++234+zZsz6P3bJlC/bs2YM///nPrm1lZWUAgLi4OLe0cXFxrn0CU6ZMQWRkJBo3bozS0lKsWOG9FztnzhxER0e7fi1atJBNR6ZKezha0tlng6m3ceOhhysIF7OtLXMfzdZ1nFmNpJy/hfB3bHaupnPlFBXqFlVar2UWvAgStZCDb3Cwdu1aDB48GImJiQgJCcHy5ctd+65cuYIpU6agS5cuiIyMRGJiIsaNG6fLb9RWwTJo0CCMHDkSN954I1JTU7Fy5UpUVFTg448/9nlsXl4eunTpgltuuUXXtSdPnowffvgBX3zxBUJDQzFu3Dh4Gx2bOnUqKisrXb8jR46ouk6gj2fzxLbV3oWu2DGVt+eiphHyJVaMsHBMXjhN97HCtGAryEpJ0yzeYrNzUbZ/o+Znr1cgmNFI+3KY5SXAmZb1iuxao4gwjvPnz6Nr16548803PfZduHAB33//PaZPn47vv/8ey5Ytw759+3DPPfdovg5Xix/GxMQgKSkJBw4c8Jru/PnzWLJkCWbPnu22PT4+HgBw8uRJJCQkuLafPHkS3bp1c0vbpEkTNGnSBElJSejYsSNatGiBTZs2ITlZvtIPCwtDWFiYz3uQmiTJ/8Aarm2zR1N63nxFYrNzAT+v769g8Kehs6KR1OvPkVNUiNjsXFVWKrlrZKWk+f1sHM1v06G1oifUv9F50AtZhrQxaNAgDBo0SHZfdHQ01qxZ47btjTfewC233ILS0lK0bKn+udruwyLm3LlzOHjwoJvYkGPp0qWorq7GAw884La9TZs2iI+Px1dffeXaVlVVhc2bNysKEQCora0FcNVPhQgOxL3sQJ1dYyVGD4VKz1fQdbhs45FetMKnL4uW4Ry9KxkHLCqEQkHX4a6fWRQ0nGD6NQSMeO6B4hog9ds0qo2srKxESEgIYmJiNB1nq4Vl0qRJGDx4MFq1aoXjx49j5syZCA0NxZgxYwAA48aNQ/PmzTFnzhy34/Ly8jB06FA0btzYbXtISAgmTJiA7OxsXH/99WjTpg2mT5+OxMREDB06FACwefNmbN26FbfddhuuueYaHDx4ENOnT0e7du28ihoiMJAKE14CrhmVBzkLQXxSsunDNUY7O0rPJ/yt9LzKp2UACr1hYShQC06enWMoKqwaZji6Sp8zb860YlEj957Ynd9/sgcRyfTbI86zWgwBPHw1Z86ciVmzZvmVt0uXLmHKlCkYM2aM5hlItgqWo0ePYsyYMThz5gyaNm2K2267DZs2bULTpk0BAKWlpahTx73Q9+3bh/Xr1+OLL76QPeczzzyD8+fPIyMjAxUVFbjtttuwatUqhIeHAwAaNGiAZcuWYebMmTh//jwSEhJw1113Ydq0aaqGfIjAwgyxIjR2djR6ctez0rfELIQGTPq85HrDG+L7onfZt27btD5nEiv+48/77+15+TuEqyVfcu8XL35CVnDkyBE3UeFvG3nlyhWMGjUKjDEsWLBA8/EUml8nwRSHhefYBjxCvXNzULKuSH1UiMBGPNyip15S832KOx1ixA7CWr9xK+OwrPisNSIj/bCwnK/FkHsO68prSEgICgoKXKMaAoJYOXToEIqKijxGSFSdmwSLPoJJsAhQQ2wcShUhzyj1Ngnt2OnUaeS1A9k51ej3PZgFiyBWiouL8fXXX7tGUbTCldMtwTeBWCkRwYVVjps8Y/SQRqDWC+L7oqnX3jl37hx27NjhilpfUlKCHTt2oLS0FFeuXMGIESOwbds2LF68GDU1NSgrK0NZWRkuX76s6TokWAjCZHiL+ULYTyA1gHrvwUnCUXyPgfDMjGbbtm3o3r07unfvDgB4+umn0b17d8yYMQPHjh3DZ599hqNHj6Jbt25ISEhw/TZs2KDpOlzFYXEi/+lyD8YeWOM7YZAgVELk8/I75FvBD7y8l05o9LwNARuRf16ehTeUhCUNj7vTr18/r4FXjfI8IQuLnwze/ZndWSACDDPW5DELpV6yExpkOxEaO54bPb1rKIkRhuCcbmUUhtHEPwF6162DLCyEoTih18Qb0kbLKdOQs1LSAHreuuFRrIgtB94aYrV5H7ZzGTexjvTia5Ykj88xUCELC0FYCI/rGOnBVyVNlbgyPPfIzXhuThYrAHXCeIIEC0Eo4DRxwXNDSPyOVBTwugJzMAVII5wBCRaH4KSGMxCIT0pGzJlQxJwJteX6ehowwedAOJbHRpDwhGdhQO8QwRMkWAxEyQHRCLHhdLOq0xD8SKw2B+enDDFEcATCLAZqLJWhDow8Zoh1J02/DnTI6dZgjpZ0xrVt9rj+9laxyK2JIXVQc7rDmpOxY+w6vWiF4iJ+ajBTpPCwLhJhrVhxyjOQi5NiVBRe8mHhBxIsBjJs5zKgjfs2YaVYqTgR/pauMisVJyRWCCK4CWRrilpLoK90ThFWhH/QkBAHiHsHdjp6Os3JNBCQq2h5ewY8D80Esrne1/cYCN+reAq10nsmtZjw/D4S5kKLH+pEvPjhV7eOVWU2VDO8I7bEyFllzLC4SCs9suqYg/j5yQ0HEub63uQUFaLtxDzuTfzi71FcD0gJtHcnkBdSBIJn8UMzIQuLn7zfN81VAart7QkfprgikvaWvAkXMwm0SpA3xM+SytoTs31weBcrwYza2VJkYQleyIfFInKKChErI0i8WU3I+TbwCLZn6NTZSjx8b8L1rc4Hr5YOqWMtb/kjzIeGhHQimN7e/7LYr8UPfVlPeKg4nY6v0NqE8QjvrZWNHz1n/egJw6/n2fqyjgSyCKEhIf8hC4ufDN79GRARoft4b2LEaIe6YBU/1IhZjzCUmWXhNf15zsH6bQDuIkKtYDBrWEbuvIEsYghtkGDhGD1DQmqHmHydQ+sxBCHFSe+Ok/JqNHoEgRBVWa+YkK4ErVUoOU3EFHQdjjs3LbY7G46HhoR0Ip4lFKXRwsLz+KucVSeYK3OCIPhAj8DhhnalWBwyHg8MuJ6GhPyAZgkZgN5YELwteqZ1CErIv9NjQRDBi3h2Hr3HfMPzmkuENdCQkAEM27kM+SlDUD4tQ9UHJaQRp+XB1CkX80EaiVdKVkoawJkFJj4pGcDv6wERhBxK8YeE7cLCl+QDxReOFC0HW2Lwxc/szoXjIQuLAQh+I7HZubrPwUvvQTr84y1P/tyvmZTt34gFEQl2Z4NwKBQjhyD4hCwsfvJ+3zT8VUW8hPyUIYg5E2pIb03LWK5efxm5e5E69JpRqRs1Tk29Yr4RhlHteE6+3uOCrsNR0bgG6UXLAjr0PxG4RDb4JyIbROo/ATsPYAB69uyJ0NBQZGZmIjMz07D86YWcbnWix+lWGprdnyi2Ut8Xo60z4vzx2NvkNV+EMxBEiUB60QpbRRShHZ4nL8hhZRyWL7/8EpGR+gXL+fPnMWDAAHK6DVbkxsv9cfKTfqhGO+/aFWVTLbzmi/AOLxYLQayIOxAVjWtc/mhK8JJ/wqG+LIRf0JCQAWjp7YvT+tvo6v1gyTrhHALlWQlRaOWsF3Y4nMecCfUQLQLeypusLwRhH2RhMQChgvM2TVlw5FMb/M1M9DaAPE/7FGYGBRrSmSs8PwNvDNup7A8idji3cqq/nu9AfA9OfRYE4VRIsBiI3EwfPZUa7z1qOytqucZMECuBKloA9yE6JzWUWodQrLKy+GspcdIzIIhAgQSLyfAuPrQg12haVXF763mX7d/o+gUDTninhGclFgZqRYJVCyXqQXwPTngOPEDijjAK8mHxk/f7puGvW4pUpVUKVCXez0Ml6G1qsdgz38qKiBzsnENOUSGS738JKPvW7qwo4q+FhYfvVICXekMJnvNGOAsSLH7ywLeFqldr9vXh8vJhSxcmk+4D+MmrGnifoh2I9DZRrJg9pd9p0DtNBAs0JEQEDU6o2ANh2qzZAkLqK8bbmlwEQZgDWVgIrzixNyus6ySQZWNetOLUabO+gniZEZRNKRaReMYRL+8rT3khCKdCFhZOEK8aazdO760KYoWX9ZmCAV/lLI7BIogX6b9G5kHuHS7oOtz1sxp/YiaZSSBY9IjggQQLJ/C84Jrc6tI8w6tQcboQNBJ/xYovHytf74BTGmqxpdAMnGrRI4ITGhIivGKFWAkGc3kw3KNW/G0sfYkWvdeTihml4wq6DseheeN9Xtcf6J0hiN8hwWIiemalCP4XdlRUdvmrqL2OloUi9S4qaRZzH81G24gEV8TXuJNnXDNphLD1wYKvexXKQywcxMd4s1RpfWel74nSNcX5Eu8vmJin+9mJr3V1dWg+3lWC4BUaEjIRPRVQetEKtJ2YZ0Ju+EKPSZ7nYTNflO3f6Nawiaf9xp08Y0eWuMdsEafWP0Tq92LEcJJThqQIgifIwkK4sNKqY3ZjZKSwMWo4R2mmzMm4xkCZ36d3JEpl4m1WkZpnITwzb89O7h1RyodAfsoQxJz53Xp6aN54QOb84utK85BTVIhYGbFkZJwgf6x23gJHEoSdkGDhEPFsCjIV+4cRjYBRlbZSAyJ+3oE0NCRtqK829qFuaXyViRgjp0bLDf3Ilb+3fADe3w1heDc2Oxf5v21LL1qB2OxcV5ryaRloOzEPFY1rPMrGH/SUETmFE7xDgoVjjK7ECH65KqwCR6wAno258C57W7nZG1oaYS0iUyqEfAnHisY1AK4utildv0oYZhIsKLHZuR6CWbwCd2x2LnAGln7ncsKPxArhBMiHhSPk1hoKpB63lcg53YrLV2sFbXQ8DGmDnV60IuAjtopjsbj+365U9awcregtS+H6wvMQYiSJ36n0ohU+F9tUsxSH8I1b+Z0P27kMh+aNd5WP1tlWRmFXTBzCuYQwxpjdmXAiVVVViI6ORuW8HESpXEvIF0LPzo41b4Jh2i0v98hLPnjA26wcM68lRXxt4fvLKSpE24l5ODRvPLIe6YL8Vk8A4GfmmV7k3j+7/FasGgblYR2xqosXET0xC5WVlYiKijLnGr+1S19++SUiIyN1n+f8+fMYMGCAqXnVAwkWnQgvxpvf/6R6tWYtWP2BqWlEndrQSkO284RTy9Qo5ESEmgZMbUOnpQcvtqwIZKWkAe1Kr/5xsKXqcxF8ILW02ilcSLD4Dw0J+ckD3waGCT+QG01eI98CgV3uatDbu1Z7nK904iEqMVkpaWg7Me/3iLwNJ2jPJMEVvCx9QuiHBAunWG1dUbM/2BtXMwhknxW1CD4c3nw5/PF1UDqveJt4nSGxUAEAHGzpGqoNNuTeT2Gbk8pDbFlxUr6dwtq1azF48GAkJiYiJCQEy5cvd9vPGMOMGTOQkJCAiIgIDBgwAMXFxZqvQ7OE/OT9vmmIaNjINeYt16irNUNK05mxwq0cQrwKpX0kVIxDGMrgeWXhYEDNTCXhuxO+S7t9IOxA/H6KySkqdFsFndf3l0SKNZw/fx5du3bFn/70Jwwf7vldvfTSS3jttdfw73//G23atMH06dORmpqKH3/8EeHh4aqvQxYWg5HOKACufjRqVmOWCw8u97cZSIUJCRVzUSpfsriYi5YZOU6awUINsneEujUYRacVDBo0CNnZ2Rg2bJjHPsYY5s+fj2nTpmHIkCG48cYb8e677+L48eMelhhfkGAxCKGhUZpGq0XpS8fVtVpY/K28xIGtCGORPkth6qzTVsS2GiOsjHJB4YQpvuJFDMUUdB1uSiOnpgOjhNx0YLMbYkFgS4W22FLoFLFNVhf1VFVVuf2qq6s1n6OkpARlZWUYMGCAa1t0dDR69eqFjRu9hwaQQrOEdCJ4Y2cPG4jEF/Ndy8CLw4HnFBXKBo4C5D8WIysdHqbxEYSd+PoGpJF3xYHjxNvM/JZ8nVuIdi0gDTAn7DP7W+d1yIcX1LwjVs4SOvnJBkQ1aKj/PBfOIW5Eb4/tM2fOxKxZs7weGxISgoKCAgwdOhQAsGHDBvTp0wfHjx9HQkKCK92oUaMQEhKCjz76SHW+yIfFQGKzc4GiFW695ZxpGYDMmibCMJFZ6FklmgQOEUioCdwmh9QSY0YUWrWriYvFihJmfLckUNSTU1QIFBXKrinldI4cOeImrsLCwmzMDQkWv3nijlS885t1pXxaBnIU0skFaoqVGTISo7ZSMwJBQJFosQZpWHe5MO8EHygtcOgP3oYlxN+gld+ltxlBhCfBMHsyKirKb2tQfHw8AODkyZNuFpaTJ0+iW7dums5FPiwGIvb9EP9f8FOQhsIun5bhdfaB1TMTpNeiMV7zWFZVH8BVoULwTVZKminfgtoOiVV1gFLDSw748lC5qKNNmzaIj4/HV1995dpWVVWFzZs3IzlZW/1HgsUkBJ8WMWLHtNjsXE3OrUZUmCRA1GFFOZ2MawwALqsKWVf4xgzRoGRlEf72Zt2w6lummWzeobK4yrlz57Bjxw7s2LEDwFVH2x07dqC0tBQhISGYMGECsrOz8dlnn2H37t0YN24cEhMTXX4uaiGnW52IQ/NHNGzk2i4VKkoe9UpYOQxE8INgaRGECw0RBT5ip3y5GYV25EcJcWeLrAr6cKLTrdq8fvPNN+jfv7/H9oceegiLFi0CYwwzZ85Ebm4uKioqcNttt+Gtt95CUlKSpnyRhcVgBMtJVkqahwVF+NB9TWlUO6vIDMy4TjANe+gtv7L9G93Eivhfs3BSnBEzsNvimJWS5hYfJFiD0xHOp1+/fmCMefwWLVoE4OrModmzZ6OsrAyXLl3Cl19+qVmsACRY/OaBbwuRXrTCw7IiVIbSSlFcScnhzZ/FbJSc+/yJGQEE13CHv89JsKyIBYxZWLFKLs+QOFCHE6wrPAzN8JCHQIcEiwEIpl0pgohRmgkgFgJ29/YAeadbHvJlBrzdW3xSclBZogjnIExx5lWsAHwIKR7yEOiQYDEAJefZ2Oxcr6JFgKeGU4yvHiiv+faGIFR4NL8HkyWK4A+laLYEwQsUh8UAxA2fh+k0JQ0QOdV5c6q1Ow6KkuOfYA0SW5J4bPDVYHeelZ4xzRYieINEC8EbtlpYZs2ahZCQELdfhw4dFNP369fPI31ISAjS0n7/sHwtY3348GGMHz8ebdq0QUREBNq1a4eZM2fi8uXLft+PnOlUHHNFCSsd7tRaRcSWCAHBYmR3o28WapxQ/bUqBWrZBQLiWEkEQfCH7UNCnTp1wokTJ1y/9evXK6ZdtmyZW9o9e/YgNDQUI0eOdKURlrFeuHAhNm/ejMjISKSmpuLSpUsAgJ9++gm1tbV4++238b///Q/z5s3DwoUL8f/+3//z6z6koazFDZuwT9rY2W2l8OZDI82XkFfxTKdAQ40TKgmOwIUsCuogUUfYha1xWGbNmoXly5e7gs1oZf78+ZgxYwZOnDiByMhIMMaQmJiIrKwsTJo0CQBQWVmJuLg4LFq0CKNHj5Y9z9y5c7FgwQIcOnRI9bWF+e6V83IQFREBwP1Dljbs5dMy3Hxd7BYq3gjmRlk6ZCc3hFfQdXjQz7AhCFpvSBuBHIfFKmz3YSkuLkZiYiLCw8ORnJyMOXPmoGXLlqqOzcvLw+jRoxEZGQnA9zLWSoKlsrISsbGxXq9VXV3ttrR2VVWVRxpvH6+WqLZmEoiWEaOR+u8QwQ01zPJQmRBWY+uQUK9evbBo0SKsWrUKCxYsQElJCW6//XacPXvW57FbtmzBnj178Oc//9m1raysDAAQFxfnljYuLs61T8qBAwfw+uuv4y9/+YvX682ZMwfR0dGuX4sWLTzSqAkI582XxWiUQn7LEYyBq4TnJX5uau5fzQq6ToVHc7/deTKzYZZbY4wgCHlsFSyDBg3CyJEjceONNyI1NRUrV65ERUUFPv74Y5/H5uXloUuXLrjlllt0X//YsWO46667MHLkSDzyyCNe006dOhWVlZWu35EjR2TTSWcMiUWAndYNb6vCBpNIAdTFYOEtRo4W/G34eGs4A7EnLxYqQmA2cYA2HpDmxYlOyU7MM6GM7UNCYmJiYpCUlIQDBw54TXf+/HksWbIEs2fPdtuuZRnr48ePo3///ujduzdyc30P14SFhSEsLEzlnXgiXS8EMH8as5qIusEmVgD5ZwGoFya8lJl0VpPgVxOIDbyV+HJAl0Pt2k9Oajyl7xFPgoqG6YITrgTLuXPncPDgQTz44INe0y1duhTV1dV44IEH3LaLl7EWBIqwjPVjjz3mSnfs2DH0798fN998M/Lz81GnjjGGJmnFJu45iSvB8mkZyJcsemZkIygIIWlcFbvjvDgRnq0rYsdfo9YFckojIDScbSfmGe4ALR62VVsevsSKt4ZePCTkhPLnIZ9qr293PgljsXVIaNKkSfj2229x+PBhbNiwAcOGDUNoaCjGjBkDABg3bhymTp3qcVxeXh6GDh2Kxo0bu21Xs4z1sWPH0K9fP7Rs2RIvv/wyTp8+jbKyMkUfF38RRIsQv0QceM0spAuqAfYHpeMNX/464v1OKDejGm1eetBqMXu2lj/lIQxHaD2HnmvyPPRBS04QRmGrheXo0aMYM2YMzpw5g6ZNm+K2227Dpk2b0LRpUwBAaWmph/Vj3759WL9+Pb744gvZcz7zzDM4f/48MjIyXMtYr1q1CuHh4QCANWvW4MCBAzhw4ACuvfZat2PNmuEtiJR80d/5kjRG9lqklhUnNLhmo8bMLzdUlF60gosepb+ovQcnLHQnYEX+7CgDsWVWyzFWIORNS/4mL5yG+EezLY/iTOEHAg9bBcuSJUu87v/mm288trVv396rsBCWsZb6twg8/PDDePjhh7VkUxdqhnqmHj2FOdc2A/CbqCFhYTm+HKLzU4Ygy8oMmQTv4kMPZoh8YTjILqESqCyrqq/az4cglLA90m0gIZ0iK2xTYs61zQyxfsQnJbv5MDhpKMMK1FpXhH/VxGHhbbVno+B1WEGK2gX6lIZKhLWxBKRDtlrP5y9yy3nwjBZxFZudi40fPINlVfVNzBERDNga6dbJyEW6VYtSA6rHz0QQKlaYPvXMnrAbaZkqLfColF7N+ZXO5WQCYRhMitw0Yuk+wH2VdSG9lvOrQTinXDnzPiSn593ITxmC8mkZqkVm24l5AH6PeZRetAJoVwocVBdUlEco0q3/kIXFRJR64dJevL+NHo3TqkNN7BUlcaNEoPoI8dpY+oPYKiN3f8J+q4I7OsGSYiSx2bmqHHCzUtJcdVrMmdCrGx0uVghjIMFiIkJjJjdUJEXYp9Wj3iqx4rThD7nVpr0N9chZVngVIk57FrwiDd4mbPvjzoOuNFodX70JInE6uZXdeUNJUOnJs9ZvKaeoEMN2LsOheeOvHqtDrBR0HX5V6MBz2n9B1+GGhQIgrIOGhHQiHhL6NG20V18HPaj9wK0akvAWKZdHlIZ2lGLUWI2WoSc1eS7oOhwVjWtUm90J4/E2VCK3MKq3dGpnCjkpXEFOUaFruE3NfQnovT85QTJs5zK37VZap60cEvpxwn/RKCxS93nOVp/HDfMHISkpCaGhocjMzERmZqaBOdUHWVgMQI9YKZ+W4frpQev6N96OVwPP1ge5e/E2tMOLhULNEJXc/4Wp1gI5RYU4NG+86vNKCbahCbNQI1bUnkfvMzHzWfobT0UoHy0LwRpdz5BVRRtbt27Fjz/+yIVYAcjCohtvTrdyPWIAsuJE7uOV64FIKyJ/e9FO6pl5Q+4+7LaeiPOhNPQkF4VYDuF4NTElpL14rc9YrTNlIDrkmoVay4q/1/BWXxh53UB49lZOVBDjRAsLOd0GCUoNUGx2rkukiGcjiBsWbw6BWisLpR6FXcMgwr9GWTm8iRW5v41AS/6VLD9yU8+9OfAqVa7iaKptJ+a5vSNan7E4KJg/PXVeLFh2IVeGZjbyVgoIp4sVMWRtcR4kWAxGOkzjq9GI/W1NISGtmkZGS6UhHbPlASXfEn8bOisbSiMEn5Jlxde7I9cQimdWmB0K3df7FwiWOyJwGbZzmetHOAsaEtKJmiEhKU6JY2KG2VdwuBMjF2XWnzJRavz1LAKpNMXZ6Gcml2e5oUPp8xCcbPXmyehnLC4fcdkFytCjk+F1GCfY3g0aEvIfEiw68SdwnBy8B4syCrFwMauyMjIwnxF58XVNOTHnLXCZMPwjdrTV8t4Y8a75ilkTTA1RsMGrAOIdEiz+Y+taQsGKXCMWLBVAVkoaIDMUYqSYUHJ0VbKumDk1XO855d4HcUMxbOcy5ItEjrCYptFDikpotVARgYOT6qpAjUQdrJAPi80IvV3pv4FMTlGhx7CHlXFklJx/7XIW9eYkK+evIjezjMeIu4G63pIazPyOefNJ4xkevwtCP2RhsQlhbQ3g956z+F9vOKmHI4e3dVTMQI0/kVI6qyiflgGkpMkOX3mL2Cv3dzAT6EOrwvR2NdPcCSLQIAsLJ5hpYeG1l6slgJRReFup2U6kDayQpyyRiJFiZ+9RvNyEt/fLqPyp/S54CXdvVh4ER2snwpNliNc6kfAOCRYbUGpofFVyeitjHhpkOexwgJW7LvlbaEd4h5UEoBFiStzA8SBCeIKsK/5DosV50JCQjSgtby/dRyjjS2yI90uHVZQiEvOAXhFl99pSRpelUVFJxedx8nCKk4W13WWuVBcQzoEEi40IAb4mL5zm5lBJH5N6/Fl00q7KS0uDqVW4WH0v0lg6Rl3/6n0b18CJAyja3XAS9iAW1FTHOhMSLBYjiJSy/Rt//1dkTXHah8RjTAZe1hJSQk2DyavlR8CJjr8kVAjC2ZBgsRhBqEj/71R4EyuAMxpPXwizyOxwTOYBM1bpDQTBQhYCbUifO5WbsyGnW4LgEGHFbqpg/YOnmSla8baQJ8/WN57gQaQ6+R3kDRIsBCGCh4YgP2VI0FpWlPD3ufDQcGlFuvSB3BpTBJ8UdB1OPlMmQGsJ6URYs+HN739CRMNGqkKVA/aZJL1dn9aBIQhzkfp6aQlwJxft2E6s8FsLlCE8MbSWkP+QD4uf/PLck4h4MV9xPw8OoNKoqUJeeLAmOAGK00IYgd6gkFrFgVmrrQvnFP61uxPmL9Jyou+cf8jCohOphQXwbb0w+2MQTJBCNMyYM6GyvRS51YEFph49FRDOwGZBlRqhl0CMteRU0SIWK0J9aPY9kIXFf8iHxSSkQsWKD3rYzmUugeLtekph4AFgzrXNzMkcQQQxRogVXhdGlatrxD4cPOKtDiT4hQSLgUjXVpH+a1UexB+fUsUhpIk5E+r2r3AOgiDMQa9YscoiU9B1OPJThqgSSOlFK1x1jBaRwpOYCQRLl93U1NRg+vTpaNOmDSIiItCuXTs899xzMHoAh3xYTELqI2LVUIJQgQDu0T3l8iHNj3gIySqnN6cNsTgpr4R5CLN21DZ2TmoUXd+9yjzL1RO+6o5Ac6gNdl588UUsWLAA//73v9GpUyds27YN6enpiI6OxpNPPmnYdcjCYhJ2WCmEa1Y0rlGsEKRTJQH59VqoQiGk8DokYQdWTzF2kuDhHXqPjWfDhg0YMmQI0tLS0Lp1a4wYMQIDBw7Eli1bDL0OWVj85IFvCxEVEeGx3UrB4poi+dvfUiuA1NIi9XORs8RYBVks+EcYjgiURtPI4RWnWQjNxMiFKs3sMAXKe8wTvXv3Rm5uLvbv34+kpCTs3LkT69evxyuvvGLodUiwmISVlVjy/S/hZFxjQKVpVq5CsMuiYlTjQQ2HOfC4VpS/GHE/WSlpbj5qRr17Qnl7i9PC87tuRD2idA65kAy8lkOgUFVV5fZ3WFgYwsLCPNL97W9/Q1VVFTp06IDQ0FDU1NTg+eefx9ixYw3NDwmWICNQh3qo4jIOcYMYCGLFrIij0thGRuFtyCKnqBAoKlTtXxIIiDtYYv87f8o90KPQLvu/eQivV0/38ZeuXAEAtGjRwm37zJkzMWvWLI/0H3/8MRYvXowPPvgAnTp1wo4dOzBhwgQkJibioYce0p0PKRSHRSfCfPfKeTn4NG20YxpM6YcaiBElAxUze9YU7ZhPeItyaxfiIetD88YDgCWxU4zEyjgs2cMG+i1YphV8gSNHjrjlVcnC0qJFC/ztb39DZmama1t2djbef/99/PTTT7rzIYWcbg3Aio8mP2WIrJ9JfFKyJicycawW4W+rcZrTm50O1GKMik4snnovPjfBH1KRklNUiJyiwqAKPSCt99pOzLMpJ8FHVFSU209OrADAhQsXUKeOu5wIDQ1FbW2tofkhweIglMSFE3teThItdjTmSuLEyCUVlM5D4oUv5ByenfiM/HHsF9d9FY1rNC8Oanfcl4Kuw/GfLvfYmgczGTx4MJ5//nkUFhbi8OHDKCgowCuvvIJhw4YZeh0aEtKJeEhIbpYQQZiBXmdDueMC0aFWQMvigk5CzxBRfsoQxWU6nIKc4NB7P3YNgztxSEhtXs+ePYvp06ejoKAAp06dQmJiIsaMGYMZM2agfv36uvMhhZxuHYqaUN/eGiS5ac5Ow+qZAjw0gkL8jxyN+ZAro0BrzAHPKdiBJsq8fefefJyE9cWciFFixQgrS6C9T0bRqFEjzJ8/H/Pnzzf1OjQk5FCEStlXfAxhzFv8sYodb50qVgR8LThpJDxUVGqeub84YbhOPKVYHEZeupJwbHaurM+OU1DzLMRTrOXQKujtHj7xhdY6S/D5UVvfebt/HuqAYIYEC+f4W9HGZuciNjsXw26Nc9vudKECeK+I9TRSQnpvjYSdFZZTG12jUbNGlxN9POTw14qmZh/g2UjzJFr8nSTQdmKepvfBqLqRpzIMFGhIiHN8fWi+TJTpRSuAvzwGgD4gX6QXrfAoT55MwFY1wrzcrxLS5SXSi1YoxiWRc1LmOfCaXvTcD88ixUjsCpIZCJ1C3iCnW51Y7XSr138iWCNCSqNiGnn/PPiyEIQe1IiSxy6eAADMubaZpgUevV2Tl3D9dsadCmSnW6ugISGHEEhruViBXBRSGlIhghFBpCiJFSEQ27Bz8922Tz16Cm0n5vnt0+TvWmVGigyyejgbGhLiHF8zfXx9gMFmWREjvXc1ZaFkPRFvJ+FI8IrYmigVCeLo1mLaTsxDReMaFGACAKCs5qOr6RpOuHrMb++7P8KBhAJhBCRYOCY/ZcjVdUNkyCkqdK3OTBiHkhghkUI4BbkhUF8Wjpgzob+nbTjB7bhD88a73n89osVfCwmJHUKAhoQ4hxrK4EGYgk7w6wDKa74E0otWuMSKEQ19ReMaQ+og3suNcAbkdKsTinQbGEiHgHiaFRSs+OMkHeir8OpFj2CQ+p5UNK6xfIg5kGZ0kdOt/9CQUBBBKzN7IhUnJFaMRY8A9KeB4uH9VvrO7Fx52S0/7UoBiHxUJEiddCsa1yDmTCjSi1aoqkOMqGfIQZ6QgwQLZ1APkQgEhJ5xMAhAuW9WaLS9TYG3yponvY7go3J1VlBLj/TDdi5ziRoAwDnhPy291ktGDvsEilWFMBYaEtKJGUNCgbBImZkEa0wZJxOIQ2xqOxVqhzMCoZMitzaZnKVFyfqi1iojTuc0izENCfkPCRadkA9LYGOn+T4QcYpw8ddnQk1QwUDyyxCjJFAElMSFVuHh1IVbSbD4D80S4ggnjttKF6EzeqE5PecyYraNGYsMivMVbLOBeBQrcu+Wv0JCzTsTiGIF+F08iMtVWHBQj5CRohRXhggeSLBwhFMrMnEFJZ5WaQRya8F4wyk9ecIexILazu9tQ3xfj21O6LCI8+hNdPvquFQ0rtF0XanAIbESnJBgcTBmWDT0wovYEsQKj6JF3PvmMX+AuY2m3VYlb0LFn7zpWUSwd9m3uq9nNUr1jD+WJH+nrRPBCc0ScjBy6+XYkYf8lCGGRt7loQccbAh+FdIyFzfksdm5fj2T2Oxc4LcVsQXMFG7S90gp7/kpQ1S/u2oaTD29f+H7ySkq9Luc/UV6j+XTrq41FJudq5hefM9G592pPiuE8Wi2sDz00ENYu3atGXkhdMJDw65UmelBKsR4uL9Ap3xahktIiHvTYkFhxHPITxnielfMtjKpHZ604v0SN7pyoicrJc2tbOzohBR0Ha6Yt6yUNMXyJBFBWIXmWUJDhw7FypUr0apVK6Snp+Ohhx5C8+bNzcoft/AyS0g84yDQZh+omXEhd0xWSprpPdVg85UJtFlTet8Ps6fSCuVstZVFTqgEw8wdKxCe6SPJKTRLyE80W1iWL1+OY8eO4bHHHsNHH32E1q1bY9CgQfjkk09w5coVM/IYFBgxNitnznf6+jRtJ+ZpSi/2ETGzwrer0TbrmUrPKz6/uBGNzc7lwmfKX/S+H3oW/lODVJxbJVaEZ6nVCVYKryKFBx+/QBD4vOB3HJbvv/8e+fn5+Oc//4mGDRvigQcewF//+ldcf/31RuWRS3ixsKjF3+BURvQs9VhMCGXik5JRtn+jX5YoqYWufFqGzxgiAA3TBQJGf4+BEADPLHKKCi2xWgjt0hcfbEZkg4a6z3P+wjkMvL8XkpKSEBoaiszMTGRmZhqYU334JVhOnDiBd999F/n5+Th69CjuvfdeHDt2DN9++y1eeuklTJw40ci8coXZgsUsE7x02MhKU66vCtLfIS01Da7d8CTatOZF2lMl0RI4OGGI0wnftxI5RYWWDgkZJVgcPyR05coVfPrpp7j77rvRqlUrLF26FBMmTMDx48fx73//G19++SU+/vhjzJ4924z8BgR2mSi9XZeHXpG/DWD5tAyDcmI8YnHgq8K124TNA/FJyXZngTuMHg500hRhQaw4FSeKLB7RLFgSEhLwyCOPoFWrVtiyZQu2bduGRx991E2F9e/fHzExMUbmM6Dw1jCb2QMXe/mLzbdWiRWjI8eK4bWR58miIsXb8/DVKCq9w0Y1pmX7NxpynkBC8CECjClnHjopanGyWCGMQ7NgmTdvHo4fP44333wT3bp1k00TExODkpISn+eaNWsWQkJC3H4dOnRQTN+vXz+P9CEhIUhL+73SZYxhxowZSEhIQEREBAYMGIDi4mK38zz//PPo3bs3GjRowIWwEveaxA2ImY2cuLLiwTHNH8RTcMXTQnm4J6VVeqVIowXbhfg9zCkqdJWjOM/e8ufPO8uzg7gw5ddOq4TQ4RA7PwvPRnhWWlAqa7vvU5wPghCjWbA8+OCDCA8PNywDnTp1wokTJ1y/9evXK6ZdtmyZW9o9e/YgNDQUI0eOdKV56aWX8Nprr2HhwoXYvHkzIiMjkZqaikuXLrnSXL58GSNHjsRjjz1m2H34g7eerhU9c6PD6atFvA6RnmPlGnm5+1ASLzxViLz5g9glHHi0RInhySohFjBCuUnFpTeUOkc83aP0G+X9/fDG62tX250Fx2Pras2zZs3C8uXLsWPHDl3Hz58/HzNmzMCJEycQGRkJxhgSExORlZWFSZMmAQAqKysRFxeHRYsWYfTo0W7HL1q0CBMmTEBFRYXma/tyujVyKIAXhzijZogYES9GnBe953Pa8vRWIZRt+bQMt4CAvIkqHpH7Vs18z7w5omr9XnmpZ8SIh66d/r1auVozOd2aRHFxMRITE9G2bVuMHTsWpaWlqo/Ny8vD6NGjERkZCQAoKSlBWVkZBgwY4EoTHR2NXr16YeNGe8bEeTVxiynoOtzrukRCpSH06PwdahHGo41wItSSF2laoyo/JzxjrUjFSqAgHe5QsrLpfcflGnyzG1ml56TVcsqbWAHcfeycLFYIY7BVsPTq1QuLFi3CqlWrsGDBApSUlOD222/H2bNnfR67ZcsW7NmzB3/+859d28rKygAAcXFxbmnj4uJc+/RSXV2Nqqoqt583hGEeHisBKRWNa9wqNm8NuxGzN6QVrL9lZHfPX62fipOQPiOjypgHvyLAd8wQu98pNUjXf1IqW3FnhBffLoLQg62CZdCgQRg5ciRuvPFGpKamYuXKlaioqMDHH3/s89i8vDx06dIFt9xyiwU5BebMmYPo6GjXr0WLFoacV03DZoXo8VaJiSu6sv0bDVtTRizo1Dj6iStbIQ9aZw+orbC1VOpyViInCFUl0otWoHxahqsx9Od5C89UKB+7hYCVs+LMRlqW0r+Fd134Ruwqe57FO4k3Z2H7kJCYmJgYJCUl4cCBA17TnT9/HkuWLMH48ePdtsfHxwMATp486bb95MmTrn16mTp1KiorK12/I0eO6DqPNPS5uGETfzx2f0hSh9aYM6GyFZ6eykiuERy2cxkOzRuvcIT7seL8aREGWhpfp5vS/cWI4aCcokLXM7W7jKTvqeATYabjtZVO3VqsJ0qO6WbibejX7plXhHOw1elWyrlz59CyZUvMmjULTz75pGK6RYsW4dFHH8WxY8fQuHFj13bB6XbSpEnIyrq6YHxVVRWaNWtmudMt4O7E5qsHbvficnIVFs8fs2AO1+twq+U4Hp0RjcaMadU8xKBRc19iZ06h8ZQOk/KK+P58WRsFEeqE+zIaHhaGJadb/6lr58UnTZqEwYMHo1WrVjh+/DhmzpyJ0NBQjBkzBgAwbtw4NG/eHHPmzHE7Li8vD0OHDnUTKwAQEhKCCRMmIDs7G9dffz3atGmD6dOnIzExEUOHDnWlKy0tRXl5OUpLS1FTU+OapXTdddehYUP9D1mKEMtCbruabVYScybUbQE0uz9ub4grH7355Pn+rEYYNjDDydbu91oPThoyEj+32OxcVUOkPDTeBKEHW4eEjh49ijFjxqB9+/YYNWoUGjdujE2bNqFp06YArgqLEydOuB2zb98+rF+/3mM4SOCZZ57BE088gYyMDPTs2RPnzp3DqlWr3GLHzJgxA927d8fMmTNx7tw5dO/eHd27d8e2bdsMv0enOGSKK+nyaRm2D0nxhBMbXS0IsTyMRm56r9Wo8cMRv/tqxIpTHVft9mWxE8Ea68TnRvwOV0NCTkLr4oc8mMd9YedKvGp6fUIZxmbnOq7SpV5t4GDEsxS/y0IcFT1Dj9IG2JuFRWyB4bkecnq8FSVoSMh/bB0SCnR4833geSpnzJlQn2lcZenAhp/ECp/oFelGCVBxTKLY7Fzk68iLGsTDRgC4/IZ4ijxN8AkJFhNRGg6yS8Tw3GtRypvSbCoSAM6BN+EuReu7ZMS7p+TfBrivTOyr3KSBHAVBImdp4f2b4bl+IviABIsF2Omz4suqYhfeRIewj/eGjlCHVc/Q21CC0pCsnY24N78hNWUmtg553J90iIlzsSJHoA4NEfrhKg5LoCKNeMvzqrSA+TEZ5BY9lAsKR2KFMAKjvjUjvgvpNGs5waQlVpD4W5F+L/T9mAsvq1oHE2RhsRCpGdgKC4KeHooafxKjkC5iqAbeTdtWwuvwWHxSMsr2W7t+l9K7bmXDrfRNC9v9ESgEP/BquQ50yMJiAUYs8ud05KwqAmKxola00PREvrFarFiBP8KCrB3a4VkMBNISD06CBIsN8L4wopEfonioR2/YcH/SGYGdZl9p7AhpeVLvXJ6CrsNVdxB4MusLK6drhQS8sQRz55JnKA6LTrTGYQk2pBWokxtWo4SBMCzgK/qxdFjB17IOdsbPIdQhfodIaPKHnjhZWp2CAz0Oy7FjxzBlyhT897//xYULF3DdddchPz8fPXr00J0PKeTD4mC0fDCB4HFvxz3kFBUCRYXI+e1vf6xiwrFS0aLlnHJCJkt3jpyPGWtwmfGelU/LQA6u5lH4P0BDRVbha6q4VqFCuPPLL7+gT58+6N+/P/773/+iadOmKC4uxjXXXGPodcjCohPeLCxCJSutbNU6hxntRObPooSA/dYCrfn3t5FTMkFrWdqBGj9+EQLDAZ4xUrQ+N5rurw+7F5gNZAvL3/72N3z33XdYt26d7muqgXxYAgRBrCjtU0I8dGNkr1Kv4CiflnG1B2rzGLKe/HvredEUSGvwVcZ2PgO5YG56Gk4SK9owuy4J5O+6qqrK7VddXS2b7rPPPkOPHj0wcuRINGvWDN27d8c777xjeH7IwqIT3iwsAoEy3c4Jay/pRc4a4633p7bC5bmseLEK6P0+CroOx6F54/26B7URbANh+JZXzHgPxe+Ut/fLSguLv+2SkFcpM2fOxKxZszy2C4sLP/300xg5ciS2bt2Kp556CgsXLsRDDz2kOx9SSLDoxIgXQ6zMqYLyRDCjl0/LcIsKavdwEWCP46Qv51teRAHxO2LhHZ+UDCAwp3wTv6PU+XCiYDly5IhbXsPCwhAWFuaRvn79+ujRowc2bNjg2vbkk09i69at2LjRuPednG5tJNBFij+NuvDRCz1SIVYLD2IFsFY0BYKFxSkYbd2Y+2i2S6CU7d94NR4T6FkFA4HwjKOiolSJq4SEBNxwww1u2zp27IhPP/3U0PyQD0sAwKt/hJZGXYgvIvjUiGfUCP/nRayIMXt83Nv57fbzCXSM+K4EsSK2tARCQ8YbwnOyux4U6q+2E/O4rZfNoE+fPti3b5/btv3796NVq1aGXocEi8WIG2ajgj3pGY/3hdF51IIQFdgJFbuWWTzi/UZYTbyt+EvoQ/wtGRnNtO3EPEPOQ8gjPKdD88bbKhTSi1Y4ot4ymokTJ2LTpk144YUXcODAAXzwwQfIzc1FZmamodehISELMLLRN8JkrfZ4Lev7GIUwBBSbnYt88GlV8YWRFZavIHPBWDkShBJZKWmAzUPt8UnJWGBrDqynZ8+eKCgowNSpUzF79my0adMG8+fPx9ixYw29DllYbERPY6wkNrxNa9aDNG9WWVtis3PdHGyNuK5dliIltAaKEw8jkEBxJoHur8Yrdlggy/ZvREXjGtffwTIsdPfdd2P37t24dOkS9u7di0ceecTwa5CFxQKsshJIA8YZUUkKebfa0mF0GHMnWmqkU7vNEitOGX7jHadMxQ+m523XfYqt006se3iFLCxBhjcfGukie2ZdXw7xR630fyXU9KJ4srCoxSoHzWBpvIzGqf5D9LytIb1oBYkVgyHBEqDIWVfEjbb4Q5JbUVnth6a20s5PGYKcokLZaJ/SvPk6jxQl51NhG48VhxWNhhNFmpOQPkM5gcmTqOEpLwShBxIsAYSvsVKh4fY2zOOtYZezymhpeAX/FOk5xBWpL2GhtN/fBc3U4iQRYJRIc9I984bV1gw1M9T0HMcrTs03oQ/yYQkg9PisKFldxAgROidPy9A9PVNsWRGcaoVrx4pClueI9vvKlxilcXlhu9N8Yczyh9Djv8CbdYqQx9ez1buPZ5yab0IfZGEhAHgXK2X7N2JBRALaTszzWxQJFYyWXruatEoVF69B53zdU2x2rimVMVXwgYu3ZysIYL0WGILgARIsQY43/478lCGYvHAagKvWG2Gqnt5KTRgO8uVTIqzYLM2LEk6sZNUIKBqKIbSg9L5o+T5I0OqDvlVroCEhwgPXqrISE7PQyLadmKcYnEk6lOEa9snO9WikxVP/ZBc3lDgGKyFcS65ilruukFZpnxi71i/izSJE8In4e1N6z0mEGI84bER8UjLm/Ladp/XOAhGysBAeCOGlpaJD7NSr5OCrVDn6+xFrOV7Iu9QXBvAUNd6EkLTyoV7UVXiyaPGUFzuQzkzy5RQv900EGmYEastPGeJ2XvHQ+Jxrm7muS2LFXMjCQvhE+AiFj9TIqJ3ehqO0fvzSytnb8dJoulJhwuNUaF4QppHz0HPXmwejV2U2Ey15Fd5Z6fNRa1EMBMx6rkrnjTkTaup1id8hCwthGHIzW3hr+AWhIrf0gPRv6Tae7sNueBAr/qCncTHKmqP1PHryGoyWFTPx9u0buUgm4R0SLIQiVkS+9XVdo9ESZ8aOxR8Ja7BzfRc9Ys/f/PLWcdACfYOEAAmWIEPLx59etMItWqwYX6sI+5MnOytX8lkJDAq6Dpdt5P1p+DW/3+1KARhjmTF6cVMnobUuEKJqG4W3JUwIayHBEqQofXRKH7uZzo1WiRO1FY1Te6JOR0lk6EHJTG+p6f5gSwDOHz5zGsKkASPPJ0bwWSGshwRLkOEtLH9OUaHqj92JlbB0iEeuDKj3ZB9afQHoWRHeMKuTRf4q9kGzhAgXgRi62xeCaFHy11EjcgjjECwsahoFrc9CfG4nNjo85ZmXWWJyCM85y8RrULwVeyALC+dY1Yv01Rsxevzc6vgZvlahlvObkVqjqIIyH61iQs17qRQ/wyjkZpQFOkorpPOAFYKU6gJ7IMHCMVaqeF9r8RyaN96S65mFlnKUipdA6E0FqsOmlobJn0bMW+Ps5Bk4euFVrBCBDQkWThH8SXiBV/OvGcj1lp3Qg3ZCHp1KML3/apBG2OWVQBXqwQr5sBCECDmRyJNw9Iav4FbBSjDfO284KcIwwR8kWDiFl94Lz851anB6/glleGj85KI7Bxs8l4Hd74dd7HtzIRqG6p9+fa6mBgDQs2dPhIaGIjMzE5mZmUZlTzckWAiv8FgJacFb/n054hJ8E6yNkZOx85lpmYEGUGcHALZu3YqoqCi7s+GCfFiIoKZ8WkbAzfIgh0jr0OLLEaj+FGb4s5jxDmudPRTsYoVHSLAQXGCXYBAvhhhIoiUQMTISrlqMfCfIIqSNnKJCEt+EGzQkRHCBFcMywvRkpVWYaWiIECjoOhwVjWtQPi0DkOlpK8V2oWEEY6AyJOQgwUKoxumVsZIVJRDirAQDVlsoYs6EImZiHgpk8qG0GKGTvw+C4B0aEiJUY1dlbLZZONDECjWa/iOIEuFX0bjGwweChnj4I1D9hIirkGBxEMHqY2FUAyw3FBRoYoWwFhItBGEdNCTECXLDEtJt1Lh6R8k3RenvQCQ/ZQjKp2UgNjs3KO7XKgKiLNuVAgdb2p0LgtANWVg4wleDS8gjDBnJrQEUbKQXraAhIUIek8UKDzN6yOIV2JBgsQlp7A+hoRW2O6WxNbKSEt+79P69jU0LDXROUaFh5SbNix3Pw5+y5VnsypUlD40d4R9ahDI9b0IPJFg4QWn2Cu/CxYjevNx9ShtctT2n8mkZfudHCaufRaBaSuTEVFZKGsXdCBKEZ0zPmtAKCRabUOvwyXNP2V8EoSKURcyZULdyEQSCFqEgBILzN09a0luFlgqeGgMTaVdqdw4cjSDEA1WQE+ZBgsVP3u9rzEeXXrTCZR0Q/jVCrPBuoQF+FwkVjWvctmsN6JaVkibruCwtA6UyUdouiCg7xKM4T1rEmBMbAzNCvJsCOa4agmBRI3FNqIVmCXGA0ChlAcjROKThbQE/sYXC234pvFl1/A3sptYRVy6dr+taXVYU5I7Qg1gUOEIUEoQMZGHhAPEQiNYhDb09fzstL3qGXPzx59E6+0o8TGU3NK2dD+xYx8hIBOsVT2LFrPzIPSsnPzvid0IYY8zuTDiRqqoqREdHo3JeDqIiIgw7r9FTm9VaCqxG6T6lM6d8iRTxcb4sJGZZJ+RmexGBi9I6QoR6pBYfpy/7oYaqixcRPTELlZWViIqKMucav7VLW667Hg1DQ3Wf51xNDW45UGxqXvVAFhaOCeTGz5tfiHi7ljIQW2Hkzm1WeQbycyK0Q71534jFCfmwEGohC4tO5CwsRvXgg8lPQckCJGcxUfJFKZ+W4aoAzS476l0HBgVdh/v1/IT3wK53gHxSnAdZWPyHLCwGkl60wpDeQrCIFeD3GVHS2QLCcJA33xXBiiL2+zG77MSL4RHORU5oiN8/X0OR0oUQrUQ8fCIMp4j3OQ0n5pmwB5olZDCx2blAEAkOJdT6dWSlpCH/t//HZue6/i8+Vosfi6/rGUUwicpgQRwxGUWFAGe+FWobdp7yTBBGQoLFYKghu4qcE63c3wKCcJEO+whDPLTOkj6ERo4aMPWIy4qncnMTVJD3A+Epv2pxYp4JeyDBQpiKL2HhGhICgKJC5GfnIuZMKCoa17gdWz4tA/m/Df0onVONNSaYUOppk/hzDt6EiJLFRfzc9fp0ia9LFhtCK//4xz8wdepUPPXUU5g/f75h5yWnW52YNa05UBFbSoR/BWdZXwHsgskJmSC04G2YiEQGXwSL0+3WrVsxatQoREVFoX///oYKFludbmfNmoWQkBC3X4cOHRTT9+vXzyN9SEgI0tJ+/zAZY5gxYwYSEhIQERGBAQMGoLi42O085eXlGDt2LKKiohATE4Px48fj3Llzpt0ncRWpMIn1YTERILESXMQnJdudBVOxatozObMSVnPu3DmMHTsW77zzDq655hrDz2/7LKFOnTrhxIkTrt/69esV0y5btswt7Z49exAaGoqRI0e60rz00kt47bXXsHDhQmzevBmRkZFITU3FpUuXXGnGjh2L//3vf1izZg0+//xzrF27FhkZ5q3yG0yoXY9HGidFvD8QBQovQ1VOaMTK9m+09fpSQWF0mQmzi4Tr+PNu8Ba9lggsqqqq3H7V1dVe02dmZiItLQ0DBgwwJT+2+7DUrVsX8fHxqtLGxsa6/b1kyRI0aNDAJVgYY5g/fz6mTZuGIUOuVgLvvvsu4uLisHz5cowePRp79+7FqlWrsHXrVvTo0QMA8Prrr+OPf/wjXn75ZSQmJhp4d8GBeMjGKLGhd7kB3sWO3ZGHhcbN3zgkgYy4XAT/DTPKSzifEe+Ckmjx1//Eyc68wcxDWXURGqF/SKjmYgjwGNCiRQu37TNnzsSsWbNkj1myZAm+//57bN26Vfd1fWG7haW4uBiJiYlo27Ytxo4di9JS9Uu35+XlYfTo0YiMjAQAlJSUoKyszE3dRUdHo1evXti48WqvbePGjYiJiXGJFQAYMGAA6tSpg82bNyteq7q62kNtCvDSew52eBYrRgs6fyGxog6nN9ROzz9hL0eOHEFlZaXrN3XqVMV0Tz31FBYvXozw8HDT8mOrhaVXr15YtGgR2rdvjxMnTuDZZ5/F7bffjj179qBRo0Zej92yZQv27NmDvLw817aysjIAQFxcnFvauLg4176ysjI0a9bMbX/dunURGxvrSiPHnDlz8Oyzz8ruK5+WgRzA5UCaXrQiIHuw0pkDwFU/FLlGOKeoULWPSrBB5cE/wver5TtWSiuOiiuNkKvGn8WqekQ69EXDTURUVJQqp9vt27fj1KlTuOmmm1zbampqsHbtWrzxxhuorq5GqB9OwAK2CpZBgwa5/n/jjTeiV69eaNWqFT7++GOMHz/e67F5eXno0qULbrnlFrOzCQCYOnUqnn76adffVVVVLnOZ+KMWGqNAEyuAQnyK36L7SqdRKgkZLZg5xOOE4SMlnJx3pyF8x2q+Z6U04u3SNDzVEyROCL3ceeed2L17t9u29PR0dOjQAVOmTDFErAAcDAmJiYmJQVJSEg4cOOA13fnz57FkyRIPUSP4wpw8edJt+8mTJ1374uPjcerUKbf9v/76K8rLy7360oSFhbnUplrV6WS89fzEQ2D5KUPcQuNL9+vBTD8Pu31I/EXIPw1DmovdQoIWUCScRKNGjdC5c2e3X2RkJBo3bozOnTsbdh2uBMu5c+dw8OBBJCQkeE23dOlSVFdX44EHHnDb3qZNG8THx+Orr75ybauqqsLmzZuRnHx1qmRycjIqKiqwfft2V5qioiLU1taiV69eBt6Ns1GqsHOKCq8OgUnW/pGitBaQUuRbtaH8/cUOoWKWuOBZtPCcN54p6Do8IIeTCcIIbBUskyZNwrfffovDhw9jw4YNGDZsGEJDQzFmzBgAwLhx42SdfPLy8jB06FA0btzYbXtISAgmTJiA7OxsfPbZZ9i9ezfGjRuHxMREDB06FADQsWNH3HXXXXjkkUewZcsWfPfdd3j88ccxevRomiHkA6VGSIhW6y2tt0UMAX4sHnJ51Nr4UiRZYOrRU74TER7YuagiQRjJN998Y2jQOMBmwXL06FGMGTMG7du3x6hRo9C4cWNs2rQJTZs2BQCUlpbixIkTbsfs27cP69evV/RxeeaZZ/DEE08gIyMDPXv2xLlz57Bq1So3z+XFixejQ4cOuPPOO/HHP/4Rt912G3Jzc2XPp5Zg6VHGZue6hoDEQ0FSa4uciJHDCY25ljxaNWTDe7wau2OpEAQReFBofp1IQ/MHmiOk1NdDughh+bQMl2AR/19u0UNxSH6esWpYyl+M8MNxwvMgiEDCytD8HRd09DMOSw32PrbX1LzqgQSLTgJdsHhDznrg9HuXCjHe7yc/ZQhizoTqHj4QLGJtJ+bREARBWAAJFv+xPdJtoMB7A2ckgXavbmIzJQ1wyP35IzRc09Ab1xiVHcIH5ExLEP7B1SwhgrAKpwz/eMMIPxmn3jtBEMEHCRaCcCgkNpwHxVchCP2QYCGCEqc39kbmP1hmuNkNTVkmCP8gwUIENdRYA+nXU/whgiD4hwQLEdQ43dJiCG8vsDsHBEEQPiHBQhAEQRAE95BgIQgHQ0NaBEEECyRYCO5xWqNs5YrKNKRFEESwQIKF4B7xkgB2oPfaThcTThOKBEEENiRYCEdgZ+Ov59qB0Ng7XXARBBFYUGh+gxGvWpyVkhZUawwRV7HieVOYd4Iggg2ysBhMVkqa6wcEfi9VLNDsIj9lSEBYNLQwbOcyxCclu/7m4TkQBEGYCQkWwi8EYWY1YpGSXrQi4IWhlK+ufxmL2b2uv+c+mu0m2oJNwBH2kVNUSIKZsAQSLA6FKojAt1754s7iSa7/l+3f6FYeTikbYW0dWmOHIAhfkGBxKHZZNgg+EIsVp1tTSKw4G6qLCKsgwcIJZFZ1x1csE6dYEKwgUMqioOtwEi8OhUSLd3KKCvH62tV2Z8Px0CwhTqAP3p2YM6EAzGuMjZplQ7PA9KMkTmgGFBEo2NUJ3ZRwF6Iiw3QfX3W+GtHYi549eyI0NBSZmZnIzMw0MIf6IMFCcInZDZZR5yexop9hO5fJihYSK4STCSRL+datWxEVFWV3NlzQkBAHaHnBA+ljIPwj0BxWh+1cRmKFcCw0rG8+JFgMwp8X1dtwEH0EhDcCRawQhJOhOtoaaEjIILJS0jyi3Bp1Xm9/E8GLYI0QnFWdaJ1wYp4JZ2OU3xmJFOshC4vBiKPcmgF9JPqhsuMXshQRVkF+Z86FBAtB6ISX+CcVjWvszoLfkKWFcBLU+bEHEiwGYsVwDQ0J6cfosuOlp5ZetML2Bj/QHIAJQgkSK/ZBgsWB8OyIy4vVgSAIwmh4rXeDBRIsDkTwk+Hx4+HF6kBYi2DhEWKrkKXFGHj8xgnCLkiwOBgaHiKIwIa+cYL4HRIsBEEYCgWAsxaywhDBAsVhcTg5RYXUCyOIIIa+f37w9iyqLl7EtIIvLMxN4EEWlgAgkHtYZjnxBnKZEQRhPSQczYcsLA4n0D8Ss5x4A73cggWrV8sWC2hyMA8+qN6wF7KwEEEJWVgCA6tFg3A9EisEYT0kWIigJj9lCMWOITRBYoUg7IGGhIigRDDtUuNDSPFlfQuWYQGhHISYT4F230rPOTY7l+oFTiELi03oGZLgOcJtoEDWFuMJtCBygfgNyr334oVcg0WsAED5tIyAfMaBQAhjjNmdCSdSVVWF6OhoVM7LQVREhK5zBGKvhSDkKOg63BGxWdQ0VNJvVnxMbHYuALLcOQG1osSoOrrq4kVET8xCZWUloqKiDDmnxzWEdmn5RERFhuk/z/lqRA+dZ2pe9UBDQiahZvYCiRUiWAgUsRKbnQuIvmvpMeXTMq5ulx4jgsQMH4jr3/yUIa5nJ0XpvaD623pIsJhEetEKy6dcEgRhLnq+Z2lDmG+zj4Rc4xzsjW960QrgtzJQa3kRpwv28rMK8mExERIr5kM+J4QRWOmzIPhI2PXuylkSBP84oRwKug5HTlFhUC5kKfbdUUuw+xfOmTMHPXv2RKNGjdCsWTMMHToU+/btM/w6JFgIR0OikLAKb74reuD53RWG8A7NG49D88bbnBvnEKyi5dtvv0VmZiY2bdqENWvW4MqVKxg4cCDOnz9v6HVIsBAEYSjB2CvXitSvhSfstP44HZ6fq5msWrUKDz/8MDp16oSuXbti0aJFKC0txfbt2w29DgkWwrFQ0Dc+cdpqzXpmBgnbAqWBCjYfDL3P3Bc8W830UFVV5farrq5WdVxlZSUAIDY21tD8kNMtQRBBS7Ca8An3wHhKZGl0xOWF/zT8KxpENtJ9/IWQswDmoUWLFm7bZ86ciVmzZnk9tra2FhMmTECfPn3QuXNn3XmQgwQLQRCEF7w1aLcOvtP1/5Vd26k+p509cSFyrRil6dmBhpzwUBMPS7w/mKY5HzlyxC0OS1iY79gumZmZ2LNnD9avX294fmhIiHAs6UUrAs4ESziTlV3b4Y87D+KPOw/qPoddfj+BMqzlC29WEi2zfPTMInIqUVFRbj9fguXxxx/H559/jq+//hrXXnut4fkhwUIQRNDiT8Mj9p8SCxW9wsUuv5/0ohVB1Qh7Q8vQj1BmSmXntGEkf2CM4fHHH0dBQQGKiorQpk0bU65DgiVIEBxUyUmVMBvpLCE9lgOr3lPhOrHZua6fGKVGXC74mtyQkD8WF6tQY10wuvG12ppkh3gIJgGYmZmJ999/Hx988AEaNWqEsrIylJWV4eLFi4ZehwRLkCAMnwTCEAqJLr4RZgkJjZIey4FV76lwnfJpGS4BIogWbw2Oko+HVLRI/xZEkd3vsN3DQFZak4LJ0mEXCxYsQGVlJfr164eEhATX76OPPjL0OiRYCEdhd0VPBBZKzqbexIo/7yAvHQe560vLQipqzGj445OSDT+nGK15DiariJEwxmR/Dz/8sKHXIcEShHx1/ct2Z0E3QmVPwoV/eI/FovQOiUPnS9NIh4IEC4rYkrKyazsPy8ofdx4M6sZQadipbP9GU6+phWB+Pk6BBEsQcmfxJLuzoApvosTuHirhfHxN3ZXbL7dNzXTmTf/5Sn3GTERrI27U0BHvTr085434HYrD4kDUxA0IBJwkSgRx5aQ8E74pn5aBHPjfoFn9XqgRJt3+shc73u6ouL98WoZfw0JtJ+bJbhcsb1LHWzmLnNz11D4LtUHfgqEuDRRIsBAEQZjEH3ce1BRQToqZDqN3Fk/CDljvkKplhpBckDutZKWkyc7qIpwHCRYH4qtHkJ8yhHr6NiD41lDZBy5aGlAtU5rtmMmi5ppWNvIFXYeb5veUXrQCOTLbybriLMiHJQChBtMeBLFC8W4CG7lgYXLiRHC+tXsKsRJaGmvxVG+7G3m94k7Ie2x2Lhf3QWiHLCwEQRBekGvYXIJURePp9A5EVkoaULQC0NjAi2Px8ITTn0cwQxYWB8FbACSyIlxFWg48xNkgzCOnqNAVaE7oqfvjp2I1wpRttej9znmrrwjnQ4LFAWhZmIuwF2+Vu3SoiASffRj9PSkNL/A6HFQ+LQP5KUO4yx+PFhmCH0iwOAQex1zJiuCOr/IQW15IrJiHsJYRD41fzJlQu7OgiFNmzciJKurABSe2CpZZs2YhJCTE7dehQwevx1RUVCAzMxMJCQkICwtDUlISVq5c6dp/9uxZTJgwAa1atUJERAR69+6NrVu3up3j5MmTePjhh5GYmIgGDRrgrrvuQnFxsSn3aASCUKFGjk/EIkStiJOKF3q2xiGsZSSdcWKEgBE3lNIOhNQZNysljftov4Bv51s5YWNl50npm6JvJviw3cLSqVMnnDhxwvVbv369YtrLly/jD3/4Aw4fPoxPPvkE+/btwzvvvIPmzZu70vz5z3/GmjVr8N5772H37t0YOHAgBgwYgGPHjgG4uubB0KFDcejQIaxYsQI//PADWrVqhQEDBuD8+fOm368/kEWDX/zxW3Ga1cXs9V/MQhAPVpQzb0MtSqixsiiJE7stvk6xEBHGYfssobp16yI+Pl5V2n/9618oLy/Hhg0bUK9ePQBA69atXfsvXryITz/9FCtWrMAdd9wB4KoV5z//+Q8WLFiA7OxsFBcXY9OmTdizZw86deoE4OpKk/Hx8fjwww/x5z//2dgb5AhxRe2v+KF4I+bghHKdvHCa5hkjPGFFQ6fH6sYLgtjiPd+x2blXZy8RQYPtgqW4uBiJiYkIDw9HcnIy5syZg5YtW8qm/eyzz5CcnIzMzEysWLECTZs2xf33348pU6YgNDQUv/76K2pqahAeHu52XEREhMtyU11dDQBuaerUqYOwsDCsX79eUbBUV1e7jgWAqqoqv+7bDnivgIIZJz0bIXia3T1sJ6D2uRoR0VUP4uErFwa+i76mNg/buczjvuWWQpB91xz0zRDGYOuQUK9evbBo0SKsWrUKCxYsQElJCW6//XacPXtWNv2hQ4fwySefoKamBitXrsT06dORk5OD7OxsAECjRo2QnJyM5557DsePH0dNTQ3ef/99bNy4ESdOnAAAdOjQAS1btsTUqVPxyy+/4PLly3jxxRdx9OhRVxo55syZg+joaNevRYsWxheIg3BSA+s0nODTEixihdfhEKMxSyzx4PhMBA4hjDFmdyYEKioq0KpVK7zyyisYP368x/6kpCRcunQJJSUlCA296n3/yiuvYO7cuS6xcfDgQfzpT3/C2rVrERoaiptuuglJSUnYvn079u7dCwDYvn07xo8fj507dyI0NBQDBgxAnTp1wBjDf//7X9m8yVlYWrRogcp5OYiKiDC6KFRhl7nZiWZuwn+ERi0rJQ3xSclXh4Z+I1AacHG0Yh4XLDSarJQ0VYsQipGG0PeWb6UFEAUqGtfY7tRrFVUXLyJ6YhYqKysRFRVlzjWqqhAdHY33vyxGg8hGus9z4fxZPDDgelPzqgfbh4TExMTEICkpCQcOHJDdn5CQgHr16rnECgB07NgRZWVluHz5MurXr4927drh22+/xfnz51FVVYWEhATcd999aNu2reuYm2++GTt27EBlZSUuX76Mpk2bolevXujRo4di3sLCwhAWFmbczRoAiQbCDnKKClEGONqPRQnhm7Ly27KzAyCIDy2WEN5mPlEHKniwfZaQmHPnzuHgwYNISEiQ3d+nTx8cOHAAtbW1rm379+9HQkIC6tev75Y2MjISCQkJ+OWXX7B69WoMGeJpYo+OjkbTpk1RXFyMbdu2yaYh3KHKIXgRT9mlOBjGYtcQoCA+7BIhctYVrTOsqD4KHmy1sEyaNAmDBw9Gq1atcPz4ccycOROhoaEYM2YMAGDcuHFo3rw55syZAwB47LHH8MYbb+Cpp57CE088geLiYrzwwgt48sknXedcvXo1GGNo3749Dhw4gMmTJ6NDhw5IT093pVm6dCmaNm2Kli1bYvfu3XjqqacwdOhQDBw40NoCcCBUOZiLEwRhIJrr7SA+KRll+ze6nrfcasJm4yY8f/u/kA81zzk/ZYiq9ZS0YNf7Lx7yJPjEVsFy9OhRjBkzBmfOnEHTpk1x2223YdOmTWjatCkAoLS0FHXq/G4EatGiBVavXo2JEyfixhtvRPPmzfHUU09hypQprjSVlZWYOnUqjh49itjYWNx77714/vnnXdOgAeDEiRN4+umncfLkSSQkJGDcuHGYPn26dTceQDihgXUSVJbBQ9n+jQDgmnFl5Uyh2Oxcn9O7vQXJM4JhO5fZItKCgamf/4A6YQ10H19bfQEA0LNnT4SGhiIzMxOZmZlGZU83XDndOgnBuclOp9tAhUSQPFQuwYNW4aJHUBhxDek5YrNz3d5RrVOa5c4RKFjpdNtiwsd+C5Yj80dx53TLlQ8LQQBkZVCCQvkHPvkpQyyzsphhNTHi2y2flsHFgq92X5/whKtZQgRB+IYEHaEFYSkFYQhKjFi0eGug7fLrsDNAIfmy8AdZWAhLIIuAesiC4mwEK4n0JyanqFD2GRshRnOKCnG0pDP2znsNR0s6Y9tq+UCcUrSuCO/vO0oWDEIrZGEhLIGsAuogoWI9cg2ndIX09KIVyCkqxB93HsTKru3c0nps89IQS4OuGYV4hsvVwH6NEI6XAVRhPaI8HHzljpcN0w/1woLW9iHMhgQLQXCEXVFWA5X8lCG6FjsUGuk/znsNALAXwB9/2/fHnQc90ssJGTmMFitKFpGy/RvRGvJrsimdR2lWkNI1aLVkwmpIsBAEZwiiRfg/oR1X48vxsEP5tAy/ogVnpaQpitv8lCGYCc/3Rxz47742U9z23demMz4qeRH3tZmCoyXARyUveoTu9ya4eHpXzZ6STdgD+bCYDI3TqoOGQtxJL1rBVQMQjMRm56qymqjF6HdcOJ+SL4y/78/cR7M9thV0He4SMFp9XqxCzl+Ih1lHhP+QhcVkjP6g7fSaNxOeGmcaknE+RgRhM3rIw4p3SrCcfFTyItpOzEPP5fvxUcmLrv3icumR2sjNIXfr0CS0RR4+mnd14dmy/cr1jNjq0va3/xf89rfYCiP+v56Vm7X6xfh65hTN1tmQhYUgJJBYIcxAaCzNtCYKYuW+NlPQc/l+1zZh1WRhirN4OEgsaA79JlbEabUiWGHE1hhAWcgQhFpIsHCKUk+BegYE4VxyigoNtdzIiev72kxBj9RGbtsE8TJ54TQAV0XK5IXTFMWKGH/FhVS0aDkfOfYSYmhIiFN4FyY0bELwjq/1cnx9Y7z7PHhz2t22+qzLaRYAjpZ0lk33exnsQVYbz5W4zfzOBadhf54REVyQYCEIGcRmexJmziS9aIVfs3AEVnZtJzuVmRfE76cwHARctbTsnZeBjhOfdEsv7BesK4KYubbNHo9zx5wJNSXPAuJnJCcQqWNEiKEhIUIXgV6JCLMsxFOMieAiKyXNTais7NrO9RP+NovY7Fxdx4nFyG2oQqOhuS5BIrVWzH00283ycrSkM46WdMZ9babgvjZTsG31WVQ0rtF5B9qRm3WkpZ7h3SJG+A8JFoJQCQmX4ENJnIi3i0WMVuTeKfFqxb6Ei3gZh5yiQpfVZO6j2biU2tzNl+VoSWdkpaShR2oj9EhthMkLp7n+3yO1ET4qedHtB9jjQ6JHrJFYCQ5IsBCED8RWFhIthBHEZucqNsyCWMlKSUN60QqX5cGXP4ew/6OSFz3WDxKEi9qZP20n5uHaNnt0W3r8Ib1ohS3X1YKeKdqE/4QwxpjdmXAiVVVViI6ORuW8HERFRNidnYCC11gzFH02+DDimVvthyEe5hH8UoT4LNe22ePa3yO1kdsKzuLvLj4pWXZ1ZzUoNeZWTmUWnpuShUhN/eJLlGi9n6qLFxE9MQuVlZWIiorSdKzqa/zWLrWY8DHqhDXQfZ7a6gs4Mn+UqXnVAwkWnZBgMR8ehYvUwhIs4oXHZ0Eoc7Sks0dgOAHBMVcsWAQRIw0yZwRmLfioFbWO9GqtJyRYrIdmCRHcwmMDSU64hFMIX30MPVKbK4oWcSRb8ewio+FBrADyIoWGdpwFCRaCkMGbGT+YrCqEM7m2zR5ckvFXESwowqKGgpi4+vfV0PwuDBYavE1RJrHiPEiwEIQMPFWsdiGsO8OjpYvwTdn+jS4nW8GXRQgOB3haPoRIt2Y+b55Ey7Cdy0i0OAwSLAThJ4HsjEtixdmU7d8ItFGX1qxnLRYpMWdCPUQCL0NGWuHFNyeYoGnNBOEngShUCMJoAu07IbHiyZtvvonWrVsjPDwcvXr1wpYtWww9PwkWhyH4FeQUFbr9CHsJtMqYIIxEunKzdB/hfD766CM8/fTTmDlzJr7//nt07doVqampOHXqlGHXoCEhhyGYbQPRVE/+EoQAT74OgYaVQ5j5KUMU1yMatnOZ234nDBXxmCdeeOWVV/DII48gPT0dALBw4UIUFhbiX//6F/72t78Zcg0SLDoRwtdUXbpkc04Ch0eSU1B18aLd2SA44N7CJaiyOxMByr2FSwDAkvK9t3AJ/tPlHtl9VRcvon7pBdy5+zNUAbhw3n369eLr/oDBuz8zNX/Sa0qRXt+fMhPaCitCn9VWXzDk+Koq9zsOCwtDWFiYR/rLly9j+/btmDp1qmtbnTp1MGDAAGzcqC8AoRwkWHRy9uzVF73F1L/bnBOCIAieyVK5z1s6s7D+mmfPnkV0dLQp565fvz7i4+NxbMHDfp+rYcOGaNGihdu2mTNnYtasWR5pf/75Z9TU1CAuLs5te1xcHH766Se/8yJAgkUniYmJOHLkCBo1aoSQkBC7s+OVqqoqtGjRAkeOHOEqaiHvULlph8pMH1Ru2nFamTHGcPbsWSQmJpp2jfDwcJSUlODy5ct+n4sx5tG2yVlXrIQEi07q1KmDa6+91u5saCIqKsoRHzZvULlph8pMH1Ru2nFSmZllWRETHh6O8PBw068jpkmTJggNDcXJkyfdtp88eRLx8fGGXYdmCREEQRAEoZv69evj5ptvxldffeXaVltbi6+++grJyepWCFcDWVgIgiAIgvCLp59+Gg899BB69OiBW265BfPnz8f58+dds4aMgARLEBAWFoaZM2faPv7oNKjctENlpg8qN+1QmfHFfffdh9OnT2PGjBkoKytDt27dsGrVKg9HXH8IYVbMsSIIgiAIgvAD8mEhCIIgCIJ7SLAQBEEQBME9JFgIgiAIguAeEiwEQRAEQXAPCRYO+cc//oGQkBBMmDDBYx9jDIMGDUJISAiWL1/usX/RokW48cYbER4ejmbNmiEzM9Nt/65du3D77bcjPDwcLVq0wEsvveRxjqVLl6JDhw4IDw9Hly5dsHLlSo88zJgxAwkJCYiIiMCAAQNQXFzs1z37i54yW7RoEUJCQmR/4hVGv/nmG9x0000ICwvDddddh0WLFnlcw9ey6pcuXUJmZiYaN26Mhg0b4t577/UIsmQHet+1rVu34s4770RMTAyuueYapKamYufOnW5p6F1b7rbvq6++Qu/evdGoUSPEx8djypQp+PXXX93SBGqZAfLl1q9fP49v79FHH3U7rrS0FGlpaWjQoAGaNWuGyZMne5RbIH+jhAhGcMWWLVtY69at2Y033sieeuopj/2vvPIKGzRoEAPACgoK3Pbl5OSwxMREtnjxYnbgwAG2c+dOtmLFCtf+yspKFhcXx8aOHcv27NnDPvzwQxYREcHefvttV5rvvvuOhYaGspdeeon9+OOPbNq0aaxevXps9+7drjT/+Mc/WHR0NFu+fDnbuXMnu+eee1ibNm3YxYsXDS8PNegtswsXLrATJ064/VJTU1nfvn1daQ4dOsQaNGjAnn76afbjjz+y119/nYWGhrJVq1a50ixZsoTVr1+f/etf/2L/+9//2COPPMJiYmLYyZMnXWkeffRR1qJFC/bVV1+xbdu2sVtvvZX17t3bjOJQjd5yO3v2LIuNjWUPP/ww++mnn9iePXvYvffey+Li4tjly5cZY/SuSctsx44drH79+uzZZ59lxcXF7JtvvmEdOnRgWVlZrjSBWmaMKZdb37592SOPPOL2DVZWVrr2//rrr6xz585swIAB7IcffmArV65kTZo0YVOnTnWlCeRvlHCHBAtHnD17ll1//fVszZo1rG/fvh4V4g8//MCaN2/OTpw44VEhlpeXs4iICPbll18qnv+tt95i11xzDauurnZtmzJlCmvfvr3r71GjRrG0tDS343r16sX+8pe/MMYYq62tZfHx8Wzu3Lmu/RUVFSwsLIx9+OGHem7bL/wpMymnTp1i9erVY++++65r2zPPPMM6derklu6+++5jqamprr9vueUWlpmZ6fq7pqaGJSYmsjlz5jDGrpZPvXr12NKlS11p9u7dywCwjRs36rltv/Gn3LZu3coAsNLSUte2Xbt2MQCsuLiYMUbvmrTMpk6dynr06OGW/rPPPmPh4eGsqqqKMRaYZcaY93KTK0cxK1euZHXq1GFlZWWubQsWLGBRUVGucgrUb5TwhIaEOCIzMxNpaWkYMGCAx74LFy7g/vvvx5tvvim7NsOaNWtQW1uLY8eOoWPHjrj22msxatQoHDlyxJVm48aNuOOOO1C/fn3XttTUVOzbtw+//PKLK430+qmpqa4lwktKSlBWVuaWJjo6Gr169TJ0GXG1+FNmUt599100aNAAI0aMcG3zVR7CsuriNNJl1bdv344rV664penQoQNatmxpS5kB/pVb+/bt0bhxY+Tl5eHy5cu4ePEi8vLy0LFjR7Ru3RoAvWtSqqurPdZ3iYiIwKVLl7B9+3YAgVlmgPdyA4DFixejSZMm6Ny5M6ZOnYoLFy649m3cuBFdunRxCz6WmpqKqqoq/O9//3OlCcRvlPCEIt1ywpIlS/D9999j69atsvsnTpyI3r17Y8iQIbL7Dx06hNraWrzwwgt49dVXER0djWnTpuEPf/gDdu3ahfr166OsrAxt2rRxO06oCMrKynDNNdegrKxMdonwsrIyVzrxcXJprMLfMpOSl5eH+++/HxEREa5tSuVRVVWFixcv4pdffvG5rHpZWRnq16+PmJgYjzRWlxngf7k1atQI33zzDYYOHYrnnnsOAHD99ddj9erVqFv3apVC75o7qampmD9/Pj788EOMGjUKZWVlmD17NgDgxIkTAAKvzADf5Xb//fejVatWSExMxK5duzBlyhTs27cPy5YtA6D8/Qn7vKVx8jdKyEOChQOOHDmCp556CmvWrJFdZfOzzz5DUVERfvjhB8Vz1NbW4sqVK3jttdcwcOBAAMCHH36I+Ph4fP3110hNTTUt/3ZgRJmJ2bhxI/bu3Yv33nvP6KxyhRHldvHiRYwfPx59+vTBhx9+iJqaGrz88stIS0vD1q1b3QRfIGBEmQ0cOBBz587Fo48+igcffBBhYWGYPn061q1bhzp1AtPQ7avcACAjI8P1/y5duiAhIQF33nknDh48iHbt2lmVVcIhBOaX4jC2b9+OU6dO4aabbkLdunVRt25dfPvtt3jttddQt25drFmzBgcPHkRMTIxrPwDce++96NevHwAgISEBAHDDDTe4ztu0aVM0adIEpaWlAID4+HjZ5b+Ffd7SiPeLj5NLYwVGlJmYf/7zn+jWrRtuvvlmt+1K5REVFYWIiAhVy6rHx8fj8uXLqKioUExjFUaU2wcffIDDhw8jPz8fPXv2xK233ooPPvgAJSUlWLFiBQB61wDPd+3pp59GRUUFSktL8fPPP7usMW3btgUQWGUG+C63mpoaj2N69eoFADhw4AAA/8rEqd8ooQwJFg648847sXv3buzYscP169GjB8aOHYsdO3bg73//O3bt2uW2HwDmzZuH/Px8AECfPn0AAPv27XOdt7y8HD///DNatWoFAEhOTsbatWtx5coVV5o1a9agffv2uOaaa1xpxEuEC2mEJcLbtGmD+Ph4tzRVVVXYvHmzocuI+8KIMhM4d+4cPv74Y4wfP97jOr7KQ82y6jfffDPq1avnlmbfvn0oLS21tMwAY8rtwoULqFOnDkJCQlznFf6ura0FQO8aIP+uhYSEIDExEREREfjwww/RokUL3HTTTQACq8wA3+UWGhrqcYxQdkIHLDk5Gbt373YLM7BmzRpERUW5OmeB9o0SXrDb65eQx5f3PGRmvAwZMoR16tSJfffdd2z37t3s7rvvZjfccINrqmlFRQWLi4tjDz74INuzZw9bsmQJa9Cggce0ybp167KXX36Z7d27l82cOVN22mRMTAxbsWIF27VrFxsyZIjt0yYZ01dmjDH2z3/+k4WHh7NffvnFY58wZXLy5Mls79697M0335SdMhkWFsYWLVrEfvzxR5aRkcFiYmLcZjY8+uijrGXLlqyoqIht27aNJScns+TkZH9u1zC0ltvevXtZWFgYe+yxx9iPP/7I9uzZwx544AEWHR3Njh8/zhijd03uXXvppZfYrl272J49e9js2bNZvXr13NIEepkx5l5uBw4cYLNnz2bbtm1jJSUlbMWKFaxt27bsjjvucKUXpjUPHDiQ7dixg61atYo1bdpUdlpzIH+jxFVIsHCKngqxsrKS/elPf2IxMTEsNjaWDRs2zG3qKWOM7dy5k912220sLCyMNW/enP3jH//wOPfHH3/MkpKSWP369VmnTp1YYWGh2/7a2lo2ffp0FhcXx8LCwtidd97J9u3bp/tejUKvYElOTmb333+/4nFff/0169atG6tfvz5r27Yty8/P90jz+uuvs5YtW7L69euzW265hW3atMlt/8WLF9lf//pXds0117AGDRqwYcOGsRMnTqi9NVPRU25ffPEF69OnD4uOjmbXXHMNS0lJ8Zj+Se9agdu2/v37s+joaBYeHs569erFVq5c6XFcIJcZY+7lVlpayu644w4WGxvLwsLC2HXXXccmT57sFoeFMcYOHz7MBg0axCIiIliTJk1YVlYWu3LliluaQP9GiauEMMaYffYdgiAIgiAI35APC0EQBEEQ3EOChSAIgiAI7iHBQhAEQRAE95BgIQiCIAiCe0iwEARBEATBPSRYCIIgCILgHhIsBEEQBEFwDwkWgiAIgiC4hwQLQRAEQRDcQ4KFIAiCIAjuIcFCEITfnD59GvHx8XjhhRdc2zZs2ID69et7rKRLEAShB1pLiCAIQ1i5ciWGDh2KDRs2oH379ujWrRuGDBmCV155xe6sEQQRAJBgIQjCMDIzM/Hll1+iR48e2L17N7Zu3YqwsDC7s0UQRABAgoUgCMO4ePEiOnfujCNHjmD79u3o0qWL3VkiCCJAIB8WgiAM4+DBgzh+/Dhqa2tx+PBhu7NDEEQAQRYWgiAM4fLly7jlllvQrVs3tG/fHvPnz8fu3bvRrFkzu7NGEEQAQIKFIAhDmDx5Mj755BPs3LkTDRs2RN++fREdHY3PP//c7qwRBBEA0JAQQRB+880332D+/Pl47733EBUVhTp16uC9997DunXrsGDBAruzRxBEAEAWFoIgCIIguIcsLARBEARBcA8JFoIgCIIguIcEC0EQBEEQ3EOChSAIgiAI7iHBQhAEQRAE95BgIQiCIAiCe0iwEARBEATBPSRYCIIgCILgHhIsBEEQBEFwDwkWgiAIgiC4hwQLQRAEQRDcQ4KFIAiCIAju+f8N52n8CX4+dQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1bUlEQVR4nO3de1xUZf4H8A+CclMgvHAxL6ih5gXNlFBLJTd0yVDL0jU11qILWSpa6y6GGWlmpN007ediWZtlibbZaiqVlndT09UEFfOKuhIgCGjw/P6wc5o7czkz58zM5/16zUs5c+acZ87MnPM93+fmI4QQICIiItKwBmoXgIiIiKg+DFiIiIhI8xiwEBERkeYxYCEiIiLNY8BCREREmseAhYiIiDSPAQsRERFpHgMWIiIi0jwGLERERKR5DFg0om3btnjkkUfULgYRebhHHnkEbdu2teu1ap2nLly4gAceeABNmzaFj48PFi5c6PIykPoYsLjQtm3bMGvWLJSWlqpdFJfavXs3nn76aXTp0gXBwcFo3bo1HnzwQRQUFJhc/8iRIxgyZAgaN26M8PBwjBs3DpcuXdJb5+eff8Zzzz2HHj16oEmTJoiKikJycjL27NljtL2jR49iypQp6Nu3LwICAuDj44OTJ0/a9B4WL16MUaNGoXXr1vDx8bF40i4tLUVaWhqaN2+O4OBgDBo0CD/++KNN+1u2bBk6d+6MgIAA3HLLLXjrrbfsel+PPPIIfHx86n3ovh+lj78l27ZtQ//+/REUFITIyEg888wzqKioMFqvpqYGzz//PKKjoxEYGIj4+Hhs3LjRpn1Zc0wB4OzZs3jwwQcRFhaGkJAQpKSk4MSJEzbtS23nzp3DrFmzsH//frWLoogpU6Zgw4YNmDFjBlasWIEhQ4a4bN/WfkfJBQS5zPz58wUAUVRUZPRcdXW1uHbtmusL5QL333+/iIyMFJMmTRLvvfeeeOmll0RERIQIDg4WBw8e1Fv39OnTolmzZqJ9+/bijTfeEC+//LK46aabRFxcnKipqZHXy8jIEGFhYWLixIliyZIl4tVXXxXt27cXvr6+YuPGjXrbzM3NFQ0aNBBdu3YVPXr0MPsZWNKmTRsRHh4uhgwZIvz8/MSECRNMrldbWyv69u0rgoODxaxZs8Tbb78tbr31VtGkSRNRUFBg1b7effddAUDcf//9YunSpWLcuHECgHjllVdsfl/btm0TK1askB+zZ88WAERaWpre8m3btgkhnHP8zdm3b58ICAgQPXv2FIsXLxb/+Mc/hL+/vxgyZIjRuqNHjxZ+fn5i2rRpYsmSJSIhIUH4+fmJrVu3KnpMr1y5Im655RbRokULMW/ePPH666+LVq1aiZtvvln873//s2pfWrB7924BQOTm5ho9d+3aNVFdXW3Xdtu0aWP2u+9MERERYuzYsS7fry3fUXI+BiwuZClg8WQ//PCD3sVOCCEKCgqEv7+/0UnoySefFIGBgeKXX36Rl23cuFEAEEuWLJGX7dmzR1y5ckXvtf/73/9E8+bNRb9+/fSWX758WZSXlwsh7P8MTp48Kerq6oQQQgQHB5s9aX/yyScCgFi1apW87OLFiyIsLEyMGTOm3v1cvXpVNG3aVCQnJ+stHzt2rAgODhYlJSUOvS9LFzIhnHP8zRk6dKiIiooSZWVl8rL33ntPABAbNmyQl+3cuVMAEPPnz5eXVVVVifbt24uEhIR692PLMZ03b54AIHbt2iUvO3LkiPD19RUzZsyw6n1pQX2fs72UCFhqa2tFVVWVTa/x8fER6enpDu3XHtZ+R8k1GLC4SFZWlgBg9JAuMIYngtzcXAFAbN26VUyaNEk0a9ZMhIaGirS0NFFTUyN+/fVXMW7cOBEWFibCwsLE9OnT5QuqpLa2VixYsEDceuutwt/fX7Ro0UKkpaXpnaDVdNttt4nbbrtNb1mLFi3EqFGjjNaNjY0Vd999d73bHDlypAgPDzf7vBJBo6WAZdSoUSIiIkLU1tbqLU9LSxNBQUH13tmuW7dOABDr1q3TW75t2zYBQKxYscLk65QKWJxx/CsrK8WRI0fEpUuX5GVlZWXCz89PTJ8+XW/dmpoa0bhxYzFx4kR52fTp04Wvr6/eRUMIIebMmSMAiFOnTsnLLl26JI4cOSIqKyvlZbYc0969e4vevXsbva977rlHtG/fvt73b8r58+fFI488Ilq2bCkaNWokIiMjxX333af3WbVp00YkJyeLDRs2iLi4OOHv7y86d+4sPv/8c71tXb58WWRkZIiuXbuK4OBg0aRJEzFkyBCxf/9+eZ1vvvnG5LlG+swnTJgg2rRpo7fd+fPni4SEBBEeHi4CAgLEbbfdphd065bT1oAFgEhPTxcffvihuPXWW4Wfn5/Iy8sTQghx5swZkZqaKlq0aCEaNWokbr31VrFs2TL5tdJ50PDhCrZ8R8k12IbFRUaOHIkxY8YAABYsWIAVK1ZgxYoVaN68ucXXTZo0CYWFhXjxxRdx3333YenSpZg5cyaGDRuG2tpazJkzB/3798f8+fOxYsUKvdc+/vjjmD59Ovr164c33ngDqamp+Oijj5CUlITr169b3G9NTQ3+97//WfWwhxACFy5cQLNmzeRlZ8+excWLF3H77bcbrd+nTx/s27ev3u0WFxfrbdPV9u3bh9tuuw0NGuj/tPr06YOrV6+abbej+3oARsegV69eaNCggVXHwF7OOv67du1C586d8fbbb8vLDh48iN9++81oX40aNUKPHj309rVv3z7ExsYiJCTEqEwA9NppvP322+jcuTN27dql93qg/mNaV1eHn376yez7P378OK5cuVLvMTB0//33Iy8vD6mpqVi0aBGeeeYZXLlyBadOndJbr7CwEA899BCGDh2KuXPnws/PD6NGjdJrq3PixAmsWbMG9957L15//XVMnz4dBw8exIABA3Du3DkAQOfOnTF79mwAQFpamnyuueuuu8yW8Y033kDPnj0xe/ZszJkzR973unXrbH6/puTn52PKlCl46KGH8MYbb6Bt27a4cOEC7rjjDmzatAlPP/003njjDXTo0AETJ06UG9Xedddd8nntT3/6k/xeLPn111+tOm9dvXrV4nZs+Y6Si6gdMXkTS3fB5jIsSUlJepmThIQE4ePjI5544gl52W+//SZuvvlmMWDAAHnZ1q1bBQDx0Ucf6e1n/fr1JpcbMndnY+phjxUrVggAendT0t3/Bx98YLT+9OnTBQCLGYotW7YIHx8fMXPmTLPrODvDEhwcLP76178aLZfu8tevX29x2+np6cLX19fkc82bNxejR482+ZwSGRZnHX/pjj8rK0tetmrVKgFAbNmyxWg7o0aNEpGRkfLfXbp0EYmJiUbr/fe//xUAxLvvvisvkzKZ33zzjbzM2mN66dIlAUDMnj3baL133nlHABA///yz6Tdvxq+//mpUnWVKmzZtBAC9jEpZWZmIiooSPXv2lJdVV1cbZe+KioqEv7+/Xrktfc6mMixXr17V+/vatWuia9euRsfd3gxLgwYNxH//+1+95RMnThRRUVFGbYNGjx4tQkND9cqE37M01pCOZX0P3e+jKbZ8R8k1/JwTBpFSJk6cCB8fH/nv+Ph4bN++HRMnTpSX+fr64vbbb8fevXvlZatWrUJoaCj+9Kc/6WVBevXqhcaNG+Obb77BX/7yF7P7TUpKsrkXhrV+/vlnpKenIyEhARMmTJCXV1VVAQD8/f2NXhMQECCvY+r5ixcv4i9/+QtiYmLw3HPPOaXc1jBXPt3y1/f6Ro0amXwuICCg3tc7wlnHf+DAgRBC2LQv3fdpyzGdNWsWZs2aZbQva46pte/fFoGBgWjUqBG+/fZbTJw4ETfddJPZdaOjozFixAj575CQEIwfPx7z5s1DcXExIiMj9cpWW1uL0tJSNG7cGB07drS5J5phOSW//voramtrceedd+Ljjz+2e5u6BgwYgFtvvVX+WwiBzz//HA8++CCEEHrnqKSkJKxcuRI//vgj+vXrZ/O+PvroI6s+p3bt2ll83pbvKLkGAxaNa926td7foaGhAIBWrVoZLf/111/lvwsLC1FWVoYWLVqY3O7Fixct7jcqKgpRUVH2FNmi4uJiJCcnIzQ0FJ999hl8fX3l56STZk1NjdHrqqur9dbRVVlZiXvvvRdXrlzB999/j8aNG9tVtkuXLqG2tlb+u3HjxjZvKzAw0Krym9tXYGAgrl27ZnLb1dXVJt+/Ulx5/Ovbl+5+rD2mlvZlzTG19/1b4u/vj3nz5iEjIwMRERG44447cO+992L8+PGIjIzUW7dDhw56NycAEBsbCwA4efIkIiMjUVdXhzfeeAOLFi1CUVGR3neoadOmNpVN15dffons7Gzs379f7/0blsdeMTExen9funQJpaWlWLp0KZYuXWryNfWdo8yxJ8gxxZbvKLkGAxaN072g17dc9y62rq4OLVq0wEcffWTy9fW1namqqkJZWZlVZTQ88ZpTVlaGoUOHorS0FFu3bkV0dLTe81KAdP78eaPXnj9/HuHh4UZ3O9euXcPIkSPx008/YcOGDejatatVZTGld+/e+OWXX+S/s7KyjO7W6xMVFWW2/ADk92xuX1FRUaitrcXFixf1gs1r167h8uXLRsdMSa48/vXtS/d9RkVF4ezZsybXA1DvMbH2mErvz5rPzxaTJ0/GsGHDsGbNGmzYsAEzZ87E3LlzkZ+fj549e9q0rTlz5mDmzJn461//ipdeegnh4eFo0KABJk+ejLq6OpvLBgBbt27Ffffdh7vuuguLFi1CVFQUGjZsiNzcXPzrX/+ya5uGDC/uUlkffvhhvSyrru7du9u1L8ObAXPquyGx5TtKrsGAxYWUuluxRvv27bFp0yb069fPrjuBTz75BKmpqVata5juN6W6uhrDhg1DQUEBNm3apJcelrRs2RLNmzc3OfjYrl270KNHD71ldXV1GD9+PDZv3oxPP/0UAwYMsKq85himkutLGZvSo0cPbN26FXV1dXoNb3fu3ImgoCD5jtncvqT3uGfPHvz5z3+Wn9+zZw/q6uqMjoGSXHn8u3btCj8/P+zZswcPPvigvPzatWvYv3+/3rIePXrgm2++QXl5uV7D2507d8rPW2LtMW3QoAG6detm8v3v3LkT7dq1Q5MmTax+j7rat2+PjIwMZGRkoLCwED169EBOTg4+/PBDeZ1jx45BCKF3npAaaUsj03722WcYNGgQli1bprf90tJSvcbOtpxrPv/8cwQEBGDDhg16AWlubq5N79EWzZs3R5MmTVBbW4vBgwcrum3DmwFz6rshseU7Sq7BgMWFgoODAcAlI90++OCDWLRoEV566SXMmTNH77nffvsNFRUVCAsLM/t6Jduw1NbW4qGHHsL27duxdu1aJCQkmF33/vvvx/vvv4/Tp0/L1V6bN29GQUEBpkyZorfupEmT8Mknn2DJkiUYOXKkw+VUIpX8wAMP4LPPPsPq1avxwAMPAAD+97//YdWqVRg2bJh8QTC3r8TERISHh2Px4sV6F9fFixcjKCgIycnJDpfREmcc/6tXr+LUqVNo1qyZfFENDQ3F4MGD8eGHH2LmzJlyILBixQpUVFRg1KhR8usfeOABvPbaa1i6dCmmTZsG4EaaPjc3F/Hx8XrVo1IPkNatWyMoKAiAbcf0gQcewN/+9jfs2bNH7h1y9OhR5Ofny/u2xdWrV9GgQQO5DQxwI3hp0qSJUVXDuXPnkJeXJx/L8vJyfPDBB+jRo4ecxfT19TW6QVi1ahXOnj2LDh06yMtsOdf4+vrCx8dHLytx8uRJrFmzxqb3agtfX1/cf//9+Ne//oVDhw4ZZeYuXbpUbxbYHKXasNjyHSXXYMDiQr169QIA/OMf/8Do0aPRsGFDDBs2TD65KGnAgAF4/PHHMXfuXOzfvx/33HMPGjZsiMLCQqxatQpvvPGGfEE1Rck2LBkZGfjiiy8wbNgwlJSU6N1VAjfSwpK///3vWLVqFQYNGoRnn30WFRUVmD9/Prp166aX8Vm4cCEWLVqEhIQEBAUFGW1zxIgR8nEtKyuTh2H/4YcfANzo/hoWFoawsDA8/fTT9b6Hf//73zhw4AAA4Pr16/jpp5+QnZ0NALjvvvvk9PUDDzyAO+64A6mpqTh8+DCaNWuGRYsWoba2Fi+++GK9+wkMDMRLL72E9PR0jBo1CklJSdi6dSs+/PBDvPzyywgPD5fXVeJ9GXLG8d+1axcGDRpkdEf78ssvo2/fvhgwYADS0tJw5swZ5OTk4J577tEbej0+Ph6jRo3CjBkzcPHiRXTo0AHvv/8+Tp48aZRpePvtt/Hiiy/im2++wcCBA20+pk899RTee+89JCcnY9q0aWjYsCFef/11REREICMjQ29fAwcOxHfffWcxw1hQUIC7774bDz74IG699Vb4+fkhLy8PFy5cwOjRo/XWjY2NxcSJE7F7925ERETgn//8Jy5cuKCX6bj33nsxe/ZspKamom/fvjh48CA++ugjo4tv+/btERYWhnfffRdNmjRBcHAw4uPjjdqSAEBycjJef/11DBkyBH/5y19w8eJFvPPOO+jQoQN++ukns+/NUa+88gq++eYbxMfH47HHHsOtt96KkpIS/Pjjj9i0aRNKSkrs2q5SbVgA67+j5CLqdVDyTi+99JJo2bKlaNCggVUDx+3evVvv9VK3Td1BuIS40VUxODjYaH9Lly4VvXr1EoGBgaJJkyaiW7du4rnnnhPnzp1T/L2ZM2DAAJu6RR86dEjcc889IigoSISFhYmxY8eK4uJivXUmTJhgcZu63XuLiorMrmfYvdMcS/sz7DpaUlIiJk6cKJo2bSqCgoLEgAEDjD7H+ixdulR07NhRNGrUSLRv314sWLDAaGBAe96XNSOgKn38TXVrlmzdulX07dtXBAQEiObNm4v09HR59F5dVVVVYtq0aSIyMlL4+/uL3r17m+wibqpbs8SaYyrEjekJHnjgARESEiIaN24s7r33XlFYWGi0Xq9evert2vq///1PpKeni06dOong4GARGhoq4uPjxaeffqq3nu7Acd27dxf+/v6iU6dORoO3VVdXi4yMDBEVFSUCAwNFv379xPbt28WAAQP0hjUQQoi1a9fKA7XpfuamujUvW7ZM3HLLLfJ+c3Nz5WNpWE57B44z5cKFCyI9PV20atVKNGzYUERGRoq7775bLF261OptOJu131FyPh8hrGiAQEREsitXriA8PBwLFy5Eenq6w9tr27Ytunbtii+//FKB0hF5Jo50S0Rkoy1btqBly5Z47LHH1C4KkddgGxYiIhslJyc7vQG01hUXF1t8PjAwUB43ikgJDFiIiMhm9TXKnzBhApYvX+6awpBXYMBCRKSykydPql0Em9U37AEHViOlsdEtERERaR4b3RIREZHmMWAhIiIizWPAQkRERJrHgEUBW7ZswbBhwxAdHQ0fHx+75uAQQuC1115DbGws/P390bJlS7z88svKF5aIiMgNsZeQAiorKxEXF4e//vWvdk/C9+yzz+Lrr7/Ga6+9hm7duqGkpMTuuTSIiIg8DXsJKczHxwd5eXkYPny4vKympgb/+Mc/8PHHH6O0tBRdu3bFvHnz5MnZjhw5gu7du+PQoUPo2LGjOgUnIiLSMFYJucDTTz+N7du3Y+XKlfjpp58watQoDBkyBIWFhQBuzATcrl07fPnll4iJiUHbtm3x6KOPMsNCRET0OwYsTnbq1Cnk5uZi1apVuPPOO9G+fXtMmzYN/fv3l6eNP3HiBH755ResWrUKH3zwAZYvX469e/figQceULn0RERE2sA2LE528OBB1NbWIjY2Vm95TU0NmjZtCgCoq6tDTU0NPvjgA3m9ZcuWoVevXjh69CiriYiIyOsxYHGyiooK+Pr6Yu/evfD19dV7rnHjxgBuzMnh5+enF9R07twZwI0MDQMWIiLydgxYnKxnz56ora3FxYsXceedd5pcp1+/fvjtt99w/PhxtG/fHgBQUFAAAGjTpo3LykpERKRV7CWkgIqKChw7dgzAjQDl9ddfx6BBgxAeHo7WrVvj4Ycfxg8//ICcnBz07NkTly5dwubNm9G9e3ckJyejrq4OvXv3RuPGjbFw4ULU1dUhPT0dISEh+Prrr1V+d0REROpjwKKAb7/9FoMGDTJaLk2vfv36dWRnZ+ODDz7A2bNn0axZM9xxxx148cUX0a1bNwDAuXPnMGnSJHz99dcIDg7G0KFDkZOTg/DwcFe/HSIiIs1hwEJERER227JlC+bPn4+9e/fi/PnzRmOR6XriiSewZMkSLFiwAJMnT7ZpP+zWTERERHaTRnt/5513LK6Xl5eHHTt2IDo62q79sNEtERER2W3o0KEYOnSoxXXOnj2LSZMmYcOGDUhOTrZrPwxY7FRXV4dz586hSZMm8PHxUbs4RESkYUIIXLlyBdHR0WjQwHmVG9XV1bh27ZrD2xFCGF3b/P394e/vb/O26urqMG7cOEyfPh1dunSxu0wMWOx07tw5tGrVSu1iEBGRGzl9+jRuvvlmp2y7uroaka3boOzSRYe31bhxY1RUVOgty8rKwqxZs2ze1rx58+Dn54dnnnnGoTIxYLFTkyZNAACn576MkIAAVcvy1pYNAIBJdyUpvu0PByTj4e/WKb5dck9vbdnglO+ZFnTo0AcAcOzYLpVL4vn+3e0+DDv4hdrFcKny6mq0mvEP+drhDNeuXUPZpYt4bctuBDa2fz9VFVcw7a7eOH36NEJCQuTl9mRX9u7dizfeeAM//vijw7URDFjsJB34kIAAhAQGqlqWfyQNd9q2n9qVD6j8/kgZOfk3As+MRPvqjwHnftfUkpO/DhmJybh49uCNBVZ836XXKLFfbzT22EavPa+4oglBYOMmDgUskpCQEL2AxR5bt27FxYsX0bp1a3lZbW0tMjIysHDhQpw8edLqbTFgIfIS3npxrI89x0WJY8nPg7zBuHHjMHjwYL1lSUlJGDduHFJTU23aFgMWIiIiG+TFjcSIA6vVLoZm6I72DgBFRUXYv3+/PNq7NNGvpGHDhoiMjLR5njwGLERERDZgsKJvz549eqO9T506FcAfo70rhQELkZfJTUxBav5atYtBRB5i4MCBsGXQfFvarejiSLdEXobBinfKyV8nN7wmckcMWIiIvIBhI18GMORuGLAQeTletCzz1OOTkZiMjMRkj31/5uQmpqhdBLITAxYiL6fF7rWRsQmIjE1QuxgA/jg+nnChM/VZm/v8I2MTPDKYYZWo+2LAQkR6tHCRKi7YjuKC7WoXQ+9YeNuFzpHjr4XvEHkeBixEpEfNjIuWLnTePBKtxJ73z+NGzsKAxc1IJ3Q2mCOlaKXqRWsXOi2VxZ3wuJGzMGBxMzwZkNK0UPUCuPa7zWCfyP0wYHFDPNnqy01M0XsQ6TL1e9FK4K+bKeXvmsgyBixuSOqOqFV5cSNdur+SzDSk5q+VH+Rd6rvQa/m3AvxRPq2X0xR7gixXnx/Ic/gIW8bTJVl5eTlCQ0NRtiAHIV46TbolnByMiOgP5VVVCJ2SgbKyMoSEhDhnH79fl9758WcENm5i93aqKq4g/bZOTi2rPZhhUQAbwBpjsEJEREpiwEIeiW1ZlCEF4lrpSeSptDRQHpFWcbZmhbhj/bMnc5e2LFJAoNXvj1QurfQk8lTefny1/jsgbWDAogC1fmRaG7eCbMfPz3G61bE8nu5FauvGz42swSohN8YfuXtg+ybX4O/B/bCtG9mCGRYiJ7PmQpqbmOI21Vhaw0CFyDsww0KkAQxWiP7ArCSZwoCFiMgEDnDmOtLQELqBCoMWMsQqISIiE9i+Qj2s5iNTGLAQEZEmSIEKR8p2zKyzl9AguMru19dVVgAAevfuDV9fX6SnpyM9PV2p4tmNAQsRKSYyNsHrxxQh20mBilQN1E6nOo7DN6hn9+7dHJqfiDwTgxVSwokFE9UuAmkQAxYiItKEjMRktJuyzGgZEcCAhYhcyFPneGKPFvuY+j5w5FsyhwGLB/PUiwO5L08dbyYjMZmztltJOi/Z0m1cmhySE0R6NwYsHsxTLw7kngwDaE8MqJkZsN6IA6utPkcVF2yXH+S9GLAQkdMZ3lV7YrACsGrIGvbeSHnqd4asx4CFyIW8/YJW2rRWvvAwA6gcb7iY8/tCDFiIyOlS89d6zAXHXDsKNauDUvPXekXQQt6NA8cRuZC3t3FQImhRcyCxtkWtEVB0Fogxfs7bs2dEzsYMCxGpTrrYW9PTRs2grzqpJaqTWprssZKRmKxa2aRjxiwLeTIGLAriHRaRfaQLvS0XfFPdYvkbZNBCnosBi4K8Pd1PpATd35GljIupyfGc/RvU7VobsOGsU/dli4zEZM23EWIgRY5iwEJOYcugUETm6FazaCl7UlywHSdjTqldDLNyE1M0FyBoPaAi7WPAQuRkWrtwuDNTQYuWAhm1Sb2xSjLT1C4KkeLYS4icwlS63lvxzlIZ5qp7WBX7Bzk4zl+n6vcuNzFF3n9e3EiUNq3l74AcxgwLEZGT5SamIC9upFFVqdLZoZLMNDm7otvzytWk4CQ3McWmIfiJLFE1YJk1axZ8fHz0Hp06dTK7/sCBA43W9/HxQXLyH3dYQgi88MILiIqKQmBgIAYPHozCwkK97dx3331o3bo1AgICEBUVhXHjxuHcuXNOe59E5L6UmHAv7LKvAiWxjmGjZTUxUCElqV4l1KVLF2zatEn+28/PfJFWr16Na9euyX9fvnwZcXFxGDVqlLzs1VdfxZtvvon3338fMTExmDlzJpKSknD48GEEBAQAAAYNGoS///3viIqKwtmzZzFt2jQ88MAD2LZtmxPeIRG5MyUm3LNURSoFFUpUbdnTPVxputVBREpSPWDx8/NDZGSkVeuGh4fr/b1y5UoEBQXJAYsQAgsXLkRmZiZSUm7U5X7wwQeIiIjAmjVrMHr0aADAlClT5G20adMGf/vb3zB8+HBcv34dDRs2VOJtERE5nZqj/prDYIWcRfU2LIWFhYiOjka7du0wduxYnDplfVfBZcuWYfTo0QgODgYAFBUVobi4GIMHD5bXCQ0NRXx8PLZvN32XVFJSgo8++gh9+/a1GKzU1NSgvLxc70FEZAslqpd0aS1YIXImVQOW+Ph4LF++HOvXr8fixYtRVFSEO++8E1euXKn3tbt27cKhQ4fw6KOPysuKi4sBABEREXrrRkREyM9Jnn/+eQQHB6Np06Y4deoU1q61fFcwd+5chIaGyo9WrVpZ+zaJiAAYVy8x4CBPsGXLFgwbNgzR0dHw8fHBmjVr5OeuX7+O559/Ht26dUNwcDCio6Mxfvx4u9qNqhqwDB06FKNGjUL37t2RlJSEr776CqWlpfj000/rfe2yZcvQrVs39OnTx659T58+Hfv27cPXX38NX19fjB8/HkIIs+vPmDEDZWVl8uP06dN27ZeISJeacxARKaGyshJxcXF45513jJ67evUqfvzxR8ycORM//vgjVq9ejaNHj+K+++6zeT+qt2HRFRYWhtjYWBw7dsziepWVlVi5ciVmz56tt1xqC3PhwgVERUXJyy9cuIAePXrordusWTM0a9YMsbGx6Ny5M1q1aoUdO3YgIcF0ytbf3x/+/v52vCsichd5cSM5hhCRjYYOHYqhQ4eafC40NBQbN27UW/b222+jT58+OHXqFFq3bm31flRvw6KroqICx48f1ws2TFm1ahVqamrw8MMP6y2PiYlBZGQkNm/eLC8rLy/Hzp07zQYiAFBXVwfgRjsVIvJeDFaI/mDYblOpa2RZWRl8fHwQFhZm0+tUzbBMmzYNw4YNQ5s2bXDu3DlkZWXB19cXY8aMAQCMHz8eLVu2xNy5c/Vet2zZMgwfPhxNmzbVW+7j44PJkycjOzsbt9xyi9ytOTo6GsOHDwcA7Ny5E7t370b//v1x00034fjx45g5cybat29vMaghIiJyB/8nxiFY2J+PqBR1SAGM2mpmZWVh1qxZDpWturoazz//PMaMGYOQkBCbXqtqwHLmzBmMGTMGly9fRvPmzdG/f3/s2LEDzZs3BwCcOnUKDRroH/SjR4/i+++/x9dff21ym8899xwqKyuRlpaG0tJS9O/fH+vXr5fHYAkKCsLq1auRlZWFyspKREVFYciQIcjMzGSVDxER0e9Onz6tF1Q4eo28fv06HnzwQQghsHjxYptfr2rAsnLlSovPf/vtt0bLOnbsaLFxrI+PD2bPnm3UvkXSrVs35Ofn21ROIiIibxMSEmJzFsQcKVj55ZdfkJ+fb9d2NdWGhYiItIczjpMjpGClsLAQmzZtMmrOYS1N9RIiIiLt4ei1ZElFRYVe796ioiLs378f4eHhiIqKwgMPPIAff/wRX375JWpra+Vx0cLDw9GoUSOr98OAhYiIiOy2Z88eDBo0SP576tSpAIAJEyZg1qxZ+OKLLwDAaHiRb775BgMHDrR6PwxYiIjIIk5oSJYMHDjQYttSS8/Zgm1YiIjIIgYrpAUMWIiIiEjzGLAQEZHLsecR2YoBC5Ebc+eTfk7+OpfvMzcxBXlxI4HHn3T5vkkfq5nIVgxYiNyYO5/0XT1DcV7cSKTeEo3SprWI/Gb/jcCFiNwGAxYicqrcxBSXZIIsBSDyc0tuDAdeXLD9xt+PP+nWWSoib8KAhYgUZRigpP7ylksyQSMOrDYbtIw4sBqlTWtvlOeWaLl8eTsuOLVMOfnrVKn6IvJEHIeFiBRlFJwcb+2S/ebkr0OGhefDLvsiL24kSgvPAbgRxABAZGwCUm3cV25iCkoy0yxWa+Xkr3N5tReRJ2OGhYjs5qrqHmvYEhw4kvHJixuJksw0AJYbDntbsKKV7wF5LmZYiMhutlz48+JGylkNZ7G0D2l5XtxIvZFb5fYsVhpxYDXgQDASGZsg/9/WfWuJYYDizg3AyT0wYCEil3B2sGItS21d7KXXZsfChTsnfx2me0hVkeH7lI4BAxdyFlYJEZHHsDYoMreevdUaqflrUZKZZtXFOiMx2SMb46bmr0Vq/lqPqhrypPfiCRiwEP3O0y4gZJu8uJEOZQesyZpI63hChsUcT8qweNJ78QQMWIh+56l3vmQdR6qsOAgdkfMxYCGvwgsLaYUnZ1mInIEBC3kdS0FLRmIyLyRkNSkbp5UGxUSejL2EyKvwwkL2kAITw2CWwS2R6zBgISLVuWKMFlvptmVyVmDC0XCJrMeAhYhcSqqS01qAYsgVgQSDFSLrMWAhsoLuyKjkOMNgRevBC5E7CQ76PwQHBdu/AVEJYDB69+4NX19fpKenIz09XbHy2YuNbslrWdtjiMGKsiwFJ+zF5V44BIBn2717Nw4fPqyJYAVgwKIJ/NFrG4MV12GmhYjMYcCiAVI9thS4cPAy1+DFkdQg/b494TeekZisqRm7ybOxDYuGeMOw3UTeTApSwrOXypk7d+8pxAwkuQoDFiIiF5ECk1yVy0HkjlglRPQ7T0jRk3vQzUq4c3aFyJUYsBD9Ljx7qdpFIDMYTBIRAxai37EuXruYhSAiBixERESkeQxYiIiISPPYS4iIyA1ExibI/y8u2K5iSYjUwQwLERERaR4DFpVxhEgi7dHinEbMqpC3Y5WQytgzhUh7tDptA4MW8mbMsJDdvGVsDGbBiIjUx4CF7OYtY2MwC0Zq0G1kS0QMWIiINClgw1m1i0CkKQxYiIg06GTMKQA3Mi3MthCx0S0RkSZFxiYgYMNZBBT9nmmJUbc8RGpjhoWIXCYvbqTcZViLXYe1qDqpJaqTWqpdDCLVMcNCRC4jdRfOixup2a7DWlFcsB2RSawKIpIww0JELsdghYhsxYCFiFyKVUHWk3oKsccQadmWLVswbNgwREdHw8fHB2vWrNF7XgiBF154AVFRUQgMDMTgwYNRWFho834YsJBX4SBw6mN2xXpS2xW2YSEtq6ysRFxcHN555x2Tz7/66qt488038e6772Lnzp0IDg5GUlISqqurbdoP27CQV+EgcOSOOCQ/adnQoUMxdOhQk88JIbBw4UJkZmYiJeXGDeMHH3yAiIgIrFmzBqNHj7Z6P8ywEBFp1J4NV7BnwxWOw0KqKC8v13vU1NTYvI2ioiIUFxdj8ODB8rLQ0FDEx8dj+3bbAnFmWIiINOr2pCYAmGEh23QrDULItWC7X19+VQAAWrVqpbc8KysLs2bNsmlbxcXFAICIiAi95REREfJz1mLAQkSkUcUF25GTvw458J65u0g7Tp8+jZCQEPlvf39/FUvDKiEiIiIyISQkRO9hT8ASGRkJALhw4YLe8gsXLsjPWYsBCxERETlFTEwMIiMjsXnzZnlZeXk5du7ciYQE29pmsUqIiEgBuYkpTumFxqog0rqKigocO3ZM/ruoqAj79+9HeHg4WrdujcmTJyM7Oxu33HILYmJiMHPmTERHR2P48OE27YcZFvJoOfnr1C4CeQlv6jLP8YxI1549e9CzZ0/07NkTADB16lT07NkTL7zwAgDgueeew6RJk5CWlobevXujoqIC69evR0BAgE37YcBCHi0jMZlBC5GVlJqcUnc75PkGDhwIIYTRY/ny5QAAHx8fzJ49G8XFxaiursamTZsQGxtr835YJUQeLTcxBRlqF4LIDUgBhjQSsaURia3JJnFEY1IaAxbyaN6UpifHcAZp/dm0zT0HOK+9DpElrBIiIq9k2A6DwYr592/4HIMVUgMzLORSOfnr2OuBNMEdL7rSEP3OHvnWVPBiWGVUH2/OWEnt5sKzl7rl90yrVM2wzJo1Cz4+PnqPTp06mV1/4MCBRuv7+PggOfmPC2B901ifPHkSEydORExMDAIDA9G+fXtkZWXh2rVrTn2vdAODFSLb6M4jVFywXbVh+kccWG1zAOJtDW9z8texkb8TqZ5h6dKlCzZt2iT/7ednvkirV6/WCywuX76MuLg4jBo1Sl4mTWP9/vvvy/29k5KScPjwYQQEBODnn39GXV0dlixZgg4dOuDQoUN47LHHUFlZiddee82h96KbPZC+tLxAE2mXO2QBAjacRWRSglvNJ6T1Y6o0c0FKSWYawGuAYlQPWPz8/Kwenjc8PFzv75UrVyIoKEgOWKyZxnrIkCEYMmSIvI127drh6NGjWLx4scMBi25wwkCFSLukQMUdLqwnY04BBafULgbpsCWLwgbKylG90W1hYSGio6PRrl07jB07FqdOWf/DXLZsGUaPHo3g4BuzUto7jXVZWZlRMGSopqbGaKptIk/myentEwsmyv/31PeotPoGi/OmweTCs5davW5JZpoTS+JdVA1Y4uPjsXz5cqxfvx6LFy9GUVER7rzzTly5cqXe1+7atQuHDh3Co48+Ki+zZxrrY8eO4a233sLjjz9ucX9z585FaGio/DCcdpvI02QkJntcplC6qLabskxe5mnv0VnqyxJ4UxbBm96rlqgasAwdOhSjRo1C9+7dkZSUhK+++gqlpaX49NNP633tsmXL0K1bN/Tp08fu/Z89exZDhgzBqFGj8Nhjj1lcd8aMGSgrK5Mfp0+ftnu/RKQ+b2sQ6s34WXsG1auEdIWFhSE2NlZvEiVTKisrsXLlSkycOFFvuS3TWJ87dw6DBg1C3759sXRp/ek9f39/o6m2ici9pOavtbl7rlbo9hbSavWLVgMDd/usyTRNBSwVFRU4fvw4oqKiLK63atUq1NTU4OGHH9Zbbu001mfPnsXAgQPRq1cv5ObmokEDTR0GIqdjuw3tXlzN0e0lpNUqCW8KDGxpx8LfmzJUvVJPmzYN3333HU6ePIlt27ZhxIgR8PX1xZgxYwAA48ePx4wZM4xet2zZMgwfPhxNmzbVW+7j4yNPY/3FF1/g4MGDGD9+vN401lKw0rp1a7z22mu4dOkSiouLzbZxIfJE3txuw5suquQ8Wg0aPZmq3ZrPnDmDMWPG4PLly2jevDn69++PHTt2oHnz5gCAU6dOGWU/jh49iu+//x5ff/21yW0+99xzqKysRFpaGkpLS9G/f3+9aaw3btyIY8eO4dixY7j55pv1XiuEcMK7JCKtYdBCSrBlNvi3tmxwcmk8n4/gVdou5eXlCA0NRdmCHIQEBqpdHCIiUoE1AUu/KZmorKzE4MGDUVZW5rQ2kNJ16cJn2xAS1Nj+7VytQMQDfZ1aVnuw8YaKWK9JpD6tNmCV5MWNRF7cSLnRrSePj6MGZ37+/aZkot+UTKdt39uoPtKtN7O7HUH7U8Dx1soWhshLabktgm7DYKnRrTe3P3IGez9/U0EjgxPnYoZFYS7pecBghcirMcOiLdZkUnofPOCi0nguZlgUxsZ8RKQUnk8c48x5fMKzl6LzZeumkrnjwD5wMhfHMWBRie4dElO8RGSK7gzwunjOsI4zq/tS89diR1xPo+V3HNgHQN2ZwC9/X4Zr/r/Z/forNZUAgN69e8PX1xfp6elIT09Xqnh2Y8CiAilY4UmHiKyh5sWPzLvjwD45aJECFYknfF67d+/WVC8hBiwqYKBCRNaS2sVFxibIDW8ZwGiHYaAC3KiKkmZp/vOB4/gqrj2qr193ddE8DgMWIiKNykhMBn4PTEb8viwvbiSerDqPE2aqi0h9JZlp+POB42oXw+MwYCEiIo8jNbh1ZsNbXXlxI1HatBYAkAEgB/o9ue45WAR2enYMAxYi8mquuqA5Qrc6aMSB1XgyNoHZlXqUZKYhBwDy1934F86tjh9xYLXcPjEHMMqwVDhtz96DAQsRkZvRnbmZTDM1z4+58WukmZdLMtPsDmp0t83qIOfgwHHkVaRhuLU+HDs5h6nPXevZFcA4QImMTeDgcVawNvgoyUyTG8laIk2TYG6A0D8fOM5gxYkYsJBXkS5OuhcpR4MXBj/uJTcxhZ8ZmaX73TAXnLCHljpYJURez9E7bHOvd4e2EYZ020qQ9kgTIAJ/ZA/YxVlZJZlpgEFmRjrG0nE2FcS0ixsJPDLQFUX0WsywkN1y8te5Zu4kG2jp7tndghXA89tGmMqwad2Zoq44U9RVL1jRxWDFMnvapJiqbquvOggAvoprb/O+yHoMWMiIqenrdf+WfrAZicmaO1m604WI1CF1dSXvITWqtYXud0TKrug+zGHQ4jw+QgihdiHcUXl5OUJDQ1G2IAchgYFqF8dm1jbYY9dJIm0w/M3yt2kbexopZyQmyzdoukGKuSzLiQUTAZjuJVRRW4s+xwpRVlbmtOHupevS4cn/QRP/YLu3c6WmErcuHOrUstqDbVjIIkfmPeKcSUSOk35H7aYsky+I5DojDqxGXtxIvYCnncaqwr0Fq4TIKvbenTBYIVIGgxV12NJOr92UZSaXfxXXHl93i1GqSF6LGRayijQIkzsEIO7YO8cTSHX+PPakReHZS60aa0XXjXPJjQyLuWAE+CMLU9q0FuHZS7FD57nU/LXoDKC8qgqZeV/bV3gCwIBFs6TgwFldFqXAw9rMibsEK4Z4EXUd6WKQA1YDKiU3MQXgAHGKSM1fKw/Rby2pi7Nud2Zz52OtdUDwRKwS0igpWJEm03LmfjyF1KVZtxdIav5aBisq0O1pxh45yrP2d2uqx583s6e3kC4GJepiLyE7uXsvIV26JzTdE6GUVTGXXdFa1oVVQeqx5qIYnr2Un48D2EtIGbmJKSjJTJODF1d9J8urqhA6JYO9hBzADIubcOZdqm7jWHm2UTNBjCG17+B05wbixVDbSjLTmG2xg9q/MU+Tmr8WGYnJzL66IbZhUZm1bSxc8cPSDUysuXvTwh2eO45c6mlsuZiWZKYhB8apeX5+zqG1LCiRIxiwEJHLGfbWyGV1kVMwWCFPwiohlTEtaR+pgS2rGNSl1PG3tbupN2HQQVpXW1uLmTNnIiYmBoGBgWjfvj1eeuklKN1ElhkWcmsM9tSVmr8WuXaMb2GIF2Xr8DiRFs2bNw+LFy/G+++/jy5dumDPnj1ITU1FaGgonnnmGcX2w4CFLNJqHTgDFe2wZ3wLCXsOWUeLv0EiybZt25CSkoLk5Bvf07Zt2+Ljjz/Grl27FN0PAxaySOrWrPs3kSFrByI0ClAYrJAH8PYBKvv27YulS5eioKAAsbGxOHDgAL7//nu8/vrriu6HAYsbsDROii4GE6Q2wwAXgP54F156QifP54nBSnl5ud7f/v7+8Pf3N1rvb3/7G8rLy9GpUyf4+vqitrYWL7/8MsaOHatoeRiwaJQ1VTEMUMgdeOKJnEjLVv+yAAENG9r9+urr1wEArVq10luelZWFWbNmGa3/6aef4qOPPsK//vUvdOnSBfv378fkyZMRHR2NCRMm2F0OQwxYyIhhsMTAiCTWDNDH7wt5G2k6EE8Lzk+fPq030q2p7AoATJ8+HX/7298wevRoAEC3bt3wyy+/YO7cuYoGLOzWrCAlR6NU86TPCw6ZoztPk1ZorTwEnCnqqnYRXM7TghUACAkJ0XuYC1iuXr2KBg30wwlfX1/U1dUpWh5mWBSSm5iC8MQUxevotdpLh0grPPFC4e5ujjmkdhHIhYYNG4aXX34ZrVu3RpcuXbBv3z68/vrr+Otf/6rofhiwOOjf3e7D2GMbnXbSZLBCrpQXN1L+v+5M4brf7xlnLmJGbAKKC7a7tGxkvcjYBADgZ0Qu8dZbb2HmzJl46qmncPHiRURHR+Pxxx/HCy+8oOh+GLA4aNjBLwA3n62ZSDLiwGqjZXlxI+X6eV4I3UdxwXaPbFdB2tOkSRMsXLgQCxcudOp+GLAQkR7DoGTEgdWIjE1AWNxILMbvmZcCFQtI9ZI+OwYr5EnY6JaI9BQXbDfKoDCjQkRqY8BCAG407lWylxN5nhEHVuPJqvMAwIknicjlWCVEANi415Mp2Y6huGC7yeqgvLiRJtu/EBEphRkWIg+Wk7/OKe0YdHsTAaYb6xIRKYkBC5EHc1bmbMSB1UZBC2mD1GiayNMwYCEiuzCrok1sIE2eigELaQIbcBIpgxkW8lQMWEgTOF6EdvCC596YYSFPxYCFiPTwgkdEWsSAhYjIw0TGJjBTRh6HAQtZxLYl5Cm86btsarRiInfHgIUsYtsSUppagQO/y0TujQELaRKnCbCOO46FYhg4eFPmw5V0q4RYPUSegAGLinRP1HlxI93y4uMoc3MYcaoA68hjobQ/pW5B7KA7HxGDFmVJAUrbotYql4RIOQxYVCadqEccWO2VA3FlJCYzOFHCcfe7MKXmr5WzLayuUY7uDUB1Ukv5/8yykLvj5Icq4kmaiL8DpWUkJiOjYDsDFPI4NmdYJkyYgC1btjijLEREpBDdXkLsNUSewOaApaysDIMHD8Ytt9yCOXPm4OzZs84oF6nMG9vTEHkaBinkSWwOWNasWYOzZ8/iySefxCeffIK2bdti6NCh+Oyzz3D9+nVnlJFU4I3taYg8XWRsAnvgkdvyEUIIRzbw448/Ijc3F//3f/+Hxo0b4+GHH8ZTTz2FW265RakyalJ5eTlCQ0ORPeIeBDRsyIajRERkVnlVFUKnZKCsrAwhISHO2cfv16Wv/7UTwUGN7d5O5dUK3POXeMTGxsLX1xfp6elIT09XsKT2caiX0Pnz57Fx40Zs3LgRvr6++POf/4yDBw/i1ltvxYIFC5QqI7kY78CIPJ/0O2fjXDJn9+7dOHz4sCaCFcCOgOX69ev4/PPPce+996JNmzZYtWoVJk+ejHPnzuH999/Hpk2b8Omnn2L27NnOKK/mTLorSe0iKC48e6naRSAiJ2s3ZRkAtnMh92Fzt+aoqCjU1dVhzJgx2LVrF3r06GG0zqBBgxAWFqZA8bTvrS0b8I+k4WoXQ1HsZkrk+dhOjdyNzRmWBQsW4Ny5c3jnnXdMBisAEBYWhqKionq3NWvWLPj4+Og9OnXqZHb9gQMHGq3v4+OD5OQ/2o8IIfDCCy8gKioKgYGBGDx4MAoLC/W28/LLL6Nv374ICgpyOLCadFcSq1CIyG3wfEXuyuaAZdy4cQgICFCsAF26dMH58+flx/fff2923dWrV+ute+jQIfj6+mLUqFHyOq+++irefPNNvPvuu9i5cyeCg4ORlJSE6upqeZ1r165h1KhRePLJJxV7HzwJEGkPu+cTeQ7VR7r18/NDZGSkVeuGh4fr/b1y5UoEBQXJAYsQAgsXLkRmZiZSUm4Mef/BBx8gIiICa9aswejRowEAL774IgBg+fLlirwH9hCyXU7+Oh43cjpvrfbITUwxW7Vr+LvLixuJ3msK8EnRPLPrEGmB6nMJFRYWIjo6Gu3atcPYsWNx6pT1k7gtW7YMo0ePRnBwMACgqKgIxcXFGDx4sLxOaGgo4uPjsX07G5YRkXcoyUzDjrie2BHXs951RxxYjduTmmD+E9mY/0Q2APOTkroTZtc8j6oBS3x8PJYvX47169dj8eLFKCoqwp133okrV67U+9pdu3bh0KFDePTRR+VlxcXFAICIiAi9dSMiIuTn7FVTU4Py8nK9B9mPd3BEystNTLEr0Cgu2I6ADWcRsEF/5HJ3D1rIs6haJTR06FD5/927d0d8fDzatGmDTz/9FBMnTrT42mXLlqFbt27o06ePs4sJAJg7d65clUREpCVSYNEvricwJVPvOSnLcseBfRa3cTLm9+x2TDIiYxNQXLBdzrS44w2Gt1YHejLVq4R0hYWFITY2FseOHbO4XmVlJVauXGkU1EhtYS5cuKC3/MKFC1a3kzFnxowZKCsrkx+nT592aHtERErpNyUT/QwCFUPWVA8BNwaSC9hwFm2LWitRNJdjVshzaSpgqaiowPHjxxEVFWVxvVWrVqGmpgYPP/yw3vKYmBhERkZi8+bN8rLy8nLs3LkTCQmOjebo7++PkJAQvQcRkZpyE1OsDkQA64OW6qSWqE5qiflPZLtddsXdykvWUzVgmTZtGr777jucPHkS27Ztw4gRI+Dr64sxY8YAAMaPH48ZM2YYvW7ZsmUYPnw4mjZtqrfcx8cHkydPRnZ2Nr744gscPHgQ48ePR3R0NIYPHy6vd+rUKezfvx+nTp1CbW0t9u/fj/3796OiosKp79cd5CamqF0EIrJCbmIKOl+2vpOCpL6gxXDkW08aut8TGhN7M1XbsJw5cwZjxozB5cuX0bx5c/Tv3x87duxA8+bNAdwILBo00I+pjh49iu+//x5ff/21yW0+99xzqKysRFpaGkpLS9G/f3+sX79eb+yYF154Ae+//778d8+eN37A33zzDQYOHKjwuyQiUp4twcoPC270/pGqjXbE9bTYpqW4YLtcNQQAOUXu2Y7FkCe8B2/m8GzN3kqaFbNsQQ5CAgPVLg4ReYHcxBSUZKbV217FGj8sqL+6R2rHIjfIJbu542zNziyrPTTVhoWIyN05uwpFiWBFUl/10MmYU6hOaqnY/ogcofpIt0REnsRZsx/viOupVw0kVfPosiWY6TclEz8syMYPsFxVYvh+8uJGssswqYIBC7mMu47nQKQ2Uw1slci0SEFLfW1adIf6Z7BCamGVEAFw/tgFSm+fvZnIE5nrxZKavxZ3HNhX7+Bv9bGUlbFUPWRuXiIiV2KGhVyS+WBmhciYuUBeWm7qdyMFLbaMvyIxlZX5YUG2XtBiTWNcIjUww6IAd+/X744nJ97xkTuzdjwQS+vdcWAfjjR1fDRawyBGyUa9utz9PEnqY8CiEHf9MUrldmX5WZ1Drqal75w9vzVzr3FW4G5N9sbW96H2jZG7nqPpDxyHxU6eNA6LdDJn1oI8jW6goub32xkXy/DspQBuvC/pfdoz8q0l9bWZYUN663n6OCxnz57F888/j//85z+4evUqOnTogNzcXNx+++12l8MQMywEgMEKkbspyUxDSWaa3g2Ho41yDVnKtKiRnSVt+vXXX9GvXz80bNgQ//nPf3D48GHk5OTgpptuUnQ/bHTrAhy3gEgdUiCupSohpZVkpgEAcn/PuAA33rc9jXJNMdflOSMxWfEMS2RsgtPGsbHHmaKu8v9vjjmkYkm0bd68eWjVqhVyc3PlZTExMYrvhxkWF8mLG6l2EcxidoU8nbt8xzMSk5GRmCxX99hCClyAGwGa0tkWU5SuDtLyxItaKourlJeX6z1qampMrvfFF1/g9ttvx6hRo9CiRQv07NkT7733nuLlYYbFBZhdIfJO9laXpOavRY4dr5OCFnsDCd0uzmqRsjZti1ojoOgs2qK1anMZ3RxzSM76FBeoUgS7xF/43qG2leVVVQCAVq1a6S3PysrCrFmzjNY/ceIEFi9ejKlTp+Lvf/87du/ejWeeeQaNGjXChAkT7C6HIQYsREQKkSYnNCRVn1iiZLZCuujfcWCfPEqtpQbI0nPh2UtxxMTztnC0WicjMRlnirqiOqkJAOdNdWAttfevptOnT+s1uvX39ze5Xl1dHW6//XbMmTMHANCzZ08cOnQI7777LgMWUo6nt6/RHVKcyJly8tcBDjRANWwPYk2QY8hU0CN9/y39DpT8jcy9uQXgYDbik6J5ALIRsOEsoNMUQmttXHR5Yo+pkJAQq3oJRUVF4dZbb9Vb1rlzZ3z++eeKlodtWLycJwcrgPu0XSDncFXbsfoa9eYmptjVLsVaUtsXLVDiN5eRmIzFgVFYMNy4S2xkbIJm25N4a4+pfv364ejRo3rLCgoK0KZNG0X3wwyLM7Q/BRx3fARKInKMswNy+QJVz4WqJDOt3oDFmoBDd+wVUzwpo2jqs1M7uyJ93g/FPG/Ua0grAaMapkyZgr59+2LOnDl48MEHsWvXLixduhRLlyobpDNgcYbjrT2+qoXIm5lrq2KJFLRY8zrd7esFKfUEI54SrGjVH0EJuzjr6t27N/Ly8jBjxgzMnj0bMTExWLhwIcaOHavofjjSrZ08aaRbIjLPnuBECd58x+4ObG2z4sqRbh29LrmirPZgGxYVePIgVkSeRulgpb6LnJbao3izyNiEetukWDuJJSmDVUIq0Era1pPqu4ncQXj2UovVOgxUtCNgw1mjZaaCE35mrsOAxYsxWCFyDfmiZuY3x4ue9lQntcRbG57EW0WQB67j56QuVgkRETmJNdU77ngR9IZq7eKC7ahOaqnaKLtkjBkWIiIFGHZbtpTBdMcgRZea2VndMVic0c1ZtzGttdvX8oB2noQBCxGRncINZkh2d7ptNNw9qLJXfe2MJJYCJw5r4RwMWIiI7OQJQYoudwpSnJnRyE1MQdhlX6OgQwpSpH2bK0Np01qnlc2bMWAhIrKRnFnxsIDFHSgZqJgaS0UKQnPy1wGJyWanAVgcGCVP/fBk1Xm9snlaIKsVbHRLRGQjNQaSI+VZyihJQampACkyNgFPVp2XH8UF29mGxQWYYSEiskF98/l4M0+asdjS58vgRB3MsBARWSE8eykyEpORmr/W6mAlL26ky2aMdhZbRnJ1ZbDStsj5E8xKn9/0dzMBANPfzWSwoiJmWIiILPCEjIoUdNgTUNjyGldmWKqTWgIFzh8jZcSB1UBiMjIKtgMekj1yVwxYiIgscCRQ8baura7MsEiZDmdOMeJtn5/WsUqIiEgBWq768ZQJFU1VT7lz5otsw4BFgzj7J5H74d34H5x1DlMz6PKG6Qi0jgGLBnnCnRCRt1Ajs6L1mxolzmG2vEdTY6WYGz/FXvZkcrT+ObkbBixERA5QI7PiDTc11r7HyNgEBGw4a7RMC715vOFzciU2uiUiIrdhGIwUF2wHYv54Tl5GHocZFg3RcqM9IiKt44izno0Bi0ZIwQqDFiLHaPE3pMUy1UerZZYGcXMFpdvBkGN8hBBC7UK4o/LycoSGhqJsQQ5CAgPVLg6R3fLiRrp9DxdzF1dH35dho0lPGETOGyjZhsVUNZM1VU+Gg/WVV1UhdEoGysrKEBISokjZDEnXpV0dbkFjX1+7t1NRW4s+xwoRGxsLX19fpKenIz09XcGS2odtWIi8nKcGK7rP2fIepe6rpiY4LMlM+2OmZvJ4UoPe6qSWesu8xe7du50WXNmDVUJE5LasrbawZr3cxBTkJqagJDPN4mzMJZlpXjcmh5Ldc/PiRjrt+EXGJsjZFUcDC1Ovz01MMZlpMcTuzM7BKiE7sUqISB1KtK2QMi7Stk4smGjzNsKzlzq9aki6sLMKynaOVAu1LWqN6qSWZl+vG6hYuw93rBJyZlntwQwLETmV0nfnSm3H0W1ZysIoxZaZob2VuSyHI21YLAUruttmjyTXYsCiMTn565hOJI8RGZvg0YNn8beqPmcEDdZs05beSvyeKIMBCxE5hTNO0lpsIMyLkXeypfG1JwftrsSAhYicIiMx2e1T5uHZS626MGk9aNHqmCqu4KxePayqcz12a9aInPx1HjMFPJE7GXFgNXJ0/tYba0W6KP3+u7QUmEi/YS3SYmbKVdw9aKY/MMOiEVo90RF5MsMLufQ7NLx7lro810frmRZyPW/ObimNGRYi0jxnnPR1gxXdGwYpWNEbQM6GQETLmRZyDd3vgDdnt5TGDAsRaZqad6j2dl3W0sByzPq4HgNW52CGhYg0x9lBiqm7XsNh/B0ZZ0VLDTJ58SRPwYCFiDTHcCRaV25bmgzS1IVe9zUjDqw2vw3YVxVgOGGes7l6f1okzRckORlzSsXSkCUMWIjI69QXCFkTKFmzDXvbLyjRDoZtacjTsA0LEWmWMxosukOvDSUCDWu3waCG3AUzLESkac6sHtIaVwcP3hystC1qDQAIKDqL6qSWetVCpE3MsBCRW2D3UHIWBivugRkWItIkU91xwxNTEHbZV4XS2MeRdizkGtVJLQHcCFqqk1oCBWx0q1XMsBCR23Cku3Bp01qUNq1lAEEyw2Blz4YrKpeILGHAQkRuw9pB0EYcWC0HKCcWTMSJBRNRkpmGksw05CamMGhxEXcbtO6TonlqF4EsYJUQEWlSRmKyyQueFGzkJqaYHdwtB6h3OH3doMUbGvS6kqWxbLQkYMPZG+OuxOBGVZDGy+vtmGEhIs2SZk7WlZO/Djn568wGK/2mZKLflEyz25SyLK7ibcEQM1j0yiuvwMfHB5MnT1Z0uwxYiEizbB0e31Kgois1fy3y4kbKD2cacWC1qlUjrp7XSEvTElhyMuYUsib2VLsYHmf37t1YsmQJunfvrvi2VQ1YZs2aBR8fH71Hp06dzK4/cOBAo/V9fHyQnPxHGk8IgRdeeAFRUVEIDAzE4MGDUVhYqLedkpISjB07FiEhIQgLC8PEiRNRUVHhtPdJRLaz5yL/w4Js+aElalaNuEsAYQ3pOyFl2RzlScdGCyoqKjB27Fi89957uOmmmxTfvuptWLp06YJNmzbJf/v5mS/S6tWrce3aNfnvy5cvIy4uDqNGjZKXvfrqq3jzzTfx/vvvIyYmBjNnzkRSUhIOHz6MgIAAAMDYsWNx/vx5bNy4EdevX0dqairS0tLwr3/9ywnvkIhspXRGwqhqiRcqtyQFflpvG+MpysvL9f729/eHv7+/2fXT09ORnJyMwYMHIztb+ZsG1QMWPz8/REZGWrVueHi43t8rV65EUFCQHLAIIbBw4UJkZmYiJeVGGvSDDz5AREQE1qxZg9GjR+PIkSNYv349du/ejdtvvx0A8NZbb+HPf/4zXnvtNURHRyv47ojIFvYEKqbauUikKiWjqiUXXvA4Fovzcd4kfRMy/OAbaP94RbVVPsCTQKtWrfSWZ2VlYdasWSZfs3LlSvz444/YvXu33futj+oBS2FhIaKjoxEQEICEhATMnTsXrVu3tuq1y5Ytw+jRoxEcHAwAKCoqQnFxMQYPHiyvExoaivj4eGzfvh2jR4/G9u3bERYWJgcrADB48GA0aNAAO3fuxIgRI0zuq6amBjU1NfLfhpEnETnOXM8ga1nb5iU3MQVhl+3eDWkMgxXnOH36NEJCQuS/zWVXTp8+jWeffRYbN26UazKcQdU2LPHx8Vi+fDnWr1+PxYsXo6ioCHfeeSeuXKl/8J5du3bh0KFDePTRR+VlxcXFAICIiAi9dSMiIuTniouL0aJFC73n/fz8EB4eLq9jyty5cxEaGio/DCNPIlJGfRcfw+el8VVsbaDriVzdwFbL3G0MGC0KCQnRe5gLWPbu3YuLFy/itttug5+fH/z8/PDdd9/hzTffhJ+fH2praxUpj6oZlqFDh8r/7969O+Lj49GmTRt8+umnmDhxosXXLlu2DN26dUOfPn2cXUwAwIwZMzB16lT57/LycgYtRC7SbsoynFhw45wgXYgeinkegLYG+1K76oeNSP/ArIvr3H333Th48KDestTUVHTq1AnPP/88fH2VmU5D9SohXWFhYYiNjcWxY8csrldZWYmVK1di9uzZesultjAXLlxAVFSUvPzChQvo0aOHvM7Fixf1Xvfbb7+hpKTEYlua+hobEZFyMhKT5e7GIw6sRs6CP25gHop5Hp8UzcMnRfPkoMVWUrdmW4w4sBq5iSlGQYEUQIVnLzV7V8+LJ3myJk2aoGvXrnrLgoOD0bRpU6PljtBUwFJRUYHjx49j3LhxFtdbtWoVampq8PDDD+stj4mJQWRkJDZv3iwHKOXl5di5cyeefPJJAEBCQgJKS0uxd+9e9OrVCwCQn5+Puro6xMfHK/+miMguvdcU4JOieTdGrdWhm1GxN7uSk78OGXa8BvnrjMojYZUUkXOp2oZl2rRp+O6773Dy5Els27YNI0aMgK+vL8aMGQMAGD9+PGbMmGH0umXLlmH48OFo2rSp3nJpZL3s7Gx88cUXOHjwIMaPH4/o6GgMHz4cANC5c2cMGTIEjz32GHbt2oUffvgBTz/9NEaPHs0eQiphXTOZcnPMIbWLoMdSbyRX8oZ2KjwnuL9vv/0WCxcuVHSbqgYsZ86cwZgxY9CxY0c8+OCDaNq0KXbs2IHmzZsDAE6dOoXz58/rvebo0aP4/vvvzbZxee655zBp0iSkpaWhd+/eqKiowPr16/VaLn/00Ufo1KkT7r77bvz5z39G//79sXSpNk5G3ojpcnKUK4IJRzIoSl6A2U6FvJWPEEKoXQh3VF5ejtDQUJQtyEFIYKDaxSFShXQhdmbQWd/FXmrTYit7yuxI4MHA3LuVV1UhdEoGysrK9LoKK7qP369LnRd3dnAcllocefKIU8tqD021YSEi7ZGqILTaRkMKVsKzl6pWRinDo5v9MKq6YWaEyCEMWIhIj1EWQeX2BNJgcro9ggwzKu2mLEMpzI/1YCqgsLcswB/BiLw9E9tl1Q2RshiwEJHmZSQm40yR+edPLJh4I7Ax8Vx49lKLwYOprsr1YTBC5HoMWIhIlpuYonpGxZQbWR/z5bI4Kd7vwYWlwMSeoMUdcc4dcmcMWIhIlpq/1uw4I+a44gKo2wvI1sBCruL6fQwVw/Km5q+9sY4XXMgZrFgWGZuA4oLtaheDzFC1WzPZzhvGYCD34ooxM1Lz18oPW2h5PA/+lrWHwYq2McOiUWZPtF5yJ0hkq9zEFId6Cbm6WsgbqqDclSu665PtmGHRiNzEFOTkr5MfpA7e9WpnRFdb5OSvszpY4WdMksjYBKvW4zlZGxiwqEwKVGy5M+SPx3m84a7X1kn/3IEtQZZWx5Mh14mMTZCDFd3/SzISk/WyK8y0aAMDFhU5msImsseIA6uNlulm9+z5TiqdtTDMNObkr7O4DyUCTVf9FnnDcYOWjgPbrrgHtmEh8gLOHq22JDNNkbZVhhcxOUiRAikX3uluvuU13F04TfHtaulu3bCbs/S3K7o/a+k4kHtghoWcSk61tj/lkVUR7kDK5Gk9m2fqjtuZVXSmvo/e1r7FMGiwOJ6NhzDXbiUvbqT8IG1iwKIiR07G7nJilVOtx1ubrIog7VHrYmWqHYrZjIuDcvLXmfw+6gZ1zsiukHp026oEbDgrL5fOUSMOrJYfpE2sEnJTrk6Pk+fKSEw2nhuHiEhjGLAoxJ4GtJ6cdiVlGGYU7AkoUvPX6gW3utssyUy7kcX4PZORg98zHSo0iDQ3yq7u78pSoO7IbM1Suw3S50lD+UuZlMjYBFQntdRbRu6BAYsCdE/4RI4wahxr+L1S6OKh1fYsjgQO9kwrQJZ5SrAi0W2/wmDF/TBgcdBbWzYgoGFDtYtBbk53vhu1aTWYcYUb2SVWi3kiaweJI+1iwKIiW+8kjRol8sTqVjy5ysETLvQZicnIVbsQRGQWAxaN0g1OpDtewzvf3OylXt9I0pPq2N1VRmKy2wcrEm//PXmL4oLtyIsb6bE9gnZEDUFIsL/dry+vrEEojqB3797w9fVFeno60tPTFSyhfditWaOkcTN0g5Tw7KUIz14qDxtt7uTqSeMI5CamyNMXSO07dBuNulOw4k5lNUf6DupyRRd7R+c3csf5kZxBK9UiWsg2emqwoqTdu3fj8OHDmghWAGZYVKfbs8HcBU0OQC4b/A3TPzpP+iHKQVliMnIy05ADIEPVErk/exunmrvoa6mLvfR7Muwx5M3tcnRppaGpK4P3yNgEzbxvcgwDFhVJqfS8KcsAAHkql0dNundc1pzMWBXkWqaqKFUrg4nMomGjZU8JUPg9d5xhsMLgxX0xYFGZJ1XfOKK+k7LhidtdT+KOjveh1AXM3Jgl0ral/Th7DiJTzB0jqQxSdkgKYFxVNjXu1G39rD01wFHifTFQcX9sw0JuwRNPwvZyRf2/FKxoZQ4iLTSGdYcLnqf+Tjz1fZFtGLCoiNkV76SFBqCp+Wvli4BuQ26tspRx8QZaaKTqDnTnCyLPw4DFzTHocT9KZAuUuoBZ6m2mhayGLi0EepKc/HUuCSKk/Wg5mNSS4oLtbpEJI/swYCG3w7tN7yF1o3ZGsOJId2xXZaS0EKi4y8zw5PkYsJDbkRplunPg4uiFSAsXMmdyVpCiy12qlNSemFFrmTbyXuwlpJKMxGSv7sbsKLVP4o7KTUyxa94gVwcqjsyArCQtlEGX9N1z9ufhzt9xIqUxYFGY4V2hK+5OPHmIaUvcOctgz+Btarxfa8uZm5ii6HddClD6Tcm8sWBKJn5YkF3vgHDS+j8syFasLI6y5diwvQqReQxYHDTpriSEBAb+sYDpU7KSNdmLcDeZL8oZo93KwQogByv1cXagIt0c2BJU2PL5GW43PHspwi773vjDC29KrMEgz3uwDQuRSsxdyKyZL8ob/LAgGz8syMaRpq01cyxcncmU3vOJBRNdul8iLfIRQgi1C+GOysvLERoairIFOfoZFis5ozuyN1YLeQKlq1OcwZq2FK7KBindrsPRu3Np3A9ndac9U9QVAPBJ0TxmEhTk6pGLy6uqEDolA2VlZQgJCXHOPqTr0popjs/WPHyBU8tqD2ZYvIA02zFpk9aDFbLM2WN/3BxzyGnbJnInDFg8mBSoyHOwMGghIg1Re1RapfcvjbSr9vvyVAxYPIwUpOgGKrpy8tdxIChyCtVncVaAPVW1rshgflI0D4D733QYjp9kLjNl7n0q+f5tzYxZc97kSLvOxYDFg5gLUgxpbUwLb8cAUl05+euQFzfS6rti3c/L2t+cN7MnyDDXVsfcclv3YU9gakvVLYMW52DA4oW0NCcLeRYlUuG6Fx9TFyJnDItf2rQWiwOj6l1PClbYLsx6hp+VFhoOs4OCe2IvITs52ksIUL6nkKWuj1o4SZD7yk1MsTqTkJGYLF/Y7WlQbG+PJEcCCEu/D+m91Pf+lf6NGfZicdXouq5m6zgq5nr3WLsdWwfaVGKcl8jYBDT6ohCnFz7IXkIOYIbFg9iaRiWyli2Bh9RN25m9n0oy05yW4chNTJGDFKnKR41qH1vbd7grW89P5o6LtdsZcWC10c2iqZtHUwGi1AbH1mrcgA1nbVqfTONItx6IAYp7cYdxWIA/vlfmqmlkDrwXR7Mktr5eqh7N0Q1Ift+GrVMnkOvZm/2QMizSb89UxsXUduVlNn7HT8acujEOi80ldQ9z587F6tWr8fPPPyMwMBB9+/bFvHnz0LFjR0X3wwyLh2GwQs4mXeR1R+R1N7qzQbtTo1m2P1M2w2TLZ+9pmS0lfffdd0hPT8eOHTuwceNGXL9+Hffccw8qKysV3Q8zLEQqc4fsiq7U/LU35g1ys3JL3DFQAX6/GZGOvQdQYqRZR4NlW17vjoG5q6xfv17v7+XLl6NFixbYu3cv7rrrLsX2w4DFjbBlO5G+nPx1aDdlWb2/Dd0gxd0CFU9lGKxYqt6xNC6Lo4GEpSpZd6mudZby8nK9v/39/eHvX39j3rKyMgBAeHi4ouVhwKIhDEjImzk75a7FQEXqfeUus3KrxZnZDUvH3V0/k383fgpBwU3sfv1VnysAFqBVq1Z6y7OysjBr1iyLr62rq8PkyZPRr18/dO3a1e4ymMKARUUMUIgcZ+l3FJ69VJNZFTk4Y7sImbVBiW5WRWpozeoa5zh9+rRet2Zrsivp6ek4dOgQvv/+e8XLw4CFiDySFKxoCRtu2q9tUWtUJ7XE3MQU5GSmMUhxgZCQEJvGYXn66afx5ZdfYsuWLbj55psVLw97CRGRR9HtAeRK9Y3NwWDFMdVJLQHoV9NIx5THVl1CCDz99NPIy8tDfn4+YmJinLIfZliIyGNkJCYjF+q0VynJTDPbg4cXVMdJjXQNq4SchVVN1ktPT8e//vUvrF27Fk2aNEFxcTEAIDQ0FIF2jgRvCjMsROQxbJlCgNyTq4IIBivWW7x4McrKyjBw4EBERUXJj08++UTR/TBgISKP4a7BipbLrdXsUH2TZJLrCCFMPh555BFF98OAhYjcnhZmT9a7I3/8ScUnN1WLLZkGV34GuuViNsQ7MGAhIrcldWtVM0MhTVGgK2/HBaN1PIHaQSF5Nza6JSLNMZxo0dQddO7v3VvVkpGYfCOLctn0bL+6UvPXmp1MUQ5m3GCQsvoyGcx0kDMxYCEizTC84Fm6AKqVVZFGpbW2yicvbmS9g0S664iqWqDEnESeVA5PxiohItIErbaV0JWRmIywy742tU+pbyRedw9W1K4m0kqQYK4cah8fT8IMi0bY86VWOv0qdQllWpfUpLUTvFRlE3bZF3kKbVP+jblJsGJpTJL6zheWqvWcSSsZD55PlcOARQPUOkEbjVmhsQsFkdrCs5ci7LKv3a+3pjrIHdg6z4/Wgk7yDAxYVOaKH7bZffCkQlbKTUwxOSS6J9496mZUcFnZ7bpr9Y/uOcTWz9zW9Q2/a/bSQnaFlMWAxY3VN3S0vcGQUicMcl/GbTRq5f+Z+t4pOYy5mpMWOppRsUSrvylrPjtb2xc58l3Q6nEi9TFgUVFuYoomsxw8YXgnRwY684RMizODFS1T8rPT8vfAU6rnvJmqvYRmzZoFHx8fvUenTp0svqa0tBTp6emIioqCv78/YmNj8dVXX8nPX7lyBZMnT0abNm0QGBiIvn37Yvfu3XrbuHDhAh555BFER0cjKCgIQ4YMQWFhoVPeozuQZrfNSEzW9AmHHJcXN9Lsw5LU/LUuqwZydXYlIzEZ7aYsc0qwwguk9ZxdPc7Pwv2pnmHp0qULNm3aJP/t52e+SNeuXcOf/vQntGjRAp999hlatmyJX375BWFhYfI6jz76KA4dOoQVK1YgOjoaH374IQYPHozDhw+jZcuWEEJg+PDhaNiwIdauXYuQkBC8/vrr8jrBwcHOfLuaItXVM6Pi2ZQYIj4vbqRRNlArvTDspYXg3NNmBDZ8P7YEuZ50HMg5VA9Y/Pz8EBkZadW6//znP1FSUoJt27ahYcOGAIC2bdvKz1dVVeHzzz/H2rVrcddddwG4kcX597//jcWLFyM7OxuFhYXYsWMHDh06hC5dugC4MdNkZGQkPv74Yzz66KPKvkGNcucGgGQ9peez0b0gOStYcUUbFmdeHA3v5B3pEuzu2GOIlKT6wHGFhYWIjo5Gu3btMHbsWJw6dcrsul988QUSEhKQnp6OiIgIdO3aFXPmzEFt7Y0Ggb/99htqa2sREBCg97rAwEB8//33AICamhoA0FunQYMG8Pf3l9cxpaamBuXl5XoPRzl6Uu43JdPi87onQ90qn4zEZAYrHig3MUV+OIsr5sRx1ndT9/tvSInqghEHVsvbkSZj9LaLtbkAzJpjYe3sy0p+v535WyHlqZphiY+Px/Lly9GxY0ecP38eL774Iu68804cOnQITZo0MVr/xIkTyM/Px9ixY/HVV1/h2LFjeOqpp3D9+nVkZWWhSZMmSEhIwEsvvYTOnTsjIiICH3/8MbZv344OHToAADp16oTWrVtjxowZWLJkCYKDg7FgwQKcOXMG58+fN1vWuXPn4sUXX3TasbCFfFI4sK/edVnt49l0T7h6AfDv35ERB1YrmmUpyUyTt+1OXJ1RMaw+87SqH1tYCmLMzbhs6VgpeS7jedG9qBqwDB06VP5/9+7dER8fjzZt2uDTTz/FxIkTjdavq6tDixYtsHTpUvj6+qJXr144e/Ys5s+fj6ysLADAihUr8Ne//hUtW7aEr68vbrvtNowZMwZ79+4FADRs2BCrV6/GxIkTER4eDl9fXwwePBhDhw6FEMJsWWfMmIGpU6fKf5eXl6NVq1YOvX9b06X2VOOo8YP05pOzM5kMTlx4B69md2N7uKLac8SB1fLn4k7HRgukc4SlYRR0zyVKNvpmjyH3pHobFl1hYWGIjY3FsWPHTD4fFRWFhg0bwtf3j9b8nTt3RnFxMa5du4ZGjRqhffv2+O6771BZWYny8nJERUXhoYceQrt27eTX9OrVC/v370dZWRmuXbuG5s2bIz4+HrfffrvZsvn7+8Pf31+5N/s7W4IWd7m7ZbCiLLNZlHoo3X7F0ozDWpORmFzvsPeONBqWAhVvC1acMUaTpe0Znh+VOrcwWHFPqrdh0VVRUYHjx48jKirK5PP9+vXDsWPHUFdXJy8rKChAVFQUGjVqpLducHAwoqKi8Ouvv2LDhg1ISTGuqwwNDUXz5s1RWFiIPXv2mFyHSA3SxTAnfx1KMtPkhxZouV2G1FbLGo4EK8CNC60tn4urj5sz9qdmFQpvhEjVgGXatGn47rvvcPLkSWzbtg0jRoyAr68vxowZAwAYP348ZsyYIa//5JNPoqSkBM8++ywKCgqwbt06zJkzB+np6fI6GzZswPr161FUVISNGzdi0KBB6NSpE1JTU+V1Vq1ahW+//RYnTpzA2rVr8ac//QnDhw/HPffc47o3D+saoimxDzYscw+mghR7OeN7lRc30iWNbu1hS2Nya8adMUc3s+KMYyz9VpXY9vwnsh3ehhZoYXwopbOVZB9Vq4TOnDmDMWPG4PLly2jevDn69++PHTt2oHnz5gCAU6dOoUGDP2KqVq1aYcOGDZgyZQq6d++Oli1b4tlnn8Xzzz8vr1NWVoYZM2bgzJkzCA8Px/3334+XX35Z7gYNAOfPn8fUqVNx4cIFREVFYfz48Zg5c6br3riTmEtPu0tVkrfTHZxNCUo3uAWsqxbS8tQOjhyP0qa1LqkCUuo74M5j5JBjZny5Dw38g+x+fV3NVQBA79694evri/T0dL3EgFp8hKWWpmRWeXk5QkNDUbYgByGBgXZtw54Tk70NH9W+QyHrGM2g7aB2U5Ypti1JadNao4BEt9xKNHa157dh6TtubXsVUwGNlFVR6nOxZf4v/m5Nc8eG/eVVVQidkoGysjKEhIQ4Zx+/X5daTf7U4YDl9MIHnVpWe2iqDQvVTyvtGMg5lM5MjLgjQtHtaZmlIMfebINuVoVcIzI2Qe0ikEZpqpcQESlsyWLACdVCRj2XdIIFrVYHSazt0iplkpTOepFl1gSX7pZdIWUww6IiV/7otNyzg5zHWY1vdRsFGzbE1WJGQrdMloIVabTaEQdWaz7w0uJxrk992RNXnqd4TnQ/DFi8iDue4LydEr1ynF0tVJKZpjf1g5oXenMXIUfKpHR2RanfodYDKlPqy54wc0KWMGDxIkxre6kli526eU6kaRv+Dm2nZDZEyvIwOHI/DFhU5uofDdOg2qf7nVDi4ubMzzw1f63cHVvtyf60MF6HNSyV0fA5T82K2joWjuHw/PYcF0fG37GWsycf9XYMWLwQgxZylFRVpXaQItF6oGJppmhL3DEbY+mCLQUNIw6sxokFE+0a2NLegODJKvOT25J7YC8hIg2ydWJMV5Aaq2qtXI4EK9Idtz1zy2g9SFKLqepBKUiRgoYTuuOoOHFCV91BDKX2MyNs2pttWDXqXAxYiDRKK7Mj6w4UZylYUeMCrkSw4uz9eDulqmFyE1Nsnp2cAYRnYcDipdxxpEhvo8TsyHIvo8v2vd7arAqDFeVoMbtmr5z8dXKQEflENqa/mwnAvlGJU/PXAonJmp76gZyLAYsGzNf5IddHt5uro3ffDFr+4CknQcNu0Jbek25bAGk93eOQk7/ObMAkfW/kbbjw2CkdqNhTHeRKrv6dSt8Bw+oyW6rPpIArIzFZ7pUz/d1Mk+9D9zuXm5iCuQBQYH7b9v5OrQ1Stf598GYMWNyA7kVI98eaq5EqA3fnzq36pS7F0kk/9/fltpzUSzLT/ghMLAQpupx9zJyRZeCMu9aRvjuGF257JtPMyV+HYun/9ezP8P9Ehjj5oZ2UmPxQSn1GxiZg7s0tAEDv4rP5ltdwd+E0s69XashwZlnch6mLuLnB5UxlTazZnjkZv6fjdUnfP2d8h0yVzd79mLvQavVuWsn3bsjU1ASekmE0xZ5A1RnfC05+6DhmWFQk1dMWF2wHCv7owy+dOCwFK4AybRzIvVjTEFd6PleBUXIBE9U/UKe7rdLBipY5sx2LqYuxpwYr5FkYsGgITxpkD3PBg95yOy/2WglW7OWOwYo1pM9DqXOGkhkWrWVr7KnKsnaCTHItDhxH5EZS89faNb+QuTYnlrYVnr1Ub+RO3QkPXYFVlX+QPguJbnWfEpQMMLQUrEh0J7Uk98WAhcjN6F4QwrOXKjJBoim6wYk7ZVUk9d1Va/3ilZGYLE8qCdz4DEwFKPYGLYZVThxWXp+nZufcGauESHMpXKpfhs54FM68yGgpUFG7G76lC5gzgx/D6jh72iaZ+o0bHkueA/RpPaD1RgxY3JwSjfNKMtPsbuNA6pEuMKn5a+vt4u6uFyNLAYqlnjSO3h07o82DucCyvs/G8HOV/rYls+aun7/SpM/JkSkZSD0MWNycPcNVG2JbAfdnqcdYePZSlw7s5i50gwzD/ztKt92PzNzv1Mzvz9XVM2pnsFxB+owZqLgnBixuztKFytNPPqRPuuOWqolKMtMs3oXn5K9DBswP6OXOTiyYCEC/G3hGYrJRMJIXNxJPVp3HYjgeqOgFKQ7cRBgGKq6aU8qRbuMjDqz2+KrlvLiROLFgIs+rKmKjWw9kzzT25P5S89fqVRMB5tugSBfFnPx1Tmu0qxZzVaTmMhaLA6MU27ejgYXhYJBaakNkjrdkKwzfZ07+Or0HAe+88w7atm2LgIAAxMfHY9euXYpunxkWD8DghEzRvTM3nCNINwNgrg2MVmaLtpcUiGkxIJPKZGkMHakHmDt8Bq7KrkhZDgBoN2WZvNwZQZPuviS651rp/1JVmreP3fLJJ59g6tSpePfddxEfH4+FCxciKSkJR48eRYsWLRTZB4fmt5MSQ/MTOZvhAGPm7gQNq07McdWszeZm7K2vLIaN0A2DlbDLvoqUz5TSprVmq+FsuZjbOuWGblWgJ5MCA92JFXPy11kduOi+zhZSVaEt1UGmvr+ePjR/fHw8evfujbfffvvGNurq0KpVK0yaNAl/+9vf7C6LLmZY7CTFeeXV1SqXhMi8qoor+PWlZ1B+VxIAoPr6dbPrSc+VV1WZXOfDAcmo3rDG4v4W9UnEw985nh4vOJCPFh364Ngx8yllU++lvKpKXn7TzDdRVXFF7/lGlc4LWBpVAo8lJALrVhqXy4bt6H4W9dF9j+Y+N0/w1pYNAPQ/35d//y4efnU82qa/Iz9vTn3fb3OuVt44vo8lJKK8qgr/7nYfhh38wuJrCg7kG33m0rXCFTmCupqriry+vFz/Xfj7+8Pf399o/WvXrmHv3r2YMWOGvKxBgwYYPHgwtm+3fONhE0F2OX36tADABx988MEHH1Y/Tp8+7bTrUlVVlYiMjFSknI0bNzZalpWVZXK/Z8+eFQDEtm3b9JZPnz5d9OnTR7H3xwyLnaKjo3H69Gk0adIEPj4+qpWjvLwcrVq1wunTpzU1q6bW8bjZjsfMPjxutvPEYyaEwJUrVxAdHe20fQQEBKCoqAjXrl1zeFtCCKNrm6nsiisxYLFTgwYNcPPNN6tdDFlISIjH/LBdicfNdjxm9uFxs52nHbPQ0FCn7yMgIAABAQFO34+uZs2awdfXFxcuXNBbfuHCBURGRiq2H3ZrJiIiIrs1atQIvXr1wubNm+VldXV12Lx5MxISEhTbDzMsRERE5JCpU6diwoQJuP3229GnTx8sXLgQlZWVSE1NVWwfDFjcnL+/P7KyslSvW3Q3PG624zGzD4+b7XjM3M9DDz2ES5cu4YUXXkBxcTF69OiB9evXIyIiQrF9cBwWIiIi0jy2YSEiIiLNY8BCREREmseAhYiIiDSPAQsRERFpHgMWF3vllVfg4+ODyZMny8sGDhwIHx8fvccTTzyh97pnnnkGvXr1gr+/P3r06GFy2z/99BPuvPNOBAQEoFWrVnj11VeN1lm1ahU6deqEgIAAdOvWDV999ZXe80IIvPDCC4iKikJgYCAGDx6MwsJCh9+3I+w5ZgcOHMCYMWPQqlUrBAYGonPnznjjjTeMtv3tt9/itttug7+/Pzp06IDly5cbrVPflOnV1dVIT09H06ZN0bhxY9x///1GAyipwZ7jdvnyZQwZMgTR0dHw9/dHq1at8PTTTxvNKeKpx83e36fk8uXLuPnmm+Hj44PS0lK95zz1mAH2HzfD5318fLBypf5cTJ583MhGig3yT/XatWuXaNu2rejevbt49tln5eUDBgwQjz32mDh//rz8KCsr03vtpEmTxNtvvy3GjRsn4uLijLZdVlYmIiIixNixY8WhQ4fExx9/LAIDA8WSJUvkdX744Qfh6+srXn31VXH48GGRmZkpGjZsKA4ePCiv88orr4jQ0FCxZs0aceDAAXHfffeJmJgYUVVVpfjxsIa9x2zZsmXimWeeEd9++604fvy4WLFihQgMDBRvvfWWvM6JEydEUFCQmDp1qjh8+LB46623hK+vr1i/fr28zsqVK0WjRo3EP//5T/Hf//5XPPbYYyIsLExcuHBBXueJJ54QrVq1Eps3bxZ79uwRd9xxh+jbt69zD0w97D1uJSUlYtGiRWL37t3i5MmTYtOmTaJjx45izJgx8jqeetwc+X1KUlJSxNChQwUA8euvv8rLPfWYCeHYcQMgcnNz9dbRPdd48nEj2zFgcZErV66IW265RWzcuFEMGDDA6Iet+7clWVlZJgOWRYsWiZtuuknU1NTIy55//nnRsWNH+e8HH3xQJCcn670uPj5ePP7440IIIerq6kRkZKSYP3++/Hxpaanw9/cXH3/8sVXlU5JSx0zy1FNPiUGDBsl/P/fcc6JLly566zz00EMiKSlJ/rtPnz4iPT1d/ru2tlZER0eLuXPnCiFuHJ+GDRuKVatWyescOXJEABDbt2+3qXxKUfq4vfHGG+Lmm2+W//bE46bEMVu0aJEYMGCA2Lx5s1HA4onHTAjHjxsAkZeXZ/Z5Tz1uZB9WCblIeno6kpOTMXjwYJPPf/TRR2jWrBm6du2KGTNm4OpV26YH3759O+666y40atRIXpaUlISjR4/i119/ldcx3H9SUpI8/XdRURGKi4v11gkNDUV8fLyyU4RbSeljVlZWhvDwcPnv+o6HNGW67jqGU6bv3bsX169f11unU6dOaN26tSrHDFD2uJ07dw6rV6/GgAED5GWeeNwcPWaHDx/G7Nmz8cEHH6BBA+PTqiceM0CZ71p6ejqaNWuGPn364J///CeEztBgnnrcyD4c6dYFVq5ciR9//BG7d+82+fxf/vIXtGnTBtHR0fjpp5/w/PPP4+jRo1i9erXV+yguLkZMTIzeMmmEweLiYtx0000oLi42GnUwIiICxcXF8nq6rzO1jqsofcy2bduGTz75BOvWrZOXmTse5eXlqKqqwq+//ora2lqT6/z888/yNho1aoSwsDCjdVx9zADljtuYMWOwdu1aVFVVYdiwYfi///s/+TlPO26OHrOamhqMGTMG8+fPR+vWrXHixAmjbXjaMQOU+a7Nnj0biYmJCAoKwtdff42nnnoKFRUVeOaZZwB45nEj+zFgcbLTp0/j2WefxcaNG83OoJmWlib/v1u3boiKisLdd9+N48ePo3379q4qqmYofcwOHTqElJQUZGVl4Z577nFq2dWk5HFbsGABsrKyUFBQgBkzZmDq1KlYtGiR09+DqylxzGbMmIHOnTvj4YcfdlWxVafUd23mzJnyOj179kRlZSXmz58vByxEulgl5GR79+7FxYsXcdttt8HPzw9+fn747rvv8Oabb8LPzw+1tbVGr4mPjwcAHDt2zOr9REZGmpzaW3rO0jq6z+u+ztQ6rqDkMTt8+DDuvvtupKWlITMzU+85c8cjJCQEgYGBVk2ZHhkZiWvXrhn1CHH1MQOUPW6RkZHo1KkT7rvvPixZsgSLFy/G+fPn5ec85bgpcczy8/OxatUq+fV33303AKBZs2bIysoC4FnHDHDeeS0+Ph5nzpxBTU0NAM87buQYBixOdvfdd+PgwYPYv3+//Lj99tsxduxY7N+/H76+vkav2b9/PwAgKirK6v0kJCRgy5YtuH79urxs48aN6NixI2666SZ5Hd3pv6V1pOm/Y2JiEBkZqbdOeXk5du7cqegU4fVR6pj997//xaBBgzBhwgS8/PLLRq+p73hYM2V6r1690LBhQ711jh49ilOnTrn0mAHO+67V1dUBgHwR8aTjpsQx+/zzz3HgwAH59VL12datW5Geng7As44Z4Lzv2v79+3HTTTfJkx562nEjB6nd6tcb6baeP3bsmJg9e7bYs2ePKCoqEmvXrhXt2rUTd911l95rCgsLxb59+8Tjjz8uYmNjxb59+8S+ffvkXkGlpaUiIiJCjBs3Thw6dEisXLlSBAUFGXVr9vPzE6+99po4cuSIyMrKMtmtOSwsTKxdu1b89NNPIiUlRdVuzRJbj9nBgwdF8+bNxcMPP6zXZfLixYvyOlKXyenTp4sjR46Id955x2SXSX9/f7F8+XJx+PBhkZaWJsLCwkRxcbG8zhNPPCFat24t8vPzxZ49e0RCQoJISEhw/kGxgq3Hbd26deKf//ynOHjwoCgqKhJffvml6Ny5s+jXr5+8jqcfN3t+n7q++eYbs92aPfWYCWH7cfviiy/Ee++9Jw4ePCgKCwvFokWLRFBQkHjhhRfkdbzhuJH1GLCoQPeHferUKXHXXXeJ8PBw4e/vLzp06CCmT59uNF7BgAEDBACjR1FRkbzOgQMHRP/+/YW/v79o2bKleOWVV4z2/emnn4rY2FjRqFEj0aVLF7Fu3Tq95+vq6sTMmTNFRESE8Pf3F3fffbc4evSo4sfAVrYes6ysLJPHq02bNnrb/eabb0SPHj1Eo0aNRLt27URubq7Rvt966y3RunVr0ahRI9GnTx+xY8cOveerqqrEU089JW666SYRFBQkRowYIc6fP6/0IbCLrcctPz9fJCQkiNDQUBEQECBuueUW8fzzz+tdfIXw7ONmz+9Tl6mARVruqcdMCNuP23/+8x/Ro0cP0bhxYxEcHCzi4uLEu+++K2pra/W26+nHjaznI4ROHzIiIiIiDWIbFiIiItI8BixERESkeQxYiIiISPMYsBAREZHmMWAhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYiMhhly5dQmRkJObMmSMv27ZtGxo1amQ02y4RkT04lxARKeKrr77C8OHDsW3bNnTs2BE9evRASkoKXn/9dbWLRkQegAELESkmPT0dmzZtwu23346DBw9i9+7d8Pf3V7tYROQBGLAQkWKqqqrQtWtXnD59Gnv37kW3bt3ULhIReQi2YSEixRw/fhznzp1DXV0dTp48qXZxiMiDMMNCRIq4du0a+vTpgx49eqBjx45YuHAhDh48iBYtWqhdNCLyAAxYiEgR06dPx2effYYDBw6gcePGGDBgAEJDQ/Hll1+qXTQi8gCsEiIih3377bdYuHAhVqxYgZCQEDRo0AArVqzA1q1bsXjxYrWLR0QegBkWIiIi0jxmWIiIiEjzGLAQERGR5jFgISIiIs1jwEJERESax4CFiIiINI8BCxEREWkeAxYiIiLSPAYsREREpHkMWIiIiEjzGLAQERGR5jFgISIiIs1jwEJERESa9/9kilNaV0hP0wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "for arr in res_arrays:\n", " plt.figure()\n", @@ -2983,7 +875,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.10.12" }, "orig_nbformat": 4 }, diff --git a/examples/s2_field_combination_extern_rf_train/nrw_crop_extern_s2_workflow_to_datasets_with_timeshift_onnx.ipynb b/examples/s2_field_combination_extern_rf_train/nrw_crop_extern_s2_workflow_to_datasets_with_timeshift_onnx.ipynb new file mode 100644 index 00000000..755aacb4 --- /dev/null +++ b/examples/s2_field_combination_extern_rf_train/nrw_crop_extern_s2_workflow_to_datasets_with_timeshift_onnx.ipynb @@ -0,0 +1,13077 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multi-step joining of monthly Sentinel-2 data with points of interest for training and application of a Random-Forest model" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 0. Introduction\n", + "\n", + "This notebook demonstrates how to use the Geo Engine to process raster and vector data to to train an external Random-Forest model for field-use classification.\n", + "The generation of the training data is dnoe in the Geo Engine.\n", + "The model is trained using sklearn in this notebook.\n", + "Then, the model is applied to Sentinel-2 data queried from the Geo Engine.\n", + "\n", + "### Use-Case\n", + "\n", + "Spatial information of field-use is very important for various applications like yield estimation.\n", + "Using Earth Observation (EO) data we can generate large raster maps of crop type or field-use.\n", + "In this notebook, we want to generate such a map for an area in the state of North Rhine-Westphalia (NRW), Germany.\n", + "To generate such a map, we need ground truth data, e.g. sampling points where the real field-use is known.\n", + "Then, we can train a Maschine Learning (ML) modell on the sample points and the corresponding values of the EO data.\n", + "The trained model can then be applied to the whole area to generate a map of the field-use.\n", + "\n", + "### Data\n", + "\n", + "In this notebook, we use the following data:\n", + "\n", + "#### EuroCrops (NRW, Germany)\n", + "\n", + "As label data (ground truth) we use the EuroCrops data for NRW, Germany.\n", + "It is available under the [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).\n", + "The data can be downloaded from [here](https://github.com/maja601/EuroCrops#vectordata_zenodo).\n", + "This dataset contains field polygons with different classes e.g. the crop type or the usage of the field.\n", + "For the demo presented in this notebook, we convert the field polygons into points and use them as sample-points.\n", + "\n", + "#### Sentinel-2\n", + "\n", + "The Sentinel-2 data we use is available from the Element 84 Sentinel-2 L2A Data Hub.\n", + "Using the STAC API, it can be queried for areas and times of interest.\n", + "The data is available under the [ESA Data License](https://sentinel.esa.int/documents/247904/690755/Sentinel_Data_Legal_Notice).\n", + "The Geo Engine provides an [ExternalDataProvider] that acts as a STAC API client that can be used to query the data.\n", + "\n", + "### Workflow of this notebook\n", + "\n", + "This notebook focuses on the extraction of the Sentinel-2 data for the points of interest and the model training :\n", + "1. Setup of packages, the Geo Engnie session and the area of interest.\n", + "2. Download the Sentinel-2 data for the area of interest and store it as a new (local) dataset.\n", + "3. Build the workflow for cloud-free monthly means of Sentinel-2 data and derive the NDVI.\n", + "4. Attach the aggregated Sentinel-2 to the points of interest.\n", + "5. Train a Random-Forest model to classify the field usage based on the Sentinel-2 data attached to the points.\n", + "6. Apply the model to Sentinel-2 data queried from the Geo Engine.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Setup\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook requires the following packages:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import datetime\n", + "import asyncio\n", + "import geopandas as gpd\n", + "import geoengine as ge\n", + "import numpy as np\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "import rioxarray\n", + "from asyncstdlib.itertools import zip_longest\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report\n", + "from sklearn.ensemble import RandomForestClassifier\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Connect to a Geo Engine instance. You need to provide user credentials via parameters or environment variables." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "ge.initialize(\"http://localhost:3030/api\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Server: http://localhost:3030/api\n", + "User Id: 9c969c2a-39f1-49f1-8dfd-e203329a2861\n", + "Session Id: 7c683440-0ef7-417b-8fdd-755a38184681\n", + "Session valid until: 2023-12-29T09:03:43.725Z" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "session = ge.get_session()\n", + "user_id = session.user_id\n", + "session" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set the area of interest. It is defined as a bounding box in UTM 32 N (EPSG:32632).\n", + "It is locted in NRW, Germany and covers the area between Willingen, Lippstadt and Werl." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "54806 46755\n" + ] + }, + { + "data": { + "text/plain": [ + "(421395, 5681078, 476201, 5727833)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[xmin, ymin, xmax, ymax] = [421395, 5681078, 476201, 5727833]\n", + "size_x = xmax - xmin\n", + "size_y = ymax - ymin\n", + "print(size_x, size_y)\n", + "(xmin, ymin, xmax, ymax)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the bounding box, a time interval and a resolution, we define the area of interest as a temporal raster space-time cube.\n", + "The time interval is defined as a start and end date.\n", + "Since the field data is available for the year 2018, we use this year as the time interval.\n", + "The Sentinel-2 data has a resolution of 10 m, so we use this resolution for the area of interest as well." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RasterQueryRectangle(spatial_bounds=SpatialPartition2D(lower_right_coordinate=Coordinate2D(x=476201, y=5681078), upper_left_coordinate=Coordinate2D(x=421395, y=5727833)), spatial_resolution=SpatialResolution(x=100.0, y=100.0), time_interval=TimeInterval(end=1640995200000, start=1609459200000))" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_start = datetime(2021, 1, 1)\n", + "time_end = datetime(2022, 1, 1)\n", + "\n", + "study_area = ge.api.RasterQueryRectangle(\n", + " spatialBounds=ge.SpatialPartition2D(xmin, ymin, xmax, ymax).to_api_dict(),\n", + " timeInterval=ge.TimeInterval(time_start, time_end).to_api_dict(),\n", + " spatialResolution=ge.SpatialResolution(100.0, 100.0).to_api_dict(),\n", + ")\n", + "study_area" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Download Sentinel-2 data and store it in the Geo Engine\n", + "\n", + "The Sentinel-2 data is stored in the cloud (AWS S3).\n", + "There is a STAC API that provides access to the data. \n", + "To use the data in the Geo Engine, we create workflows that accesses the different Sentinel-2 bands and make them available.\n", + "This first kind of workflow only queries the data in the area of interest and stores it as local datasets.\n", + "This way, we don't need to download the data every time we use it." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For each band (B02, B03, B04, B08) as well as the scene mask (SCL), we create a workflow using the `sentinel2_band(band_name)` blueprint.\n", + "This convenience method creates a workflow that uses the [`GdalSource`](https://docs.geoengine.io/operators/gdalsource.html) to load the Sentinel-2 data.\n", + "A source operator like the `GdalSource` takes a `DatasetId` that identifies the data to load.\n", + "In this case, the `DatasetId` is provided by an external dataset provider, that resolves band \"names\" to the information how to load the data from STAC / S3.\n", + "Using the `save_as_dataset(study_area)` method, we tell the Geo Engine to store the data as a new dataset.\n", + "The new dataset gets a unique `DatasetId` that we can use to load the data in the next step." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[TaskStatusInfo(status='completed', time_started=datetime.datetime(2023, 11, 29, 9, 3, 43, 790000, tzinfo=datetime.timezone.utc), info = {'dataset': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02', 'upload': '48ee10db-7224-4950-9009-43f5c8ecb8cf'}, time_total = '00:02:55', task_type='create-dataset', description='Creating dataset Sentinel-2 NRW area 10m B02 from workflow a044216a-6c93-50ae-be1f-c6015c26a583'),\n", + " TaskStatusInfo(status='completed', time_started=datetime.datetime(2023, 11, 29, 9, 3, 43, 797000, tzinfo=datetime.timezone.utc), info = {'dataset': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03', 'upload': 'c138231d-2856-4861-b559-e2c6c9ae64a1'}, time_total = '00:03:08', task_type='create-dataset', description='Creating dataset Sentinel-2 NRW area 10m B03 from workflow 004644fa-ef4f-5678-8694-e2996508f818'),\n", + " TaskStatusInfo(status='completed', time_started=datetime.datetime(2023, 11, 29, 9, 3, 43, 804000, tzinfo=datetime.timezone.utc), info = {'dataset': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04', 'upload': 'a7034c81-1bd0-4ce4-ac16-51064cfe242d'}, time_total = '00:02:55', task_type='create-dataset', description='Creating dataset Sentinel-2 NRW area 10m B04 from workflow c1ebf60b-bcb4-565b-8b55-f0a764421537'),\n", + " TaskStatusInfo(status='completed', time_started=datetime.datetime(2023, 11, 29, 9, 3, 43, 812000, tzinfo=datetime.timezone.utc), info = {'dataset': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08', 'upload': '8daaf1d0-aba2-4302-88a7-3316fa78136e'}, time_total = '00:02:51', task_type='create-dataset', description='Creating dataset Sentinel-2 NRW area 10m B08 from workflow a5c772ee-b5c2-558f-a4c0-129d9cbfa7d9'),\n", + " TaskStatusInfo(status='completed', time_started=datetime.datetime(2023, 11, 29, 9, 3, 43, 820000, tzinfo=datetime.timezone.utc), info = {'dataset': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL', 'upload': '8832762a-a6df-4461-8837-d1bd89424541'}, time_total = '00:01:34', task_type='create-dataset', description='Creating dataset Sentinel-2 NRW area 10m SCL from workflow 2cb72b99-a4a7-5e46-9dd6-0d4d2cc6e899')]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "download_tasks = {}\n", + "s2_data_prefix = user_id + \":y_sentinel2_nrw_crop_10m_\"\n", + "\n", + "for b in [\"B02\", \"B03\", \"B04\", \"B08\", \"SCL\"]:\n", + " sentinel2_band_workflow = ge.workflow_builder.blueprints.sentinel2_band(b)\n", + " sentinel2_band_workflow_id = ge.register_workflow(sentinel2_band_workflow)\n", + " sentinel2_band_workflow_dataset_task = sentinel2_band_workflow_id.save_as_dataset(study_area, f\"{s2_data_prefix}{b}\", f\"Sentinel-2 NRW area 10m {b}\")\n", + " # We start the download task and turn it into a future. This way we can await all tasks at once.\n", + " download_tasks[b] = sentinel2_band_workflow_dataset_task.as_future(print_status=False, request_interval=60)\n", + "\n", + "# the asyncio.gather function awaits all tasks at once and returns the final status as a list\n", + "download_task_results = await asyncio.gather(*download_tasks.values())\n", + "\n", + "download_task_results" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'B02': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02',\n", + " 'B03': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03',\n", + " 'B04': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04',\n", + " 'B08': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08',\n", + " 'SCL': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## The datasets have been downloaded and have been registered with Geo Engine. We can now use them in a workflow.\n", + "\n", + "## Either convert the list of download results into a dictionary with the band name as key:\n", + "\n", + "# band_dataset_names = {band: task_result.info['dataset'] for band, task_result in zip(download_tasks.keys(), download_task_results)}\n", + "# band_dataset_names\n", + "\n", + "## Or just use the dataset names as defined in the download step:\n", + "\n", + "band_dataset_names = {\n", + " 'B02': user_id + ':y_sentinel2_nrw_crop_10m_B02',\n", + " 'B03': user_id + ':y_sentinel2_nrw_crop_10m_B03',\n", + " 'B04': user_id + ':y_sentinel2_nrw_crop_10m_B04',\n", + " 'B08': user_id + ':y_sentinel2_nrw_crop_10m_B08',\n", + " 'SCL': user_id + ':y_sentinel2_nrw_crop_10m_SCL'\n", + "}\n", + "\n", + "band_dataset_names" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Monthly, cloud-free aggregations of the Sentinel-2 bands & NDVI\n", + "\n", + "For the training, we use the Sentinel-2 data of the bands 02, 03, 04, and 08. The scene classification layer (SCL) is used to filter out cloudy pixels for each band using an expression. The NDVI is calculated using an expression on band 4 and 8. \n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now for each variable we want to use in the training, we create a workflow that aggregates the data to monthly, cloud-free means.\n", + "The workflow is created using the `s2_cloud_free_aggregated_band_custom_input` method that can create the workflow for all the steps: loading data, removing clouded pixels, and aggregating them over the temporal domain.\n", + "This method takes the `DatasetName` of the band of interest and the name of the scene classification layer (SCL) as input.\n", + "\n", + "It creates a workflow uses the [`GdalSource`](https://docs.geoengine.io/operators/gdalsource.html) to load both rasters and an [`Expression`](https://docs.geoengine.io/operators/expression.html) to filter out pixels that are marked \"cloudy\" in the SCL.\n", + "The, now cloud-free, data is aggregated to monthly means using the [`TemporalRasterAggregation`](https://docs.geoengine.io/operators/temporalrasteraggregation.html) operator. You can also build that workflow using the operators directly.\n", + "\n", + "The NDVI is calculated using an expression on band 4 and 8.\n", + "For convenience, there is a `s2_cloud_free_aggregated_ndvi_custom_input` method that takes the `DatasetName` of the bands 4, 8, and the SCL as input.\n", + "It creates a workflow that loads the data, removes cloudy pixels and calculates the NDVI using an expression and then aggregates the data to monthly means." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': }" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "monthly_cloud_free_workflows = {}\n", + "\n", + "for b in [\"B02\", \"B03\", \"B04\", \"B08\"]:\n", + " band_dataset_name = band_dataset_names[b]\n", + " scl_dataset_name = band_dataset_names[\"SCL\"]\n", + " sentinel2_band_workflow = ge.workflow_builder.blueprints.s2_cloud_free_aggregated_band_custom_input(band_id=band_dataset_name, scl_id=scl_dataset_name, granularity=\"months\", window_size=1, aggregation_type=\"mean\")\n", + " monthly_cloud_free_workflows[b] = sentinel2_band_workflow\n", + "\n", + "ndvi_workflow = ge.workflow_builder.blueprints.s2_cloud_free_aggregated_ndvi_custom_input(nir_dataset=band_dataset_names[\"B08\"], red_dataset=band_dataset_names[\"B04\"], scl_dataset=band_dataset_names[\"SCL\"], granularity=\"months\", window_size=1, aggregation_type=\"mean\")\n", + "monthly_cloud_free_workflows[\"NDVI\"] = ndvi_workflow\n", + "\n", + "monthly_cloud_free_workflows" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the analysis of crops on fields, the temporal information is very important.\n", + "Lots of information can be gained by looking at the development of the NDVI over time.\n", + "Therefore, we want to generate for each point of interest the NDVI and other band information of the previous 8 months.\n", + "To do this, we wrap the workflow in a [`TimeShift](https://docs.geoengine.io/operators/timeshift.html) operator.\n", + "This way, we can use the existing workflows and just shift the temporal domain for all the months we are interested in." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{0: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': },\n", + " -1: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': },\n", + " -2: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': },\n", + " -3: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': },\n", + " -4: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': },\n", + " -5: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': },\n", + " -6: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': },\n", + " -7: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': },\n", + " -8: {'B02': ,\n", + " 'B03': ,\n", + " 'B04': ,\n", + " 'B08': ,\n", + " 'NDVI': }}" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "monthly_cloud_free_workflows_shifted = {}\n", + "\n", + "for month_shift in range(0,-9, -1):\n", + " monthly_cloud_free_workflows_shifted[month_shift] = {b: ge.workflow_builder.operators.TimeShift(granularity=\"months\", value=month_shift, shift_type=\"relative\", source=x) for b, x in monthly_cloud_free_workflows.items()}\n", + " \n", + "monthly_cloud_free_workflows_shifted\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Join the monthly Sentinel-2 data to the points of interest\n", + "\n", + "This step combines the monthly aggregated Sentinel-2 data with the points of interest. The resulting dataset is then queried from directly from python and stored as a pandas dataframe." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Upload the points of interest to the Geo Engine. First we use GeoPandas to load the points of interest into a DataFrame. Then we use the `upload_dataframe` method to upload the points to the Geo Engine." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9c969c2a-39f1-49f1-8dfd-e203329a2861:7d82458e-3aa2-4fb2-9a16-a50460c53a4b" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "points_df = gpd.read_file(\"group_sample_frac1_inspireId_use_utm32n.gpkg\")\n", + "points_dataset_name = ge.upload_dataframe(points_df, \"group_sample_frac1_inspireId\")\n", + "points_dataset_name" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To use the points in a Geo Engine workflow, we define a [`OgrSource`](https://docs.geoengine.io/operators/ogrsource.html) operator and pass the id of the uploaded points to it." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'type': 'Vector',\n", + " 'operator': {'type': 'OgrSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:7d82458e-3aa2-4fb2-9a16-a50460c53a4b',\n", + " 'attributeProjection': None,\n", + " 'attributeFilters': None}}}" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "points_source_operator = ge.workflow_builder.operators.OgrSource(points_dataset_name)\n", + "points_source_operator.to_workflow_dict()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we create a workflow that uses [`RasterVectorJoin`](https://docs.geoengine.io/operators/rastervectorjoin.html) operator to join Sentinel-2 data to the points. This operator creates a new column for each band and adds the value of the raster pixel that is closest to each point. The points are provided as input by the [`OgrSource`](https://docs.geoengine.io/operators/ogrsource.html). Additionally the [`RasterVectorJoin`](https://docs.geoengine.io/operators/rastervectorjoin.html) takes up to 8 raster inputs. Here we use the already defined workflows that provide the monthly, cloud-free means of the Sentinel-2 bands and NDVI. \n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'type': 'Vector',\n", + " 'operator': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_-8', 'B03_-8', 'B04_-8', 'B08_-8', 'NDVI_-8'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_-7', 'B03_-7', 'B04_-7', 'B08_-7', 'NDVI_-7'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_-6', 'B03_-6', 'B04_-6', 'B08_-6', 'NDVI_-6'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_-5',\n", + " 'B03_-5',\n", + " 'B04_-5',\n", + " 'B08_-5',\n", + " 'NDVI_-5'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_-4',\n", + " 'B03_-4',\n", + " 'B04_-4',\n", + " 'B08_-4',\n", + " 'NDVI_-4'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_-3',\n", + " 'B03_-3',\n", + " 'B04_-3',\n", + " 'B08_-3',\n", + " 'NDVI_-3'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_-2',\n", + " 'B03_-2',\n", + " 'B04_-2',\n", + " 'B08_-2',\n", + " 'NDVI_-2'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_-1',\n", + " 'B03_-1',\n", + " 'B04_-1',\n", + " 'B08_-1',\n", + " 'NDVI_-1'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'RasterVectorJoin',\n", + " 'params': {'names': ['B02_0',\n", + " 'B03_0',\n", + " 'B04_0',\n", + " 'B08_0',\n", + " 'NDVI_0'],\n", + " 'temporalAggregation': 'none',\n", + " 'temporalAggregationIgnoreNoData': False,\n", + " 'featureAggregation': 'mean',\n", + " 'featureAggregationIgnoreNoData': False},\n", + " 'sources': {'vector': {'type': 'OgrSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:7d82458e-3aa2-4fb2-9a16-a50460c53a4b',\n", + " 'attributeProjection': None,\n", + " 'attributeFilters': None}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': 0},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': 0},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': 0},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': 0},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': 0},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -1},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -1},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -1},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -1},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -1},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -2},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -2},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -2},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -2},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -2},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -3},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -3},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -3},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -3},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -3},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -4},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -4},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -4},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -4},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -4},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean',\n", + " 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -5},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -5},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -5},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -5},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative',\n", + " 'granularity': 'months',\n", + " 'value': -5},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -6},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -7},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}},\n", + " 'rasters': [{'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B02'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B03'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { A }',\n", + " 'outputType': 'U16',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}},\n", + " {'type': 'TimeShift',\n", + " 'params': {'type': 'relative', 'granularity': 'months', 'value': -8},\n", + " 'sources': {'source': {'type': 'TemporalRasterAggregation',\n", + " 'params': {'aggregation': {'type': 'mean', 'ignoreNoData': True},\n", + " 'window': {'granularity': 'months', 'step': 1},\n", + " 'outputType': 'F32'},\n", + " 'sources': {'raster': {'type': 'Expression',\n", + " 'params': {'expression': 'if (B == 3 || (B >= 7 && B <= 11)) { NODATA } else { (A - B) / (A + B) }',\n", + " 'outputType': 'F32',\n", + " 'mapNoData': False},\n", + " 'sources': {'a': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B08'}},\n", + " 'b': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_B04'}},\n", + " 'c': {'type': 'GdalSource',\n", + " 'params': {'data': '9c969c2a-39f1-49f1-8dfd-e203329a2861:y_sentinel2_nrw_crop_10m_SCL'}}}}}}}}]}}}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "points_with_s2_cloud_free_shift = points_source_operator\n", + "\n", + "for month_shift, month_bands in monthly_cloud_free_workflows_shifted.items():\n", + " points_with_s2_cloud_free_shift = ge.workflow_builder.operators.RasterVectorJoin(\n", + " raster_sources=[x for x in month_bands.values()],\n", + " vector_source=points_with_s2_cloud_free_shift, #projected_points,\n", + " new_column_names=[f\"{b}_{month_shift}\" for b in month_bands.keys()]\n", + " )\n", + "\n", + " \n", + "points_with_s2_cloud_free_shift.to_workflow_dict()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can register the workflow at the Geo Engine and execute it:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ff9c6cac-e3a0-55e9-a0d7-85d2e16587d0" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "workflow = ge.register_workflow(points_with_s2_cloud_free_shift)\n", + "workflow" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `ResultDescriptor` of the workflow is a `VectorResultDescriptor`.\n", + "It includes the description of all the columns that are created by the workflow." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Data type: MultiPoint\n", + "Spatial Reference: EPSG:32632\n", + "Columns:\n", + " B08_-6:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " index:\n", + " Column Type: int\n", + " Measurement: unitless\n", + " NDVI_0:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " INSPIRE_ID:\n", + " Column Type: text\n", + " Measurement: unitless\n", + " B02_0:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B03_-2:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B02_-4:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B02_-8:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B02_-3:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B08_-7:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " USE_TXT:\n", + " Column Type: text\n", + " Measurement: unitless\n", + " ID:\n", + " Column Type: int\n", + " Measurement: unitless\n", + " B03_-4:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B03_0:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " NDVI_-8:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B03_-3:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_-1:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B02_-2:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B03_-7:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B03_-8:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B02_-7:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B02_-6:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_-4:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B08_-2:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B08_-8:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B03_-1:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " NDVI_-5:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " NDVI_-4:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " NDVI_-2:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_-3:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B02_-5:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B08_0:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " USE_CODE:\n", + " Column Type: text\n", + " Measurement: unitless\n", + " B08_-3:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B08_-4:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_-5:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_-7:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_-6:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_-2:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_0:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B03_-5:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " NDVI_-6:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B02_-1:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B08_-1:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B08_-5:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " NDVI_-7:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " NDVI_-3:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " NDVI_-1:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B04_-8:\n", + " Column Type: float\n", + " Measurement: unitless\n", + " B03_-6:\n", + " Column Type: float\n", + " Measurement: unitless" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "workflow.get_result_descriptor()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To query the workflow we need datetime objects for the start and end of the time interval we are interested in.\n", + "Since the `TimeShift` operator takes care to generate 8 previous months, we need only need to query the last month of the time interval." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(datetime.datetime(2021, 10, 1, 0, 0), datetime.datetime(2021, 10, 1, 0, 0))" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "start_dt = datetime(2021, 10, 1, 0, 0, 0)\n", + "end_dt = start_dt\n", + "\n", + "start_dt, end_dt" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we query the workflow that attaches the Sentinel-2 data for the area of interest.\n", + "We use a resolution of 10m, which is the native resolution if the Sentinel-2 bands.\n", + "The workflow result is transformed into a pandas dataframe automatically." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
B04_-3NDVI_-5USE_CODEB08_-6NDVI_-7B03_-4B02_-8B02_-2B08_-2B08_-8...B03_-6B02_-7B04_-7INSPIRE_IDB08_-7B04_-4NDVI_-8geometrytime_starttime_end
01897.0000000.205416OE3512.0000000.1530221038.800049569.0000001279.0000002888.0000001970.000000...1406.0000001219.0000001466.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...2788.500000891.0000000.092678MULTIPOINT (428690.027 5711938.189)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
1776.0000000.195484GT3215.0000000.303324728.500000383.000000736.0000003343.0000002321.500000...818.000000468.000000545.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...2592.000000522.5000000.193520MULTIPOINT (427819.337 5710040.545)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
21148.3333740.201565GT4402.0000000.355973878.799988505.0000001096.0000003086.5000004110.000000...821.000000517.250000478.500000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3813.750000514.0000000.209813MULTIPOINT (427320.866 5710158.178)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
3367.0000000.191220GL2149.6000980.122068625.625000242.500000426.5000003107.5000001860.250000...511.000000330.333344595.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...2001.666626379.0000000.204976MULTIPOINT (431527.388 5693772.886)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
4512.0000000.192061GL2880.3999020.139571732.625000552.714294494.2500002676.5000002765.428467...645.400024443.666656744.333313https://geodaten.nrw.de/id/inspire-lu-ts/exist...2739.666748503.1250000.184506MULTIPOINT (431535.193 5693614.690)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
..................................................................
494191250.7500000.248721GT3380.0000000.134939732.799988694.0000001070.1666262450.3332523074.833252...644.500000854.5000001052.500000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3223.500000591.4666750.157930MULTIPOINT (472357.075 5696612.529)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49420673.2000120.214041GT3060.3332520.153342942.230774636.000000827.1428834761.0000002836.666748...683.3333131367.7500001700.500000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3012.500000828.7692260.155282MULTIPOINT (472016.875 5697690.039)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49421485.2500000.267545GT3624.6000980.1760961237.692261423.833344562.8571173046.1428222983.666748...954.400024694.000000938.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3552.0000001064.1538090.168030MULTIPOINT (471981.413 5696219.338)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49422676.5714110.333136AF3839.3332520.150845649.250000431.000000824.1666873656.3332522732.750000...804.333313464.000000776.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3305.000000504.5833440.135184MULTIPOINT (471704.064 5697043.769)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49423383.5000000.208941GL2518.5000000.153662622.400024330.333344338.5000002731.7500001807.000000...765.500000496.500000753.500000https://geodaten.nrw.de/id/inspire-lu-ts/exist...1994.000000318.6000060.159899MULTIPOINT (472522.639 5708612.229)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
\n", + "

49424 rows × 53 columns

\n", + "
" + ], + "text/plain": [ + " B04_-3 NDVI_-5 USE_CODE B08_-6 NDVI_-7 B03_-4 \\\n", + "0 1897.000000 0.205416 OE 3512.000000 0.153022 1038.800049 \n", + "1 776.000000 0.195484 GT 3215.000000 0.303324 728.500000 \n", + "2 1148.333374 0.201565 GT 4402.000000 0.355973 878.799988 \n", + "3 367.000000 0.191220 GL 2149.600098 0.122068 625.625000 \n", + "4 512.000000 0.192061 GL 2880.399902 0.139571 732.625000 \n", + "... ... ... ... ... ... ... \n", + "49419 1250.750000 0.248721 GT 3380.000000 0.134939 732.799988 \n", + "49420 673.200012 0.214041 GT 3060.333252 0.153342 942.230774 \n", + "49421 485.250000 0.267545 GT 3624.600098 0.176096 1237.692261 \n", + "49422 676.571411 0.333136 AF 3839.333252 0.150845 649.250000 \n", + "49423 383.500000 0.208941 GL 2518.500000 0.153662 622.400024 \n", + "\n", + " B02_-8 B02_-2 B08_-2 B08_-8 ... B03_-6 \\\n", + "0 569.000000 1279.000000 2888.000000 1970.000000 ... 1406.000000 \n", + "1 383.000000 736.000000 3343.000000 2321.500000 ... 818.000000 \n", + "2 505.000000 1096.000000 3086.500000 4110.000000 ... 821.000000 \n", + "3 242.500000 426.500000 3107.500000 1860.250000 ... 511.000000 \n", + "4 552.714294 494.250000 2676.500000 2765.428467 ... 645.400024 \n", + "... ... ... ... ... ... ... \n", + "49419 694.000000 1070.166626 2450.333252 3074.833252 ... 644.500000 \n", + "49420 636.000000 827.142883 4761.000000 2836.666748 ... 683.333313 \n", + "49421 423.833344 562.857117 3046.142822 2983.666748 ... 954.400024 \n", + "49422 431.000000 824.166687 3656.333252 2732.750000 ... 804.333313 \n", + "49423 330.333344 338.500000 2731.750000 1807.000000 ... 765.500000 \n", + "\n", + " B02_-7 B04_-7 \\\n", + "0 1219.000000 1466.000000 \n", + "1 468.000000 545.000000 \n", + "2 517.250000 478.500000 \n", + "3 330.333344 595.000000 \n", + "4 443.666656 744.333313 \n", + "... ... ... \n", + "49419 854.500000 1052.500000 \n", + "49420 1367.750000 1700.500000 \n", + "49421 694.000000 938.000000 \n", + "49422 464.000000 776.000000 \n", + "49423 496.500000 753.500000 \n", + "\n", + " INSPIRE_ID B08_-7 \\\n", + "0 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 2788.500000 \n", + "1 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 2592.000000 \n", + "2 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3813.750000 \n", + "3 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 2001.666626 \n", + "4 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 2739.666748 \n", + "... ... ... \n", + "49419 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3223.500000 \n", + "49420 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3012.500000 \n", + "49421 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3552.000000 \n", + "49422 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3305.000000 \n", + "49423 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 1994.000000 \n", + "\n", + " B04_-4 NDVI_-8 geometry \\\n", + "0 891.000000 0.092678 MULTIPOINT (428690.027 5711938.189) \n", + "1 522.500000 0.193520 MULTIPOINT (427819.337 5710040.545) \n", + "2 514.000000 0.209813 MULTIPOINT (427320.866 5710158.178) \n", + "3 379.000000 0.204976 MULTIPOINT (431527.388 5693772.886) \n", + "4 503.125000 0.184506 MULTIPOINT (431535.193 5693614.690) \n", + "... ... ... ... \n", + "49419 591.466675 0.157930 MULTIPOINT (472357.075 5696612.529) \n", + "49420 828.769226 0.155282 MULTIPOINT (472016.875 5697690.039) \n", + "49421 1064.153809 0.168030 MULTIPOINT (471981.413 5696219.338) \n", + "49422 504.583344 0.135184 MULTIPOINT (471704.064 5697043.769) \n", + "49423 318.600006 0.159899 MULTIPOINT (472522.639 5708612.229) \n", + "\n", + " time_start time_end \n", + "0 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "1 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "2 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "3 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "4 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "... ... ... \n", + "49419 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "49420 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "49421 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "49422 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "49423 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "\n", + "[49424 rows x 53 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gp_res = await workflow.vector_stream_into_geopandas(\n", + " ge.QueryRectangle(\n", + " spatial_bounds=ge.BoundingBox2D(\n", + " xmin=xmin,\n", + " ymin=ymin,\n", + " xmax=xmax,\n", + " ymax=ymax,\n", + " ),\n", + " time_interval=ge.TimeInterval(\n", + " start=start_dt,\n", + " end=end_dt,\n", + " ),\n", + " resolution=ge.SpatialResolution(\n", + " 10.0,\n", + " 10.0,\n", + " ),\n", + " srs=\"EPSG:32632\",\n", + "))\n", + "\n", + "# gp_res.to_file(\"gp_res_10_frac1_monthly_use_utm32n_multi_steps_12months_shift.gpkg\", driver=\"GPKG\")\n", + "gp_res" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Train a Random-Forest on the monthly Sentinel-2 data and the NRW crop data\n", + "\n", + "Now we can train a Random-Forest on the monthly Sentinel-2 data and the NRW crop data. We use the `sklearn` package for this. But first, we need to prepare the data." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we need to replace the nan values in the dataframe with a number that is not part of the dataset. For this example we use 0.\n", + "This is necessary since the sklearn RF does not support nan values." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
B04_-3NDVI_-5USE_CODEB08_-6NDVI_-7B03_-4B02_-8B02_-2B08_-2B08_-8...B03_-6B02_-7B04_-7INSPIRE_IDB08_-7B04_-4NDVI_-8geometrytime_starttime_end
01897.0000000.205416OE3512.0000000.1530221038.800049569.0000001279.0000002888.0000001970.000000...1406.0000001219.0000001466.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...2788.500000891.0000000.092678MULTIPOINT (428690.027 5711938.189)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
1776.0000000.195484GT3215.0000000.303324728.500000383.000000736.0000003343.0000002321.500000...818.000000468.000000545.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...2592.000000522.5000000.193520MULTIPOINT (427819.337 5710040.545)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
21148.3333740.201565GT4402.0000000.355973878.799988505.0000001096.0000003086.5000004110.000000...821.000000517.250000478.500000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3813.750000514.0000000.209813MULTIPOINT (427320.866 5710158.178)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
3367.0000000.191220GL2149.6000980.122068625.625000242.500000426.5000003107.5000001860.250000...511.000000330.333344595.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...2001.666626379.0000000.204976MULTIPOINT (431527.388 5693772.886)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
4512.0000000.192061GL2880.3999020.139571732.625000552.714294494.2500002676.5000002765.428467...645.400024443.666656744.333313https://geodaten.nrw.de/id/inspire-lu-ts/exist...2739.666748503.1250000.184506MULTIPOINT (431535.193 5693614.690)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
..................................................................
494191250.7500000.248721GT3380.0000000.134939732.799988694.0000001070.1666262450.3332523074.833252...644.500000854.5000001052.500000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3223.500000591.4666750.157930MULTIPOINT (472357.075 5696612.529)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49420673.2000120.214041GT3060.3332520.153342942.230774636.000000827.1428834761.0000002836.666748...683.3333131367.7500001700.500000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3012.500000828.7692260.155282MULTIPOINT (472016.875 5697690.039)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49421485.2500000.267545GT3624.6000980.1760961237.692261423.833344562.8571173046.1428222983.666748...954.400024694.000000938.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3552.0000001064.1538090.168030MULTIPOINT (471981.413 5696219.338)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49422676.5714110.333136AF3839.3332520.150845649.250000431.000000824.1666873656.3332522732.750000...804.333313464.000000776.000000https://geodaten.nrw.de/id/inspire-lu-ts/exist...3305.000000504.5833440.135184MULTIPOINT (471704.064 5697043.769)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
49423383.5000000.208941GL2518.5000000.153662622.400024330.333344338.5000002731.7500001807.000000...765.500000496.500000753.500000https://geodaten.nrw.de/id/inspire-lu-ts/exist...1994.000000318.6000060.159899MULTIPOINT (472522.639 5708612.229)2021-10-01 00:00:00+00:002021-11-01 00:00:00+00:00
\n", + "

49424 rows × 53 columns

\n", + "
" + ], + "text/plain": [ + " B04_-3 NDVI_-5 USE_CODE B08_-6 NDVI_-7 B03_-4 \\\n", + "0 1897.000000 0.205416 OE 3512.000000 0.153022 1038.800049 \n", + "1 776.000000 0.195484 GT 3215.000000 0.303324 728.500000 \n", + "2 1148.333374 0.201565 GT 4402.000000 0.355973 878.799988 \n", + "3 367.000000 0.191220 GL 2149.600098 0.122068 625.625000 \n", + "4 512.000000 0.192061 GL 2880.399902 0.139571 732.625000 \n", + "... ... ... ... ... ... ... \n", + "49419 1250.750000 0.248721 GT 3380.000000 0.134939 732.799988 \n", + "49420 673.200012 0.214041 GT 3060.333252 0.153342 942.230774 \n", + "49421 485.250000 0.267545 GT 3624.600098 0.176096 1237.692261 \n", + "49422 676.571411 0.333136 AF 3839.333252 0.150845 649.250000 \n", + "49423 383.500000 0.208941 GL 2518.500000 0.153662 622.400024 \n", + "\n", + " B02_-8 B02_-2 B08_-2 B08_-8 ... B03_-6 \\\n", + "0 569.000000 1279.000000 2888.000000 1970.000000 ... 1406.000000 \n", + "1 383.000000 736.000000 3343.000000 2321.500000 ... 818.000000 \n", + "2 505.000000 1096.000000 3086.500000 4110.000000 ... 821.000000 \n", + "3 242.500000 426.500000 3107.500000 1860.250000 ... 511.000000 \n", + "4 552.714294 494.250000 2676.500000 2765.428467 ... 645.400024 \n", + "... ... ... ... ... ... ... \n", + "49419 694.000000 1070.166626 2450.333252 3074.833252 ... 644.500000 \n", + "49420 636.000000 827.142883 4761.000000 2836.666748 ... 683.333313 \n", + "49421 423.833344 562.857117 3046.142822 2983.666748 ... 954.400024 \n", + "49422 431.000000 824.166687 3656.333252 2732.750000 ... 804.333313 \n", + "49423 330.333344 338.500000 2731.750000 1807.000000 ... 765.500000 \n", + "\n", + " B02_-7 B04_-7 \\\n", + "0 1219.000000 1466.000000 \n", + "1 468.000000 545.000000 \n", + "2 517.250000 478.500000 \n", + "3 330.333344 595.000000 \n", + "4 443.666656 744.333313 \n", + "... ... ... \n", + "49419 854.500000 1052.500000 \n", + "49420 1367.750000 1700.500000 \n", + "49421 694.000000 938.000000 \n", + "49422 464.000000 776.000000 \n", + "49423 496.500000 753.500000 \n", + "\n", + " INSPIRE_ID B08_-7 \\\n", + "0 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 2788.500000 \n", + "1 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 2592.000000 \n", + "2 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3813.750000 \n", + "3 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 2001.666626 \n", + "4 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 2739.666748 \n", + "... ... ... \n", + "49419 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3223.500000 \n", + "49420 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3012.500000 \n", + "49421 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3552.000000 \n", + "49422 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 3305.000000 \n", + "49423 https://geodaten.nrw.de/id/inspire-lu-ts/exist... 1994.000000 \n", + "\n", + " B04_-4 NDVI_-8 geometry \\\n", + "0 891.000000 0.092678 MULTIPOINT (428690.027 5711938.189) \n", + "1 522.500000 0.193520 MULTIPOINT (427819.337 5710040.545) \n", + "2 514.000000 0.209813 MULTIPOINT (427320.866 5710158.178) \n", + "3 379.000000 0.204976 MULTIPOINT (431527.388 5693772.886) \n", + "4 503.125000 0.184506 MULTIPOINT (431535.193 5693614.690) \n", + "... ... ... ... \n", + "49419 591.466675 0.157930 MULTIPOINT (472357.075 5696612.529) \n", + "49420 828.769226 0.155282 MULTIPOINT (472016.875 5697690.039) \n", + "49421 1064.153809 0.168030 MULTIPOINT (471981.413 5696219.338) \n", + "49422 504.583344 0.135184 MULTIPOINT (471704.064 5697043.769) \n", + "49423 318.600006 0.159899 MULTIPOINT (472522.639 5708612.229) \n", + "\n", + " time_start time_end \n", + "0 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "1 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "2 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "3 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "4 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "... ... ... \n", + "49419 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "49420 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "49421 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "49422 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "49423 2021-10-01 00:00:00+00:00 2021-11-01 00:00:00+00:00 \n", + "\n", + "[49424 rows x 53 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gp_train_1=gp_res.replace(np.nan, 0)\n", + "gp_train_1" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we create the training input.\n", + "This also makes sure that the data is in the correct order when we train the RF." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "train_variable_order = ['B02_0', 'B02_-1', 'B02_-2', 'B02_-3', 'B02_-4', 'B02_-5', 'B02_-6', 'B02_-7', 'B02_-8',\n", + " 'B03_0', 'B03_-1', 'B03_-2', 'B03_-3', 'B03_-4', 'B03_-5', 'B03_-6', 'B03_-7', 'B03_-8',\n", + " 'B04_0', 'B04_-1', 'B04_-2', 'B04_-3', 'B04_-4', 'B04_-5', 'B04_-6', 'B04_-7', 'B04_-8',\n", + " 'B08_0', 'B08_-1', 'B08_-2', 'B08_-3', 'B08_-4', 'B08_-5', 'B08_-6', 'B08_-7', 'B08_-8',\n", + " 'NDVI_0', 'NDVI_-1', 'NDVI_-2', 'NDVI_-3', 'NDVI_-4', 'NDVI_-5', 'NDVI_-6', 'NDVI_-7', 'NDVI_-8']\n", + "\n", + "x_list = gp_train_1[train_variable_order].values" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The labels are stored in the column `USE_CODE`. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 OE\n", + "1 GT\n", + "2 GT\n", + "3 GL\n", + "4 GL\n", + " ..\n", + "49419 GT\n", + "49420 GT\n", + "49421 GT\n", + "49422 AF\n", + "49423 GL\n", + "Name: USE_CODE, Length: 49424, dtype: object" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_list = gp_train_1['USE_CODE'].replace(0, 'None')\n", + "y_list" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we create a train-test split. We use 80% of the data for training and 20% for testing." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(x_list, y_list, test_size=0.2, random_state=31337, stratify=y_list)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, we train the RF on the training data:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"RandomForestClassifier(class_weight='balanced_subsample', n_estimators=300,\\n random_state=1337)\"" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = X_train\n", + "Y = y_train\n", + "clf = RandomForestClassifier(random_state=1337, class_weight='balanced_subsample', n_estimators=300)\n", + "clf = clf.fit(X, Y)\n", + "str(clf)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then create a report of the trained RF:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " AF 0.382 0.227 0.285 1048\n", + " DA 0.353 0.092 0.146 65\n", + " EP 0.333 0.071 0.118 14\n", + " EW 0.338 0.178 0.233 146\n", + " GL 0.659 0.838 0.738 3919\n", + " GM 0.333 0.077 0.125 39\n", + " GT 0.545 0.671 0.602 2794\n", + " HF 0.409 0.305 0.349 220\n", + " HP 0.000 0.000 0.000 0\n", + " None 0.182 0.056 0.085 108\n", + " OE 0.456 0.271 0.340 284\n", + " PA 0.153 0.038 0.061 238\n", + " SF 0.209 0.058 0.090 156\n", + " SL 0.341 0.107 0.163 847\n", + " ZP 0.500 0.143 0.222 7\n", + "\n", + " accuracy 0.576 9885\n", + " macro avg 0.346 0.209 0.237 9885\n", + "weighted avg 0.526 0.576 0.533 9885\n", + "\n" + ] + } + ], + "source": [ + "x_test_predictions = clf.predict(X_test)\n", + "\n", + "print(classification_report(y_test, x_test_predictions, labels=clf.classes_, zero_division=0, digits=3))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Print the confusion matrix:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGwCAYAAAAJ/wd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADnLElEQVR4nOydd3hURdfAf5u2yab3DkkICb3aEF8BRUCqXRREukBAKVICioASFEVRQH15RUE/EBCxAEqTqkZqAkIgBEJI771ny/dHzMKSEJLduwuJ83ueeSCzc+fMzJ0799wzZ2ZkGo1Gg0AgEAgEAoGJMLvTBRAIBAKBQPDvQigfAoFAIBAITIpQPgQCgUAgEJgUoXwIBAKBQCAwKUL5EAgEAoFAYFKE8iEQCAQCgcCkCOVDIBAIBAKBSbG40wVoKqjValJTU7G3t0cmk93p4ggEAoGgkWg0GoqKivDx8cHMzHjf3uXl5VRWVhqcj5WVFdbW1hKU6O5DKB8NJDU1FX9//ztdDIFAIBAYSFJSEn5+fkbJu7y8nMCWdqRnqgzOy8vLi6tXrzZLBUQoHw3E3t4egN4eo7EwszKaHGV6htHybk6YtQsxav7qmEtGzR/AoqVxBr8bUSamGFdAc9kg2djWTNFODcPI7aSkit/5RTueG4PKykrSM1VcOxWAg73+1pXCIjUtuydQWVkplI9/MzVTLRZmVkZVPpBZGi/vZoSZudyo+atNcB8szIxbB8AE/Um8VBuGaKeGYeR2+id7U0yd29nLsLPXX46a5j29L5QPgUAgEAgkRqVRozJAl1Jp1NIV5i5EKB8CgUAgEEiMGg1qAyw5hlzbFBBLbQUCgUAgEJgUYfkQCAQCgUBi1KgxZOLEsKvvfoTy0UieH3uNhx7Jxi+ghMoKcy6cdeKrT0JIuWarTTN1/nm63J+Di1sF5WXmXDjjxFerQkhOsNOmad2ugNHTLhHcthA0EHveka8+DiEurQFlmJpBz4EF+AdXUFluRsxJBeuWepN8RXqP6CGjs3lmciYu7kriY2z49A1fYqMVkst5bmoG4+an88P/3Pj8Ld9GX//s8xcYO+4sP25vzX8/7wbAtNdO0LVrBi6u5ZSXWRAT48qX6zqTnOQAgL19BXPm/UVgUD4O9pXkF8iJ/NOXDV91orgRsg1po4FPJjDwyQQ8vcsAuHbVnm+/bM2pvzwBsLRSMX5aDA/3TcHSUs3pY+58+kEn8vOqnVUDgwt49qXLtOuUi4NTJZlpCn75sSU/bw26pcwO9xfz7ORMWncsxdVLyaKxAUTucdL+bq1QMW5+Gj0GFODgpCQ9yYqfvnRn1zdujWiV2piqL4Hh/Qlu304jZ6bRe1g+7j5VVFXKuPy3DV+9501slO2tM62HwaOyGTQqB0//6v0hrsVas/EjT04edNArv1vh6lXFuAWp3NunCLmNmtQEOStm+BN3tvH34vmpGfR8PF93LIrw0RmLln8XR+cHS3Su2/WNK5/MM2zrAlP2J31QaTSoDFi9Y8i1TQGhfDSSTt3y2fVdCy6dd8TcXM3LU+N4Z81JJj3Tk4ry6ua8fMGBg796k5Vug71jFSMmXubtNacYN+Rh1GoZ1jZKlqw6xbEj7nz6bjvMzTWMeOUyb68+xYhubVAp6/dy7tSjhB3r3bgUrcDcQsPoeWlEfBvPhF6hVJSZS1bXXkPzmPhWKqvm+XHxtIInJ2SxdFM84/4TSkGOdKsoQjqXMmhkLvHn9VOeQkJyGDjoCvFXHHXiL8e5cPBASzIzbbG3r2DkS+dZuuwwY0YNQq02Q6OR8VekL1+v70hBgRwfn2KmTDuFvf1J3h3p3CDZhrZRdqY16z9rS2qSLcig78Ak3nzvBK+O7kXiVXsmvHqeex/MYNkb91BabMGkWedYsOwEsyc9BEBwaAH5eXI+WNyV7Ewb2nbMY+rcM6hVMnZ+H1inTGuFmvgYG/ZsduGtdQm1fn/lrVS69Cxi+bQWZCRZ0a1XEdMikslJt+SvfY61MzRBOzUGQ/tTDbdrp5R4a9a84UfaNSvk1mqenJDFsk1XGNOzHQW5jR9as9Is+TLCm5SrcmQyeOzZXBZ9lUBYvxCuXZLmw8LOUcmHP8Vx9k873hgZRH6OOb5BlRQX6DdudHqgmB0basYiqseiTVeY0LuNzlj0y/+58vUHXtq/K8oMm/E3ZX8SGIdm5fMRGRmJubk5gwYN0olPSEhAJpPVCiNHjmy0jAVTO7N/hy+J8XZcjXPgw7c64uFdXm3B+IfdP/hzPsqFzDQbrlx04OtPW+PhVY6HT/XXrV9ACQ5OVfzf58GkXLMlMd6OTf9rhbNbJZ5+t98Vb8GIIPZtdeHaJWviY2xYMb0Fnn5VtO5U1uj61MdTE7PZvcmFvVtcSIyz5pO5flSUyej/Qq5kMqwVKuauvsbK2X4U6TEAWltXMXveX3z80T0UF+sugf71l1ac+9uDzAxbrlx2YcP6jnh4lOLpWQpAcbEVu3YGExfnQmamLdHRnuzcEUyHjlkNlm9oGx3/w4uTkZ6kJtuRmmTH1/9tS3mZBW3a56GwraLfkES+WNWes6fcuBzrxMqlnWnXKY/Q9nkA7NvVgrUrO3Au2o30VFsO7vFj/64WPNj71ia0kwcd2LDcmz93O9X5e7t7Sti3zYWzkfZkJMv5daMb8TE2hHYtbXC73Iwp+hIY3p9u5HbtdPBHZ6KO2pOeKOfaJRvWLvbF1kFNYDv9nsNj+xw5ccCB1KtyUuLlrH/Pm/ISM9p0L7n9xQ3kubBMslOtWDGjBbHRCjKS5Jw+bE/aNf2WfS8Y2Yp9W125dsmm3rGoolxGXpalNpQWG3ZvTNWfDKHG4dSQ0JxpVsrHunXrmDZtGkeOHCE1NbXW7/v37yctLU0b1qxZY7BMW7sqAIoL69a25dZKHhuaQnqyDdnp1V8vKddsKci3pN+wFCws1FjJVfQblkxivC3pSY3fQ8TWoXonvaJ86aweFpZqWncq5fTR65vxaDQyoo7a0667/i+hm5kakcLx3xyIOqrfpj9h005z4rgP0VFe9aaTWyvp1/8qaWm2ZGXZ1JnGxaWMnj2T+fusR4NkS91GZmYaHu6bgrW1igvnnAluU4ClpYboE+7aNMnX7MlMt6Fth1sPsrZ2VRQV6r8XTcxJWx54rABXr0pAQ+cHi/ANquDUYf3ukan6Ehjen/TFwlLNwBE5FBeYEX++7v7VGMzMNPQalodcoebCSf2mcerigX6FXDpjw4L/JrDl7HnW7I3l8RdzJMv/VmNRnyfz2Pr33/z3t4uMmZeK3Fp/fwZT9idDUKNBZUBo7spHs5l2KS4uZsuWLZw8eZL09HTWr1/P/PnzddK4urri5VX/S6qGiooKKioqtH8XFhbWSiOTaZj4eizno524dkV3sBv0bCJjXr2EjUJFUoItC8LuQams1vXKSi0In3gvb6yIYvj4KwCkJtnyZlh31KqCRtVbJtMwaXEK544ruBZr+KBXg4OLCnMLyM/S7SJ52Rb4B1fc4qrG0WtYHsEdy5g2sLV+1/dOpFVwHq9NfeyWaQYNiWPc+LPY2ChJSrJnwbzeKJW6A+Pc8Ege6FH90v8r0oeVH94LxN1WvlRt1DKokBVrf8fKSk1ZmTnvhN9DUoI9Qa0LqKo0o6RYV7HNy5Xj7Fp3/m075PKfR1NZ9Pp9DZZ/M5++6ctry5PYdCoGZRWo1TI+nuPPuWN2t7+4DkzRl8Dw/qQP9/ctIPzTa8ht1ORmWBL+QjCFefoPqwFtyli54zJWcjVlJWYsGRdAYpx0vlzeLSoZPCqH7Wvd2bzKg5DOZUx+O4WqKhn7v3MxKO/rY5Gtzlh08EdnMpOtyMmwJLBtGeMWpOHXqoK3J9Q9LXg7TNWfBMal2SgfW7dupU2bNoSGhjJy5EimT59OeHi43jvZLVu2jMWLF9ebZvK8C7RsVcTscffX+u3gr95E/eWKs1sFT7+UQPi7Z3h97H1UVZpjJVfx2sLzxJxxZvn8zpiZaXjqpQQWfXyaaf0CqSxvuEFqakQKLduUM+uJ4EbX8U7i7lPJ5CWphA8Poqqi8QY4N/dSXpl8mvnzelNVdWuLz8HfWhJ1ygsX1zKefiaW8Df+ZNb0R3WuWft5Fzb+X3t8fYsYM/YsEydFseoV/V60+pCSaMe0l3tha1dFzz5pzHwjmrlhDzY6n5ZBhbz53gk2fRlC1PGGWW/qYtiYbNp0K2Xh6EAyk63oeH8xYUuTycmwNLlFoaEY2p/0JfoPO6b0C8XBRcnjL+aw4PMEXh3cWm+/g+QrcqY8FoLCXsV/Bhfw+seJzH4qWDIFRGYGcWdt+OpdbwCunFMQ0KacQS/lGKx8TI1IpmVoGbOe1FX+ft143VE54aINuZmWLN96Be+WFXpP9zQFxD4f9dNslI9169ZpfTgGDBhAQUEBhw8fpnfv3to0Dz74oM5JhkePHqVr16515hceHs7MmTO1fxcWFuocLDdpTgz3PZTF3An3kpNZe2AoLbaktNiS1CRbYv92YsuhAzzYJ5PDe7zpPSAND+8yZo2+H42mWjl6f0Enthw6QI/+BRz+qWHOjmFLk7n/sUJmPdmK7DRpt3wvzDVHpQQnd6VOvLObkrwsw7tNcKcynN2VrNlz/QwVcwvo+EAJQ8dkMzigE2r1rRXH1q1zcXauYPWne69fb66hQ8cshgy7zNBBz6BWm1FaakVpqRWpqfZcvODKd9t/4MGeyRw+1FJ7XV6eDXl5NiQnOVBcZMUHHx1g45vtyM2s/wUiVRsplWakpVSb1i/HOhHSNp9hz8Vz5DdfLK3U2NpV6Vg/nF0qyMvRHbT9A4pY+kkku39uwZb1+p97Y2WtZvS8NJaMD+D4b9XOpVcv2BDUvoxnXsnUS/kwdl8Cw/uTvlSUmZOaYE5qgpyLp2358vcYBryQy5bVnnrlp6wyIzWh+t5e/ltBaJdSnhifxSdzpTnUMjfTopbzalKcnIcG5huUb9g7ydzft5BZTwXfdiy6eLp6RYpPgH7Khyn6kxSI1S71c/fcKQOIjY3l+PHj/PDDDwBYWFjw/PPPs27dOh3lY8uWLbRt21b7d32n1MrlcuTyuh4MDZPmxNCjTybhE+8lI7UBS7tkgEyDpVX1PKfcWoVGo3uGkvqfvxt2yrOGsKUpPDiggNnPBJORJP3Xg7LKjLizCro+VETk7uqXkEymoctDxfy83tXg/KOP2jGxj+5LctZHSSRdtmbrGvfbviiiozyZNLG/TtzMWcdJSnLgu61tUKtrN2SNEczS8tbzzTKz6ptiaXX7B99YbSQz02BpqebyRUeqqmR0vieLPw/5AODbohgPrzIunLv+ldoisIiIVX/y2y/+fP3ftrfKtkFYWGiwtNLUan+1WoZMT4OCsfsSGN6fpEImQ/ucS5efdC+hmBO2+LfSnZrwDaogM0XfjxcNYe/8MxY927CxqFX7amfU2yn3t8IU/UlgfJqF8rFu3TqUSiU+Pj7aOI1Gg1wuZ/Xq1do4f39/goMNm56YGn6JPo9n8vbMrpSVWmjn3kuKLaisMMfLt5T/9EsnKtKVgnwr3DzKeXb0VSrLzTnxe7X5MeqYK2Nfu8SUeRfYsbkFMjN4dnQ8KpWMM3/c3tw/NSKFPk/msWhMIGXFZji7Vzu9lhSZN2rK5nZsX+vG6yuTuHRGQWxU9XI2a4WavZsNM88ClJWY1/JRKS81oyivdnyd15dZci3BSff6cguKCq24luCEl1cxD/dO5PQpLwry5bi5l/Hc8xeorDTnxIlqk/O996bi5FzOpUsulJVZ0rJlAeMnnOH8OTcykhs2GBvaRi9PusDJvzzISrfBRqGkd78UOnbN4c0ZD1BaYsneHS2Y8GoMxYVWlJZYMGnmOS787Uzs+WrrWMugQiJWRXL6mDs/bg7C2aUcAJVaRmF+3S8Ca4UKn8DrLyCvFpUEtS+lKM+CrFQrzvxpy4Q3Uqksl5GRbEWnHsX0fTqXtUv02y9Dina6HYb2p7qor50K88x58bUMIvc6kpthiYOLkqGjs3HzquLoTie95I0JT+PEAXuyUqywsVPR58l8Oj1YzIIXb71nS2PZvtadj36OY/i0DI7scCK0aykDR+aycrZ+JyxPjUimzxN5LBobVOdY5N2ygj5P5nH8NweK8swJbFvOK4tSOBtpy9UL+vuoGbs/SYH6n2DI9c2ZJq98KJVKvv76a1asWEG/fv10fnviiSf49ttvGTBggGTyhjxXvYrmvf+d0In/aFEH9u/wpbLCjPZd8hj2wjXsHKrIz5FzLsqZ18feT8E/G0MlJ9ixeEZXXpx4hQ/WH0OjhiuxDiyc2p3czPLbl2F0tXf6B9uv6MR/MN2ffVule/gO/+yMo6uKUbPTcXZXEn/ehgUjAsnPvvvX0VdWmtOhQzZPPHkJO7sq8vPlnPvbnZnTH6Ugv9rsXFFpzoDH45k4KRpLSzVZWTb8+bsfW7e0BeIbJMfQNnJyrmDWm1G4uFZQUmJBwmUH3pzxgHaFy/8+aY9GI2N+xMkbNhnrqL2+Z580nJwreWRACo8MSNHGZ6TZMPbpvnXKDOlcyvvbrvedSYuq+/Terc6smNGSZVMCGBuextxVidg7KclMsWL9cm92fq3/V2VT7Ev1tdMn8/zxa1XBm2sTcHBRUpRnzqUzCmY91Zprl/R7qTq5KZn9SSIuHkpKi8y5esGaBS8GcfqIdH42l84oWDIukDHhaYyYkUF6khWfL/Th4A8Nm+q9mSEv/zMWfX9ZJ/6DGf7s2+qKskpG14eKeHJ8FtY2arLSLPn9Fye+/Vi/aakamkJ/qlm1Ysj1zRmZRtO0J5Z+/PFHnn/+eTIzM3F01N0Aae7cuRw4cIDvvvuOwMBAoqKi6NKli15yCgsLcXR0pK/XRCzMpPWvuBFlWrrR8m5OmHVoY9T81ecuGjV/AIuAFkaXobyWZFwBTXv4uI6xj1gX7dQwjNxOSk0Vh/iJgoICHByk3Tm2hpp3xdkYD+zt9bdEFxWp6dQu06hlvZM0+X0+1q1bR9++fWspHgBPP/00J0+erHOZrEAgEAgEgjtDk5922bFjxy1/u++++6gx7DRxA49AIBAImhDC56N+mrzyIRAIBALB3YYaGSr0n6ZSG3BtU6DJT7sIBAKBQCBoWgjLh0AgEAgEEqPWVAdDrm/OCOVDIBAIBAKJURk47WLItU0BMe0iEAgEAoHApAjLRyNRpmeA7O7ZyObfiubi5dsnustRJiTe6SIIahCr4RqGaKcGIywf9SOUD4FAIBAIJEatkaHWGLDaxYBrmwJi2kUgEAgEAoFJEcqHQCAQCAQSUzPtYkhoDJ999hmdOnXCwcEBBwcHevTowa+//qr9vby8nLCwMFxdXbGzs+Ppp58mIyNDJ4/ExEQGDRqEQqHAw8OD2bNno1QqddIcOnSIbt26IZfLCQ4OZv369Xq1j1A+BAKBQCCQGBVmBofG4Ofnx7vvvsupU6c4efIkjzzyCMOGDeP8+fMAzJgxgx07dvDdd99x+PBhUlNTeeqpp66XV6Vi0KBBVFZW8ueff7JhwwbWr1/PwoULtWmuXr3KoEGD6NOnD9HR0UyfPp3x48ezZ8+eRrdPkz9YzlTUHBbUm2FYCIfTO47MwrjuSpqbtH2BQND0MeXBcr/93QJbAw6WKylS82jHRIPK6uLiwvvvv88zzzyDu7s7mzZt4plnngHg4sWLtG3blsjISB544AF+/fVXBg8eTGpqKp6e1acOf/7558ydO5esrCysrKyYO3cuu3bt4ty5c1oZw4cPJz8/n927dzeqbMLyIRAIBALBXUphYaFOqKiouO01KpWKzZs3U1JSQo8ePTh16hRVVVX07dtXm6ZNmza0aNGCyMhIACIjI+nYsaNW8QDo378/hYWFWutJZGSkTh41aWryaAxC+TAyz03NYE/qGSYtTpE0X1evKuasusZ3587x85WzfP5bLK07lUoqA2DI6Gw2HIthR/xZPt4ZR2gXaWUYK//npqSzO/EUr7x1/Uj5x1/MYvmWWL4/H8XuxFPYOkhj3ZCyDh3uL2bxhqtsOn2ePaln6DGg4KYUGkbNTmdT1Hl+vnKWd7dcwSfw9oORYTKlwdh9ydgyTNFOzUUGNN2xQyqk8vnw9/fH0dFRG5YtW3ZLmX///Td2dnbI5XImTZrEDz/8QLt27UhPT8fKygonJyed9J6enqSnpwOQnp6uo3jU/F7zW31pCgsLKSsra1T7NGnlY/To0chkMmQyGZaWlnh6evLYY4/x5ZdfolbXPhOwf//+mJubc+LECZOUL6RzKYNG5hJ/3lrSfO0clXz4UxwqpYw3RgYxoXcoa5f4UFxgLqmcXkPzmPhWKhs/9CKsfwjxMdYs3RSPo2vVXZ1/SKcSBr6YRXyMjU683EbNycOObFnjbVD+NyJ1HawVauLPW7N6vl+dvz8XlsWwsVmsmufHa4NbU15qRsSmeCzl+p+BeTuZUmDsvmQKGaZop+Yio6mOHVKi0pgZHACSkpIoKCjQhvDw8FvKDA0NJTo6mmPHjjF58mRefvllYmJiTFXlRtGklQ+AAQMGkJaWRkJCAr/++it9+vThtddeY/DgwTpeuomJifz5559MnTqVL7/80ujlslaomLv6Gitn+1EksVLwXFgm2alWrJjRgthoBRlJck4ftiftmlxSOU9NzGb3Jhf2bnEhMc6aT+b6UVEmo/8LuXdt/tYKFXM+ucrH81rWUsZ+XOfJ1k+9uHja1tCia5G6DicPOrBhuTd/7nas41cNT4zP4tuPPYnc48jVCzYsf7UFrp5VPGjA12v9MqXB2H3JFDJM0U7NRUZTHDvuVmpWr9QEufzW47yVlRXBwcF0796dZcuW0blzZz7++GO8vLyorKwkPz9fJ31GRgZeXl4AeHl51Vr9UvP37dI4ODhgY6P7sXc7mrzyIZfL8fLywtfXl27dujF//nx++uknfv31V50lQF999RWDBw9m8uTJfPvtt402ETWWqREpHP/Ngaij9pLn/UC/Qi6dsWHBfxPYcvY8a/bG8viLOZLKsLBU07pTKadvKL9GIyPqqD3tuhtu3jRW/mHvJHL8gCNRvxvHmexGjN1GN+PVohJXT6WOvNIicy5GKWhrBHlSYYp2MvW9ENyapjp2SI0aGWrMDAiGbzKmVqupqKige/fuWFpa8ttvv2l/i42NJTExkR49egDQo0cP/v77bzIzM7Vp9u3bh4ODA+3atdOmuTGPmjQ1eTSGJq981MUjjzxC586d2b59OwAajYavvvqKkSNH0qZNG4KDg9m2bVu9eVRUVNRy9GkovYblEdyxjC+XSWfevxHvFpUMHpVD6lU5818MZOcGNya/nULfZ6XT+h1cVJhbQH6W7qqSvGwLnN0N95UwRv69huQS3KGUr97zNbh8DcHYbXQzLh7Ved4sLz/LAhePu8fcfDOmaCdT3wvBrWmKY4cxMPU+H+Hh4Rw5coSEhAT+/vtvwsPDOXToECNGjMDR0ZFx48Yxc+ZMDh48yKlTpxgzZgw9evTggQceAKBfv360a9eOl156iTNnzrBnzx7eeOMNwsLCtNaWSZMmER8fz5w5c7h48SKffvopW7duZcaMGY1un2apfEC1J29CQgIA+/fvp7S0lP79+wMwcuRI1q1bV+/1y5Yt03Hy8ff3b5Bcd59KJi9J5b2pLaiqME7zyszg8jkbvnrXmyvnFPy60ZVfN7ky6CVprR9NCTfvSiYtSmL5q4FGa3eBQCC4W8nMzGTUqFGEhoby6KOPcuLECfbs2cNjjz0GwEcffcTgwYN5+umnefjhh/Hy8tJ+oAOYm5uzc+dOzM3N6dGjByNHjmTUqFEsWbJEmyYwMJBdu3axb98+OnfuzIoVK/jiiy+079bG0GzPdtFoNMhk1Zrjl19+yfPPP4/FP3tDvPDCC8yePZsrV67QqlWrOq8PDw9n5syZ2r8LCwsbpIAEdyrD2V3Jmj2XtHHmFtDxgRKGjslmcEAn1GrDzGm5mRZcu6TrxJoUJ+ehgfkG5XsjhbnmqJTgdNOXhLObkrwsw7uN1Pm37liKs7uS1b9c0MaZW1R79g99OZMhwd0MbvebMXYb3UxuZnWeTu5KcjOv7zXj5K7kyvnGzbeaElO0k6nvheDWNLWxw1jc6DSq3/WN24Lrdh/U1tbWrFmzhjVr1twyTcuWLfnll1/qzad3795ERUU1qmx10Ww/ES9cuEBgYCC5ubn88MMPfPrpp1hYWGBhYYGvry9KpbJex1O5XF7L0achRB+1Y2KfECY/dj3ERttwYLszkx8LkeQFGHPCFv9WussrfYMqyEyxMjjvGpRVZsSdVdD1oSJtnEymoctDxcScUtx1+Uf/Yc8rfdsxZcD1cOmMgoM/ujBlQDvJFQ8wfhvdTHqiFTkZFjryFHYq2nQt5YIR5EmFKdrJ1PdCcGua2thhLKp9PgwLzZm7R02UkAMHDvD3338zY8YMNm7ciJ+fHz/++KNOmr1797JixQqWLFmCubl0q1HKSsy5Fqv7FVpeakZRXu14fdm+1p2Pfo5j+LQMjuxwIrRrKQNH5rJytrRL57avdeP1lUlcOqMgNkrBkxOysFao2bvZ5a7Lv6zEnGuXard7YZ6FNt7ZvQpn9yp8AqoVt4A2ZZQVm5OZYkVxgX6PgtRtZK1Q4RNYqf3by7+SoPZlFOWbk5VixY9fuPPCa5mkXJWTnmjFy3PSycmwNGjlwu1kSoGx+5IpZJiinZqLjKY0dgjuDE1e+aioqCA9PR2VSkVGRga7d+9m2bJlDB48mFGjRtG9e3eeeeYZOnTooHOdv78/4eHh7N69m0GDBt2h0uvHpTMKlowLZEx4GiNmZJCeZMXnC304+IOzpHIO/+yMo6uKUbPTcXZXEn/ehgUjAsnPlmZ7eWPnfzODRmYxckaa9u8V26qnxlbMbMm+bW565Sl1HUI6l/H+91e0f09anArA3i3OrJjRgq1r3LFWqHlteTJ2DirOn7BlwYggg/xcbidTCkxxr40twxTt1FxkNLexQx/UepzPont98z75pEmf7TJ69Gg2bNgAgIWFBc7OznTu3JkXX3yRl19+maioKO655x6OHz/OvffeW+v6gQMHYm1treN0cyvE2S53F+JsF4FA0FhMebbL5uh2KOz1t6qXFqkY3iXGqGW9kzRpy8f69evrPc63e/fu1Kdb3c6xRiAQCAQCfajZr0P/65usXaBBNFuHU4FAIBAIBHcnTdryIRAIBALB3YhKI0Ol0X/FiiHXNgWE8iEQCAQCgcSoDHQ4VYlpF4FAIBAIBALpEJYPgUAgEAgkRq0xQ23ADqfqprsQtUEI5UPQJBFLYQUCwd2MmHapHzHtIhAIBAKBwKQIy4dAIBAIBBKjxrAVK2rpinJXIpQPgUAgEAgkxvBNxpr3xETzrp1AIBAIBIK7DmH5EAgEAoFAYlQaM1QGrHYx5NqmgFA+BAKBQCCQGDUy1Bji8yF2OBUIBAKBQNAIhOWjfoTyYSSGjM7mmcmZuLgriY+x4dM3fImNVjQZGR3uL+bZKVm07liKq5eSRWMDiNztKEneN2LMOmw4FoOXf1Wt+J/Xu7Jmvp8kMsA097qG56ZmMG5+Oj/8z43P3/KVNG9j16OpPxOmktHU6/D81Ax6DizAP7iCynIzYk4qWLfUm+Qr1pLkX4MpnzuB9DQb1Wr06NHIZLJaYcCAAQAEBARo42xtbenWrRvfffedUcrSa2geE99KZeOHXoT1DyE+xpqlm+JxdK39IrxbZVgr1MSft2a1hC/pmzF2HV59PIThndtpw7zngwA4usNJkvzBNPe6hpDOpQwamUv8eWkHcTB+PZrDM2EKGc2hDp16lLBjvRvTB7cmfHgQ5hYaIr6NR26jkiR/MO1zpy81m4wZEpozzap2AwYMIC0tTSd8++232t+XLFlCWloaUVFR3HvvvTz//PP8+eefkpfjqYnZ7N7kwt4tLiTGWfPJXD8qymT0fyG3ycg4edCBDcu9+dMI1o4ajF2HglwL8rIsteH+voWkXrXibKStJPmDae41gLVCxdzV11g524+iAnNJ8wbj16M5PBOmkNEc6rBgRBD7trpw7ZI18TE2rJjeAk+/Klp3KpMkfzDdc2cIao3M4NCcaVbKh1wux8vLSyc4Oztrf7e3t8fLy4uQkBDWrFmDjY0NO3bskLQMFpZqWncq5fRRe22cRiMj6qg97bqXNhkZxsbUdbCwVPPI03ns2ewCEjlymbIOUyNSOP6bA1E3yJIKY9ejuTwTop30w9ah2uJRlC+N0twcxj9BM1M+GoOFhQWWlpZUVlbW+XtFRQWFhYU6oSE4uKgwt4D8LF13mrxsC5zdpTmPxBQyjI2p6/DggELsHFTs3eoiWZ6mqkOvYXkEdyzjy2XekuV5I8auR3N5JkQ7NR6ZTMOkxSmcO67gWqyNJHk2lfFPbeCUi9hkrAmxc+dO7OzsdEJEREStdJWVlSxbtoyCggIeeeSROvNatmwZjo6O2uDv72/s4guMSP8Xcjhx0IHcDMs7XZRG4e5TyeQlqbw3tQVVFc3qcRX8C5gakULLNuUsm9zyThfF5NScamtIaM40q9Uuffr04bPPPtOJc3G5/qU7d+5c3njjDcrLy7Gzs+Pdd99l0KBBdeYVHh7OzJkztX8XFhY2SAEpzDVHpQSnmzRwZzcleVnSNLcpZBgbU9bBw7eSrv8p5u3xAZLma4o6BHcqw9ldyZo9l7Rx5hbQ8YESho7JZnBAJ9Rqw6aRjF2P5vJMiHZqHGFLk7n/sUJmPdmK7DQryfJtDuOfoJlZPmxtbQkODtYJNyofs2fPJjo6muTkZPLy8pg7d+4t85LL5Tg4OOiEhqCsMiPurIKuDxVp42QyDV0eKibmlDTLwEwhw9iYsg79hueSn23Bsf0Nu4cNxRR1iD5qx8Q+IUx+7HqIjbbhwHZnJj8WYrDiAcavR3N5JkQ7NRQNYUuTeXBAAXOebUVGklyifKtpKuOfCpnBoTnzr1IT3dzcCA4ONrqc7WvdeH1lEpfOKIiNUvDkhCysFWr2bpbO38DYMqwVKnwCr/vDePlXEtS+jKJ8c7JSpPmKMUU7yWQa+j2fy/7vnFGrpH+YjV2HshLzWnPl5aVmFOXVjjcEY9ejOTwTppDRHOowNSKFPk/msWhMIGXFZji7Vy9/LSkyp7Jcmu9dU7SToRg6dSKmXZoQFRUVpKen68RZWFjg5uZm0nIc/tkZR1cVo2an4+yuJP68DQtGBJKfLZ2/gbFlhHQu4/3vr2j/nrQ4FYC9W5xZMaOFJDJM0U5dHy7G06+KPZtdJcvzRkxRB1Ng7Ho0h2fCFDKaQx2GjM4B4IPtV3TiP5juzz6JHL6by3P3b0am0Wg0d7oQUjB69Gg2bNhQKz40NJSLFy8SEBDA9OnTmT59ul75FxYW4ujoSG+GYSETHVwgEAiaGkpNFYf4iYKCggZPpTeWmnfFwmN9sbbT/11RXlzFkvv3G7Wsd5JmY/lYv34969evv+XvCQkJJiuLQCAQCP7diGmX+mk2yodAIBAIBHcL4mC5+mnetRMIBAKBQHDXISwfAoFAIBBIjAYZagOWy2rEUluBQCAQCASNQUy71E/zrp1AIBAIBIK7DmH5EEiPmfRHvpsctcroImRyaXd+rAtNRYXRZQgEgtqoNTLUGv2nTgy5tikglA+BQCAQCCSm5nRaQ65vzjTv2gkEAoFAILjrEJYPgUAgEAgkRky71I9QPgQCgUAgkBg1ZqgNmFww5NqmQPOunUAgEAgEgrsOYfkQCAQCgUBiVBoZKgOmTgy5tikglA8j89zUDMbNT+eH/7nx+Vu+kuY9ZHQ2z0zOxMVdSXyMDZ++4UtstOKulPF8WDo9H8/HP7icynIzYk7asi7Cl+R4a510bbsVM3puKm26lqJSQfx5BfNHBlNZXr+RriH5e7esYMKbybS/twRLKzWnDjmw5k1/g4/hlvI+bDgajadfZa34Hd94sGZhwA0xGt7+6hL39i5g8cTWRO5z1q/wwPNTM+g5sAD/4Ip/2k7BuqXeJF+xvv3FjcDY/bXD/cU8OyWL1h1LcfVSsmhsAJG7HSXLvwZj16MpPdfQkHbXMGp2BgNezMHOQUXMSVs+medH6lXDlpqbop0MQfh81I+YdjEiIZ1LGTQyl/jz0g7iAL2G5jHxrVQ2fuhFWP8Q4mOsWbopHkfXqrtSRqcexezY4M70oaGEvxCMuaWGiE2Xkdtc30+jbbdilv7fZU4dceDVwaG8OqgNP693R6M2PH+5jYqIjXFoNDD3+dbMfDIUC0sNS9ZfQSbTNLo+NUh9H14d1p4X7u2iDeEjQwE4ustFJ92TYzPQ6F9sHTr1KGHHejemD25N+PAgzC00RHwbr3NvDMUU/dVaoSb+vDWr5/tJlufNGLseTe25htu3+3NhWQwbm8WqeX68Nrg15aVmRGyKx1LegAfbRHUwBpp/TrXVN2jEDqd3H6NHj0Ymk9UKAwYMYPjw4QwYMEAn/e7du5HJZCxatEgnftGiRbRo0cIoZbRWqJi7+horZ/tRVCD9pltPTcxm9yYX9m5xITHOmk/m+lFRJqP/C7l3pYwFI4PZ950r1y7ZEH9BwYoZLfH0q6R1p1JtmlcWJfPjlx5sXePFtUs2JMdbc2SnM1WVt++mt8u//b0lePpXsmJGAAkXbUi4aMP7MwJo3amULj2LGl2fGqS+DwW5luRlW2nDfY/kk5og5+wxe22aoLYlPDU+jY/mBOpd7htZMCKIfVtduHbJmvgYG1ZMb4GnXxWtO5VJkj+Ypr+ePOjAhuXe/GkEa0cNxq5HU3uu4XbtruGJ8Vl8+7EnkXscuXrBhuWvtsDVs4oHBxTcNXUQmJ4mqXwADBgwgLS0NJ3w7bff0qdPH/744w+USqU27cGDB/H39+fQoUM6eRw8eJA+ffoYpXxTI1I4/psDUUftb5+4kVhYqmndqZTTN+St0ciIOmpPu+6l9Vx598iwdaj+qi7Kr575c3Stom23UvJzLPjox1g2R53l/W2XaH9vsST5W1qpQQNVlddNmVUVMjRqaH+ffjKM3UYWlmoeeSKHPd+5wz+HTMmtVcz9+Apr3gogL9vKYBl1cb3tpFGaTdFfTYEp7ndTf65vxqtFJa6eSh15pUXmXIxS0FZPeU2lP6mQGRyaM01W+ZDL5Xh5eekEZ2dn+vTpQ3FxMSdPntSmPXToEPPmzePYsWOUl5cDUF5ezrFjx26pfFRUVFBYWKgTGkqvYXkEdyzjy2XehlXyFji4qDC3gPwsXZedvGwLnN2Vt7jq7pEhk2mYtCiZc8dtuRZrA4B3y2o/h5dmpvHrJjcWjAzm8t8K3t0ch09gucH5XzxtS3mpGePmpyC3ViO3UTHhzRTMLcDFQ7/6GPs+9OiXh52Dkn3b3LRxr7yZyIXT9vxlgI9HfchkGiYtTuHccYW27QzFFP3VFBi7Hk39ua6LmmfrZnn5WRa4eOg3RdJU+pNac93vQ7/QOHnLli3j3nvvxd7eHg8PD5544gliY2N10vTu3bvWjMGkSZN00iQmJjJo0CAUCgUeHh7Mnj1b52Meqt+p3bp1Qy6XExwczPr16xvdPk1W+bgVISEh+Pj4cPDgQQCKioo4ffo0zz77LAEBAURGRgLw559/UlFRcUvlY9myZTg6OmqDv79/g+S7+1QyeUkq701tQVVFs2teSZi6NImWoeUsC7s+bWD2j9/FL//nxt6trlw5r+C/i/1IjpfT//kcg/MvyLXknUlB3N+3gB8vRfPDhTPYOqiIO2vTIJ+SO8GA57I4cdiJ3MxqC8cDffPo3KOQz5cYZ6oQqi12LduUs2xyS6PJEAgE0nP48GHCwsL466+/2LdvH1VVVfTr14+SkhKddBMmTNCZMVi+fLn2N5VKxaBBg6isrOTPP/9kw4YNrF+/noULF2rTXL16lUGDBtGnTx+io6OZPn0648ePZ8+ePY0qb5Nd7bJz507s7Ox04ubPn8/8+fPp06cPhw4dIjw8nKNHjxISEoK7uzsPP/wwhw4d0v4eGBhIy5Z1D7Lh4eHMnDlT+3dhYWGDFJDgTmU4uytZs+eSNs7cAjo+UMLQMdkMDuiEWm2YOa0w1xyVEpxu0vKd3ZTkZUlzS40lI+ydJO7vW8Csp0PITrs+bZCTWb3i5FqcrnNuUpw1Hr61V380Nn+A00ccGPNQBxyclahUUFJowbenz5KWqJ/XvTHvg4dvBV16FvL25NbauM49CvFuWcH3Z07ppH3jszjOn7BnzgttDZIZtjSZ+x8rZNaTrWq1nSGYor+aAmPXoyk/17ciN7M6Tyd3JbmZ11eVObkruXJeP8taU+lPNY6jhlwP1LK6y+Vy5HUcSrl7926dv9evX4+HhwenTp3i4Ycf1sYrFAq8vLzqlLl3715iYmLYv38/np6edOnShbfffpu5c+eyaNEirKys+PzzzwkMDGTFihUAtG3blt9//52PPvqI/v37N7h+TfbTvEbrujHUmI969+7NH3/8QVVVFYcOHaJ3794A9OrVS+v3UaOE3Aq5XI6Dg4NOaAjRR+2Y2CeEyY9dD7HRNhzY7szkx0IMVjwAlFVmxJ1V0PWh646SMpmGLg8VE3NKmqVm0svQEPZOEg8OyGfO863JSNJ9eDKSrMhOt8QvSPcUVt+gCjKTG/IirD//GynMs6Ck0ILODxbh5Kbkr736OSga8z70eyaLghxLjh9w0sZt/cybyY93YMqg6wFg7TstWDE7yABpGsKWJvPggALmPNuq3rbTB1P0V1Ng7Ho0zee6ftITrcjJsNCRp7BT0aZrKRf0lNdU+pMamcEBwN/fX8cKv2zZsgbJLyioduh1cdFdKbdx40bc3Nzo0KED4eHhlJZe95OJjIykY8eOeHp6auP69+9PYWEh58+f16bp27evTp79+/fXzio0lLtHTWwktra2BAcH1/lbnz59KCkp4cSJExw8eJDZs2cD1crH2LFjyc3N5dixY7zyyiuSl6usxLzWXHl5qRlFebXjDWH7WjdeX5nEpTMKYqMUPDkhC2uFmr2bXW5/8R2QMXVpEn2eyGPRuCDKis1xdq+e7y0pMv9nDw8Z2z7z5KVZqcRfsCH+vA19n8nFP7icd165/Yv19vlDv+dySLxsTUGOBW27FzN5cTI//M+j1l4jjcEY90Em0/DYs9ns+94Nteq6slqzAuZmMlPkZCTrrzBMjUihz5N5LBoTSFmxWZ1tZyim6K/WChU+gdetZF7+lQS1L6Mo35ysFGksOcauR1N7ruH27f7jF+688FomKVflpCda8fKcdHIyLA1alWSKdrpbSEpK0vn4rcvqcTNqtZrp06fTs2dPOnTooI1/8cUXadmyJT4+Ppw9e5a5c+cSGxvL9u3bAUhPT9dRPADt3+np6fWmKSwspKysDBubhr3nmqzyUR+tWrXC39+fn3/+mejoaHr16gWAr68vvr6+rFixgsrKSqOtdDEFh392xtFVxajZ6Ti7K4k/b8OCEYEGb5hlLBlDXs4G4INtcTrxH8xoyb7vXAH4YZ0HltZqJr2VjL2TivgYG8JfaE3atds/bA3J369VOWPmpWDvpCIj2YpvP/Fi+/88Gl2XGzHGfej6UCGevpXs/c7t9oklYMjoap+aD7Zf0Yn/YLo/+7ZKM5ibor+GdC7j/e+v12HS4lQA9m5xZsUMafxkjF2PpvZcw+3bfesad6wVal5bnoydg4rzJ2xZMCLIIJ84U7SToUi1w2ljLO81hIWFce7cOX7//Xed+IkTJ2r/37FjR7y9vXn00Ue5cuUKrVq10rus+iDTaKTaqsh0jB49moyMDL766iudeAsLC9zcqgfsl19+mR9++AFfX18uXLigTTN27Fi2bduGt7d3LU/g+igsLMTR0ZHeDMNCdvd08LsSM+n3NTE5auk22LoVsgZ8wRiKpqLi9okEgn8JSk0Vh/iJgoKCRr/QG0rNu2L4byOxstPf4lZZXMnmR/+v0WWdOnUqP/30E0eOHCEwsP69gEpKSrCzs2P37t3079+fhQsXaj/aa7h69SpBQUGcPn2arl278vDDD9OtWzdWrlypTfPVV18xffp07VRPQ2iyPh+7d+/G29tbJzz00EPa3/v06UNRUZHW36OGXr16UVRU1KStHgKBQCAQ3IhGo2Hq1Kn88MMPHDhw4LaKB6BVMry9q7eF6NGjB3///TeZmZnaNPv27cPBwYF27dpp0/z22286+ezbt48ePXo0qrxN0vJxJxCWj0YgLB8NQlg+BALTYkrLx3O/vYSVrQGWj5JKtj76TYPLOmXKFDZt2sRPP/1EaGioNt7R0REbGxuuXLnCpk2bGDhwIK6urpw9e5YZM2bg5+fH4cOHgeqltl26dMHHx4fly5eTnp7OSy+9xPjx44mIiACqLSEdOnQgLCyMsWPHcuDAAV599VV27dr171jtIhAIBALB3YrGwJUumkbucPrZZ59RUFBA7969dWYEtmzZAoCVlRX79++nX79+tGnThlmzZvH000+zY8cObR7m5ubs3LkTc3NzevTowciRIxk1ahRLlizRpgkMDGTXrl3s27ePzp07s2LFCr744otGKR7QTB1OBQKBQCC4k5j6VNvbTWL4+/trLRz10bJlS3755Zd60/Tu3ZuoqKhGle9mhOVDIBAIBAKBSRGWD4FAIBAIJEaqHU6bK0L5EAgEAoFAYkw97dLUEMpHIzGzt8NMZpyjzAHURUW3T3S3Y4KVIntSo42af3+fLkbNH8CslfEPb1NdiLt9IkNoLovlZM17oJcMmZG/xk0wdgjuDoTyIRAIBAKBxNx4Pou+1zdnhPIhEAgEAoHEiGmX+mneHi0CgUAgEAjuOoTlQyAQCAQCiRGWj/oRyodAIBAIBBIjlI/6EdMuAoFAIBAITIqwfDSSjvcU8vz4DII7lODqUcmSKW2J/M1V+/uDj2UzaHg6we2LcXBWEjasC/EX7bS/e/iWs+HAyTrzXvpaG45817DDxly9qhi3IJV7+xQht1GTmiBnxQx/4s4qDKvgTQwZnc0zkzNxcVcSH2PDp2/4EhstjQxD6jB9SGtGzEjn3keKKMwz55sPvDh92J7MVCscXZQ8OKCAl+ekYeug1l4TG23DlxE+xJ1VIJNpCO1Syrg3UmnVvhyApMtyPpnnR+Il60bVQ6o2enb4RcaM/5sfv2/N2s+6ADBgUDy9H0kkODgPha2SZ4cNo6REd6m3nX0lk6dGcf8Dqag1Mv446st/13SlvLzux7vD/cU8OzmT1h1LcfVSsmhsAJF7nOpM++q7SQx6KYfP3/Lhhy88Gl2nGzFmXxo8KptBo3Lw9K8E4FqsNRs/8uTkQf0PD7tdO42cmUbvYfm4+1RRVSnj8t82fPWeN7FRtpLJmPXRNfo9l6dzzcmD9iwY2equyH/wS1kMGpWFp98/7X7Jho0rvTh50BFPvwq+/ut8nde980ogR3c5N0jGrTBmf5ICYfmon2Zj+UhPT+e1114jODgYa2trPD096dmzJ5999hmlpaUABAQEsHLlSoPkWCvUxMfa8enioFv+fv60A19+EFDn79lpcl7seZ9O+OaTFpSWmHPySMMeRjtHJR/+FIdKKeONkUFM6B3K2iU+FBdIe5psr6F5THwrlY0fehHWP4T4GGuWborH0bXK4LwNrUPnnkUsGhNIQqw1uRmW5GRYMmFhKv89cJHXVyZy8pA9H85qoU1fVmLGghGtcPep5OOdl1jx42Vs7NQseLEVyn+qY2Gpoe8zeUR8e6XB9ZCqjVqH5vL4oCvEX3HUiZfLlZw64cWWb9ve8to54cdo0bKABXMfZtEbD9GhYzavzqxbwYV/+nCMDasX+NVbpgcH5NOmWwnZaYaf4mzMvgSQlWbJlxHeTB0QwrTHQzjzhx2LvkqgZUi53nnerp1S4q1Z84Yfrzwayqwng0lPsmLZpis4uiglkwFw4oA9w7u014ZlYQ3fH8bY+WelWfLlMl+mDmzDtIFtqtt9XTwtQ8rISrVieNeOOuHrD7wpLTbjhAFKIRi/P0mBBgw8WK550ywsH/Hx8fTs2RMnJyciIiLo2LEjcrmcv//+m7Vr1+Lr68vQoUMlkXXiiBNRR2/9BXjgp+rfPHzrHvTUahl52bpfrg/2zeHor26UlzbsxftcWCbZqVasmHH95ZqRJP3x7E9NzGb3Jhf2bnEB4JO5ftz3aCH9X8hl62pPg/I2tA5j5qWz82s3Lp5SMODFXBZ+kaD9zSegktFz01g+rSUqJZhbVFs1ivIsGDU7HQ/f6gFq5Mx0Jj3ahoxkK3wDK/FuWYl3y9xG1UOKNrK2VjIn/BiffHQPw0dc0Pntp+0hAHTsnFnntf4tCrnnvnRem/IocZeqy/D5mq4sXnqUL/7bmaw6rjl50OG2FgFXr0qmvJPCgheDWPJ1fIPqUR/G7EsAx/bpKm3r3/Nm8Kgc2nQv4VojLVk13K6dDv6o+7GwdrEvj7+YS2C7MqJ/t5dEBkBVpYy8LP0UQGPnf2y/k87f65f7MnhUNm26lXDtkk2tfB8ckM+Rnc4NHutuhbH7kxQIy0f9NAvLx5QpU7CwsODkyZM899xztG3blqCgIIYNG8auXbsYMmTInS7iLQluX0yrdiXs2dbwB+aBfoVcOmPDgv8msOXsedbsjeXxF3MkLZeFpZrWnUo5ffT6IKrRyIg6ak+77qUG529oHQ796ERFqRlt7ymp8/eSQnMUdmrM/1Gv/VpV4OCsZM+3rlRVyqgok7H7W1datC7H6x9TfWORqo2mvHqa48e8iT7d+EGzTbscioostYoHQNQpDzQaGaFtGqdI1SCTaZjzSSLbPvPg2iUbvfK4EWP3pZsxM9PQa1gecoWaCycbPgViCBaWagaOyKG4wIz484a32Y106lHMljPn+OLIBaYtS8LeueGWFVPmb2amodfQXOQ2ai6cqt3uwR1LCe5Qxp5vXeu4uuGYuj8JjEOTt3zk5OSwd+9eIiIisLWte6CR6bF1ckVFBRUVFdq/CwsL9S5jffR/Jp3EyzZciGq4GdK7RSWDR+Wwfa07m1d5ENK5jMlvp1BVJWP/dy63z6ABOLioMLeA/CzdLpKXbYF/cMUtrmo4htbhk3n+LFx3lZYhtctSkGPOppVePD4yWxunsFPz/veXWTQ2kE0rq1/yPoEVRHx7Raug1DB9SOsG1UGKNnq4dyLBrfN4bUrfBqW/GWfncgrydS1GarUZRYVWOLvoN+XwXFgmKqWMH9e56XX9zRi7L9UQ0KaMlTsuYyVXU1ZixpJxASTG6Wf1aCj39y0g/NNryG3U5GZYEv5CMIV50g2rJw868McvTqQnWeHdsoIx89JY+k0804e2Rq02/MtYivwD2pSx8qfYf9rdnCUTgkiMq62ADRiezbVL1sScsqsjl4Zjqv5kKMLyUT9N3vJx+fJlNBoNoaGhOvFubm7Y2dlhZ2fH3LlzG53vsmXLcHR01AZ/f3+piqzFSq6i9+CsRlk9oPp4hcvnbPjqXW+unFPw60ZXft3kyqCXpLV+GBND6zB4VDYfvNaSa5d0X7wlRWa8OSqIFiHlvDQrXRtfUSbjw1n+tL+3hJU7L/HhT3EEtCnnzZeCqCjTfcjnf55gcP0agpt7Ka+ERbM84n6qqqT119GX4I6lPDEuiw9mtIAmtr1z8hU5Ux4L4dVBrdn5tRuvf5xIi9b6+3w0hOg/7JjSL5QZw1pz8pA9Cz5PkNTv4PDPzvy1z5GEizZE7nFi4ctBhHYtpdODxXdN/slX5Ezp34ZXh7Rh5zduvP7RNVq0LtNJY2Wtps8TeezZbJjVoylRo3wYEpozTV75uBXHjx8nOjqa9u3b61gwGkp4eDgFBQXakJSUJHkZHxqQg9xazW8/Nk75yM20qDWPnRQnx8NXv+mDuijMNUelBCd3XROss5uSvCzDv+wMrcPY+WkEtivjxy/ctXGlxWYseLEVNrZq3lp3FYsbppsP/uBMRpIVsz5KJLRLGW27lzJvzTXSE62I3KPrL1DjE3I7DG2j1q3zcHauYNXn+9mxZxs79myjU+cshj4Zx4492zAzu73LWV6eNY5Ouv3bzEyNvUMlebmN/+rveH8xTm5K/u/4eX65Fs0v16Lx8q9iwsJUNtxi5cLtMHZfqkFZZUZqgpzLfyv4apk3V2NseGJ8XV4v0lFRZk5qgpyLp2356PUWqFQw4AX9prsaQnqinPwcc3wCjPOFr0/+1e1uXd3u7/pWt/s43Xb/z6A85DZq9m8z3DJrqv4kMC5N/k4FBwcjk8mIjY3ViQ8Kql6NYmOj3/yrXC5HLpfeifNG+j+dzrEDLhTkNc7ZK+aELf6tdAcH36AKMlOkO21XWWVG3FkFXR8qInJ39ctZJtPQ5aFifl5v+NeLFHXQaKCqslp/LimqVjwsrTQsXh+PlbXui7uizAwzM93DS83MNMhkoFajF4a2UXSUB5PH99OJmzH7BMmJ9ny3pU2DzN4XY1yxt68iuHUel+OqHSA7d81EJtMQe9EFaNwc+P7vXXTm0gEiNsbz2/fO7N2q34vD2H3pVshkYGll2jUD1TL17FANwM27EgdnFbkZhq9AMlb+MjNNrTboPzyHv/Y5UpBreLnvVH9qLGLapX6avPLh6urKY489xurVq5k2bdot/T6kwlqhokXL6yZJT79ygtoUU1RgQVaaNXaOVXh4V+DqUf0F7xdYbX7My7bSWeXi3aKMDvcWsnBi+0aXYftadz76OY7h0zI4ssOJ0K6lDByZy8rZ9S+dbLwcN15fmcSlMwpioxQ8OSELa4WavZsN/3oxtA5fRnhz9k87lm66QkmRGfNfaEVFmRlzVl2ltNic0n9ukaOrEnNz6PpwEf97x4fV8/0YNjYLtVrG1tUemFtA557ViQ9sd8bcQkNg27J6JN9cD/3bqKzMkmsJulaX8nILCgvl2nhn53KcXcrx8akuY0BgAWVllmRmKigusiIp0YGTx714deZJVq/sjoWFminTojhyyJ/cnLoVb2uFCp/A64qfV4tKgtqXUpRnQVaqFUU3+SwolZCXZUHyFf39J4zZlwDGhKdx4oA9WSlW2Nip6PNkPp0eLGbBi3UviW8I9bVTYZ45L76WQeReR3IzLHFwUTJ0dDZuXlUc3ekkiYyifHNGzkzn91+cyMu0wDugkvELUklNkHPqcMNW0xg7/zHzUjhx0OGfdlfT54lcOvUoZsGIYG0an4ByOt5fzJujGrZ3SEMwdn+SAo1GhsYABcKQa5sCTV75APj000/p2bMn99xzD4sWLaJTp06YmZlx4sQJLl68SPfu3bVpU1JSiI6O1rm+ZcuWODs3bI+NkA4lrPi/i9q/X5l/FYB92z34MDyEBx7JZda7cdrfw1dWW2T+b5U/G1dfXz/f7+kMstPlnP7dqbHV5dIZBUvGBTImPI0RMzJIT7Li84U+HPzBsE17bubwz844uqoYNTsdZ3cl8edtWDAikPxsw79eDK1DbLSCpZuu0L1XMWf+tOPi6Wqlc8yD7XTSbTgWg5d/JS1aV7B4fTwbP/Ri+pAQZGYagjuUsXTjFVw9q823ZuYatq7xICW+4RYvY7YRwMAhVxgxKkb79/srDwHw4fJ72b83AIDly+5nyrTTRLx/GI0G/jjqx+eru94yz5DOpby/7fpeJpMWpQKwd6szK2Y0fI+HxmDsdnJyUzL7k0RcPJSUFplz9YI1C14M4vSRhr1E66K+dvpknj9+rSp4c20CDi5KivLMuXRGwaynWjdqhVB9MlaF+xPYtpzHnr2KrYOKnAwLTh92YMP7XlqL353O38lNyeyV13DxqPqn3W1YMCKY00evO9D3fz6H7DRLTh02bG+PGzF2fxIYH5lGo2kWe5mkpaURERHBrl27SE5ORi6X065dO5599lmmTJmCQqEgICCAa9eu1br2m2++YeTIkfXmX1hYiKOjI4/Yj8BCJt30xs2oi4qMlndzYk9qtFHz7+/Txaj5A5i3CzG6DNWFuNsnMoTmMXzozscJbo3MyG6CapVRs1dqqjjETxQUFODgIJ0ydCM174oeP03Dwlb/qXtlSQWRw1YZtax3kmZh+QDw9vZm1apVrFq16pZpEhISTFcggUAgEPxrET4f9dNsV7sIBAKBQCC4O2k2lg+BQCAQCO4WhMNp/QjlQyAQCAQCiRHTLvUjlA+BQCAQCCRGWD7qR/h8CAQCgUAgMCnC8tFI1EXFqGViLfmdxhRLYY2N0ZfBQvNZCmtsRDs1DI1xl8I2JzQGTrs0d8uHUD4EAoFAIJAYDYbptM1dHRbTLgKBQCAQCEyKsHwIBAKBQCAxamTIMGC1iwHXNgWE8iEQCAQCgcSI1S71I6ZdBAKBQCAQmBRh+RAIBAKBQGLUGhkyscnYLRHKh0AgEAgEEqPRGLjapZkvdxHKh8Q8PzWDngML8A+uoLLcjJiTCtYt9Sb5irXksoaMzuaZyZm4uCuJj7Hh0zd8iY1WNCkZxs7f1auKcQtSubdPEXIbNakJclbM8CfurDQyBo/KZtCoHDz9KwG4FmvNxo88OXlQvyOwO9xfzLOTM2ndsRRXLyWLxgYQucdJJ41/cDnjFqTS6YFizC3g2iU5b08IJCvVquEypmTpytjteEMKDaNmZzDgxRzsHFTEnLTlk3l+pF7V/3hwaB791RQymnodTDUGmqKdBMajyfp8pKen89prrxEcHIy1tTWenp707NmTzz77jNLSUgACAgKQyWRs3ry51vXt27dHJpOxfv16ScvVqUcJO9a7MX1wa8KHB2FuoSHi23jkNtJuztNraB4T30pl44dehPUPIT7GmqWb4nF0rWoyMoydv52jkg9/ikOllPHGyCAm9A5l7RIfigvMJckfICvNki8jvJk6IIRpj4dw5g87Fn2VQMuQcr3ys1aoiY+xYfUCvzp/925ZwYc/xpF02ZrZzwQzqW8om1Z6UVnRcBOttUJN/HlrVs+vW8ZzYVkMG5vFqnl+vDa4NeWlZkRsisdSrtarTtA8+qspZDSHOphiDDRFOxlKjcOpIaE50ySVj/j4eLp27crevXuJiIggKiqKyMhI5syZw86dO9m/f782rb+/P1999ZXO9X/99Rfp6enY2tpKXrYFI4LYt9WFa5esiY+xYcX0Fnj6VdG6U5mkcp6amM3uTS7s3eJCYpw1n8z1o6JMRv8XcpuMDGPn/1xYJtmpVqyY0YLYaAUZSXJOH7Yn7ZphX/A3cmyfIycOOJB6VU5KvJz173lTXmJGm+4leuV38qADG5Z78+dupzp/Hz03jeMHHFi31Icr5xWkXZPz1z5HCnIavuvudRmOdfyq4YnxWXz7sSeRexy5esGG5a+2wNWzigcHFOhVJ2ge/dUUMppDHUwxBpqinQxFKB/10ySVjylTpmBhYcHJkyd57rnnaNu2LUFBQQwbNoxdu3YxZMgQbdoRI0Zw+PBhkpKStHFffvklI0aMwMLC+LNOtg7V2n5RvnRf2xaWalp3KuX0UXttnEYjI+qoPe26lzYJGaaowwP9Crl0xoYF/01gy9nzrNkby+Mv5kiSd12YmWnoNSwPuULNhZPSK7YymYb7Hi0kJV7O0o1X2HLmHB/vuESP/vmSyfBqUYmrp1LnvpQWmXMxSkFbPe9Lc+ivppDRHOpQF1KPgXeiDvpQc6qtIaE50+SUj5ycHPbu3UtYWNgtLRcy2fWb5unpSf/+/dmwYQMApaWlbNmyhbFjx9Yrp6KigsLCQp3QWGQyDZMWp3DuuIJrsTaNvv5WOLioMLeA/Cxd5Skv2wJnd2WTkGGKOni3qGTwqBxSr8qZ/2IgOze4MfntFPo+K+3XUUCbMn6M+5udCWd59d1klowLIDFOeh8fJzclCjs1z4dlcvKQPeEvBvHHbkcWfpFAxweKJZHh4lHd9jffl/wsC1w89DNpN4f+agoZzaEON2OMMdDUdRAYhyanfFy+fBmNRkNoaKhOvJubG3Z2dtjZ2TF37lyd38aOHcv69evRaDRs27aNVq1a0aVLl3rlLFu2DEdHR23w9/dvdFmnRqTQsk05yya3bPS1AsORmcHlczZ89a43V84p+HWjK79ucmXQS9JaP5KvyJnyWAivDmrNzq/deP3jRFq01s/noz5k/zytkXsc+OF/HsSfV7B1jSfH9jsw6KVsyeUJBIbybx4Da1a7GBKaM01O+bgVx48fJzo6mvbt21NRUaHz26BBgyguLubIkSN8+eWXt7V6AISHh1NQUKANN07bNISwpcnc/1ghc55pRXZaw1YhNJTCXHNUSnC6Sct3dlOSlyXNVJKxZZiiDrmZFly7pGuBSIqT4+FbKUn+NSirzEhNkHP5bwVfLfPmaowNT4zPklQGVLeZsgquxd1cJ2s8fKVxtMvNrG77m++Lk7uS3Ez9TnNuDv3VFDKaQx1uxFhjoCnrYAjVCoQhPh93ugbGpckpH8HBwchkMmJjY3Xig4KCCA4OxsamtmnPwsKCl156ibfeeotjx44xYsSI28qRy+U4ODjohIahIWxpMg8OKGDOs63ISJLOubEGZZUZcWcVdH2oSBsnk2no8lAxMaekWWpmbBmmqEPMCVv8W+kqor5BFWSmSKsM3oxMBpZW0o8cyiozLp1R4FdXnZL1UwxuJj3RipwMC537orBT0aZrKRf0vC/Nob+aQkZzqEM1xh0DTVMHgbFpcsqHq6srjz32GKtXr6akpOErCsaOHcvhw4cZNmwYzs7ORivf1IgUHnkqj3fDWlJWbIazexXO7lVYWeu/TLEutq914/EXc+n7bC7+weVMezcZa4WavZtdmowM4+fvTptuJQyfloFPQAV9nsxj4Mhcfv7KTZL8AcaEp9Hh/mI8/SoJaFPGmPA0Oj1YzMEf9Otj1goVQe1LCWpf7Tjn1aKSoPaluPtUW2u++8yDXkPyefzFHHwCKhg6OosHHitgx4aG16laRhlB7atXH3j5VxLUvgx330pAxo9fuPPCa5k80K+AgDZlzP4kkZwMy1usjmkYzaG/mkJGc6iDKcZAU7SToYjVLvVz99ioGsGnn35Kz549ueeee1i0aBGdOnXCzMyMEydOcPHiRbp3717rmrZt25KdnY1CYVzNeMjoan+CD7Zf0Yn/YLo/+7ZK92Ac/tkZR1cVo2an4+yuJP68DQtGBJKfLc0XsClkGDv/S2cULBkXyJjwNEbMyCA9yYrPF/rorRjUhZObktmfJOLioaS0yJyrF6xZ8GIQp4/Y3/7iOgjpXMr72673nUmLUgHYu9WZFTNa8uduJz6Zp2L4tAwmL0kmOb56g7HzJ+waIaOM97+/Qcbif2RscWbFjBZsXeOOtULNa8uTsXNQcf6ELQtGBFFVof+3SnPor6aQ0RzqYIox0BTtZCiaf4Ih1zdnZBpN05xZSktLIyIigl27dpGcnIxcLqddu3Y8++yzTJkyBYVCQUBAANOnT2f69Ol15uHk5MTKlSsZPXr0beUVFhbi6OhIb4ZhIbt7OrigCSMzwZdN03y8BQKjoNRUcYifKCgoaMRUeuOoeVe0+iYcc4X+q95UpeVceWlZg8u6bNkytm/fzsWLF7GxseHBBx/kvffe01mcUV5ezqxZs9i8eTMVFRX079+fTz/9FE9PT22axMREJk+ezMGDB7Gzs+Pll19m2bJlOltTHDp0iJkzZ3L+/Hn8/f154403GvQevZEmafkA8Pb2ZtWqVaxateqWaRISEurNIz8/X9pCCQQCgUAABk+dNPbaw4cPExYWxr333otSqWT+/Pn069ePmJgY7bYUM2bMYNeuXXz33Xc4OjoydepUnnrqKf744w8AVCoVgwYNwsvLiz///JO0tDRGjRqFpaUlERERAFy9epVBgwYxadIkNm7cyG+//cb48ePx9vamf//+DS5vk7V8mBph+RBIjrB8CAQmxZSWj6AN8w22fMS/HKF3WbOysvDw8ODw4cM8/PDDFBQU4O7uzqZNm3jmmWcAuHjxIm3btiUyMpIHHniAX3/9lcGDB5Oamqq1hnz++efMnTuXrKwsrKysmDt3Lrt27eLcuXNaWcOHDyc/P5/du3c3uHxNzuFUIBAIBIK7HkOdTf+xfNy82eXNW0ncioKC6uMQXFyq/WxOnTpFVVUVffv21aZp06YNLVq0IDIyEoDIyEg6duyoMw3Tv39/CgsLOX/+vDbNjXnUpKnJo6EI5UMgEAgEgrsUf39/nQ0vly1bdttr1Go106dPp2fPnnTo0AGoPozVysoKJycnnbSenp6kp6dr09yoeNT8XvNbfWkKCwspK2v4+T1N1udDIBAIBIK7FUN3Ka25NikpSWfaRS6//b4pYWFhnDt3jt9//13/AhgZoXwIBAKBQCAxUjmcNm6TS5g6dSo7d+7kyJEj+Pn5aeO9vLyorKwkPz9fx/qRkZGBl5eXNs3x48d18svIyND+VvNvTdyNaRwcHOrc5PNWCOWjkZg72GMuM94OmSo9DrC76zCBI6W6Z2ej5m/2e7RR8weI+6qb0WW0HhttXAFqlXHzNxVm0p06XScaaTcZrFuG8Z2LZQ346jYETQP9GQS10Wg0TJs2jR9++IFDhw4RGBio83v37t2xtLTkt99+4+mnnwYgNjaWxMREevToAUCPHj1YunQpmZmZeHh4ALBv3z4cHBxo166dNs0vv/yik/e+ffu0eTQUoXwIBAKBQCA1NziN6n19IwgLC2PTpk389NNP2Nvba300HB0dsbGxwdHRkXHjxjFz5kxcXFxwcHBg2rRp9OjRgwceeACAfv360a5dO1566SWWL19Oeno6b7zxBmFhYdrpnkmTJrF69WrmzJnD2LFjOXDgAFu3bmXXrl2NKq9QPgQCgUAgkBipfD4aymeffQZA7969deK/+uor7QZgH330EWZmZjz99NM6m4zVYG5uzs6dO5k8eTI9evTA1taWl19+mSVLlmjTBAYGsmvXLmbMmMHHH3+Mn58fX3zxRaP2+AChfAgEAoFA0ORpyJZd1tbWrFmzhjVr1twyTcuWLWtNq9xM7969iYqKanQZb0QoHwKBQCAQSI043KVehPIhEAgEAoHEmHp79aZGg5SPn3/+ucEZDh06VO/CCAQCgUAgaP40SPl44oknGpSZTCZDpWomS+9uQcd7CnlufAbB7Ytx9ajk7bC2RP7mVmfaqYviGDg8nf9GBPHT177a+OdfSeTe3rkEtSlBWSXjufsebFQZnp+aQc+BBfgHV1BZbkbMSQXrlnqTfEX/cwRuxZDR2TwzORMXdyXxMTZ8+oYvsdGKRufT4f5inp2cSeuOpbh6KVk0NoDIPU7a353cqhi3IJXuDxdh66ji3F92rHnTj9SrdS/te+nZaEY9e0YnLjHFgXEzngTA27OQiS+dpEObTCwt1Jw848PqL+8nv6B6HbqnezEjnj5Dlw7puDiVkZNrw29HW7Fpe0eUKv2WXT43NYNx89P54X9ufP6W723Ttx59itRprSjpfr0dZOUq3L5LwfZ0PubFSqrc5RT09aDgEXcALLIqCJx9rs780qYEUXyfszbvWshkPD81k56P5+MfXP5P37FlXYQvyfHX+46zexXj30ih238KUdipSboiZ/MqL37/xbkRrVEbqfoS/NOfpmTp9qfdjgCYW2gYPTeNex8pwrtlJSWFZkQdtWddhDe5GQ07l+n5sHSjt9PtnglrhYpx89PoMaAABycl6UlW/PSlO7u+qXu8aQgbjsXg5V9VK/7n9a6sme9XxxW3x9WzknHzkrinVz5yGzWpCdZ8OCeQuL/ttPUYOzeJHo/l4eCsJD1Jzk/rvfhlk4fe9QBp+5PRaOZTJ4bQIOVDrTbBGvUmgrVCzdWLtuz93pM3V1+4ZboefbMJ7VxEdkbtPUEsrDT8vtudi9EO9Hs6vdFl6NSjhB3r3bgUrageaOelEfFtPBN6hVJRJt1+Bb2G5jHxrVRWzfPj4mkFT07IYummeMb9J5SCnMYdrmetUBMfY8OezS68tS7hpl81vPXlVVRVMhaNDaK02IynJmbx7ubLTOjd5pZ1uproxNy3+2n/VqmrzZTW8ireXbCP+GsuzF5c7YE9engUb8/9jVcXDEKjkeHvU4CZTMPHax8gJd2BQP88ZrwSibV1FWu/ubdRdQMI6VzKoJG5xJ83TAF0/zYZmwtFZEwMpMrNCsX5Qjy+TkTpbElJVyeUrlbEr+ykc43j4Sycf82gpJPuRkTp41ri9WWSTlynHsXs2ODOpTMKzM01jJ6XSsSmy0zo01bbzrNXJmDnqGLR2FYU5FrQ54lc5n92lWkD5Vw5r9/gLmVfgn/603lr9nzrwltfJuj8JrdRE9yxjE0rPYmPscbOUcXkJaksXn+VaY+HNCh/U7RT/c8EvPJWKl16FrF8Wgsykqzo1quIaRHJ5KRb8tc+xwbV42ZefTwEM/Prb8SANuW8uyWeozuc9MrPzkHJh9tiOBPpwBtjqu+lb2A5xQXXXy0T30ikS49C3p/RioxkOd0eLmDqkgRyMy35a79+Cq3U/ckYiGmX+jHobJfy8nKpymEw6enpvPbaawQHB2NtbY2npyc9e/bks88+47777kMmk90y3Lw0qT5OHHHi648DiNx/668PV48KJr9xhfdnh6JS1u5AG1e15McNviRcstWnqiwYEcS+rS5cu2RNfIwNK6a3wNOvitadGr6vfkN4amI2uze5sHeLC4lx1nwy14+KMhn9X8htdF4nDzqwYbk3f+52qvWbb1AF7bqXsircj0tnFCRfsWbVPD/k1hr6PJF/yzzVahl5BTbaUFhU/eJvH5qJp0cJ73/ak4QkZxKSnFm++iFCgnLo0iGtujxnfPngs4c4ddaX9Ex7Ik+14Lsd7XnovsRG181aoWLu6musnO1HUYFhyp/15WKKerpS1tYepbucwt7uVPgrsI4vqU5gJkPlZKkTbE/lU3SvMxprXdlqhUX1hm83hAUjg9n3nSvXLtkQf0HBihkt8fSrpHWnUu117e4p4aev3ImNtiU9Uc63n3hTUmiuk6axSNmX4Mb+VPslXFpkTvjwVhzZ4UTyFWsunrZlzQJfQjqX4e5b2aD8TdFO9T0TNfnv2+bC2Uh7MpLl/LrRjfgYG0K76n8fCnItyMuy1Ib7+xaSetWKs5H6jUXPTkojK82KD+cEcemMHRnJck4fdSQt8boS3q5bMfu3u3H2mAMZKXJ+/daD+AsKQjuX6F0PqfuTUdBIEJoxjVY+VCoVb7/9Nr6+vtjZ2REfHw/Am2++ybp16yQvYEOIj4+na9eu7N27l4iICKKiooiMjGTOnDns3LmTqVOnkpaWRlpamnbr2P3792vjtm/fLllZZDINry+P5ft1fiRe1u+Bbiy2DtVTXUX50lk9LCzVtO5Uyumj9to4jUZG1FF72nXXf/CrC0ur6qessuJ6d9RoZFRVymh/X/Etr/PxKmLz51v5etX3zJt2BHfX6rSWlmrQQFXV9faoqjJHo5HRoU3mLfOzVVRSVNz4HRynRqRw/DcHom5oK30pD7bDNjof87xK0GiwuVCEVUY5JR3q3l5ZnlCCdWIZhQ/XVoY9vkms3oFUrareYbOOpXjX+871L9WYk7b0GpKHvZMSmUxDr6G5WMk1nI2006tOpuxLt8LWQYVaDSV6KoemaKebiTlpywOPFeDqVQlo6PxgEb5BFZw6bHg/g+r78sjTeezZ7ALo95X9QN88Lp21ZcGaODafOM3qnecYMFz3GYs5bccDj+bj6lldj04PFOIbWM6po/odaX839CeB4TR6tcvSpUvZsGEDy5cvZ8KECdr4Dh06sHLlSsaNGydpARvClClTsLCw4OTJk9jaXn/hBwUFMWzYMDQaDbJ/tvyusda4urpq96qvi4qKCp2jiwsbuO35sxOSUalk/PSNjz5VaTQymYZJi1M4d1zBtdiG76t/OxxcVJhbQH6WbhfJy7bAP1jaLZCTLluTkWzJ2PA0Pp7rR3mpGU9NyMLdpwoXD2Wd11yMc+ODT3uSlOqAq3MZI585w0dLdjNh1jAuXHKnvMKC8SNO8eW33ZDJNIx78TTm5hpcnOq2Dvl4FvLE4xf57zf3NKrsvYblEdyxjGkDWze63nWRNdIfj/XXCJrxNxpz0MhkZI5pSXlo3S8chyM5VPhYU95a94WX86QPpe3s8Y+IA/7Z7UgGN75kZDINkxYlc+64rU7fWTo5kPmfXmXbubMoq6CizIzF44NITdBvSsmUfakuLOVqxi1I49CPTpQWN175MFU73cynb/ry2vIkNp2KQVlVben7eI4/545Jo9w8OKAQOwcVe7e66J2Hd4sKBo/MZPsXXmxe40NI5xImv3UNZaWM/dur/ZQ+W9SSVyOusvGvaJRVMtRq+Hh+IOeO66d83On+1HBk6KvUXb+++dJo5ePrr79m7dq1PProo0yaNEkb37lzZy5evChp4RpCTk6O1uJxo+JxIzI9zhpZtmwZixcvbtQ1we2LGPpSCq8+3RVTdZypESm0bFPOrCeCTSLPGKiUMpaMD2TmikS+jzmHSglRR+05/pv9LY+JORF93TnuaiJciHNn46fb6NUjgd0HW/P2h714dfxfPPH4BTQaGQf/CORSvEuduwa6OpcQsWA/RyID+PW3hvkEALj7VDJ5SSrhw4OoqjBoBlOL4/5MrK+UkPpaK6rcrLCJLcbjm0SUTpaUtdcdrGWVauwjc8kd6l0rn9xh/8TJ/hkAaywfN7Tn1KVJtAwtZ9ZTunV+eXYado4q5j4fTGGuBT0GFLDgs6vMejqEhIvSKbimwNxCw4L/XgMZrJqnn0PlnWqnYWOyadOtlIWjA8lMtqLj/cWELU0mJ8NSEitb/xdyOHHQocFOuHUhk0Hc37as/8AfgCsxtgSElDFoRKZW+Rj6cgZtu5bw1vjWZKbI6XBfEWGLE8jNsCTqD/18V5oEYp+Pemm08pGSkkJwcO0XnVqtpqqqthe1sbl8+TIajYbQ0FCdeDc3N62VIywsjPfee69R+YaHhzNz5kzt34WFhfj7+9d7TfvuhTi5VrHhwPVTAc0tYPzceJ54OYUxj97XqDLcjrClydz/WCGznmxFdpq0h90V5pqjUoKTu67lwdlNSV6W9NvDXP5bwZR+bVDYq7C01FCQa8HHOy5x6WzDHBxLSq1ITnXAx6vaQnXqrC8vv/o0DvblqFRmlJRasWXtFg5l6A7ars6lfPDWXmJi3flobeMORgruVIazu5I1ey5p48wtoOMDJQwdk83ggE6o1Q1XQmWVaty2pZI6rRWlXaoH5Up/BfLEUpx/zailfNidyMOsUk1RzwZ8ucpk1/d7lskIeyeJ+/sWMOvpEJ2+492ygmFjspj4SFuuXap+gcZfUNDxvmKGvpzFJ+EtGlyfGkzdl2qoVjwS8PStZM5zrfSyepiynW7EylrN6HlpLBkfwPHfqvvC1Qs2BLUv45lXMg1WPjx8K+n6n2LeHh9gUD65WZYkXtZVtBIvW9NzQLXvhZVczejXk3l7UmuOH3QC4OpFBa3alfL0hHS9lI871Z8E0tLoO9WuXTuOHj1Ky5YtdeK3bdtG165dJSuYoRw/fhy1Ws2IESN0pk8ailwu1x6k01AO/OxBdKSTTtzbX5zjwE8e7PvBs9FluDUawpam8OCAAmY/E0xGkvQnTSqrzIg7q6DrQ0XaJYwymYYuDxXz83pXyeXVUFpU/YLwCaygdedSNrx/66mxG7GWV+HtVUTu0VY68TVOqF3ap+HkUE7kyesKpKtzCR+8tZe4qy588GnPRnuXRx+1Y2If3a/hWR8lkXTZmq1r3BuleADIVBpkKk1tTywzWZ3+Gg5Hsinu6ojKoSFfrv9cL6t+oT44IJ/Zz7au1XfkNtUr225e4KZSgcxMv0+xO9GXahQP38BK5jzTiqK8xg51GsLeSTZpO92IhYUGSytNrT6kVsuQSWBk6zc8l/xsC47t12/qo4aYk3b4BelOZfoGlpOZUt1eFpY19dC9Tt3E+pNeCMtHvTRa+Vi4cCEvv/wyKSkpqNVqtm/fTmxsLF9//TU7d+40RhnrJTg4GJlMRmxsrE58UFAQADY20pqJrRUqWrS87gTp6VdBUJtiigosyEqzpihf90WgUsrIy7Yi5er1L3h373LsHZW4e5djZg5BbarzS020oaQBriVTI1Lo82Qei8YEUlZshrN7tcWppMicynJpzP8A29e68frKJC6dURAbVb2czVqhZu/mxs8RWytU+AReVwK9WlQS1L6UojwLslKt+M/gfApyzMlMsSKwTTmTliQTuduR00fqHhwnvnSCv076k5Fth6tzKaOei0atlnHw9+pjpPv3jiMxxYn8QjntQrKYMvoE23e1IzmterBydS5hxaI9ZGTZ8d+v78HR4XrZ8goa1mfKSsxr+dmUl5pRlFc7/lZYZldgda0UtZ0FSlcrSkPtcNuSTJalWfW0y8Ui7P/IIfsFXaubZUY5NpeKSZ1R2wppG5WPeaGS8la2/ygtNSdcyZi6NIk+T+SxaFwQZcXmtfpO0mVrUq7Kee3dJP73ji+FeRY82D+fbg8XsXB0q1qyGoqUfQlq+tP1lSte/pUEtS+jKN+c3AxL3vxfAsEdy1g4KhAzc422nkX55iirbv+MmKKdbvdMnPnTlglvpFJZLiMj2YpOPYrp+3Qua5fcfg+Z+pDJNPR7Ppf93zmjVhk2PfzDl158uO0Cz09J5cguF0I7FzPwhSw+nh8AQGmxOWf/smd8eBKV5WZkpMjpdH8hjz6Vzdp39LcOSd2fjIKJT7Vtasg0DTmN5iaOHj3KkiVLOHPmDMXFxXTr1o2FCxfSr1+/219sBPr378/58+eJjY2t5ffRu3dvunTpwsqVKwFISEggMDCQqKgounTp0mAZhYWFODo6MqPvUD74pvb+Hvt+8OCj8NBa8V/9dpwfN/jqbDI2Y1ksjz1Ze9XF3FEdid5/+4FxT+qZOuM/mO7PPgOcx+pi6JjqjXyc3ZXEn7fh0zd9iI26zSqeOhw1OvUo4v1tV2rF793qzIoZLRk2NotnJ2fi5KYkN9OC/dtc2LTS85Yvinlb8+nUNgN7+woKCq05d9GDrzZ3JS2jWlkZ9+Ip+vW+jL1dJRmZduzcF8L3u9pR4/TQr9dlZof9UWfejz33Mma/R9dfx1uwfNtl4s/bNGiTsRsp7OlKxoQAzPOrcNuWguJcIWYlSpSuVhT0die/v4dOu7puS8H+zxwSPuhYbRm5AcXZAly3pWCVWYFZ+T+fnP/4fuxJqfswqA9mtGTfd9VfjT6B5YwLT6X9vcXY2KpJTZCz7b8e/PZ9HV+V6oZvKqhXX7oFnXoU8/73dfSnLc783wovvj5e9x48s59uVfdqFDPdKZk9yafrvF7vdtLU3ivpds+Es3sVY8PT6PZwEfZOSjJTrPhloyvb17pTp09ZA4fybr2KWPZtPGMfakNKfOOsprI6rMH3PZLHmNnJ+AaWk54kZ/s6L3Zvvr6BmLNbJWPmJNPtPwX/1EPOr9+6s32dV616aBphpdanPyk1VRziJwoKCnBwMMzqcytq3hX+axZjZqO/87G6rJyksLeMWtY7iV7Kx93GlStX6NmzJ87OzixatIhOnTphZmbGiRMneP311xkxYgQrVqwADFc+HnUYiYVMWv+KG1E1cFXNXY0eDr6NRd2zs1Hz11f5aAxx67sbXUbrsdHGFdAI5eOuxky6Zep1UofyIb0M4w/ldSkfUtIY5UMfTKl8+K02XPlIntp8lQ+9vXNOnjzJhQvVXxft2rWje3fjD6S3olWrVkRFRREREUF4eDjJycnI5XLatWvH66+/zpQpU+5Y2QQCgUDwL0T4fNRLo5WP5ORkXnjhBf744w+cnJwAyM/P58EHH2Tz5s34+em3nM1QvL29WbVqFatWrao3XUBAAM3A2CMQCAQCQZOl0d6J48ePp6qqigsXLpCbm0tubi4XLlxArVYzfvx4Y5RRIBAIBIKmRY3DqSGhGdNoy8fhw4f5888/dfbVCA0NZdWqVfznP/+RtHACgUAgEDRFZJrqYMj1zZlGKx/+/v51biamUqnw8THNluICgUAgENzVCJ+Pemn0tMv777/PtGnTOHnypDbu5MmTvPbaa3zwwQeSFk4gEAgEAkHzo0GWD2dnZ53zUUpKSrj//vuxsKi+XKlUYmFhwdixY3niiSeMUlCBQCAQCJoMYpOxemmQ8lGzQZcAVIVFyGT6H8T0r8AEq4nM/zpn1PxNYfEMnXTe6DI0lsY960JT0Uz2+Wgu+5UYGWPvw9GsENMu9dKgkenll182djkEAoFAIBD8SzDos6i8vJzKykqduOa4E5tAIBAIBI1CWD7qpdEOpyUlJUydOhUPDw9sbW1xdnbWCQKBQCAQ/OvRSBCaMY1WPubMmcOBAwf47LPPkMvlfPHFFyxevBgfHx++/vprY5RRIBAIBAJBM6LR0y47duzg66+/pnfv3owZM4b//Oc/BAcH07JlSzZu3MiIESOMUU6BQCAQCJoOYrVLvTTa8pGbm0tQUBBQ7d+Rm5sLwEMPPcSRI0ekLZ1AIBAIBE2Qmh1ODQnNmUZbPoKCgrh69SotWrSgTZs2bN26lfvuu48dO3ZoD5r7N9Hh/mKenZJF646luHopWTQ2gMjdjgCYW2gYPTeNex8pwrtlJSWFZkQdtWddhDe5GYYv1x0yOptnJmfi4q4kPsaGT9/wJTZaYXC+ppJRX9sZynNT0hk7L4Uf1nnw38X+ADz+YhZ9huXSqkMptvZqnu7QmZJCw5aiSl0HMzMNI15L5pEncnB2ryQ3w4p937vz7WofoPpLyMmtirFzEun2nwJsHVScO27PZ4sDSE1o2PHdrp6VjJuXxD298pHbqElNsObDOYHE/W0HwO6rx+u87otl/mxb661XvYx5r29EPBMNw5h12HAsBi//2rtg/7zelTXzpTt41BT3WmA8Gm35GDNmDGfOnAFg3rx5rFmzBmtra2bMmMHs2bMlL2BDGD16dJ2bmx06dAiZTEZ+fr72/zeHN954wyDZ1go18eetWV3HQyW3URPcsYxNKz0J69+aJeMD8GtVweL1Vw2SCdBraB4T30pl44dehPUPIT7GmqWb4nF0rf3Q360y6ms7QwjpVMLAF7OIj7HRiZfbqDl52JEta/R7gdaF1HV4dlIqg0Zk8umilkx8rDNfLvfnmYmpDH05458UGhZ+fgmvFhUseSWEqYM7kJkiJ+KbC8htbr9XhZ2Dkg+3xaCskvHGmFAmPtaJ/0W0oLjguhL2wr1ddMKK2YGo1fD7r/o7lBvrXt+IeCYahrHr8OrjIQzv3E4b5j1fbSk/usNJkvzBNPfaYITDab00+rNvxowZ2v/37duXixcvcurUKYKDg+nUqZOkhTMGsbGxOsuB7ezsDMrv5EEHTh6se3lxaZE54cNb6cStWeDLql/jcPetJCvFSm+5T03MZvcmF/ZucQHgk7l+3PdoIf1fyGXrak+98zWljPraTl+sFSrmfHKVj+e15IVpaTq//biuusydHiiSTJ7UdWjbrZi/9jtz4mD1iz4zRU6vITmEdi4GwDewnLbdinmlf0cS46q/8la/GcCmY6fpPSSHPVs96s3/2UlpZKVZ8eGcIG1cRrJcJ01etm6/7PFYHmciHUhPaphlpS6Mca9vRjwTDcPYdSjI1X2tPD81k9SrVpyNtDU47xpMca8FxqXRlo+badmyJU899VSTUDwAPDw88PLy0gZDlY/GYuugQq2GkgJzvfOwsFTTulMpp4/aa+M0GhlRR+1p171UimKaRIYxCHsnkeMHHIn6vWnuN3PhtB1dHizAN7AMgMA2JbS/p4iTh50AsLSq/hyqqrj+6Go0MqoqzWh/z+2Vqgf65nHprC0L1sSx+cRpVu88x4DhmbdM7+RWxX19Ctiz1c2AWhkf8Uw0DFPXwcJSzSNP57Fnsws104ZS5NkU7oMMA30+7nQFjEyDLB+ffPJJgzN89dVX9S7M3URFRQUVN2wlXFhYaHCelnI14xakcehHJ0qL9Vc+HFxUmFtAfpbu7cvLtsA/WJrtj00hQ2p6DckluEMprw5pe6eLojdbP/NBYadi7b6zqFUyzMw1bFjhx8Gfql/+SVesyUixYvTsJFYtCKS8zIwnx6bj7lOJi8ftTc7eLSoYPDKT7V94sXmNDyGdS5j81jWUlTL2b3evlb7v09mUlZjxx24XyesqJeKZaBimrsODAwqxc1Cxd6t0/ac53AdBA5WPjz76qEGZyWSyO6Z87Ny5s5YVQ6WqPQfu56c7l3rt2jVcXV1rpVu2bBmLFy+WrHzmFhoW/PcayGDVPOPN5/5bcfOuZNKiJOaPaK1jFWhqPDwolz5Dc1g+PZhrcTYEtS3hlTcTyc2wYv92d1RKM96ZHML0d+P5LvoUKiVE/eHIiUMNc0qUySDub1vWf1DthHslxpaAkDIGjcisU/no/2wWB35ypaqy6bap4M7R/4UcThx0kMTBvskhltrWS4OUj6tXDXeQNDZ9+vThs88+04k7duwYI0eO1Ik7evQo9vbXzXW32pU1PDycmTNnav8uLCzE399fr7JVKx4JePpWMue5VgZZPQAKc81RKcHJXakT7+ymJC9LmoPETCFDSlp3LMXZXcnqXy5o48wtqlcPDH05kyHB3VCr7/6Hedy8RLb+15vDO6sV4oRYBR6+lTw3OVWrHFw+Z8vUwR1R2CuxtNRQkGvJR9vPEff37efUc7MsSbys64ibeNmangNya6Vtf28R/q3KiZgWLEHNjIt4JhqGKevg4VtJ1/8U8/b4AEnzbTL3QWyvXi/N5nPG1taW4OBgneDr61srXWBgoE4aM7O6m0Aul+Pg4KAT9KFG8fANrGTe860oyjP84VBWmRF3VkHXh67P8ctkGro8VEzMKWmWmplChpRE/2HPK33bMWXA9XDpjIKDP7owZUC7JqF4QPWKHM1NZVWrQVZHNy0tsqAg1xKfgHJadyzhr323X40Sc9IOv6AynTjfwHIyU+S10g54LotLZxVcvXD33e+bEc9EwzBlHfoNzyU/24Jj+6X1v2oO90Fg4MFygurVFT6B1w/X8/KvJKh9GUX55uRmWPLm/xII7ljGwlGBmJlrcHavnpcvyjdHWaW/7rd9rRuvr0zi0hkFsVEKnpyQhbVCzd7N0s2tGltGfW3X2JVAZSXmXLuk+0VfXmpGYZ6FNt7ZvQpn9yp8AqrnhQPalFFWbE5mipXOUtM7VQeAY785MXxKCpmpVly7pCC4fQlPjU1n77brUyIPPZ5DQa4lWalWBISWMmnhNSL3OXP6d6fb5v/Dl158uO0Cz09J5cguF0I7FzPwhSw+nh+gk05hp+I/A3NZu7RFo+tQF1K3U12IZ6JhmKKdZDIN/Z7PZf93zqhV0iv+pqiDwQjLR70I5cNAQjqX8f73V7R/T1qcCsDeLc783wovevSvdlT9bP8lnetmP92Ks5H6r7Q5/LMzjq4qRs1Ox9ldSfx5GxaMCCQ/W7q5VWPLqK/tVsyQ5qV3I4NGZjFyxvXltyu2Vd+TFTNbsm+bfqs5pK7DZ4sDGDUzmbAlCTi5VpGbYcUv33qwadV1K56LRxUTFyTi5FZFbpYlv21349vVta18dXHprB1LJgUzZnYyI15NIT1Jzudvt9A6tNbQa0gOyODQDmkGc1Pca/FMNAxTtFPXh4vx9Ktiz+ba/nRSYIo6GIqhu5Q29x1OZRqNpslXcfTo0eTn5/Pjjz/qxB86dIg+ffqQl5dHdHS09v/67MRaWFiIo6MjvRmGhezu6eD/VmQWxtWbNUrl7RMZiJm1/vtmNBRjP96aCrG6QNB0UGqqOMRPFBQU6D2Vfjtq3hUBS5ca9Iyry8tJWLDAqGW9kzQLy8f69evrjO/du7d28L3x/wKBQCAQGBUx7VIvejkdHD16lJEjR9KjRw9SUlIA+Oabb/j9998lLZxAIBAIBE0Ssb16vTRa+fj+++/p378/NjY2REVFaTfiKigoICIiQvICCgQCgUAgaF40Wvl45513+Pzzz/nf//6HpeV134eePXty+vRpSQsnEAgEAkFTxKCt1Q10Vm0KNNrnIzY2locffrhWvKOjI/n5+VKUSSAQCASCpo3Y4bReGm358PLy4vLly7Xif//9d4KCguq4QiAQCASCfxnC56NeGq18TJgwgddee41jx44hk8lITU1l48aNvP7660yePNkYZRQIaqFRKo0aTIG6vNzoQVNRYdQgEAjuHo4cOcKQIUPw8fFBJpPV2n5i9OjRyGQynTBgwACdNLm5uYwYMQIHBwecnJwYN24cxcXFOmnOnj3Lf/7zH6ytrfH392f58uWNLmujp13mzZuHWq3m0UcfpbS0lIcffhi5XM7rr7/OtGnTGl0AgUAgEAiaG3dik7GSkhI6d+7M2LFjeeqpp+pMM2DAAL766ivt33K57tEKI0aMIC0tjX379lFVVcWYMWOYOHEimzZtAqr3MenXrx99+/bl888/5++//2bs2LE4OTkxceLEBpe10cqHTCZjwYIFzJ49m8uXL1NcXEy7du1qnSgrEAgEAsG/ljuwz8fjjz/O448/Xm8auVyOl5dXnb9duHCB3bt3c+LECe655x4AVq1axcCBA/nggw/w8fFh48aNVFZW8uWXX2JlZUX79u2Jjo7mww8/bJTyoffhIlZWVrRr14777rtPKB4CgUAgEBiBwsJCnVBh4HTnoUOH8PDwIDQ0lMmTJ5OTk6P9LTIyEicnJ63iAdC3b1/MzMw4duyYNs3DDz+MldX1s4b69+9PbGwseXl5DS5Hoy0fffr0QSa7tRfugQMHGpulQCAQCATNC0OXy/5zrb+/v070W2+9xaJFi/TKcsCAATz11FMEBgZy5coV5s+fz+OPP05kZCTm5uakp6fj4eGhc42FhQUuLi6kp6cDkJ6eTmBgoE4aT09P7W/Ozrc/XRv0UD66dOmi83dVVRXR0dGcO3eOl19+ubHZCQQCgUDQ/JBo2iUpKUnnbJebfTQaw/Dhw7X/79ixI506daJVq1YcOnSIRx99VO989aHRysdHH31UZ/yiRYtqecQKBAKBQCDQHwcHB6MdLBcUFISbmxuXL1/m0UcfxcvLi8zMTJ00SqWS3NxcrZ+Il5cXGRkZOmlq/r6VL0ld6O3zcTMjR47kyy+/lCq7Js+Q0dlsOBbDjvizfLwzjtAupULGHcjfFDKaQx1MIaM51MEUMppDHUwhwxR1MIgmsM9HcnIyOTk5eHt7A9CjRw/y8/M5deqUNs2BAwdQq9Xcf//92jRHjhyhqqpKm2bfvn2EhoY2eMoFJFQ+IiMjsTbBEeFNgV5D85j4ViobP/QirH8I8THWLN0Uj6Nr1e0v/hfJEHX498hoDnUwhYzmUAdTyDBFHQzlTmyvXlxcTHR0NNHR0QBcvXqV6OhoEhMTKS4uZvbs2fz1118kJCTw22+/MWzYMIKDg+nfvz8Abdu2ZcCAAUyYMIHjx4/zxx9/MHXqVIYPH46Pjw8AL774IlZWVowbN47z58+zZcsWPv74Y2bOnNmosjZa+Xjqqad0wpNPPskDDzzAmDFjeOWVVxqbncGMHj2aJ554olb8oUOHkMlk5Ofna/9fEzw9PXn66aeJj483SpmempjN7k0u7N3iQmKcNZ/M9aOiTEb/F3KFDBPmbwoZzaEOppDRHOpgChnNoQ6mkGGKOjRFTp48SdeuXenatSsAM2fOpGvXrixcuBBzc3POnj3L0KFDCQkJYdy4cXTv3p2jR4/q+JFs3LiRNm3a8OijjzJw4EAeeugh1q5dq/3d0dGRvXv3cvXqVbp3786sWbNYuHBho5bZgh4+H46Ojjp/m5mZERoaypIlS+jXr19jszMpsbGx2NvbExcXx8SJExkyZAhnz57F3NxcMhkWlmpadypl8+rrHsMajYyoo/a06y6NWbA5yBB1+PfIaA51MIWM5lAHU8gwRR2aKr1790ajubXJZM+ePbfNw8XFRbuh2K3o1KkTR48ebXT5bqRRyodKpWLMmDF07NixUXM7dwseHh44OTnh7e3NwoULGTFiBJcvXyY0NFQyGQ4uKswtID9Lt2nzsi3wD5ZmO+rmIEPU4d8joznUwRQymkMdTCHDFHWQhDuwyVhTolHKh7m5Of369ePChQtNUvm4ERsbGwAqKyvr/L2iokJnM5fCwkKTlEsgEAgETZ87sb16U6LR0y4dOnQgPj6+1iYjd5KdO3fW2mVVpVLdMn1aWhoffPABvr6+t7R6LFu2jMWLFze6LIW55qiU4OSueziZs5uSvKxGN3ezlSHq8O+R0RzqYAoZzaEOppBhijoIjE+jHU7feecdXn/9dXbu3ElaWlqtrV/vBH369NF6+NaEL774olY6Pz8/bG1t8fHxoaSkhO+//15ni9gbCQ8Pp6CgQBuSkpIaVBZllRlxZxV0fahIGyeTaejyUDExpxT6VbAZyhB1+PfIaA51MIWM5lAHU8gwRR0k4y5eZnunabCauGTJEmbNmsXAgQMBGDp0qM426xqNBplMVq/FwVjY2toSHBysE5ecnFwr3dGjR3FwcMDDwwN7e/t685TL5XrvJLd9rRuvr0zi0hkFsVEKnpyQhbVCzd7NLnrl11xliDr8e2Q0hzqYQkZzqIMpZJiiDgYjfD7qpcHKx+LFi5k0aRIHDx40ZnmMSmBgIE5OTkaXc/hnZxxdVYyanY6zu5L48zYsGBFIfralkGHC/E0hoznUwRQymkMdTCGjOdTBFDJMUQeBcZFp6luXcwNmZmZ1Hjpzpxk9ejT5+fn8+OOPOvGHDh2iT58+5OXlER0drf2/vspHYWEhjo6O9GYYFjLRwQUCgaCpodRUcYifKCgoMNqW5TXvitZzIjCX67/xpqqinLjl841a1jtJo7xz6jvNViAQCAQCwT+IaZd6aZTyERISclsFJDfXtDvMrV+/vs74Gzdbud3GKwKBQCAQCExHo5SPxYsX19rhVCAQCAQCgS5in4/6aZTyMXz48LvO50MgEAgEgrsOMe1SLw3e50P4ewgEAoFAIJCCBls+hM+EQCAQCAQNRFg+6qXByodarTZmOQQCgUAgaDYIn4/6ERvhC5omZubGzV9t/J16ZZZ1b+0vJZqqug9OFAgERkZYPuql0We7CAQCgUAgEBiCsHwIBAKBQCA1wvJRL0L5EAgEAoFAYoTPR/2IaReBQCAQCAQmRVg+BAKBQCCQGjHtUi9C+RAIBAKBQGLEtEv9COVDYszMNIyclc6jT+fj7F5FToYl+7a6sGmlByDtLrFDRmfzzORMXNyVxMfY8OkbvsRGK5qMjA73F/PslCxadyzF1UvJorEBRO7W7+yg58PS6fl4Pv7B5VSWmxFz0pZ1Eb4kx+sead22WzGj56bSpmspKhXEn1cwf2QwleX6z0BK2UYjp6cwckaqTlzSZWsmPNoRAO8W5YxfkET7e4uxtFJz6rAjn77VkvxsS73LL+V9qA9j91dXryrGLUjl3j5FyG3UpCbIWTHDn7iz0j4TAM9NzWDc/HR++J8bn7/lK0mez0/NoOfAAvyDK/7pwwrWLfUm+Yr+x7LfiqbyXNeHKcY/gfEQPh8S81xYJoNfzmHNAl8m9GrDuqXePDslk2HjsiWV02toHhPfSmXjh16E9Q8hPsaapZvicXStajIyrBVq4s9bs3q+n8F5depRzI4N7kwfGkr4C8GYW2qI2HQZuc31/Traditm6f9d5tQRB14dHMqrg9rw83p3NAbsn2eMNkqIteGFe7pow6xn2gAgt1Gx9P8uATDvhVBmPd0WC0sNi9fFITPgM0nK+3ArjN2X7ByVfPhTHCqljDdGBjGhdyhrl/hQXCD9fjAhnUsZNDKX+PPSKgWdepSwY70b0we3Jnx4EOYWGiK+jdfpw1LQlJ7rW2GK8c9gNBKEZswdVT5Gjx6NTCbj3Xff1Yn/8ccfm+xZMu3uKSFyjyPHf3MgI9mK33c5cfqwPaFdSiWV89TEbHZvcmHvFhcS46z5ZK4fFWUy+r+Q22RknDzowIbl3vwpwVfRgpHB7PvOlWuXbIi/oGDFjJZ4+lXSutP1dn9lUTI/funB1jVeXLtkQ3K8NUd2OlNVqf9jYIw2UikhL8tSGwrzqq0a7e8pxtOvghWzgkiIVZAQq+CDWYG07lRClwcL9ZYn5X24FcbuS8+FZZKdasWKGS2IjVaQkSTn9GF70q7JJcm/BmuFirmrr7Fyth9FEis2C0YEsW+rC9cuWRMfY8OK6S3w9KuidacySeU0pef6Vphi/DMYoXzUyx23fFhbW/Pee++Rl5d3p4siCTEnbenyUBG+QRUABLUro/19JZw44CCZDAtLNa07lXL6qL02TqOREXXUnnbdpVFyTCHDmNg6VH8tFuVXzyw6ulbRtlsp+TkWfPRjLJujzvL+tku0v7dYbxnGaiPfwAo2Ho/mq6NnmfPxFdx9qvuSpZUGNFBVeV0xr6owQ6PGoHoYG1P0pQf6FXLpjA0L/pvAlrPnWbM3lsdfzJEk7xuZGpHC8d8ciLqhLsbieh+WTslp6s81NI86CO4C5aNv3754eXmxbNmyW6b5/vvvad++PXK5nICAAFasWKHze0BAABEREYwdOxZ7e3tatGjB2rVrddIkJSXx3HPP4eTkhIuLC8OGDSMhIeGWMisqKigsLNQJDWHLag8O/+TEF0cusuvaGdbsvcQP/3Pj4A/ODbq+ITi4qDC3gPwsXZedvGwLnN2VTUaGsZDJNExalMy547Zci7UBwLtl9TbjL81M49dNbiwYGczlvxW8uzkOn8ByveQYo40uRtuyYlYgb4wKYfWClnj5V/DBdxexsVVxMcqW8lJzxs5LRm6tQm6jYvyCJMwtwMXjLjI334Qp+pJ3i0oGj8oh9aqc+S8GsnODG5PfTqHvs9J9CfcalkdwxzK+XOYtWZ63QibTMGlxCueOK7R9WAqa8nNdQ1Opg0yC0Jy548qHubk5ERERrFq1iuTk5Fq/nzp1iueee47hw4fz999/s2jRIt58803Wr1+vk27FihXcc889REVFMWXKFCZPnkxsbCwAVVVV9O/fH3t7e44ePcoff/yBnZ0dAwYMoLKy7rMvli1bhqOjozb4+/s3qD4PD83nkafyeTesBWH9Q/jgNX+emZQl6SAoqJ+pS5NoGVrOsrBAbZzZPz4Rv/yfG3u3unLlvIL/LvYjOV5O/+el/0LWl5OHnDj6iwtXLyo4dcSRN0eHYOeg4uHBuRTkWrJ0Sivu75vPDxdOs/3caewcVMT9reDffu6jzAwun7Phq3e9uXJOwa8bXfl1kyuDXpLm3rr7VDJ5SSrvTW1BVYXxh82pESm0bFPOssktjS5LYCTEtEu93BWrXZ588km6dOnCW2+9xbp163R++/DDD3n00Ud58803AQgJCSEmJob333+f0aNHa9MNHDiQKVOmADB37lw++ugjDh48SGhoKFu2bEGtVvPFF19ofUm++uornJycOHToEP369atVpvDwcGbOnKn9u7CwsEEKyIQ30/6xflRbOhIu2uDhV8XwaZns/86lcQ1zCwpzzVEpwekmLd/ZTUleljS31BQyjEHYO0nc37eAWU+HkJ12/eC2nMxqv4lrcbpOgklx1nj46nf4minaqKTQgpSrcnxaVltnTh91ZOzDnXBwrkKlklFSaMGmE1GkJ0nTt4yBKdopN9OCa5duvrdyHhqYL0n+wZ3KcHZXsmbPJW2cuQV0fKCEoWOyGRzQCbVamm/VsKXJ3P9YIbOebKXTh6WgqT7XN9JU6iCW2tbPHbd81PDee++xYcMGLly4oBN/4cIFevbsqRPXs2dP4uLiUKmue4F36tRJ+3+ZTIaXlxeZmZkAnDlzhsuXL2Nvb4+dnR12dna4uLhQXl7OlStX6iyPXC7HwcFBJzQEubW61uoJtQqDViPcjLLKjLizCro+VKSNk8k0dHmomJhT0iw1M4UMadEQ9k4SDw7IZ87zrclI0nU0zEiyIjvdEr9/fHFq8A2qIDNZvwHeFG1krVDh3bKC3EzdMhbmWVJSaEHnBwtxclPy1z4nSeQZA1O0U8wJW/xb1XFvU6R5eUcftWNinxAmP3Y9xEbbcGC7M5MfC5FI8dAQtjSZBwcUMOfZVrX6sBQ0vee6Ns2hDoK7xPIB8PDDD9O/f3/Cw8N1LBoNxdJSd58DmUyG+h9bdHFxMd27d2fjxo21rnN3d9ervLfir30ODH81k8wUK67FWtOqQxlPvZLF3s3SfpluX+vG6yuTuHRGQWyUgicnZGGtUEsqx9gyrBUqfAKvWx28/CsJal9GUb45WY18aUxdmkSfJ/JYNC6IsmJznN2rfSBKisz/2cNDxrbPPHlpVirxF2yIP29D32dy8Q8u551XgvSug9RtNH5BIsf2O5GZIsfFs5KXZqSiUsk49HN1fo89m0XSZRsKcixo272YSW8l8sM6T5Lj9fcLkPI+3Apj96Xta9356Oc4hk/L4MgOJ0K7ljJwZC4rZ0uz3LOsxLyW70V5qRlFebXj9WVqRAp9nsxj0ZhAyorN6ujD0tCUnutbYYrxz2DEDqf1ctcoHwDvvvsuXbp0ITQ0VBvXtm1b/vjjD510f/zxByEhIZibN8wLvFu3bmzZsgUPD48GWzD05dM3fHl5TjpTlyXj5KokJ8OSX75xZeNHnpLKOfyzM46uKkbNTsfZXUn8eRsWjAg0aLMpU8sI6VzG+99ftzxNWly9udbeLc6smNGiUXkNebl6H5UPtsXpxH8woyX7vnMF4Id1Hlhaq5n0VjL2TiriY2wIf6G1QcsxpW4jN68q5q2Kx95JSUGuBedP2DPjibYU5Fbn5xdUzpg51eXPSLZi82oftn9hWN+S8j7cCmP3pUtnFCwZF8iY8DRGzMggPcmKzxf6SOrobWyGjK72T/lgu6419oPp/uzbKt1LtSk917fCFOOfJDRzBcIQZBqN5o41z+jRo8nPz+fHH3/Uxo0aNYrvvvuO8vJyNBoNp0+f5t5772XRokU8//zzREZGMnnyZD799FOthSQgIIDp06czffp0bT5dunThiSeeYNGiRZSWltKlSxd8fX1ZsmQJfn5+XLt2je3btzNnzhz8/G7/dVRYWIijoyO9GYaF7C7r4P9GzKTfPEoHtbQbO9WFzFLa+fy60FTp588iEDRHlJoqDvETBQUFRvsQrXlXtH8lAnMr/TeiU1WWc/6/841a1jvJXePzUcOSJUu00yVQbbXYunUrmzdvpkOHDixcuJAlS5Y0ampGoVBw5MgRWrRowVNPPUXbtm0ZN24c5eXlzfKmCgQCgeDOUuNwakhoztxRy0dTQlg+7jKE5aNBCMuHQHAdU1o+Okww3PJx7n/C8iEQCAQCgUAgCXeVw6lAIBAIBM0Bsc9H/QjlQyAQCAQCqRFLbetFTLsIBAKBQCAwKcLyIRAIBAKBxIhpl/oRyoegSSJr4AZz+qIxwWoXMxv9PeEbikqsdmkQZtbGvRfqcv1OThY0YcS0S70I5UMgEAgEAqkRyke9CJ8PgUAgEAgEJkVYPgQCgUAgkBjh81E/QvkQCAQCgUBqxLRLvYhpF4FAIBAIBCZFWD4EAoFAIJAYmUaDzICj0wy5tikglA8j4OpVxbgFqdzbpwi5jZrUBDkrZvgTd1YhqZwho7N5ZnImLu5K4mNs+PQNX2KjpZHR4f5inp2SReuOpbh6KVk0NoDI3Y6S5A0weFQ2g0bl4OlfvRT0Wqw1Gz/y5ORB/Q9QGjk9hZEzUnXiki5bM+HRjtg5KnlpZgrd/1OIu28FBTmWRO51YsMKX0qLDHsMDLkPHe4p4OlxyQS3L8bVo/L/2zvv8CiqroH/Nm1TNj0hIaSQEEKTovCCgK+AAgFBQBGpAoIoVVBBugSQIsWCiBUI+oIGC4ioVEGR3kFKgISQ3nvPZuf7I18WloSQ7M4uJN7f89wn2bl3zrltZs6cW4bFk5pxdL+bNn745Fs8+UwK7p5FlJSYceOSiq8/9CP8wu16UjmWMGFeBB26paPRwOE9bny+tBGF+dVbjmyMtqgMY/ZXkLfPhv51Fg/visuUf/mmHj984cWmQ+cqPW/JpED+/t1VL52DJyfR+ZksfAKLKC404/IpW9YvqU9shPzLgI3ZFmZmEiPeSuTpgZk4u5eQlmTJ3q0ubPmwHqCQRYex70+y8ACGXf766y9WrlzJ6dOnSUhIYNu2bQwYMOC2SEliwYIFfPnll2RmZtK5c2c+/fRTGjdurE2Tnp7OlClT+OWXXzAzM2PgwIF89NFHqFQqbZoLFy4wadIkTp48ibu7O1OmTOHtt9+uUV7rxLBLTEwMY8aMwcvLCysrK/z8/Jg6dSppaWnaNF27dkWhUFQI48ePlzUvKkc17/98nVK1gnkjAhjXtQlfLPIiN0vefSm69Mvg1QXxbH7fk0nBQURetmbJlkgcXUtkkW9tqyHykjVr53jLIu9uUhIs2bC0PpN7BTGldxDnD6sI2RiFX5Bh+yFEhdswtF0bbXjrhaYAuHoU4+pRwpdLfBjf4xFWT/enbZcs3lgRZZA+Q9vB2qaUm1ftWLeoUaXxcVE2fLq4ERP7PcaM4a1IjlPy7vp/cHC+/WB8e2U4voH5zB3zCCHjW/BIuyxeX3S92mUwVlvcibH7K8jbZ6cOeIRh7R/VhtkvlfWjQ7+5kppgpRM3rP2jfPNBA/JzzTj1p5PeOlt1zOOXUDem9W3M7CEBmFtILP02EqWNvHvOGLstXpyUTN9RaXwytwHjujRl/ZL6DJqYTP+xqbLIB+Pfn2oreXl5tG7dmk8++aTS+BUrVrBmzRo+++wzjh8/jp2dHcHBwRTesQ/N8OHDuXTpEnv37mXnzp389ddfvPrqq9r47OxsevbsiZ+fH6dPn2blypWEhITwxRdf1Civtd7zERkZSceOHQkKCuLbb7/F39+fS5cuMWPGDH7//XeOHTuGi4sLAOPGjWPRokU659vayuuNeHFSMqnxVqx+w1d7LClGKasOgOdfTWXXFhf2hJWVbc1Mb9o/nU3w0HS2rvUwWP6pAw6yv/neyfG9um8poe/Vp+/INJq2zePWNQM+Q62GjBTLCsdvXbPl3fGB2t8J0dZsWunNjA8jMTOX0JTq90ZmaDucOuTCqUMu94w/uLOezu8vlgcQPCgJ/yZ5nD9mhU9APu2ezGDqC224/o89AJ+924iFX1ziqxX+pGTfvwzGaos7MXZ/BXn7bFa6bh96cUIC8VFKLh63BxRkpFrpxHfqmcGh31yr7W2qjLnDA3R+r57my9Z/LtG4VQH/HFfd46yaY+y2aN4uj6O7HTmxv6wtkmKt6DYgkyZt8g2WXY6x709yINdql+xs3YtYqVSiVFb+TOnduze9e/euNE6SJD788EPmzZtH//79Afj666/x8PBg+/btDBkyhCtXrrBr1y5OnjxJu3btAPj444955plnWLVqFV5eXmzevJni4mI2bNiAlZUVLVq04Ny5c7z//vs6Rsr9qPWej0mTJmFlZcWePXvo0qULvr6+9O7dm3379hEXF8fcuXO1aW1tbfH09NQJDg7yduDHe2Zz7bwNcz+PIuzCJT7ZE07vYWn3P7EGWFhqaNwqnzOH7LXHJEnB2UP2NG8r3wVuKszMJLr0z0Bpq+HKKTuDZDXwL2LziXNsPHSBtz+KwN2r6J5p7RxKyc8119vwMHU7WFhq6D04kdxsc25eLXsYNW2TTU6WhdbwADh71BlJA01a5dRYh5xtcWe+a3N/tbDU0K1/Knt+cKeyYYPAR/Jo1CKf3VvdZdVr51Dm8cjJlM9raoq2uHzKjjZP5NAgoOzaC2heQIv2eZz84+E2FmRHkiEAPj4+ODo6asOyZcv0ys7NmzdJTEyke/fu2mOOjo506NCBo0ePAnD06FGcnJy0hgdA9+7dMTMz4/jx49o0Tz75JFZWtw3w4OBgwsPDycjIqHZ+arXnIz09nd27d7NkyRJsbGx04jw9PRk+fDhhYWGsW7euxrKLioooKrr94Lrb+rwX9X2L6TsyjZ++cOe7j+sR1LqACYvjKClRsO/7e7/h1gQHl1LMLSAzRbf5MlIt8Am898P2YaNh0wI+/OUGVkoNBXlmLBrbkOjr+r9pXz1nx+q3/ImNtMalXgnDp8Wx6vurjO/5CAV5ujdwB+cShk6J5/dv9X9gmKod2ndNY+bqqyhtNKSnWDF3TEuyM8vezJ3diyu8pWtKFeRkWeLsVgxYVSKxInK3xZ3U9v7asUcGKgc1e3+ovK8Ev5hM9HVrrpyxrzReHxQKifEL4/jnhC23wm3uf0I1MUVbhK2th619KV/9dRVNKZiZQ+hyTw5sc5ZF/r+NmJgYnZfke3k97kdiYiIAHh663i0PDw9tXGJiIvXq6XpbLSwscHFx0Unj7+9fQUZ5nLNz9dq5Vns+rl+/jiRJNGvWrNL4Zs2akZGRQUpKCgDr1q1DpVLphM2bN1d67rJly3SsTR8fn2rlSWEGN/6xYePy+kT8Y8vvm135fYsrfV6S1/tRF4iNUDKxRxCv92nMzq/dmP5RNL6N9Z9ncOqgE4d+c+HmVVtO/+XI/NFBqBxKebJvuk46W1UpizZeJ/qGDf/7wMvQYhid88edmPzcY7w1tDWnDzkz+8MrOLrI+80WuduiLhH8Ygqn/nQiPbmiIWel1NC1Xxq7t9ar5Ez9mbw0Dr+mhSyb4CerXFPwZL9Mnno+k+WTfJkUHMSqqT68MD6F7oPS739yHaJ82MWQAODg4KAT9DU+HjZqtfFRjlTNJUnDhw/n3LlzOqFfv36Vpp09ezZZWVnaEBMTUy0d6ckWFcbJY64rqddAvodFdro5pWpwclfrHHd2U5ORUnucWeoSM+KjlNy4aMvGZfW5edmGAa+kyCY/L9uCuJtKvPxuP0Rt7Ep59+twCvLMWfRqIKVq/S8BU7VDUYE5CdE2hJ934KN5QZSqFQS/kARARooVji66EwXNzCXsHUsqzEuoCmO2RW3ur/W8imjTOYtdYZV7PZ7onYbSWsP+bW6VxuvDpCWxdOiRzdsvNCI1ofptWB1M0Rbj5icQtrYef/7sTNRVG/b/6MJPX7ozZEqyLPJrDTINu8iFp6cnAElJSTrHk5KStHGenp4kJ+u2k1qtJj09XSdNZTLu1FEdarXxERgYiEKh4MqVK5XGX7lyBWdnZ9zdy24cjo6OBAYG6gR7+8pdpUqlsoLFWR0un7TDp5Gu+7JBQBHJcfLdRNQlZly/YMujT9we01coJNo8kcvl0/JOoDUlCgVYWsl3xVnbllLfr0j7xmqrKmXp/8JRF5sRMjaQkiLDuv+DagczM7C00gBw9ZwD9o5qAlvczkPrxzNRmEH4Bf2HAeRsi9rcX3sMSiErzZITByp3JQe/mMLx/U4Vhr70Q2LSklg69cri7UGNjDJR3RRtobTWIGl0j2lKy/T8m5DL8yEX/v7+eHp6sn//fu2x7Oxsjh8/TseOHQHo2LEjmZmZnD59Wpvmjz/+QKPR0KFDB22av/76i5KS2y89e/fupUmTJtUecoFabny4urrSo0cP1q1bR0FBgU5cYmIimzdvZvDgwSgU8qwtrw4/feFO08fyGDIlCa+GRXR7LoNnRqSzY6N8b0ZletzoPSyd7oPS8QksZMryWKxtNez5Tp55Jda2pQS0KCCgRVm9evoUE9CiAHeZPDgvz07gkQ65eHgX07BpAS/PTqBVp1yDxoVfmRtNyw7ZeHgX0axtDu98cYPSUgUHd7hgqyplyTfhWNto+ODthtjaa3B2L8HZvQQzM/2vckPbwdq2lICmuQQ0zQXAw7uIgKa5uNcvRGlTyqg3omjSOpt6XoUEtshh2pJruHoUcWhXWX+KibTl1F/OvL7oOkEtc2j+aBYT50fw12/upCdX7+FljLa4G2P3V5C/zyoUEj1eSGHfT26VTkqu71fII+1z2BUmz5DL5KVxPPV8Bssn+VGQa6btn1bWmvufXAOM3RbH9jow5PVk2j+djYd3MZ16ZfH8aykckXEfDmPfn2orubm5Wq8+lE0yPXfuHNHR0SgUCqZNm8a7777Ljh07uHjxIiNHjsTLy0u7F0izZs3o1asX48aN48SJExw+fJjJkyczZMgQvLzKhqiHDRuGlZUVY8eO5dKlS4SFhfHRRx/x5ptv1iivCqm6YxYPKdevX6dTp040a9aMd999V2epbVFRkXapbdeuXQkKCqqw1FapVFbLWsvOzsbR0ZGu9MdCUfVbTofu2bw8O4EG/kUkxljx0+fu/L5Fv42HqqLfy2UbBTm7q4m8ZMO6+V6En5VnhUKrjrms/DGiwvE9Yc46y4j15Y3VMbR5IgeXemryc8y5ecWarZ/U48xf1XtbV1hW9CTN+jiClh1ysHdSk5VuwaWT9mxa2YCEaGtaPZ7NirDwSmWN6tyKpFjdB7VUUv2bmL7tYO7gQMv2mbz39cUKcXu31WPtgsa8veoqTVrn4OhcQnamJdcuqvjuU1+d1S0qxxImzo+gfbd0pP/fZOyzJWWbjJVWY6K0oW1RXYzZX8GwPmtmXXFy7WNPZLLk63BeeboVcTcrTvocNT2GpwakMvq/bZCkql9wNIX3nz+zO/58pcdXTfNh71b5jDQwblvY2JUy6u1EOvXOwslVTVqSJQe3O7H5Aw/UJfK87+rb1mqphIP8TFZWluwrHcspf1a0fXEJ5lYGbBtQXMjprXNrlNeDBw/SrVu3CsdHjRpFaGiodpOxL774gszMTJ544gnWrVtHUFCQNm16ejqTJ0/W2WRszZo199xkzM3NjSlTpjBz5swala/WGx8At27dYsGCBezatUs7NjVgwAAWLFiAq2vZQ79r1678+eefFc4NDg5m165d99VRE+NDYHwqMz7kpCbGh76YG+nmdyfVMT4ElRsfclId40NgfExtfFhY6t+v1CU1Nz5qEw/3bK9q4ufnR2hoaJVpDh48aJK8CAQCgUAgqJo6YXwIBAKBQPBQIUllwZDz6zDC+BAIBAKBQGbk2l69rlKrV7sIBAKBQCCofQjPh0AgEAgEcmPoRmF13PMhjA+BQCAQCGRGoSkLhpxflxHGR01RKMqCsajjk4zkQmFl3OXOplhqqyl6+D+q9m9BLIWtJsbesFHc//41CONDIBAIBAK5EcMuVSKMD4FAIBAIZEasdqkaYXwIBAKBQCA3Yp+PKhFLbQUCgUAgEJgU4fkQCAQCgUBmxLBL1QjjQyAQCAQCuRETTqtEGB8G8kiHXAZNSKZxy3xcPdWEjGnI0d1O2nhr21LGzkmgY68sHJzUJMZY8fMGd379xs1g3c+OLvsstou7msjLNqyb14Dwc7YGyzWFjr4jU+kzMg0Pn7IlrbfCrdn8gQenDlT/642P/CeLF16JJ7BFLq4eJSya0ISj+1zvSCHx0tQYer2YhJ1DKZdP27N2QQDxt8o+j96yfRYrNl+qVPaU3o25dr565ZSzjjYdOoeHd8Vlvr98U49P3mnI60tu0qZzNq4exRTkmXPljIr1y32Ijaz4yfdq6zx+GU+fkgrHd4S68skcb73l3o2x++sjHXIZNDFF91rc5Sib/BFvJfLSW0k6x2JuKHnlyaay6bj7c/QRl2z4dH6DavfF+zF4chKdn8nCJ7CI4kIzLp+yZf2S+sRG6P/11fvdA0e8mUDX/pm4e5VQUqzgxkUbNr5Xn/CzdgaVxRT3P4HxEMaHgVjbaoi8bMPu71xYsD6qQvxrC+Jp0zmHFVN8SYqx4rEuOUxZGktaoiXH9up/Y+zSL4NXF8Tz8Sxvrp6x5blxKSzZEsnY/zYhK02ePTCMqSMlwZINS+sTd1OJQgE9BqUTsjGKST2DuHWtejdCaxsNkVft2PNDPeavC68QP+jVOPqNTGD1241JjFUyclo07268zGu9HqWk2IwrZ+0Z1rGdzjkvTYumTacsrp2v3sNc7jp6vX8LzMxuv/I0bFLAsv+Fc+hXFwCu/2PHHz+7khKnxN5JzYhpcSz9OpzRT7ZGo9FvD4bXewdhZn6HzqaFLA+L5NAvTnrJqwxT9FdrWw2Rl6zZ/a0LCzZEySLzbqKuWjNrcID2d2mpvPtevLE6hoZNClkxxZf0JEueGpjB8rAIxnVtSlqi4fXUqmMev4S6ce2cLeYWEqNnJbD020jGdWlCUYG5XjLvdw+Mi7Tmk3neJNyyQmmt4blxKSzbEsHLnZuTla7fI8gU/clQxLBL1dSZCaejR49GoVCgUCiwsrIiMDCQRYsWoVartWmCg4MxNzfn5MmTsuk9dcCBTSvqc2SXU6XxzdvlsfcHFy4ctScpVsnvm92IvGxDk0fzDdL7/Kup7Nriwp4wF6KvW7NmpjdFBQqCh6YbJNdUOo7vdeTkHw7E31QSF6kk9L36FOaZ0bRtXrVlnPrLma8/8OXIXtdKYiUGjErgu3XeHNvvQlS4HatmNMa1XjGdepTlX11iRkaqlTZkZ1rQsXs6e3+sB1TvoSJ3HWWlW+rkqf1TmcRHKblw3B6A37+txz8nHEiKU3Ljkh2bVntTr0ExHt76b1iWlW5BRoqlNnTonk38TSsuHDXszfROTNFfb1+L8nk77qa0FJ26ytbz4VkZVtYanngmi6/e9eKf4yrio5T8b7Un8VFK+o5MlUXH3OEB7N3qwq1r1kRetmH1NF88vEto3KpAb5n3uwce2O7M2UP2JEYruXXNhi8WNsDOQYN/c/11mqI/GUz5ahdDQh2mzhgfAL169SIhIYHr16/z1ltvERISwsqVKwGIjo7myJEjTJ48mQ0bNpgsT5dP2fF4jyxcPYsBidadcmgQUMTpP+31lmlhqaFxq3zOHLotQ5IUnD1kT/O2hhk1ptRRjpmZRJf+GShtNVw5Jc8Dz9OnCJd6JZw94qQ9lp9rQfh5e5o+mlPpOY8/nYG9k/r/jY/7Y+w6srDU8NSANHZ/705lxpDSppQeL6SQEK0kJcHKYH1anQMz2P2dS6U69ZVpqr5kbBr4F7PlzCVCj15h5tpbuDeQbydcc3MJcwsoLtKt96JCBS3aV98orwl2DqUA5GTq5/WoKRaWGp4ZnkZulhmRl/QbKqxL/enfTJ0adlEqlXh6egIwYcIEtm3bxo4dO5g9ezYbN26kb9++TJgwgccff5z3338fG5t7d/6ioiKK7tj+Ojs7W688rZvfgKkrYthy+jLqEtBoFHz0tg//HFfpJQ/AwaUUcwvITNFtvoxUC3wC5dmy2xQ6GjYt4MNfbmCl1FCQZ8aisQ2Jvq7/2POdOLuVPRQyUnVdsBmpltq4uwl+IYkzh5xITVQC6krT3Imx66hjzwxUDmr2/qA7P6jviCTGzorBxk5DTIQ1c15qgrpEnveITr2yUTmUsmeriyzywDR9yRRcPWPLqmk+xEYocalXwoi3kli97QavdWtCQZ7hD++CPHMun7Jl2LQkoq9bk5liQdcBmTRrm098lFKGEuiiUEiMXxjHPydsuRWu/5yh6tChexaz191CaaMhPcmS2UMDyc7Q7/FTW/qTGHapmjrl+bgbGxsbiouLkSSJjRs3MmLECJo2bUpgYCA//PBDlecuW7YMR0dHbfDx8dErD/1fTqXpY/m8M9qfyb2b8OUiLyYtieXR/1b+9v1vIjZCycQeQbzepzE7v3Zj+kfR+DZ+MN/YcPMs4rH/ZrL7B48Hor8yer2Ywsk/nUhP1vVq/PGzK5P6PsL0wU2Ju2nNnLU3sLSS5ytUwUPTOHnAgfSkh2Pc/GHi1AEHDu104uYVG07/6cC8EQGoHEp5sl+mbDpWTPFFoYBvz15mZ9QFBoxN4eB2JyQjfGRs8tI4/JoWsmyCn/zC7+LcYRUTezbhjf6NOXXQnrmfReHoWnGSc51CkiHUYeqk8SFJEvv27WP37t089dRT7Nu3j/z8fIKDgwEYMWIE69evr1LG7NmzycrK0oaYmJga58PKWsPoWQl8sdCL43sduXnFhh2h7vy5w4kXXkvWq2wA2enmlKrByV337dzZTU1GijzOLFPoUJeYER+l5MZFWzYuq8/NyzYMeCVFFtkZqWUPbGc33Rucs1uJNu5OegxMJifTgmP7nautw5h1VK9BEW06Z7MrzL1CXH6OBfFR1vxzwoF3Jwbi06iQzsEZBukr01nMo//NZdcW+bweYJq+9CDIyzYnNlKJV0P5hl4SbimZMTCQfo0eYUS75rzeJwgLS4mEW/IMq5UzaUksHXpk8/YLjUiVaciuKooKzImPUnL1jB0fTPeltBR66Tk/o672p38bdcr42LlzJyqVCmtra3r37s3gwYMJCQlhw4YNDB48GAuLso45dOhQDh8+TERExD1lKZVKHBwcdEJNsbCQsLSSKqxC0GgUKAyoeXWJGdcv2PLoE7e9JwqFRJsncrl8Wp6lZqbQcTcKBVhayWPuJ8YoSU+2pE3HTO0xW5WaJq1zuHr27vk2Ej0GJrN/Wz1K1dVvGGPWUc8XUshKs+TEH05VplMoAAWyeD56DkknM9WC4/tq3ter4kH0JVNgbVuKl18x6cnyP/CKCsxJT7ZE5aimbZccju6WaxKtxKQlsXTqlcXbgxqRFCP/cE51UBjQZ2tLfyofdjEk1GXqlJnYrVs3Pv30U6ysrPDy8sLCwoL09HS2bdtGSUkJn376qTZtaWkpGzZsYMmSJQbptLYtxcv/9jijp28xAS3yycmwICXeivNH7Bg3L57iQgVJsVa06phL94HpfLGogUF6f/rCjekfxnDtvC3hZ8uWmlnbatjznXxvrcbU8fLsBE7+YU9KnBU2qlK6PZdJq065zB0WcP+T/5+ym//tYRoP7yICmuWRk2lBSoKS7ZvqM2RiLHFRNiTFKnlpWgxpyVYc2aub/zYds6jvU8Su76s30fROjFFHCoVEj0Gp7P3RDc0dSzk9fQrp0jed04ccyUq3wM2zmMETEiguVHDioJPe+sp19hyczr7vnXV0yoUp+mvZtXjbC+HpU0xAiwJyMs1JiTP87X7cO/Ec2+NAcqwVrp4lvDQ9kVINHNxWfW/Z/WjbJRuFAmIilDTwL+aV+fHE3LBmT5g89TR5aRzdnssg5GV/CnLNcHYv8wzm5ZhTXKjfG1FV98DsDHOGTU3i6B5H0pMscXBR0290Km6eJRza6aR3OUzRnwxGI5UFQ86vw9Qp48POzo7AwECdY5s3b8bb25vt27frHN+zZw+rV69m0aJFmJvrP1ksqHU+K3+47UEZHxJfJn+rM6vf8GPZxIaMmZ3AzI+jsXdSkxxnReiK+uz8urLlodXnzx3OOLqWMnJGIs7uaiIv2TB3uD+ZqfKN1RtTh5ObmhlronGppyY/x5ybV6yZOyyAM39VfxVQ40dydTYJe21uFAB7f3Ln/ZmN+f6LBljbaHj93QhUDmounXJg/pjmlBTr3mR7Dkrm0ml7YiNr/tZkjDp69IlsPBoUs+d73YmmxUVmtPhPDgPGJKJyKCUz1ZKLJ+x584XmBu9t8OiTuXh4l7D7O8P65b0wRX8Nal3Ayh/vuBYX/v+1GObM6jd8DZbvVr+E2etuYe9cSlaaBZdO2jGtb2O996qoDDsHDS/PTsCtfgk5meYc/s2RjcvrU6qWxyB8dnQaAKt+0vX6rprmw149JxlXdQ9cM8sH70ZFzP8iCgcXNTkZ5lw7b8tbzzfm1jX9J7maoj8ZjNjhtEoUklQ3FhOPHj2azMzMCkZGmzZt6NWrF8uXL9c5npWVRb169fjpp5/o06fPfeVnZ2fj6OhIV8UALBRG7OB1ozmMjpmdfHtQVIYmzzhLG+9EoTS+y1sqenhm/wvqAAr5vWI6GPn+p5ZKOMjPZGVl6TWUXh3KnxWdui/EwlL/1XvqkkKO7Ftg1Lw+SOrUnI+7OX36NOfPn2fgwIEV4hwdHXn66afvO/FUIBAIBIKaosDAOR8PugBGps4Mu4SGhlY41rZtW6py7Pz2229GzJFAIBAI/rUYuktpHfeC12nPh0AgEAgEgoePOuP5EAgEAoHgYUHscFo1wvgQCAQCgUBuxGqXKhHDLgKBQCAQCEyK8HwIBAKBQCAzCklCYcCkUUPOrQ0I46OmSP+CL/7UBkpLH3QODKculEHw76KOPxBlRfP/wZDz6zBi2EUgEAgEAoFJEZ4PgUAgEAhkRgy7VI0wPgQCgUAgkBux2qVKhPEhEAgEAoHciB1Oq0TM+RAIBAKBQGBShOdDIBAIBAKZETucVo0wPgzkkQ65DJqYQuOW+bh6qgkZ05Cjuxy18Z17Z9JnZBqNWxbg4FLKhB5BRF6ykUX3s6NTeWFCMi7uaiIv27BuXgPCz9nKItsUOu5XdzXBzExi+NRYnhqQhrN7MelJVuz90Z1v13px+/uQEi9Ni6PXkGTsHNRcPm3P2vn+xEfp/9lrOctQGS9OTGTMrDi2ra/H5wt9AFgRFk6rjrk66X79nxsfz/HTS8fgyUl0fiYLn8AiigvNuHzKlvVL6hMboX+9VIax+6ux26LvyFT6jEzDw6cYgFvh1mz+wINTB+T93Lmx68nGrpRRbyfSqXcWTq5qIi7Z8On8Blw7L4+OulJPBiOGXapEDLsYiLWthshL1qyd433P+Esn7Fi/tL6serv0y+DVBfFsft+TScFBRF62ZsmWSBxdS2qNjvvVXU0YND6ePsOTWRfix6s9WrNhhQ8vvBpPv1FJt9O8lkC/0Yl8PK8h055/hMJ8M94NvYqllf4L6uUsw90EtcrjmWEpRF6uaKz+tsWNoW1bacP6pfrrb9Uxj19C3ZjWtzGzhwRgbiGx9NtIlDby7UNiiv5qzLYASEmwZMPS+kzuFcSU3kGcP6wiZGMUfkGFsukwRT29sTqGx57MYcUUX8Y/3YTTf9qzPCwCV095dNSVehIYlzplfKSkpDBhwgR8fX1RKpV4enoSHBzM4cOHAWjYsCEKhUIneHsbdqM6dcCBTSvqc+Qeb1j7f3Rh8weenP3L3iA9d/P8q6ns2uLCnjAXoq9bs2amN0UFCoKHptcaHferu5rQ7LFcju1z5uQBZ5LjlPz9uytn/nakSetyD4HEgJcT+W5tA47tcyHqqi2rpjfC1aOYTj0zHooy3Im1bSlvr7nJR7P8yM0yrxBfVGBGRoqlNuTnVkxTXeYOD2DvVhduXbMm8rINq6f54uFdQuNWBYYUQQdT9FdjtUU5x/c6cvIPB+JvKomLVBL6Xn0K88xo2jZPNh3Gricraw1PPJPFV+968c9xFfFRSv632pP4KCV9R6bKoqMu1JMcKDSGh7pMnTI+Bg4cyNmzZ9m0aRPXrl1jx44ddO3albS0NG2aRYsWkZCQoA1nz559gDnWDwtLDY1b5XPm0G2DRpIUnD1kT/O2+bVGh5xcOaOiTacsGviXPTD9m+bRol0Op/50AsDTpwiXeiWcPXzb9ZufY0H4ORVNH815EFmukknvRnPiD0fO/l25q7rbgHTCzp3js72XeHlmHEpr+e5Udg5lHo+cTP0NmjupbX2pOpiZSXTpn4HSVsOVU3ayyDRFPZmbS5hbQHGRQud4UaGCFu3lMw7Kqa31JAvlwy6GhDpMnZnzkZmZyaFDhzh48CBdunQBwM/Pj/bt2+uks7e3x9PT877yioqKKCoq0v7Ozs6WN8MG4OBSirkFZKboNl9GqgU+gUX3OOvh0yEnWz/1wlZVyhd7L6ApVWBmLrFptTcHfnYDwNm9zB2bkWqpc15GqqU27mGhy7PpBD6Sz+vPNqs0/sDPLiTHWpGWZIV/s3zGzI7DO6CQxa81Mli3QiExfmEc/5yw5Va4PHOTaltfqoqGTQv48JcbWCk1FOSZsWhsQ6KvyzM3xhT1VJBnzuVTtgyblkT0dWsyUyzoOiCTZm3ziY9SyqIDan89CYxPnTE+VCoVKpWK7du38/jjj6NUGnYhLVu2jIULF8qUO4GxebJPOt36pbFiWiC3rtsQ0CyP1+ZHk55kxb6f3B909qqNW/1ixofEMGd4Y0qKKndM/r7ldnmiwm1IT7bkve+uU9+viIRbhvX7yUvj8GtayFsDAg2SU1eJjVAysUcQtval/LdvFtM/imbG84GyPVhNwYopvrz5fgzfnr1MqRpuXLTh4HYnWYfZ6kI9GYzYZKxK6sywi4WFBaGhoWzatAknJyc6d+7MnDlzuHDhgk66mTNnag0VlUrFmjVrKpU3e/ZssrKytCEmJsYUxagW2enmlKrByV2tc9zZTU1Gijz2pCl0yMnYWdFs/bw+f+50JSrclj+2u7NtgycvTogHICOlzOPh7Kbr5XB2K9HGPQw0bpmPs7uatb9d4dfI0/waeZpWHXPp/3Iyv0aexsys4h3p6tkyd7aXn2ET+iYtiaVDj2zefqERqQlWBsm6k9rWl6pCXWJGfJSSGxdt2bisPjcv2zDglRRZZJuqnhJuKZkxMJB+jR5hRLvmvN4nCAtLiYRb8rV5XagnQynfXt2QUJepM8YHlM35iI+PZ8eOHfTq1YuDBw/y2GOPERoaqk0zY8YMzp07pw0jR46sVJZSqcTBwUEnPCyoS8y4fsGWR5+4PVdBoZBo80Qul0/Ls9TMFDrkRGmjQdLojmNrNKD4/x6eGKMkPdmSNp1uD5/ZqtQ0aZPL1bPyTgY2hHOH7Xmte3Mm9rodrp235cB2Fyb2ao7mrjICNGpR9saanqyvESUxaUksnXpl8fagRiTFyOd+h9rXl2qCQgGWVvI8JExdT0UF5qQnW6JyVNO2Sw5Hdxtnoi7U7nqqLYSEhFRYUNG0aVNtfGFhIZMmTcLV1RWVSsXAgQNJSkrSkREdHU2fPn2wtbWlXr16zJgxA7VafbcqWXh4zESZsLa2pkePHvTo0YP58+fzyiuvsGDBAkaPHg2Am5sbgYHyuZStbUvx8i/W/vb0KSagRQE5meakxFlh76TGvUEJrh5lb9w+jcreTjOSLQx64/7pCzemfxjDtfO2hJ+15blxKVjbatjznYthBTKhjvvVXU04vt+JIRPjSI634tY1WwJb5PH8mET2/FA+RKFg+0ZPhkyOIy7KmqRYJS+9EUtakhVH9jg/FGWAsjH5W9d051oU5puRnWHBrWs21Pcrolv/dE4ccCAnwwL/ZgW8+k4MF46puHlVvxvv5KVxdHsug5CX/SnINdPOgcnLMae4UJ73E1P0V7nb4m5enp3AyT/sSYmzwkZVSrfnMmnVKZe5wwIMll2OKeqpbZdsFAqIiVDSwL+YV+bHE3PDmj1h8uioK/VkMA9gn48WLVqwb98+7W8Li9uP+DfeeINff/2V77//HkdHRyZPnszzzz+vXQ1aWlpKnz598PT05MiRIyQkJDBy5EgsLS1ZunSp/uW4B3XO+Lib5s2bs337dqPJD2pdwMofI7S/xy8sc/PvCXNm9Ru+PN4zm+kf3h6ymfNZNADfrPbgf6vvP/H1Xvy5wxlH11JGzkjE2V1N5CUb5g73JzNVviEEY+u4X93VhE8XNmTkm7FMWhSFk2sJ6UlW/PZtPbZ83ECb5vvP62Nto+H1pTdROai5dMqe+S83oaRY/wesnGWoDiXFCto8kc2AsUlY22hISbDi8O/OfLtG/31knh1dthps1U8ROsdXTfNh71Z5buam6K/GbgsnNzUz1kTjUk9Nfo45N69YM3dYAGdkXEZvinqyc9Dw8uwE3OqXkJNpzuHfHNm4vD6l6opeNX2oK/VkMBJgyCK0/7c97l7soFQq7zmn0cLCotIFFVlZWaxfv54tW7bw1FNPAbBx40aaNWvGsWPHePzxx9mzZw+XL19m3759eHh40KZNGxYvXszMmTMJCQnBykq+YTkAhSTVjYGltLQ0Bg0axJgxY2jVqhX29vacOnWKKVOm0KdPH9avX0/Dhg2ZNm0a06ZNq7H87OxsHB0d6Up/LBQPUQf/l2JmbdyJa5pC+TZEuhcKC+Pb/pKRXKYCQW1ELZVwkJ/Jysoy2lB6+bPiqUdnYWGu/31KXVrIH2eXVzi+YMECQkJCKhwPCQlh5cqVODo6Ym1tTceOHVm2bBm+vr788ccfPP3002RkZODk5KQ9x8/Pj2nTpvHGG2/wzjvvsGPHDs6dO6eNv3nzJgEBAZw5c4ZHH31U77JURp3xfKhUKjp06MAHH3xAREQEJSUl+Pj4MG7cOObMmfOgsycQCAQCQY2JiYnRMZTu5fXo0KEDoaGhNGnShISEBBYuXMh///tf/vnnHxITE7GystIxPAA8PDxITEwEIDExEQ8Pjwrx5XFyU2eMD6VSybJly1i2bNk900RFRZkuQwKBQCD49yJh4JyPsj/VXfDQu3dv7f+tWrWiQ4cO+Pn5sXXrVmxs5NmzR07q1GoXgUAgEAgeCh7wDqdOTk4EBQVx48YNPD09KS4uJjMzUydNUlKSdo6Ip6dnhdUv5b+rszFnTRHGh0AgEAgEdYzc3FwiIiKoX78+bdu2xdLSkv3792vjw8PDiY6OpmPHjgB07NiRixcvkpycrE2zd+9eHBwcaN68uez5qzPDLgKBQCAQPDRoAEMWENVwpcz06dN59tln8fPzIz4+ngULFmBubs7QoUNxdHRk7NixvPnmm7i4uODg4MCUKVPo2LEjjz/+OAA9e/akefPmvPTSS6xYsYLExETmzZvHpEmTDN4xvDKE8SEQCAQCgcwYuktpTc+NjY1l6NChpKWl4e7uzhNPPMGxY8dwdy/b6+iDDz7AzMyMgQMHUlRURHBwMOvWrdOeb25uzs6dO5kwYQIdO3bEzs6OUaNGsWjRIr3LUBV1ZqmtsRFLbR8uxFLb6iGW2goEtzHlUtunH3kbC3P9PQbq0iL2/7PCqHl9kAjPRw1RWFqhMKLxIZUU3z/Rw45Cns2KqsLM3c2o8jUxsUaVD2DmL/8mZHdTej3S6DrqBMbus3XkHc/M1rjbl2vy840q36Q8gB1OaxPC+BAIBAKBQG6E8VElYrWLQCAQCAQCkyI8HwKBQCAQyI3wfFSJMD4EAoFAIJAbEy+1rW0I40MgEAgEApkx9VLb2oaY8yEQCAQCgcCkCM+HDLh6FDN2dgztumahtNEQH2XN+9P9uX7RDnMLDaOmx/GfblnU9y0iL8ecs387sGG5N+nJVnrpe6RDLoMmptC4ZT6unmpCxjTk6C5HWcskt45HOuQyaEKyrrzdTtr4EW8m0LV/Ju5eJZQUK7hx0YaN79Un/KxdpfIGjbpBp66JePvlUlxkzpWLzmxc25S4aJU2jbNLIWNev8qj7VOxsVUTe8uOsNBAjhyor00zePR1/tM5Gf+gbNQlZgzuHlzjsj07OpUXJiTj4q4m8rIN6+Y1IPzc/ZckPtM/kj79b+LhWba88FaUPd9uasqp43d/R0Fi0YqjtOuQxOK5HTj6t5c2pvVjybw09goNA7IpLDBn/25fNn3VHE3pvd8r7t+2EiNnJNFrWBoqh1Iun7JjzSxv4m8atsuhvvWkDy9OTmLsnES2fenGZwsa1Pj8wZOT6Nw7E5/AIooLzbh8ypb1S72IjahsfxmJd7+J5D9P5VTo1zXBzExixFuJPD0wE2f3EtKSLNm71YUtH9bDMP/9bfqOTKXPyDQ8fMqW9N8Kt2bzBx6cOqD/PhI2dqWMnBZNx57pOLmWEHHZjs8X+3PtYtm12KlnGn2GJRHYIg8HZzWTnm1F5JXKr+uaYMr+pBdizkeV1CnPR0pKChMmTMDX1xelUomnpyfBwcEcPnwYgIYNG/Lhhx/KqlPloOb9H6+gLjFj3qggXu3eki/f9SE3yxwApY2GwEfy2bLGi8l9mrP4tUC8AwoJWX9db53WthoiL1mzdo63XMUwug5rWw2Rl21YO7dyeXGR1nwyz5vXnm7CW88FkhhjxbItETi6VL5JVstH0/n1Bz/eGtuZea93wMJCw7trTqC0vp3+zZDzNPDNZdH0dkwa9iRHDnoya8kZAoKytGksLCX+3l+f337006tcXfpl8OqCeDa/78mk4CAiL1uzZEskjq4l9z03NcWGjZ+34PVx3Zj6alfOn3Fn/pJj+DbM1kk3YFBEpfch/0ZZLHrvKKdPeDDllW4sX9ieDp0TePnVS1XqvV/bvjgphf5jUvh4ljdT+zamMN+MpVsisVTqPwhtSD3VlKDW+fQZkU7kJf03omv1eC6/bHJj2rONmT20EeaWsHRLBEqb0gppnxuXIstz4sVJyfQdlcYncxswrktT1i+pz6CJyfQfm2q48P8nJcGSDUvrM7lXEFN6B3H+sIqQjVH4Bem/qd7UpRE8+kQWq6Y3ZkKf1pz524mlX1/G1aMIKOtvl07Zs2GlfPvamLI/6Y1GMjzUYeqU52PgwIEUFxezadMmAgICSEpKYv/+/aSlpRlN56AJCaQkWPH+DH/tsaSY22+I+TkWzBnRROecde/4suaXK7h7FZESX/O3yVMHHAx6U3kQOu4n78B2Z53fXyxsQO9h6fg3L+Dc3/YV0r8zrb3O7/cXtebb3fsIbJrFpXOuADRrmcEnKx7h2mUnAMI2NmbA0JsENs0i8lrZm/7mL4MA6N4nRq9yPf9qKru2uLAnzAWANTO9af90NsFD09m61qPKc08cqa/z++uvWtCn/02aNk8nOqqsrgICM3n+xetMfa0bm7f9rpP+yadiuRnpwLebmgKQEKdiw2ePMDvkBFtCm1JQUPlmeFW3hcSAV1L49iMPju4uq6MVr/sSdv4SnXpl8efPzvc4r2oMqaeaYG1bysy1t/hwhjdDpybd/4R7MHdEI53fq6f5svXiPzRuVcA/x2971wJa5DPwtRSm9A7iu3NVG333o3m7PI7uduTE/rK2SYq1otuATJq0kW/jreN7db2Xoe/Vp+/INJq2zePWtZoba1bKUp4ITmPh+Kb8c7Is35vX+NDhqQz6DEvi6w98+WN72fbe9RrIt2uwqfqTwHjUGc9HZmYmhw4d4r333qNbt274+fnRvn17Zs+eTb9+/Yym9/EemVy7YMfcdTf47vRZ1v52iV5DUqo8x86+FI0G8rLrlO0nGxaWGp4ZnkZulhmRl2yqdY6dqszjkZt9eyjrykVnnuyegMqhGIVC4ske8VhZabh4xlW2fDZulc+ZQ7eNI0lScPaQPc3b1uyBYWYm8eRTsVhbl3LlUtkNValU8/b8U6z7sDUZ6RUfDJaWGoqLzXWOFReZo1RqCGySWfMCAZ6+xbh6qHXKlJ9jztWztjSrYZnKkbOe7sfkpXGc2O/A2UMVDVZDsHMo83jkZN6ub6W1hllrb/HJHG8yUgzf9fjyKTvaPJFDg4Ayj0FA8wJatM/j5B/GedEwM5Po0j8Dpa2GK6f0GwYxtygLJUW6j5LiQjNatMuRI5sVMGV/MojyYRdDQh2mzjz9VCoVKpWK7du38/jjjxv8Fb6ioiKKioq0v7OzsytNV9+niL4jkvnpK0+++6Q+Qa3ymLDwFuoSBft+rLgFuKVSw5jZsRzc4UJ+rnklEv+9dOiexex1t1DaaEhPsmT20ECyM+7fRRUKiVffuMyl887cirx9Q1o+5zFmLjlD2N69qNUKigrNeXdmWxJiDR9vBnBwKcXcAjJTdPOYkWqBT2DRPc7SpWFAFqs/+RMrKw0FBRYsnteBmFtlD5txky9y5R8Xjh32qvTc0yfq0f+FG3R5OoZDB7xxdilk2KirALi46veW6VKvzIi7u0yZKRa41NPPpS1HPVWHLv0zCGxZwJRnGssmE8r61/iFcfxzwo5b4beN4dcWxnH5lB1H98gz3ypsbT1s7Uv56q+raErBzBxCl3tyYJt+3qZ70bBpAR/+cgMrpYaCPDMWjW1I9HX9hqgK8sy5fEbF0MmxREfYkJlqSZdnU2n6aA4Jt4zz/SVT9SfDMdSAqNvGR53xfFhYWBAaGsqmTZtwcnKic+fOzJkzhwsXLuglb9myZTg6OmqDj49PpekUZnDjki2hK72JuGTH79/WY9e37vQZkVwhrbmFhrmfRKBQwNq5DfXKV13m3GEVE3s24Y3+jTl10J65n0VVawx3wox/8AvI4b15j+ocf+m1cFQqNXMmdWDa6CfYtsWfWUvO4NeockPyQRAbbc/kV57ijQld+O1nf96acxofv2w6dEqg9WMpfL621T3PPXvKgw2fPcLkN8/x896f+fJ/ezl5rMzlLGmM/32dhwl3r2ImLIrnvcm+Fd7CDWXy0lj8mhSwbOLteUGP98iiTeccvSaz3osn+2Xy1POZLJ/ky6TgIFZN9eGF8Sl0H5Qumw6A2AglE3sE8Xqfxuz82o3pH0Xj21j/IZFV0xujUEhsPnKaHZeP0X9kAn/udEPzL+uDgppRZzwfUDbno0+fPhw6dIhjx47x+++/s2LFCr766itGjx5dI1mzZ8/mzTff1P7Ozs6u1ABJT7Yk+rru0ED0DRs6987QOWZuoWHOJxHUa1DEzKFNhdejEooKzImPMic+SsnVM3Zs+PsyvYamE1bFGO746f/Q/olkZr7WkbTk2+3g2SCPZ1+8xYQhTxJ9s8wbcvO6A4+0SafvC7f45L2WBuc3O92cUjU4uetOinV2U5ORUr1LS602IyGubA7BjWvONG6aQf8XIiguMqe+Vx7f79ypk37OouNcuuDGrGn/BWDb1sZs2xqIi2shuTlWeNTP4+XXLpOQoJ93Jz25LN9O7mrSk28PJTi5q4mo5hDY3chRT/cjsFUBzu5qPtl9TXvM3AJaPp5Hv5dT6duwlV4Pw0nvxtKhezZvPR9IasLtIb02T+RQ36+Yn65c1Ek//8so/jlux9uDau59GTc/gbC19bTzaqKu2lDPu4QhU5LZ971LjeXdC3WJGfFRZZ7hGxdtadImnwGvpLBmZuUvWPcjIdqat4c9gtKmFFtVKRkpVsz66BqJMYZ5n++FKfqTLIjVLlXyELWUPFhbW9OjRw969OjB/PnzeeWVV1iwYEGNjQ+lUlmtoZvLp1V4B+i+NTTwLyQ57vaNqtzwaOBfxMwhTcjJrHPVbhQUCrC0utcKC4nx0y/RsUsisyd2JClBd4md0rpsjP7u67dUo8DMTJ6LWl1ixvULtjz6RI52qapCIdHmiVx2hOo3r8TMTMLSUsPmjc3Y/WtDnbhPQ/fz5SetOH747qW4CtLTygyDLk/HkpxkQ8Q1J730J0ZbkZZkwaNP5Gjn29iqSmn6aD47v9avTMaop7s5d0jFq92CdI699UEMMTes2fqJux6Gh8Skd+Po1CuLGYMCdSaRA4St9eD3Lbp5/+KPcD4PacCxvfrN0VBaa5Du6u6a0rK6MiZl15nhOooKzCkqMEfloKbtfzPZ8J5+K8juhyn6kyxoJAwaOhGrXWo3zZs3Z/v27UaTv+0rD97/6SqDJ8Xz104XmrTJ45lhKXw0uyFQZnjM+zSCwEfyeGdMEGbm4OxeNpSQk2mOuqTmLmJr21K8/Iu1vz19igloUUBOpjkpcfrtHWJsHWXybo/HevoWE9Ain5wMC7IzzBk2NYmjexxJT7LEwUVNv9GpuHmWcGinU6XyJs74hy7B8Sye0Y6CPHOcXcoMwLw8S4qLzImNUhEXY8vkWf+wfk0zsrMs6dgliUfbp7Lwrf9o5bh7FGDvUIy7ZyFmZhIBjcuW4UanlVKYf3/v1E9fuDH9wxiunbcl/Kwtz41LwdpWw57v7v+mOnrcJU4d9yA52QZbWzVdn46lZZtU5s/oTEa6daWTTFOSbEhKvO3VGDjkGqdPeKDRKOj8ZDyDhl1jeUj7Kh+292vb7V+5M3RqMnE3lSRGWzHq7UTSkiw5YsA+L4bUU3UoyDPXmY8BUJhvRk5GxePVYfLSWLoNyCBkTAAFuWbaazYvx5ziQjMyUiwrnWSaHGdZwVCpLsf2OjDk9WSS46y4FW5No0cKeP61FNnqCODl2Qmc/MOelDgrbFSldHsuk1adcpk7LEBvmY/9NxOFQiI20gYvv0LGzrxFbKQNe34sW+WiciyhnlcxrvXK+py3fwFAWR2m6ne/MnZ/EhifOmN8pKWlMWjQIMaMGUOrVq2wt7fn1KlTrFixgv79+2vTxcXFce7cOZ1z/fz8cHbWb1LXtQsqFr0ayMszYxn+ejyJsUo+W+jLge1lFribZwkde2YC8Oku3aV4bw9uwoVjNX9LCmpdwMofI7S/xy+MB2BPmDOr35BnLb3cOoJa57Pyhzvkhfy/vK3OrJnlg3ejIuZ/EYWDi5qcDHOunbflrecbc+ta5Q+OPi9EA/DeZ8d0jn+wqBX7fvWhtNSMkDfaM3rSVd5ZfRIbm1LiY215f1FrTh2pp00/4tVrdO8bq/398f/+BmDGwEZcOKrifvy5wxlH11JGzkjE2V1N5CUb5g73JzP1/qsfHJ2LeGvOaVxcC8nLs+BmhCPzZ3Tm7Kl69z23nHYdkhg84hqWVqXcvOHI4rmPV7JJmS73a9utn7hjbath6opYVA6lXDppx9zhAQbNpTCknh4Ez44qW56/6scbOsdXveHD3q3GebteN68Bo95OZPKyWJxc1aQlWfLbN65s/kC+paNObmpmrInGpZ6a/Bxzbl6xZu6wAM78pf/qIDt7NS9Pj8bNs5icTAv+3u3CptW+lKrL+svjT2fw1orb/W32mrI9jv63xpvNa/Qb6qkV/UnSUMGVVdPz6zAKSaobA0tFRUWEhISwZ88eIiIiKCkpwcfHh0GDBjFnzhxsbGxo2LAht27dqnDuN998w4gRI6qUn52djaOjI90sB2GhMF4Hl0qK75/oYUdh/IlmFt7yTfSrDHVM7P0TGYh5Y/3fNqtL6fVIo+uoExi7z9aN2yxmtsbdQVSTb9ylsmqphIP8TFZWFg4OxlnCXP6s6O4zAQsz/ee9qDVF7Iv51Kh5fZDUGc+HUqlk2bJlLFu27J5poqKiTJchgUAgEPx7EXM+qqTOLLUVCAQCgUBQO6gzng+BQCAQCB4axFLbKhHGh0AgEAgEciNhoPEhW04eSsSwi0AgEAgEApMiPB8CgUAgEMiNGHapEmF81BCppBjJyDsO1npMcNGYYimssRHLYB8i6viNXi6MvRS2TqHRAAbs1aGp2/t8iGEXgUAgEAgEJkV4PgQCgUAgkBsx7FIlwvgQCAQCgUBuhPFRJWLYRSAQCAQCgUkRng+BQCAQCORGbK9eJcL4EAgEAoFAZiRJg2TAl2kNObc2IIZdjMSzo1PZdPwyv0Re4KOd12nSRv4lanVBhzHlP9Ihl4WbbrLlzCV2x5+nY68s2WTfiTHL0HdkKp/uC+en8Iv8FH6RD3Zcp123bNnkQ92oJ1PoEPX08OgwVVsYhCSVeS/0DWLOh6CmdOmXwasL4tn8vieTgoOIvGzNki2ROLqWCB0mlG9tqyHykjVr53jLIq8yjF2GlARLNiytz+ReQUzpHcT5wypCNkbhF1Qoi3yoG/VkCh2inh4eHaZoC4FxqfXGx8GDB1EoFPcM3bp1IyoqSueYq6srPXv25OzZs0bJ0/OvprJriwt7wlyIvm7NmpneFBUoCB6aLnSYUP6pAw5sWlGfI7scZZFXGcYuw/G9jpz8w4H4m0riIpWEvlefwjwzmrbNk0U+1I16MoUOUU8Pjw5TtIXBlK92MSTUYWq98dGpUycSEhIqhM8//xyFQsHEiRO1afft20dCQgK7d+8mNzeX3r17k5mZKWt+LCw1NG6Vz5lD9tpjkqTg7CF7mreVx+1YF3SYogzGxtRlMDOT6NI/A6Wthiun7GSXbyzqQn81BXWlnupCW8iCRmN4qMPUeuPDysoKT09PnZCRkcH06dOZM2cOgwYN0qZ1dXXF09OTdu3asWrVKpKSkjh+/HilcouKisjOztYJ1cHBpRRzC8hM0Z3Lm5FqgbO7Wv+C1jEdpiiDsTFVGRo2LWD79YvsjLrA68tjWTS2IdHXrWWTb2zqQn81BXWlnupCWwiMT603Pu4mMzOT/v3707VrVxYvXnzPdDY2NgAUFxdXGr9s2TIcHR21wcfHxyj5FQjuR2yEkok9gni9T2N2fu3G9I+i8W0s35wPgUBgBMSwS5XUKeNDo9EwbNgwLCws2Lx5MwqFotJ0mZmZLF68GJVKRfv27StNM3v2bLKysrQhJiamWnnITjenVA1Od1n4zm5qMlLkWdlcF3SYogzGxlRlUJeYER+l5MZFWzYuq8/NyzYMeCVFNvnGpi70V1NQV+qpLrSFHEgajcGhLlOnjI85c+Zw9OhRfv75Z+zt7SvEd+rUCZVKhbOzM+fPnycsLAwPD49KZSmVShwcHHRCdVCXmHH9gi2PPpGjPaZQSLR5IpfLp231K1gd1GGKMhibB1UGhQIsrWrPW1Fd6K+moK7UU11oC4HxqTNm6HfffceqVav49ddfady4caVpwsLCaN68Oa6urjg5ORktLz994cb0D2O4dt6W8LO2PDcuBWtbDXu+cxE6TCjf2rYUL//bw2qePsUEtCggJ9OclDgrWXQYuwwvz07g5B/2pMRZYaMqpdtzmbTqlMvcYQGyyIe6UU+m0CHq6eHRYYq2MBjJwB1O6/iwS50wPs6dO8fYsWNZvnw5wcHB90zn4+NDo0aNjJ6fP3c44+haysgZiTi7q4m8ZMPc4f5kploKHSaUH9S6gJU/Rmh/j18YD8CeMGdWv+Eriw5jl8HJTc2MNdG41FOTn2POzSvWzB0WwJm/Knr29KUu1JMpdIh6enh0mKItDEYjgUIYH/dCIUm1u4Spqam0a9eOFi1asH79+grx5ubm5OXl4e/vz9mzZ2nTpo1eerKzs3F0dKQr/bFQyHeRCgQCgcA0qKUSDvIzWVlZ1R5Krynlz4qnlC9iodDfC6OWivmjaKtR8/ogqfWej19//ZVbt25x69Yt6tevXyHez8+PgwcPmj5jAoFAIPj3IkmAAZNGa7df4L7UeuNj1KhRjBo16r7parmDRyAQCAS1CEkjIRkw7FLXn1m13vgQCAQCgeChQ9JgmOdDLLUVCAQCgUBQC/jkk09o2LAh1tbWdOjQgRMnTjzoLFWKMD4EAoFAIJAZSSMZHGpKWFgYb775JgsWLODMmTO0bt2a4OBgkpOTjVBCwxDGh0AgEAgEciNpDA815P3332fcuHG8/PLLNG/enM8++wxbW1s2bNhghAIahpjzUU3KJ/+oKTFo3xiBQCAQPBjUlACmmcxp6LOiPK93f9RUqVSiVCorpC8uLub06dPMnj1be8zMzIzu3btz9OhR/TNiJITxUU1ycsq2Cv6b3x5wTgQCgUBgCDk5OTg6OhpFdvmX1v9ONPxZoVKpKnzUdMGCBYSEhFRIm5qaSmlpaYVPhnh4eHD16lWD8yI3wvioJl5eXsTExGBvb3/PD9bdTXZ2Nj4+PsTExBhlkxhjy68rOupCGUyhQ5Th36OjLpRBHx2SJJGTk4OXl5dR8gNgbW3NzZs37/nF9JogSVKF501lXo/aiDA+qomZmRne3t56nVuTD9M9jPLrio66UAZT6BBl+PfoqAtlqKkOY3k87sTa2hpra2uj67kTNzc3zM3NSUpK0jmelJSEp6enSfNSHcSEU4FAIBAIajlWVla0bduW/fv3a49pNBr2799Px44dH2DOKkd4PgQCgUAgqAO8+eabjBo1inbt2tG+fXs+/PBD8vLyePnllx901iogjA8jolQqWbBggdHG6Iwtv67oqAtlMIUOUYZ/j466UAZT6ahNDB48mJSUFN555x0SExNp06YNu3btqjAJ9WGg1n/VViAQCAQCQe1CzPkQCAQCgUBgUoTxIRAIBAKBwKQI40MgEAgEAoFJEcaHQCAQCAQCkyKMD5k4evQo5ubm9OnTR+d4VFQUCoWiQhgxYkS15I4ePVp7jqWlJR4eHvTo0YMNGzag0VT88FBwcDDm5uacPHmyRvm/U8+doVevXgA0bNhQe8zOzo7HHnuM77//3iC5Q4YM0covZ9euXSgUigrbB4eEhODr63tffYmJiUydOpXAwECsra3x8PCgc+fOfPrpp+Tn52vL8uGHH1avYmooV6FQ8N1331U4v0WLFigUCkJDQw3S1b59+0rrszx07dq1StmjR49mwIABFY4fPHgQhUJBZmam9v+7w7x586pTVXrp8PDwYODAgURGRmr7zPLly3XO3759e7V3F5aDmJgYxowZg5eXF1ZWVvj5+TF16lTS0tK0abp27VppXY0fP75aOu68PqysrAgMDGTRokWo1WptGn2v6XJSUlKYMGECvr6+KJVKPD09CQ4O5vDhw4DutV0earqhYnV01PSaA+7ZF8tDt27dKtxjXV1d6dmzJ2fPnq2xPoHpEEttZWL9+vVMmTKF9evXEx8fX2H73n379tGiRQvtbxsbm2rL7tWrFxs3bqS0tJSkpCR27drF1KlT+eGHH9ixYwcWFmXNGB0dzZEjR5g8eTIbNmzgP//5T43KUK7nTu5cwrZo0SLGjRtHdnY2q1evZvDgwTRo0IBOnTrpJXfr1q1Mnz4dtVqtLcOBAwfw8fHh4MGDOukPHDhAt27dqtQTGRlJ586dcXJyYunSpbRs2RKlUsnFixf54osvaNCgAf369btfNRgk18fHh40bNzJkyBDt+ceOHSMxMRE7OzuDdU2ePJmePXsCZQ/H9u3b6/QtKyurGpfvXoSHh+vsGqlSqWSTfacOe3t7rl+/zquvvsqzzz5Lu3btsLa25r333uO1117D2dlZdr33IzIyko4dOxIUFMS3336Lv78/ly5dYsaMGfz+++8cO3YMFxcXAMaNG8eiRYt0zre1ta22rvLro6ioiN9++41JkyZhaWnJ7NmzDb6mAQYOHEhxcTGbNm0iICCApKQk9u/fr2NElV/b5Zibm8uuQx86depEQkJCheM7duxg/PjxTJw4UXus/DqIjY3l9ddfp3fv3ly9ehUnJyeD8iAwEpLAYHJyciSVSiVdvXpVGjx4sLRkyRJt3M2bNyVAOnv2rF6yR40aJfXv37/C8f3790uA9OWXX2qPhYSESEOGDJGuXLkiOTo6Svn5+QbrKcfPz0/64IMPtL9LSkokW1tbadasWXrLDQ8PlwDp6NGj2mPt27eXPvnkE8na2loqKCiQJEmSCgoKJKVSKW3cuLFKXcHBwZK3t7eUm5tbabxGo6m0LPejJnJnzZolKZVKKTo6Whs/btw4acqUKZKjo6NsZZAk/frWvdrjwIEDEiBlZGTo/K8P+urYvHmzBEgDBgyQ+vbtKzVt2lSaMWOGNn7btm3SnbesH374QWrevLlkZWUl+fn5SatWrdLR5+fnJy1ZskR6+eWXJZVKJfn4+Eiff/65Tpro6Ghp0KBBkqOjo+Ts7Cz169dPunnzptSrVy/J29u7wjWUkJAg2draSuPHj5ckSZK6dOkiTZ06Va96kqTK66pHjx7S448/LkmSYde0JElSRkaGBEgHDx68Z5qaXg8PQsedXL58WbK3t5fmzp0rSVLl18Hhw4clQNq1a5csOgXyI4ZdZGDr1q00bdqUJk2aMGLECDZs2GD0TzY/9dRTtG7dmp9++gko+wDRxo0bGTFiBE2bNiUwMJAffvjBaPotLCywtLQ06ONJQUFBeHl5ceDAAaDsS5Nnzpxh0KBBNGzYUPsZ6CNHjlBUVFSl5yMtLY09e/YwadKke3oY9HHZ11Suh4cHwcHBbNq0CYD8/HzCwsIYM2aM7LrqGuXeQI1Gg7m5OUuXLuXjjz8mNja2QtrTp0/z4osvMmTIEC5evEhISAjz58+vMKy1evVq2rVrx9mzZ5k4cSITJkwgPDwcgJKSEoKDg7G3t+fQoUMcPnwYlUpFjx492L17NxMnTqzgofT09GT48OGEhYUZ7Rq3sbGhuLhYlmtapVKhUqnYvn07RUVFRsmvKXSUk5mZSf/+/enatSuLFy++Z7rydpPj424C4yCMDxlYv369dg5Hr169yMrK4s8//9RJ06lTJ+1FqlKpZBmPbNq0KVFRUUCZyzE/P5/g4GAARowYwfr162skb+fOnTp5VKlULF26tEK64uJili1bRlZWFk899ZRBcrt166YdYjl06BBBQUG4u7vz5JNPao8fPHgQf39//Pz87qnjxo0bSJJEkyZNdI67ublpdc6cObOaNWGY3DFjxhAaGookSfzwww80atSINm3aGEWXPlTWHr17966QztvbWydNTVzo1dVRTkJCAqtWraJBgwbaD38999xztGnThgULFlRI//777/P0008zf/58goKCGD16NJMnT2blypU66Z555hkmTpxIYGAgM2fOxM3NTWvshoWFodFo+Oqrr2jZsiXNmjVj48aNxMTEIEkSzZo1qzSvzZo1IyMjg5SUFADWrVtXoaybN2+udl2VI0kS+/btY/fu3Tz11FOyXNMWFhaEhoayadMmnJyc6Ny5M3PmzOHChQs66WbOnKmT/zVr1siuw1A0Gg3Dhg3DwsKCzZs339MQz8zMZPHixahUKtq3by9rHgTyIeZ8GEh4eDgnTpxg27ZtQNmFOHjwYNavX68z+S8sLEznZubj42OwbumOzy1v2LCBwYMHa+dODB06lBkzZhAREUGjRo2qJa9bt258+umnOsfKx7Wh7AY1b948CgsLUalULF++vMIE25rK7dq1K9OmTaOkpISDBw9q66xLly58/vnnQJnxcb/5HvfixIkTaDQahg8fLutbWVVy+/Tpw2uvvcZff/3Fhg0bquX10FeXPlTWHsePH68wCfrQoUPY29trf9dk7kV1dXh7eyNJEvn5+bRu3Zoff/xR57z33nuPp556iunTp+ucd+XKFfr3769zrHPnznz44YeUlpZq5yy0atVKG69QKPD09CQ5ORmA8+fPc+PGDZ0yAto6rq5nY/jw4cydO1fnWE22sy431EpKSrQP2JCQEF555RWDr2kom4/Rp08fDh06xLFjx/j9999ZsWIFX331FaNHjwZgxowZ2v+hzOCtCdXRYShz5szh6NGjnDhxokKbQdkLnpmZGXl5eQQEBBAWFvZQbisuKEMYHwayfv161Gq1zgRTSZJQKpWsXbtWe8zHx4fAwEBZdV+5cgV/f3/S09PZtm0bJSUlOjfu0tJSNmzYwJIlS6olz87Orso8lt+gVCoVHh4e1R4CqEput27dyMvL4+TJkxw4cIAZM2YAZcbHmDFjSE9P5/jx47z22mtV6ggMDEShUGhd6uUEBAQANZvga6hcCwsLXnrpJRYsWMDx48e1hqkxdOlDZe1R2dCGv7+/3pP1qqvj0KFDODg4UK9ePe0D5c4+/OSTTxIcHMzs2bP1eohZWlrq/FYoFNpVYrm5ubRt27aClyIjI4MOHTpw5coVnnvuuQoyr1y5grOzM+7u7kDZJ9oNubbLDTUrKyu8vLywsLCQ7Zoux9ramh49etCjRw/mz5/PK6+8woIFC7R16ubmZvD96X46DOG7775j1apV/PrrrzRu3LjSNGFhYTRv3hxXV1cxybQWIIZdDECtVvP111+zevVqzp07pw3nz5/Hy8uLb7/91mi6//jjDy5evMjAgQPZvHkz3t7enD9/Xicfq1evJjQ0lNLSUll0lt+gPD09ZZt70KhRI3x8fNixYwfnzp2jS5cuADRo0IAGDRqwevVqiouL7+v5cHV1pUePHqxdu5a8vDxZ8maI3DFjxvDnn3/Sv3//ansMjFWGhxl/f38aNWpU6ZtsOcuXL+eXX37RzgGCsqGP8mWc5Rw+fJigoKBqr9R47LHHuH79OvXq1SMwMFAb/vOf/9CjRw/WrVtHQUGBzjmJiYls3ryZwYMHy3YNlBtqvr6+Wi+Hsa/p5s2bG72PyaXj3LlzjB07luXLl2uHoCrDx8eHRo0aCcOjliA8Hwawc+dOMjIyGDt2rHacupyBAweyfv36CvtY6ENRURGJiYk6S22XLVtG3759GTlyJG3btuWFF17gkUce0TnPx8eH2bNns2vXrmoNj5TruRMLC4sau2BrKrdbt26sW7eOwMBAHTdply5d+Pjjj7UTU+/HunXr6Ny5M+3atSMkJIRWrVphZmbGyZMnuXr1Km3bttWmjYuL49y5czrn+/n5VWoo1ERuOc2aNSM1NbVGSy711VXXadmyJcOHD9eZh/DWW2/xn//8h8WLFzN48GCOHj3K2rVrWbduXbXlDh8+nJUrV9K/f38WLVqEt7c3t27d4qeffmLevHk8//zzBAcH8+677+ostW3QoIGO5yE/P79C/1YqlQYtEV6/fr0s13RaWhqDBg1izJgxtGrVCnt7e06dOsWKFSsqDFvpS3V11OSaKyc1NZUBAwbQtWtXRowYUaGea7okWPAQ8SCW2NQV+vbtKz3zzDOVxh0/flwCpPPnzxu81BaQAMnCwkJyd3eXunfvLm3YsEEqLS2VTp06JQHSiRMnKj2/d+/e0nPPPVcjPXeGJk2aSJKk/1K5+8mVJEnauHGjBGiXL5YTGhoqAdJrr71WbX3x8fHS5MmTJX9/f8nS0lJSqVRS+/btpZUrV0p5eXnaslSWp2+++cZguVXVUXWW2lZXlyTVvaW2VZ1/8+ZNycrKqtKltpaWlpKvr6+0cuVKnXMqa4/WrVtLCxYs0P5OSEiQRo4cKbm5uUlKpVIKCAiQxo0bJ2VlZUlRUVHSqFGjJA8PD8nS0lLy8fGRpkyZIqWmpmrP79KlS6V9KTg4WO+6kuualiRJKiwslGbNmiU99thjkqOjo2Rrays1adJEmjdvnnbZrqHLYKuro6bXnCTdvgfcK/j5+Rm8nYHgwaCQJCOvCRUIBAKBQCC4AzHnQyAQCAQCgUkRxodAIBAIBAKTIowPgUAgEAgEJkUYHwKBQCAQCEyKMD4EAoFAIBCYFGF8CAQCgUAgMCnC+BAIBAKBQGBShPEhEAgEAoHApAjjQyCoRYwePZoBAwZof5d/FdjUHDx4EIVCQWZm5j3TKBQKtm/fXm2ZISEhtGnTxqB8RUVFoVAoKmzjLRAIHi6E8SEQGMjo0aNRKBQoFAqsrKwIDAxk0aJFqNVqo+v+6aefWLx4cbXSVsdgEAgEAlMgPiwnEMhAr1692LhxI0VFRfz2229MmjQJS0tLZs+eXSFtcXExVlZWsuh1cXGRRY5AIBCYEuH5EAhkQKlU4unpiZ+fHxMmTKB79+7s2LEDuD1UsmTJEry8vGjSpAkAMTExvPjiizg5OeHi4kL//v2JiorSyiwtLeXNN9/EyckJV1dX3n77be7+FNPdwy5FRUXMnDkTHx8flEolgYGBrF+/nqioKLp16waAs7MzCoWC0aNHA6DRaFi2bBn+/v7Y2NjQunVrfvjhBx09v/32G0FBQdjY2NCtWzedfFaXmTNnEhQUhK2tLQEBAcyfP5+SkpIK6T7//HN8fHywtbXlxRdfJCsrSyf+q6++olmzZlhbW9O0adMafclWIBA8HAjjQyAwAjY2NhQXF2t/79+/n/DwcPbu3cvOnTspKSkhODgYe3t7Dh06xOHDh1GpVPTq1Ut73urVqwkNDWXDhg38/fffpKens23btir1jhw5km+//ZY1a9Zw5coVPv/8c1QqFT4+Pvz4448AhIeHk5CQwEcffQTAsmXL+Prrr/nss8+4dOkSb7zxBiNGjODPP/8Eyoyk559/nmeffZZz587xyiuvMGvWrBrXib29PaGhoVy+fJmPPvqIL7/8kg8++EAnzY0bN9i6dSu//PILu3bt4uzZs0ycOFEbv3nzZt555x2WLFnClStXWLp0KfPnz2fTpk01zo9AIHiAPOCv6goEtZ47P4uu0WikvXv3SkqlUpo+fbo23sPDQyoqKtKe880330hNmjSRNBqN9lhRUZFkY2Mj7d69W5IkSapfv760YsUKbXxJSYnk7e2t8wn2Ll26SFOnTpUkSZLCw8MlQNq7d2+l+azsM/aFhYWSra2tdOTIEZ20Y8eOlYYOHSpJkiTNnj1bat68uU78zJkzK8i6G0Datm3bPeNXrlwptW3bVvt7wYIFkrm5uRQbG6s99vvvv0tmZmZSQkKCJEmS1KhRI2nLli06chYvXix17NhRkiRJfF5dIKgliDkfAoEM7Ny5E5VKRUlJCRqNhmHDhhESEqKNb9mypc48j/Pnz3Pjxg3s7e115BQWFhIREUFWVhYJCQl06NBBG2dhYUG7du0qDL2Uc+7cOczNzenSpUu1833jxg3y8/Pp0aOHzvHi4mIeffRRAK5cuaKTD4COHTtWW0c5YWFhrFmzhoiICHJzc1Gr1Tg4OOik8fX1pUGDBjp6NBoN4eHh2NvbExERwdixYxk3bpw2jVqtxtHRscb5EQgEDw5hfAgEMtCtWzc+/fRTrKys8PLywsJC99Kys7PT+Z2bm0vbtm3ZvHlzBVnu7u565cHGxqbG5+Tm5gLw66+/6jz0oWwei1wcPXqU4cOHs3DhQoKDg3F0dOS7775j9erVNc7rl19+WcEYMjc3ly2vAoHA+AjjQyCQATs7OwIDA6ud/rHHHiMsLIx69epVePsvp379+hw/fpwnn3wSKHvDP336NI899lil6Vu2bIlGo+HPP/+ke/fuFeLLPS+lpaXaY82bN0epVBIdHX1Pj0mzZs20k2fLOXbs2P0LeQdHjhzBz8+PuXPnao/dunWrQrro6Gji4+Px8vLS6jEzM6NJkyZ4eHjg5eVFZGQkw4cPr5F+gUDwcCEmnAoED4Dhw4fj5uZG//79OXToEDdv3uTgwYO8/vrrxMbGAjB16lSWL1/O9u3buXr1KhMnTqxyj46GDRsyatQoxowZw/bt27Uyt27dCoCfnx8KhYKdO3eSkpJCbm4u9vb2TJ8+nTfeeINNmzYRERHBmTNn+Pjjj7WTOMePH8/169eZMWMG4eHhbNmyhdDQ0BqVt3HjxkRHR/Pdd98RERHBmjVrKp08a21tzahRozh//jyHDh3i9ddf58UXX8TT0xOAhQsXsmzZMtasWcO1a9e4ePEiGzdu5P33369RfgQCwYNFGB8CwQPA1taWv/76C19fX55//nmaNWvG2LFjKSws1HpC3nrrLV566SVGjRpFx44dsbe357nnnqtS7qeffsoLL7zAxIkTadq0KePGjSMvLw+ABg0asHDhQmbNmoWHhweTJ08GYPHixcyfP59ly5bRrFkzevXqxa+//oq/vz9QNg/jxx9/ZPv27bRu3ZrPPvuMpUuX1qi8/fr144033mDy5Mm0adOGI0eOMH/+/ArpAgMDef7553nmmWfo2bMnrVq10llK+8orr/DVV1+xceNGWrZsSZcuXQgNDdXmVSAQ1A4U0r1mrwkEAoFAIBAYAeH5EAgEAoFAYFKE8SEQCAQCgcCkCONDIBAIBAKBSRHGh0AgEAgEApMijA+BQCAQCAQmRRgfAoFAIBAITIowPgQCgUAgEJgUYXwIBAKBQCAwKcL4EAgEAoFAYFKE8SEQCAQCgcCkCONDIBAIBAKBSfk/eOymOE5Qg7UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cm = confusion_matrix(y_test, clf.predict(X_test), labels=clf.classes_)\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)\n", + "disp.plot();" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The confusion matrix shows that the class distribution is very imbalanced.\n", + "This is why the accuracy is so high.\n", + "The model is very good at predicting the most common classes.\n", + "This is also visible in the precision and recall scores in the classification report.\n", + "The precision and recall scores are very high for the most common classes and low for the less common classes. \n", + "However the F1 score is still high.\n", + "To imporve the model, we can train on a larger dataset that contains more samples of the less common classes.\n", + "For this example, we are fine with using the trained RF as is." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5.1 Transform the model into a ONNX model" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last supported opset: 18\n" + ] + } + ], + "source": [ + "from skl2onnx import __max_supported_opset__, to_onnx\n", + "print(\"Last supported opset:\", __max_supported_opset__)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "onx = to_onnx(clf, X[:1])\n", + "with open(\"rf_iris.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# pip install onnxruntime" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "import onnxruntime as rt" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sess = rt.InferenceSession(\"rf_iris.onnx\", providers=[\"CPUExecutionProvider\"])\n", + "sess.get_modelmeta()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('X', 'output_label')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "input_name = sess.get_inputs()[0].name\n", + "label_name = sess.get_outputs()[0].name\n", + "input_name, label_name" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['GL', 'GT', 'SL', ..., 'GL', 'GT', 'GL'], dtype=object)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred_onx = sess.run([label_name], {input_name: X_test.astype(np.float64)})[0]\n", + "pred_onx" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "SL SL\n", + "ZP ZP\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "HF HF\n", + "PA PA\n", + "GT GT\n", + "AF AF\n", + "OE OE\n", + "OE OE\n", + "GT GT\n", + "EW EW\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "OE OE\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "None None\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "DA DA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "PA PA\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "SL SL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "SF SF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "None None\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "None None\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "SF SF\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "OE OE\n", + "HF HF\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "EW EW\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "DA DA\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "OE OE\n", + "OE OE\n", + "GL GL\n", + "None None\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "PA PA\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "PA PA\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "EP EP\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "SL SL\n", + "GT GT\n", + "AF AF\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "None None\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "SL SL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "AF AF\n", + "SF SF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "EW EW\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "SF SF\n", + "GT GT\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "PA PA\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "SF SF\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SF SF\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "DA DA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GM GM\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "DA DA\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "PA PA\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "None None\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "None None\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "ZP ZP\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "SF SF\n", + "GT GT\n", + "DA DA\n", + "SL SL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "EW EW\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SF SF\n", + "AF AF\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "DA DA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "DA DA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "SL SL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "AF AF\n", + "DA DA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "DA DA\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GM GM\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SF SF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "OE OE\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "SL SL\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "PA PA\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GM GM\n", + "None None\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "PA PA\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "None None\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "EP EP\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "DA DA\n", + "SL SL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GM GM\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GM GM\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GM GM\n", + "HF HF\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SF SF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "DA DA\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "None None\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "None None\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "EW EW\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "None None\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SF SF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "DA DA\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "None None\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "None None\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "SF SF\n", + "SF SF\n", + "OE OE\n", + "GT GT\n", + "PA PA\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GM GM\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "OE OE\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "DA DA\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "PA PA\n", + "GT GT\n", + "GM GM\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "HF HF\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "EW EW\n", + "PA PA\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "None None\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "None None\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "None None\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "None None\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "DA DA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "None None\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "SF SF\n", + "OE OE\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "None None\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "PA PA\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "DA DA\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "SL SL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "DA DA\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HP HP\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "EP EP\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "HF HF\n", + "GL GL\n", + "AF AF\n", + "PA PA\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "HF HF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GM GM\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "None None\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "AF AF\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "SL SL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "None None\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "PA PA\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "SL SL\n", + "GT GT\n", + "HF HF\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "EW EW\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "PA PA\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "OE OE\n", + "SL SL\n", + "SL SL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "PA PA\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "EW EW\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "SF SF\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "None None\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "OE OE\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "AF AF\n", + "HF HF\n", + "GT GT\n", + "EW EW\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SF SF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "OE OE\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "HF HF\n", + "GL GL\n", + "OE OE\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "None None\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "EW EW\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "None None\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "HF HF\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "SF SF\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "EW EW\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "DA DA\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "AF AF\n", + "GL GL\n", + "HF HF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "HF HF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "AF AF\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "PA PA\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "HF HF\n", + "SF SF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "SL SL\n", + "GL GL\n", + "GL GL\n", + "AF AF\n", + "GL GL\n", + "OE OE\n", + "GT GT\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "SL SL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GL GL\n", + "GT GT\n", + "GL GL\n", + "GT GT\n", + "GL GL\n" + ] + } + ], + "source": [ + "for (ckl, ckl_onx) in zip(clf.predict(X_test), pred_onx):\n", + " print(ckl, ckl_onx)\n", + " assert ckl == ckl_onx" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. Apply the trained Random-Forest to the monthly Sentinel-2 data\n", + "\n", + "To generate a raster map of the field-use classes, we can apply the trained RF to the Sentinel-2 data.\n", + "For this we can create a workflow that generates the same monthly Sentinel-2 data as before, but this time want to apply the trained RF to all the pixels.\n", + "To do this, we query raster tiles from the Geo Engine and apply the RF to all pixels in each raster tile.\n", + "The result is a list of xarray data arrays.\n", + "Normally we would retrain the model on all data, but for demonstration and simplicity we use the model trained on the train/test split." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we specify the query rectangle we are interested in. It is a subeset of the area of interest defined in step 2." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "QueryRectangle( \n", + " BoundingBox2D(xmin=443678.0, ymin=5699335.5, xmax=453918.0, ymax=5709575.5)\n", + " TimeInterval(start=2021-10-15T00:00:00.000000, end=2021-10-15T00:00:00.000000)\n", + " SpatialResolution(x=10.0, y=10.0)\n", + " srs=EPSG:32632 \n", + ")" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "start_dt = datetime(2021, 10, 15, 0, 0, 0)\n", + "end_dt = datetime(2021, 10, 15, 0, 0, 0)\n", + "\n", + "box_size = 512\n", + "\n", + "box_center_x = 0.5 * (xmin + xmax)\n", + "box_center_y = 0.5 * (ymin + ymax)\n", + "\n", + "box_x_min = box_center_x - box_size *10\n", + "box_x_max = box_center_x + box_size *10\n", + "box_y_min = box_center_y - box_size *10\n", + "box_y_max = box_center_y + box_size *10\n", + "\n", + "query_rect = ge.QueryRectangle(\n", + " spatial_bounds=ge.BoundingBox2D(\n", + " xmin=box_x_min,\n", + " ymin=box_y_min,\n", + " xmax=box_x_max,\n", + " ymax=box_y_max,\n", + " ),\n", + " time_interval=ge.TimeInterval(\n", + " start=start_dt,\n", + " end=end_dt,\n", + " ),\n", + " resolution=ge.SpatialResolution(\n", + " 10.0,\n", + " 10.0,\n", + " ),\n", + " srs=\"EPSG:32632\",\n", + ")\n", + "\n", + "query_rect" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also need a map from category to number. This is necessary since the RF produces class names and we want to store the result as a raster dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "code_id_map = {\n", + " 'None': 0,\n", + " 'AF': 1,\n", + " 'DA': 2,\n", + " 'EP': 3,\n", + " 'EW': 4,\n", + " 'GL': 5,\n", + " 'GM': 6,\n", + " 'GT': 7,\n", + " 'HF': 8,\n", + " 'HP': 9,\n", + " 'OE': 10,\n", + " 'PA': 11,\n", + " 'SF': 12,\n", + " 'SL': 13,\n", + " 'ZP': 14, \n", + "}\n", + "\n", + "id_code_map = {v: k for k, v in code_id_map.items()}" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we query all the workflows in parallel and zip the results together. The result is a list of tiles, where each tile contains the monthly Sentinel-2 data for one band and month.\n", + "For each tile (list) we apply the RF to the data and store the result as a new tile. The result is a list of tiles, where each tile contains the predicted crop class for one pixel." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "query_keys = train_variable_order\n", + "queries = [\n", + " ge.register_workflow(monthly_cloud_free_workflows_shifted[int(b.split(\"_\")[1])][b.split(\"_\")[0]]).raster_stream(query_rect) for b in query_keys\n", + "]\n", + "\n", + "res_arrays = []\n", + "\n", + "async for tile_stac in zip_longest(*queries):\n", + " tiles_as_xarrays = [tile.to_xarray() for tile in tile_stac]\n", + "\n", + " arr_stack = xr.concat(tiles_as_xarrays, dim=\"band\")\n", + " arr_stack_2 = arr_stack.transpose(\"y\", \"x\", \"band\")\n", + "\n", + " rf_input = arr_stack_2.values.reshape((box_size * box_size, len(tile_stac)))\n", + " \n", + " np.nan_to_num(rf_input, copy=False, nan=0, posinf=None, neginf=None)\n", + "\n", + " #pred_classes = clf.predict(rf_input)\n", + " pred_classes = sess.run([label_name], {input_name: rf_input.astype(np.float64)})[0]\n", + " pred_numbers = np.vectorize(code_id_map.get)(pred_classes)\n", + "\n", + " res_array = pred_numbers.reshape((box_size, box_size))\n", + " \n", + " da = xr.DataArray(\n", + " data=res_array,\n", + " dims=[\"y\", \"x\"],\n", + " coords=arr_stack_2.coords,\n", + " attrs=dict(\n", + " description=\"Predicted use.\"\n", + " ),\n", + " ) \n", + "\n", + " res_arrays.append(da)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now print the result as a image:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcQElEQVR4nO3deVxU1f8/8BfrsIMosqgoouKGYqbkknsimWkpKqkp+cmWSXPNj9+PBi5lZm6Vax/CtAWl1PyUH3NPzQ3XpFxQMVBETWUVkOD8/ujnfByHuRfmzjBXfD0fj3k8nHvuuefcM5fh7eW+z7ERQggQERERqZittTtAREREJIcBCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8Bi0o0aNAAo0aNsnY3iKiaGzVqFBo0aGBSXWt9T12/fh2DBg1CzZo1YWNjg8WLF1d5H8j6GLBUoQMHDiAuLg7Z2dnW7kqVSk5OxltvvYUWLVrA1dUVgYGBGDx4MM6fP1/u/mfOnEGfPn3g5uYGb29vjBgxAjdv3tTb5+zZs3jnnXcQFhYGd3d3+Pv7o2/fvjh69KjB8c6dO4cJEyagY8eOcHJygo2NDS5fvlypc1i+fDmioqIQGBgIGxsbyS/t7OxsjBkzBj4+PnB1dUX37t1x/PjxSrUXHx+PZs2awcnJCY0bN8Ynn3xi0nmNGjUKNjY2sq8Hz8fc4y/lwIED6Ny5M1xcXODn54dx48YhPz/fYL/i4mJMnToVAQEBcHZ2Rnh4OLZv316ptioypgBw9epVDB48GF5eXvDw8ED//v1x6dKlSrVlbZmZmYiLi8PJkyet3RWzmDBhAn766SdMmzYNa9euRZ8+faqs7Ypeo1QFBFWZ+fPnCwAiLS3NoKyoqEjcu3ev6jtVBQYOHCj8/PzE2LFjxWeffSZmz54tfH19haurqzh9+rTevhkZGaJWrVoiODhYLFmyRLz33nuiRo0aonXr1qK4uFi336RJk4SXl5cYPXq0WLlypfjwww9FcHCwsLOzE9u3b9c7ZkJCgrC1tRUtW7YUYWFhRj8DKfXr1xfe3t6iT58+wt7eXowcObLc/UpLS0XHjh2Fq6uriIuLE59++qlo3ry5cHd3F+fPn69QWytWrBAAxMCBA8WqVavEiBEjBADxwQcfVPq8Dhw4INauXat7zZo1SwAQY8aM0dt+4MABIYRlxt+YEydOCCcnJ9GmTRuxfPly8a9//UtoNBrRp08fg32HDh0q7O3txeTJk8XKlStFhw4dhL29vdi3b59ZxzQvL080btxY1K5dW8ybN08sXLhQ1KtXT9StW1f8+eefFWpLDZKTkwUAkZCQYFB27949UVRUZNJx69evb/TatyRfX18xbNiwKm+3MtcoWR4DliokFbBUZ7/88oveLzshhDh//rzQaDQGX0JvvPGGcHZ2Fn/88Ydu2/bt2wUAsXLlSt22o0ePiry8PL26f/75p/Dx8RGdOnXS237r1i2Rm5srhDD9M7h8+bIoKysTQgjh6upq9Et73bp1AoBISkrSbbtx44bw8vIS0dHRsu3cvXtX1KxZU/Tt21dv+7Bhw4Srq6u4ffu2ovOS+kUmhGXG35jIyEjh7+8vcnJydNs+++wzAUD89NNPum2HDx8WAMT8+fN12woLC0VwcLDo0KGDbDuVGdN58+YJAOLIkSO6bWfOnBF2dnZi2rRpFTovNZD7nE1ljoCltLRUFBYWVqqOjY2N0Gq1ito1RUWvUaoaDFiqSGxsrABg8Lr/C+bhL4KEhAQBQOzbt0+MHTtW1KpVS3h6eooxY8aI4uJicefOHTFixAjh5eUlvLy8xJQpU3S/UO8rLS0VixYtEs2bNxcajUbUrl1bjBkzRu8L2pqeeOIJ8cQTT+htq127toiKijLYt0mTJqJnz56yx3zxxReFt7e30XJzBI1SAUtUVJTw9fUVpaWletvHjBkjXFxcZP9n++OPPwoA4scff9TbfuDAAQFArF27ttx65gpYLDH+BQUF4syZM+LmzZu6bTk5OcLe3l5MmTJFb9/i4mLh5uYmRo8erds2ZcoUYWdnp/dLQwgh3n//fQFApKen67bdvHlTnDlzRhQUFOi2VWZM27VrJ9q1a2dwXr179xbBwcGy51+ea9euiVGjRok6deoIR0dH4efnJ55//nm9z6p+/fqib9++4qeffhKtW7cWGo1GNGvWTHz33Xd6x7p165aYNGmSaNmypXB1dRXu7u6iT58+4uTJk7p9du/eXe53zf3PfOTIkaJ+/fp6x50/f77o0KGD8Pb2Fk5OTuKJJ57QC7of7GdlAxYAQqvVii+//FI0b95c2Nvbi40bNwohhLhy5YqIiYkRtWvXFo6OjqJ58+YiPj5eV/f+9+DDr6pQmWuUqgafYakiL774IqKjowEAixYtwtq1a7F27Vr4+PhI1hs7dixSU1Mxc+ZMPP/881i1ahVmzJiBfv36obS0FO+//z46d+6M+fPnY+3atXp1X3vtNUyZMgWdOnXCkiVLEBMTg6+++goREREoKSmRbLe4uBh//vlnhV6mEELg+vXrqFWrlm7b1atXcePGDTz55JMG+7dv3x4nTpyQPW5WVpbeMavaiRMn8MQTT8DWVv9Hq3379rh7967R53YerA/AYAzatm0LW1vbCo2BqSw1/keOHEGzZs3w6aef6radPn0af/31l0Fbjo6OCAsL02vrxIkTaNKkCTw8PAz6BEDvOY1PP/0UzZo1w5EjR/TqA/JjWlZWhl9//dXo+V+8eBF5eXmyY/CwgQMHYuPGjYiJicGyZcswbtw45OXlIT09XW+/1NRUDBkyBJGRkZg7dy7s7e0RFRWl96zOpUuXsGnTJjz33HNYuHAhpkyZgtOnT6Nr167IzMwEADRr1gyzZs0CAIwZM0b3XdOlSxejfVyyZAnatGmDWbNm4f3339e1/eOPP1b6fMuza9cuTJgwAUOGDMGSJUvQoEEDXL9+HU899RR27NiBt956C0uWLEGjRo0wevRo3UO1Xbp00X2vPfPMM7pzkXLnzp0KfW/dvXtX8jiVuUapilg7YnqcSP0v2NgdloiICL07Jx06dBA2Njbi9ddf123766+/RN26dUXXrl112/bt2ycAiK+++kqvna1bt5a7/WHG/mdT3ssUa9euFQD0/jd1/3//a9asMdh/ypQpAoDkHYq9e/cKGxsbMWPGDKP7WPoOi6urq3jllVcMtt//X/7WrVslj63VaoWdnV25ZT4+PmLo0KHllpnjDoulxv/+//hjY2N125KSkgQAsXfvXoPjREVFCT8/P937Fi1aiB49ehjs99tvvwkAYsWKFbpt9+9k7t69W7etomN68+ZNAUDMmjXLYL+lS5cKAOLs2bPln7wRd+7cMfhzVnnq168vAOjdUcnJyRH+/v6iTZs2um1FRUUGd+/S0tKERqPR67fU51zeHZa7d+/qvb93755o2bKlwbibeofF1tZW/Pbbb3rbR48eLfz9/Q2eDRo6dKjw9PTU6xP+/12airg/lnKvB6/H8lTmGqWqYW+ZMIjMZfTo0bCxsdG9Dw8Px8GDBzF69GjdNjs7Ozz55JM4duyYbltSUhI8PT3xzDPP6N0Fadu2Ldzc3LB792689NJLRtuNiIiodBZGRZ09exZarRYdOnTAyJEjddsLCwsBABqNxqCOk5OTbp/yym/cuIGXXnoJQUFBeOeddyzS74ow1r8H+y9X39HRsdwyJycn2fpKWGr8u3XrBiFEpdp68DwrM6ZxcXGIi4szaKsiY1rR868MZ2dnODo6Ys+ePRg9ejRq1KhhdN+AgAC88MILuvceHh54+eWXMW/ePGRlZcHPz0+vb6WlpcjOzoabmxtCQkIqnYn2cD/vu3PnDkpLS/H000/jm2++MfmYD+ratSuaN2+uey+EwHfffYfBgwdDCKH3HRUREYHExEQcP34cnTp1qnRbX331VYU+p4YNG0qWV+YaparBgEXlAgMD9d57enoCAOrVq2ew/c6dO7r3qampyMnJQe3atcs97o0bNyTb9ff3h7+/vyldlpSVlYW+ffvC09MT3377Lezs7HRl9780i4uLDeoVFRXp7fOggoICPPfcc8jLy8P+/fvh5uZmUt9u3ryJ0tJS3Xs3N7dKH8vZ2blC/TfWlrOzM+7du1fusYuKiso9f3OpyvGXa+vBdio6plJtVWRMTT1/KRqNBvPmzcOkSZPg6+uLp556Cs899xxefvll+Pn56e3bqFEjvf+cAECTJk0AAJcvX4afnx/KysqwZMkSLFu2DGlpaXrXUM2aNSvVtwf98MMPmDNnDk6ePKl3/g/3x1RBQUF672/evIns7GysWrUKq1atKreO3HeUMaYEOeWpzDVKVYMBi8o9+AtdbvuD/4stKytD7dq18dVXX5VbX+7ZmcLCQuTk5FSojw9/8RqTk5ODyMhIZGdnY9++fQgICNArvx8gXbt2zaDutWvX4O3tbfC/nXv37uHFF1/Er7/+ip9++gktW7asUF/K065dO/zxxx+697GxsQb/W5fj7+9vtP8AdOdsrC1/f3+Ulpbixo0besHmvXv3cOvWLYMxM6eqHH+5th48T39/f1y9erXc/QDIjklFx/T++VXk86uM8ePHo1+/fti0aRN++uknzJgxA3PnzsWuXbvQpk2bSh3r/fffx4wZM/DKK69g9uzZ8Pb2hq2tLcaPH4+ysrJK9w0A9u3bh+effx5dunTBsmXL4O/vDwcHByQkJODrr7826ZgPe/iX+/2+Dh8+XO8u64NatWplUlsP/2fAGLn/kFTmGqWqwYClCpnrfysVERwcjB07dqBTp04m/U9g3bp1iImJqdC+D9/uL09RURH69euH8+fPY8eOHXq3h++rU6cOfHx8yp187MiRIwgLC9PbVlZWhpdffhk7d+7E+vXr0bVr1wr115iHbyXL3TIuT1hYGPbt24eysjK9B28PHz4MFxcX3f+YjbV1/xyPHj2KZ599Vld+9OhRlJWVGYyBOVXl+Lds2RL29vY4evQoBg8erNt+7949nDx5Um9bWFgYdu/ejdzcXL0Hbw8fPqwrl1LRMbW1tUVoaGi553/48GE0bNgQ7u7uFT7HBwUHB2PSpEmYNGkSUlNTERYWhgULFuDLL7/U7XPhwgUIIfS+J+4/pH1/Ztpvv/0W3bt3R3x8vN7xs7Oz9R52rsx3zXfffQcnJyf89NNPegFpQkJCpc6xMnx8fODu7o7S0lL06tXLrMd++D8Dxsj9h6Qy1yhVDQYsVcjV1RUAqmSm28GDB2PZsmWYPXs23n//fb2yv/76C/n5+fDy8jJa35zPsJSWlmLIkCE4ePAgvv/+e3To0MHovgMHDsQXX3yBjIwM3Z+9du7cifPnz2PChAl6+44dOxbr1q3DypUr8eKLLyrupzluJQ8aNAjffvstNmzYgEGDBgEA/vzzTyQlJaFfv366XwjG2urRowe8vb2xfPlyvV+uy5cvh4uLC/r27au4j1IsMf53795Feno6atWqpful6unpiV69euHLL7/EjBkzdIHA2rVrkZ+fj6ioKF39QYMG4aOPPsKqVaswefJkAH/fpk9ISEB4eLjen0fvZ4AEBgbCxcUFQOXGdNCgQfjnP/+Jo0eP6rJDzp07h127dunaroy7d+/C1tZW9wwM8Hfw4u7ubvCnhszMTGzcuFE3lrm5uVizZg3CwsJ0dzHt7OwM/oOQlJSEq1evolGjRrptlfmusbOzg42Njd5dicuXL2PTpk2VOtfKsLOzw8CBA/H1118jJSXF4M7czZs3Ze8CG2OuZ1gqc41S1WDAUoXatm0LAPjXv/6FoUOHwsHBAf369dN9uZhT165d8dprr2Hu3Lk4efIkevfuDQcHB6SmpiIpKQlLlizR/UItjzmfYZk0aRI2b96Mfv364fbt23r/qwT+vi183//93/8hKSkJ3bt3x9tvv438/HzMnz8foaGhend8Fi9ejGXLlqFDhw5wcXExOOYLL7ygG9ecnBzdNOy//PILgL/TX728vODl5YW33npL9hz+85//4NSpUwCAkpIS/Prrr5gzZw4A4Pnnn9fdvh40aBCeeuopxMTE4Pfff0etWrWwbNkylJaWYubMmbLtODs7Y/bs2dBqtYiKikJERAT27duHL7/8Eu+99x68vb11+5rjvB5mifE/cuQIunfvbvA/2vfeew8dO3ZE165dMWbMGFy5cgULFixA79699aZeDw8PR1RUFKZNm4YbN26gUaNG+OKLL3D58mWDOw2ffvopZs6cid27d6Nbt26VHtM333wTn332Gfr27YvJkyfDwcEBCxcuhK+vLyZNmqTXVrdu3fDzzz9L3mE8f/48evbsicGDB6N58+awt7fHxo0bcf36dQwdOlRv3yZNmmD06NFITk6Gr68vPv/8c1y/fl3vTsdzzz2HWbNmISYmBh07dsTp06fx1VdfGfzyDQ4OhpeXF1asWAF3d3e4uroiPDzc4FkSAOjbty8WLlyIPn364KWXXsKNGzewdOlSNGrUCL/++qvRc1Pqgw8+wO7duxEeHo5XX30VzZs3x+3bt3H8+HHs2LEDt2/fNum45nqGBaj4NUpVxHoJSo+n2bNnizp16ghbW9sKTRyXnJysV/9+2uaDk3AJ8Xeqoqurq0F7q1atEm3bthXOzs7C3d1dhIaGinfeeUdkZmaa/dyM6dq1a6XSolNSUkTv3r2Fi4uL8PLyEsOGDRNZWVl6+4wcOVLymA+m96alpRnd7+H0TmOk2ns4dfT27dti9OjRombNmsLFxUV07drV4HOUs2rVKhESEiIcHR1FcHCwWLRokcHEgKacV0VmQDX3+JeX1nzfvn37RMeOHYWTk5Pw8fERWq1WN3vvgwoLC8XkyZOFn5+f0Gg0ol27duWmiJeX1nxfRcZUiL+XJxg0aJDw8PAQbm5u4rnnnhOpqakG+7Vt21Y2tfXPP/8UWq1WNG3aVLi6ugpPT08RHh4u1q9fr7ffgxPHtWrVSmg0GtG0aVODyduKiorEpEmThL+/v3B2dhadOnUSBw8eFF27dtWb1kAIIb7//nvdRG0PfublpTXHx8eLxo0b69pNSEjQjeXD/TR14rjyXL9+XWi1WlGvXj3h4OAg/Pz8RM+ePcWqVasqfAxLq+g1SpZnI0QFHkAgIiKdvLw8eHt7Y/HixdBqtYqP16BBA7Rs2RI//PCDGXpHVD1xplsiokrau3cv6tSpg1dffdXaXSF6bPAZFiKiSurbt6/FH4BWu6ysLMlyZ2dn3bxRRObAgIWIiCpN7qH8kSNHYvXq1VXTGXosMGAhIrKyy5cvW7sLlSY37QEnViNz40O3REREpHp86JaIiIhUjwELERERqR4DFiIiIlI9BiwK7d27F/369UNAQABsbGxMWn9DCIGPPvoITZo0gUajQZ06dfDee++Zv7NERESPKGYJKVRQUIDWrVvjlVdeMXkBvrfffhvbtm3DRx99hNDQUNy+fdvkdTSIiIiqI2YJmZGNjQ02btyIAQMG6LYVFxfjX//6F7755htkZ2ejZcuWmDdvnm5htjNnzqBVq1ZISUlBSEiIdTpORESkcvyTkIW99dZbOHjwIBITE/Hrr78iKioKffr0QWpqKoC/VwFu2LAhfvjhBwQFBaFBgwb4xz/+wTssRERED2DAYkHp6elISEhAUlISnn76aQQHB2Py5Mno3Lmzbsn4S5cu4Y8//kBSUhLWrFmD1atX49ixYxg0aJCVe09ERKQefIbFgk6fPo3S0lI0adJEb3txcTFq1qwJACgrK0NxcTHWrFmj2y8+Ph5t27bFuXPn+GciIiIiMGCxqPz8fNjZ2eHYsWOws7PTK3NzcwPw93oc9vb2ekFNs2bNAPx9h4YBCxEREQMWi2rTpg1KS0tx48YNPP300+Xu06lTJ/z111+4ePEigoODAQDnz58HANSvX7/K+kpERKRmzBJSKD8/HxcuXADwd4CycOFCdO/eHd7e3ggMDMTw4cPxyy+/YMGCBWjTpg1u3ryJnTt3olWrVujbty/KysrQrl07uLm5YfHixSgrK4NWq4WHhwe2bdtm5bMjIiJSBwYsCu3Zswfdu3c32H5/afWSkhLMmTMHa9aswdWrV1GrVi089dRTmDlzJkJDQwEAmZmZGDt2LLZt2wZXV1dERkZiwYIF8Pb2rurTISIiUiUGLERERGSyvXv3Yv78+Th27BiuXbtmMB/Zg15//XWsXLkSixYtwvjx4yvVDtOaiYiIyGT3Z3xfunSp5H4bN27EoUOHEBAQYFI7fOiWiIiITBYZGYnIyEjJfa5evYqxY8fip59+Qt++fU1qhwGLicrKypCZmQl3d3fY2NhYuztERKRiQgjk5eUhICAAtraW++NGUVER7t27p/g4QgiD320ajQYajabSxyorK8OIESMwZcoUtGjRwuQ+MWAxUWZmJurVq2ftbhAR0SMkIyMDdevWtcixi4qK4BdYHzk3byg+lpubG/Lz8/W2xcbGIi4urtLHmjdvHuzt7TFu3DhFfWLAYiJ3d3cAwPTnesDJofLD+GL9CZLlG/5YZFK/LK336TTJ8m2hQSYfW2pM5MZjbJcIyfIvu0rfguy+xvh5XWlvPFsr/Pp+yeMmh7aWLD+09EPJcinto2abXLfuEcutVVWn/u+S5Z/s/UmyvIFW+u/g/U5vNvnYahQac16y3H+ig2S5kp85OUp+rob//KPRskaN2kse9+3PTb+2AaDGjI+Nlt2ZbfyXpty1d3mpVrJc6jssv7gA7ZcP0v3usIR79+4h5+YNfLQ3Gc5uprdTmJ+HyV3aISMjAx4eHrrtptxdOXbsGJYsWYLjx48r/msEAxYT3R94Jwd7ODlIf6GUx13jKlluyjGrgttDM/Y+TEm/pcZE7rgezs6S5XI/vFJtu7q4mdyuq6vlPmepfslx1xSbXFeO3JjInbOLq/RnJXV8tf7cSHF1lf7zgCV/5uQo+bmSqmvrKn3tKj0nqX4VShxb7tqT65fc9zqAKnmEwNnNXVHAcp+Hh4dewGKKffv24caNGwgMDNRtKy0txaRJk7B48WJcvny5wsdiwEJEREQWMWLECPTq1UtvW0REBEaMGIGYmJhKHYsBCxEREZnswRnfASAtLQ0nT57Uzfh+f7Hf+xwcHODn51fptfIYsBAREZHJjh49qjfj+8SJEwH8b8Z3c2HAQkRERCbr1q0bKjNpfmWeW3kQp+Y3UW5uLjw9PTHnhd6P5IN+ajQkaKrRsnVp86qwJ1Wn04TpkuXXYDwDxPf6LZPbDTxoel05yQOaKKp/adFoyfJJPYxnpizYZTwzpbpqOCFeslxuPJV49tRFo2VbWgdbrF1rkbr2AGBn44+MlhUUlKH/85eRk5Oj+EFWY+7/Xlp6/KziLCHtE00t2ldTcGp+IiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPE8dZUNhrZ4yWnVzZrAp7Yj5Sc6XIkZtLRXL+DpnFq+XmM/ll0RzpA1iJXL+kxju9Q02jZQBw3dd4eSCUzcNyrvcoo2UvnJosWfdxnCvFkiw5z4ocqblWLDlHi6V+3uXmWZHTM9X4tZ9bWAhgkqLjP+54h4WIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMa3Zgh7V1GVLkUuJTpYoU5rG+KimPUumgqdJ1204Id5omWQKeYUcMFqyYJf10myl0lIf13RqqWtf6XUvlbqspF7O6gSTjnufJc+ZrId3WIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4duiYiIqpG4qzdh61pocv2ygnwAQLt27WBnZwetVgutVmuu7pmMAQtVilx2SbtN542W1Q1KkT42jB9b6ZP9T506IVn+i6KjW4d85pPp2TpSGUZKmZpZotPDtGpKF7ZTQq0ZSnLXkOeoGJOPrWSBw04m1/ybqd8XlvycikpKLHZsS0lOToaHh4e1u6HDPwkRERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPaY1q5S1Fu+SS/1cIJMqe0mirNMA6RRKf4nV/KSOWxFX0lpKlg8JMl4uuQChQpZclFHu2FKumVzz0aXW1GOlFH1fKEhNliKbYi4zDYGcpyy0CKaS1PjcwkJM37jN5PrEOyxERET0CGDAQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPU4D8sjyJJzd8jNUSDX9lMS8ycskOmXknlDqquw184YLfMcFSNZN2d1gsntXpKZb6fhhHiTj71F4dwezRTVNk7JHBtKKJ3/xZLfB95zVplc9/b0MSbXfVTtbPyR0bKCgrIq7En1xDssREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiITLZ3717069cPAQEBsLGxwaZNm3RlJSUlmDp1KkJDQ+Hq6oqAgAC8/PLLyMzMrHQ7TGu2ErkUykMWbFtJ+rBciuQvJh9ZWfqlnHVp8yx2bCWk0sD/Ntloyc5lxlMoAeCkBcdTLu1ZjZSmD8uR+pm2dNuWYqnUZEuPh1TafcPWLxot87jbUfK4Dba9IVke22Of0bLC/DwATSXrP6oKCgrQunVrvPLKK3jxRf3xvXv3Lo4fP44ZM2agdevWuHPnDt5++208//zzOHr0aKXaYcBCREREJouMjERkZGS5ZZ6enti+fbvetk8//RTt27dHeno6AgMDK9wOAxYiIiIykJubq/deo9FAo9EoPm5OTg5sbGzg5eVVqXoMWIiIiKqRf4sRcBWmP6JaIMrQH0C9evX0tsfGxiIuLk5R34qKijB16lRER0fDw8OjUnUZsBAREZGBjIwMvaBC6d2VkpISDB48GEIILF++vNL1GbAQERGRAQ8Pj0rfBTHmfrDyxx9/YNeuXSYdlwELERERWcz9YCU1NRW7d+9GzZo1TToOAxaFxo5sAQ/X8m+TLfjstMnHlVz1WOGKypZMH6bKkfsspVJlc10OSNZtOMF4mSXTkuVW+LXWKr5yUwko+SyUtG3pFF+pz6O6rqhs6vXdcIL0z9SiAdL1s1FqUruPuvz8fFy4cEH3Pi0tDSdPnoS3tzf8/f0xaNAgHD9+HD/88ANKS0uRlZUFAPD29oajo2OF22HAQkRERCY7evQounfvrns/ceJEAMDIkSMRFxeHzZs3AwDCwsL06u3evRvdunWrcDsMWIiIiMhk3bp1gxDCaLlUWWVwan4iIiJSPQYsREREpHpWDVji4uJgY2Oj92ra1PhaC926dTPY38bGBn37/u+Btg0bNqB3796oWbMmbGxscPLkSYPjvPbaawgODoazszN8fHzQv39/nD171hKnSERERGZg9TssLVq0wLVr13Sv/fv3G913w4YNevumpKTAzs4OUVFRun0KCgrQuXNnzJtnfLG7tm3bIiEhAWfOnMFPP/0EIQR69+6N0tLH8wlvIiIitbP6Q7f29vbw8/Or0L7e3t567xMTE+Hi4qIXsIwYMQIAcPnyZaPHGTPmf6l8DRo0wJw5c9C6dWtcvnwZwcHBleg98MkXv8HJwaFSdSxNLm1ZKu2ZKc+k1DPxFyXL6ypML7YUJWnLlmz3UOs2io7f7Fa60bKnVPpZWItcOvSQoKmS5U9GuBstKyvIN6lP9D9Wv8OSmpqKgIAANGzYEMOGDUN6uvEfrofFx8dj6NChcHV1Nbn9goICJCQkICgoyGDdBCIiIlIHqwYs4eHhWL16NbZu3Yrly5cjLS0NTz/9NPLy8mTrHjlyBCkpKfjHP/5hUtvLli2Dm5sb3Nzc8N///hfbt2+XnMCmuLgYubm5ei8iIiKqGlYNWCIjIxEVFYVWrVohIiICW7ZsQXZ2NtavXy9bNz4+HqGhoWjfvr1JbQ8bNgwnTpzAzz//jCZNmmDw4MEoKioyuv/cuXPh6empe/FuDBERUdWx+p+EHuTl5YUmTZroTfFbnoKCAiQmJmL0aNOnF/f09ETjxo3RpUsXfPvttzh79iw2btxodP9p06YhJydH98rIyDC5bSIiIqocVQUs+fn5uHjxIvz9/SX3S0pKQnFxMYYPH26WdoUQEEKguLjY6D4ajUa3cqU5V7AkIiIieVbNEpo8eTL69euH+vXrIzMzE7GxsbCzs0N0dDQA4OWXX0adOnUwd+5cvXrx8fEYMGBAuSs+3r59G+np6cjMzAQAnDt3DgDg5+cHPz8/XLp0CevWrUPv3r3h4+ODK1eu4IMPPoCzszOeffZZC58xERERmcKqAcuVK1cQHR2NW7duwcfHB507d8ahQ4fg4+MDAEhPT4etrf5NoHPnzmH//v3Ytm1bucfcvHkzYmJidO+HDh0KAIiNjUVcXBycnJywb98+LF68GHfu3IGvry+6dOmCAwcOoHbt2hY608qzZDqhJVOX1ZoyrXSl3uqm4YR4yXKl6Z1SrqS1lNnj8fosLE3q5+4XmbpyK79fQ5DRMqlrKOy1M5LHPbmymXTHLETJdQ0Ac+sa/x1SmO8MraKjk1UDlsTERMnyPXv2GGwLCQmRXEhp1KhRGDVqlNHygIAAbNmypaJdJCIiIhVQ1TMsREREROVhwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPRshlXJDRuXm5sLT0xM5ixbAw9m5SttWmoI76dVQ48f+7LSiY1uL0jRdqbTnja1fNKlPFWnXkuTGRIol05rXpc0zua4ca624bE1qTcmXSl22VtoyADx7yvhq4ltaB0vWVXLd5xUXoPniSOTk5Fhs4tH7v5e+39wArq6m348oKChD/+cvW7SvprBqWjMRERGZl6vLv+Hq4mr6AUQBgF5o164d7OzsoNVqodVafxYZBixERERkIDk5WVV3WPgMCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1+NCtSlkyVfFRTV2WojR9+Myij40fu7Xpn4UlV4mWO/ZGk49MaqLWtGVAvauzm0rpas1SKftFJSWKjk28w0JERESPAAYsREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI/zsKiU1BwbOxt/JFnXmku3P6rklpU3Rm4uFDnK5n1IkSyVmptGav4MALgk0/L20cbHK2bX99KV02QOrsDG1i8aLXvh1AbJugk9+itqW/a8jVDzPCtKqHWOFsmfdYl5VAD5n1ep8rziAkzHNsn6JI13WIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREake05otSEmKpRJhr52RLGfaMylNK709fYzxQoWp3kpIpXIvkKusNL1Y4ryvpLU0WjYkyHhZRayTScVVI7m0emumPZN68Q4LERERqR4DFiIiIjLZ3r170a9fPwQEBMDGxgabNm3SKxdC4N1334W/vz+cnZ3Rq1cvpKamVrodBixERERksoKCArRu3RpLly4tt/zDDz/Exx9/jBUrVuDw4cNwdXVFREQEioqKKtUOn2EhIiIik0VGRiIyMrLcMiEEFi9ejOnTp6N//7+Xv1izZg18fX2xadMmDB06tMLt8A4LERERGcjNzdV7FRcXV/oYaWlpyMrKQq9evXTbPD09ER4ejoMHD1bqWLzDQkREVI2EZrvA456ryfVz7woAQL169fS2x8bGIi4urlLHysrKAgD4+vrqbff19dWVVRQDFguyVOpyz9TJyur3MF5WXVeOVbqqsqUoSkm14KrHSlTXa0iO9HkbL1O2Yrey+kpTopl+XL1lZGTAw8ND916j0VixN/yTEBEREZXDw8ND72VKwOLn5wcAuH79ut7269ev68oqigELERERWURQUBD8/Pywc+dO3bbc3FwcPnwYHTp0qNSx+CchIiIiMll+fj4uXLige5+WloaTJ0/C29sbgYGBGD9+PObMmYPGjRsjKCgIM2bMQEBAAAYMGFCpdhiwEBERkcmOHj2K7t27695PnDgRADBy5EisXr0a77zzDgoKCjBmzBhkZ2ejc+fO2Lp1K5ycnCrVDgMWIiIiMlm3bt0ghDBabmNjg1mzZmHWrFmK2uEzLERERKR6vMOiUlIpkmpN0bUmuTGRS7XlmNLjSO66T+jRX7I8Ztf3Rsse1/R2shzeYSEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6TGtWKWul2SpND5Y89quhJtdd8Nlp6R2C06XbhmXOi+nQ6uI9Z5XRstvTx1RhTx4Nsun+Co4t9bOh1pRnuZ/nKypdIf1xwTssREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVM9GCCGs3YlHUW5uLjw9PZGzaAE8nJ2t3R2zUW26oVxK9MVAi7WtKJVbYdqzVNufBL0hWTe+9zijZSdXNjO5TwAwJGiqyXW3jw6WLH/c0o+VjKVS69LmKapvqbR+uVWirXWNKPms8ooL0HxxJHJycuDh4WHGXv3P/d9L1789AA8XN9OPczcfvoM6WrSvpuAdFiIiIlI9BixERESkegxYiIiISPU4NT8REVE1cmt/Du5p/jK5fl5xAQCgXbt2sLOzg1arhVarNVf3TMaAhYiIiAwkJyfzoVsiIiKiyrDqHZa4uDjMnDlTb1tISAjOnj1b7v7dunXDzz//bLD92WefxY8//p3+uWHDBqxYsQLHjh3D7du3ceLECYSFhen2vX37NmJjY7Ft2zakp6fDx8cHAwYMwOzZs+Hp6Wm+k3tEyaUp7mz8kWS5VLqsohTIizLlMqs1K0l7tuSKzEpSpi8HyZxz6mSjRbkTXpSsemnRaMnyukEp0m1LuD1dWSotqYfU9avk5yZm1/fS7Zp8ZKDhhHijZXLXvZI08KKSEpPr0t+s/iehFi1aYMeOHbr39vbGu7Rhwwbcu3dP9/7WrVto3bo1oqKidNsKCgrQuXNnDB48GK+++qrBMTIzM5GZmYmPPvoIzZs3xx9//IHXX38dmZmZ+Pbbb810VkRERGROVg9Y7O3t4efnV6F9vb299d4nJibCxcVFL2AZMWIEAODy5cvlHqNly5b47rvvdO+Dg4Px3nvvYfjw4fjrr78kAyYiIiKyDqs/w5KamoqAgAA0bNgQw4YNQ3q6zG3uB8THx2Po0KFwdXVV1If7s/lJBSvFxcXIzc3VexEREVHVsGrAEh4ejtWrV2Pr1q1Yvnw50tLS8PTTTyMvL0+27pEjR5CSkoJ//OMfivrw559/Yvbs2RgzRnqq57lz58LT01P3qlevnqJ2iYiIqOKsGrBERkYiKioKrVq1QkREBLZs2YLs7GysX79etm58fDxCQ0PRvn17k9vPzc1F37590bx5c8TFxUnuO23aNOTk5OheGRkZJrdLRERElaOqBza8vLzQpEkTXLhwQXK/goICJCYmYtasWSa3lZeXhz59+sDd3R0bN26Eg4OD5P4ajQYajcbk9oiIiMh0qgpY8vPzcfHiRd2Ds8YkJSWhuLgYw4cPN6md3NxcREREQKPRYPPmzXBycjLpOGollyqrJN2wp0SqLACchPG2LbrqsVzaspK0Z6m6FlwlWqmNraVTl5VQ8lkqXZ1Y6QrDxjx7Si53XtqW1tKrUBsjdz5Kx0syBT1N0aGtRu77QOr6fOHUBuP1TO4RVQWrBiyTJ09Gv379UL9+fWRmZiI2NhZ2dnaIjo4GALz88suoU6cO5s6dq1cvPj4eAwYMQM2aNQ2Oefv2baSnpyMzMxMAcO7cOQCAn58f/Pz8kJubi969e+Pu3bv48ssv9R6g9fHxgZ2dnSVPmYiIiExg1YDlypUriI6Oxq1bt+Dj44POnTvj0KFD8PHxAQCkp6fD1lb/MZtz585h//792LZtW7nH3Lx5M2JiYnTvhw4dCgCIjY1FXFwcjh8/jsOHDwMAGjVqpFc3LS0NDRo0MNfpERERkZlYNWBJTEyULN+zZ4/BtpCQEAghjNYZNWoURo0aZbS8W7dukvWJiIhIfaw+DwsRERGRHAYsREREpHoMWIiIiEj1GLAQERGR6qlqHpbqxlJLr8uRWj4dABZILKGutF+WPC9FFMyXstPW+MzLPSE9L42S+UqUkppv4syijyXrXjJxThE1856zSnqHfj2rpiNV7EpaS4lS612flqTa7yFShHdYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERCYrLS3FjBkzEBQUBGdnZwQHB2P27Nlmn6SVD90SERGRyebNm4fly5fjiy++QIsWLXD06FHExMTA09MT48aNM1s7DFiIiIjIZAcOHED//v3Rt+/f2VkNGjTAN998gyNHjpi1HQYs1ZBUOiugbAl1uTTd6phO2DNVOnVZitx4KEl7VvJZbLFi2vK6tHlWaff29DGS5XJj8uypi+bsTrUwJGiqRGlKlfXDXJR+f1lzGgNr6tixI1atWoXz58+jSZMmOHXqFPbv34+FCxeatR0GLERERGQgNzdX771Go4FGozHY75///Cdyc3PRtGlT2NnZobS0FO+99x6GDRtm1v4wYCEiIqpGNvyxCE4ODibXLyopAQDUq1dPb3tsbCzi4uIM9l+/fj2++uorfP3112jRogVOnjyJ8ePHIyAgACNHjjS5Hw9jwEJEREQGMjIy4OHhoXtf3t0VAJgyZQr++c9/YujQoQCA0NBQ/PHHH5g7dy4DFiIiIrIsDw8PvYDFmLt378LWVn+WFDs7O5SVlZm1PwxYiIiIyGT9+vXDe++9h8DAQLRo0QInTpzAwoUL8corr5i1HRth7pldHhO5ubnw9PREzqIF8HB2LncfJU+MqzXbZmfjjyTLT65sZrRMreckp0Ga8YUTx6Ytl6zbacJ0RW3X3VRicl2pbBy5jBe5jBmpz9KamRJyC39Kya5ZKlkul2X0KJLO8rFcRpdavwukF4pUJq+4AM0XRyInJ6dCdy1Mcf/30pwXeit+hmX6xm0V7mteXh5mzJiBjRs34saNGwgICEB0dDTeffddODo6mtyPh/EOCxEREZnM3d0dixcvxuLFiy3aDqfmJyIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPWYJWYla0/rk5LockCxvOEGiUGZRxo2tXzRadmnRaMm6ljRWQd1fFs1R1LZc2qmpdddBWbqq1GfVUKIMUP5ZSqWKDyi8ZrRsk3OR5HEvTVf2WVHFWXMRVUumLpNl8Q4LERERqR4DFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHeVgsSMlcAlLzFFhzDpcX8hdL73Ax0PRjS8zTssDko1J55OZ3SR7QxORjy82z0nBCvKL6UnPbTJGqKDF/S0UomROHiJTjHRYiIiJSPQYsREREpHoMWIiIiEj1Kh2wjBw5Env37rVEX4iIiIjKVemAJScnB7169ULjxo3x/vvv4+rVq5boFxEREZFOpQOWTZs24erVq3jjjTewbt06NGjQAJGRkfj2229RUlJiiT4SERHRY85GCCGUHOD48eNISEjAv//9b7i5uWH48OF488030bhxY3P1UZVyc3Ph6emJOS/0hpODQ7n7SKUfb2z9ouTxpVJ8ZQWnS5crSD1WK7nl6qsjS6bZrkubZ3JdubRlOXLXvrU+60c1rXn76GCjZc/EX5Ssq+Q6UMKSUzdIffcq+t6F9LVZVFKC6Ru3IScnBx4eHoraMeb+76VtXx+Gq4ubyccpuJuP3i+Fo0mTJrCzs4NWq4VWqzVjT02jaB6Wa9euYfv27di+fTvs7Ozw7LPP4vTp02jevDk+/PBDTJgwwVz9JCIioiqUnJxsseDKFJX+k1BJSQm+++47PPfcc6hfvz6SkpIwfvx4ZGZm4osvvsCOHTuwfv16zJo1yxL9JSIiosdQpe+w+Pv7o6ysDNHR0Thy5AjCwsIM9unevTu8vLzM0D0iIiIiEwKWRYsWISoqCk5OTkb38fLyQlpamqKOEREREd1X6YBlxIgRlugHERERkVGc6ZaIiIhUj6s1K9RAuxQuru7lli2QWnVWJjVzo0RqqCVXTD6z6GPJ8i2tjadIKiWVyiiXyqo0DdJaqbLzXze+8jAATFmhbIVhS5H8rGRWW5b7rNSaom6pFF9Lp0t73bIzWqb0nKy5cryplKYuS5H6LPOKCzAd2yzW9uOAd1iIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHtOaFbq8VGt0tWYlpFKXF3x2WrLupB7Sac1SqctK05Ytleb4KKZPVoRa05a956ySLE+Qqtujv/TBd30vWWyttGe59GJrrVysVLtN542WXarCflQlqWtEyXdJgzTp79b9Jh+ZKoJ3WIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPavOwxIXF4eZM2fqbQsJCcHZs2fL3b9bt274+eefDbY/++yz+PHHv/PuN2zYgBUrVuDYsWO4ffs2Tpw4gbCwML39V61aha+//hrHjx9HXl4e7ty5Ay8vL7Ock7nstF0vUdpMsq7UPCtynj11UbJc6Twt1mKpuTuqq9vTx5hct7rOmfOoqhuUYrwwrer6YU5yP8+dJkjMb3TqhMntXg5Klyy/ktbS5GM/6q5evYqpU6fiv//9L+7evYtGjRohISEBTz75pNnasPrEcS1atMCOHTt07+3tjXdpw4YNuHfvnu79rVu30Lp1a0RFRem2FRQUoHPnzhg8eDBeffXVco9z9+5d9OnTB3369MG0adPMcBZERESPpzt37qBTp07o3r07/vvf/8LHxwepqamoUaOGWduxesBib28PPz+/Cu3r7e2t9z4xMREuLi56AcuIESMAAJcvXzZ6nPHjxwMA9uzZU6m+EhERkb558+ahXr16SEj43xzYQUFBZm/H6s+wpKamIiAgAA0bNsSwYcOQni59y+1B8fHxGDp0KFxdXS3Yw78VFxcjNzdX70VERFRdPfw7r7i4uNz9Nm/ejCeffBJRUVGoXbs22rRpg88++8zs/bHqHZbw8HCsXr0aISEhuHbtGmbOnImnn34aKSkpcHd3l6x75MgRpKSkID4+vkr6OnfuXIPnbYiIiNQm/Pp+eDg7m1w/t7AQAFCvXj297bGxsYiLizPY/9KlS1i+fDkmTpyI//u//0NycjLGjRsHR0dHjBw50uR+PMyqAUtkZKTu361atUJ4eDjq16+P9evXY/To0ZJ14+PjERoaivbt21u6mwCAadOmYeLEibr3ubm5Bh8mERFRdZGRkQEPDw/de41GU+5+ZWVlePLJJ/H+++8DANq0aYOUlBSsWLGi+gQsD/Py8kKTJk1w4cIFyf0KCgqQmJiIWbNmVVHP/v6gyvuwxnaJMBrJKslMOblSOhNICalMH7ksITmWWiVVKWutAKyU1ArCllw9OOy1M5LlPVMnW6xta30Wj+pqzHLUem1b0i+L5hgvs2jLxse6qKTEoi1bgoeHh17AYoy/vz+aN2+ut61Zs2b47rvvzNofqz/D8qD8/HxcvHgR/v7+kvslJSWhuLgYw4cPr6KeERERUXk6deqEc+fO6W07f/486tevb9Z2rHqHZfLkyejXrx/q16+PzMxMxMbGws7ODtHR0QCAl19+GXXq1MHcuXP16sXHx2PAgAGoWbOmwTFv376N9PR0ZGZmAoBuEP38/HTZSFlZWcjKytLdyTl9+jTc3d0RGBhokIlERERExk2YMAEdO3bE+++/j8GDB+PIkSNYtWoVVq1aZdZ2rHqH5cqVK4iOjkZISAgGDx6MmjVr4tChQ/Dx8QEApKen49q1a3p1zp07h/379xt9xmXz5s1o06YN+vb9+08AQ4cORZs2bbBixQrdPitWrECbNm1087R06dIFbdq0webNmy1xmkRERNVWu3btsHHjRnzzzTdo2bIlZs+ejcWLF2PYsGFmbceqd1gSExMly8ubJyUkJARCCKN1Ro0ahVGjRkkeNy4urtwnnYmIiKjynnvuOTz33HMWbUNVz7AQERERlYcBCxEREameqtKaH0Wf7P0JTg4Ola7XcIL0hHeXFhmfh0Y2PbiHTOMKFkdUYmPrFyXLXzi1oYp6YkhqTJWkhcqlB8ulr1sr1VYubTmhR3+jZTG7vlfUtrVS0Ce9GipZfmXHsxZpV6nqmI5tyVRsqe9eqe9dsj7eYSEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9TgPi0Jju0TAw9m53DKpuQSsme/fbMI4o2WWnP9A7pwXSJTJzj0jw5LnJUVuPpOeMnPmWKvfcnPmeN2y3LHbbTovWT5JYsykxkv2GrooXVw3KEWy/EpaS+kDqNAnQW9Ilo9NW26RduWugYYy5UpIfQ91mjBdsu4vi+aYuztUCbzDQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPWY1mxBSlNxjTmz6GPJcqm0ZcB6qbJyJr0aarxQJuU0oUd/6R0UnLP3nFVGy2L++ESmdrpk6YLPTpvQI3WTS1nNrlmq6Pimpi7LpR3LpS3Lkaqv1p85S6UtA/LXAVFl8Q4LERERqR4DFiIiIlI9/kmIiIioGjm3dAXc7OxMrp9f+vefbdu1awc7OztotVpotVpzdc9kDFiIiIjIQHJyMjw8PKzdDR3+SYiIiIhUjwELERERqR7/JGQlcil/L5zaYLRsS+tgybruMumbQ4JMX1V2Xdo8k+vKuhhotEg2LdSCaaMxu743WrZgl3Rasnxqu3XSmhtOiLdKuwDgdUv6b+vJA5pIH2CR8SKp60Tuulea9qzW1GVLkjpnS664bClcjVndeIeFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jGt2YKkUpel0pYB6RRLJWnJSg0JmipZriTtWTLV28Ipo0pWipai1lTXS4tGS5ZbM+1Zrm+kHlJp+xsl6sl9/6n154asi3dYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR7Tmi1ILnWvOpJKe5ZLebZmOuuCz6RWTbbcispyqzlbKr1Trl2plFSlHse0Ze85q4yW3Z4+pgp7Yl5S1+ckE+s9yqSmR8gtKMb0jduqsDfVD++wEBERkeoxYCEiIiLVY8BCREREqseAhYiIiMzigw8+gI2NDcaPH2/2YzNgISIiIsWSk5OxcuVKtGrVyiLHZ8BCREREiuTn52PYsGH47LPPUKNGDYu0wbRmC1KyWrNaKVmN+VElt0K1lLq9tkjvoGAlaCXk0kqHSKwWLmf76GDJcqkUXwCI2fW9ZLmpKbFy167c59wgLVCyfJHECtfZKDVaZq3U9oqQ65uU6pq6LEVqeoSikpIq7Il55Obm6r3XaDTQaDTl7qvVatG3b1/06tULc+bMsUh/GLAQERFVIyMn2cPO2c7k+qWFNsAbQL169fS2x8bGIi4uzmD/xMREHD9+HMnJySa3WREMWIiIiMhARkYGPDw8dO/Lu7uSkZGBt99+G9u3b4eTk5NF+8OAhYiIiAx4eHjoBSzlOXbsGG7cuIEnnnhCt620tBR79+7Fp59+iuLiYtjZmX6350EMWIiIiMgkPXv2xOnT+s/uxMTEoGnTppg6darZghWAAQsRERGZyN3dHS1b6j+k7+rqipo1axpsV4ppzURERKR6vMNiQVKr0i6QqTskyHhkqubUYiWrNVdH0qtAA5N6SKfKKkkrvaIgNZkM7Yf03/Kl8iO8bhm/Lf4op/+qte9SPzdq7XN1smfPHoscl3dYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqZ6NEEJYuxOPotzcXHh6emLOC73h5OBg7e489hpKrJSrlFR6ulLPnpJerrnZhHFGy6RWA1czS46nEp8EvSFZfjkoXbJcKl1W6vq09HgoWW38cZuKQMk0AnJyCwvhOWEScnJyZKe7N7mN//97qdnyZgoXPyzFmTfOWLSvpuAdFiIiIlI9qwYscXFxsLGx0Xs1bdrU6P7dunUz2N/GxgZ9+/4vKt6wYQN69+6NmjVrwsbGBidPnjQ4TlFREbRaLWrWrAk3NzcMHDgQ169ft8QpEhERkRlY/Q5LixYtcO3aNd1r//79RvfdsGGD3r4pKSmws7NDVFSUbp+CggJ07twZ8+YZv5U5YcIE/Oc//0FSUhJ+/vlnZGZm4sUXH83b60RERI8Dq0/Nb29vDz8/vwrt6+3trfc+MTERLi4uegHLiBEjAACXL18u9xg5OTmIj4/H119/jR49egAAEhIS0KxZMxw6dAhPPfWUCWdBRERElmT1OyypqakICAhAw4YNMWzYMKSnSz/Y9qD4+HgMHToUrq6uFa5z7NgxlJSUoFevXrptTZs2RWBgIA4ePGi0XnFxMXJzc/VeREREVDWsGrCEh4dj9erV2Lp1K5YvX460tDQ8/fTTyMvLk6175MgRpKSk4B//+Eel2szKyoKjoyO8vLz0tvv6+iIrK8tovblz58LT01P3qlevXqXaJSIiItNZNWCJjIxEVFQUWrVqhYiICGzZsgXZ2dlYv369bN34+HiEhoaiffv2VdBTYNq0acjJydG9MjIyqqRdIiIiUsEzLA/y8vJCkyZNcOHCBcn9CgoKkJiYiFmzZlW6DT8/P9y7dw/Z2dl6d1muX78u+SyNRqOBRqMx2N5AuxQuru7l1rHWfBNK5l1QylrzNsiNtdw8LWqdG0Rybo9HdB4WtX4WcvOsyJGaw2OBSq+vx5GSuVYapAVKliu9hkia1Z9heVB+fj4uXrwIf39/yf2SkpJQXFyM4cOHV7qNtm3bwsHBATt37tRtO3fuHNLT09GhQ4dKH4+IiIgsz6p3WCZPnox+/fqhfv36yMzMRGxsLOzs7BAdHQ0AePnll1GnTh3MnTtXr158fDwGDBiAmjVrGhzz9u3bSE9PR2ZmJoC/gxHg7zsrfn5+8PT0xOjRozFx4kR4e3vDw8MDY8eORYcOHZghREREpFJWDViuXLmC6Oho3Lp1Cz4+PujcuTMOHToEHx8fAEB6ejpsbfVvAp07dw779+/Htm3byj3m5s2bERMTo3s/dOhQAEBsbCzi4uIAAIsWLYKtrS0GDhyI4uJiREREYNmyZRY4QyIiIjIHqwYsiYmJkuV79uwx2BYSEgKp5Y9GjRqFUaNGSR7XyckJS5cuxdKlSyvSTSIiIrIyVT3DQkRERFQeVWUJERERkTKH/PvAw9Uwq7WicguK4YkzaNeuHezs7KDVaqHVas3YQ9MwYFHo8lItnBwczH5ca6YmV0dqTVtWQu6cpNI3E3r0l6wbs+t7yfIraS0ly5W4ZLEjW0+nCdONlv2yaI5F294+OthomdctO+nKi8zcGRWQmipAzliZ8gZ4w2hZWfFdk9u1luTkZHh4eFi7Gzr8kxARERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY1qzlag1bdlaqy0/rra0Np5yaklyactylFwnar32q6vb08cYL6vCfjwOxqYtN1pWVFIC48ntVBG8w0JERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHrMErKSukEpkuWWXFxOilwGx6OaRdRwQrzJda25cKLUAobWJNUvucXl1HoNNUgLlCyXygABpBc4tES9+yy9eKIUqZ+rF05tMFqmZAFCa5L7eXxUz+tRwTssREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREake52GxoLDXzhgvTJXO508e0MRoWbtN503tkmKWnKdFaj4KpXNNWHMuFSnPnroovUOPqumHOT2q84osGvCkZPmlRdL1pfqtdEykyB1byXjK/bwnS5RZck6ST4LekCyXmzPHGNnP6dQJyWKpeVpyCwsxfeM2U7qlenPnzsWGDRtw9uxZODs7o2PHjpg3bx5CQkLM2g7vsBAREZHJfv75Z2i1Whw6dAjbt29HSUkJevfujYKCArO2wzssREREZLKtW7fqvV+9ejVq166NY8eOoUuXLmZrhwELERERGcjNzdV7r9FooNFoZOvl5OQAALy9vc3aHwYsRERE1ch/3N6Ei6u7yfXv2uQBWIR69erpbY+NjUVcXJxk3bKyMowfPx6dOnVCy5bmXROPAQsREREZyMjIgIeHh+59Re6uaLVapKSkYP/+/WbvDwMWIiIiMuDh4aEXsMh566238MMPP2Dv3r2oW7eu2fvDgEWhGjM+hrNb+bfeTk4fY7Re+pz+kseN2WV8afYrMO9tNnNSkpr8lETKYF2Z9EqllKRjK7GldbBkeTMLtevXpINkedb5gxZqufqSSrXtVIX9MCe5n4uGiK+inui7HJQuvUOQ8fRiqXRrue+oX6RblUxrrs6EEBg7diw2btyIPXv2ICgoyCLtMGAhIiIik2m1Wnz99df4/vvv4e7ujqysLACAp6cnnJ2dzdYO52EhIiIiky1fvhw5OTno1q0b/P39da9169aZtR3eYSEiIiKTCSGqpB3eYSEiIiLVY8BCREREqseAhYiIiFSPz7BYkPecVUbLYnZ9L1lXKvVuSJDl0pqlVokGgBdOGU+3BoC6p4yXPSWT8nclTb3p2tYidR0oSaFk2rL5Sa0Q/NQp0z+rBmmBJrdraWpdBd1USlejl/p5LSopMalP9D+8w0JERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1mNasUN0rfeDqWn7cl+tywGg9uRReqdRlS64sLLf6qlTaHgBMejXUeOFF6fTMukEpRsssnfIslc4o1S+58bAkS7atJGVaatVtwLpjJsVaKbpy4zFWpr7cZ6XW8ZaidNVj6WkhLLvyO1kO77AQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHqch0WhbhfHwsPZ2UjpBqP1rkB6XhGpuT+QVoGOmUjpXBQLPjstUSpVJk1qXhrAsnPTTApSNieEorYl5qNQ6/wacv3qNGG6ZPkvi+aYszuqYMnPSsmx5eYkkfu5+iToDaNll4PSTeoTIH9ODSdIzxc1xMR5myz5PULKMWAhIiKqRqb9cAK2GheT65cV3wUAtGvXDnZ2dtBqtdBqtebqnskYsBAREZGB5ORkeHh4WLsbOnyGhYiIiFSPAQsRERGpHgMWIiIiUj0+w6LQf0Kfh4ure7llL5wyniW0fXSwzJElylWaHWJJ1nx6X63ZONakZEyqYxYQYL2MLqlMHQDYD+PPICQPaCJZV2719kUSZQsWLTdapnQ1ZrlsxkuKjk5qxTssREREpHoMWIiIiEj1rBqwxMXFwcbGRu/VtGlTo/t369bNYH8bGxv07fu/24tCCLz77rvw9/eHs7MzevXqhdTUVL3jHD9+HM888wy8vLxQs2ZNjBkzBvn5+RY7TyIiIlLG6ndYWrRogWvXrule+/fvN7rvhg0b9PZNSUmBnZ0doqKidPt8+OGH+Pjjj7FixQocPnwYrq6uiIiIQFFREQAgMzMTvXr1QqNGjXD48GFs3boVv/32G0aNGmXpUyUiIiITWf2hW3t7e/j5+VVoX29vb733iYmJcHFx0QUsQggsXrwY06dPR//+/QEAa9asga+vLzZt2oShQ4fihx9+gIODA5YuXQpb27/jtRUrVqBVq1a4cOECGjVqZMazIyIiInOw+h2W1NRUBAQEoGHDhhg2bBjS0yu+/kR8fDyGDh0KV1dXAEBaWhqysrLQq1cv3T6enp4IDw/HwYMHAQDFxcVwdHTUBSsA4Pz/1wKSurtTXFyM3NxcvRcRERFVDaveYQkPD8fq1asREhKCa9euYebMmXj66aeRkpICd/fyU4XvO3LkCFJSUhAf/7+0u6ysLACAr6+v3r6+vr66sh49emDixImYP38+3n77bRQUFOCf//wnAODatWtG25s7dy5mzpxpsN397jNwtTEW9002eryYXd8bLQOYSvu4UJLe+eypi2bsib4FePyuv0d1UUaptGVLk5q64ZDEeC5Q6ViSuln1DktkZCSioqLQqlUrREREYMuWLcjOzsb69etl68bHxyM0NBTt27evVJstWrTAF198gQULFsDFxQV+fn4ICgqCr6+v3l2Xh02bNg05OTm6V0ZGRqXaJSIiItNZ/U9CD/Ly8kKTJk1w4cIFyf0KCgqQmJiI0aP1Jw+6/yzM9evX9bZfv35d7zmZl156CVlZWbh69Spu3bqFuLg43Lx5Ew0bNjTapkajgYeHh96LiIiIqoaqApb8/HxcvHgR/v7+kvslJSWhuLgYw4cP19seFBQEPz8/7Ny5U7ctNzcXhw8fRocOHQyO4+vrCzc3N6xbtw5OTk545plnzHMiREREZFZWfYZl8uTJ6NevH+rXr4/MzEzExsbCzs4O0dHRAICXX34ZderUwdy5c/XqxcfHY8CAAahZs6bedhsbG4wfPx5z5sxB48aNERQUhBkzZiAgIAADBgzQ7ffpp5+iY8eOcHNzw/bt2zFlyhR88MEH8PLysvQpExERkQmsGrBcuXIF0dHRuHXrFnx8fNC5c2ccOnQIPj4+AID09HSD50rOnTuH/fv3Y9u2beUe85133kFBQQHGjBmD7OxsdO7cGVu3boWTk5NunyNHjiA2Nhb5+flo2rQpVq5ciREjRljuRImIiEgRqwYsiYmJkuV79uwx2BYSEgIhhNE6NjY2mDVrFmbNmmV0nzVr1lS4j0RERGR9qnqGhYiIiKg8Vp/p9lF3pe5WOLuVP2fMRhc7o/Wk5i8ApOfn2Nn4o4p1zoieqcbnh5GjZH6YIUFTJcvXpc0z+djVldR4P6vguFtaB0uWy81JYkmWmu/E0uck9Vk1nBBvtKzdpvOK2t0+WvqzvD19jNGyTlA298wCqUIF3xXec1ZJlkudE1VfvMNCREREqseAhYiIiFSPAQsREREptnTpUjRo0ABOTk4IDw/HkSNHzHp8BixERESkyLp16zBx4kTExsbi+PHjaN26NSIiInDjxg2ztcGAhYiIiBRZuHAhXn31VcTExKB58+ZYsWIFXFxc8Pnnn5utDWYJmej+XDCF+flG93EsMJ4llFtYaHLbBQVlJtdV2nZRSYnJdfOKCyx27EeV3GchNSb5paUmtys31gUF0p+VJVnqOlB6Tkr6dbcgz2iZ3M+FnMJ848cGpPstNybW+plUck5qVVTyFwBIziNmLmXFd81SPzc3V2+7RqOBRqMx2P/evXs4duwYpk2bpttma2uLXr164eDBg4r6okeQSTIyMgQAvvjiiy+++KrwKyMjw2K/lwoLC4Wfn59Z+unm5mawLTY2ttx2r169KgCIAwcO6G2fMmWKaN++vdnOj3dYTBQQEICMjAy4u7vDxsbG2t0xi9zcXNSrVw8ZGRlcjbqCOGam4bhVHsfMNGoZNyEE8vLyEBAQYLE2nJyckJaWhnv37ik+lhDC4HdbeXdXqhIDFhPZ2tqibt261u6GRXh4ePALsZI4ZqbhuFUex8w0ahg3T09Pi7fh5OSkt3ZeVahVqxbs7Oxw/fp1ve3Xr1+Hn5+f2drhQ7dERERkMkdHR7Rt2xY7d+7UbSsrK8POnTvRoUMHs7XDOyxERESkyMSJEzFy5Eg8+eSTaN++PRYvXoyCggLExMSYrQ0GLKSj0WgQGxtr9b9TPko4ZqbhuFUex8w0HLeqMWTIENy8eRPvvvsusrKyEBYWhq1bt8LX19dsbdgIUQU5VkREREQK8BkWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYHlEffDBB7CxscH48eMNyoQQiIyMhI2NDTZt2qRXNm7cOLRt2xYajQZhYWHlHvvXX3/F008/DScnJ9SrVw8ffvihwT5JSUlo2rQpnJycEBoaii1bthj04d1334W/vz+cnZ3Rq1cvpKammnq6ZmPKuJ06dQrR0dGoV68enJ2d0axZMyxZssSg/p49e/DEE09Ao9GgUaNGWL16tcE+csuvFxUVQavVombNmnBzc8PAgQMNJmOqaqaM2a1bt9CnTx8EBARAo9GgXr16eOuttwzWJqmuYwaY/jN6361bt1C3bl3Y2NggOztbr6y6jpupY2ZjY2PwSkxM1Nunuo7ZY8Vsk/xTlTly5Iho0KCBaNWqlXj77bcNyhcuXCgiIyMFALFx40a9srFjx4pPP/1UjBgxQrRu3dqgbk5OjvD19RXDhg0TKSkp4ptvvhHOzs5i5cqVun1++eUXYWdnJz788EPx+++/i+nTpwsHBwdx+vRp3T4ffPCB8PT0FJs2bRKnTp0Szz//vAgKChKFhYXmGoZKM3Xc4uPjxbhx48SePXvExYsXxdq1a4Wzs7P45JNPdPtcunRJuLi4iIkTJ4rff/9dfPLJJ8LOzk5s3bpVt09iYqJwdHQUn3/+ufjtt9/Eq6++Kry8vMT169d1+7z++uuiXr16YufOneLo0aPiqaeeEh07drTIeFSEqWN2+/ZtsWzZMpGcnCwuX74sduzYIUJCQkR0dLRun+o6ZkIo+xm9r3///rp97ty5o9teXcdNyZgBEAkJCeLatWu614PfNdV1zB43DFgeMXl5eaJx48Zi+/btomvXrgY/2CdOnBB16tQR165dk/wyjI2NLTdgWbZsmahRo4YoLi7WbZs6daoICQnRvR88eLDo27evXr3w8HDx2muvCSGEKCsrE35+fmL+/Pm68uzsbKHRaMQ333xTyTM2D3ON231vvvmm6N69u+79O++8I1q0aKG3z5AhQ0RERITuffv27YVWq9W9Ly0tFQEBAWLu3LlCiL/HyMHBQSQlJen2OXPmjAAgDh48WNlTVszcY7ZkyRJRt25d3fvqOGZCmGfcli1bJrp27Sp27txpELBUx3FTOmZy1191HLPHEf8k9IjRarXo27cvevXqZVB29+5dvPTSS1i6dKnJ6zccPHgQXbp0gaOjo25bREQEzp07hzt37uj2ebj9iIgI3TLiaWlpyMrK0tvH09MT4eHh5l1qvBLMPW45OTnw9vbWvZcbk/vLrz+4z8PLrx87dgwlJSV6+zRt2hSBgYFWGTdzjllmZiY2bNiArl276rZVxzEDlI/b77//jlmzZmHNmjWwtTX8iq6O42aOa02r1aJWrVpo3749Pv/8c4gHphirjmP2OOJMt4+QxMREHD9+HMnJyeWWT5gwAR07dkT//v1NbiMrKwtBQUF62+7PVJiVlYUaNWogKyvLYPZCX19fZGVl6fZ7sF55+1Qlc4/bgQMHsG7dOvz444+6bcbGJDc3F4WFhbhz5w5KS0vL3efs2bO6Yzg6OsLLy8tgn6oeN3ONWXR0NL7//nsUFhaiX79++Pe//60rq25jBigft+LiYkRHR2P+/PkIDAzEpUuXDPapbuNmjmtt1qxZ6NGjB1xcXLBt2za8+eabyM/Px7hx4wBUvzF7XDFgeURkZGTg7bffxvbt28tdiXPz5s3YtWsXTpw4YYXeqZe5xy0lJQX9+/dHbGwsevfube7uqoI5x2zRokWIjY3F+fPnMW3aNEycOBHLli2zRLetzhzjNm3aNDRr1gzDhw+3ZFdVw1zX2owZM3T/btOmDQoKCjB//nxdwELVA/8k9Ig4duwYbty4gSeeeAL29vawt7fHzz//jI8//hj29vbYvn07Ll68CC8vL105AAwcOBDdunWrcDt+fn7lLhF+v0xqnwfLH6xX3j5VxZzj9vvvv6Nnz54YM2YMpk+frldmbEw8PDzg7OxcoeXX/fz8cO/ePYOMkKoeN3OOmZ+fH5o2bYrnn38eK1euxPLly3Ht2jVdWXUZM8A847Zr1y4kJSXpynv27AkAqFWrFmJjYwFUr3Gz1PdaeHg4rly5guLiYgDVa8weZ7zD8ojo2bMnTp8+rbctJiYGTZs2xdSpU1GrVi289tpreuWhoaFYtGgR+vXrV+F2OnTogH/9618oKSmBg4MDAGD79u0ICQlBjRo1dPvs3LlTL/Vw+/btumXEg4KC4Ofnh507d+pSp3Nzc3H48GG88cYblT11Rcw1br/99ht69OiBkSNH4r333jNop0OHDgap3Q+OyYPLrw8YMADA/5Zff+uttwAAbdu2hYODA3bu3ImBAwcCAM6dO4f09HSzLtEux1LXWllZGQDofolUpzEDzDNu3333HQoLC3XlycnJeOWVV7Bv3z4EBwcDqF7jZqlr7eTJk6hRo4ZuwcPqNGaPNWs/9UumK+9p+gehnCfnU1NTxYkTJ8Rrr70mmjRpIk6cOCFOnDihywrKzs4Wvr6+YsSIESIlJUUkJiYKFxcXg7Rme3t78dFHH4kzZ86I2NjYctOavby8xPfffy9+/fVX0b9/f6unNd9X2XE7ffq08PHxEcOHD9dLm7xx44Zun/tpk1OmTBFnzpwRS5cuLTdtUqPRiNWrV4vff/9djBkzRnh5eYmsrCzdPq+//roIDAwUu3btEkePHhUdOnQQHTp0MOv5m6KyY/bjjz+Kzz//XJw+fVqkpaWJH374QTRr1kx06tRJt091HzMhTPsZfdDu3buNpjVX13Gr7Jht3rxZfPbZZ+L06dMiNTVVLFu2TLi4uIh3331Xt091H7PHBQOWR5gpX4Zdu3YVAAxeaWlpun1OnTolOnfuLDQajahTp4744IMPDI69fv160aRJE+Ho6ChatGghfvzxR73ysrIyMWPGDOHr6ys0Go3o2bOnOHfunJLTNZvKjltsbGy5Y1a/fn29ert37xZhYWHC0dFRNGzYUCQkJBgc+5NPPhGBgYHC0dFRtG/fXhw6dEivvLCwULz55puiRo0awsXFRbzwwgvi2rVrCs7WPCo7Zrt27RIdOnQQnp6ewsnJSTRu3FhMnTpV7xevENV7zISwTMByf3t1HbfKjtl///tfERYWJtzc3ISrq6to3bq1WLFihSgtLdWrV53H7HFhI8QDuV9EREREKsSHbomIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jFgISLFbt68CT8/P7z//vu6bQcOHICjoyN27txpxZ4RUXXBtYSIyCy2bNmCAQMG4MCBAwgJCUFYWBj69++PhQsXWrtrRFQNMGAhIrPRarXYsWMHnnzySZw+fRrJycnQaDTW7hYRVQMMWIjIbAoLC9GyZUtkZGTg2LFjCA0NtXaXiKia4DMsRGQ2Fy9eRGZmJsrKynD58mVrd4eIqhHeYSEis7h37x7at2+PsLAwhISEYPHixTh9+jRq165t7a4RUTXAgIWIzGLKlCn49ttvcerUKbi5uaFr167w9PTEDz/8YO2uEVE1wD8JEZFie/bsweLFi7F27Vp4eHjA1tYWa9euxb59+7B8+XJrd4+IqgHeYSEiIiLV4x0WIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERker9P9wV7KzNjHOEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABe0klEQVR4nO3deVwV9f4/8BfrYQdBZDFU3HBfMiWX3BOJTEsxTU3Jm9UlyzWv35uBS5qZS4tpdrmYVqKWqLe87pqaG+5SLqgYKKKmsm8Gn98f/jzX4+HMwMw5nBFfz8fjPB6e+cxnmWHO8c0w78/HRgghQERERKRhttYeABEREZEcBixERESkeQxYiIiISPMYsBAREZHmMWAhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BiwaUa9ePYwaNcrawyCiam7UqFGoV6+eorrW+p66fv06Bg0aBB8fH9jY2GDRokVVPgayPgYsVWj//v2IjY1FVlaWtYdSpZKSkvD222+jefPmcHV1RZ06dTB48GCcP3++3P3PnDmDvn37ws3NDd7e3hgxYgRu3rxpsM/Zs2fx3nvvoU2bNnB3d0dAQAAiIiJw5MgRo/bOnTuH8ePHo1OnTnBycoKNjQ0uX75cqWNYsmQJIiMjUadOHdjY2Eh+aWdlZWHMmDHw9fWFq6srevTogWPHjlWqv7i4ODRt2hROTk5o1KgRPv/8c0XHNWrUKNjY2Mi+Hjwec59/Kfv370eXLl3g4uICf39/vPPOO8jLyzPar7i4GFOmTEFgYCCcnZ0RGhqKbdu2VaqvipxTALh69SoGDx4MLy8veHh4oH///rh06VKl+rK2jIwMxMbG4sSJE9YeilmMHz8eW7ZswdSpU7Fy5Ur07du3yvqu6DVKVUBQlZk3b54AIFJTU43KioqKRElJSdUPqgoMHDhQ+Pv7i7Fjx4qvv/5azJw5U/j5+QlXV1dx+vRpg33T09NFzZo1RYMGDcSnn34qPvzwQ1GjRg3RunVrUVxcrN9v4sSJwsvLS4wePVp89dVX4uOPPxYNGjQQdnZ2Ytu2bQZtxsfHC1tbW9GiRQvRpk0bkz8DKXXr1hXe3t6ib9++wt7eXowcObLc/UpLS0WnTp2Eq6uriI2NFV988YVo1qyZcHd3F+fPn69QX0uXLhUAxMCBA8WyZcvEiBEjBADx0UcfVfq49u/fL1auXKl/zZgxQwAQY8aMMdi+f/9+IYRlzr8px48fF05OTqJt27ZiyZIl4p///KfQ6XSib9++RvsOGTJE2Nvbi0mTJomvvvpKdOzYUdjb24u9e/ea9Zzm5uaKRo0aiVq1aom5c+eKBQsWiKCgIPHEE0+IP//8s0J9aUFSUpIAIOLj443KSkpKRFFRkaJ269ata/LatyQ/Pz8xbNiwKu+3MtcoWR4DliokFbBUZ7/++qvBf3ZCCHH+/Hmh0+mMvoTeeust4ezsLP744w/9tm3btgkA4quvvtJvO3LkiMjNzTWo++effwpfX1/RuXNng+23bt0SOTk5QgjlP4PLly+LsrIyIYQQrq6uJr+0V69eLQCItWvX6rfduHFDeHl5iaFDh8r2U1BQIHx8fERERITB9mHDhglXV1dx+/ZtVccl9R+ZEJY5/6aEh4eLgIAAkZ2drd/29ddfCwBiy5Yt+m2HDh0SAMS8efP02woLC0WDBg1Ex44dZfupzDmdO3euACAOHz6s33bmzBlhZ2cnpk6dWqHj0gK5n7NS5ghYSktLRWFhYaXq2NjYiOjoaFX9KlHRa5SqBgOWKhITEyMAGL3u/wfz8BdBfHy8ACD27t0rxo4dK2rWrCk8PT3FmDFjRHFxsbhz544YMWKE8PLyEl5eXmLy5Mn6/1DvKy0tFQsXLhTNmjUTOp1O1KpVS4wZM8bgC9qannzySfHkk08abKtVq5aIjIw02rdx48aiV69esm2+9NJLwtvb22S5OYJGqYAlMjJS+Pn5idLSUoPtY8aMES4uLrK/2f78888CgPj5558Ntu/fv18AECtXriy3nrkCFkuc//z8fHHmzBlx8+ZN/bbs7Gxhb28vJk+ebLBvcXGxcHNzE6NHj9Zvmzx5srCzszP4T0MIIWbPni0AiLS0NP22mzdvijNnzoj8/Hz9tsqc0/bt24v27dsbHVefPn1EgwYNZI+/PNeuXROjRo0StWvXFo6OjsLf31+88MILBj+runXrioiICLFlyxbRunVrodPpRNOmTcWPP/5o0NatW7fExIkTRYsWLYSrq6twd3cXffv2FSdOnNDvs2vXrnK/a+7/zEeOHCnq1q1r0O68efNEx44dhbe3t3BychJPPvmkQdD94DgrG7AAENHR0eLbb78VzZo1E/b29iIxMVEIIcSVK1dEVFSUqFWrlnB0dBTNmjUTcXFx+rr3vwcfflWFylyjVDX4DEsVeemllzB06FAAwMKFC7Fy5UqsXLkSvr6+kvXGjh2LlJQUTJ8+HS+88AKWLVuGadOmoV+/figtLcXs2bPRpUsXzJs3DytXrjSo+8Ybb2Dy5Mno3LkzPv30U0RFReG7775DWFgY7t69K9lvcXEx/vzzzwq9lBBC4Pr166hZs6Z+29WrV3Hjxg089dRTRvt36NABx48fl203MzPToM2qdvz4cTz55JOwtTX8aHXo0AEFBQUmn9t5sD4Ao3PQrl072NraVugcKGWp83/48GE0bdoUX3zxhX7b6dOn8ddffxn15ejoiDZt2hj0dfz4cTRu3BgeHh5GYwJg8JzGF198gaZNm+Lw4cMG9QH5c1pWVoZTp06ZPP6LFy8iNzdX9hw8bODAgUhMTERUVBS+/PJLvPPOO8jNzUVaWprBfikpKXj55ZcRHh6OOXPmwN7eHpGRkQbP6ly6dAnr16/H888/jwULFmDy5Mk4ffo0unXrhoyMDABA06ZNMWPGDADAmDFj9N81Xbt2NTnGTz/9FG3btsWMGTMwe/Zsfd8///xzpY+3PDt37sT48ePx8ssv49NPP0W9evVw/fp1PP3009i+fTvefvttfPrpp2jYsCFGjx6tf6i2a9eu+u+1Z599Vn8sUu7cuVOh762CggLJdipzjVIVsXbE9DiR+i3Y1B2WsLAwgzsnHTt2FDY2NuLNN9/Ub/vrr7/EE088Ibp166bftnfvXgFAfPfddwb9bN68udztDzP1m015LyVWrlwpABj8NnX/t/8VK1YY7T958mQBQPIOxZ49e4SNjY2YNm2ayX0sfYfF1dVVvPbaa0bb7/+Wv3nzZsm2o6OjhZ2dXbllvr6+YsiQIeWWmeMOi6XO//3f+GNiYvTb1q5dKwCIPXv2GLUTGRkp/P399e+bN28uevbsabTfb7/9JgCIpUuX6rfdv5O5a9cu/baKntObN28KAGLGjBlG+y1evFgAEGfPni3/4E24c+eO0Z+zylO3bl0BwOCOSnZ2tggICBBt27bVbysqKjK6e5eamip0Op3BuKV+zuXdYSkoKDB4X1JSIlq0aGF03pXeYbG1tRW//fabwfbRo0eLgIAAo2eDhgwZIjw9PQ3GhP9/l6Yi7p9LudeD12N5KnONUtWwt0wYROYyevRo2NjY6N+HhobiwIEDGD16tH6bnZ0dnnrqKRw9elS/be3atfD09MSzzz5rcBekXbt2cHNzw65du/DKK6+Y7DcsLKzSWRgVdfbsWURHR6Njx44YOXKkfnthYSEAQKfTGdVxcnLS71Ne+Y0bN/DKK68gODgY7733nkXGXRGmxvfg+OXqOzo6llvm5OQkW18NS53/7t27QwhRqb4ePM7KnNPY2FjExsYa9VWRc1rR468MZ2dnODo6Yvfu3Rg9ejRq1Khhct/AwEC8+OKL+vceHh549dVXMXfuXGRmZsLf399gbKWlpcjKyoKbmxtCQkIqnYn28Djvu3PnDkpLS/HMM89g1apVitt8ULdu3dCsWTP9eyEEfvzxRwwePBhCCIPvqLCwMCQkJODYsWPo3Llzpfv67rvvKvRzql+/vmR5Za5RqhoMWDSuTp06Bu89PT0BAEFBQUbb79y5o3+fkpKC7Oxs1KpVq9x2b9y4IdlvQEAAAgIClAxZUmZmJiIiIuDp6YkffvgBdnZ2+rL7X5rFxcVG9YqKigz2eVB+fj6ef/555ObmYt++fXBzc1M0tps3b6K0tFT/3s3NrdJtOTs7V2j8pvpydnZGSUlJuW0XFRWVe/zmUpXnX66vB/up6DmV6qsi51Tp8UvR6XSYO3cuJk6cCD8/Pzz99NN4/vnn8eqrr8Lf399g34YNGxr8cgIAjRs3BgBcvnwZ/v7+KCsrw6effoovv/wSqampBteQj49Ppcb2oJ9++gmzZs3CiRMnDI7/4fEoFRwcbPD+5s2byMrKwrJly7Bs2bJy68h9R5miJMgpT2WuUaoaDFg07sH/0OW2P/hbbFlZGWrVqoXvvvuu3Ppyz84UFhYiOzu7QmN8+IvXlOzsbISHhyMrKwt79+5FYGCgQfn9AOnatWtGda9duwZvb2+j33ZKSkrw0ksv4dSpU9iyZQtatGhRobGUp3379vjjjz/072NiYox+W5cTEBBgcvwA9Mdsqq+AgACUlpbixo0bBsFmSUkJbt26ZXTOzKkqz79cXw8eZ0BAAK5evVrufgBkz0lFz+n946vIz68yxo0bh379+mH9+vXYsmULpk2bhjlz5mDnzp1o27ZtpdqaPXs2pk2bhtdeew0zZ86Et7c3bG1tMW7cOJSVlVV6bACwd+9evPDCC+jatSu+/PJLBAQEwMHBAfHx8fj+++8Vtfmwh/9zvz/W4cOHG9xlfVCrVq0U9fXwLwOmyP1CUplrlKoGA5YqZK7fViqiQYMG2L59Ozp37qzoN4HVq1cjKiqqQvs+fLu/PEVFRejXrx/Onz+P7du3G9wevq927drw9fUtd/Kxw4cPo02bNgbbysrK8Oqrr2LHjh1Ys2YNunXrVqHxmvLwrWS5W8bladOmDfbu3YuysjKDB28PHToEFxcX/W/Mpvq6f4xHjhzBc889py8/cuQIysrKjM6BOVXl+W/RogXs7e1x5MgRDB48WL+9pKQEJ06cMNjWpk0b7Nq1Czk5OQYP3h46dEhfLqWi59TW1hYtW7Ys9/gPHTqE+vXrw93dvcLH+KAGDRpg4sSJmDhxIlJSUtCmTRvMnz8f3377rX6fCxcuQAhh8D1x/yHt+zPT/vDDD+jRowfi4uIM2s/KyjJ42Lky3zU//vgjnJycsGXLFoOAND4+vlLHWBm+vr5wd3dHaWkpevfubda2H/5lwBS5X0gqc41S1WDAUoVcXV0BoEpmuh08eDC+/PJLzJw5E7NnzzYo++uvv5CXlwcvLy+T9c35DEtpaSlefvllHDhwABs2bEDHjh1N7jtw4EB88803SE9P1//Za8eOHTh//jzGjx9vsO/YsWOxevVqfPXVV3jppZdUj9Mct5IHDRqEH374AevWrcOgQYMAAH/++SfWrl2Lfv366f9DMNVXz5494e3tjSVLlhj857pkyRK4uLggIiJC9RilWOL8FxQUIC0tDTVr1tT/p+rp6YnevXvj22+/xbRp0/SBwMqVK5GXl4fIyEh9/UGDBuGTTz7BsmXLMGnSJAD3btPHx8cjNDTU4M+j9zNA6tSpAxcXFwCVO6eDBg3CP/7xDxw5ckSfHXLu3Dns3LlT33dlFBQUwNbWVv8MDHAveHF3dzf6U0NGRgYSExP15zInJwcrVqxAmzZt9Hcx7ezsjH5BWLt2La5evYqGDRvqt1Xmu8bOzg42NjYGdyUuX76M9evXV+pYK8POzg4DBw7E999/j+TkZKM7czdv3pS9C2yKuZ5hqcw1SlWDAUsVateuHQDgn//8J4YMGQIHBwf069dP/+ViTt26dcMbb7yBOXPm4MSJE+jTpw8cHByQkpKCtWvX4tNPP9X/h1oecz7DMnHiRGzcuBH9+vXD7du3DX6rBO7dFr7v//7v/7B27Vr06NED7777LvLy8jBv3jy0bNnS4I7PokWL8OWXX6Jjx45wcXExavPFF1/Un9fs7Gz9NOy//vorgHvpr15eXvDy8sLbb78tewz/+c9/cPLkSQDA3bt3cerUKcyaNQsA8MILL+hvXw8aNAhPP/00oqKi8Pvvv6NmzZr48ssvUVpaiunTp8v24+zsjJkzZyI6OhqRkZEICwvD3r178e233+LDDz+Et7e3fl9zHNfDLHH+Dx8+jB49ehj9Rvvhhx+iU6dO6NatG8aMGYMrV65g/vz56NOnj8HU66GhoYiMjMTUqVNx48YNNGzYEN988w0uX75sdKfhiy++wPTp07Fr1y5079690uf073//O77++mtERERg0qRJcHBwwIIFC+Dn54eJEyca9NW9e3f88ssvkncYz58/j169emHw4MFo1qwZ7O3tkZiYiOvXr2PIkCEG+zZu3BijR49GUlIS/Pz88O9//xvXr183uNPx/PPPY8aMGYiKikKnTp1w+vRpfPfdd0b/+TZo0ABeXl5YunQp3N3d4erqitDQUKNnSQAgIiICCxYsQN++ffHKK6/gxo0bWLx4MRo2bIhTp06ZPDa1PvroI+zatQuhoaF4/fXX0axZM9y+fRvHjh3D9u3bcfv2bUXtmusZFqDi1yhVEeslKD2eZs6cKWrXri1sbW0rNHFcUlKSQf37aZsPTsIlxL1URVdXV6P+li1bJtq1ayecnZ2Fu7u7aNmypXjvvfdERkaG2Y/NlG7dulUqLTo5OVn06dNHuLi4CC8vLzFs2DCRmZlpsM/IkSMl23wwvTc1NdXkfg+nd5oi1d/DqaO3b98Wo0ePFj4+PsLFxUV069bN6OcoZ9myZSIkJEQ4OjqKBg0aiIULFxpNDKjkuCoyA6q5z395ac337d27V3Tq1Ek4OTkJX19fER0drZ+990GFhYVi0qRJwt/fX+h0OtG+fftyU8TLS2u+ryLnVIh7yxMMGjRIeHh4CDc3N/H888+LlJQUo/3atWsnm9r6559/iujoaNGkSRPh6uoqPD09RWhoqFizZo3Bfg9OHNeqVSuh0+lEkyZNjCZvKyoqEhMnThQBAQHC2dlZdO7cWRw4cEB069bNYFoDIYTYsGGDfqK2B3/m5aU1x8XFiUaNGun7jY+P15/Lh8epdOK48ly/fl1ER0eLoKAg4eDgIPz9/UWvXr3EsmXLKtyGpVX0GiXLsxGiAg8gEBGRXm5uLry9vbFo0SJER0erbq9evXpo0aIFfvrpJzOMjqh64ky3RESVtGfPHtSuXRuvv/66tYdC9NjgMyxERJUUERFh8QegtS4zM1Oy3NnZWT9vFJE5MGAhIqJKk3sof+TIkVi+fHnVDIYeCwxYiIis7PLly9YeQqXJTXvAidXI3PjQLREREWkeH7olIiIizWPAQkRERJrHgIWIiIg0jwGLSnv27EG/fv0QGBgIGxsbRetvCCHwySefoHHjxtDpdKhduzY+/PBD8w+WiIjoEcUsIZXy8/PRunVrvPbaa4oX4Hv33XexdetWfPLJJ2jZsiVu376teB0NIiKi6ohZQmZkY2ODxMREDBgwQL+tuLgY//znP7Fq1SpkZWWhRYsWmDt3rn5htjNnzqBVq1ZITk5GSEiIdQZORESkcfyTkIW9/fbbOHDgABISEnDq1ClERkaib9++SElJAXBvFeD69evjp59+QnBwMOrVq4e//e1vvMNCRET0AAYsFpSWlob4+HisXbsWzzzzDBo0aIBJkyahS5cu+iXjL126hD/++ANr167FihUrsHz5chw9ehSDBg2y8uiJiIi0g8+wWNDp06dRWlqKxo0bG2wvLi6Gj48PAKCsrAzFxcVYsWKFfr+4uDi0a9cO586d45+JiIiIwIDFovLy8mBnZ4ejR4/Czs7OoMzNzQ3AvfU47O3tDYKapk2bArh3h4YBCxEREQMWi2rbti1KS0tx48YNPPPMM+Xu07lzZ/z111+4ePEiGjRoAAA4f/48AKBu3bpVNlYiIiItY5aQSnl5ebhw4QKAewHKggUL0KNHD3h7e6NOnToYPnw4fv31V8yfPx9t27bFzZs3sWPHDrRq1QoREREoKytD+/bt4ebmhkWLFqGsrAzR0dHw8PDA1q1brXx0RERE2sCARaXdu3ejR48eRtvvL61+9+5dzJo1CytWrMDVq1dRs2ZNPP3005g+fTpatmwJAMjIyMDYsWOxdetWuLq6Ijw8HPPnz4e3t3dVHw4REZEmMWAhIiIixfbs2YN58+bh6NGjuHbtmtF8ZA9688038dVXX2HhwoUYN25cpfphWjMREREpdn/G98WLF0vul5iYiIMHDyIwMFBRP3zoloiIiBQLDw9HeHi45D5Xr17F2LFjsWXLFkRERCjqhwGLQmVlZcjIyIC7uztsbGysPRwiItIwIQRyc3MRGBgIW1vL/XGjqKgIJSUlqtsRQhj936bT6aDT6SrdVllZGUaMGIHJkyejefPmisfEgEWhjIwMBAUFWXsYRET0CElPT8cTTzxhkbaLiorgX6cusm/eUN2Wm5sb8vLyDLbFxMQgNja20m3NnTsX9vb2eOedd1SNiQGLQu7u7gCAw2/9ADedq9nbX/fHQrO3aQ59Tqcqrru1ZbAZR2JeY7uGKar3+Z4tkuUv1R0vWZ7S8y3J8itPbK70mO67M9P0l8PT0e8pbhcADi7+2GSZ3Ln8tpuy28H3SR1XjWmfKapXEVJty7VvyXE9iuS+R7T8XSFF6trPKSpC0NR/6v/vsISSkhJk37yBT/YkwdlNeT+FebmY1LU90tPT4eHhod+u5O7K0aNH8emnn+LYsWOq/xrBgEWh+yfeTecKdwsELE4ODmZv0xzcHpqxtzK0ekwA4OHsrKie3DHJXRuurtK3hlV96UiMzdVV3TUrddxy51LNMQHSxyXVtlS9ipAbt7XG9SiS+x7R8neFlIp8j1TFIwTObu6qP2cA4OHhYRCwKLF3717cuHEDderU0W8rLS3FxIkTsWjRIly+fLnCbTFgISIiIosYMWIEevfubbAtLCwMI0aMQFRUVKXaYsBCREREij044zsApKam4sSJE/oZ3+8v9nufg4MD/P39K71WHgMWIiIiUuzIkSMGM75PmDABwP9mfDcXBixERESkWPfu3VGZSfMr89zKgxiwqJTS8y2TD06e+KqpyXovB0+x1JAsalPrBtYeQrmeO3lRstxa416dOld6B4lr5J4xJku8Zy2TrClV/uv7ptsFgM7j31defvK4ZN066eWvXH6f1OdGztQrptM5M3uqy06aL3POpNxWUbc60ur3CGkbp+YnIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYiIiISPM4D4tK3S+ONbngVa+eUjWTpRtWvijyY0ntvA7zd/5ssmyiyvk7pMjNxyM1j4uauT3k5nBRO0+LlF4pk6TLJT830j+rXW8NNV1Po3N/yM0hJKc6zmmi9jOn9PMsVU+uLlke77AQERGR5jFgISIiIs1jwEJERESax4CFiIiINI8BCxEREWkeAxYiIiLSPKY1a5Sa9Dm51LzHkVzqqFRqqCXPp1TaMiCdftz0VpryjuXqqkhbVpsaGt+zv3R9qb6hzWtfTeqy2rRlqWtILjW+/vg4xf1eWjhacV21nzml359MW9Y23mEhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4fuiUiIqpGYq/ehK1roeL6Zfl5AID27dvDzs4O0dHRiI6ONtfwFGPAotLne7bAycGh3DJrPXEu1291zCJSu4CcVklmcajI5FHr14WzTJbJ/SzOnPxMsvzphdLlict3my58BK9tSy9eKJlNJnMNXTPzWO6b96bp6wcAMs8fkCy/ktpCsty/sbuitq2VnaRVSUlJ8PDwsPYw9PgnISIiItI8BixERESkeQxYiIiISPMYsBAREZHmMWAhIiIizWPAQkRERJrHtGaVxnYNg4ezc7llUilylkw9rm6pdVVBKhX34H92mCyTWzxOjtTCdAAQtXOD6cKTxyXrHmzdVsmQrO6sVNoyGZG7hmQXulThxZPrTBdKfQ8tlUnJl/kOk1s0NPM8vwOrI95hISIiIs1jwEJERESax4CFiIiINI8BCxEREWkeAxYiIiLSPAYsREREpHkMWIiIiEjzOA+LSrsbfA5X1/LjvomYpLhdqblU5OZokSuXmnNEbqn7+uPjJMsvLRxtsuzl4CmSdeXmVrAkpXOtyM2BITdPi+Q8KzISW7+kuK4cqZ+jHLlrSJZM33LX4KNG6vMIANnL4yXLf5WbC2i86TlPfl04S7Kq3LmWugbVXENyONfU44l3WIiIiEjzGLAQERGR5jFgISIiIs1jwEJERESax4CFiIiINI8BCxERESm2Z88e9OvXD4GBgbCxscH69ev1ZXfv3sWUKVPQsmVLuLq6IjAwEK+++ioyMjIq3Q/TmlW68sRmOLu5l1+YojxlVYralL75kE57liKXqiiXuqy0rlzKs/sA6fRiNaTGtU2mbmeJlFIAmC+TViqlvgXTmtX8HNWmp1srbVnuZyWXAixFado8AEBFv3LkjvmMT6lkudctO5NlUj9Hue8RS6bsS5KZEkLOjkafmCzLzy9T1baW5efno3Xr1njttdfw0kuGP7uCggIcO3YM06ZNQ+vWrXHnzh28++67eOGFF3DkyJFK9cOAhYiIiBQLDw9HeHh4uWWenp7Yts3wV7svvvgCHTp0QFpaGurUqVPhfhiwEBERkZGcnByD9zqdDjqdTnW72dnZsLGxgZeXV6XqMWAhIiKqRv4lRsBVKH9ENV+UoT+AoKAgg+0xMTGIjY1VNbaioiJMmTIFQ4cOhYeHR6XqMmAhIiIiI+np6QZBhdq7K3fv3sXgwYMhhMCSJUsqXZ8BCxERERnx8PCo9F0QU+4HK3/88Qd27typqF0GLERERGQx94OVlJQU7Nq1Cz4+PoraYcBiJXIrKkuRS2tW07bavq+kWqxrSWpTab2hLC1abrXl+J79JcvlVuqVStdOkqypbuXsbaOlV1yWTcVVIUtFKq0UuRReS1JzvtSmW6tJx1bzXaMmPd2SKz2rIXdMvU6uM1mWU1gIYKKZR6QNeXl5uHDhgv59amoqTpw4AW9vbwQEBGDQoEE4duwYfvrpJ5SWliIzMxMA4O3tDUdHxwr3w4CFiIiIFDty5Ah69Oihfz9hwgQAwMiRIxEbG4uNGzcCANq0aWNQb9euXejevXuF+2HAQkRERIp1794dQgiT5VJllcGp+YmIiEjzGLAQERGR5lk1YImNjYWNjY3Bq0mTJib37969u9H+NjY2iIj434Nh69atQ58+feDj4wMbGxucOHHCqJ033ngDDRo0gLOzM3x9fdG/f3+cPXvWEodIREREZmD1OyzNmzfHtWvX9K99+/aZ3HfdunUG+yYnJ8POzg6RkZH6ffLz89GlSxfMnWs6a6Rdu3aIj4/HmTNnsGXLFggh0KdPH5SWSmcnEBERkXVY/aFbe3t7+Pv7V2hfb29vg/cJCQlwcXExCFhGjBgBALh8+bLJdsaM+V+KYb169TBr1iy0bt0aly9fRoMG0umcD4u9ehO2roXllt22UHqxXNqyJdOer6S2UFxXjtrUZDWk0k5XS9TzHi2dDi2Xzrqptcz1JnFOnhslnRJ9SaJtuXP9cpx02rPUOVFr6pUbkuWZ5w+YLJsvUU8uvVcufdiSqzlbo11APk03Ua6+tVZVtpIXJdKWyfKsfoclJSUFgYGBqF+/PoYNG4a0tLQK142Li8OQIUPg6uqquP/8/HzEx8cjODjYaN0EIiIi0garBiyhoaFYvnw5Nm/ejCVLliA1NRXPPPMMcnNzZesePnwYycnJ+Nvf/qao7y+//BJubm5wc3PDf//7X2zbtk1yApvi4mLk5OQYvIiIiKhqWDVgCQ8PR2RkJFq1aoWwsDBs2rQJWVlZWLNmjWzduLg4tGzZEh06dFDU97Bhw3D8+HH88ssvaNy4MQYPHoyioiKT+8+ZMweenp76F+/GEBERVR2r/0noQV5eXmjcuLHBFL/lyc/PR0JCAkaPVj59s6enJxo1aoSuXbvihx9+wNmzZ5GYaPovtlOnTkV2drb+lZ6errhvIiIiqhxNBSx5eXm4ePEiAgICJPdbu3YtiouLMXz4cLP0K4SAEALFxcUm99HpdPqVK825giURERHJs2qW0KRJk9CvXz/UrVsXGRkZiImJgZ2dHYYOHQoAePXVV1G7dm3MmTPHoF5cXBwGDBhQ7oqPt2/fRlpaGjIyMgAA586dAwD4+/vD398fly5dwurVq9GnTx/4+vriypUr+Oijj+Ds7IznnnvOwkdMRERESlg1YLly5QqGDh2KW7duwdfXF126dMHBgwfh6+sLAEhLS4OtreFNoHPnzmHfvn3YunVruW1u3LgRUVFR+vdDhgwBAMTExCA2NhZOTk7Yu3cvFi1ahDt37sDPzw9du3bF/v37UatWrUofQ2xtXzi7uZdbFiWRXqwmtVhupV25FZNfDjadmvxEcLJk3fk7ZdJhZcZW3Vhy1WIA8J4lkTbdr5dF+7YUuVTaJTL1LbUa+RPr70qWXxngYJF+6dGRKJPGLbXKdNFd6euL5Fk1YElISJAs3717t9G2kJAQyYWURo0ahVGjRpksDwwMxKZNmyo6RCIiItIATT3DQkRERFQeBixERESkeQxYiIiISPMYsBAREZHmMWAhIiIizbP6as2Puh4rUuGuK3/xxSswnT48safyPuXSltVQmzJqzRWXq6OonRtMls2XW+lZglxqcZJcAwtNF8mmtq8/L933gMZyvSsit9ryFZn6llw1mQxJpvND+nMBWC71XW615kSJz1VBfi6Q2MjcQ3qsMGAhIiKqRlxd/gVXl/J/ka4QkQ+gN9q3bw87OztER0cjOjrabONTigELERERGUlKStLUMjR8hoWIiIg0jwELERERaR4DFiIiItI8BixERESkeXzoVqV1fyyEk0P5q7hKpXdeSTWd8mxpUmmj9SGd7ipHarVSS7LkKtFqUrXl0jMtvdqzKXI/J7m0Z0uy1DUkl5Ys97Oy1M9S7blWc760eh3Incv5FupX7mcMmXRqqbTnnMJCJUOiB/AOCxEREWkeAxYiIiLSPAYsREREpHkMWIiIiEjzGLAQERGR5jFgISIiIs1jwEJERESax3lYVHqp7ni461SsilnNSM3bYMk5WtTMlQIon8dFbt6GKJl5G9AzQlG/FelbzRwvUvNJAMAVifOVu166302tGygaU0U8d/Ki8sr9ekkWW2rcWp0LBZAfm9TnRmq+J62S/cyo+LySerzDQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYiIiISPOY1qxRUmm6SlNwrU1NeqYlU6IB5WnRcmmQ8WrTnlXUna+4ZXmS1+cA6WPuPMBBsvzXhbMUjam6svS1r4bk52ah6SK57wKtHvOORp9Ilru6fGeyLD8/39zDeezwDgsRERFpHgMWIiIiUmzPnj3o168fAgMDYWNjg/Xr1xuUCyHwwQcfICAgAM7OzujduzdSUlIq3Q8DFiIiIlIsPz8frVu3xuLFi8st//jjj/HZZ59h6dKlOHToEFxdXREWFoaioqJK9cNnWIiIiEix8PBwhIeHl1smhMCiRYvw/vvvo3///gCAFStWwM/PD+vXr8eQIUMq3A/vsBAREZGRnJwcg1dxcXGl20hNTUVmZiZ69+6t3+bp6YnQ0FAcOHCgUm3xDgsREVE10jLLBR4lyhflzSkQAICgoCCD7TExMYiNja1UW5mZmQAAPz8/g+1+fn76sopiwGIlV2RSOzvjfdN1Zdq+hmAFIzKP9uvPW6TdSxZpVb2JMqu3xlfROMrT5o0zJst6pUySrDt/58+K+5VNEZdIdwWAzuNNX/uAdNqz1IrKcis5W3IVaTKkNm3ZUiuVy6Vbp/mUKmoXAAp1uYrrWkt6ejo8PDz073U6nRVHwz8JERERUTk8PDwMXkoCFn9/fwDA9evXDbZfv35dX1ZRDFiIiIjIIoKDg+Hv748dO3bot+Xk5ODQoUPo2LFjpdrin4SIiIhIsby8PFy4cEH/PjU1FSdOnIC3tzfq1KmDcePGYdasWWjUqBGCg4Mxbdo0BAYGYsCAAZXqhwELERERKXbkyBH06NFD/37ChAkAgJEjR2L58uV47733kJ+fjzFjxiArKwtdunTB5s2b4eTkVKl+GLAQERGRYt27d4cQwmS5jY0NZsyYgRkzZqjqh8+wEBERkebxDouVyK1IK5Xaacm0ZUulJVdXcum/9Vu/JFmeKFMu5cWT6yTL04L2miyLDzJZBACYqGRA/5+alGjAcqs1n12+W7K8vkV6vUerqw9rldq0ZbnpBkyS+UzJfV6lfs5Fd+8qGhL9D++wEBERkeYxYCEiIiLNY8BCREREmseAhYiIiDSPAQsRERFpHgMWIiIi0jymNWuUVGrny8FTqnAkVSdpQGPThTIr/MqRW4VVilT6sNoUXrl0V8XpmQCidm5QXFcNuTGrPWdqfpaWpDR1We54HtWUaKnrQO4akLt258v0rfQaU3ttSdUvyM8FEhupav9xxzssREREpHkMWIiIiEjzGLAQERGR5jFgISIiIs1jwEJERESax4CFiIiINI9pzRb0RHCy6cJU5e2uTp2rvDKk0w2vpLZQ1bbU2OTSsaXSN9WmyloqfVhqVW0A+FVlSqrUcalJeVbrYOu2JsuePnlcsq78OZNerVmrK4pfslC7aq99NenFlkpRV9uu3GrOTW+lmSyTur7kvifkrl0p+chXXJfu4R0WIiIi0jwGLERERKR5DFiIiIhI8/gMCxERUTVya182SnR/Ka6fW3zveZv27dvDzs4O0dHRiI6ONtfwFGPAQkREREaSkpLg4eFh7WHo8U9CREREpHk2Qghhrc5jY2Mxffp0g20hISE4e/Zsuft3794dv/zyi9H25557Dj//fC8Nbt26dVi6dCmOHj2K27dv4/jx42jTpo1+39u3byMmJgZbt25FWloafH19MWDAAMycOROenp4VHntOTg48PT0x68U+cHJwqHA9evRIpVDefn+M4roVqW/N1GWl1K7GLOdRXK1caiVytasxy60wLLXa+ONIKiVfLqVejaK7d/F+4lZkZ2db7K7F/f+Xfh/3X7jrXBW3k1ucj2aLwi06ViWs/ieh5s2bY/v27fr39vamh7Ru3TqUlJTo39+6dQutW7dGZGSkflt+fj66dOmCwYMH4/XXXzdqIyMjAxkZGfjkk0/QrFkz/PHHH3jzzTeRkZGBH374wUxHRUREROZk9YDF3t4e/v7+FdrX29vb4H1CQgJcXFwMApYRI0YAAC5fvlxuGy1atMCPP/6of9+gQQN8+OGHGD58OP766y/JgImIiIisw+rPsKSkpCAwMBD169fHsGHDkJZmeobCh8XFxWHIkCFwdVV+6wuA/raXVLBSXFyMnJwcgxcRERFVDasGLKGhoVi+fDk2b96MJUuWIDU1Fc888wxyc3Nl6x4+fBjJycn429/+pmoMf/75J2bOnIkxY6SfJZgzZw48PT31r6CgIFX9EhERUcVZNWAJDw9HZGQkWrVqhbCwMGzatAlZWVlYs2aNbN24uDi0bNkSHTp0UNx/Tk4OIiIi0KxZM8TGxkruO3XqVGRnZ+tf6enpivslIiKiytHUAxteXl5o3LgxLly4ILlffn4+EhISMGPGDMV95ebmom/fvnB3d0diYiIcZDJ9dDoddDqd4v6IiIhIOU0FLHl5ebh48aL+wVlT1q5di+LiYgwfPlxRPzk5OQgLC4NOp8PGjRvh5OSkqB05lkq/vDJAOriyZGoeGZJLOz7Tr5eq9s+c/MxkWdPx76hq21IstcKv1kmuor6w6sahFVI/Z7l0/6idGxS3Lde+1ErOpG1WDVgmTZqEfv36oW7dusjIyEBMTAzs7OwwdOhQAMCrr76K2rVrY86cOQb14uLiMGDAAPj4+Bi1efv2baSlpSEjIwMAcO7cOQCAv78//P39kZOTgz59+qCgoADffvutwQO0vr6+sLOzs+QhExERkQJWDViuXLmCoUOH4tatW/D19UWXLl1w8OBB+Pr6AgDS0tJga2v4mM25c+ewb98+bN26tdw2N27ciKioKP37IUOGAABiYmIQGxuLY8eO4dChQwCAhg0bGtRNTU1FvXr1zHV4REREZCZWDVgSEhIky3fv3m20LSQkBFKT844aNQqjRo0yWd69e3fJ+kRERKQ9Vp+HhYiIiEgOAxYiIiLSPAYsREREpHkMWIiIiEjzNDUPC5lH5/HvW6zt6jrHS5s3zpgsk5q1QWqpegDA8njJYrnz+dzJi9LtW4nUPBhy87DIzU+UNKCxdOfrz0uXa9DnwW+ZLBubukRV25cWjpYsny9RJvezUkOybZl5VuJ79pcs7yz3uZOYa+WMTx2TZWrPR3WdY0greIeFiIiINI8BCxEREWkeAxYiIiLSPAYsREREpFhpaSmmTZuG4OBgODs7o0GDBpg5c6bZJ2nlQ7dERESk2Ny5c7FkyRJ88803aN68OY4cOYKoqCh4enrinXfMt0grAxYiIiJSbP/+/ejfvz8iIu5lWdWrVw+rVq3C4cOHzdoPAxaNklqqvjMsl7b8uDrxVVOJ0jGmi1SmkMuloG+SSHuWGrE1yaV2TuwpXf+Jk8nSOwQr71uN+uPjpHdYaLpIbeqypcj/rCyX9iwlSibtWXY6AQlNJVKe5cilW+MxTWvu1KkTli1bhvPnz6Nx48Y4efIk9u3bhwULFpi1HwYsREREZCQnJ8fgvU6ng06nM9rvH//4B3JyctCkSRPY2dmhtLQUH374IYYNG2bW8TBgISIiqkbW/bEQTg4OiusX3b0LAAgKCjLYHhMTg9jYWKP916xZg++++w7ff/89mjdvjhMnTmDcuHEIDAzEyJEjFY/jYQxYiIiIyEh6ejo8PDz078u7uwIAkydPxj/+8Q8MGTIEANCyZUv88ccfmDNnDgMWIiIisiwPDw+DgMWUgoIC2NoazpJiZ2eHsrIys46HAQsREREp1q9fP3z44YeoU6cOmjdvjuPHj2PBggV47bXXzNqPjTD3zC6PiZycHHh6euL3cf+Fu8610vWlsoCqK+9ZyyTLpTID1GZ/yPVdJ/0Zk2VpQXtNlt1+XyKDCPJZFmqyNKy50JolxyW3OGJ1++zIHa8lqT2X1soikqM0i0huMVI1x5tTWAjP8RORnZ1dobsWivr4//8vzXqxj+pnWN5P3Frhsebm5mLatGlITEzEjRs3EBgYiKFDh+KDDz6Ao6Oj4nE8jHdYiIiISDF3d3csWrQIixYtsmg/nJqfiIiINI8BCxEREWkeAxYiIiLSPAYsREREpHkMWIiIiEjzmCX0CHpU0z7lUoDnW7Fvr/H7TZbVSe9kul2ZJQjVpvhaM3VZilTaaGeZlNIzPnUky1fL/KwsRW4hSjlyKbHWsm10A9OFMoes1bRlOVLXmNx3gRS5z6PUApkF+bkAJirum3iHhYiIiB4BDFiIiIhI8xiwEBERkeYxYCEiIiLNY8BCREREmseAhYiIiDSPAQsRERFpHudheQRZc54VuXkZpOYpUFNXjtr5IuJ9SiVKTc/RAoxW1e/jyOuWnfQOs5ZJFkvNoyE1D4a8VBV1tevZuIsmy1bL1E1s/ZJk+Ysn1ykYERDfs79kedNbaYravS9q5waTZYkS18ilhdKfZ7nrS6p+0d27knVJHu+wEBERkeYxYCEiIiLNY8BCREREmlfpgGXkyJHYs2ePJcZCREREVK5KByzZ2dno3bs3GjVqhNmzZ+Pq1auWGBcRERGRXqUDlvXr1+Pq1at46623sHr1atSrVw/h4eH44YcfcJdPQRMREZEF2AghhJoGjh07hvj4ePzrX/+Cm5sbhg8fjr///e9o1KiRucaoSTk5OfD09MSsF/vAycHB2sOpMnLpw1dSWyhuWypdW126qjyp9EypdGs1aY6WJjU2S46r8/j3Jct/XThLstyS6e+PonlvSp+vJc4BkuXt1583WSY3RYLa6QKUOti6rar6cteYpUh95gryczG8dyNkZ2fDw8PDIv3f/39p6/eH4Oriprid/II89HklFI0bN4adnR2io6MRHR1txpEqo2oelmvXrmHbtm3Ytm0b7Ozs8Nxzz+H06dNo1qwZPv74Y4wfP95c4yQiIqIqlJSUZLHgSolK/0no7t27+PHHH/H888+jbt26WLt2LcaNG4eMjAx888032L59O9asWYMZM2ZYYrxERET0GKr0HZaAgACUlZVh6NChOHz4MNq0aWO0T48ePeDl5WWG4REREREpCFgWLlyIyMhIODk5mdzHy8sLqanVc5prIiIiqnqVDlhGjBhhiXEQERERmcSZbomIiEjzVKc1P67up4/9Pu6/cNe5lruPmlWVpdIJtZzWqSaV1ltilV6p1VcB+XMi1TYgvQKwNdolMhc1nytr0fJ3nFJFd+/i/cStj1RasyXHqgTvsBAREZHmMWAhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8VYsfkrSXg6corntFYqLgl4OVr4gMqEu3tiSpFOD5FmwbkE9PVtquWlLjanorTbKutVasJfNSmzovWW7B1ZjrpdYxWXY5WPrafVSnC5BaqTw/Px9I3FqFo6l+eIeFiIiINI8BCxEREWkeAxYiIiLSPAYsREREpHkMWIiIiEjzGLAQERGR5jFgISIiIs2z6jwssbGxmD59usG2kJAQnD17ttz9u3fvjl9++cVo+3PPPYeff763HPm6deuwdOlSHD16FLdv38bx48fRpk0bg/2XLVuG77//HseOHUNubi7u3LkDLy8vsxzTo0BqfhhLztEyUcWcD2qXm1c6zwoARO3cYLJM7fwwciTnm5CY8wGQnhPCknO0SPVbEXJjk/pZanV+DjXUHpOaz50acnOtPIrqj4+TLL8mUVaAXPMORmOuXr2KKVOm4L///S8KCgrQsGFDxMfH46mnnjJbH1afOK558+bYvn27/r29vekhrVu3DiUlJfr3t27dQuvWrREZGanflp+fjy5dumDw4MF4/fXXy22noKAAffv2Rd++fTF16lQzHAUREdHj6c6dO+jcuTN69OiB//73v/D19UVKSgpq1Khh1n6sHrDY29vD39+/Qvt6e3sbvE9ISICLi4tBwDJixAgAwOXLl022M27cOADA7t27KzVWIiIiMjR37lwEBQUhPj5evy04ONjs/Vj9GZaUlBQEBgaifv36GDZsGNLSKn4bMS4uDkOGDIGrq6sFR3hPcXExcnJyDF5ERETV1cP/5xUXF5e738aNG/HUU08hMjIStWrVQtu2bfH111+bfTxWvcMSGhqK5cuXIyQkBNeuXcP06dPxzDPPIDk5Ge7u7pJ1Dx8+jOTkZMTFSf9N0VzmzJlj9LwNERGR1oRe3wcPZ2fF9XMKCwEAQUFBBttjYmIQGxtrtP+lS5ewZMkSTJgwAf/3f/+HpKQkvPPOO3B0dMTIkSMVj+NhVg1YwsPD9f9u1aoVQkNDUbduXaxZswajR4+WrBsXF4eWLVuiQ4cOlh4mAGDq1KmYMGGC/n1OTo7RD5OIiKi6SE9Ph4eHh/69Tqcrd7+ysjI89dRTmD17NgCgbdu2SE5OxtKlS6tPwPIwLy8vNG7cGBcuXJDcLz8/HwkJCZgxY0YVjezeD6q8H9a6PxbCycGh0u2pWclZLTWZQHJPyWuVmkyLeKkMI5XZS2podTVmuXGpzSKqjplAZEgqMw+Q+UwCmHrlhsmyOU/UMlkmd21dWij9i7Tkas3Il6yrRR4eHgYBiykBAQFo1qyZwbamTZvixx9/NOt4rP4My4Py8vJw8eJFBAQESO63du1aFBcXY/jw4VU0MiIiIipP586dce7cOYNt58+fR926dc3aj1XvsEyaNAn9+vVD3bp1kZGRgZiYGNjZ2WHo0KEAgFdffRW1a9fGnDlzDOrFxcVhwIAB8PHxMWrz9u3bSEtLQ0ZGBgDoT6K/v78+GykzMxOZmZn6OzmnT5+Gu7s76tSpY5SJRERERKaNHz8enTp1wuzZszF48GAcPnwYy5Ytw7Jlyue/Ko9V77BcuXIFQ4cORUhICAYPHgwfHx8cPHgQvr6+AIC0tDRcu2Y4Fc+5c+ewb98+k8+4bNy4EW3btkVExL3JkoYMGYK2bdti6dKl+n2WLl2Ktm3b6udp6dq1K9q2bYuNGzda4jCJiIiqrfbt2yMxMRGrVq1CixYtMHPmTCxatAjDhg0zaz9WvcOSkJAgWV7ePCkhISEQQpisM2rUKIwaNUqy3djY2HKfdCYiIqLKe/755/H8889btA9NPcNCREREVB4GLERERKR5mkprfpxYcpFBNdSmLb94cp2ZRqId1kyjVbNoo1bTf7W88KIUraaRP47k0p6jJMoSnV8yWXZb4Xjuk7pGiu7eVdk68Q4LERERaR4DFiIiItI8BixERESkeQxYiIiISPMYsBAREZHmMWAhIiIizWPAQkRERJrHeVgeQ2rnWrGUxNam50eoL1EGyC/7Xh1pdZ4Va5KaB0PtHC3z3pSeh2XyUsvMASM3F4/cnCRqzN/5s+K6E3tGmHEk5iM5V5QFx5xTWIj3E7darP3HAe+wEBERkeYxYCEiIiLNY8BCREREmseAhYiIiDSPAQsRERFpHgMWIiIi0jymNT+G1KQAy6VYSpFKW7a0z4Pfkiwfm7qkikZSOdUxdfnl4Cmq6q9OnWuyTOr6/FXmXMqlPVsqbVmO7DWgIhU3vmd/6R1UpDVXx5Rosi7eYSEiIiLNY8BCREREmsc/CREREVUj5xYvhZudneL6eaWlAID27dvDzs4O0dHRiI6ONtfwFGPAQkREREaSkpLg4eFh7WHo8U9CREREpHkMWIiIiEjz+CchqhRLplhKeavwmmR5pky/3j3bSpZH7TRdXyr1U26lXDWpnZakduViqVWR5UilJQPq0p7VpIGrOSZr2tHoE8nyXimTTJZVx7R5qr54h4WIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYiIiISPMYsBAREZHmMa2ZKkXNKqovnlwnWa5mNWe5ulE7pfuWIpn6KXM+LLnq7JXUFpLlUunDlkzhlUuZlutbLu2ZDEmlLct5VFcxtxY131EF+bkAJppvMI8h3mEhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeUxrVmnsyObwcNWVWzb/69NVPJqKkUq1tebqwpJpzyrSCStCq6sqq+E9a5nJMrlVeqXqAkDTW2mKxgSoW40ZsFzac/3xcZLlftdvSZYf+P49cw6nSlwOlv45zk+1TL9t3jgjvUOK5aYDoEcX77AQERGR5jFgISIiIs1jwEJERESax4CFiIiIzOKjjz6CjY0Nxo0bZ/a2GbAQERGRaklJSfjqq6/QqlUri7TPgIWIiIhUycvLw7Bhw/D111+jRo0aFumDac0qff7Nb3BycLD2MCpFKoVX7erClmxbDblVVutLlAfAdG7nfJmVh+WOWS6dWm0KsCnPnbwovUO/XpLFB/+zw2SZXMq0tcilLavV8ZWPTZZZMuVZ7hqSugbje/aXbtxC6f45Lvtl9lC+urolWXLFeS3KyckxeK/T6aDTlT+NR3R0NCIiItC7d2/MmmWZ1eAZsBAREVUjIyfaw87ZTnH90kIb4C0gKCjIYHtMTAxiY2ON9k9ISMCxY8eQlJSkuM+KYMBCRERERtLT0+Hh4aF/X97dlfT0dLz77rvYtm0bnJycLDoeBixERERkxMPDwyBgKc/Ro0dx48YNPPnkk/ptpaWl2LNnD7744gsUFxfDzk753Z4HMWAhIiIiRXr16oXTpw2XoYmKikKTJk0wZcoUswUrAAMWIiIiUsjd3R0tWrQw2Obq6gofHx+j7WoxrZmIiIg0j3dYyMDB1m1V1Z+ooq5USqCl0wkvLRxtsixg/PuK21W7CrTUysRyKc9ROzeYLhz/jtIhAQDO3jJ9m7eOzEq8J75qqqpvNatQS5G6BgDgkuKWLUvNdAFeEj9HALitom81n2c5alK5LUnquHIKC6twJNa1e/dui7TLOyxERESkeQxYiIiISPMYsBAREZHmMWAhIiIizWPAQkRERJrHgIWIiIg0j2nNKo3tGgYPZ+dyy9SmtJqidgXgzirSdK8hWGaP4yZLZFeGRWmlx/M4k0p5BgCJRabVk1yVe5Jk1V49pZuul1pHsnyswtRlv+u3JMutlbYs93mWS9mP95H+3Eilt8umF6tID1aTuiz3HSa78rbCvuXOtVzqu5Siu3cV16V7eIeFiIiINM+qAUtsbCxsbGwMXk2aNDG5f/fu3Y32t7GxQUTE/34LWLduHfr06QMfHx/Y2NjgxIkTRu0UFRUhOjoaPj4+cHNzw8CBA3H9+nVLHCIRERGZgdXvsDRv3hzXrl3Tv/bt22dy33Xr1hnsm5ycDDs7O0RGRur3yc/PR5cuXTB3runb5ePHj8d//vMfrF27Fr/88gsyMjLw0kvqZkolIiIiy7H6Myz29vbw9/ev0L7e3t4G7xMSEuDi4mIQsIwYMQIAcPny5XLbyM7ORlxcHL7//nv07Hnvj+nx8fFo2rQpDh48iKefflrBURAREZElWf0OS0pKCgIDA1G/fn0MGzYMaWlpFa4bFxeHIUOGwNXVtcJ1jh49irt376J37976bU2aNEGdOnVw4MABk/WKi4uRk5Nj8CIiIqKqYdWAJTQ0FMuXL8fmzZuxZMkSpKam4plnnkFubq5s3cOHDyM5ORl/+9vfKtVnZmYmHB0d4eXlZbDdz88PmZmZJuvNmTMHnp6e+ldQUFCl+iUiIiLlrBqwhIeHIzIyEq1atUJYWBg2bdqErKwsrFmzRrZuXFwcWrZsiQ4dOlTBSIGpU6ciOztb/0pPT6+SfomIiEgDz7A8yMvLC40bN8aFCxck98vPz0dCQgJmzJhR6T78/f1RUlKCrKwsg7ss169fl3yWRqfTQafTVbo/pSy5PPqvC2dZrG2peRuk5oNQS25+BLl5G5TOTSNXz6LnuppKGOAjWf7rQmXtHvj+PWUVzUDN51nNfCZqyc2ddFvhnDjes5ZJ7yAzD4uacyJ1TFE7pdudr7hXMgerP8PyoLy8PFy8eBEBAQGS+61duxbFxcUYPnx4pfto164dHBwcsGPHDv22c+fOIS0tDR07dqx0e0RERGR5Vr3DMmnSJPTr1w9169ZFRkYGYmJiYGdnh6FDhwIAXn31VdSuXRtz5swxqBcXF4cBAwbAx8f4N7Hbt28jLS0NGRkZAO4FI8C9Oyv+/v7w9PTE6NGjMWHCBHh7e8PDwwNjx45Fx44dmSFERESkUVYNWK5cuYKhQ4fi1q1b8PX1RZcuXXDw4EH4+voCANLS0mBra3gT6Ny5c9i3bx+2bt1abpsbN25EVFSU/v2QIUMAADExMYiNjQUALFy4ELa2thg4cCCKi4sRFhaGL7/80gJHSEREROZg1YAlISFBsnz37t1G20JCQiCEMFln1KhRGDVqlGS7Tk5OWLx4MRYvXlyRYRIREZGVaeoZFiIiIqLyaCpLiIiIiNQ5GNAXHq7Ks1pz8ovhiTNo37497OzsEB0djejoaDOOUBkGLCq1+CMItjqXcsvGStSzZNqyJT2q47YUpi0bmy+Tkip3DWn1nD6OKexyUxEoTfNVmg6t71fmGpPiLZOqTf+TlJQEDw8Paw9Dj38SIiIiIs1jwEJERESax4CFiIiINI8BCxEREWkeAxYiIiLSPAYsREREpHlMa1bpjT/+BScHh3LL2rxxxnTFFOulB38e/JbJsrGpS1S1fbB1W5NlT588rrhduVVjJ8o1ILO6q9S4H1VqUtATW78kWS63OrYU/8bSi4xOlklZnfem6fThI1tyTZatTp0rPTAZctfv0wrP937/bpLlnTJ/UdRuVZC6xtSkHqsltRq0VEo1V2PWNt5hISIiIs1jwEJERESax4CFiIiINI8BCxEREWkeAxYiIiLSPGYJWVCvlEmK61ryCXs1mUCy45IoV5pFAcgvwvaoqj8+TrJcKhvn5eApknXjezZQNCYAiNopk1UlsxCglJfXm87kAYAkmXOSKZHxlTjAdHZTfUi3+2LeIslyXJQuVsrSWUBqvkvUZJpJ1ZXL+lP7eZ8vkQkkNS657Dg5arLnSB7vsBAREZHmMWAhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeZyHRaWxXcPg4exs7WE8EuTmg1Az54McuXkfmt5Ks0i/cvOsqCG3+rA3TK9Ya8l5ba4hWLp8gHT9JqO6S5bPb216fpn6EvNovCizYjdQR6Zcm6w1z4oalp5XSelxZfmUSpbLjTteYpXowrxcILGJonFp3Zw5c7Bu3TqcPXsWzs7O6NSpE+bOnYuQkBCz9sM7LERERKTYL7/8gujoaBw8eBDbtm3D3bt30adPH+Tn55u1H95hISIiIsU2b95s8H758uWoVasWjh49iq5du5qtHwYsREREZCQnJ8fgvU6ng06nk62XnZ0NAPD29jbreBiwEBERVSP/cfs7XFzdFdcvsMkFsBBBQUEG22NiYhAbGytZt6ysDOPGjUPnzp3RokULxWMoDwMWIiIiMpKeng4PDw/9+4rcXYmOjkZycjL27dtn9vEwYCEiIiIjHh4eBgGLnLfffhs//fQT9uzZgyeeeMLs42HAYkH1Uk2nSY5NXVKFIyG5dMSDrdsqavfl4CnSO6w/L1ksl5qspu9tEmVS1yYAXA6WTvP+deEsk2VqU7k3SaQty7Uvl5YqJVEiJVot+ZRq5eRSeKWOK1Fl31LHJZVurTadWm6aAqVp02rTraXq5xQWIlpV69olhMDYsWORmJiI3bt3IzhYemoDpRiwEBERkWLR0dH4/vvvsWHDBri7uyMzMxMA4OnpCWczzlPGeViIiIhIsSVLliA7Oxvdu3dHQECA/rV69Wqz9sM7LERERKSYEKJK+uEdFiIiItI8BixERESkeQxYiIiISPNsRFX98amaycnJgaenJ2a92AdODg7WHk61YK2VY9W4kmremRwfpibt2ZKkUqotPWal14kl05blWDKtWQ25c6LVccuxZEq1UjmFhfAcPxHZ2dmVmtukUn38//+Xvt2eom6m2/xcDO/dyKJjVYJ3WIiIiEjzGLAQERGR5jFgISIiIs1jwEJERESax4CFiIiINI8BCxEREWkep+anKvMopi3LkUvhlV3N+THUefz7qurPl1gp2prXmFZTgP0bdzRZVl3XjK+O3zXEOyxERET0CGDAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYiIiISPM4D4uVeM9aJll++/0xitu25BwEUsu2W7pva4nv2d9k2XMLP5Osm3tS+ue4qXUDRWPSMrlr4KAF+05s/ZIFW1fet1bnaBm//ohk+YvBVTQQM5P6zEbt3FCFIyFzYsBCRERUjUz96ThsdS6K65cVFwAA2rdvDzs7O0RHRyM6Otpcw1OMAQsREREZSUpKgoeHh7WHocdnWIiIiEjzGLAQERGR5jFgISIiIs3jMyxWoiYLSHa125PHFbctlwX0OJLKKoj/zw7FdQFg0yN6vpMGNDZZtnqh9ArWnVu3NfdwqoRcpo/kZ8eK2XOZ5w+YLNvR5xPpyimTJIuVfl/IZUmqzeSR/Mwyg+iRxTssREREpHkMWIiIiEjzrBqwxMbGwsbGxuDVpEkTk/t3797daH8bGxtERPzvdqsQAh988AECAgLg7OyM3r17IyUlxaCdY8eO4dlnn4WXlxd8fHwwZswY5OXlWew4iYiISB2r32Fp3rw5rl27pn/t27fP5L7r1q0z2Dc5ORl2dnaIjIzU7/Pxxx/js88+w9KlS3Ho0CG4uroiLCwMRUVFAICMjAz07t0bDRs2xKFDh7B582b89ttvGDVqlKUPlYiIiBSy+kO39vb28Pf3r9C+3t7eBu8TEhLg4uKiD1iEEFi0aBHef/999O9/78GqFStWwM/PD+vXr8eQIUPw008/wcHBAYsXL4at7b14benSpWjVqhUuXLiAhg0bmvHoiIiIyBysfoclJSUFgYGBqF+/PoYNG4a0tLQK142Li8OQIUPg6uoKAEhNTUVmZiZ69+6t38fT0xOhoaE4cODek/LFxcVwdHTUBysA4OzsDACSd3eKi4uRk5Nj8CIiIqKqYdU7LKGhoVi+fDlCQkJw7do1TJ8+Hc888wySk5Ph7u4uWffw4cNITk5GXFycfltmZiYAwM/Pz2BfPz8/fVnPnj0xYcIEzJs3D++++y7y8/Pxj3/8AwBw7do1k/3NmTMH06dPr9TxSaUf/7pwluK6cg7KpI3K9U0VpzYN0pKLYFqr3/rj42T2SFXctpxLC0dbrO35MuWSiz42MP2LWKLbOMl2VaVTy5gI6bRl2foK07XP9OslWT7fgouCTrRYy2RpVr3DEh4ejsjISLRq1QphYWHYtGkTsrKysGbNGtm6cXFxaNmyJTp06FCpPps3b45vvvkG8+fPh4uLC/z9/REcHAw/Pz+Duy4Pmzp1KrKzs/Wv9PT0SvVLREREyln9T0IP8vLyQuPGjXHhwgXJ/fLz85GQkIDRow1/m7r/LMz169cNtl+/ft3gOZlXXnkFmZmZuHr1Km7duoXY2FjcvHkT9evXN9mnTqeDh4eHwYuIiIiqhqYClry8PFy8eBEBAQGS+61duxbFxcUYPny4wfbg4GD4+/tjx47/zT6ak5ODQ4cOoWPHjkbt+Pn5wc3NDatXr4aTkxOeffZZ8xwIERERmZVVn2GZNGkS+vXrh7p16yIjIwMxMTGws7PD0KFDAQCvvvoqateujTlz5hjUi4uLw4ABA+Dj42Ow3cbGBuPGjcOsWbPQqFEjBAcHY9q0aQgMDMSAAQP0+33xxRfo1KkT3NzcsG3bNkyePBkfffQRvLy8LH3IREREpIBVA5YrV65g6NChuHXrFnx9fdGlSxccPHgQvr6+AIC0tDSj50rOnTuHffv2YevWreW2+d577yE/Px9jxoxBVlYWunTpgs2bN8PJyUm/z+HDhxETE4O8vDw0adIEX331FUaMGGG5AyUiIiJVrBqwJCQkSJbv3r3baFtISAiEECbr2NjYYMaMGZgxY4bJfVasWFHhMRIREZH1aeoZFiIiIqLyWH2m2+pMar6Tz4Pfkq4sUVfNHC2kLXLzuEjN/fHcyYuK+90kM8+K3DwtL+40PTdIfM/+knUvvS89D5D8PC6mSZ2TTTJze6jpFwDmS80Bs1OqpvTcMYly41IxD4vcHC5qzonknDgWnGdFjtT1qXZeJbIs3mEhIiIizWPAQkRERJrHgIWIiIhUW7x4MerVqwcnJyeEhobi8OHDZm2fAQsRERGpsnr1akyYMAExMTE4duwYWrdujbCwMNy4ccNsfTBgISIiIlUWLFiA119/HVFRUWjWrBmWLl0KFxcX/Pvf/zZbH8wSUuj+XDBFd/9SVL+suECyvOjuXZNl+fn5ivqsSNtq5RQWWqztx5HUzyqvtNQi7QJAYV6uZLnUz1murlzfBfnK60udE7X9yrHU50rN+bB031IsOS41pK5PS35/5RQVAYDkPGLmIvf/S0Xr5+TkGGzX6XTQ6XRG+5eUlODo0aOYOnWqfputrS169+6NAwcOqBqLAUGKpKenCwB88cUXX3zxVeFXenq6xf5fKiwsFP7+/mYZp5ubm9G2mJiYcvu9evWqACD2799vsH3y5MmiQ4cOZjs+3mFRKDAwEOnp6XB3d4eNjY21hyMpJycHQUFBSE9P5yrTlcDzVnk8Z8rwvFXeo3bOhBDIzc1FYGCgxfpwcnJCamoqSkpKVLclhDD6v628uytViQGLQra2tnjiiSesPYxK8fDweCQ+2FrD81Z5PGfK8LxV3qN0zjw9PS3eh5OTk8HaeVWhZs2asLOzw/Xr1w22X79+Hf7+/mbrhw/dEhERkWKOjo5o164dduzYod9WVlaGHTt2oGPHjmbrh3dYiIiISJUJEyZg5MiReOqpp9ChQwcsWrQI+fn5iIqKMlsfDFgeAzqdDjExMVb/++Ojhuet8njOlOF5qzyeM215+eWXcfPmTXzwwQfIzMxEmzZtsHnzZvj5+ZmtDxshqiDHioiIiEgFPsNCREREmseAhYiIiDSPAQsRERFpHgMWIiIi0jwGLBr00UcfwcbGBuPGjTMqE0IgPDwcNjY2WL9+vVH58uXL0apVKzg5OaFWrVqIjo42KD916hSeeeYZODk5ISgoCB9//LFRG2vXrkWTJk3g5OSEli1bYtOmTUZj+OCDDxAQEABnZ2f07t0bKSkpqo5ZLSXnbPny5bCxsSn39eAKo7t378aTTz4JnU6Hhg0bYvny5UZ9yC2rXlRUhOjoaPj4+MDNzQ0DBw40mmTJGpRea0lJSejVqxe8vLxQo0YNhIWF4eTJkwb78Fpbb1C2Y8cOdOrUCe7u7vD398eUKVPw11+Ga5FV13MGlH/eunfvbvTZe/PNNw3qpaWlISIiAi4uLqhVqxYmT55sdN6q82eUHmC2Sf7JLA4fPizq1asnWrVqJd59912j8gULFojw8HABQCQmJhqUzZ8/XwQGBorvvvtOXLhwQZw8eVJs2LBBX56dnS38/PzEsGHDRHJysli1apVwdnYWX331lX6fX3/9VdjZ2YmPP/5Y/P777+L9998XDg4O4vTp0/p9PvroI+Hp6SnWr18vTp48KV544QURHBwsCgsLzX4+KkLpOSsoKBDXrl0zeIWFhYlu3brp97l06ZJwcXEREyZMEL///rv4/PPPhZ2dndi8ebN+n4SEBOHo6Cj+/e9/i99++028/vrrwsvLS1y/fl2/z5tvvimCgoLEjh07xJEjR8TTTz8tOnXqZInTUWFKz1tubq7w9vYWo0aNEmfPnhXJycli4MCBws/PT5SUlAgheK09fM5OnDghHB0dxfTp00VKSorYvXu3aNKkiZg4caJ+n+p6zoQwfd66desmXn/9dYPPYHZ2tr78r7/+Ei1atBC9e/cWx48fF5s2bRI1a9YUU6dO1e9TnT+jZIgBi4bk5uaKRo0aiW3btolu3boZfSEeP35c1K5dW1y7ds3oC/H27dvC2dlZbN++3WT7X375pahRo4YoLi7Wb5syZYoICQnRvx88eLCIiIgwqBcaGireeOMNIYQQZWVlwt/fX8ybN09fnpWVJXQ6nVi1apWSw1ZFzTl72I0bN4SDg4NYsWKFftt7770nmjdvbrDfyy+/LMLCwvTvO3ToIKKjo/XvS0tLRWBgoJgzZ44Q4t75cXBwEGvXrtXvc+bMGQFAHDhwQMlhq6bmvCUlJQkAIi0tTb/t1KlTAoBISUkRQvBae/icTZ06VTz11FMG+2/cuFE4OTmJnJwcIUT1PGdCSJ+38s7jgzZt2iRsbW1FZmamftuSJUuEh4eH/jxV188oGeOfhDQkOjoaERER6N27t1FZQUEBXnnlFSxevLjctRm2bduGsrIyXL16FU2bNsUTTzyBwYMHIz09Xb/PgQMH0LVrVzg6Ouq3hYWF4dy5c7hz545+n4f7DwsL0y8RnpqaiszMTIN9PD09ERoaat5lxCtIzTl72IoVK+Di4oJBgwbpt8mdj/vLqj+4z8PLqh89ehR379412KdJkyaoU6eOVc4ZoO68hYSEwMfHB3FxcSgpKUFhYSHi4uLQtGlT1KtXDwCvtYcVFxcbre/i7OyMoqIiHD16FED1PGeA9HkDgO+++w41a9ZEixYtMHXqVBQUFOjLDhw4gJYtWxpMPhYWFoacnBz89ttv+n2q42eUjHGmW41ISEjAsWPHkJSUVG75+PHj0alTJ/Tv37/c8kuXLqGsrAyzZ8/Gp59+Ck9PT7z//vt49tlncerUKTg6OiIzMxPBwcEG9e5/EWRmZqJGjRrIzMw0mpnQz88PmZmZ+v0erFfePlVF7Tl7WFxcHF555RU4Ozvrt5k6Hzk5OSgsLMSdO3dQWlpa7j5nz57Vt+Ho6AgvLy+jfar6nAHqz5u7uzt2796NAQMGYObMmQCARo0aYcuWLbC3v/eVwmvNUFhYGBYtWoRVq1Zh8ODByMzMxIwZMwAA165dA1D9zhkgf95eeeUV1K1bF4GBgTh16hSmTJmCc+fOYd26dQBMf/7ul0nt8yh/Rql8DFg0ID09He+++y62bdtW7iqbGzduxM6dO3H8+HGTbZSVleHu3bv47LPP0KdPHwDAqlWr4O/vj127diEsLMxi47cGc5yzBx04cABnzpzBypUrzT1UTTHHeSssLMTo0aPRuXNnrFq1CqWlpfjkk08QERGBpKQkg4CvOjDHOevTpw/mzZuHN998EyNGjIBOp8O0adOwd+9e2NpWzxvdcucNAMaMGaP/d8uWLREQEIBevXrh4sWLaNCgQVUNlR4R1fOT8og5evQobty4gSeffBL29vawt7fHL7/8gs8++wz29vbYtm0bLl68CC8vL305AAwcOBDdu3cHAAQEBAAAmjVrpm/X19cXNWvWRFpaGgDA39+/3OW/75dJ7fNg+YP1ytunKpjjnD3oX//6F9q0aYN27doZbDd1Pjw8PODs7FyhZdX9/f1RUlKCrKwsk/tUFXOct++//x6XL19GfHw82rdvj6effhrff/89UlNTsWHDBgC81gDja23ChAnIyspCWloa/vzzT/3dmPr16wOoXucMkD9vpaWlRnVCQ0MBABcuXACg7pw8qp9RMo0Biwb06tULp0+fxokTJ/Svp556CsOGDcOJEyfwz3/+E6dOnTIoB4CFCxciPj4eANC5c2cAwLlz5/Tt3r59G3/++Sfq1q0LAOjYsSP27NmDu3fv6vfZtm0bQkJCUKNGDf0+Dy4Rfn+f+0uEBwcHw9/f32CfnJwcHDp0yKzLiMsxxzm7Ly8vD2vWrMHo0aON+pE7HxVZVr1du3ZwcHAw2OfcuXNIS0ur0nMGmOe8FRQUwNbWFjY2Nvp2778vKysDwGsNKP9as7GxQWBgIJydnbFq1SoEBQXhySefBFC9zhkgf97s7OyM6tw/d/d/AevYsSNOnz5tMM3Atm3b4OHhof/lrLp9RkmCtZ/6pfLJPT2PcjJe+vfvL5o3by5+/fVXcfr0afH888+LZs2a6VNNs7KyhJ+fnxgxYoRITk4WCQkJwsXFxSht0t7eXnzyySfizJkzIiYmpty0SS8vL7FhwwZx6tQp0b9/f6unTQqh7JwJIcS//vUv4eTkJO7cuWNUdj9lcvLkyeLMmTNi8eLF5aZM6nQ6sXz5cvH777+LMWPGCC8vL4PMhjfffFPUqVNH7Ny5Uxw5ckR07NhRdOzYUc3hmk1lz9uZM2eETqcTb731lvj9999FcnKyGD58uPD09BQZGRlCCF5r5V1rH3/8sTh16pRITk4WM2bMEA4ODgb7VPdzJoThebtw4YKYMWOGOHLkiEhNTRUbNmwQ9evXF127dtXvfz+tuU+fPuLEiRNi8+bNwtfXt9y05ur8GaV7GLBolJIvxOzsbPHaa68JLy8v4e3tLV588UWD1FMhhDh58qTo0qWL0Ol0onbt2uKjjz4yanvNmjWicePGwtHRUTRv3lz8/PPPBuVlZWVi2rRpws/PT+h0OtGrVy9x7tw5xcdqLkoDlo4dO4pXXnnFZL1du3aJNm3aCEdHR1G/fn0RHx9vtM/nn38u6tSpIxwdHUWHDh3EwYMHDcoLCwvF3//+d1GjRg3h4uIiXnzxRXHt2rWKHppFKTlvW7duFZ07dxaenp6iRo0aomfPnkbpn7zWEg229ejRQ3h6egonJycRGhoqNm3aZFSvOp8zIQzPW1pamujatavw9vYWOp1ONGzYUEyePNlgHhYhhLh8+bIIDw8Xzs7OombNmmLixIni7t27BvtU988o3WMjhBDWu79DREREJI/PsBAREZHmMWAhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYiIiISPMYsBAREZHmMWAhIiIizWPAQkSq3bx5E/7+/pg9e7Z+2/79++Ho6Gi0ki4RkRJcS4iIzGLTpk0YMGAA9u/fj5CQELRp0wb9+/fHggULrD00IqoGGLAQkdlER0dj+/bteOqpp3D69GkkJSVBp9NZe1hEVA0wYCEisyksLESLFi2Qnp6Oo0ePomXLltYeEhFVE3yGhYjM5uLFi8jIyEBZWRkuX75s7eEQUTXCOyxEZBYlJSXo0KED2rRpg5CQECxatAinT59GrVq1rD00IqoGGLAQkVlMnjwZP/zwA06ePAk3Nzd069YNnp6e+Omnn6w9NCKqBvgnISJSbffu3Vi0aBFWrlwJDw8P2NraYuXKldi7dy+WLFli7eERUTXAOyxERESkebzDQkRERJrHgIWIiIg0jwELERERaR4DFiIiItI8BixERESkeQxYiIiISPMYsBAREZHmMWAhIiIizWPAQkRERJrHgIWIiIg0jwELERERaR4DFiIiItK8/wdLfg6LOVPMrgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABagUlEQVR4nO3deVzU1f4/8BcOMuwgiCwGiqi4IZgp7vsVjUwrMck905ZJc63r92bgkmbmVrl2CdMWlFLzptddU3NfMCkXVAgUUVMBQUCD8/ujn3Mdh/l8mI35iK/n4zGPh/M553POmTPD+ObD532OnRBCgIiIiEjBqtl6AERERERyGLAQERGR4jFgISIiIsVjwEJERESKx4CFiIiIFI8BCxERESkeAxYiIiJSPAYsREREpHgMWIiIiEjxGLAoRN26dTF8+HBbD4OIqrjhw4ejbt26Jp1rq++pa9euoX///vD29oadnR0WLlxY6WMg22PAUokOHDiA+Ph45Obm2noolero0aN4++230bRpU7i4uCAoKAgDBgzA+fPny61/5swZ9OrVC66urvDy8sKQIUNw48YNnTpnz57Fu+++i4iICLi5ucHf3x/R0dE4duyYXnvnzp3D+PHj0a5dOzg6OsLOzg4ZGRlGvYalS5ciJiYGQUFBsLOzk/zSzs3NxejRo+Hj4wMXFxd07doVJ06cMKq/hIQENG7cGI6OjmjQoAE+++wzk17X8OHDYWdnJ/t4+PVYev6lHDhwAB06dICzszP8/PwwduxYFBQU6NUrKSnBe++9h4CAADg5OSEyMhLbt283qq+KzCkAXLlyBQMGDICnpyfc3d3Rt29fXLp0yai+bC07Oxvx8fFISUmx9VAsYvz48di6dSumTJmC1atXo1evXpXWd0U/o1QJBFWauXPnCgAiPT1dr6y4uFjcu3ev8gdVCV566SXh5+cnxowZI7744gsxY8YM4evrK1xcXMTp06d16mZlZYmaNWuKkJAQsWjRIvHhhx+KGjVqiPDwcFFSUqKtN3HiROHp6SlGjhwpli9fLj7++GMREhIiVCqV2L59u06biYmJolq1aqJZs2YiIiLC4HsgpU6dOsLLy0v06tVL2Nvbi2HDhpVbr7S0VLRr1064uLiI+Ph48fnnn4smTZoINzc3cf78+Qr1tWzZMgFAvPTSS2LFihViyJAhAoD46KOPjH5dBw4cEKtXr9Y+pk+fLgCI0aNH6xw/cOCAEMI682/IyZMnhaOjo2jRooVYunSp+Ne//iXUarXo1auXXt2BAwcKe3t7MWnSJLF8+XLRtm1bYW9vL/bt22fROb1z545o0KCBqFWrlpgzZ46YP3++CAwMFE899ZT4888/K9SXEhw9elQAEImJiXpl9+7dE8XFxSa1W6dOHYOffWvy9fUVgwYNqvR+jfmMkvUxYKlEUgFLVfbLL7/o/GcnhBDnz58XarVa70vozTffFE5OTuKPP/7QHtu+fbsAIJYvX649duzYMXHnzh2dc//880/h4+Mj2rdvr3P85s2bIj8/Xwhh+nuQkZEhysrKhBBCuLi4GPzSXrNmjQAgkpOTtceuX78uPD09RWxsrGw/d+/eFd7e3iI6Olrn+KBBg4SLi4u4deuWWa9L6j8yIawz/4b07t1b+Pv7i7y8PO2xL774QgAQW7du1R47fPiwACDmzp2rPVZUVCRCQkJE27ZtZfsxZk7nzJkjAIgjR45oj505c0aoVCoxZcqUCr0uJZB7n01liYCltLRUFBUVGXWOnZ2d0Gg0ZvVriop+RqlyMGCpJHFxcQKA3uPBfzCPfhEkJiYKAGLfvn1izJgxombNmsLDw0OMHj1alJSUiNu3b4shQ4YIT09P4enpKSZPnqz9D/WB0tJSsWDBAtGkSROhVqtFrVq1xOjRo3W+oG3p6aefFk8//bTOsVq1aomYmBi9ug0bNhTdu3eXbfPFF18UXl5eBsstETRKBSwxMTHC19dXlJaW6hwfPXq0cHZ2lv3NdtOmTQKA2LRpk87xAwcOCABi9erV5Z5nqYDFGvNfWFgozpw5I27cuKE9lpeXJ+zt7cXkyZN16paUlAhXV1cxcuRI7bHJkycLlUql85+GEELMmjVLABCZmZnaYzdu3BBnzpwRhYWF2mPGzGmrVq1Eq1at9F5Xz549RUhIiOzrL8/Vq1fF8OHDRe3atYWDg4Pw8/MTzz//vM57VadOHREdHS22bt0qwsPDhVqtFo0bNxY//PCDTls3b94UEydOFM2aNRMuLi7Czc1N9OrVS6SkpGjr7N69u9zvmgfv+bBhw0SdOnV02p07d65o27at8PLyEo6OjuLpp5/WCbofHqexAQsAodFoxNdffy2aNGki7O3txfr164UQQly+fFmMGDFC1KpVSzg4OIgmTZqIhIQE7bkPvgcffVQGYz6jVDl4D0slefHFFxEbGwsAWLBgAVavXo3Vq1fDx8dH8rwxY8YgLS0N06ZNw/PPP48VK1Zg6tSp6NOnD0pLSzFr1ix06NABc+fOxerVq3XOff311zF58mS0b98eixYtwogRI/DNN98gKioK9+/fl+y3pKQEf/75Z4UephBC4Nq1a6hZs6b22JUrV3D9+nU888wzevVbt26NkydPyrabk5Oj02ZlO3nyJJ5++mlUq6b7o9W6dWvcvXvX4H07D58PQG8OWrZsiWrVqlVoDkxlrfk/cuQIGjdujM8//1x77PTp0/jrr7/0+nJwcEBERIROXydPnkTDhg3h7u6uNyYAOvdpfP7552jcuDGOHDmicz4gP6dlZWX49ddfDb7+ixcv4s6dO7Jz8KiXXnoJ69evx4gRI7BkyRKMHTsWd+7cQWZmpk69tLQ0vPzyy+jduzdmz54Ne3t7xMTE6Nyrc+nSJWzYsAHPPfcc5s+fj8mTJ+P06dPo3LkzsrOzAQCNGzfG9OnTAQCjR4/Wftd06tTJ4BgXLVqEFi1aYPr06Zg1a5a2702bNhn9esuza9cujB8/Hi+//DIWLVqEunXr4tq1a2jTpg127NiBt99+G4sWLUL9+vUxcuRI7U21nTp10n6v/eMf/9C+Fim3b9+u0PfW3bt3Jdsx5jNKlcTWEdOTROq3YENXWKKionSunLRt21bY2dmJN954Q3vsr7/+Ek899ZTo3Lmz9ti+ffsEAPHNN9/o9LNly5Zyjz/K0G825T1MsXr1agFA57epB7/9r1q1Sq/+5MmTBQDJKxR79+4VdnZ2YurUqQbrWPsKi4uLi3j11Vf1jj/4LX/Lli2SbWs0GqFSqcot8/HxEQMHDiy3zBJXWKw1/w9+44+Li9MeS05OFgDE3r179dqJiYkRfn5+2udNmzYV3bp106v322+/CQBi2bJl2mMPrmTu3r1be6yic3rjxg0BQEyfPl2v3uLFiwUAcfbs2fJfvAG3b9/W+3NWeerUqSMA6FxRycvLE/7+/qJFixbaY8XFxXpX79LT04VardYZt9T7XN4Vlrt37+o8v3fvnmjWrJnevJt6haVatWrit99+0zk+cuRI4e/vr3dv0MCBA4WHh4fOmPD/r9JUxIO5lHs8/HksjzGfUaoc9tYJg8hSRo4cCTs7O+3zyMhIHDx4ECNHjtQeU6lUeOaZZ3D8+HHtseTkZHh4eOAf//iHzlWQli1bwtXVFbt378Yrr7xisN+oqCijszAq6uzZs9BoNGjbti2GDRumPV5UVAQAUKvVeuc4Ojpq65RXfv36dbzyyisIDg7Gu+++a5VxV4Sh8T08frnzHRwcyi1zdHSUPd8c1pr/Ll26QAhhVF8Pv05j5jQ+Ph7x8fF6fVVkTiv6+o3h5OQEBwcH7NmzByNHjkSNGjUM1g0ICMALL7ygfe7u7o6hQ4dizpw5yMnJgZ+fn87YSktLkZubC1dXV4SGhhqdifboOB+4ffs2SktL0bFjR3z33Xcmt/mwzp07o0mTJtrnQgj88MMPGDBgAIQQOt9RUVFRSEpKwokTJ9C+fXuj+/rmm28q9D7Vq1dPstyYzyhVDgYsChcUFKTz3MPDAwAQGBiod/z27dva52lpacjLy0OtWrXKbff69euS/fr7+8Pf39+UIUvKyclBdHQ0PDw88P3330OlUmnLHnxplpSU6J1XXFysU+dhhYWFeO6553Dnzh3s378frq6uJo3txo0bKC0t1T53dXU1ui0nJ6cKjd9QX05OTrh37165bRcXF5f7+i2lMudfrq+H+6nonEr1VZE5NfX1S1Gr1ZgzZw4mTpwIX19ftGnTBs899xyGDh0KPz8/nbr169fX+eUEABo2bAgAyMjIgJ+fH8rKyrBo0SIsWbIE6enpOp8hb29vo8b2sJ9++gkzZ85ESkqKzut/dDymCg4O1nl+48YN5ObmYsWKFVixYkW558h9RxliSpBTHmM+o1Q5GLAo3MP/ocsdf/i32LKyMtSqVQvffPNNuefL3TtTVFSEvLy8Co3x0S9eQ/Ly8tC7d2/k5uZi3759CAgI0Cl/ECBdvXpV79yrV6/Cy8tL77ede/fu4cUXX8Svv/6KrVu3olmzZhUaS3latWqFP/74Q/s8Li5O77d1Of7+/gbHD0D7mg315e/vj9LSUly/fl0n2Lx37x5u3rypN2eWVJnzL9fXw6/T398fV65cKbceANk5qeicPnh9FXn/jDFu3Dj06dMHGzZswNatWzF16lTMnj0bu3btQosWLYxqa9asWZg6dSpeffVVzJgxA15eXqhWrRrGjRuHsrIyo8cGAPv27cPzzz+PTp06YcmSJfD390f16tWRmJiIb7/91qQ2H/Xof+4Pxjp48GCdq6wPa968uUl9PfrLgCFyv5AY8xmlysGApRJZ6reViggJCcGOHTvQvn17k34TWLNmDUaMGFGhuo9e7i9PcXEx+vTpg/Pnz2PHjh06l4cfqF27Nnx8fMpdfOzIkSOIiIjQOVZWVoahQ4di586dWLt2LTp37lyh8Rry6KVkuUvG5YmIiMC+fftQVlamc+Pt4cOH4ezsrP2N2VBfD17jsWPH8Oyzz2rLjx07hrKyMr05sKTKnP9mzZrB3t4ex44dw4ABA7TH7927h5SUFJ1jERER2L17N/Lz83VuvD18+LC2XEpF57RatWoICwsr9/UfPnwY9erVg5ubW4Vf48NCQkIwceJETJw4EWlpaYiIiMC8efPw9ddfa+tcuHABQgid74kHN2k/WJn2+++/R9euXZGQkKDTfm5urs7NzsZ81/zwww9wdHTE1q1bdQLSxMREo16jMXx8fODm5obS0lL06NHDom0/+suAIXK/kBjzGaXKwYClErm4uABApax0O2DAACxZsgQzZszArFmzdMr++usvFBQUwNPT0+D5lryHpbS0FC+//DIOHjyIH3/8EW3btjVY96WXXsJXX32FrKws7Z+9du7cifPnz2P8+PE6dceMGYM1a9Zg+fLlePHFF80epyUuJffv3x/ff/891q1bh/79+wMA/vzzTyQnJ6NPnz7a/xAM9dWtWzd4eXlh6dKlOv+5Ll26FM7OzoiOjjZ7jFKsMf93795FZmYmatasqf1P1cPDAz169MDXX3+NqVOnagOB1atXo6CgADExMdrz+/fvj08++QQrVqzApEmTAPx9mT4xMRGRkZE6fx59kAESFBQEZ2dnAMbNaf/+/fHPf/4Tx44d02aHnDt3Drt27dL2bYy7d++iWrVq2ntggL+DFzc3N70/NWRnZ2P9+vXauczPz8eqVasQERGhvYqpUqn0fkFITk7GlStXUL9+fe0xY75rVCoV7OzsdK5KZGRkYMOGDUa9VmOoVCq89NJL+Pbbb5Gamqp3Ze7GjRuyV4ENsdQ9LMZ8RqlyMGCpRC1btgQA/Otf/8LAgQNRvXp19OnTR/vlYkmdO3fG66+/jtmzZyMlJQU9e/ZE9erVkZaWhuTkZCxatEj7H2p5LHkPy8SJE7Fx40b06dMHt27d0vmtEvj7svAD//d//4fk5GR07doV77zzDgoKCjB37lyEhYXpXPFZuHAhlixZgrZt28LZ2VmvzRdeeEE7r3l5edpl2H/55RcAf6e/enp6wtPTE2+//bbsa/jPf/6DU6dOAQDu37+PX3/9FTNnzgQAPP/889rL1/3790ebNm0wYsQI/P7776hZsyaWLFmC0tJSTJs2TbYfJycnzJgxAxqNBjExMYiKisK+ffvw9ddf48MPP4SXl5e2riVe16OsMf9HjhxB165d9X6j/fDDD9GuXTt07twZo0ePxuXLlzFv3jz07NlTZ+n1yMhIxMTEYMqUKbh+/Trq16+Pr776ChkZGXpXGj7//HNMmzYNu3fvRpcuXYye07feegtffPEFoqOjMWnSJFSvXh3z58+Hr68vJk6cqNNXly5d8PPPP0teYTx//jy6d++OAQMGoEmTJrC3t8f69etx7do1DBw4UKduw4YNMXLkSBw9ehS+vr748ssvce3aNZ0rHc899xymT5+OESNGoF27djh9+jS++eYbvf98Q0JC4OnpiWXLlsHNzQ0uLi6IjIzUu5cEAKKjozF//nz06tULr7zyCq5fv47Fixejfv36+PXXXw2+NnN99NFH2L17NyIjIzFq1Cg0adIEt27dwokTJ7Bjxw7cunXLpHYtdQ8LUPHPKFUS2yUoPZlmzJghateuLapVq1ahheOOHj2qc/6DtM2HF+ES4u9URRcXF73+VqxYIVq2bCmcnJyEm5ubCAsLE++++67Izs62+GszpHPnzkalRaempoqePXsKZ2dn4enpKQYNGiRycnJ06gwbNkyyzYfTe9PT0w3WezS90xCp/h5NHb1165YYOXKk8Pb2Fs7OzqJz585676OcFStWiNDQUOHg4CBCQkLEggUL9BYGNOV1VWQFVEvPf3lpzQ/s27dPtGvXTjg6OgofHx+h0Wi0q/c+rKioSEyaNEn4+fkJtVotWrVqVW6KeHlpzQ9UZE6F+Ht7gv79+wt3d3fh6uoqnnvuOZGWlqZXr2XLlrKprX/++afQaDSiUaNGwsXFRXh4eIjIyEixdu1anXoPLxzXvHlzoVarRaNGjfQWbysuLhYTJ04U/v7+wsnJSbRv314cPHhQdO7cWWdZAyGE+PHHH7ULtT38npeX1pyQkCAaNGig7TcxMVE7l4+O09SF48pz7do1odFoRGBgoKhevbrw8/MT3bt3FytWrKhwG9ZW0c8oWZ+dEBW4AYGIiLTu3LkDLy8vLFy4EBqNxuz26tati2bNmuGnn36ywOiIqiaudEtEZKS9e/eidu3aGDVqlK2HQvTE4D0sRERGio6OtvoN0EqXk5MjWe7k5KRdN4rIEhiwEBGR0eRuyh82bBhWrlxZOYOhJwIDFiIiG8vIyLD1EIwmt+wBF1YjS+NNt0RERKR4vOmWiIiIFI8BCxERESkeAxYiIiJSPAYsZtq7dy/69OmDgIAA2NnZmbT/hhACn3zyCRo2bAi1Wo3atWvjww8/tPxgiYiIHlPMEjJTYWEhwsPD8eqrr5q8Ad8777yDbdu24ZNPPkFYWBhu3bpl8j4aREREVRGzhCzIzs4O69evR79+/bTHSkpK8K9//QvfffcdcnNz0axZM8yZM0e7MduZM2fQvHlzpKamIjQ01DYDJyIiUjj+ScjK3n77bRw8eBBJSUn49ddfERMTg169eiEtLQ3A37sA16tXDz/99BOCg4NRt25dvPbaa7zCQkRE9BAGLFaUmZmJxMREJCcno2PHjggJCcGkSZPQoUMH7Zbxly5dwh9//IHk5GSsWrUKK1euxPHjx9G/f38bj56IiEg5eA+LFZ0+fRqlpaVo2LChzvGSkhJ4e3sDAMrKylBSUoJVq1Zp6yUkJKBly5Y4d+4c/0xEREQEBixWVVBQAJVKhePHj0OlUumUubq6Avh7Pw57e3udoKZx48YA/r5Cw4CFiIiIAYtVtWjRAqWlpbh+/To6duxYbp327dvjr7/+wsWLFxESEgIAOH/+PACgTp06lTZWIiIiJWOWkJkKCgpw4cIFAH8HKPPnz0fXrl3h5eWFoKAgDB48GL/88gvmzZuHFi1a4MaNG9i5cyeaN2+O6OholJWVoVWrVnB1dcXChQtRVlYGjUYDd3d3bNu2zcavjoiISBkYsJhpz5496Nq1q97xB1ur379/HzNnzsSqVatw5coV1KxZE23atMG0adMQFhYGAMjOzsaYMWOwbds2uLi4oHfv3pg3bx68vLwq++UQEREpEgMWIiIiMtnevXsxd+5cHD9+HFevXtVbj+xhb7zxBpYvX44FCxZg3LhxRvXDtGYiIiIy2YMV3xcvXixZb/369Th06BACAgJM6oc33RIREZHJevfujd69e0vWuXLlCsaMGYOtW7ciOjrapH4YsJiorKwM2dnZcHNzg52dna2HQ0RECiaEwJ07dxAQEIBq1az3x43i4mLcu3fP7HaEEHr/t6nVaqjVaqPbKisrw5AhQzB58mQ0bdrU5DExYDFRdnY2AgMDbT0MIiJ6jGRlZeGpp56yStvFxcXwC6qDvBvXzW7L1dUVBQUFOsfi4uIQHx9vdFtz5syBvb09xo4da9aYGLCYyM3NDQCQNftDuDs6llvnP2HPV+aQtPqc3miTfuXsCflMsrzLxTEmt/11Z+lLjLdnSP+g1Jj6qcEyj1sqg2V5XqWS7Q7+eZNkuZzP9m41+dwxnaLM6ttmgi9Ll6db58teqeQ+A3Lvs9TP3enEhgbLKtK2tZjzuQeANpp3DZYV3n3NYJncfMiRmq/84mIETvmX9v8Oa7h37x7yblzHJ3uPwsnV9H6KCu5gUqdWyMrKgru7u/a4KVdXjh8/jkWLFuHEiRNm/zWCAYuJHky8u6Mj3J2cyq3j7GK9D6YUQ+OxNRcX6cug5oxb7oezqHp1k893LjEcsNxzlQ5YzH0vHGXGbc2+bcZF5kvxcX1dJpL7DMi9z1I/d+a2bS3mfO4BwMXFxXChnenzIaci81UZtxA4ubqZFbA84O7urhOwmGLfvn24fv06goKCtMdKS0sxceJELFy4EBkZGRVuiwELERERWcWQIUPQo0cPnWNRUVEYMmQIRowYYVRbDFiIiIjIZA+v+A4A6enpSElJ0a74/mCz3weqV68OPz8/o/fKY8BCREREJjt27JjOiu8TJkwA8L8V3y2FAQsRERGZrEuXLjBm0Xxj7lt5GAMWK3rh1DqDZevDX6zEkShD97RJkuXzdhnOqJnYTToLaMSuH6XbliwFbr0/2nCZzLmSZMYtR+51V0kXg+TrKJDUz7TUd4G5pH5uACCigdW6fiylLG9stbal3ovi+/et1u+TgkvzExERkeIxYCEiIiLFY8BCREREiseAhYiIiBSPAQsREREpHgMWIiIiUjwGLERERKR4XIfFRqy5LoNSya0XUW98guHCJ3C+Hley64K8fkayXG69HluRe10TTWy3brr0ujOm72Euz2vmCukKcusbmbF2kjX9smCmzfom6+EVFiIiIlI8BixERESkeAxYiIiISPEYsBAREZHiMWAhIiIixWPAQkRERIrHtGaqNJJpywAuLRhpsGyeTNvy6ZnSKalPGtkUXTNSUmXPTbNduqs55F7XzgafGCyTStUek77U5DEB8mniKcsbS5SOljxX7udO8lz+zJGF8QoLERERKR4DFiIiIlI8BixERESkeAxYiIiISPF40y0REVEVEn/lBqq5FJl8fllhAQCgVatWUKlU0Gg00Gg0lhqeyRiwkA5rZo9IZQGZ69b70tkOjytzMi2k3itbbkxnTUrdjM+WGTNS2XnW/Jm0Jamswar6XWENR48ehbu7u62HocU/CREREZHiMWAhIiIixWPAQkRERIrHgIWIiIgUjwELERERKR4DFiIiIlI8pjVb0frwFw2WmZNO+KSmZz6OpDbEA+Q2ppOm1M+BLcdly76lNjhMgfV+buQ/Q1UzdVkKU5erJl5hISIiIsVjwEJERESKx4CFiIiIFI8BCxERESkeAxYiIiJSPAYsREREpHgMWIiIiEjxuA6LjcitFyG1zsWTuBZK+/HvS5b/smBmJY1EV73xCZLlKWastwMAnwW/abhw11KT2zV3vRJbrneiVNb6ufSauUKynGuO0JOCV1iIiIhI8RiwEBERkeIxYCEiIiLFY8BCREREiseAhYiIiBSPAQsRERGZbO/evejTpw8CAgJgZ2eHDRs2aMvu37+P9957D2FhYXBxcUFAQACGDh2K7Oxso/thWrOZ9oR8BheX8uO+F04ZPm9ng08k250Iw1vVy6mKac+2SlsGZFJ4T62TPHeemX1nBGcaLgyWTi2W/IylMS3ZWLb6uWLasvGePXXRYNmh/+w0WDZi14+S7cp9BqT6LSgthfTiDI+vwsJChIeH49VXX8WLL76oU3b37l2cOHECU6dORXh4OG7fvo133nkHzz//PI4dO2ZUPwxYiIiIyGS9e/dG7969yy3z8PDA9u3bdY59/vnnaN26NTIzMxEUFFThfhiwEBERkZ78/Hyd52q1Gmq12ux28/LyYGdnB09PT6POY8BCRERUhfxbDIGLMP0W1UJRhr4AAgMDdY7HxcUhPj7erLEVFxfjvffeQ2xsLNzd3Y06lwELERER6cnKytIJKsy9unL//n0MGDAAQggsXWr81iIMWIiIiEiPu7u70VdBDHkQrPzxxx/YtWuXSe0yYCEiIiKreRCspKWlYffu3fD29japHQYsZupycQzcnZyMPq97mulpy1S5pFIZ5XYttuWuxinLGxsug3kpuk/ibs3m7LBOyiGVJm7uMgSbw0MMlhXfvw9cSDOzB2UqKCjAhQsXtM/T09ORkpICLy8v+Pv7o3///jhx4gR++uknlJaWIicnBwDg5eUFBweHCvfDgIWIiIhMduzYMXTt2lX7fMKECQCAYcOGIT4+Hhs3bgQARERE6Jy3e/dudOnSpcL9MGAhIiIik3Xp0gVCCIPlUmXG4NL8REREpHgMWIiIiEjxbBqwxMfHw87OTufRqFEjg/W7dOmiV9/Ozg7R0f+7GW7dunXo2bMnvL29YWdnh5SUFL12Xn/9dYSEhMDJyQk+Pj7o27cvzp49a42XSERERBZg8yssTZs2xdWrV7WP/fv3G6y7bt06nbqpqalQqVSIiYnR1iksLESHDh0wZ84cg+20bNkSiYmJOHPmDLZu3QohBHr27InS0lKLvjYiIiKyDJvfdGtvbw8/P78K1fXy8tJ5npSUBGdnZ52AZciQIQCAjIwMg+2MHv2/tLa6deti5syZCA8PR0ZGBkJCDKelkbz24w3vR2rLHZfNYc0UXmumws59w/B8O269InnumHTpVSilxl1vfIL0wGS8ILMDtlJJfU6Y8mwcqV2PK0IqvZgeXza/wpKWloaAgADUq1cPgwYNQmZmZoXPTUhIwMCBA+Hi4mJy/4WFhUhMTERwcLDevglERESkDDYNWCIjI7Fy5Ups2bIFS5cuRXp6Ojp27Ig7d+7InnvkyBGkpqbitddeM6nvJUuWwNXVFa6urvjvf/+L7du3Sy5gU1JSgvz8fJ0HERERVQ6bBiy9e/dGTEwMmjdvjqioKGzevBm5ublYu3at7LkJCQkICwtD69atTep70KBBOHnyJH7++Wc0bNgQAwYMQHFxscH6s2fPhoeHh/bBqzFERESVx+Z/EnqYp6cnGjZsqLPEb3kKCwuRlJSEkSNHmtyXh4cHGjRogE6dOuH777/H2bNnsX79eoP1p0yZgry8PO0jKyvL5L6JiIjIOIoKWAoKCnDx4kX4+/tL1ktOTkZJSQkGDx5skX6FEBBCoKSkxGAdtVqt3bnSkjtYEhERkTybZglNmjQJffr0QZ06dZCdnY24uDioVCrExsYCAIYOHYratWtj9uzZOuclJCSgX79+5e74eOvWLWRmZiI7OxsAcO7cOQCAn58f/Pz8cOnSJaxZswY9e/aEj48PLl++jI8++ghOTk549tlnrfyKiYiIyBQ2DVguX76M2NhY3Lx5Ez4+PujQoQMOHToEHx8fAEBmZiaqVdO9CHTu3Dns378f27ZtK7fNjRs3YsSIEdrnAwcOBADExcUhPj4ejo6O2LdvHxYuXIjbt2/D19cXnTp1woEDB1CrVi2jX8Nne7fCsXr1csvMSYdV6g7Bh8JbmHyuXLrrpQWG/8TnNXOF5LlSO7Daklw6q7U+IwCQc/6g4cJgmbbTTRhQBSk1bXlng08ky6V2vwaezB2sTSW1/AEA5MmcL7dEglRaNFOeH182DViSkpIky/fs2aN3LDQ0VHIjpeHDh2P48OEGywMCArB58+aKDpGIiIgUQFH3sBARERGVhwELERERKR4DFiIiIlI8BixERESkeAxYiIiISPFsvlvz466uZjGcXdzKLZsnkaYruxupROqduTu/mpN+2ebUSclyqdTQ3MB9Jvdr7bRlU+cksVtf6QpW3KXXmmm0ZrWt0LRlOSO3fSpZPgam72AtRS7F93Hd5dyWpFKXrbmjvNT3ekFpKaTfaZLDgIWIiKgKcXH+N1ycXUxvQBQC6IFWrVpBpVJBo9FAo9FYbHymYsBCREREeo4ePaqobWh4DwsREREpHgMWIiIiUjwGLERERKR4DFiIiIhI8XjTrZn6nN4IdyencsvOKHTHUHN2gpbTPW2S4cK0H6VPluhbbiddyX4rwORUcZnz5HaZnieTrs0dgCtPRnCmdIVgK70XMksF/GKdXm2qqqZqS32vF9+/D1xIq8TRVD28wkJERESKx4CFiIiIFI8BCxERESkeAxYiIiJSPAYsREREpHgMWIiIiEjxGLAQERGR4nEdFiuy5VorjyPJ9WFCBkiem9itr2T5iF3Sa8BIbTkvRW49iVsy66zIseaaOVR5zHkf5cpNXkOoAkz9uTCXNddpqaprwDwJeIWFiIiIFI8BCxERESkeAxYiIiJSPAYsREREpHgMWIiIiEjxGLAQERGR4jGt2UxHw8Lh4uJSbln78BYGzzMnta7e+ASTzwWARsO7GCybB+kUSVul0s774rRMDZn0YSuNWy7t80lMoZRLs2U6ti5z05JtlXpMVNl4hYWIiIgUjwELERERmWzv3r3o06cPAgICYGdnhw0bNuiUCyHwwQcfwN/fH05OTujRowfS0tKM7ocBCxEREZmssLAQ4eHhWLx4cbnlH3/8MT799FMsW7YMhw8fhouLC6KiolBcXGxUP7yHhYiIiEzWu3dv9O7du9wyIQQWLlyI999/H337/r2FyqpVq+Dr64sNGzZg4MCBFe6HV1iIiIhIT35+vs6jpKTE6DbS09ORk5ODHj16aI95eHggMjISBw8eNKotXmEhIiKqQsJyneF+r/zs1YrIvysAAIGBgTrH4+LiEB8fb1RbOTk5AABfX1+d476+vtqyimLAYqZzXk/BydXN6PO8Zq6QLDd3l18p5uwifWbBp5LljcePNVh2SCLNGwAmhmQaPtdVejfmM95BkuWHbhpuGzA9/VjufZRLQc/1LjWpXwBYf1MlWf7CqXUmt20Opi3r+yz4TYNlY9KXmtW2Oanz1kyJfmrDfYNla9LnSJ77cvB7kuVy55NlZGVlwd3dXftcrVbbcDT8kxARERGVw93dXedhSsDi5+cHALh27ZrO8WvXrmnLKooBCxEREVlFcHAw/Pz8sHPnTu2x/Px8HD58GG3btjWqLf5JiIiIiExWUFCACxcuaJ+np6cjJSUFXl5eCAoKwrhx4zBz5kw0aNAAwcHBmDp1KgICAtCvXz+j+mHAQkRERCY7duwYunbtqn0+YcIEAMCwYcOwcuVKvPvuuygsLMTo0aORm5uLDh06YMuWLXB0dDSqHwYsREREZLIuXbpACGGw3M7ODtOnT8f06dPN6of3sBAREZHi8QqLmW7PGIui6tWNPk8u9XOeRNmlBSON7u9hUqm4njKpsptl+j4b/qLBMn+kS54rtSNzvfHjJM8dsUs6hVcupVoqvVMqbVQu/dxTJq1Zbr7NSXsm5SiOqm24cFnljeNR5u4mLvVzI5V6zLRlMgWvsBAREZHiMWAhIiIixWPAQkRERIrHgIWIiIgUjwELERERKR4DFiIiIlI8pjWbqa5mMZxdyt+t2Va75cqRSsVtLLN76yWZtqVSruXONbVdAEiU2TVZLn3Y3FRxa7Urtdvz+A3HJM99IdisrsmCHLdesfUQrKLNqZMGy56SSV2WIreLtLnp2PR44hUWIiIiUjwGLERERKR4DFiIiIhI8RiwEBERkeIxYCEiIiLFY8BCREREise0ZjP54Q+4wMXo8xK79ZWusGuTwSKp3ZYB+R2EpcilC1oz3VCubUk3MyWLpdIvAWC9RPqwtVKeK0Kq7wUyO0HjlPScUOXJCDb8XsyT3sRc0eZJfE+9HNzM5HZt+T1EysUrLERERKR4DFiIiIhI8RiwEBERkeLxHhYiIqIq5Ob+PNxT/2Xy+XdKCgEArVq1gkqlgkajgUajsdTwTMaAhYiIiPQcPXoU7u7uth6GFv8kRERERIpn0yss8fHxmDZtms6x0NBQnD17ttz6Xbp0wc8//6x3/Nlnn8WmTX+n161btw7Lli3D8ePHcevWLZw8eRIRERHaurdu3UJcXBy2bduGzMxM+Pj4oF+/fpgxYwY8PDyMfg2HFn8Mx+rVyy37ReK8euEvSrZ7S6rMjLRlc1kzbdmaqYhS7wUAyTRya5o4Kky6wsUgw2UK3Q2cjDOxW7RkuVTqsJKtSZ9jtbaf2nDfam2Tctn8T0JNmzbFjh07tM/t7Q0Pad26dbh37572+c2bNxEeHo6YmBjtscLCQnTo0AEDBgzAqFGj9NrIzs5GdnY2PvnkEzRp0gR//PEH3njjDWRnZ+P777+30KsiIiIiS7J5wGJvbw8/P78K1fXy8tJ5npSUBGdnZ52AZciQIQCAjIyMctto1qwZfvjhB+3zkJAQfPjhhxg8eDD++usvyYCJiIiIbMPm97CkpaUhICAA9erVw6BBg5CZWfHVORMSEjBw4EC4uBi/0uzD8vLy4O7uLhmslJSUID8/X+dBRERElcOmAUtkZCRWrlyJLVu2YOnSpUhPT0fHjh1x584d2XOPHDmC1NRUvPbaa2aN4c8//8SMGTMwerT0fSGzZ8+Gh4eH9hEYGGhWv0RERFRxNg1YevfujZiYGDRv3hxRUVHYvHkzcnNzsXbtWtlzExISEBYWhtatW5vcf35+PqKjo9GkSRPEx8dL1p0yZQry8vK0j6ysLJP7JSIiIuMo6oYNT09PNGzYEBcuXJCsV1hYiKSkJEyfPt3kvu7cuYNevXrBzc0N69evR3UDmT4PqNVqqNVqk/sjIiIi0ykqYCkoKMDFixe1N84akpycjJKSEgwePNikfvLz8xEVFQW1Wo2NGzfC0dHRpHbMYc4OwPVkdum15e7CUqnLttxBVW7ObGW9XIVw09t+gWnPpFDPnrooWe7WT3pHenoy2TRgmTRpEvr06YM6deogOzsbcXFxUKlUiI2NBQAMHToUtWvXxuzZs3XOS0hIQL9+/eDt7a3X5q1bt5CZmYns7GwAwLlz5wAAfn5+8PPzQ35+Pnr27Im7d+/i66+/1rmB1sfHByqVypovmYiIiExg04Dl8uXLiI2Nxc2bN+Hj44MOHTrg0KFD8PHxAQBkZmaiWjXd22zOnTuH/fv3Y9u2beW2uXHjRowYMUL7fODAgQCAuLg4xMfH48SJEzh8+DAAoH79+jrnpqeno27dupZ6eURERGQhNg1YkpKSJMv37Nmjdyw0NBRCCIPnDB8+HMOHDzdY3qVLF8nziYiISHlsvg4LERERkRwGLERERKR4DFiIiIhI8RiwEBERkeIpah2WqsZrpuG1BG69L70VgBS5dVak+pXrW259hM3hIZLlUmutSK3RIneuueTWJFkf/qLV+pYi914qdf0YqjwTu0VLls/btUn6/FFhhgsvBpnVdsTrZwyWpSxvbLBM7nsE6XMki18Ofk/6fKqSeIWFiIiIFI8BCxERESkeAxYiIiJSPAYsREREZLLS0lJMnToVwcHBcHJyQkhICGbMmGHxRVp50y0RERGZbM6cOVi6dCm++uorNG3aFMeOHcOIESPg4eGBsWPHWqwfBixERERksgMHDqBv376Ijv47o61u3br47rvvcOTIEYv2w4DFiqTSh81JPTanXzmy6YZmsGbashy59EzIlRsgl3Ysl7YsRy4dm5RD9jNmwGfBb0qWZwRnSpbLLRcwT+LnbmI36bRmOVKpy1Lklk9w6yf9/ShHKhXc1PfJ3H7zi4rw/vryN+193LVr1w4rVqzA+fPn0bBhQ5w6dQr79+/H/PnzLdoPAxYiIiLSk5+fr/NcrVZDrVbr1fvnP/+J/Px8NGrUCCqVCqWlpfjwww8xaNAgi46HAQsREVEVsu6PBXCsXt3k84vv3wcABAYG6hyPi4tDfHy8Xv21a9fim2++wbfffoumTZsiJSUF48aNQ0BAAIYNG2byOB7FgIWIiIj0ZGVlwd3dXfu8vKsrADB58mT885//xMCBAwEAYWFh+OOPPzB79mwGLERERGRd7u7uOgGLIXfv3kW1arqrpKhUKpSVlVl0PAxYiIiIyGR9+vTBhx9+iKCgIDRt2hQnT57E/Pnz8eqrr1q0HwYsZhrTKQruTk5Gn5dohbFUlFRmiz/SrdavLbOErMXcLCA51spokNs87qngVKv0W5XJbVJo8DxIZwEdCm9hUrsVYc2MGSly2YjPbpDOdJQ7f26U4e+ayTZ6zVXZZ599hqlTp+Ktt97C9evXERAQgNdffx0ffPCBRfthwEJEREQmc3Nzw8KFC7Fw4UKr9sOl+YmIiEjxGLAQERGR4jFgISIiIsVjwEJERESKx4CFiIiIFI9ZQmb6T9jzcHZxK7cs17vU4HnmbFBoTVcRLFluzTReqQ0hzZ0va202Kbdx3Zj0pSa1awlyqctSdjb4RLK8e9okk9sm48gtByC3+eHjyNxNWCcvq3pzQrzCQkRERI8BBixERESkeAxYiIiISPEYsBAREZHiMWAhIiIixWPAQkRERIrHgIWIiIgUj+uwmCljsQaO1avbehiVpt74BMlyc9ZpsebaNNZqOyM4U7K8Lsxbp8WctWnWpM+RLJe0vLFkcebMvgbL5MY1sVu0SUN6nM3btclqbcut0/I4Uur6Rk/iZ1dJeIWFiIiIFI8BCxERESkeAxYiIiJSPKMDlmHDhmHv3r3WGAsRERFRuYwOWPLy8tCjRw80aNAAs2bNwpUrV6wxLiIiIiItowOWDRs24MqVK3jzzTexZs0a1K1bF71798b333+P+/fvW2OMRERE9ISzE0IIcxo4ceIEEhMT8e9//xuurq4YPHgw3nrrLTRo0MBSY1Sk/Px8eHh44OsdaXB2cTP6fHPSf4keZ3KpodZKAbZlSqo105qVSio12VZpyeaS+wz5NWxrsKyssAA3+nREXl4e3N3dLT00AP/7f2nbt4fh4uxqcjuFdwvQ85VINGzYECqVChqNBhqNxoIjNY1Z67BcvXoV27dvx/bt26FSqfDss8/i9OnTaNKkCT7++GOMHz/eUuMkIiKiSnT06FGrBVemMPpPQvfv38cPP/yA5557DnXq1EFycjLGjRuH7OxsfPXVV9ixYwfWrl2L6dOnW2O8RERE9AQy+gqLv78/ysrKEBsbiyNHjiAiIkKvTteuXeHp6WmB4RERERGZELAsWLAAMTExcHR0NFjH09MT6enpZg2MiIiI6AGjA5YhQ4ZYYxxEREREBnGlWyIiIlI87tZsJqndmuV2NpZizrlyKdPm7ABsDql+5fo251wlM2dXWnPSdBO7Gd5tGbDufMql+Jrzug6FtzBcJnNum1MnJcvXh79owoj+vycwrflxTF02N/U95/xBg2X5RUXwMKt14hUWIiIiUjwGLERERKR4DFiIiIhI8RiwEBERkeIxYCEiIiLFY8BCREREise0ZjO10bwLFxcXA6USq/2akbYsR6kpwOb0K3duxOtnJMtTljc2uW9rsmbq55kFnxoulElrflz9smCm6SePf1+y+IVT6yTLzUp7lvDsqYuS5ZvDQ6zSr7nay8ynFLn3Ua5tqfOl5nMerJdyT+bjFRYiIiJSPAYsREREpHgMWIiIiEjxGLAQERGR4jFgISIiIsVjwEJERESKx4CFiIiIFM+m67DEx8dj2rRpOsdCQ0Nx9uzZcut36dIFP//8s97xZ599Fps2/Z0/v27dOixbtgzHjx/HrVu3cPLkSUREROjUX7FiBb799lucOHECd+7cwe3bt+Hp6WnSa8hBHTjDzaRzqeLk1pZJseLaMuasJ3EVwZLlud6lkuUjdv1oct+Nx481WHbI5FbNp9S1LM54B0mWt8FJyXJ/iXWX/CU+Q3Jrjih1nRVrMmedFUDmM9bNcJEyV2t6PFy5cgXvvfce/vvf/+Lu3buoX78+EhMT8cwzz1isD5svHNe0aVPs2LFD+9ze3vCQ1q1bh3v37mmf37x5E+Hh4YiJidEeKywsRIcOHTBgwACMGjWq3Hbu3r2LXr16oVevXpgyZYoFXgUREdGT6fbt22jfvj26du2K//73v/Dx8UFaWhpq1Khh0X5sHrDY29vDz8+vQnW9vLx0niclJcHZ2VknYBkyZAgAICMjw2A748aNAwDs2bPHqLESERGRrjlz5iAwMBCJiYnaY8HB0leXTWHze1jS0tIQEBCAevXqYdCgQcjMzKzwuQkJCRg4cKDE0viWU1JSgvz8fJ0HERFRVfXo/3klJSXl1tu4cSOeeeYZxMTEoFatWmjRogW++OILi4/HpldYIiMjsXLlSoSGhuLq1auYNm0aOnbsiNTUVLi5Sd8XcuTIEaSmpiIhwXp78jxs9uzZevfbEBERKU3ktf1wd3Iy+fz8oiIAQGBgoM7xuLg4xMfH69W/dOkSli5digkTJuD//u//cPToUYwdOxYODg4YNmyYyeN4lE0Dlt69e2v/3bx5c0RGRqJOnTpYu3YtRo4cKXluQkICwsLC0Lp1a2sPEwAwZcoUTJgwQfs8Pz9f780kIiKqKrKysuDu7q59rlary61XVlaGZ555BrNmzQIAtGjRAqmpqVi2bFnVCVge5enpiYYNG+LChQuS9QoLC5GUlITp06dX0sj+fqPKe7P88AdcUP6fpMzZObaexG7OlxZIB3NS5wLACIk76Oftkt6t1Fba9OkuWS6XSWGrHazldvi1FdnsI4Vm8gDSn9GJo8IMn3hROgtonsxnYL3Mz5VUltCTSOr7z9xMsTYK/nxWJe7u7joBiyH+/v5o0qSJzrHGjRvjhx9+sOh4bH4Py8MKCgpw8eJF+Pv7S9ZLTk5GSUkJBg8eXEkjIyIiovK0b98e586d0zl2/vx51KlTx6L92PQKy6RJk9CnTx/UqVMH2dnZiIuLg0qlQmxsLABg6NChqF27NmbPnq1zXkJCAvr16wdvb2+9Nm/duoXMzExkZ2cDgHYS/fz8tNlIOTk5yMnJ0V7JOX36NNzc3BAUFKSXiURERESGjR8/Hu3atcOsWbMwYMAAHDlyBCtWrMCKFdJXto1l0yssly9fRmxsLEJDQzFgwAB4e3vj0KFD8PHxAQBkZmbi6tWrOuecO3cO+/fvN3iPy8aNG9GiRQtER/99yXDgwIFo0aIFli1bpq2zbNkytGjRQrtOS6dOndCiRQts3LjRGi+TiIioymrVqhXWr1+P7777Ds2aNcOMGTOwcOFCDBo0yKL92PQKS1JSkmR5eeukhIaGQghh8Jzhw4dj+PDhku3Gx8eXe6czERERGe+5557Dc889Z9U+FHUPCxEREVF5GLAQERGR4ikqrflxdGjxx3CsXt3i7UqlSF6SOVcu7VkqZVUu3VCpac/PnrooXUEmLVrKZjPS03+RKZcb96H/7DS5b3M2TlQyqc/ovC8kUp67Sac1y5H7uZL6uZTazE9uo7+BG25KlmcEV3x18Ecp9eeZqDy8wkJERESKx4CFiIiIFI8BCxERESkeAxYiIiJSPAYsREREpHgMWIiIiEjxGLAQERGR4nEdFjON6RQFdycnyzd86qTBosd1a3WvmdIbYd16f3QljcRyzF23ZnN4iHQHZszJPIkyuXHLtm3D9TtMHbu5Y5b7/Da+afp6KFLGpC+VrhBs+nspN5eJ3fpKlj+OP7PWJDVfRQV3AEysvMFUQbzCQkRERIrHgIWIiIgUjwELERERKR4DFiIiIlI8BixERESkeAxYiIiISPGY1kw6rJmuak4KpGz6r5mkUlbr3VQZPvHUOsl2641PMHVIVjVvwUhbD+GxI/f5/cVK/cqlU2PXj1bqGRgh17ZEWrQtU99tReozUnz/fiWOpGriFRYiIiJSPAYsREREpHj8kxAREVEVcm7xMriqJP6ULaOgtBQA0KpVK6hUKmg0Gmg0GksNz2QMWIiIiEjP0aNH4e7ubuthaPFPQkRERKR4DFiIiIhI8fgnoSfQ+vAXDZaZu5eoVNtyLtkw1VYqHdFTIjVZNnXTzNROqd105ebalvNpDnN3kn7ctB//vnQFK+0CbW1KfR+tmW4ttYzB3cI7wPoGVuv7ScArLERERKR4DFiIiIhI8RiwEBERkeIxYCEiIiLFY8BCREREiseAhYiIiBSPac1m+k/Y83B2cSu37AWZnXyVyJy0ZDmPa5qt+912EqWNrdq3VArmsws+lTz3hc/7md7xxSCTT5VLG504KkyyfGe1TyTLu6dNMnpM9GSxVuqyUndff1LwCgsREREpHgMWIiIiUjwGLERERKR4DFiIiIhI8RiwEBERkeIxYCEiIiLFY1oz6XhcU4+tKWW5dVOXTbU5PES6/IvTZrQufe5nwW8aLBsj0/I82XFJz3f3bobLpHYIlkt1jXj9jGS5rT4HZ7ylU8zb4GQljeTxYepO0XLLOpizVEV+UZHJ59LfeIWFiIiIFI8BCxERESkeAxYiIiJSPAYsREREZBEfffQR7OzsMG7cOIu3zYCFiIiIzHb06FEsX74czZs3t0r7DFiIiIjILAUFBRg0aBC++OIL1KhRwyp9MK35CSSZmmdiOuADid36GizzvKmSPFepKdVeM1cYLLv1/mjJc+V2d5V7ze3Hv2+wTC7dVW5s5sgIzjRcGCz9GTJ3J12p801NZwWUm7Ys9z4mSnw+5c43Z76eRH4N20qWT15m+Oe1+P59Sw/H6vLz83Weq9VqqNXqcutqNBpER0ejR48emDlzplXGw4CFiIioChk20R4qJ+lfEKWUFtkBbwKBgYE6x+Pi4hAfH69XPykpCSdOnMDRo0dN7rMiGLAQERGRnqysLLi7u2ufl3d1JSsrC++88w62b98OR0dHq46HAQsRERHpcXd31wlYynP8+HFcv34dTz/9tPZYaWkp9u7di88//xwlJSVQqUy/2vMwBixERERkku7du+P0ad3tNkaMGIFGjRrhvffes1iwAjBgISIiIhO5ubmhWbNmOsdcXFzg7e2td9xcTGsmIiIixbMTQghbD+JxlJ+fDw8PD+QtmAd3JydbD0cxpFJOnz11UfJcqd2H5dIv5VJlpVKTAeumANuKOTsX29LEUWGS5VK7PZvzms1N8ZVqX+rzN2LXjya3WxHm9E3GqZtuOEW9rOQushYOQF5enux9IaZ68P9S46WNzcwSKsWZN89Ydaym4BUWIiIiUjwGLERERKR4DFiIiIhI8RiwEBERkeIxYCEiIiLFY8BCREREiseF48z02d6tcKxevdwyqZ12C+8OkmzXnJ1j5dIzdzb4xCr9mktq3HK7pObINS6XvmliSqvU7tSA+enSEa+fMVjWPW2SWW2bw5op01Jpy7JCDO8iPRHWS1uWI/U5mGdyq9bvm7s565L67gSADBj+mcwvKoKHpQf0hOEVFiIiIlI8mwYs8fHxsLOz03k0atTIYP0uXbro1bezs0N09P9+C1i3bh169uwJb29v2NnZISUlRa+d4uJiaDQaeHt7w9XVFS+99BKuXbtmjZdIREREFmDzKyxNmzbF1atXtY/9+/cbrLtu3TqduqmpqVCpVIiJidHWKSwsRIcOHTBnzhyD7YwfPx7/+c9/kJycjJ9//hnZ2dl48cUXLfq6iIiIyHJsfg+Lvb09/Pz8KlTXy8tL53lSUhKcnZ11ApYhQ4YAADIyMsptIy8vDwkJCfj222/RrVs3AEBiYiIaN26MQ4cOoU2bNia8CiIiIrImm19hSUtLQ0BAAOrVq4dBgwYhM9PwTXOPSkhIwMCBA+Hi4lLhc44fP4779++jR48e2mONGjVCUFAQDh48aPC8kpIS5Ofn6zyIiIioctg0YImMjMTKlSuxZcsWLF26FOnp6ejYsSPu3Lkje+6RI0eQmpqK1157zag+c3Jy4ODgAE9PT53jvr6+yMkxnGsye/ZseHh4aB+BgYFG9UtERESms2nA0rt3b8TExKB58+aIiorC5s2bkZubi7Vr18qem5CQgLCwMLRu3boSRgpMmTIFeXl52kdWVlal9EtEREQKuIflYZ6enmjYsCEuXLggWa+wsBBJSUmYPn260X34+fnh3r17yM3N1bnKcu3aNcl7adRqNdRqtdH9GWLN9U7k1ouYKLFWQArMW0NDyubwEMnyrhJrrSx18rf0cB4L1lprRWp9F2v2a21Sa7h4zRwjea65a+aYymvmCslyc8cl1b6tXvPjSu57W+r7s/j+fUsP54lj83tYHlZQUICLFy/C31/6P6fk5GSUlJRg8ODBRvfRsmVLVK9eHTt37tQeO3fuHDIzM9G2rfTiZERERGQbNr3CMmnSJPTp0wd16tRBdnY24uLioFKpEBsbCwAYOnQoateujdmzZ+ucl5CQgH79+sHb21uvzVu3biEzMxPZ2dkA/g5GgL+vrPj5+cHDwwMjR47EhAkT4OXlBXd3d4wZMwZt27ZlhhAREZFC2TRguXz5MmJjY3Hz5k34+PigQ4cOOHToEHx8fAAAmZmZqFZN9yLQuXPnsH//fmzbtq3cNjdu3IgRI0Zonw8cOBAAEBcXh/j4eADAggULUK1aNbz00ksoKSlBVFQUlixZYoVXSERERJZg04AlKSlJsnzPnj16x0JDQyGEMHjO8OHDMXz4cMl2HR0dsXjxYixevLgiwyQiIiIbU9Q9LERERETlUVSWEBEREZnnkH8vuLuYntWaX1gCD5xBq1atoFKpoNFooNFoLDhC0zBgsaJfFsy09RDKJblF+i7z0q3N2Y5+4nnDKw3bktR8jdglfe48mbbNmS9zmJu2nNitr+FCmbR6ORNHhUlXuBhkUrvzFJrCK5dabPZnZNePhsts9PlTKsnPNWD2Z/txc/ToUbi7u9t6GFr8kxAREREpHgMWIiIiUjwGLERERKR4DFiIiIhI8RiwEBERkeIxYCEiIiLFY1rzE0gqpbV7t0ocyGPCnBRgW6UtW9sIiVTZ9eMTJM994dQ66cYvmjKiv8ntVE5PhjBHw1utnC5+y2CZ1OcakF+mgKyLV1iIiIhI8RiwEBERkeIxYCEiIiLFY8BCREREiseAhYiIiBSPWUKPoXrmZmFYkVSWRlXNmCFdlxaMlCx/EjMtvGauMFgmt/mhktkqK0vuu0QqE4geX7zCQkRERIrHgIWIiIgUjwELERERKR4DFiIiIlI8BixERESkeAxYiIiISPEYsBAREZHi2QkhhK0H8TjKz8+Hh4cHFp84CydXt3LrSO38ubPBJ5Ltm7NDsC2Zsy4D12l5fHBX5MrzuP5cKPUzYs35lPpeLywsQ9/nM5CXlwd3d3er9P/g/6W8DePh7qI2vZ3CEnj0W1Dhsc6ePRvr1q3D2bNn4eTkhHbt2mHOnDkIDQ01eQzl4RUWIiIiMtnPP/8MjUaDQ4cOYfv27bh//z569uyJwsJCi/bDlW6JiIjIZFu2bNF5vnLlStSqVQvHjx9Hp06dLNYPAxYiIiLSk5+fr/NcrVZDrZb/U1NeXh4AwMvLy6LjYcBCRERUhfzH9S04u5R/b2VF3LW7A2ABAgMDdY7HxcUhPj5e8tyysjKMGzcO7du3R7NmzUweQ3kYsBAREZGerKwsnZtuK3J1RaPRIDU1Ffv377f4eBiwEBERkR53d3ejMprefvtt/PTTT9i7dy+eeuopi4+HAYuZBv+8Ce5OTkaf97imLSd26ytdwYxURqk0SK+ZKyTPvfX+aMnyxzU11FZsmZJq7nttLbYal9x7wc+2vnrjEwwXnlpncruy7wUMf6/nFxUBmGhy30omhMCYMWOwfv167NmzB8HBwVbphwELERERmUyj0eDbb7/Fjz/+CDc3N+Tk5AAAPDw84GTCL/SGcB0WIiIiMtnSpUuRl5eHLl26wN/fX/tYs2aNRfvhFRYiIiIyWWUtmM8rLERERKR4DFiIiIhI8RiwEBERkeLxHhYyitQO1AAwz0r92iqVtaqyZnq6ueTe68+C3zRYltBzrMGylOWNTR4TYN5nUC4lWorcz5wtSe46v8vwfD976qJku9lL7pk6JABAyoKRhgsl0sCVusM0/Y1XWIiIiEjxGLAQERGR4jFgISIiIsVjwEJERESKx4CFiIiIFI8BCxERESke05rJoiJeP2OwTG6HaqYUKoeSdwCeiEzDhRKfse7drDCYirJlanKIxHxdDDKraamf6YBTnxos2xweIt3wcuni9uPflymXKDx1UrpxM0h9hxXfv2+1fp8UvMJCREREiseAhYiIiBSPAQsREREpHgMWIiIiUjwGLERERKR4DFiIiIhI8RiwEBERkeJxHRayKLm1VqhqSOzW12DZrfdHW7VvJa8Ro0hmrrViqsbjxxos26zQNZe8Zq6QLLf2Z5ukMWAhIiKqQqb8dBLV1M4mn19WchcA0KpVK6hUKmg0Gmg0GksNz2QMWIiIiEjP0aNH4e7ubuthaPEeFiIiIlI8BixERESkeAxYiIiISPF4DwtVGqnMEgDwkigfYcvdbqugaQnSO9beSpfJ4jAjy0MuE+NJe6/lfi7k5kNul3OprCpz+zaVXKaX3Gv6ZcFMk/tuI9G3uVlAUrvVFxaWAevNav6JxyssREREpHgMWIiIiEjxbBqwxMfHw87OTufRqFEjg/W7dOmiV9/Ozg7R0f+7xCeEwAcffAB/f384OTmhR48eSEtL02nnxIkT+Mc//gFPT094e3tj9OjRKCgosNrrJCIiIvPY/ApL06ZNcfXqVe1j//79BuuuW7dOp25qaipUKhViYmK0dT7++GN8+umnWLZsGQ4fPgwXFxdERUWhuLgYAJCdnY0ePXqgfv36OHz4MLZs2YLffvsNw4cPt/ZLJSIiIhPZ/KZbe3t7+Pn5Vaiul5eXzvOkpCQ4OztrAxYhBBYuXIj3338fffv+fTPZqlWr4Ovriw0bNmDgwIH46aefUL16dSxevBjVqv0dry1btgzNmzfHhQsXUL9+fQu+OiIiIrIEm19hSUtLQ0BAAOrVq4dBgwYhMzOzwucmJCRg4MCBcHFxAQCkp6cjJycHPXr00Nbx8PBAZGQkDh48CAAoKSmBg4ODNlgBACcnJwCQvLpTUlKC/Px8nQcRERFVDpteYYmMjMTKlSsRGhqKq1evYtq0aejYsSNSU1Ph5uYmee6RI0eQmpqKhIQE7bGcnBwAgK+vr05dX19fbVm3bt0wYcIEzJ07F++88w4KCwvxz3/+EwBw9epVg/3Nnj0b06ZNM+l10t+etHRVJcsIlv7F4FC/9yXLzUkrlU0dfcI2NzT356L9eOn36pBEWeObMp+D8BaS5W1OSafHGyKXtvy4Slne2GBZ8f37ADIqbSxVkU2vsPTu3RsxMTFo3rw5oqKisHnzZuTm5mLt2rWy5yYkJCAsLAytW7c2qs+mTZviq6++wrx58+Ds7Aw/Pz8EBwfD19dX56rLo6ZMmYK8vDztIysry6h+iYiIyHQ2/5PQwzw9PdGwYUNcuHBBsl5hYSGSkpIwcuRIneMP7oW5du2azvFr167p3CfzyiuvICcnB1euXMHNmzcRHx+PGzduoF69egb7VKvVcHd313kQERFR5VBUwFJQUICLFy/C399fsl5ycjJKSkowePBgnePBwcHw8/PDzp07tcfy8/Nx+PBhtG3bVq8dX19fuLq6Ys2aNXB0dMQ//vEPy7wQIiIisiib3sMyadIk9OnTB3Xq1EF2djbi4uKgUqkQGxsLABg6dChq166N2bNn65yXkJCAfv36wdvbW+e4nZ0dxo0bh5kzZ6JBgwYIDg7G1KlTERAQgH79+mnrff7552jXrh1cXV2xfft2TJ48GR999BE8PT2t/ZKJiIjIBDYNWC5fvozY2FjcvHkTPj4+6NChAw4dOgQfHx8AQGZmpt59JefOncP+/fuxbdu2ctt89913UVhYiNGjRyM3NxcdOnTAli1b4OjoqK1z5MgRxMXFoaCgAI0aNcLy5csxZMgQ671QIiIiMotNA5akpCTJ8j179ugdCw0NhRDC4Dl2dnaYPn06pk+fbrDOqlWrKjxGIiIisj1F3cNCREREVB6br3RLRMpjzjorcuuCyLWd2K2vZLnUOi4Tq+AaLubMh7W1MXG+zf2MmENyPs1cH0bqdRUWFgLry7+VgSqGV1iIiIhI8RiwEBERkeIxYCEiIiKzLV68GHXr1oWjoyMiIyNx5MgRi7bPgIWIiIjMsmbNGkyYMAFxcXE4ceIEwsPDERUVhevXr1usDwYsREREZJb58+dj1KhRGDFiBJo0aYJly5bB2dkZX375pcX6YJaQiR6sBZNfXGzjkRBZ3t87y5qmsLDQrLaLCu6YfH5+UZHkuY8jc+bD2kydb3M/I+aQmk9z+5V6XQ/KpNYRs5SykrsWOT8/P1/nuFqthlqt1qt/7949HD9+HFOmTNEeq1atGnr06IGDBw+aNRYdgkySlZUlAPDBBx988MFHhR9ZWVlW+3+pqKhI+Pn5WWScrq6uesfi4uLK7ffKlSsCgDhw4IDO8cmTJ4vWrVtb7PXxCouJAgICkJWVBTc3N9jZ2dlsHPn5+QgMDERWVhZ3kDYC5814nDPTcN6MVxXnTAiBO3fuICAgwGp9ODo6Ij09Hffu3TO7LSGE3v9t5V1dqUwMWExUrVo1PPXUU7Yehpa7u3uV+cGuTJw343HOTMN5M15VmzMPDw+r9+Ho6Kizd15lqFmzJlQqFa5du6Zz/Nq1a/Dz87NYP7zploiIiEzm4OCAli1bYufOndpjZWVl2LlzJ9q2bWuxfniFhYiIiMwyYcIEDBs2DM888wxat26NhQsXorCwECNGjLBYHwxYHnNqtRpxcXE2/9vi44bzZjzOmWk4b8bjnD1+Xn75Zdy4cQMffPABcnJyEBERgS1btsDX19difdgJUQk5VkRERERm4D0sREREpHgMWIiIiEjxGLAQERGR4jFgISIiIsVjwFKJPvroI9jZ2WHcuHHaY126dIGdnZ3O44033tA5b+zYsWjZsiXUajUiIiLKbfvXX39Fx44d4ejoiMDAQHz88cd6dZKTk9GoUSM4OjoiLCwMmzdv1ikXQuCDDz6Av78/nJyc0KNHD6SlpZn9us1lyrydOnUKsbGxCAwMhJOTExo3boxFixbptb1nzx48/fTTUKvVqF+/PlauXKlXR27L9OLiYmg0Gnh7e8PV1RUvvfSS3gJKlc2UObt58yZ69eqFgIAAqNVqBAYG4u2339bbT6Sqzhlg+s/oAzdv3sRTTz0FOzs75Obm6pRV1Xkzdc4eLbezs0NSUpJOnao6Z2Qiiy3yT5KOHDki6tatK5o3by7eeecd7fHOnTuLUaNGiatXr2ofeXl5OueOGTNGfP7552LIkCEiPDxcr+28vDzh6+srBg0aJFJTU8V3330nnJycxPLly7V1fvnlF6FSqcTHH38sfv/9d/H++++L6tWri9OnT2vrfPTRR8LDw0Ns2LBBnDp1Sjz//PMiODhYFBUVWXw+KsrUeUtISBBjx44Ve/bsERcvXhSrV68WTk5O4rPPPtPWuXTpknB2dhYTJkwQv//+u/jss8+ESqUSW7Zs0dZJSkoSDg4O4ssvvxS//fabGDVqlPD09BTXrl3T1nnjjTdEYGCg2Llzpzh27Jho06aNaNeunXUnRoKpc3br1i2xZMkScfToUZGRkSF27NghQkNDRWxsrLZOVZ0zIcz7GX2gb9++onfv3gKAuH37tvZ4VZ03c+YMgEhMTNSp8/B3TVWdMzIdA5ZKcOfOHdGgQQOxfft20blzZ70f7IefS4mLiys3YFmyZImoUaOGKCkp0R577733RGhoqPb5gAEDRHR0tM55kZGR4vXXXxdCCFFWVib8/PzE3LlzteW5ublCrVaL7777rkLjszRLzdsDb731lujatav2+bvvviuaNm2qU+fll18WUVFR2uetW7cWGo1G+7y0tFQEBASI2bNnCyH+nqPq1auL5ORkbZ0zZ84IAOLgwYNGjc8SLD1nixYtEk899ZT2eVWcMyEsM29LliwRnTt3Fjt37tQLWKrivJk7ZwDE+vXrDZZXxTkj8/BPQpVAo9EgOjoaPXr0KLf8m2++Qc2aNdGsWTNMmTIFd+8atzX4wYMH0alTJzg4OGiPRUVF4dy5c7h9+7a2zqP9R0VFabf+Tk9PR05Ojk4dDw8PREZGWnZ7cCNYet7y8vLg5eWlfS43Jw+2TH+4zqNbph8/fhz379/XqdOoUSMEBQXZZN4sOWfZ2dlYt24dOnfurD1WFecMMH/efv/9d0yfPh2rVq1CtWr6X6tVcd4s8VnTaDSoWbMmWrdujS+//BLioWXBquKckXm40q2VJSUl4cSJEzh69Gi55a+88grq1KmDgIAA/Prrr3jvvfdw7tw5rFu3rsJ95OTkIDg4WOfYg9UFc3JyUKNGDeTk5OitOOjr64ucnBxtvYfPK69OZbL0vB04cABr1qzBpk2btMcMzUl+fj6Kiopw+/ZtlJaWllvn7Nmz2jYcHBzg6empV6ey581ScxYbG4sff/wRRUVF6NOnD/79739ry6ranAHmz1tJSQliY2Mxd+5cBAUF4dKlS3ptVLV5s8Rnbfr06ejWrRucnZ2xbds2vPXWWygoKMDYsWMBVL05I/MxYLGirKwsvPPOO9i+fbvB3TNHjx6t/XdYWBj8/f3RvXt3XLx4ESEhIZU1VEWx9Lylpqaib9++iIuLQ8+ePa06dlux5JwtWLAAcXFxOH/+PKZMmYIJEyZgyZIlVn8NtmCJeZsyZQoaN26MwYMHV9awbcpSn7WpU6dq67Ro0QKFhYWYO3euNmAhehT/JGRFx48fx/Xr1/H000/D3t4e9vb2+Pnnn/Hpp5/C3t4epaWleudERkYCAC5cuFDhfvz8/Mrd1vtBmVSdh8sfPq+8OpXFkvP2+++/o3v37hg9ejTef/99nTJDc+Lu7g4nJ6cKbZnu5+eHe/fu6WWEVPa8WXLO/Pz80KhRIzz//PNYvnw5li5diqtXr2rLqsqcAZaZt127diE5OVl7fvfu3QEANWvWRFxcHICqNW/W+l6LjIzE5cuXUVJSAqBqzRlZBgMWK+revTtOnz6NlJQU7eOZZ57BoEGDkJKSApVKpXdOSkoKAMDf37/C/bRt2xZ79+7F/fv3tce2b9+O0NBQ1KhRQ1vn4a2/H9R5sPV3cHAw/Pz8dOrk5+fj8OHDFt0evCIsNW+//fYbunbtimHDhuHDDz/UO0duTiqyZXrLli1RvXp1nTrnzp1DZmZmpc6btT5rZWVlAKD9T6QqzRlgmXn74YcfcOrUKe35D/6Etm/fPmg0GgBVa96s9VlLSUlBjRo1tBseVqU5Iwux9V2/T5qH756/cOGCmD59ujh27JhIT08XP/74o6hXr57o1KmTzjlpaWni5MmT4vXXXxcNGzYUJ0+eFCdPntRmBeXm5gpfX18xZMgQkZqaKpKSkoSzs7NeWrO9vb345JNPxJkzZ0RcXFy5ac2enp7ixx9/FL/++qvo27evzdOaHzB23k6fPi18fHzE4MGDddImr1+/rq3zIG1y8uTJ4syZM2Lx4sXlpk2q1WqxcuVK8fvvv4vRo0cLT09PkZOTo63zxhtviKCgILFr1y5x7Ngx0bZtW9G2bVvrT4oMY+ds06ZN4ssvvxSnT58W6enp4qeffhKNGzcW7du319ap6nMmhGk/ow/bvXu3wbTmqjpvxs7Zxo0bxRdffCFOnz4t0tLSxJIlS4Szs7P44IMPtHWq+pyR8RiwVLKHf7AzMzNFp06dhJeXl1Cr1aJ+/fpi8uTJeusVdO7cWQDQe6Snp2vrnDp1SnTo0EGo1WpRu3Zt8dFHH+n1vXbtWtGwYUPh4OAgmjZtKjZt2qRTXlZWJqZOnSp8fX2FWq0W3bt3F+fOnbP4HJjC2HmLi4srd87q1Kmj0+7u3btFRESEcHBwEPXq1ROJiYl6fX/22WciKChIODg4iNatW4tDhw7plBcVFYm33npL1KhRQzg7O4sXXnhBXL161dJTYDRj52zXrl2ibdu2wsPDQzg6OooGDRqI9957T+c/XiGq9pwJYdrP6MPKC1geHK+q82bsnP33v/8VERERwtXVVbi4uIjw8HCxbNkyUVpaqtNuVZ4zMp6dEA/lkREREREpEO9hISIiIsVjwEJERESKx4CFiIiIFI8BCxERESkeAxYiIiJSPAYsREREpHgMWIiIiEjxGLAQERGR4jFgISIiIsVjwEJERESKx4CFiMx248YN+Pn5YdasWdpjBw4cgIODg96Ou0REpuBeQkRkEZs3b0a/fv1w4MABhIaGIiIiAn379sX8+fNtPTQiqgIYsBCRxWg0GuzYsQPPPPMMTp8+jaNHj0KtVtt6WERUBTBgISKLKSoqQrNmzZCVlYXjx48jLCzM1kMioiqC97AQkcVcvHgR2dnZKCsrQ0ZGhq2HQ0RVCK+wEJFF3Lt3D61bt0ZERARCQ0OxcOFCnD59GrVq1bL10IioCmDAQkQWMXnyZHz//fc4deoUXF1d0blzZ3h4eOCnn36y9dCIqArgn4SIyGx79uzBwoULsXr1ari7u6NatWpYvXo19u3bh6VLl9p6eERUBfAKCxERESker7AQERGR4jFgISIiIsVjwEJERESKx4CFiIiIFI8BCxERESkeAxYiIiJSPAYsREREpHgMWIiIiEjxGLAQERGR4jFgISIiIsVjwEJERESKx4CFiIiIFO//AZxuKPb90krVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ3ElEQVR4nO3dd1gU1/4/8PcCunQQRYqiolHsYCVYYuOGGDWaYoLXFuONKRuN3es3GpAYjRprElsuwXKToCSWXE1sqFFjwxq5GkXFiAU0KiCIqHB+f/hzr+uyM+zOLjvg+/U8+zzunJlzzpwtfJydzzkaIYQAERERkYo52LsDRERERHIYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPUYsKhEnTp18Oabb9q7G0RUwb355puoU6eORcfa63sqKysLr732GqpWrQqNRoN58+aVeR/I/hiwlKG9e/ciNjYW2dnZ9u5KmUpJScEHH3yAJk2awM3NDbVq1cLrr7+OM2fOlLj/qVOn8MILL8Dd3R0+Pj4YOHAgrl+/brDPH3/8gfHjxyMsLAweHh4ICAhAjx49cOjQIaP6Tp8+jVGjRqFdu3ZwdnaGRqPBhQsXzDqHRYsWoW/fvqhVqxY0Go3kl3Z2djaGDRsGX19fuLm5oUuXLjhy5IhZ7cXHx6NRo0ZwdnZG/fr18cUXX1h0Xm+++SY0Go3s4/Hzsfb4S9m7dy86dOgAV1dX+Pv7Y8SIEcjLyzPar7CwEBMmTEBgYCBcXFwQHh6OrVu3mtVWacYUAC5fvozXX38d3t7e8PT0RO/evXH+/Hmz2rK3K1euIDY2FseOHbN3V6xi1KhR2Lx5MyZOnIiVK1fihRdeKLO2S/sepTIgqMzMmjVLABDp6elGZXfv3hX37t0r+06VgVdffVX4+/uL4cOHi6+//lp88sknws/PT7i5uYkTJ04Y7JuRkSGqVasm6tWrJ+bPny8+/fRTUaVKFREaGioKCwv1+40ZM0Z4e3uLoUOHiiVLloiZM2eKevXqCUdHR7F161aDOhMSEoSDg4No2rSpCAsLM/kaSKldu7bw8fERL7zwgnBychKDBw8ucb+ioiLRrl074ebmJmJjY8WXX34pGjduLDw8PMSZM2dK1dbixYsFAPHqq6+KpUuXioEDBwoA4rPPPjP7vPbu3StWrlypf8TFxQkAYtiwYQbb9+7dK4SwzfibcvToUeHs7CxatGghFi1aJD766COh1WrFCy+8YLRvdHS0cHJyEmPHjhVLliwRERERwsnJSezevduqY3r79m1Rv359Ub16dTFjxgwxZ84cERQUJGrWrCn++uuvUrWlBikpKQKASEhIMCq7d++euHv3rkX11q5d2+R735b8/PxE//79y7xdc96jZHsMWMqQVMBSkf32228Gf+yEEOLMmTNCq9UafQm99957wsXFRfz555/6bVu3bhUAxJIlS/TbDh06JG7fvm1w7F9//SV8fX1F+/btDbbfuHFD5ObmCiEsfw0uXLggiouLhRBCuLm5mfzSXrVqlQAgkpKS9NuuXbsmvL29Rb9+/WTbuXPnjqhataro0aOHwfb+/fsLNzc3cfPmTUXnJfWHTAjbjL8p3bt3FwEBASInJ0e/7euvvxYAxObNm/XbDhw4IACIWbNm6bcVFBSIevXqiYiICNl2zBnTGTNmCADi4MGD+m2nTp0Sjo6OYuLEiaU6LzWQe50tZY2ApaioSBQUFJh1jEajETqdTlG7lijte5TKBgOWMhITEyMAGD0e/YF58osgISFBABC7d+8Ww4cPF9WqVRNeXl5i2LBhorCwUNy6dUsMHDhQeHt7C29vbzFu3Dj9H9RHioqKxNy5c0Xjxo2FVqsV1atXF8OGDTP4granli1bipYtWxpsq169uujbt6/Rvg0aNBDdunWTrfOVV14RPj4+JsutETRKBSx9+/YVfn5+oqioyGD7sGHDhKurq+z/bDdu3CgAiI0bNxps37t3rwAgVq5cWeJx1gpYbDH++fn54tSpU+L69ev6bTk5OcLJyUmMGzfOYN/CwkLh7u4uhg4dqt82btw44ejoaPBHQwghpk2bJgCIixcv6rddv35dnDp1SuTn5+u3mTOmbdq0EW3atDE6r+eff17Uq1dP9vxLcvXqVfHmm2+KGjVqiMqVKwt/f3/x0ksvGbxWtWvXFj169BCbN28WoaGhQqvVikaNGokff/zRoK4bN26IMWPGiKZNmwo3Nzfh4eEhXnjhBXHs2DH9Pjt27Cjxu+bRaz548GBRu3Ztg3pnzZolIiIihI+Pj3B2dhYtW7Y0CLof76e5AQsAodPpxL///W/RuHFj4eTkJNauXSuEEOLSpUtiyJAhonr16qJy5cqicePGIj4+Xn/so+/BJx9lwZz3KJUN3sNSRl555RX069cPADB37lysXLkSK1euhK+vr+Rxw4cPR1paGqZMmYKXXnoJS5cuxeTJk9GrVy8UFRVh2rRp6NChA2bNmoWVK1caHPvOO+9g3LhxaN++PebPn48hQ4bg22+/RVRUFO7fvy/ZbmFhIf76669SPSwhhEBWVhaqVaum33b58mVcu3YNrVu3Ntq/bdu2OHr0qGy9mZmZBnWWtaNHj6Jly5ZwcDD8aLVt2xZ37twxed/O48cDMBqDVq1awcHBoVRjYClbjf/BgwfRqFEjfPnll/ptJ06cwIMHD4zaqly5MsLCwgzaOnr0KBo0aABPT0+jPgEwuE/jyy+/RKNGjXDw4EGD4wH5MS0uLsbvv/9u8vzPnTuH27dvy47Bk1599VWsXbsWQ4YMwcKFCzFixAjcvn0bFy9eNNgvLS0Nb7zxBrp3747p06fDyckJffv2NbhX5/z581i3bh169uyJOXPmYNy4cThx4gQ6deqEK1euAAAaNWqEuLg4AMCwYcP03zXPPfecyT7Onz8fLVq0QFxcHKZNm6Zve+PGjWafb0m2b9+OUaNG4Y033sD8+fNRp04dZGVl4dlnn8W2bdvwwQcfYP78+XjmmWcwdOhQ/U21zz33nP577W9/+5v+XKTcunWrVN9bd+7ckazHnPcolRF7R0xPE6n/BZu6whIVFWVw5SQiIkJoNBrx7rvv6rc9ePBA1KxZU3Tq1Em/bffu3QKA+Pbbbw3a2bRpU4nbn2TqfzYlPSyxcuVKAcDgf1OP/ve/YsUKo/3HjRsnAEheodi1a5fQaDRi8uTJJvex9RUWNzc38dZbbxltf/S//E2bNknWrdPphKOjY4llvr6+Ijo6usQya1xhsdX4P/off0xMjH5bUlKSACB27dplVE/fvn2Fv7+//nmTJk1E165djfb773//KwCIxYsX67c9upK5Y8cO/bbSjun169cFABEXF2e031dffSUAiD/++KPkkzfh1q1bRj9nlaR27doCgMEVlZycHBEQECBatGih33b37l2jq3fp6elCq9Ua9FvqdS7pCsudO3cMnt+7d080bdrUaNwtvcLi4OAg/vvf/xpsHzp0qAgICDC6Nyg6Olp4eXkZ9An//ypNaTwaS7nH4+/HkpjzHqWy4WSbMIisZejQodBoNPrn4eHh2LdvH4YOHarf5ujoiNatW+Pw4cP6bUlJSfDy8sLf/vY3g6sgrVq1gru7O3bs2IG///3vJtuNiooyOwujtP744w/odDpERERg8ODB+u0FBQUAAK1Wa3SMs7Ozfp+Syq9du4a///3vCA4Oxvjx423S79Iw1b/H+y93fOXKlUssc3Z2lj1eCVuNf+fOnSGEMKutx8/TnDGNjY1FbGysUVulGdPSnr85XFxcULlyZezcuRNDhw5FlSpVTO4bGBiIl19+Wf/c09MTgwYNwowZM5CZmQl/f3+DvhUVFSE7Oxvu7u4ICQkxOxPtyX4+cuvWLRQVFaFjx474/vvvLa7zcZ06dULjxo31z4UQ+PHHH/H6669DCGHwHRUVFYXExEQcOXIE7du3N7utb7/9tlSvU926dSXLzXmPUtlgwKJytWrVMnju5eUFAAgKCjLafuvWLf3ztLQ05OTkoHr16iXWe+3aNcl2AwICEBAQYEmXJWVmZqJHjx7w8vLCDz/8AEdHR33Zoy/NwsJCo+Pu3r1rsM/j8vPz0bNnT9y+fRt79uyBu7u7RX27fv06ioqK9M/d3d3NrsvFxaVU/TfVlouLC+7du1di3Xfv3i3x/K2lLMdfrq3H2yntmEq1VZoxtfT8pWi1WsyYMQNjxoyBn58fnn32WfTs2RODBg2Cv7+/wb7PPPOMwX9OAKBBgwYAgAsXLsDf3x/FxcWYP38+Fi5ciPT0dIP3UNWqVc3q2+M2bNiAqVOn4tixYwbn/2R/LBUcHGzw/Pr168jOzsbSpUuxdOnSEo+R+44yxZIgpyTmvEepbDBgUbnH/6DLbX/8f7HFxcWoXr06vv322xKPl7t3pqCgADk5OaXq45NfvKbk5OSge/fuyM7Oxu7duxEYGGhQ/ihAunr1qtGxV69ehY+Pj9H/du7du4dXXnkFv//+OzZv3oymTZuWqi8ladOmDf7880/985iYGKP/rcsJCAgw2X8A+nM21VZAQACKiopw7do1g2Dz3r17uHHjhtGYWVNZjr9cW4+fZ0BAAC5fvlzifgBkx6S0Y/ro/Erz+plj5MiR6NWrF9atW4fNmzdj8uTJmD59OrZv344WLVqYVde0adMwefJkvPXWW/jkk0/g4+MDBwcHjBw5EsXFxWb3DQB2796Nl156Cc899xwWLlyIgIAAVKpUCQkJCfjuu+8sqvNJT/5xf9TXAQMGGFxlfVzz5s0tauvJ/wyYIvcfEnPeo1Q2GLCUIWv9b6U06tWrh23btqF9+/YW/U9g1apVGDJkSKn2ffJyf0nu3r2LXr164cyZM9i2bZvB5eFHatSoAV9f3xInHzt48CDCwsIMthUXF2PQoEFITk7G6tWr0alTp1L115QnLyXLXTIuSVhYGHbv3o3i4mKDG28PHDgAV1dX/f+YTbX16BwPHTqEF198UV9+6NAhFBcXG42BNZXl+Ddt2hROTk44dOgQXn/9df32e/fu4dixYwbbwsLCsGPHDuTm5hrceHvgwAF9uZTSjqmDgwOaNWtW4vkfOHAAdevWhYeHR6nP8XH16tXDmDFjMGbMGKSlpSEsLAyzZ8/Gv//9b/0+Z8+ehRDC4Hvi0U3aj2am/eGHH9ClSxfEx8cb1J+dnW1ws7M53zU//vgjnJ2dsXnzZoOANCEhwaxzNIevry88PDxQVFSEyMhIq9b95H8GTJH7D4k571EqGwxYypCbmxsAlMlMt6+//joWLlyITz75BNOmTTMoe/DgAfLy8uDt7W3yeGvew1JUVIQ33ngD+/btw/r16xEREWFy31dffRXLly9HRkaG/mev5ORknDlzBqNGjTLYd/jw4Vi1ahWWLFmCV155RXE/rXEp+bXXXsMPP/yANWvW4LXXXgMA/PXXX0hKSkKvXr30fxBMtdW1a1f4+Phg0aJFBn9cFy1aBFdXV/To0UNxH6XYYvzv3LmDixcvolq1avo/ql5eXoiMjMS///1vTJ48WR8IrFy5Enl5eejbt6/++Ndeew2ff/45li5dirFjxwJ4eJk+ISEB4eHhBj+PPsoAqVWrFlxdXQGYN6avvfYa/vnPf+LQoUP67JDTp09j+/bt+rbNcefOHTg4OOjvgQEeBi8eHh5GPzVcuXIFa9eu1Y9lbm4uVqxYgbCwMP1VTEdHR6P/ICQlJeHy5ct45pln9NvM+a5xdHSERqMxuCpx4cIFrFu3zqxzNYejoyNeffVVfPfdd0hNTTW6Mnf9+nXZq8CmWOseFnPeo1Q2GLCUoVatWgEAPvroI0RHR6NSpUro1auX/svFmjp16oR33nkH06dPx7Fjx/D888+jUqVKSEtLQ1JSEubPn6//g1oSa97DMmbMGPz000/o1asXbt68afC/SuDhZeFH/u///g9JSUno0qULPvzwQ+Tl5WHWrFlo1qyZwRWfefPmYeHChYiIiICrq6tRnS+//LJ+XHNycvTTsP/2228AHqa/ent7w9vbGx988IHsOfznP//B8ePHAQD379/H77//jqlTpwIAXnrpJf3l69deew3PPvsshgwZgpMnT6JatWpYuHAhioqKMGXKFNl2XFxc8Mknn0Cn06Fv376IiorC7t278e9//xuffvopfHx89Pta47yeZIvxP3jwILp06WL0P9pPP/0U7dq1Q6dOnTBs2DBcunQJs2fPxvPPP28w9Xp4eDj69u2LiRMn4tq1a3jmmWewfPlyXLhwwehKw5dffokpU6Zgx44d6Ny5s9lj+v777+Prr79Gjx49MHbsWFSqVAlz5syBn58fxowZY9BW586d8euvv0peYTxz5gy6deuG119/HY0bN4aTkxPWrl2LrKwsREdHG+zboEEDDB06FCkpKfDz88M333yDrKwsgysdPXv2RFxcHIYMGYJ27drhxIkT+Pbbb43++NarVw/e3t5YvHgxPDw84ObmhvDwcKN7SQCgR48emDNnDl544QX8/e9/x7Vr1/DVV1/hmWeewe+//27y3JT67LPPsGPHDoSHh+Ptt99G48aNcfPmTRw5cgTbtm3DzZs3LarXWvewAKV/j1IZsV+C0tPpk08+ETVq1BAODg6lmjguJSXF4PhHaZuPT8IlxMNURTc3N6P2li5dKlq1aiVcXFyEh4eHaNasmRg/fry4cuWK1c/NlE6dOpmVFp2amiqef/554erqKry9vUX//v1FZmamwT6DBw+WrPPx9N709HST+z2Z3mmKVHtPpo7evHlTDB06VFStWlW4urqKTp06Gb2OcpYuXSpCQkJE5cqVRb169cTcuXONJga05LxKMwOqtce/pLTmR3bv3i3atWsnnJ2dha+vr9DpdPrZex9XUFAgxo4dK/z9/YVWqxVt2rQpMUW8pLTmR0ozpkI8XJ7gtddeE56ensLd3V307NlTpKWlGe3XqlUr2dTWv/76S+h0OtGwYUPh5uYmvLy8RHh4uFi9erXBfo9PHNe8eXOh1WpFw4YNjSZvu3v3rhgzZowICAgQLi4uon379mLfvn2iU6dOBtMaCCHE+vXr9RO1Pf6al5TWHB8fL+rXr69vNyEhQT+WT/bT0onjSpKVlSV0Op0ICgoSlSpVEv7+/qJbt25i6dKlpa7D1kr7HiXb0whRihsQiIhI7/bt2/Dx8cG8efOg0+kU11enTh00bdoUGzZssELviComznRLRGSmXbt2oUaNGnj77bft3RWipwbvYSEiMlOPHj1sfgO02mVmZkqWu7i46OeNIrIGBixERGQ2uZvyBw8ejGXLlpVNZ+ipwICFiMjOLly4YO8umE1u2gNOrEbWxptuiYiISPV40y0RERGpHgMWIiIiUj0GLERERKR6DFgU2rVrF3r16oXAwEBoNBqL1t8QQuDzzz9HgwYNoNVqUaNGDXz66afW7ywREVE5xSwhhfLz8xEaGoq33nrL4gX4PvzwQ2zZsgWff/45mjVrhps3b1q8jgYREVFFxCwhK9JoNFi7di369Omj31ZYWIiPPvoI33//PbKzs9G0aVPMmDFDvzDbqVOn0Lx5c6SmpiIkJMQ+HSciIlI5/iRkYx988AH27duHxMRE/P777+jbty9eeOEFpKWlAXi4CnDdunWxYcMGBAcHo06dOvjHP/7BKyxERESPYcBiQxcvXkRCQgKSkpLQsWNH1KtXD2PHjkWHDh30S8afP38ef/75J5KSkrBixQosW7YMhw8fxmuvvWbn3hMREakH72GxoRMnTqCoqAgNGjQw2F5YWIiqVasCAIqLi1FYWIgVK1bo94uPj0erVq1w+vRp/kxEREQEBiw2lZeXB0dHRxw+fBiOjo4GZe7u7gAersfh5ORkENQ0atQIwMMrNAxYiIiIGLDYVIsWLVBUVIRr166hY8eOJe7Tvn17PHjwAOfOnUO9evUAAGfOnAEA1K5du8z6SkREpGbMElIoLy8PZ8+eBfAwQJkzZw66dOkCHx8f1KpVCwMGDMBvv/2G2bNno0WLFrh+/TqSk5PRvHlz9OjRA8XFxWjTpg3c3d0xb948FBcXQ6fTwdPTE1u2bLHz2REREakDAxaFdu7ciS5duhhtf7S0+v379zF16lSsWLECly9fRrVq1fDss89iypQpaNasGQDgypUrGD58OLZs2QI3Nzd0794ds2fPho+PT1mfDhERkSoxYCEiIiKL7dq1C7NmzcLhw4dx9epVo/nIHvfuu+9iyZIlmDt3LkaOHGlWO0xrJiIiIos9mvH9q6++ktxv7dq12L9/PwIDAy1qhzfdEhERkcW6d++O7t27S+5z+fJlDB8+HJs3b0aPHj0saocBi4WKi4tx5coVeHh4QKPR2Ls7RESkYkII3L59G4GBgXBwsM2PG3fv3sW9e/esUpcQwuhvm1arhVarNbuu4uJiDBw4EOPGjUOTJk0s7hMDFgtduXIFQUFB9u4GERGVIxkZGahZs6bV67179y78a9VGzvVrVqnP3d0deXl5BttiYmIQGxtrdl0zZsyAk5MTRowYoahPDFgs5OHhAQD4fNchuPz/SeCe5HXTscTtANDrxE8Wt72z3hcWHwsAnc8Nt/jYL3ZttvjYV2qPMlm25s+5Ftdbng1/LspkmdxYP38i3eJ2tzQLlix/Vjfe4rqV2v/VTJvUq/SclPSrjs70b/stN5y1uF4A2DHI9Gt56xPpPxByY2Kr10JOlckLJMvlzkuN7t5/gKkbtuv/dljbvXv3kHP9Gj7flQIXd2VtFOTdxtjn2iAjIwOenp767ZZcXTl8+DDmz5+PI0eOKP41ggGLhR4NvIu7u8k3h2uh6YDF08XF4rbd3JRdTlTStnOlShYf66F1s0m95ZnUayE3Ju6Opt9fcuTqdnMz/VrZmq3eC0rPSUm/XN1M/wGR+lyUhtQfpwKFr7O9Ppdyf3DlzkvNbH0LgYu7h+KA5RFPT0+DgMUSu3fvxrVr11CrVi39tqKiIowZMwbz5s3DhQsXSl0XAxYiIiKyiYEDByIyMtJgW1RUFAYOHIghQ4aYVRcDFiIiIrLY4zO+A0B6ejqOHTumn/H90WK/j1SqVAn+/v5mr5XHgIWIiIgsdujQIYMZ30ePHg3gfzO+WwsDFiIiIrJY586dYc6k+ebct/I4BiwK3fpkhMkbwLxHxVtc76m5pu+Sv/if3ZLHDtm+3uK6G33ZR/LYMZCe8Gf29o0my1alzzBZ9kbwBMl6pY61p7oyr/HLx9dYXPeYrtJjfeq4dCZFedV+1CSTZc8eP2qyzL9BhHS9uCtZ/tvcqdIdk/BF8HuS5VI5cCl9GljcLgDcnDRU0fG2IvU6yo31zUnDrN0dqgA4NT8RERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqsd5WGwou2qRxcc2GmV6NdJGCuZZAYD9/0m2uG6peVYAwGfqUpNlUnMryM2zIjcniRy5fltKyTwr9iQ3nrMVzEliS79JlGUqrPtZuTGReA8NT18keezLx03XvTb0FemO2ZCSuWeIyhqvsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9pjXbkFQa72yZY6XSTuVSdMdIpEQD8qnLSkids9LUZDL0c2g9i49tZMV+PEkqtR2Qfo8oIfu5UJC2bE9yqfNy3yVUenVHxUuWn587tIx6QiXhFRYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6vGmWyIiogoi9vJ1OLgVKKqjOD8PANCmTRs4OjpCp9NBp9NZo3uKMGCxkzeCJ0iWX0qXKpXOZlCaLaHkWKm2pcrKawaHLce6vLJVFpBS9nwPSbYt0y+5LCCprCzvG46SxzLrxZDS8ZDKMrqTfxtYW19R/WUtJSUFnp6e9u6GHn8SIiIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHpMa7aTVekzJMvl0p7VSsmijWrVftQkk2W/zZ0qeWx5PWcpSlO17TUmcgvbZVctkiy3V7q27HhLLGaa0LW3lXujDvZaYFOOVFr03fv3y7AnFROvsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9BixERESkepyHpRwKe+eUZPmxJY3KqCfmUTJHi9K5P5SYLTPXihSpOVwA+XlclJAaM9n5OWw4V4rcfChSc1koqVeO9w1HyfKbimo3TW5OEal5VuQMkTl2tsU125e95lkh++IVFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERBbbtWsXevXqhcDAQGg0Gqxbt05fdv/+fUyYMAHNmjWDm5sbAgMDMWjQIFy5csXsdpjWrNDw56Lg6eJSYplcqq6UVekzTBfKpC3bMwVYraReC7nxkkpNlktLVpK2/OLxcxYfCwCzIfH+k3lvSqYIH18j3a5c3aGvWN52BSSboivz/kyu/7nJsm5pYy3pUqnJpe3T0yE/Px+hoaF466238Morhp/vO3fu4MiRI5g8eTJCQ0Nx69YtfPjhh3jppZdw6NAhs9phwEJEREQW6969O7p3715imZeXF7Zu3Wqw7csvv0Tbtm1x8eJF1KpVq9TtMGAhIiIiI7m5uQbPtVottFqt4npzcnKg0Wjg7e1t1nEMWIiIiCqIf4mBcBPKbk/NF8XoDSAoKMhge0xMDGJjYxXVfffuXUyYMAH9+vWDp6enWcfa9abb2NhYaDQag0fDhg1N7t+5c2ej/TUaDXr0+N9vvEIIfPzxxwgICICLiwsiIyORlpZmUM+ZM2fQu3dvVKtWDZ6enujQoQN27Nhhs/MkIiIqbzIyMpCTk6N/TJw4UVF99+/fx+uvvw4hBBYtWmT28XbPEmrSpAmuXr2qf+zZs8fkvmvWrDHYNzU1FY6Ojujbt69+n5kzZ2LBggVYvHgxDhw4ADc3N0RFReHu3bv6fXr27IkHDx5g+/btOHz4MEJDQ9GzZ09kZmba9FyJiIjKC09PT4OHkp+DHgUrf/75J7Zu3Wr21RVABT8JOTk5wd/fv1T7+vj4GDxPTEyEq6urPmARQmDevHmYNGkSevd+uLjbihUr4Ofnh3Xr1iE6Ohp//fUX0tLSEB8fj+bNmwMAPvvsMyxcuBCpqaml7gsRERHJexSspKWlYceOHahatapF9dg9YElLS0NgYCCcnZ0RERGB6dOnl/qu4fj4eERHR8PNzQ0AkJ6ejszMTERGRur38fLyQnh4OPbt24fo6GhUrVoVISEhWLFiBVq2bAmtVoslS5agevXqaNWqlcm2CgsLUVhYqH/+5M1IJZFKS200aoTksUpSotW88rEpSvtky/Gy5crFSvwcWs8u7SoZa0B+NWap1YulVlS2dJXn8k4qdXl/aAvpgxW+llJp+0x5fnrk5eXh7Nmz+ufp6ek4duwYfHx8EBAQgNdeew1HjhzBhg0bUFRUpP81w8fHB5UrVy51O3YNWMLDw7Fs2TKEhITg6tWrmDJlCjp27IjU1FR4eHhIHnvw4EGkpqYiPv5/czY8GgQ/Pz+Dff38/PRlGo0G27ZtQ58+feDh4QEHBwdUr14dmzZtQpUqVUy2N336dEyZMsXSUyUiIqqQDh06hC5duuifjx49GgAwePBgxMbG4qeffgIAhIWFGRy3Y8cOdO7cudTt2DVgeTxvu3nz5ggPD0ft2rWxevVqDB0q/b+l+Ph4NGvWDG3btjWrTSEEdDodqlevjt27d8PFxQX/+te/0KtXL6SkpCAgIKDE4yZOnKh/EYCHV1ievIOaiIjoadO5c2cIIUyWS5WZw+433T7O29sbDRo0MLi0VJL8/HwkJiYaBTWP7j/Jysoy2J6VlaUv2759OzZs2IDExES0b98eLVu2xMKFC+Hi4oLly5ebbFOr1RrdgERERERlQ1UBS15eHs6dO2fyKscjSUlJKCwsxIABAwy2BwcHw9/fH8nJyfptubm5OHDgACIiIgA8nCYYABwcDE/dwcEBxcXF1jgNIiIisjK7Bixjx47Fr7/+igsXLmDv3r14+eWX4ejoiH79+gEABg0aVGLed3x8PPr06WN0p7FGo8HIkSMxdepU/PTTTzhx4gQGDRqEwMBA9OnTBwAQERGBKlWqYPDgwTh+/DjOnDmDcePGIT093WA+FyIiIlIPu97DcunSJfTr1w83btyAr68vOnTogP3798PX1xcAcPHiRaMrIadPn8aePXuwZcuWEuscP3488vPzMWzYMGRnZ6NDhw7YtGkTnJ2dAQDVqlXDpk2b8NFHH6Fr1664f/8+mjRpgvXr1yM0NNS2J0xEREQWsWvAkpiYKFm+c+dOo20hISGSN/BoNBrExcUhLi7O5D6tW7fG5s2bS91PS0mlLsulhkqlRNsrnVXN7JWqrTTF116kUocBIBtFNmtbbjXm85NM33Dv/ZSt5KzUVQTbre3odTdMlg2XOVbu81xeP3ekjKruYSEiIiIqCQMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVs/tqzURU9m5OGiZZLpf2rISSVZXfK7hqsmycxbWWjq1S5/0bREi3e2afxXW/fHyNZPl+mRWVpVZjlnMh+KLpwmBlYyn3WiR07W2yTO69T+rFKyxERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUj2nNNqRkRVElKzLba+Xip5GaV5WV6tv+0BaSx/4mkfrZXiYVVimpVNpxi023LbXCOWDbVc6VvM6H0ptK150uXbdUCvqQ7eslj332+FHpcjt9lyTX/1yyvFvaWMlyqfOeLXGcPd9DJI8BCxERUQXh5vovuLm6KatE5AOIRJs2beDo6AidTgedTmeV/inBgIWIiIiMpKSkwNPT097d0OM9LERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLV4023Cn2xazOcK1WydzdIpZSkmM+GspRoqVTbMTLHSqazyqTCyqX42molaFunnK4NfcVkmdx4SkuVLH0DEyTLV0mkoEul8ALqnQJBLm35kkwquDTT70+l7yGptOi8oiLYdkKAio9XWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPc7DUg6pde4Esq72o2w3a8N+mfJnJeZaSejaW/pgmXlYbkrMG2JPsp+r42vKpiNPWJU+wy7t2lJy/c8lyy8G7ZYs/1u86flO5LwRbHpeG6VjLTWPy93794GzaYrqf9rxCgsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY1ozkQ3NlknxldI+tIUVe2JIKm0ZkOm3gnMqDZ+pS02WSaVEy6WB/zZ3qsV9sie5dOtL6U1Nlm0dajrNFgCwfb1ksZL3r5QxGCtZnoyOkuWnn5euP2TLMjN7ROUBr7AQERGR6jFgISIiIovt2rULvXr1QmBgIDQaDdatW2dQLoTAxx9/jICAALi4uCAyMhJpaeZPoseAhYiIiCyWn5+P0NBQfPXVVyWWz5w5EwsWLMDixYtx4MABuLm5ISoqCnfv3jWrHd7DQkRERBbr3r07unfvXmKZEALz5s3DpEmT0Lv3w2U9VqxYAT8/P6xbtw7R0dGlbodXWIiIiMhIbm6uwaOwsNDsOtLT05GZmYnIyEj9Ni8vL4SHh2Pfvn1m1cUrLERERBVEs2xXeN5zU1RH7h0BAAgKCjLYHhMTg9jYWLPqyszMBAD4+fkZbPfz89OXlRYDFoWGPxcFTxeXEstslRIoVy9Xc7YuW72O9rRfJmV6jESZrcfDVqs5y65+LZPqrVY1g1NNlt2cJL368NpR8dKV2+m93y1NOu1ZziUr9eNpl5GRAU9PT/1zrVZrx97wJyEiIiIqgaenp8HDkoDF398fAJCVlWWwPSsrS19WWgxYiIiIyCaCg4Ph7++P5ORk/bbc3FwcOHAAERERZtXFn4SIiIjIYnl5eTh79qz+eXp6Oo4dOwYfHx/UqlULI0eOxNSpU1G/fn0EBwdj8uTJCAwMRJ8+fcxqhwELERERWezQoUPo0qWL/vno0aMBAIMHD8ayZcswfvx45OfnY9iwYcjOzkaHDh2wadMmODs7m9UOAxYiIiKyWOfOnSGEMFmu0WgQFxeHuLg4Re3wHhYiIiJSPV5hsSGp9OKKmCpbXsml+NortVOOLVcf/s1mNduO0vGQO+fyOF2A7ErP685Ilp+XqV82VdyEtQiWbnfuUIvq/R/Tn9k3gicorJvshVdYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR7TmhW6/Gdj5GrNX8r7xeMLLG4zZ1mCZPlsmfTO8pieaUunqtaydxdKZMu05YrIZ+pSyXJbrQJdnq1Kl17NWS4F+PabQ0yW/Rxaz2RZXblVom1I6pzlvhs5HYV98QoLERERqR4DFiIiIlI9BixERESkegxYiIiISPXsGrDExsZCo9EYPBo2bGhy/86dOxvtr9Fo0KPH/26UEkLg448/RkBAAFxcXBAZGYm0tDR9+c6dO0usQ6PRICUlxabnS0RERJaxe5ZQkyZNsG3bNv1zJyfTXVqzZg3u3bunf37jxg2Ehoaib9+++m0zZ87EggULsHz5cgQHB2Py5MmIiorCyZMn4ezsjHbt2uHq1asG9U6ePBnJyclo3bq1Fc+MiIiIrMXuAYuTkxP8/f1Lta+Pj4/B88TERLi6uuoDFiEE5s2bh0mTJqF3794AgBUrVsDPzw/r1q1DdHQ0KleubNDe/fv3sX79egwfPhwajcZKZ/XQ7XX2SaOUS++crSC9syKmRDPd1bqUvkeYOmo9CV17S+8gM9YpfRpIlp9PN526/OLxcybL/pDuld3wvadudr+HJS0tDYGBgahbty769++PixcvlvrY+Ph4REdHw83t4Two6enpyMzMRGRkpH4fLy8vhIeHY9++fSXW8dNPP+HGjRsYMsT0fAIAUFhYiNzcXIMHERERlQ27Bizh4eFYtmwZNm3ahEWLFiE9PR0dO3bE7du3ZY89ePAgUlNT8Y9//EO/LTMzEwDg5+dnsK+fn5++7Enx8fGIiopCzZo1JdubPn06vLy89I+goCDZPhIREZF12DVg6d69O/r27YvmzZsjKioKP//8M7Kzs7F69WrZY+Pj49GsWTO0bdvW4vYvXbqEzZs3Y+jQobL7Tpw4ETk5OfpHRkaGxe0SERGReex+D8vjvL290aBBA5w9e1Zyv/z8fCQmJiIuLs5g+6N7U7KyshAQEKDfnpWVhbCwMKN6EhISULVqVbz00kuyfdNqtdBqtaU4CyIiIvu4sScH97QPFNVxuzAfANCmTRs4OjpCp9NBp9NZo3uK2P0elsfl5eXh3LlzBsFGSZKSklBYWIgBAwYYbA8ODoa/vz+Sk5P123Jzc3HgwAFEREQY7CuEQEJCAgYNGoRKlSpZ7ySIiIgqgJSUFJw8eVIVwQpg54Bl7Nix+PXXX3HhwgXs3bsXL7/8MhwdHdGvXz8AwKBBgzBx4kSj4+Lj49GnTx9UrVrVYLtGo8HIkSMxdepU/PTTTzhx4gQGDRqEwMBA9OnTx2Df7du3Iz093eAeGCIiIlInu/4kdOnSJfTr1w83btyAr68vOnTogP3798PX1xcAcPHiRTg4GMZUp0+fxp49e7Bly5YS6xw/fjzy8/MxbNgwZGdno0OHDti0aROcnZ0N9ouPj0e7du0kJ6orjRq1T8LTxaXk8+tjOr1YScqz3Cq+7UdNkj7e4paJ5MmlhtorNV5uheDzc+XvZStvhmxfL1l+SWY1ZiVTaUqt1owKONZke3YNWBITEyXLd+7cabQtJCQEQgiTx2g0GsTFxRnd3/Kk7777rlR9JCIiIvtT1T0sRERERCVhwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPVXNdFsefbFrM5xNTjwnkd4plfInQy5tWYmKuBpzRSX3WpXXlWctfQ8myJS/fHyNZPlsmeOlxlPJZ/LZ40ctPlYpudWY26w7I12BRKp4ANJNlnm9Kb3YrBzJlGmqsHiFhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLV4zwsZJbk+p9LlndLG1tGPbGep3E+k7Whr0gem121yGTZkO3rLe6TLcn1S62v4/7QFpLltpyn5fzcodLlchXMtezYF+XqlaHWz6zP1KUmywrybgNrG5ZhbyoeXmEhIiIi1WPAQkRERKrHgIWIiIhUjwELERERWayoqAiTJ09GcHAwXFxcUK9ePXzyyScQQli1Hd50S0RERBabMWMGFi1ahOXLl6NJkyY4dOgQhgwZAi8vL4wYMcJq7TBgISIiIovt3bsXvXv3Ro8eD7O36tSpg++//x4HDx60ajsMWJ5C7UdNMl0ok0JZHtOW1UwqDVKWDdOL1Zq6TNYllx4sl3L929yp1uyO6smNl9RnMregADor90ct2rVrh6VLl+LMmTNo0KABjh8/jj179mDOnDlWbYcBCxERERnJzc01eK7VaqHVao32++c//4nc3Fw0bNgQjo6OKCoqwqeffor+/ftbtT8MWIiIiCqINX/OhXOlSorquHv/PgAgKCjIYHtMTAxiY2ON9l+9ejW+/fZbfPfdd2jSpAmOHTuGkSNHIjAwEIMHD1bUl8cxYCEiIiIjGRkZ8PT01D8v6eoKAIwbNw7//Oc/ER0dDQBo1qwZ/vzzT0yfPp0BCxEREdmWp6enQcBiyp07d+DgYDhLiqOjI4qLi63aHwYsREREZLFevXrh008/Ra1atdCkSRMcPXoUc+bMwVtvvWXVdhiwlEO2vDP/Wbm74Mmqbk4aZvGxCTIZRlKZPnKL3kHifaDWRQQrKrnxls1cUUDJd41kv7pKH3tq7gJF5QitJ11uISXv/Uf3hVREX3zxBSZPnoz3338f165dQ2BgIN555x18/PHHVm2HAQsRERFZzMPDA/PmzcO8efNs2g6n5iciIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj1mCVG5oHQRNskFH+UoSGWUW9xQKq35xePnJI9tpGCBQrlU2ISuvU0XMq3ZiJL0X7n3pux7V2bBUntRlP5uo7RkKt94hYWIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1eM8LE8hyblBFMztYUvPysw18ZvM8UrmyVBCap4VW0uu/7nJsm5pYyWPtWW/5eYVsddrZS9Kz1fuvf80qjsq3mTZ+blDy7AnZE28wkJERESqx4CFiIiIVI8BCxEREame2QHL4MGDsWvXLlv0hYiIiKhEZgcsOTk5iIyMRP369TFt2jRcvnzZFv0iIiIi0jM7YFm3bh0uX76M9957D6tWrUKdOnXQvXt3/PDDD7h//74t+khERERPOY0QQiip4MiRI0hISMC//vUvuLu7Y8CAAXj//fdRv359a/VRlXJzc+Hl5YWpLz8P50qV7N0ds4zp2sPeXVCV/aEtJMuVpJ2+ePycxccq1WjUCIuPnb19oxV7Uj7IvVY/h9Yro56UnVnvSr+317nclSwvjynotkx5lpoyoiDvNnQtGyInJweenp6K2inJo79JW747ADdXd0V15d/Jw/N/D0eDBg3g6OgInU4HnU5npZ5aTtE8LFevXsXWrVuxdetWODo64sUXX8SJEyfQuHFjzJw5E6NGjbJWP4mIiKgMpaSk2CS4spTZPwndv38fP/74I3r27InatWsjKSkJI0eOxJUrV7B8+XJs27YNq1evRlxcnC36S0RERE8hs6+wBAQEoLi4GP369cPBgwcRFhZmtE+XLl3g7e1the4RERERWRCwzJ07F3379oWzs7PJfby9vZGenq6oY0RERESPmB2wDBw40Bb9ICIiIjKJM90SERGR6nG1ZnoqSKUu2zI1M2dZgmS5WlOmpVI/AyD9c6/cOak1ffiPZTuld1DpKr9Sq1/LvRbjFsusnG1Rj+xP6j32hw3bnRJvelX54sI7Nmz56cArLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqmfXgCU2NhYajcbg0bBhQ5P7d+7c2Wh/jUaDHj3+t5ifEAIff/wxAgIC4OLigsjISKSlpRnVtXHjRoSHh8PFxQVVqlRBnz59bHGKREREZAV2T2tu0qQJtm3bpn/u5GS6S2vWrMG9e/f0z2/cuIHQ0FD07dtXv23mzJlYsGABli9fjuDgYEyePBlRUVE4efKkfnbeH3/8EW+//TamTZuGrl274sGDB0hNTbXB2alTQtfeJsuGbF9fhj0pO88eN51uKJe6KbW6tdxKz3KkUlJlvTlEsljqdX62VzfJY8+Hml6t+bx0r1SbtixHbqVeqVRvW7Yr9x4pjysmK10xXm41can3WF2J4+ReY7nXanj6IpNld+/fh4JPO0EFAYuTkxP8/f1Lta+Pj4/B88TERLi6uuoDFiEE5s2bh0mTJqF374df1itWrICfnx/WrVuH6OhoPHjwAB9++CFmzZqFoUP/9+Zr3Lixlc6IiIiIrM3u97CkpaUhMDAQdevWRf/+/XHx4sVSHxsfH4/o6Gi4ubkBANLT05GZmYnIyEj9Pl5eXggPD8e+ffsAAEeOHMHly5fh4OCAFi1aICAgAN27d5e9wlJYWIjc3FyDBxEREZUNuwYs4eHhWLZsGTZt2oRFixYhPT0dHTt2xO3bt2WPPXjwIFJTU/GPf/xDvy0zMxMA4OfnZ7Cvn5+fvuz8+YcXtGNjYzFp0iRs2LABVapUQefOnXHz5k2T7U2fPh1eXl76R1BQkNnnS0RERJaxa8DSvXt39O3bF82bN0dUVBR+/vlnZGdnY/Xq1bLHxsfHo1mzZmjbtq1ZbRYXFwMAPvroI7z66qto1aoVEhISoNFokJSUZPK4iRMnIicnR//IyMgwq10iIiKynN1/Enqct7c3GjRogLNnz0rul5+fj8TERIN7UADo74XJysoy2J6VlaUvCwgIAGB4z4pWq0XdunUlf47SarXw9PQ0eBAREVHZUFXAkpeXh3PnzumDClOSkpJQWFiIAQMGGGwPDg6Gv78/kpOT9dtyc3Nx4MABREREAABatWoFrVaL06dP6/e5f/8+Lly4gNq1a1vxbIiIiMha7JolNHbsWPTq1Qu1a9fGlStXEBMTA0dHR/Tr1w8AMGjQINSoUQPTp083OC4+Ph59+vRB1apVDbZrNBqMHDkSU6dORf369fVpzYGBgfp5Vjw9PfHuu+8iJiYGQUFBqF27NmbNmgUABunRREREpB52DVguXbqEfv364caNG/D19UWHDh2wf/9++Pr6AgAuXrwIBwfDi0CnT5/Gnj17sGXLlhLrHD9+PPLz8zFs2DBkZ2ejQ4cO2LRpk34OFgCYNWsWnJycMHDgQBQUFCA8PBzbt29HlSpVbHeyZchn6lLJ8puThpksmy1Tt9L5E8ojyTkfZOaDUDLPitz8Gi/KHC8310p5JPX+k5ubQym5OThspTzOs2Jrct9Dtnov2Kvd8uDy5cuYMGECfvnlF9y5cwfPPPMMEhIS0Lp1a6u1YdeAJTExUbJ8586dRttCQkIghDB5jEajQVxcHOLi4kzuU6lSJXz++ef4/PPPS91XIiIiMnbr1i20b98eXbp0wS+//AJfX1+kpaVZ/SKA3SeOIyIiovJrxowZCAoKQkJCgn5bcHCw1dtR1U23REREpA5PTpZaWFhY4n4//fQTWrdujb59+6J69epo0aIFvv76a6v3h1dYiIiIKojwrD3wdHFRVEduQQEAGE2QGhMTg9jYWKP9z58/j0WLFmH06NH4v//7P6SkpGDEiBGoXLkyBg8erKgvj2PAQkREREYyMjIM5hzTarUl7ldcXIzWrVtj2rRpAIAWLVogNTUVixcvZsCiJs2GnIGbW8m/rB1b0sjkcUpXBZUilQVExmx5579spo/EysZyWUC2JDUmp+YukDxWrasxU/mxNvQVyfKXj6+RLLfVytpy/ZLLGixvSjtJakBAgNECwo0aNcKPP/5o1f7wHhYiIiKyWPv27Q0mYwWAM2fOWH0yVgYsREREZLFRo0Zh//79mDZtGs6ePYvvvvsOS5cuhU6ns2o7DFiIiIjIYm3atMHatWvx/fffo2nTpvjkk08wb9489O/f36rt8B4WIiIiUqRnz57o2bOnTdvgFRYiIiJSPQYsREREpHr8SUihEwkN4FypktnH2WshNaUSuvaWLB+yfX0Z9aRikEoBlkp5tie5tGW5fitJe34aF5d7Ghfck/t+lFukta5c+rGNSL1WuQUFmLS25EV7qXR4hYWIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1eM8LAoNfy4Kni4uJZZVxPkRbk4aJlkuNT+Cz9SlFtcrNxeFnIr4WsjNZyI5ZvUuSh47+2vLx0vJPCtKKJ23Rkm/646KV9S2lNl2nLNJyedO6jOn9PMo16+1EmVSc7wonfNm/6hJJsvy8/MljyV5vMJCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9ZjWTGVGLnXZlmyVnimXSqskVVZR2jIgm7pM5YPSVNvySDZN/PgayWKp1GUpSsfyt7lTTZbdvX9fUd3EKyxERERUDjBgISIiItXjT0JEREQVxOmvFsPd0VFRHXlFRQCANm3awNHRETqdDjqdzhrdU4QBCxERERlJSUmBp6envbuhx5+EiIiISPUYsBAREZHq8SchlWovserns8ePSh5ryzTHMW83k2776xOmj5VIz7RnaqaStpWuTKx0FWqLnasls4Pp11Gt5F4Lpas5S3lZJs321NwFJstk30P2eo/Ykdx4VsRUbpLHKyxERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUj2nNKiW16udvMscqWd3VZ+pS6WNlVlyWWmV1toUrqNqaPVfDVfJaDNm+XrL81AfrTJYpTccujxSvfm2jtpW2q9bpApT0i2nLVBJeYSEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6TGu2E7lUxv2hLUyWya3WrMRNmbRludWaIbHK6mxLOmQlUmmScq+FkvRMJanJcink+yVW9AYALEswXSaRNq9mdlvdWiF79Vut46W0X0x7fjrxCgsRERGpHgMWIiIiUj0GLERERKR6DFiIiIjIKj777DNoNBqMHDnS6nUzYCEiIiLFUlJSsGTJEjRv3twm9TNgISIiIkXy8vLQv39/fP3116hSpYpN2mBasw0pSd1Tkrqc0LW3ZPkYBcfizy/M79Cjdm24quza0Fcky32kzktm1WMlfZNLE0+QSHtuL5HaXp6pNdW2vLLXFAj2JLUqPAC8LDG9gtR3xXmVrihvL7m5uQbPtVottFptifvqdDr06NEDkZGRmDrVNtMmMGAhIiKqIAaPcYKji6OiOooKNMB7QFBQkMH2mJgYxMbGGu2fmJiII0eOICUlRVG7chiwEBERkZGMjAx4enrqn5d0dSUjIwMffvghtm7dCmdnZ5v2hwELERERGfH09DQIWEpy+PBhXLt2DS1bttRvKyoqwq5du/Dll1+isLAQjo7Krvg8woCFiIiILNKtWzecOHHCYNuQIUPQsGFDTJgwwWrBCsCAhYiIiCzk4eGBpk2bGmxzc3ND1apVjbYrxbRmIiIiUj27XmGJjY3FlClTDLaFhITgjz/+KHH/zp0749dffzXa/uKLL2Ljxoepp0IIxMTE4Ouvv0Z2djbat2+PRYsWoX79+vr969Spgz///NOgjunTp+Of//yn0lNSBakVgJUfW8viuqUoTXWVSmO0JSWrMQOQTKlW64q0cq+VWvtdUVXU1GUpcp93yfeggvfnrHel03XHLZZZQf0psXPnTpvUa/efhJo0aYJt27bpnzs5me7SmjVrcO/ePf3zGzduIDQ0FH379tVvmzlzJhYsWIDly5cjODgYkydPRlRUFE6ePGlwB3NcXBzefvtt/XMPDw9rnRIRERFZmd0DFicnJ/j7+5dqXx8fH4PniYmJcHV11QcsQgjMmzcPkyZNQu/eDycKW7FiBfz8/LBu3TpER0frj/Xw8Ch1u0RERGRfdr+HJS0tDYGBgahbty769++PixcvlvrY+Ph4REdHw83NDQCQnp6OzMxMREZG6vfx8vJCeHg49u3bZ3DsZ599hqpVq6JFixaYNWsWHjx4INlWYWEhcnNzDR5ERERUNux6hSU8PBzLli1DSEgIrl69iilTpqBjx45ITU2V/Ynm4MGDSE1NRXz8/6ZozszMBAD4+fkZ7Ovn56cvA4ARI0agZcuW8PHxwd69ezFx4kRcvXoVc+bMMdne9OnTje63ISIiorJh14Cle/fu+n83b94c4eHhqF27NlavXo2hQ6XXdIiPj0ezZs3Qtm1bs9sdPXq0QbuVK1fGO++8g+nTp5tcJ2HixIkGx+Xm5hpNW0xERES2YfefhB7n7e2NBg0a4OzZs5L75efnIzEx0SioeXRPSlZWlsH2rKwsyftVwsPD8eDBA1y4cMHkPlqtVj/rX2lm/yMiIiLrsftNt4/Ly8vDuXPnMHDgQMn9kpKSUFhYiAEDBhhsDw4Ohr+/P5KTkxEWFgbg4ZWQAwcO4L333jNZ37Fjx+Dg4IDq1asrPgd6uihJIZdjz1WNlaQmfxFs+rMGAGNQ+vvUiNRELm1ZahXpO/m3gbX1TZaTPLsGLGPHjkWvXr1Qu3ZtXLlyBTExMXB0dES/fv0AAIMGDUKNGjUwffp0g+Pi4+PRp08fVK1a1WC7RqPByJEjMXXqVNSvX1+f1hwYGIg+ffoAAPbt24cDBw6gS5cu8PDwwL59+zBq1CgMGDAAVapUKZPzJiIiIvPYNWC5dOkS+vXrhxs3bsDX1xcdOnTA/v374evrCwC4ePEiHBwMf7U6ffo09uzZgy1btpRY5/jx45Gfn49hw4YhOzsbHTp0wKZNm/RzsGi1WiQmJiI2NhaFhYUIDg7GqFGjDO5PISIiInWxa8CSmJgoWV7SbHkhISEQQpg8RqPRIC4uDnFxcSWWt2zZEvv37zern0RERGRfqrrploiIiKgkDFiIiIhI9RiwEBERkeoxYCEiIiLVU9U8LERqZM/5UOxF6pzl5mi5UEHHS8ncNPZSUd+79notZMfz+BqTRbkFBVbuzdOHV1iIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPWUJEREQVxP6AF+DpplVUR25+IbxwCm3atIGjoyN0Oh10Op2Vemg5Bix2sjb0FcnylyXS42zZti3bJfPYMnVTSbprRU2VVaLuqHjJcn6uqDxKSUmBp6envbuhx5+EiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR7Tmu1ELs3RlqnHTLEsH148fk6yvNGoEWXUk/JBbqqA83OHKqpfMp2bn6kKQWnKvtRUBHfv31dUN/EKCxEREZUDDFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqscsIRtSkunDTJ6KQckil8wCMiaVhVFXZqzlyC1gyEwg8+wPbWGy7Le5U23atlS2j+RnUuY1tuWCpCSPV1iIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj3Ow6LQf5q9BFc3D7OPUzI/B5UffB3NJ/XZUDLXitw8K3ytyo83gidIll9KN112frvEqt0KV2t+Wk2fPh1r1qzBH3/8ARcXF7Rr1w4zZsxASEiIVdvhFRYiIiKy2K+//gqdTof9+/dj69atuH//Pp5//nnk5+dbtR1eYSEiIiKLbdq0yeD5smXLUL16dRw+fBjPPfec1dphwEJERERGcnNzDZ5rtVpotVrZ43JycgAAPj4+Vu0PAxYiIqIK4j/u71t0X+Xj7mhuA5iLoKAgg+0xMTGIjY2VPLa4uBgjR45E+/bt0bRpU0X9eBIDFiIiIjKSkZEBT09P/fPSXF3R6XRITU3Fnj17rN4fBixERERkxNPT0yBgkfPBBx9gw4YN2LVrF2rWrGn1/jBgUajXiZ/g6eJi726QDUml2TIV1vqyqxaZLPO+4WjRcXLHUsWS0qeBybK6MJ3evlau4u0bJYvHSKRF5xYUYNLaLXItlEtCCAwfPhxr167Fzp07ERwcbJN2GLAQERGRxXQ6Hb777jusX78eHh4eyMzMBAB4eXnBxYr/oec8LERERGSxRYsWIScnB507d0ZAQID+sWrVKqu2wyssREREZDEhRJm0wyssREREpHoMWIiIiEj1GLAQERGR6vEeFqoQbLn6tZJj5fqlhFy/lLRtz3TtIdvXW3ScLceaSpZc/3OTZW741mbtrkqfIVk+5rjp9OLZEqnJcit6y5WD0xzYFK+wEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj2mNVOFYMs0XCWrNdszPViq7fKaApzQtbfJMu8b0sdyZW3r65Y2VqL0qMmS36zflVKTTU2WwPeQffEKCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqZ9d5WGJjYzFlyhSDbSEhIfjjjz9K3L9z58749ddfjba/+OKL2Ljx4ZLhQgjExMTg66+/RnZ2Ntq3b49Fixahfv36RscVFhYiPDwcx48fx9GjRxEWFqb8pKjCKa9zL5TXuVak3Jw0zHSZ3MFde1i1L2rh3yDCZFnmmX1l2JPSGyPzWszevrGMekLlid0njmvSpAm2bdumf+7kZLpLa9aswb179/TPb9y4gdDQUPTt21e/bebMmViwYAGWL1+O4OBgTJ48GVFRUTh58iScnZ0N6hs/fjwCAwNx/PhxK54RERGRfUzccBQOWldFdRQX3gEAtGnTBo6OjtDpdNDpdNboniJ2D1icnJzg7+9fqn19fHwMnicmJsLV1VUfsAghMG/ePEyaNAm9ez+cEXPFihXw8/PDunXrEB0drT/2l19+wZYtW/Djjz/il19+sdLZEBERVQwpKSnw9PS0dzf07H4PS1paGgIDA1G3bl30798fFy9eLPWx8fHxiI6OhpubGwAgPT0dmZmZiIyM1O/j5eWF8PBw7Nv3v0ujWVlZePvtt7Fy5Uq4uiqLRImIiMj27BqwhIeHY9myZdi0aRMWLVqE9PR0dOzYEbdv35Y99uDBg0hNTcU//vEP/bbMzEwAgJ+fn8G+fn5++jIhBN588028++67aN26dan7WlhYiNzcXIMHERERlQ27/iTUvXt3/b+bN2+O8PBw1K5dG6tXr8bQoUMlj42Pj0ezZs3Qtm1bs9r84osvcPv2bUycONGs46ZPn250gzARERGVDbvfw/I4b29vNGjQAGfPnpXcLz8/H4mJiYiLizPY/uhemKysLAQEBOi3Z2Vl6TOAtm/fjn379kGr1Roc27p1a/Tv3x/Lly8vsc2JEydi9OjR+ue5ubkICgoq9bkRlTUlqzUrWaGaypZaM4HUiu/f8svu97A8Li8vD+fOnTMINkqSlJSEwsJCDBgwwGB7cHAw/P39kZycrN+Wm5uLAwcOICLiYerfggULcPz4cRw7dgzHjh3Dzz//DABYtWoVPv30U5NtarVaeHp6GjyIiIiobNj1CsvYsWPRq1cv1K5dG1euXEFMTAwcHR3Rr18/AMCgQYNQo0YNTJ8+3eC4+Ph49OnTB1WrVjXYrtFoMHLkSEydOhX169fXpzUHBgaiT58+AIBatWoZHOPu7g4AqFevHmrWrGmjMyUiIiIl7BqwXLp0Cf369cONGzfg6+uLDh06YP/+/fD19QUAXLx4EQ4OhheBTp8+jT179mDLli0l1jl+/Hjk5+dj2LBhyM7ORocOHbBp0yajOViIiIio/LBrwJKYmChZvnPnTqNtISEhEEKYPEaj0SAuLs7o/hZT6tSpI1kfERER2Z+q7mEhIiIiKgkDFiIiIlI9VaU1E1HZUHNqp2TKtYJF8eQW1JNbkI/Kjs/Upcoq2L7eOh0hVeEVFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUj/OwEFGZkp0PRaJs7ah4k2Xn5w61sEekNkM4jwqVgFdYiIiISPUYsBAREZHqMWAhIiIiRb766ivUqVMHzs7OCA8Px8GDB63eBgMWIiIistiqVaswevRoxMTE4MiRIwgNDUVUVBSuXbtm1XYYsBAREZHF5syZg7fffhtDhgxB48aNsXjxYri6uuKbb76xajvMErKQEAIAkHv3rp17QlS+3L1/X7I8t6DAZNmd/NsW1ytHql0ipR79rXj0t8NWigvvWK2O3Nxcg+1arRZardZg271793D48GFMnDhRv83BwQGRkZHYt2+f4r4YEGSRjIwMAYAPPvjggw8+Sv3IyMiwyd+kgoIC4e/vb7V+uru7G22LiYkxavfy5csCgNi7d6/B9nHjxom2bdta9Rx5hcVCgYGByMjIgIeHBzQajb27o1hubi6CgoKQkZEBT09Pe3en3OC4mY9jZhmOm/nUNGZCCNy+fRuBgYE2qd/Z2Rnp6em4d++eVeoTQhj9bXvy6kpZY8BiIQcHB9SsWdPe3bA6T09Pu3+wyyOOm/k4ZpbhuJlPLWPm5eVl0/qdnZ3h7Oxs0zaeVK1aNTg6OiIrK8tge1ZWFvz9/a3aFm+6JSIiIotUrlwZrVq1QnJysn5bcXExkpOTERERYdW2eIWFiIiILDZ69GgMHjwYrVu3Rtu2bTFv3jzk5+djyJAhVm2HAQsBePjbZExMjN1/oyxvOG7m45hZhuNmPo5Z2XjjjTdw/fp1fPzxx8jMzERYWBg2bdoEPz8/q7ajEcLGOVZERERECvEeFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAppz777DNoNBqMHDnSqEwIge7du0Oj0WDdunUGZSNGjECrVq2g1WoRFhZWYt2///47OnbsCGdnZwQFBWHmzJlG+yQlJaFhw4ZwdnZGs2bN8PPPPxv14eOPP0ZAQABcXFwQGRmJtLQ0S0/XKiwZs+PHj6Nfv34ICgqCi4sLGjVqhPnz5xsdv3PnTrRs2RJarRbPPPMMli1bZrSP3PLrd+/ehU6nQ9WqVeHu7o5XX33VaDIme7Bk3G7cuIEXXngBgYGB0Gq1CAoKwgcffGC0NklFHTdLP5+P3LhxAzVr1oRGo0F2drZBWUUdM8DycdNoNEaPxMREg30q8rg9Naw60T+ViYMHD4o6deqI5s2biw8//NCofM6cOaJ79+4CgFi7dq1B2fDhw8WXX34pBg4cKEJDQ42OzcnJEX5+fqJ///4iNTVVfP/998LFxUUsWbJEv89vv/0mHB0dxcyZM8XJkyfFpEmTRKVKlcSJEyf0+3z22WfCy8tLrFu3Thw/fly89NJLIjg4WBQUFFhrGMxi6ZjFx8eLESNGiJ07d4pz586JlStXChcXF/HFF1/o9zl//rxwdXUVo0ePFidPnhRffPGFcHR0FJs2bdLvk5iYKCpXriy++eYb8d///le8/fbbwtvbW2RlZen3effdd0VQUJBITk4Whw4dEs8++6xo166dTcajtCwdt5s3b4qFCxeKlJQUceHCBbFt2zYREhIi+vXrp9+noo6bks/nI71799bvc+vWLf32ijpmQigbNwAiISFBXL16Vf94/LumIo/b04QBSzlz+/ZtUb9+fbF161bRqVMnow/20aNHRY0aNcTVq1clvxBjYmJKDFgWLlwoqlSpIgoLC/XbJkyYIEJCQvTPX3/9ddGjRw+D48LDw8U777wjhBCiuLhY+Pv7i1mzZunLs7OzhVarFd9//72ZZ6yctcbskffff1906dJF/3z8+PGiSZMmBvu88cYbIioqSv+8bdu2QqfT6Z8XFRWJwMBAMX36dCHEw/GpVKmSSEpK0u9z6tQpAUDs27fP3FO2CmuP2/z580XNmjX1zyviuFljzBYuXCg6deokkpOTjQKWijhmQigfN7n3X0Udt6cNfxIqZ3Q6HXr06IHIyEijsjt37uDvf/87vvrqK4vXcNi3bx+ee+45VK5cWb8tKioKp0+fxq1bt/T7PNl+VFSUfinx9PR0ZGZmGuzj5eWF8PBw6y83XgrWHrOcnBz4+Pjon8uNx6Pl1x/f58nl1w8fPoz79+8b7NOwYUPUqlXLLmMGWHfcrly5gjVr1qBTp076bRVx3JSO2cmTJxEXF4cVK1bAwcH467kijhlgnfeaTqdDtWrV0LZtW3zzzTcQj00xVlHH7WnDmW7LkcTERBw5cgQpKSkllo8aNQrt2rVD7969LW4jMzMTwcHBBtsezVaYmZmJKlWqIDMz02gGQz8/P2RmZur3e/y4kvYpK9Yes71792LVqlXYuHGjfpup8cjNzUVBQQFu3bqFoqKiEvf5448/9HVUrlwZ3t7eRvuU9ZgB1hu3fv36Yf369SgoKECvXr3wr3/9S19W0cZN6ZgVFhaiX79+mDVrFmrVqoXz588b7VPRxgywznstLi4OXbt2haurK7Zs2YL3338feXl5GDFiBICKOW5PIwYs5URGRgY+/PBDbN26tcTVOH/66Sds374dR48etUPv1MnaY5aamorevXsjJiYGzz//vLW7qxrWHLe5c+ciJiYGZ86cwcSJEzF69GgsXLjQFt22K2uM2cSJE9GoUSMMGDDAll1VFWu91yZPnqz/d4sWLZCfn49Zs2bpAxaqGPiTUDlx+PBhXLt2DS1btoSTkxOcnJzw66+/YsGCBXBycsLWrVtx7tw5eHt768sB4NVXX0Xnzp1L3Y6/v3+Jy4Q/KpPa5/Hyx48raZ+yYM0xO3nyJLp164Zhw4Zh0qRJBmWmxsPT0xMuLi6lWn7d398f9+7dM8oIKesxA6w7bv7+/mjYsCFeeuklLFmyBIsWLcLVq1f1ZRVl3KwxZtu3b0dSUpK+vFu3bgCAatWqISYmRn++FWXMANt9r4WHh+PSpUsoLCwEUPHG7WnFKyzlRLdu3XDixAmDbUOGDEHDhg0xYcIEVKtWDe+8845BebNmzTB37lz06tWr1O1ERETgo48+wv3791GpUiUAwNatWxESEoIqVaro90lOTjZIPdy6dat+KfHg4GD4+/sjOTlZnzqdm5uLAwcO4L333jP31C1mrTH773//i65du2Lw4MH49NNPjdqJiIgwSut+fDweX369T58+AP63/PoHH3wAAGjVqhUqVaqE5ORkvPrqqwCA06dP4+LFi1Zfol2Ord5rxcXFAKD/I1KRxs0aY/bjjz+ioKBAX56SkoK33noLu3fvRr169QBUrDEDbPdeO3bsGKpUqaJf9LCijdtTy953/ZLlSrqb/nEo4c75tLQ0cfToUfHOO++IBg0aiKNHj4qjR4/qs4Kys7OFn5+fGDhwoEhNTRWJiYnC1dXVKK3ZyclJfP755+LUqVMiJiamxLRmb29vsX79evH777+L3r172zWt+RFzx+zEiRPC19dXDBgwwCBl8tq1a/p9HqVMjhs3Tpw6dUp89dVXJaZMarVasWzZMnHy5EkxbNgw4e3tLTIzM/X7vPvuu6JWrVpi+/bt4tChQyIiIkJERERY9fwtZe64bdy4UXzzzTfixIkTIj09XWzYsEE0atRItG/fXr9PRR83Sz6fj9uxY4fJtOaKOmZCmD9uP/30k/j666/FiRMnRFpamli4cKFwdXUVH3/8sX6fp2HcngYMWMoxS74QO3XqJAAYPdLT0/X7HD9+XHTo0EFotVpRo0YN8dlnnxnVvXr1atGgQQNRuXJl0aRJE7Fx40aD8uLiYjF58mTh5+cntFqt6Natmzh9+rSS07UKc8csJiamxPGqXbu2wXE7duwQYWFhonLlyqJu3boiISHBqO4vvvhC1KpVS1SuXFm0bdtW7N+/36C8oKBAvP/++6JKlSrC1dVVvPzyy+Lq1asKztZ6zB237du3i4iICOHl5SWcnZ1F/fr1xYQJEwz++ApRscfNFgHLo+0VdcyEMH/cfvnlFxEWFibc3d2Fm5ubCA0NFYsXLxZFRUUGx1X0cXsaaIR4LPeLiIiISIV40y0RERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLESkyPXr1+Hv749p06bpt+3duxeVK1dGcnKyHXtGRBUJ1xIiIsV+/vln9OnTB3v37kVISAjCwsLQu3dvzJkzx95dI6IKggELEVmFTqfDtm3b0Lp1a5w4cQIpKSnQarX27hYRVRAMWIjIKgoKCtC0aVNkZGTg8OHDaNasmb27REQVCO9hISKrOHfuHK5cuYLi4mJcuHDB3t0hogqGV1iISLF79+6hbdu2CAsLQ0hICObNm4cTJ06gevXq9u4aEVUQDFiISLFx48bhhx9+wPHjx+Hu7o5OnTrBy8sLGzZssHfXiKiC4E9CRKTIzp07MW/ePKxcuRKenp5wcHDAypUrsXv3bixatMje3SOiCoJXWIiIiEj1eIWFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHr/D1gQ0rMhfjJ4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdbklEQVR4nO3deXxN1/4//tfJdDLIIBEZCELNQ2JMYygqt2mKokWpqepW9aZas+tbmkiVooZqUdrcGG4raA39tK6ZooKYQi4liCZFQpFBRBLJ+v3hl3MdJ2fv5OxzcrZ4PR+PPB7OXnuvtfbKPsc7++z3WhohhAARERGRitlYuwNEREREchiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwqES9evXw1ltvWbsbRFTFvfXWW6hXr55Jx1rrcyozMxP9+/eHl5cXNBoNFi9eXOl9IOtjwFKJDh8+jOjoaGRlZVm7K5UqMTER77//Ppo3bw4XFxfUqVMHAwcOxMWLF8vc//z583j55ZdRrVo1eHp6YtiwYbh165bePr///jumTJmC4OBguLq6ws/PDz179sTx48cN6rtw4QLGjx+Pjh07wtHRERqNBlevXq3QOSxfvhwDBgxAnTp1oNFoJD+0s7KyMHr0aHh7e8PFxQXdu3fHyZMnK9RebGwsmjZtCkdHRzRs2BBffvmlSef11ltvQaPRyP48fj7mHn8phw8fRufOneHs7AxfX1988MEHuHfvnsF+BQUFmDp1Kvz9/eHk5ISQkBDs2rWrQm2VZ0wB4Nq1axg4cCA8PDzg5uaGPn364MqVKxVqy9quX7+O6OhonD592tpdMYvx48djx44dmDZtGtauXYuXX3650tou7zVKlUBQpZk/f74AIFJTUw3KHjx4IAoLCyu/U5Xg9ddfF76+vmLs2LHim2++EZ988onw8fERLi4u4uzZs3r7pqenixo1aogGDRqIL774Qnz66aeievXqIigoSBQUFOj2mzhxovDw8BCjRo0SK1asEPPmzRMNGjQQtra2YteuXXp1xsXFCRsbG9GiRQsRHBxs9HcgpW7dusLT01O8/PLLws7OTowYMaLM/YqLi0XHjh2Fi4uLiI6OFl999ZVo1qyZcHV1FRcvXixXW19//bUAIF5//XWxcuVKMWzYMAFAfPbZZxU+r8OHD4u1a9fqfmJiYgQAMXr0aL3thw8fFkJYZvyNOXXqlHB0dBStW7cWy5cvFx999JHQarXi5ZdfNth30KBBws7OTkyaNEmsWLFChIaGCjs7O3Hw4EGzjmlubq5o2LChqFmzppg7d65YuHChCAgIELVr1xZ//fVXudpSg8TERAFAxMXFGZQVFhaKBw8emFRv3bp1jV77luTj4yOGDBlS6e1W5Boly2PAUomkApaq7LffftP7z04IIS5evCi0Wq3Bh9B7770nnJycxB9//KHbtmvXLgFArFixQrft+PHjIjc3V+/Yv/76S3h7e4tOnTrpbb99+7bIyckRQpj+O7h69aooKSkRQgjh4uJi9EN7/fr1AoDYuHGjbtvNmzeFh4eHGDx4sGw79+/fF15eXqJnz55624cMGSJcXFzEnTt3FJ2X1H9kQlhm/I2JiIgQfn5+Ijs7W7ftm2++EQDEjh07dNuOHj0qAIj58+frtuXn54sGDRqI0NBQ2XYqMqZz584VAMSxY8d0286fPy9sbW3FtGnTynVeaiD3ezaVOQKW4uJikZ+fX6FjNBqNiIyMVNSuKcp7jVLlYMBSSaKiogQAg5/S/2Ce/CCIi4sTAMTBgwfF2LFjRY0aNYS7u7sYPXq0KCgoEHfv3hXDhg0THh4ewsPDQ0yePFn3H2qp4uJisWjRItGsWTOh1WpFzZo1xejRo/U+oK2pTZs2ok2bNnrbatasKQYMGGCwb6NGjUSPHj1k63zttdeEp6en0XJzBI1SAcuAAQOEj4+PKC4u1ts+evRo4ezsLPuX7S+//CIAiF9++UVv++HDhwUAsXbt2jKPM1fAYonxz8vLE+fPnxe3bt3SbcvOzhZ2dnZi8uTJevsWFBSIatWqiVGjRum2TZ48Wdja2ur9pyGEELNnzxYARFpamm7brVu3xPnz50VeXp5uW0XGtH379qJ9+/YG5/XSSy+JBg0ayJ5/WW7cuCHeeustUatWLeHg4CB8fX3Fq6++qve7qlu3rujZs6fYsWOHCAoKElqtVjRt2lT8+OOPenXdvn1bTJw4UbRo0UK4uLgIV1dX8fLLL4vTp0/r9tm3b1+ZnzWlv/MRI0aIunXr6tU7f/58ERoaKjw9PYWjo6No06aNXtD9eD8rGrAAEJGRkeLf//63aNasmbCzsxObN28WQgjx559/ipEjR4qaNWsKBwcH0axZMxEbG6s7tvRz8MmfylCRa5QqB59hqSSvvfYaBg8eDABYtGgR1q5di7Vr18Lb21vyuLFjxyIlJQUzZ87Eq6++ipUrV2LGjBno3bs3iouLMXv2bHTu3Bnz58/H2rVr9Y599913MXnyZHTq1AlffPEFRo4cie+++w7h4eEoKiqSbLegoAB//fVXuX5MIYRAZmYmatSoodt27do13Lx5E+3atTPYv0OHDjh16pRsvRkZGXp1VrZTp06hTZs2sLHRf2t16NAB9+/fN/rczuPHAzAYg7Zt28LGxqZcY2AqS43/sWPH0LRpU3z11Ve6bWfPnsXDhw8N2nJwcEBwcLBeW6dOnUKjRo3g5uZm0CcAes9pfPXVV2jatCmOHTumdzwgP6YlJSU4c+aM0fO/fPkycnNzZcfgSa+//jo2b96MkSNHYtmyZfjggw+Qm5uLtLQ0vf1SUlLwxhtvICIiAnPmzIGdnR0GDBig96zOlStXsGXLFvTq1QsLFy7E5MmTcfbsWXTt2hXXr18HADRt2hQxMTEAgNGjR+s+a1544QWjffziiy/QunVrxMTEYPbs2bq2f/nllwqfb1n27t2L8ePH44033sAXX3yBevXqITMzE88//zx2796N999/H1988QWee+45jBo1SvdQ7QsvvKD7XPvb3/6mOxcpd+/eLdfn1v379yXrqcg1SpXE2hHTs0Tqr2Bjd1jCw8P17pyEhoYKjUYjxowZo9v28OFDUbt2bdG1a1fdtoMHDwoA4rvvvtNrZ/v27WVuf5Kxv2zK+jHF2rVrBQC9v6ZK//pfs2aNwf6TJ08WACTvUBw4cEBoNBoxY8YMo/tY+g6Li4uLePvttw22l/6Vv337dsm6IyMjha2tbZll3t7eYtCgQWWWmeMOi6XGv/Qv/qioKN22jRs3CgDiwIEDBvUMGDBA+Pr66l43b95cvPjiiwb7/fe//xUAxNdff63bVnonc9++fbpt5R3TW7duCQAiJibGYL+lS5cKAOL3338v++SNuHv3rsHXWWWpW7euAKB3RyU7O1v4+fmJ1q1b67Y9ePDA4O5damqq0Gq1ev2W+j2XdYfl/v37eq8LCwtFixYtDMbd1DssNjY24r///a/e9lGjRgk/Pz+DZ4MGDRok3N3d9fqE//8uTXmUjqXcz+PXY1kqco1S5bCzTBhE5jJq1ChoNBrd65CQECQkJGDUqFG6bba2tmjXrh1OnDih27Zx40a4u7vjb3/7m95dkLZt26JatWrYt28f3nzzTaPthoeHVzgLo7x+//13REZGIjQ0FCNGjNBtz8/PBwBotVqDYxwdHXX7lFV+8+ZNvPnmmwgMDMSUKVMs0u/yMNa/x/svd7yDg0OZZY6OjrLHK2Gp8e/WrRuEEBVq6/HzrMiYRkdHIzo62qCt8oxpec+/IpycnODg4ID9+/dj1KhRqF69utF9/f390a9fP91rNzc3DB8+HHPnzkVGRgZ8fX31+lZcXIysrCxUq1YNjRs3rnAm2pP9LHX37l0UFxejS5cuWLduncl1Pq5r165o1qyZ7rUQAj/++CMGDhwIIYTeZ1R4eDji4+Nx8uRJdOrUqcJtfffdd+X6PdWvX1+yvCLXKFUOBiwqV6dOHb3X7u7uAICAgACD7Xfv3tW9TklJQXZ2NmrWrFlmvTdv3pRs18/PD35+fqZ0WVJGRgZ69uwJd3d3/PDDD7C1tdWVlX5oFhQUGBz34MEDvX0el5eXh169eiE3NxeHDh1CtWrVTOrbrVu3UFxcrHtdrVq1Ctfl5ORUrv4ba8vJyQmFhYVl1v3gwYMyz99cKnP85dp6vJ3yjqlUW+UZU1PPX4pWq8XcuXMxceJE+Pj44Pnnn0evXr0wfPhw+Pr66u373HPP6f1xAgCNGjUCAFy9ehW+vr4oKSnBF198gWXLliE1NVXvGvLy8qpQ3x73888/Y9asWTh9+rTe+T/ZH1MFBgbqvb516xaysrKwcuVKrFy5ssxj5D6jjDElyClLRa5RqhwMWFTu8f/Q5bY//ldsSUkJatasie+++67M4+WencnPz0d2dna5+vjkB68x2dnZiIiIQFZWFg4ePAh/f3+98tIA6caNGwbH3rhxA56engZ/7RQWFuK1117DmTNnsGPHDrRo0aJcfSlL+/bt8ccff+heR0VFGfy1LsfPz89o/wHoztlYW35+figuLsbNmzf1gs3CwkLcvn3bYMzMqTLHX66tx8/Tz88P165dK3M/ALJjUt4xLT2/8vz+KmLcuHHo3bs3tmzZgh07dmDGjBmYM2cO9u7di9atW1eortmzZ2PGjBl4++238cknn8DT0xM2NjYYN24cSkpKKtw3ADh48CBeffVVvPDCC1i2bBn8/Pxgb2+PuLg4fP/99ybV+aQn/3Mv7evQoUP17rI+rlWrVia19eQfA8bI/UFSkWuUKgcDlkpkrr9WyqNBgwbYvXs3OnXqZNJfAuvXr8fIkSPLte+Tt/vL8uDBA/Tu3RsXL17E7t279W4Pl6pVqxa8vb3LnHzs2LFjCA4O1ttWUlKC4cOHY8+ePdiwYQO6du1arv4a8+StZLlbxmUJDg7GwYMHUVJSovfg7dGjR+Hs7Kz7i9lYW6XnePz4cbzyyiu68uPHj6OkpMRgDMypMse/RYsWsLOzw/HjxzFw4EDd9sLCQpw+fVpvW3BwMPbt24ecnBy9B2+PHj2qK5dS3jG1sbFBy5Ytyzz/o0ePon79+nB1dS33OT6uQYMGmDhxIiZOnIiUlBQEBwdjwYIF+Pe//63b59KlSxBC6H1OlD6kXToz7Q8//IDu3bsjNjZWr/6srCy9h50r8lnz448/wtHRETt27NALSOPi4ip0jhXh7e0NV1dXFBcXIywszKx1P/nHgDFyf5BU5BqlysGApRK5uLgAQKXMdDtw4EAsW7YMn3zyCWbPnq1X9vDhQ9y7dw8eHh5GjzfnMyzFxcV44403kJCQgK1btyI0NNTovq+//jpWr16N9PR03ddee/bswcWLFzF+/Hi9fceOHYv169djxYoVeO211xT30xy3kvv3748ffvgBmzZtQv/+/QEAf/31FzZu3IjevXvr/kMw1taLL74IT09PLF++XO8/1+XLl8PZ2Rk9e/ZU3Ecplhj/+/fvIy0tDTVq1ND9p+ru7o6wsDD8+9//xowZM3SBwNq1a3Hv3j0MGDBAd3z//v3x+eefY+XKlZg0aRKAR7fp4+LiEBISovf1aGkGSJ06deDs7AygYmPav39//POf/8Tx48d12SEXLlzA3r17dW1XxP3792FjY6N7BgZ4FLy4uroafNVw/fp1bN68WTeWOTk5WLNmDYKDg3V3MW1tbQ3+QNi4cSOuXbuG5557TretIp81tra20Gg0enclrl69ii1btlToXCvC1tYWr7/+Or7//nskJycb3Jm7deuW7F1gY8z1DEtFrlGqHAxYKlHbtm0BAB999BEGDRoEe3t79O7dW/fhYk5du3bFu+++izlz5uD06dN46aWXYG9vj5SUFGzcuBFffPGF7j/UspjzGZaJEyfip59+Qu/evXHnzh29vyqBR7eFS/2///f/sHHjRnTv3h0ffvgh7t27h/nz56Nly5Z6d3wWL16MZcuWITQ0FM7OzgZ19uvXTzeu2dnZumnYf/vtNwCP0l89PDzg4eGB999/X/Yc/u///g9JSUkAgKKiIpw5cwazZs0CALz66qu629f9+/fH888/j5EjR+LcuXOoUaMGli1bhuLiYsycOVO2HScnJ3zyySeIjIzEgAEDEB4ejoMHD+Lf//43Pv30U3h6eur2Ncd5PckS43/s2DF0797d4C/aTz/9FB07dkTXrl0xevRo/Pnnn1iwYAFeeuklvanXQ0JCMGDAAEybNg03b97Ec889h9WrV+Pq1asGdxq++uorzJw5E/v27UO3bt0qPKb/+Mc/8M0336Bnz56YNGkS7O3tsXDhQvj4+GDixIl6bXXr1g2//vqr5B3GixcvokePHhg4cCCaNWsGOzs7bN68GZmZmRg0aJDevo0aNcKoUaOQmJgIHx8f/Otf/0JmZqbenY5evXohJiYGI0eORMeOHXH27Fl89913Bv/5NmjQAB4eHvj666/h6uoKFxcXhISEGDxLAgA9e/bEwoUL8fLLL+PNN9/EzZs3sXTpUjz33HM4c+aM0XNT6rPPPsO+ffsQEhKCd955B82aNcOdO3dw8uRJ7N69G3fu3DGpXnM9wwKU/xqlSmK9BKVn0yeffCJq1aolbGxsyjVxXGJiot7xpWmbj0/CJcSjVEUXFxeD9lauXCnatm0rnJychKurq2jZsqWYMmWKuH79utnPzZiuXbtWKC06OTlZvPTSS8LZ2Vl4eHiIIUOGiIyMDL19RowYIVnn4+m9qampRvd7Mr3TGKn2nkwdvXPnjhg1apTw8vISzs7OomvXrga/RzkrV64UjRs3Fg4ODqJBgwZi0aJFBhMDmnJe5ZkB1dzjX1Zac6mDBw+Kjh07CkdHR+Ht7S0iIyN1s/c+Lj8/X0yaNEn4+voKrVYr2rdvX2aKeFlpzaXKM6ZCPFqeoH///sLNzU1Uq1ZN9OrVS6SkpBjs17ZtW9nU1r/++ktERkaKJk2aCBcXF+Hu7i5CQkLEhg0b9PZ7fOK4Vq1aCa1WK5o0aWIweduDBw/ExIkThZ+fn3BychKdOnUSCQkJomvXrnrTGgghxNatW3UTtT3+Oy8rrTk2NlY0bNhQ125cXJxuLJ/sp6kTx5UlMzNTREZGioCAAGFvby98fX1Fjx49xMqVK8tdh6WV9xoly9MIUY4HEIiISCc3Nxeenp5YvHgxIiMjFddXr149tGjRAj///LMZekdUNXGmWyKiCjpw4ABq1aqFd955x9pdIXpm8BkWIqIK6tmzp8UfgFa7jIwMyXInJyfdvFFE5sCAhYiIKkzuofwRI0Zg1apVldMZeiYwYCEisrKrV69auwsVJjftASdWI3PjQ7dERESkenzoloiIiFSPAQsRERGpHgMWIiIiUj0GLAodOHAAvXv3hr+/PzQajUnrbwgh8Pnnn6NRo0bQarWoVasWPv30U/N3loiI6CnFLCGF8vLyEBQUhLffftvkBfg+/PBD7Ny5E59//jlatmyJO3fumLyOBhERUVXELCEz0mg02Lx5M/r27avbVlBQgI8++gjr1q1DVlYWWrRogblz5+oWZjt//jxatWqF5ORkNG7c2DodJyIiUjl+JWRh77//PhISEhAfH48zZ85gwIABePnll5GSkgLg0SrA9evXx88//4zAwEDUq1cPf//733mHhYiI6DEMWCwoLS0NcXFx2LhxI7p06YIGDRpg0qRJ6Ny5s27J+CtXruCPP/7Axo0bsWbNGqxatQonTpxA//79rdx7IiIi9eAzLBZ09uxZFBcXo1GjRnrbCwoK4OXlBQAoKSlBQUEB1qxZo9svNjYWbdu2xYULF/g1ERERERiwWNS9e/dga2uLEydOwNbWVq+sWrVqAB6tx2FnZ6cX1DRt2hTAozs0DFiIiIgYsFhU69atUVxcjJs3b6JLly5l7tOpUyc8fPgQly9fRoMGDQAAFy9eBADUrVu30vpKRESkZswSUujevXu4dOkSgEcBysKFC9G9e3d4enqiTp06GDp0KH777TcsWLAArVu3xq1bt7Bnzx60atUKPXv2RElJCdq3b49q1aph8eLFKCkpQWRkJNzc3LBz504rnx0REZE6MGBRaP/+/ejevbvB9tKl1YuKijBr1iysWbMG165dQ40aNfD8889j5syZaNmyJQDg+vXrGDt2LHbu3AkXFxdERERgwYIF8PT0rOzTISIiUiUGLERERGSyAwcOYP78+Thx4gRu3LhhMB/Z48aMGYMVK1Zg0aJFGDduXIXaYVozERERmax0xvelS5dK7rd582YcOXIE/v7+JrXDh26JiIjIZBEREYiIiJDc59q1axg7dix27NiBnj17mtQOAxYTlZSU4Pr163B1dYVGo7F2d4iISMWEEMjNzYW/vz9sbCzz5caDBw9QWFholrqEEAb/t2m1Wmi12grXVVJSgmHDhmHy5Mlo3ry5yX1iwGKi69evIyAgwNrdICKip0h6ejpq165t9nofPHgA3zp1kX3rplnqq1atGu7du6e3LSoqCtHR0RWua+7cubCzs8MHH3ygqE8MWEzk6uoKAJje60U42ld8GFfU/btk+bt/fGu07PnIKRVu73FHls5TdLyUsS+EW6zuZ82XB3ZIlr90NtXkune2DJQsrz5jidGyob/+Innsv7tK3+69+4n0h1a9SOPfg19dGmm0TG485M5Zql05Uv1SSq5f1mxbiiX7pYSSa1uJnAcPEDDtI93/HeZWWFiI7Fs38fmBRDhVU9ZG/r1cTHqhPdLT0+Hm5qbbbsrdlRMnTuCLL77AyZMnFX8bwYDFRKUD72hvB0d7+wofb6N1liyXqtPFxaXC7ZW3bqXcnJwsVvezRu73VO2J2ZPNWbfUB57c71juwzJfpm1nF+PHS/VbbjzkzlmqXTmWfE/J9cuabUuxZL+UUHJtm4OlHyFwquaqOGAp5ebmphewmOLgwYO4efMm6tSpo9tWXFyMiRMnYvHixbh69Wq562LAQkRERBYxbNgwhIWF6W0LDw/HsGHDMHLkyArVxYCFiIiITPb4jO8AkJqaitOnT+tmfC9d7LeUvb09fH19K7xWHgMWIiIiMtnx48f1ZnyfMGECgP/N+G4uDFiIiIjIZN26dUNFJs2vyHMrj2PAYiVjU5dbrO7fFs2yWN1UMXEv9pEsH7l3q9GyiS9KZ9ucTzKe7SDnlaTLkuXX08teXfyRSZLH3pk+2oQe/c+VRaNMOm5bUAOrtGtp1uxXv6RNkuWbg16rpJ6Yj9R7bsFe6SwhufckWRan5iciIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9TgPiwXVHx9r8rFScy+oeZ4VqXkMquIcBnLzUIzcKz2PhVqdXtHUeBkst6JtVSV17cvN/WFNcn2rb6V5WN4InCpZvj51rkn1VsXPqKqEd1iIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHtOaq6BO46dbrW2plOuqmPLcL8l6actNx38gWa7WdNmJ63+WLF/wRi+jZVJTBUhNBWBtav1dyH1WyE2hYKkxl/s8WLDXtLRlerrxDgsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9fjQLRERURURfe0WbFzyFdVRkncPANC+fXvY2toiMjISkZGR5uieIgxYFKoXuRTOLq7W7kalsdTCi0qzKILfPS9ZLrWYnxxLZjApOW+5BeDeCGxhtMzUxeHMQSoLSAkli40C6s4yshS597PSLCJjlL6nlBwvtWCpNbP+1CgxMRFubm7W7oYOvxIiIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9BixERESkekxrVujq0kg42tuXWfY0LtRmqbRlS1OStvy0kktNlkt7thSlKauWWihQ7j2nJC06y6tYsnzk3q1Gy9S6MCJgvWkMntbFUMmyeIeFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jFgISIiItXjPCwWJDXvg9ycD2qdp+VZJDVnhNx8EdacY0NqnhbPWSslj70zfbTRMkufs5L5UKxRLwB43LaVLN8c9JrxQpnxUvK7elpJjheAfkmbTK5b6ljfRqGSx2ZcTJAsl7r2HxQVSXeMZPEOCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jFgISIiIpMdOHAAvXv3hr+/PzQaDbZs2aIrKyoqwtSpU9GyZUu4uLjA398fw4cPx/Xr1yvcDtOarYRpy1WDNdOWlVCSCiuXciqXpiun/ZaLRssS+zZSVPfTqCqmLcuRS1tW8r57Jemy0bLJQTL1yqT0P6vy8vIQFBSEt99+G6+9pv/5cP/+fZw8eRIzZsxAUFAQ7t69iw8//BCvvvoqjh8/XqF2GLAQERGRySIiIhAREVFmmbu7O3bt2qW37auvvkKHDh2QlpaGOnXqlLsdBixERERkICcnR++1VquFVqtVXG92djY0Gg08PDwqdBwDFiIioiriWzEMLkLZ46l5ogR9AAQEBOhtj4qKQnR0tKK6Hzx4gKlTp2Lw4MFwc3Or0LFWfeg2OjoaGo1G76dJkyZG9+/WrZvB/hqNBj17/u97RSEEPv74Y/j5+cHJyQlhYWFISUnRq+fixYvo06cPatSoATc3N3Tu3Bn79u2z2HkSERE9bdLT05Gdna37mTZtmqL6ioqKMHDgQAghsHz58gofb/UsoebNm+PGjRu6n0OHDhndd9OmTXr7Jicnw9bWFgMGDNDtM2/ePCxZsgRff/01jh49ChcXF4SHh+PBgwe6fXr16oWHDx9i7969OHHiBIKCgtCrVy9kZGRY9FyJiIieFm5ubno/Sr4OKg1W/vjjD+zatavCd1cAFXwlZGdnB19f33Lt6+npqfc6Pj4ezs7OuoBFCIHFixdj+vTp6NOnDwBgzZo18PHxwZYtWzBo0CD89ddfSElJQWxsLFq1agUA+Oyzz7Bs2TIkJyeXuy9EREQkrzRYSUlJwb59++Dl5WVSPVYPWFJSUuDv7w9HR0eEhoZizpw55X5qODY2FoMGDYKLiwsAIDU1FRkZGQgLC9Pt4+7ujpCQECQkJGDQoEHw8vJC48aNsWbNGrRp0wZarRYrVqxAzZo10bZtW6NtFRQUoKCgQPf6yYeR1OT5pFOS5U9rKq4SncZPt0i9vy2apeh4uZWPpVjr9yiXkq94VWSJtOaqmPL8NK/GLHX9yqa/S1hgwWkfjvzfHqNlnkZLHtmT3kWyPLih8bK8vBJgs0wDT6l79+7h0qVLutepqak4ffo0PD094efnh/79++PkyZP4+eefUVxcrPs2w9PTEw4ODuVux6oBS0hICFatWoXGjRvjxo0bmDlzJrp06YLk5GS4urpKHnvs2DEkJycjNvZ/H46lg+Dj46O3r4+Pj65Mo9Fg9+7d6Nu3L1xdXWFjY4OaNWti+/btqF69utH25syZg5kzZ5p6qkRERFXS8ePH0b17d93rCRMmAABGjBiB6Oho/PTTTwCA4OBgveP27duHbt26lbsdqwYsj+dtt2rVCiEhIahbty42bNiAUaOkI+zY2Fi0bNkSHTp0qFCbQghERkaiZs2aOHjwIJycnPDtt9+id+/eSExMhJ+fX5nHTZs2TfdLAB7dYXnyCWoiIqJnTbdu3SCEMFouVVYRVn/o9nEeHh5o1KiR3q2lsuTl5SE+Pt4gqCl9/iQzM1Nve2Zmpq5s7969+PnnnxEfH49OnTqhTZs2WLZsGZycnLB69WqjbWq1WoMHkIiIiKhyqCpguXfvHi5fvmz0LkepjRs3oqCgAEOHDtXbHhgYCF9fX+zZ87/vKHNycnD06FGEhoYCeDRNMADY2Oifuo2NDUpKSsxxGkRERGRmVg1YJk2ahF9//RVXr17F4cOH0a9fP9ja2mLw4MEAgOHDh5eZ9x0bG4u+ffsaPGms0Wgwbtw4zJo1Cz/99BPOnj2L4cOHw9/fH3379gUAhIaGonr16hgxYgSSkpJw8eJFTJ48GampqXrzuRAREZF6WPUZlj///BODBw/G7du34e3tjc6dO+PIkSPw9vYGAKSlpRncCblw4QIOHTqEnTt3llnnlClTkJeXh9GjRyMrKwudO3fG9u3b4ejoCACoUaMGtm/fjo8++ggvvvgiioqK0Lx5c2zduhVBQUGWPWEiIiIyiUaY62mYZ0xOTg7c3d0xq99LcLS3N3v9UumCcumsSlJllVJryrS10prlfhdS46Xk2KrqjcCpJh+7PnWuZLlcOvZ7+TeMlk3+Wvr6kkpd9rhtK3msJVculqPks0RJWrMcS612b8n33IOiIkzfvBPZ2dkWeQay9P+krT/Vg4uLwqn580rQ59WrFuurqVT1DAsRERFRWRiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpntVXa6ayPYspq1URf49VR8bFBOOFcumwEisuj1Q4DYElV/xWMoWCVDq20pRnS6W3y/Xry9Q6kuVjU5eb1CcqH95hISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHpMa6ZnntyKy1S5Qt+cZ7Rs/fdTjJYpSXUF5FdFVmL+GOPX2ESpdGkrs9Rqze23XDS53vKQW5nbGLlVoONlVn3/bZFJzVI5MWAhIiKqIlycv4WLs4uySkQegDC0b98etra2iIyMRGRkpFn6pwQDFiIiIjKQmJgINzc3a3dDh8+wEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPD90q9NLZVFSztTV7vduCGph8rCVXCFaS5thJIiVQaWqxVN0AcN7L+Cqrllr5tTy+DHzPeOHep3Pl1/rjYxUdnylRJvW7qh2YLFnvxEBlqyIrIbnSswylKxtLqS9T92aZ46XSk6/sNZ4i3F7mPZe7xfjq1uWi4POT1It3WIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPc7DotDOloFwtLcvs+yVpMuV3Bt1UzrXisXqVjAPy/wx0u1O/lp6fpixqU/nXCtSriwyPv+GYhJzvNROkp6HRSmp+Y2UzE+kZrK/S6k5dxYZL5KbZ6Xp+A+k25XR1MTj5Oawcn9rpHQFnP/FoniHhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxrdlKtj2l6W+yS91LpAV2Gi+d4qvEea86kuV3phtPo1yfOlfy2Dck0p7l0pbJvPolbbJa21Kpy3safi55bI+USebujiqYmsJ+fVmhZHnTFJOq1ZFLT7YUqaks7hUXg58WyvAOCxEREakeAxYiIiIy2YEDB9C7d2/4+/tDo9Fgy5YteuVCCHz88cfw8/ODk5MTwsLCkJJS8dtoDFiIiIjIZHl5eQgKCsLSpUvLLJ83bx6WLFmCr7/+GkePHoWLiwvCw8Px4MGDCrXDZ1iIiIjIZBEREYiIiCizTAiBxYsXY/r06ejTpw8AYM2aNfDx8cGWLVswaNCgcrfDOyxERERkICcnR++noKCgwnWkpqYiIyMDYWFhum3u7u4ICQlBQkJCheriHRYiIqIqomWWM9wKXRTVkXNfAAACAgL0tkdFRSE6OrpCdWVkZAAAfHx89Lb7+PjoysqLAYsFWSp1+cvA9yTLLbkCsEVX4lVAKm1ZjlTashzPWStNPhYA6qR3MVp2eoX0mrNyaeKWWh1bbmVipSmlal35WHK1Zlgubbn9louS5Yl9GxktU+v7Ve7aPg3rpCXLyV4VJ1kuu5rzUyY9PR1ubm6611qt1oq94VdCREREVAY3Nze9H1MCFl9fXwBAZmam3vbMzExdWXkxYCEiIiKLCAwMhK+vL/bs2aPblpOTg6NHjyI0NLRCdfErISIiIjLZvXv3cOnSJd3r1NRUnD59Gp6enqhTpw7GjRuHWbNmoWHDhggMDMSMGTPg7++Pvn37VqgdBixERERksuPHj6N79+661xMmTAAAjBgxAqtWrcKUKVOQl5eH0aNHIysrC507d8b27dvh6OhYoXYYsBAREZHJunXrBiGE0XKNRoOYmBjExMQoaofPsBAREZHq8Q7LU0gubbn++FjJcmulOloqzVYpJas1y6VTy6U9y6V3KiG1cqySlHtrrYSrlCX7bcm6g9+VXgn6yiLrXEPA07vqvKVIjceDoiLgksJlqJ9xvMNCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9ZjWbCWWXGm3X9ImyfIFEmVqTYm2JLnU4/USqcvB756XPPa0glWk5ShZGVYuXVXK05rKaulVpi3Fkqnvcp7W37Wp5D6Xybp4h4WIiIhUjwELERERqR4DFiIiIlI9BixERESkelYNWKKjo6HRaPR+mjRpYnT/bt26Geyv0WjQs+f/HqYTQuDjjz+Gn58fnJycEBYWhpSU/63fsH///jLr0Gg0SExMtOj5EhERkWmsniXUvHlz7N69W/fazs54lzZt2oTCwkLd69u3byMoKAgDBgzQbZs3bx6WLFmC1atXIzAwEDNmzEB4eDjOnTsHR0dHdOzYETdu3NCrd8aMGdizZw/atWtnxjMjIiIic7F6wGJnZwdfX99y7evp6an3Oj4+Hs7OzrqARQiBxYsXY/r06ejTpw8AYM2aNfDx8cGWLVswaNAgODg46LVXVFSErVu3YuzYsdBoNGY6K3lyactS6XVKVz2WS122BmumnI7cu1V6B6m+pUj3O21WH8lyudWen0ZSq1uXT7LREiXXgVy/3ghsIVmeu8X035VUerBcinn2qjjJcrWugv40khtLuc+p5yXKc/LzMX3zTpP6RY9Y/RmWlJQU+Pv7o379+hgyZAjS0tLKfWxsbCwGDRoEFxcXAEBqaioyMjIQFham28fd3R0hISFISEgos46ffvoJt2/fxsiR0nNaFBQUICcnR++HiIiIKodVA5aQkBCsWrUK27dvx/Lly5GamoouXbogNzdX9thjx44hOTkZf//733XbMjIyAAA+Pj56+/r4+OjKnhQbG4vw8HDUrl1bsr05c+bA3d1d9xMQECDbRyIiIjIPqwYsERERGDBgAFq1aoXw8HBs27YNWVlZ2LBhg+yxsbGxaNmyJTp06GBy+3/++Sd27NiBUaPkZ2+dNm0asrOzdT/p6ekmt0tEREQVY/VnWB7n4eGBRo0a4dKlS5L75eXlIT4+HjExMXrbS59NyczMhJ+fn257ZmYmgoODDeqJi4uDl5cXXn31Vdm+abVaaLXacpwFERGRddw+lI1C7UNFdeQW5AEA2rdvD1tbW0RGRiIyMtIc3VPE6s+wPO7evXu4fPmyXrBRlo0bN6KgoABDhw7V2x4YGAhfX1/s2bNHty0nJwdHjx5FaGio3r5CCMTFxWH48OGwt7c330kQERFVAYmJiTh37pwqghXAygHLpEmT8Ouvv+Lq1as4fPgw+vXrB1tbWwwePBgAMHz4cEybNs3guNjYWPTt2xdeXl562zUaDcaNG4dZs2bhp59+wtmzZzF8+HD4+/ujb9++evvu3bsXqampes/AEBERkTpZ9SuhP//8E4MHD8bt27fh7e2Nzp0748iRI/D29gYApKWlwcZGP6a6cOECDh06hJ07y04PmzJlCvLy8jB69GhkZWWhc+fO2L59OxwdHfX2i42NRceOHSUnqiNDllrNWS5d1ZJpz0rblqIkZVppKveR/9sjv5MRz/fuYfKx61PnSpYrT3u2Dte+xlf1lkt5VrI6thwlUyBYctV4KXLjYa1VopV+zij5rCB5Vg1Y4uPjJcv3799vsK1x48YQQhg9RqPRICYmxuD5lid9//335eojERERWZ+qnmEhIiIiKgsDFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqqWqmW/ofqXRCuVREJJ2SLO6XtMlo2eag16TrtpJ6qXUkyxdZcAXqzRJlWV7FksfKpTUrSV2WTf2UWAnac5bxFN1y1a2AXNrzxEDLpIZW1XRrKbKfFQqPNzXt2dJpy1Jp003Hf2C0TO79OH+MzGrOF8teZJfMg3dYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9jZBa+piMysnJgbu7O5ae/B1O1VzL3OeOxDwYT+sy5HLztFxZNMqker8MfE+yfGzqcsny+hach0WK3Placm4PuXlF1Eru2lcyN83TSGrOEADIXhVnct2mzpNSSq5vlp5PpSp5UFSE6Zt3Ijs7G25ubmavv/T/pHPj/gNXrYuiunIL8tBscYTF+moq3mEhIiIi1WPAQkRERKrHgIWIiIhUjwELERERmay4uBgzZsxAYGAgnJyc0KBBA3zyyScw9yOyXPyQiIiITDZ37lwsX74cq1evRvPmzXH8+HGMHDkS7u7u+OAD44tNVhQDFiIiIjLZ4cOH0adPH/Ts+SgDsF69eli3bh2OHTtm1nYYsCg09Ndf4ObkVGbZAgu1KZf2qSRlWi5t2VLk0pbVSjadesvFyulIFSJ1/SpJeZb7XcmlqFtsKoIXpYsXyKQmS6Uev2JKf6o4a02BcD8vF9jc0CptW1rHjh2xcuVKXLx4EY0aNUJSUhIOHTqEhQsXmrUdBixERERkICcnR++1VquFVqs12O+f//wncnJy0KRJE9ja2qK4uBiffvophgwZYtb+MGAhIiKqIjb9sQiO9vaK6nhQVAQACAgI0NseFRWF6Ohog/03bNiA7777Dt9//z2aN2+O06dPY9y4cfD398eIESMU9eVxDFiIiIjIQHp6ut5Mt2XdXQGAyZMn45///CcGDRoEAGjZsiX++OMPzJkzhwELERERWZabm1u5pua/f/8+bGz0Z0mxtbVFSUmJWfvDgIWIiIhM1rt3b3z66aeoU6cOmjdvjlOnTmHhwoV4++23zdoOAxaFvjyww6TvCy25wJsls4ioYp7WBQqVUOv1ZerCnJam9P16PmmJyW0/rYsXWivTR47b/Y5Gy2zvm/dug5p8+eWXmDFjBv7xj3/g5s2b8Pf3x7vvvouPP/7YrO0wYCEiIiKTubq6YvHixVi8eLFF2+HU/ERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqscsoWeQVBplfSstfqiUXMqqkjTIJm91M/nYKzJpo0r61S9pk2S51O9ZLlVWSdq9JVP2pVg6nVrJeEpR2u/fV+03WqbWVG6l1HpencZ/Z7xQ5AEIq7S+VEW8w0JERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6nEeFgv6MvA9o2VjU5dLHhv87nmjZadXNDW5T5YmNa+I3LwhUqw1twcgPc9Fllex5LGv9O4hWb5NYj4JpfNzSB2/p+Hn0sdiktEya/4ulJDrt5LxtuaYvLJoidEyuXmArKXT+OmS5b8tmqWofiWfvUo8n3TKaFlOfr7F2n1W8A4LERERqR4DFiIiIlI9BixERESkehUOWEaMGIEDBw5Yoi9EREREZapwwJKdnY2wsDA0bNgQs2fPxrVr1yzRLyIiIiKdCgcsW7ZswbVr1/Dee+9h/fr1qFevHiIiIvDDDz+gqKjIEn0kIiKiZ5xGCCGUVHDy5EnExcXh22+/RbVq1TB06FD84x//QMOGDc3VR1XKycmBu7s7lp78HU7VXMvcZ2as8RQ3S6bWWZJU2rKcpzWtWeqclS5zL5XeKZfaKZeGuznoNZP6BEj/rp7WtGZLeiXpsmT5NpWmF1uS1LUtlf4LAEeCWkuWK017thSp92ROfj7cx09EdnY23NzczN526f9JO78/Chfnaorqyrt/Dy+9GYJGjRrB1tYWkZGRiIyMNFNPTadoHpYbN25g165d2LVrF2xtbfHKK6/g7NmzaNasGebNm4fx48ebq59ERERUiRITEy0SXJmqwl8JFRUV4ccff0SvXr1Qt25dbNy4EePGjcP169exevVq7N69Gxs2bEBMTIwl+ktERETPoArfYfHz80NJSQkGDx6MY8eOITg42GCf7t27w8PDwwzdIyIiIjIhYFm0aBEGDBgAR0dHo/t4eHggNTVVUceIiIiISlU4YBk2bJgl+kFERERkFGe6JSIiItXjas0KfbbmDGy0zmWWWSt1WS7d9c/UFqZXvuWiZHFi30am1y1B7pzkUm3lVoeVZvzrzSsyR8qlgf+mYLVmubRlJWnkTyNLrwAs5VlMWwak07m3SYz3b3IVK0ydl3rvSKVMK71GpD6HHnCeMsV4h4WIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPWsGrBER0dDo9Ho/TRp0sTo/t26dTPYX6PRoGfP/z0RLoTAxx9/DD8/Pzg5OSEsLAwpKSkGdf3yyy8ICQmBk5MTqlevjr59+1riFImIiMgMrJ7W3Lx5c+zevVv32s7OeJc2bdqEwsJC3evbt28jKCgIAwYM0G2bN28elixZgtWrVyMwMBAzZsxAeHg4zp07p5ud98cff8Q777yD2bNn48UXX8TDhw+RnJxsUv/f/eNbONrbm3Sspcivpmu83JIp0VJpuHKrHr8ROFWmdulzlkpXVJLyLJt6LHO8VNqz3LFyactqXVVZbsykyK3iK0VZarv1Vgj2nLVSsvzO9NGV1BNDTcd/YLysEvvxJMlrX6JM6fQJUmne94qLoewKJKsHLHZ2dvD19S3Xvp6ennqv4+Pj4ezsrAtYhBBYvHgxpk+fjj59+gAA1qxZAx8fH2zZsgWDBg3Cw4cP8eGHH2L+/PkYNep//0k2a9bMTGdERERE5mb1Z1hSUlLg7++P+vXrY8iQIUhLSyv3sbGxsRg0aBBcXFwAAKmpqcjIyEBYWJhuH3d3d4SEhCAhIQEAcPLkSVy7dg02NjZo3bo1/Pz8EBERIXuHpaCgADk5OXo/REREVDmsGrCEhIRg1apV2L59O5YvX47U1FR06dIFubm5ssceO3YMycnJ+Pvf/67blpGRAQDw8fHR29fHx0dXduXKo7lJo6OjMX36dPz888+oXr06unXrhjt37hhtb86cOXB3d9f9BAQEVPh8iYiIyDRWDVgiIiIwYMAAtGrVCuHh4di2bRuysrKwYcMG2WNjY2PRsmVLdOjQoUJtlpSUAAA++ugjvP7662jbti3i4uKg0WiwceNGo8dNmzYN2dnZup/09PQKtUtERESms/pXQo/z8PBAo0aNcOnSJcn98vLyEB8fr/cMCgDdszCZmZl62zMzM3Vlfn5+APSfWdFqtahfv77k11FarRZubm56P0RERFQ5VBWw3Lt3D5cvX9YFFcZs3LgRBQUFGDp0qN72wMBA+Pr6Ys+ePbptOTk5OHr0KEJDQwEAbdu2hVarxYULF3T7FBUV4erVq6hbt64Zz4aIiIjMxapZQpMmTULv3r1Rt25dXL9+HVFRUbC1tcXgwYMBAMOHD0etWrUwZ84cveNiY2PRt29feHl56W3XaDQYN24cZs2ahYYNG+rSmv39/XXzrLi5uWHMmDGIiopCQEAA6tati/nz5wOAXno0ERERqYdVA5Y///wTgwcPxu3bt+Ht7Y3OnTvjyJEj8Pb2BgCkpaXBxkb/JtCFCxdw6NAh7Ny5s8w6p0yZgry8PIwePRpZWVno3Lkztm/frpuDBQDmz58POzs7DBs2DPn5+QgJCcHevXtRvXp1y53sM0JqPhWpOQ4WWKIzZnLeq47Rst/2Ss/NUV9i7hk5T+s8K5ZkyblQpObEsSSpuTsAoOnerZLlSt47Sud4kboGlcy3I0d+PijT3htxL/aRLJ8oc/wCiXYfFBUBlwwnMa0qrl27hqlTp+I///kP7t+/j+eeew5xcXFo166d2dqwasASHx8vWb5//36DbY0bN4YQwugxGo0GMTExiImJMbqPvb09Pv/8c3z++efl7isREREZunv3Ljp16oTu3bvjP//5D7y9vZGSkmL2mwBWnziOiIiInl5z585FQEAA4uLidNsCAwPN3o6qHrolIiIidXhystSCgoIy9/vpp5/Qrl07DBgwADVr1kTr1q3xzTffmL0/vMNCRERURYRkHoKbk5OiOnLy8wHAYILUqKgoREdHG+x/5coVLF++HBMmTMD/+3//D4mJifjggw/g4OCAESNGKOrL4xiwEBERkYH09HS9Oce0Wm2Z+5WUlKBdu3aYPXs2AKB169ZITk7G119/zYDlWSeXVbAtqIHJdUutqAwAV/ZKr6osRUlWy599ZVbEXmRy1RbNPJFbhVqKmjOnpCjNDpG8BiWuIaVZPkp+V0rIvV+3WTAbzJIrPUtl3IyUyXySUztQeu23iYESGYkS4+lx29bkPlVF5Z0k1c/Pz2AB4aZNm+LHH380a3/4DAsRERGZrFOnTnqTsQLAxYsXzT4ZKwMWIiIiMtn48eNx5MgRzJ49G5cuXcL333+PlStXIjIy0qztMGAhIiIik7Vv3x6bN2/GunXr0KJFC3zyySdYvHgxhgwZYtZ2+AwLERERKdKrVy/06tXLom3wDgsRERGpHgMWIiIiUj1+JaTQ2BfCjU7SY6nF6eTSIJWkPculdsqlrJp6znIpqc/LLASI8dMliy2ZumwpnRSek9Tx1hwP2dR5iWtw/hjj/V5uco8ekbsGrZX2rPQ6sBaplOmnNWVfbnFEqcVO7+flApsbmrtLzxTeYSEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9TgPi0KJLYPg4uJSdqEFl4VXQmqeFrk5Xiw1t0w/uXlWZCiZk6Sqstb8HHsafi5Z3i9J+nipOTomf23893hFulrVUnptWvLaVuscL0q8ETjVaFltmc8huc+/OxJlD4qKJI8lebzDQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPWY1qzQkaXz4Ghvb+1u6JFLTZZKa5Yz8cWekuVSaX9yx5pab1Wl1pRSud/jHpyXLLfU71LuupZ7X8iROu9n8fp8WrULd5UoDZU+uJF0ecbFBKNlOfn5mL55p3T9JIl3WIiIiEj1GLAQERGR6vErISIioiriwtKvUc3WVlEd94qLAQDt27eHra0tIiMjERkZaY7uKcKAhYiIiAwkJibCzc3N2t3Q4VdCREREpHoMWIiIiEj1+JXQM+j3VfuNlr2x5aLksQv2zjVzb0rrtWxaqJIU4ad1pWdL9TvOq45k+Z3p1knxvb6sUHqHFdLF9cfHSpZvlipUcP2qeaVxubal+q7WNHCpFb/lrgE5m4NeM1p2Py8XwERF9T/reIeFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jGtuQqSS827smiU0bL2gVMlj31Dprx2YLJkuTFK+mxp1kqJVpJSWp7yqub0iqZWa1vJKubPIkuPl9TnlNRnlGTqOlkd77AQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPaY1W5DSlT8tRTql0LS0ZKX8kCpdrjDFl/SpOY3cWuTOWWrMpFbpBaBoNWdretbeV/2SNik6XvY6IEV4h4WIiIhUjwELERERqR4DFiIiIlI9BixERERkFp999hk0Gg3GjRtn9roZsBAREZFiiYmJWLFiBVq1amWR+hmwEBERkSL37t3DkCFD8M0336B69eoWaYNpzVWQ0tQ8SzkS1NpqbcutDitFycqxcmmhSlZzVuJZTFt+WlXF1OK4F/tI76AwDXx96lyjZZ36Gn/PPZ90SlG7Up+9Ofn5iuq2hpycHL3XWq0WWq22zH0jIyPRs2dPhIWFYdYsy1yzDFiIiIiqiBET7WDrZKuojuJ8DfAeEBAQoLc9KioK0dHRBvvHx8fj5MmTSExMVNSuHAYsREREZCA9PR1ubm6612XdXUlPT8eHH36IXbt2wdHR0aL9YcBCREREBtzc3PQClrKcOHECN2/eRJs2bXTbiouLceDAAXz11VcoKCiAra2yOz6lGLAQERGRSXr06IGzZ8/qbRs5ciSaNGmCqVOnmi1YARiwEBERkYlcXV3RokULvW0uLi7w8vIy2K4U05qJiIhI9ax6hyU6OhozZ87U29a4cWP8/vvvZe7frVs3/PrrrwbbX3nlFfzyy6M0OCEEoqKi8M033yArKwudOnXC8uXL0bBhQ93+9erVwx9//KFXx5w5c/DPf/5T6SmVm1pTj5WSWq3Ukqm0StKW5VZYrW+lc6qK6azl8UrSZZOO2xbUwMw90cdUcPMZuXerZPkChfVLfh4oTF0mefv377dIvVb/Sqh58+bYvXu37rWdnfEubdq0CYWFhbrXt2/fRlBQEAYMGKDbNm/ePCxZsgSrV69GYGAgZsyYgfDwcJw7d07vCeaYmBi88847uteurq7mOiUiIiIyM6sHLHZ2dvD19S3Xvp6ennqv4+Pj4ezsrAtYhBBYvHgxpk+fjj59Hk1MtGbNGvj4+GDLli0YNGiQ7lhXV9dyt0tERETWZfVnWFJSUuDv74/69etjyJAhSEtLK/exsbGxGDRoEFxcXAAAqampyMjIQFhYmG4fd3d3hISEICEhQe/Yzz77DF5eXmjdujXmz5+Phw8fSrZVUFCAnJwcvR8iIiKqHFa9wxISEoJVq1ahcePGuHHjBmbOnIkuXbogOTlZ9iuaY8eOITk5GbGxsbptGRkZAAAfHx+9fX18fHRlAPDBBx+gTZs28PT0xOHDhzFt2jTcuHEDCxcuNNrenDlzDJ63ISIiosph1YAlIiJC9+9WrVohJCQEdevWxYYNGzBqlPQDbrGxsWjZsiU6dOhQ4XYnTJig166DgwPeffddzJkzx+g6CdOmTdM7Licnx2DaYiIiIrIMq38l9DgPDw80atQIly5dktwvLy8P8fHxBkFN6TMpmZmZetszMzMln1cJCQnBw4cPcfXqVaP7aLVa3ax/5Zn9j4iIiMzH6g/dPu7evXu4fPkyhg0bJrnfxo0bUVBQgKFDh+ptDwwMhK+vL/bs2YPg4GAAj+6EHD16FO+9957R+k6fPg0bGxvUrFmzwn2uF7kUzi5lf30lmQapIA1XKak0XqXp1lLHS6Uq1h8fK1GqPKVUcsVlBSvDyvVbzg1FRz97LJ26bA1yK3ZbMr39y0Djn4sAMDZ1ucXalqJkmgIA8G0UarQs42KC0TJSN6sGLJMmTULv3r1Rt25dXL9+HVFRUbC1tcXgwYMBAMOHD0etWrUwZ84cveNiY2PRt29feHl56W3XaDQYN24cZs2ahYYNG+rSmv39/dG3b18AQEJCAo4ePYru3bvD1dUVCQkJGD9+PIYOHYrq1atXynkTERFRxVg1YPnzzz8xePBg3L59G97e3ujcuTOOHDkCb29vAEBaWhpsbPS/tbpw4QIOHTqEnTt3llnnlClTkJeXh9GjRyMrKwudO3fG9u3bdXOwaLVaxMfHIzo6GgUFBQgMDMT48eP1nk8hIiIidbFqwBIfHy9ZXtZseY0bN4YQwugxGo0GMTExiImJKbO8TZs2OHLkSIX6SURERNalqoduiYiIiMrCgIWIiIhUjwELERERqR4DFiIiIlI9jZB6gpWMysnJgbu7O7IXLYCbk5O1u/PUk5wnpRzk5rKQYsl5LpT06wYCFbWtdO4aS1Ey74jU/Bxy15DSuT2UXqPWoPScyXxy8vPhPn4isrOzLTLxaOn/SU2XN4Wtk62iuorzi3H+vfMW66upeIeFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1VLVaMxEREZnuiN/LcHPRKqojJ68A7jiP9u3bw9bWFpGRkYiMjDRTD03HgMWCpNIgLZluuDnoNcnyfkmbLNa2qZSOh5LVoeTSbKXSi/2QqqBlaXJ1K017tha5NHJTrwU1py1/Gfie0bKxqcslj2Vqsnn5Ngo1WpZxMaESe6J+iYmJTGsmIiIiqggGLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqse0ZoW+PLADjvb2ZZYxHbFqkFr1+IrMsUpWa1ZKycrGVZHSc1byfp6INKNlCyyXGU9lYOry04t3WIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI9ZQhZkrcUP1bi4oaXJLahXFcktjngkqLXRsokydUtdu68kXZY8dltQA8lyS1371sx8smTbcnUzG1E94l7sY7Qs/14u5N95JIV3WIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPc7DYkHWWi33aZyXQc1zTdQfH2u0TGolZ0B+fhhLruYs1fZvMsdKjveL0sc2lalbiad1rpWn8T1pTVLzmZTHyL1bTTpuT8PPJct7pEwyqd6qbs6cOdi0aRN+//13ODk5oWPHjpg7dy4aN25s1nZ4h4WIiIhM9uuvvyIyMhJHjhzBrl27UFRUhJdeegl5eXlmbYd3WIiIiMhk27dv13u9atUq1KxZEydOnMALL7xgtnYYsBAREZGBnJwcvddarRZarVb2uOzsbACAp6enWfvDgIWIiKiK+L9q/4Czi6uiOu5rcgEsQkBAgN72qKgoREdHSx5bUlKCcePGoVOnTmjRooWifjyJAQsREREZSE9Ph5ubm+51ee6uREZGIjk5GYcOHTJ7fxiwEBERkQE3Nze9gEXO+++/j59//hkHDhxA7dq1zd4fBiwKjX0hHG5OTtbuhtlsDnpNsrxf0iaLtKvWtGVAPnVZCbm0ZylyY/Z8FUyltdZUAXJtk3nJpSXL/a59xxh/X2VcTDBalhZwULrdFaMlyzsFtTZaZu6MGTURQmDs2LHYvHkz9u/fj8DAQIu0w4CFiIiITBYZGYnvv/8eW7duhaurKzIyMgAA7u7ucDLjH/Sch4WIiIhMtnz5cmRnZ6Nbt27w8/PT/axfv96s7fAOCxEREZlMCFEp7fAOCxEREakeAxYiIiJSPQYsREREpHp8hkWlrJW+aam0ZaWsuUqv1IrKStKSAabKmlNVHUu5lYulUoAt/b7xnLXSaJmpKyaXh9zvOli8brQs7kXjqcuyfZZpN86rjtGyfG2udN0ki3dYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR7TmlXKmmm8liK1EnSWV7HksRNl6pYbL8k0cZnVmK/ItG1qu2ReSq4BNbszXXqF4AUWbFt2zCyYuizFt1GoZHnGxUnGC1Ms12eptOic/HxEWqzlZwPvsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9BixERESkeladhyU6OhozZ87U29a4cWP8/vvvZe7frVs3/PrrrwbbX3nlFfzyy6M5GIQQiIqKwjfffIOsrCx06tQJy5cvR8OGDQ2OKygoQEhICJKSknDq1CkEBwcrP6lyelrnhFCiX9Imi9X9StJlyfIFsMy8Ns/i71GtqurvoqqelxIZFxOs3QWyAqtPHNe8eXPs3r1b99rOzniXNm3ahMLCQt3r27dvIygoCAMGDNBtmzdvHpYsWYLVq1cjMDAQM2bMQHh4OM6dOwdHR0e9+qZMmQJ/f38kJSWZ8YyIiIisY9rPp2CjdVZUR0nBfQBA+/btYWtri8jISERGWn/aO6sHLHZ2dvD19S3Xvp6ennqv4+Pj4ezsrAtYhBBYvHgxpk+fjj59+gAA1qxZAx8fH2zZsgWDBg3SHfuf//wHO3fuxI8//oj//Oc/ZjobIiKiqiExMRFubm7W7oaO1Z9hSUlJgb+/P+rXr48hQ4YgLS2t3MfGxsZi0KBBcHFxAQCkpqYiIyMDYWFhun3c3d0REhKChIT/3ULMzMzEO++8g7Vr18LZWVkkSkRERJZn1YAlJCQEq1atwvbt27F8+XKkpqaiS5cuyM3NlT322LFjSE5Oxt///nfdtoyMDACAj4+P3r4+Pj66MiEE3nrrLYwZMwbt2rUrd18LCgqQk5Oj90NERESVw6pfCUVEROj+3apVK4SEhKBu3brYsGEDRo2SXpAuNjYWLVu2RIcOHSrU5pdffonc3FxMmzatQsfNmTPH4AFhIiIiqhxWf4blcR4eHmjUqBEuXbokuV9eXh7i4+MRExOjt730WZjMzEz4+fnptmdmZuoygPbu3YuEhARotVq9Y9u1a4chQ4Zg9erVZbY5bdo0TJgwQfc6JycHAQEB5T43sqym4z+QLq+kfhARkWVY/RmWx927dw+XL1/WCzbKsnHjRhQUFGDo0KF62wMDA+Hr64s9e/botuXk5ODo0aMIDX20HPmSJUuQlJSE06dP4/Tp09i2bRsAYP369fj000+NtqnVauHm5qb3Q0RERJXDqndYJk2ahN69e6Nu3bq4fv06oqKiYGtri8GDBwMAhg8fjlq1amHOnDl6x8XGxqJv377w8vLS267RaDBu3DjMmjULDRs21KU1+/v7o2/fvgCAOnXq6B1TrVo1AECDBg1Qu3ZtC50pERERKWHVgOXPP//E4MGDcfv2bXh7e6Nz5844cuQIvL29AQBpaWmwsdG/CXThwgUcOnQIO3fuLLPOKVOmIC8vD6NHj0ZWVhY6d+6M7du3G8zBQkRERE8PjRBCWLsTT6OcnBy4u7sje9ECuDk5Wbs7RESkYjn5+XAfPxHZ2dkWeaSg9P+kgHEbzDJxXPrigRbrq6lU9QwLERERUVkYsBAREZHqqSqtmYiIzGdPw88ly12cv5Msfz7plDm7Q6QI77AQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHqch4WeCVLzUfRImVSJPSGqPGkBByXLR+7dWkk9IVKOd1iIiIhI9RiwEBERkeoxYCEiIiJFli5dinr16sHR0REhISE4duyY2dtgwEJEREQmW79+PSZMmICoqCicPHkSQUFBCA8Px82bN83aDgMWIiIiMtnChQvxzjvvYOTIkWjWrBm+/vprODs741//+pdZ22GWkImEEACAnAcPrNwTKo+8vBKjZTn5+ZXYE6LKk38vV7Kc137lKf2/ovT/DkspKbhvtjpycnL0tmu1Wmi1Wr1thYWFOHHiBKZNm6bbZmNjg7CwMCQkJCjuy+MYsJgoN/fRB0HAtI+s3BNSbqK1O0BkIdLXdmQl9YL+Jzc3F+7u7mav18HBAb6+vri2/C2z1FetWjUEBATobYuKikJ0dLTetr/++gvFxcXw8fHR2+7j44Pff//dLH0pxYDFRP7+/khPT4erqys0Go21uyMpJycHAQEBSE9Ph5ubm7W789TguFUcx8w0HLeKe9rGTAiB3Nxc+Pv7W6R+R0dHpKamorCw0Cz1CSEM/m978u5KZWPAYiIbGxvUrl3b2t2oEDc3t6fija02HLeK45iZhuNWcU/TmFnizsrjHB0d4ejoaNE2nlSjRg3Y2toiMzNTb3tmZiZ8fX3N2hYfuiUiIiKTODg4oG3bttizZ49uW0lJCfbs2YPQ0FCztsU7LERERGSyCRMmYMSIEWjXrh06dOiAxYsXIy8vDyNHjjRrOwxYngFarRZRUVFW//7xacNxqziOmWk4bhXHMVOPN954A7du3cLHH3+MjIwMBAcHY/v27QYP4iqlEZbOsSIiIiJSiM+wEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAYsKffbZZ9BoNBg3bpxBmRACERER0Gg02LJli0H5qlWr0KpVKzg6OqJmzZqIjNSffPvMmTPo0qULHB0dERAQgHnz5hnUsXHjRjRp0gSOjo5o2bIltm3bZtCHjz/+GH5+fnByckJYWBhSUlIUnbNSpozZqlWroNFoyvx5fJXR/fv3o02bNtBqtXjuueewatUqgzbkllZ/8OABIiMj4eXlhWrVquH11183mGjJGky91hITE9GjRw94eHigevXqCA8PR1JSkt4+vNa26JXt2bMHHTt2hKurK3x9fTF16lQ8fPhQb5+qOmZA2ePWrVs3g/femDFj9I5LS0tDz5494ezsjJo1a2Ly5MkG41aV36P0GEGqcuzYMVGvXj3RqlUr8eGHHxqUL1y4UERERAgAYvPmzXplCxYsEP7+/uK7774Tly5dEklJSWLr1q268uzsbOHj4yOGDBkikpOTxbp164STk5NYsWKFbp/ffvtN2Nrainnz5olz586J6dOnC3t7e3H27FndPp999plwd3cXW7ZsEUlJSeLVV18VgYGBIj8/3+zjUR6mjtn9+/fFjRs39H7Cw8NF165ddftcuXJFODs7iwkTJohz586JL7/8Utja2ort27fr9omPjxcODg7iX//6l/jvf/8r3nnnHeHh4SEyMzN1+4wZM0YEBASIPXv2iOPHj4vnn39edOzY0RLDUW6mjltubq7w9PQUb731lvj9999FcnKyeP3114WPj48oLCwUQvBae3LMTp8+LRwcHMTMmTNFSkqK2L9/v2jSpImYOHGibp+qOmZCGB+3rl27infeeUfvPZidna0rf/jwoWjRooUICwsTp06dEtu2bRM1atQQ06ZN0+1Tld+jpI8Bi4rk5uaKhg0bil27domuXbsafCCeOnVK1KpVS9y4ccPgA/HOnTvCyclJ7N6922j9y5YtE9WrVxcFBQW6bVOnThWNGzfWvR44cKDo2bOn3nEhISHi3XffFUIIUVJSInx9fcX8+fN15VlZWUKr1Yp169aZctqKKBmzJ928eVPY29uLNWvW6LZNmTJFNG/eXG+/N954Q4SHh+ted+jQQURGRupeFxcXC39/fzFnzhwhxKPxsbe3Fxs3btTtc/78eQFAJCQkmHLaiikZt8TERAFApKWl6badOXNGABApKSlCCF5rT47ZtGnTRLt27fT2/+mnn4Sjo6PIyckRQlTNMRNCetzKGsfHbdu2TdjY2IiMjAzdtuXLlws3NzfdOFXV9ygZ4ldCKhIZGYmePXsiLCzMoOz+/ft48803sXTp0jLXZ9i1axdKSkpw7do1NG3aFLVr18bAgQORnp6u2ychIQEvvPACHBwcdNvCw8Nx4cIF3L17V7fPk+2Hh4frlglPTU1FRkaG3j7u7u4ICQkx+1Li5aFkzJ60Zs0aODs7o3///rptcuNRurT64/s8ubT6iRMnUFRUpLdPkyZNUKdOHauMGaBs3Bo3bgwvLy/ExsaisLAQ+fn5iI2NRdOmTVGvXj0AvNaeVFBQYLDGi5OTEx48eIATJ04AqJpjBkiPGwB89913qFGjBlq0aIFp06bh/v37urKEhAS0bNlSbwKy8PBw5OTk4L///a9un6r4HiVDnOlWJeLj43Hy5EkkJiaWWT5+/Hh07NgRffr0KbP8ypUrKCkpwezZs/HFF1/A3d0d06dPx9/+9jecOXMGDg4OyMjIQGBgoN5xpR8EGRkZqF69OjIyMspcJjwjI0O33+PHlbVPZVE6Zk+KjY3Fm2++CScnJ902Y+ORk5OD/Px83L17V3Zp9YyMDDg4OMDDw8Ngn8oeM0D5uLm6umL//v3o27cvPvnkEwBAw4YNsWPHDtjZPfpI4bWmLzw8HIsXL8a6deswcOBAZGRkICYmBgBw48YNAFVvzAD5cXvzzTdRt25d+Pv748yZM5g6dSouXLiATZs2ATD+/istk9rnaX6PUtkYsKhAeno6PvzwQ+zatavMlTZ/+ukn7N27F6dOnTJaR0lJCYqKirBkyRK89NJLAIB169bB19cX+/btQ3h4uMX6bw3mGLPHJSQk4Pz581i7dq25u6oq5hi3/Px8jBo1Cp06dcK6detQXFyMzz//HD179kRiYqJewFcVmGPMXnrpJcyfPx9jxozBsGHDoNVqMWPGDBw8eBA2NlXzRrfcuAHA6NGjdf9u2bIl/Pz80KNHD1y+fBkNGjSorK7SU6JqvlOeMidOnMDNmzfRpk0b2NnZwc7ODr/++iuWLFkCOzs77Nq1C5cvX4aHh4euHABef/11dOvWDQDg5+cHAGjWrJmuXm9vb9SoUQNpaWkAAF9f3zKXAC8tk9rn8fLHjytrn8pgjjF73Lfffovg4GC0bdtWb7ux8XBzc4OTk1O5llb39fVFYWEhsrKyjO5TWcwxbt9//z2uXr2KuLg4tG/fHs8//zy+//57pKamYuvWrQB4rQGG19qECROQlZWFtLQ0/PXXX7q7MfXr1wdQtcYMkB+34uJig2NCQkIAAJcuXQKgbEye1vcoGceARQV69OiBs2fP4vTp07qfdu3aYciQITh9+jQ++ugjnDlzRq8cABYtWoS4uDgAQKdOnQAAFy5c0NV7584d/PXXX6hbty4AIDQ0FAcOHEBRUZFun127dqFx48aoXr26bp/Hlwkv3ad0mfDAwED4+vrq7ZOTk4OjR4+afSlxKeYYs1L37t3Dhg0bMGrUKIN25MajPEurt23bFvb29nr7XLhwAWlpaZU6ZoB5xu3+/fuwsbGBRqPR1Vv6uqSkBACvNaDsa02j0cDf3x9OTk5Yt24dAgIC0KZNGwBVa8wA+XGztbU1OKZ07Er/AAsNDcXZs2f1phnYtWsX3NzcdH+cVbX3KEmw9lO/VDa5p+dRRsZLnz59RPPmzcVvv/0mzp49K3r16iWaNWumSzXNysoSPj4+YtiwYSI5OVnEx8cLZ2dng7RJOzs78fnnn4vz58+LqKioMtMmPTw8xNatW8WZM2dEnz59rJ42KYRpYyaEEN9++61wdHQUd+/eNSgrTZmcPHmyOH/+vFi6dGmZKZNarVasWrVKnDt3TowePVp4eHjoZTaMGTNG1KlTR+zdu1ccP35chIaGitDQUCWnazYVHbfz588LrVYr3nvvPXHu3DmRnJwshg4dKtzd3cX169eFELzWyrrW5s2bJ86cOSOSk5NFTEyMsLe319unqo+ZEPrjdunSJRETEyOOHz8uUlNTxdatW0X9+vXFCy+8oNu/NK35pZdeEqdPnxbbt28X3t7eZaY1V+X3KD3CgEWlTPlAzM7OFm+//bbw8PAQnp6eol+/fnqpp0IIkZSUJDp37iy0Wq2oVauW+Oyzzwzq3rBhg2jUqJFwcHAQzZs3F7/88oteeUlJiZgxY4bw8fERWq1W9OjRQ1y4cMHkczUXUwOW0NBQ8eabbxo9bt++fSI4OFg4ODiI+vXri7i4OIN9vvzyS1GnTh3h4OAgOnToII4cOaJXnp+fL/7xj3+I6tWrC2dnZ9GvXz9x48aN8p6aRZkybjt37hSdOnUS7u7uonr16uLFF180SP/ktbZZb1v37t2Fu7u7cHR0FCEhIWLbtm0Gx1XlMRNCf9zS0tLECy+8IDw9PYVWqxXPPfecmDx5st48LEIIcfXqVRERESGcnJxEjRo1xMSJE0VRUZHePlX9PUqPaIQQwnr3d4iIiIjk8RkWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiISJFbt27B19cXs2fP1m07fPgwHBwcDFbRJSIyFdcSIiLFtm3bhr59++Lw4cNo3LgxgoOD0adPHyxcuNDaXSOiKoIBCxGZRWRkJHbv3o127drh7NmzSExMhFartXa3iKiKYMBCRGaRn5+PFi1aID09HSdOnEDLli2t3SUiqkL4DAsRmcXly5dx/fp1lJSU4OrVq9buDhFVMbzDQkSKFRYWokOHDggODkbjxo2xePFinD17FjVr1rR214ioimDAQkSKTZ48GT/88AOSkpJQrVo1dO3aFe7u7vj555+t3TUiqiL4lRARKbJ//34sXrwYa9euhZubG2xsbLB27VocPHgQy5cvt3b3iKiK4B0WIiIiUj3eYSEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGp3v8H8+mkJkhHXSYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcuUlEQVR4nO3deVxU1f8/8NcAMuwgiiyJiqa4gyvhkpp8IlPTFgs+bpmfbJk09z5+00AyTc293PoQLi0o5dLXyl1Tc8MFk4+mqJgraCogiIhwfn/0Y76Ow9zLzJ1hrvh6Ph48Hs49955z7pnL8PbOfZ+jEUIIEBEREamYg707QERERCSHAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAYtK1KtXD6+//rq9u0FEVdzrr7+OevXqWXSsvT6nsrOz8corr6BGjRrQaDSYO3dupfeB7I8BSyXau3cv4uPjkZOTY++uVKrU1FS89957aNasGdzd3VGnTh28+uqrOH36dLn7nzx5Es899xw8PDzg6+uLgQMH4vr16wb7/PHHHxg/fjzCw8Ph6emJwMBA9OzZE4cOHTKq79SpUxg1ahQ6dOgAFxcXaDQanD9/3qxzWLRoEfr164c6depAo9FIfmjn5ORg2LBh8PPzg7u7O7p164YjR46Y1V5iYiKaNGkCFxcXNGzYEAsWLLDovF5//XVoNBrZnwfPx9rjL2Xv3r3o1KkT3NzcEBAQgBEjRiA/P99ov6KiInzwwQcICgqCq6srIiIisGXLFrPaqsiYAsDly5fx6quvwsfHB15eXujTpw/OnTtnVlv2duXKFcTHxyMtLc3eXbGKUaNGYdOmTZgwYQJWrlyJ5557rtLarug1SpVAUKWZOXOmACAyMzONyu7evSvu3btX+Z2qBC+//LIICAgQw4cPF19++aX4+OOPhb+/v3B3dxfHjx832PfixYuiZs2aokGDBmLevHnik08+EdWrVxdhYWGiqKhIv9+YMWOEj4+PGDp0qFiyZImYMWOGaNCggXB0dBRbtmwxqDMpKUk4ODiI5s2bi/DwcJPvgZS6desKX19f8dxzzwknJycxePDgcvcrKSkRHTp0EO7u7iI+Pl58/vnnomnTpsLT01OcPn26Qm0tXrxYABAvv/yyWLp0qRg4cKAAID799FOzz2vv3r1i5cqV+p+EhAQBQAwbNsxg+969e4UQthl/U44ePSpcXFxEq1atxKJFi8SHH34otFqteO6554z2jYmJEU5OTmLs2LFiyZIlIjIyUjg5OYndu3dbdUxv374tGjZsKGrVqiWmT58uZs+eLYKDg0Xt2rXFX3/9VaG21CA1NVUAEElJSUZl9+7dE3fv3rWo3rp165q89m3J399f9O/fv9LbNecaJdtjwFKJpAKWquy3334z+GMnhBCnT58WWq3W6EPonXfeEa6uruLPP//Ub9uyZYsAIJYsWaLfdujQIXH79m2DY//66y/h5+cnOnbsaLD9xo0bIi8vTwhh+Xtw/vx5UVpaKoQQwt3d3eSH9qpVqwQAkZKSot927do14ePjI2JjY2XbuXPnjqhRo4bo2bOnwfb+/fsLd3d3cfPmTUXnJfWHTAjbjL8pPXr0EIGBgSI3N1e/7csvvxQAxKZNm/TbDhw4IACImTNn6rcVFhaKBg0aiMjISNl2zBnT6dOnCwDi4MGD+m0nT54Ujo6OYsKECRU6LzWQe58tZY2ApaSkRBQWFpp1jEajETqdTlG7lqjoNUqVgwFLJYmLixMAjH7K/sA8/EGQlJQkAIjdu3eL4cOHi5o1awpvb28xbNgwUVRUJG7duiUGDhwofHx8hI+Pjxg3bpz+D2qZkpISMWfOHNG0aVOh1WpFrVq1xLBhwww+oO2pdevWonXr1gbbatWqJfr162e0b6NGjUT37t1l63zppZeEr6+vyXJrBI1SAUu/fv2Ev7+/KCkpMdg+bNgw4ebmJvs/259++kkAED/99JPB9r179woAYuXKleUeZ62AxRbjX1BQIE6ePCmuX7+u35abmyucnJzEuHHjDPYtKioSHh4eYujQofpt48aNE46OjgZ/NIQQYurUqQKAuHDhgn7b9evXxcmTJ0VBQYF+mzlj2q5dO9GuXTuj83r22WdFgwYNZM+/PFevXhWvv/66eOKJJ4Szs7MICAgQL7zwgsF7VbduXdGzZ0+xadMmERYWJrRarWjSpIn44YcfDOq6ceOGGDNmjGjevLlwd3cXnp6e4rnnnhNpaWn6fXbs2FHuZ03Zez548GBRt25dg3pnzpwpIiMjha+vr3BxcRGtW7c2CLof7Ke5AQsAodPpxNdffy2aNm0qnJycxNq1a4UQQly6dEkMGTJE1KpVSzg7O4umTZuKxMRE/bFln4MP/1QGc65Rqhx8hqWSvPTSS4iNjQUAzJkzBytXrsTKlSvh5+cnedzw4cORkZGByZMn44UXXsDSpUsxadIk9O7dGyUlJZg6dSo6deqEmTNnYuXKlQbHvvXWWxg3bhw6duyIefPmYciQIfjmm28QHR2N4uJiyXaLiorw119/VejHEkIIZGdno2bNmvptly9fxrVr19C2bVuj/du3b4+jR4/K1puVlWVQZ2U7evQoWrduDQcHw1+t9u3b486dOyaf23nweABGY9CmTRs4ODhUaAwsZavxP3jwIJo0aYLPP/9cv+348eO4f/++UVvOzs4IDw83aOvo0aNo1KgRvLy8jPoEwOA5jc8//xxNmjTBwYMHDY4H5Me0tLQUv//+u8nzP3v2LG7fvi07Bg97+eWXsXbtWgwZMgQLFy7EiBEjcPv2bVy4cMFgv4yMDLz22mvo0aMHpk2bBicnJ/Tr18/gWZ1z585h3bp16NWrF2bPno1x48bh+PHj6NKlC65cuQIAaNKkCRISEgAAw4YN03/WPP300yb7OG/ePLRq1QoJCQmYOnWqvu2ffvrJ7PMtz/bt2zFq1Ci89tprmDdvHurVq4fs7Gw89dRT2Lp1K9577z3MmzcPTz75JIYOHap/qPbpp5/Wf6794x//0J+LlFu3blXoc+vOnTuS9ZhzjVIlsXfE9DiR+l+wqTss0dHRBndOIiMjhUajEW+//bZ+2/3790Xt2rVFly5d9Nt2794tAIhvvvnGoJ2NGzeWu/1hpv5nU96PJVauXCkAGPxvqux//ytWrDDaf9y4cQKA5B2KXbt2CY1GIyZNmmRyH1vfYXF3dxdvvPGG0fay/+Vv3LhRsm6dTiccHR3LLfPz8xMxMTHlllnjDoutxr/sf/xxcXH6bSkpKQKA2LVrl1E9/fr1EwEBAfrXzZo1E88884zRfv/9738FALF48WL9trI7mTt27NBvq+iYXr9+XQAQCQkJRvt98cUXAoD4448/yj95E27dumX0dVZ56tatKwAY3FHJzc0VgYGBolWrVvptd+/eNbp7l5mZKbRarUG/pd7n8u6w3Llzx+D1vXv3RPPmzY3G3dI7LA4ODuK///2vwfahQ4eKwMBAo2eDYmJihLe3t0Gf8P/v0lRE2VjK/Tx4PZbHnGuUKoeTbcIgspahQ4dCo9HoX0dERGDfvn0YOnSofpujoyPatm2Lw4cP67elpKTA29sb//jHPwzugrRp0wYeHh7YsWMH/vnPf5psNzo62uwsjIr6448/oNPpEBkZicGDB+u3FxYWAgC0Wq3RMS4uLvp9yiu/du0a/vnPfyIkJATjx4+3Sb8rwlT/Huy/3PHOzs7llrm4uMger4Stxr9r164QQpjV1oPnac6YxsfHIz4+3qitioxpRc/fHK6urnB2dsbOnTsxdOhQVK9e3eS+QUFBePHFF/Wvvby8MGjQIEyfPh1ZWVkICAgw6FtJSQlycnLg4eGB0NBQszPRHu5nmVu3bqGkpASdO3fGd999Z3GdD+rSpQuaNm2qfy2EwA8//IBXX30VQgiDz6jo6GgkJyfjyJEj6Nixo9ltffPNNxV6n+rXry9Zbs41SpWDAYvK1alTx+C1t7c3ACA4ONho+61bt/SvMzIykJubi1q1apVb77Vr1yTbDQwMRGBgoCVdlpSVlYWePXvC29sb33//PRwdHfVlZR+aRUVFRsfdvXvXYJ8HFRQUoFevXrh9+zb27NkDDw8Pi/p2/fp1lJSU6F97eHiYXZerq2uF+m+qLVdXV9y7d6/cuu/evVvu+VtLZY6/XFsPtlPRMZVqqyJjaun5S9FqtZg+fTrGjBkDf39/PPXUU+jVqxcGDRqEgIAAg32ffPJJg/+cAECjRo0AAOfPn0dAQABKS0sxb948LFy4EJmZmQbXUI0aNczq24M2bNiAKVOmIC0tzeD8H+6PpUJCQgxeX79+HTk5OVi6dCmWLl1a7jFyn1GmWBLklMeca5QqBwMWlXvwD7rc9gf/F1taWopatWrhm2++Kfd4uWdnCgsLkZubW6E+PvzBa0pubi569OiBnJwc7N69G0FBQQblZQHS1atXjY69evUqfH19jf63c+/ePbz00kv4/fffsWnTJjRv3rxCfSlPu3bt8Oeff+pfx8XFGf1vXU5gYKDJ/gPQn7OptgIDA1FSUoJr164ZBJv37t3DjRs3jMbMmipz/OXaevA8AwMDcfny5XL3AyA7JhUd07Lzq8j7Z46RI0eid+/eWLduHTZt2oRJkyZh2rRp2L59O1q1amVWXVOnTsWkSZPwxhtv4OOPP4avry8cHBwwcuRIlJaWmt03ANi9ezdeeOEFPP3001i4cCECAwNRrVo1JCUl4dtvv7Wozoc9/Me9rK8DBgwwuMv6oJYtW1rU1sP/GTBF7j8k5lyjVDkYsFQia/1vpSIaNGiArVu3omPHjhb9T2DVqlUYMmRIhfZ9+HZ/ee7evYvevXvj9OnT2Lp1q8Ht4TJPPPEE/Pz8yp187ODBgwgPDzfYVlpaikGDBmHbtm1YvXo1unTpUqH+mvLwrWS5W8blCQ8Px+7du1FaWmrw4O2BAwfg5uam/x+zqbbKzvHQoUN4/vnn9eWHDh1CaWmp0RhYU2WOf/PmzeHk5IRDhw7h1Vdf1W+/d+8e0tLSDLaFh4djx44dyMvLM3jw9sCBA/pyKRUdUwcHB7Ro0aLc8z9w4ADq168PT0/PCp/jgxo0aIAxY8ZgzJgxyMjIQHh4OGbNmoWvv/5av8+ZM2cghDD4nCh7SLtsZtrvv/8e3bp1Q2JiokH9OTk5Bg87m/NZ88MPP8DFxQWbNm0yCEiTkpLMOkdz+Pn5wdPTEyUlJYiKirJq3Q//Z8AUuf+QmHONUuVgwFKJ3N3dAaBSZrp99dVXsXDhQnz88ceYOnWqQdn9+/eRn58PHx8fk8db8xmWkpISvPbaa9i3bx/Wr1+PyMhIk/u+/PLLWL58OS5evKj/2mvbtm04ffo0Ro0aZbDv8OHDsWrVKixZsgQvvfSS4n5a41byK6+8gu+//x5r1qzBK6+8AgD466+/kJKSgt69e+v/IJhq65lnnoGvry8WLVpk8Md10aJFcHNzQ8+ePRX3UYotxv/OnTu4cOECatasqf+j6u3tjaioKHz99deYNGmSPhBYuXIl8vPz0a9fP/3xr7zyCj777DMsXboUY8eOBfD3bfqkpCREREQYfD1algFSp04duLm5ATBvTF955RX8+9//xqFDh/TZIadOncL27dv1bZvjzp07cHBw0D8DA/wdvHh6ehp91XDlyhWsXbtWP5Z5eXlYsWIFwsPD9XcxHR0djf6DkJKSgsuXL+PJJ5/UbzPns8bR0REajcbgrsT58+exbt06s87VHI6Ojnj55Zfx7bffIj093ejO3PXr12XvAptirWdYzLlGqXIwYKlEbdq0AQB8+OGHiImJQbVq1dC7d2/9h4s1denSBW+99RamTZuGtLQ0PPvss6hWrRoyMjKQkpKCefPm6f+glseaz7CMGTMGP/74I3r37o2bN28a/K8S+Pu2cJn/+Z//QUpKCrp164b3338f+fn5mDlzJlq0aGFwx2fu3LlYuHAhIiMj4ebmZlTniy++qB/X3Nxc/TTsv/32G4C/0199fHzg4+OD9957T/Yc/vd//xfHjh0DABQXF+P333/HlClTAAAvvPCC/vb1K6+8gqeeegpDhgzBiRMnULNmTSxcuBAlJSWYPHmybDuurq74+OOPodPp0K9fP0RHR2P37t34+uuv8cknn8DX11e/rzXO62G2GP+DBw+iW7duRv+j/eSTT9ChQwd06dIFw4YNw6VLlzBr1iw8++yzBlOvR0REoF+/fpgwYQKuXbuGJ598EsuXL8f58+eN7jR8/vnnmDx5Mnbs2IGuXbuaPabvvvsuvvzyS/Ts2RNjx45FtWrVMHv2bPj7+2PMmDEGbXXt2hW//vqr5B3G06dPo3v37nj11VfRtGlTODk5Ye3atcjOzkZMTIzBvo0aNcLQoUORmpoKf39/fPXVV8jOzja409GrVy8kJCRgyJAh6NChA44fP45vvvnG6I9vgwYN4OPjg8WLF8PT0xPu7u6IiIgwepYEAHr27InZs2fjueeewz//+U9cu3YNX3zxBZ588kn8/vvvJs9NqU8//RQ7duxAREQE3nzzTTRt2hQ3b97EkSNHsHXrVty8edOieq31DAtQ8WuUKon9EpQeTx9//LF44oknhIODQ4UmjktNTTU4vixt88FJuIT4O1XR3d3dqL2lS5eKNm3aCFdXV+Hp6SlatGghxo8fL65cuWL1czOlS5cuZqVFp6eni2effVa4ubkJHx8f0b9/f5GVlWWwz+DBgyXrfDC9NzMz0+R+D6d3miLV3sOpozdv3hRDhw4VNWrUEG5ubqJLly5G76OcpUuXitDQUOHs7CwaNGgg5syZYzQxoCXnVZEZUK09/uWlNZfZvXu36NChg3BxcRF+fn5Cp9PpZ+99UGFhoRg7dqwICAgQWq1WtGvXrtwU8fLSmstUZEyF+Ht5gldeeUV4eXkJDw8P0atXL5GRkWG0X5s2bWRTW//66y+h0+lE48aNhbu7u/D29hYRERFi9erVBvs9OHFcy5YthVarFY0bNzaavO3u3btizJgxIjAwULi6uoqOHTuKffv2iS5duhhMayCEEOvXr9dP1Pbge15eWnNiYqJo2LChvt2kpCT9WD7cT0snjitPdna20Ol0Ijg4WFSrVk0EBASI7t27i6VLl1a4Dlur6DVKtqcRogIPIBARkd7t27fh6+uLuXPnQqfTKa6vXr16aN68OTZs2GCF3hFVTZzplojITLt27cITTzyBN998095dIXps8BkWIiIz9ezZ0+YPQKtdVlaWZLmrq6t+3igia2DAQkREZpN7KH/w4MFYtmxZ5XSGHgsMWIiI7Oz8+fP27oLZ5KY94MRqZG186JaIiIhUjw/dEhERkeoxYCEiIiLVY8BCREREqseARaFdu3ahd+/eCAoKgkajsWj9DSEEPvvsMzRq1AharRZPPPEEPvnkE+t3loiI6BHFLCGFCgoKEBYWhjfeeMPiBfjef/99bN68GZ999hlatGiBmzdvWryOBhERUVXELCEr0mg0WLt2Lfr27avfVlRUhA8//BDfffcdcnJy0Lx5c0yfPl2/MNvJkyfRsmVLpKenIzQ01D4dJyIiUjl+JWRj7733Hvbt24fk5GT8/vvv6NevH5577jlkZGQA+HsV4Pr162PDhg0ICQlBvXr18K9//Yt3WIiIiB7AgMWGLly4gKSkJKSkpKBz585o0KABxo4di06dOumXjD937hz+/PNPpKSkYMWKFVi2bBkOHz6MV155xc69JyIiUg8+w2JDx48fR0lJCRo1amSwvaioCDVq1AAAlJaWoqioCCtWrNDvl5iYiDZt2uDUqVP8moiIiAgMWGwqPz8fjo6OOHz4MBwdHQ3KPDw8APy9HoeTk5NBUNOkSRMAf9+hYcBCRETEgMWmWrVqhZKSEly7dg2dO3cud5+OHTvi/v37OHv2LBo0aAAAOH36NACgbt26ldZXIiIiNWOWkEL5+fk4c+YMgL8DlNmzZ6Nbt27w9fVFnTp1MGDAAPz222+YNWsWWrVqhevXr2Pbtm1o2bIlevbsidLSUrRr1w4eHh6YO3cuSktLodPp4OXlhc2bN9v57IiIiNSBAYtCO3fuRLdu3Yy2ly2tXlxcjClTpmDFihW4fPkyatasiaeeegqTJ09GixYtAABXrlzB8OHDsXnzZri7u6NHjx6YNWsWfH19K/t0iIiIVIkBCxEREVls165dmDlzJg4fPoyrV68azUf2oLfffhtLlizBnDlzMHLkSLPaYVozERERWaxsxvcvvvhCcr+1a9di//79CAoKsqgdPnRLREREFuvRowd69Oghuc/ly5cxfPhwbNq0CT179rSoHQYsFiotLcWVK1fg6ekJjUZj7+4QEZGKCSFw+/ZtBAUFwcHBNl9u3L17F/fu3bNKXUIIo79tWq0WWq3W7LpKS0sxcOBAjBs3Ds2aNbO4TwxYLHTlyhUEBwfbuxtERPQIuXjxImrXrm31eu/evYuAOnWRe/2aVerz8PBAfn6+wba4uDjEx8ebXdf06dPh5OSEESNGKOoTAxYLeXp6AgAuTvsEXi4udu4NkXUt2LXJ4mOf0o2XLN//xQzJ8uqT5pssu/Wx6Q+84U9HS3fsEfV1F+nb51JjYmuWjnlqizDJcrlrRAlLr6+KkLr2CwoK0KdPH/3fDmu7d+8ecq9fw2e7UuHqoayNwvzbGPt0O1y8eBFeXl767ZbcXTl8+DDmzZuHI0eOKP42ggGLhcoG3svFBV6urnbuDZF1uVSrZvGx7u7uiuqW+rAtlDi2qv4eyv3xkRoTW7N0zJVeI0pYen1VhNx5AbD5IwSuHp6KA5YyXl5eBgGLJXbv3o1r166hTp06+m0lJSUYM2YM5s6di/Pnz1e4LgYsREREZBMDBw5EVFSUwbbo6GgMHDgQQ4YMMasuBixERERksQdnfAeAzMxMpKWl6Wd8L1vst0y1atUQEBBg9lp5DFiIiIjIYocOHTKY8X306NEA/m/Gd2thwEJEREQW69q1K8yZNN+c51YexICF6BGV9Ewfi4+9OXGYFXti6Lc5U2xWt5RtDT+TLO+eMbaSemJdQ7avl97hGdNZRLO2/2Tl3lSOjqMmKjpe6hqUuvbHSIwlID+eUu3eLS6WPJbkcWp+IiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSP87AQ2VC9zDqS5cMzF1leucycEJJzSiicb8KWLJ0jJm1JE8ny7s9YVK1V2HI85eYOqYpi1t2QLB9eSf2gysU7LERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPac2PoKRn+kiW17nYWbK8e8ZYa3aHJJwPuSBZPiuzkjpiJt8pS02WWZp2bA1K+iWXWqwkPVjud1IuBd1W6o9KtG0Dx9aYLJJK6Y97Rjrdv8kN6d8bRdMB2NCCkHdMlpUW3QGwufI6UwXxDgsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9fjQLRERURURf/k6HNwLFdVRWpAPAGjXrh0cHR2h0+mg0+ms0T1FGLColGRGg0zGwU1ILwKXBvtkLNhzkbb9Ya0sPvYqQkyWvSiRJWFvlzKbmyxblTld+mCJa6zjqImSh/42Z4p03TJslaEkVS8AzFJQd0e560tizJSOlxR7Xp9SGXKzJspk+chcY0oo+RySO3YMTJ9zXmEhvC1u2T5SU1Ph5eVl727o8SshIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqse0ZpWSSp+TW8TtUSS3eNyQ7etteryUWdsl0k5l0hzl3iu5FGEpcumwsqnLEpT0SylbLa5oz0UbbZm6HNAo0mRZ1ul9NmvXlpSOl6Wfn/aceoHk8Q4LERERqR4DFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHeVgUWrBrE1yqVSu3zFY5/UrnyLDlnBBSpOY/qB/2kqK6m9wwvay7UracE0fJeyF3HUjV7TtlqXTlEuNp6+tH6rxO1qhjskxunhW5c/a54SjdMUmZkqVKfmevIkSyfNycoSbLZsnUXVXnHamXafo6OV9Fz/lxwDssREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiILLZr1y707t0bQUFB0Gg0WLdunb6suLgYH3zwAVq0aAF3d3cEBQVh0KBBuHLlitntMK35EfTUsaOS5UpTbe3hxWNrFB0vl2r7m4K6pVI/5dJCbfleKEkvlksB9j521mTZ8zJ1/xzWQLJcSYqvVPr6U3Lvhcw537SoR38LVHBO9ppmAJC/Pp+XuA7kNBk1wuJjlRqeuch0YQjTmq2toKAAYWFheOONN/DSS4ZTVNy5cwdHjhzBpEmTEBYWhlu3buH999/HCy+8gEOHDpnVDgMWIiIisliPHj3Qo0ePcsu8vb2xZcsWg22ff/452rdvjwsXLqBOHdNz5jyMAQsREREZycvLM3it1Wqh1WoV15ubmwuNRgMfHx+zjmPAQkREVEX8RwyEu1D2eGqBKEUfAMHBwQbb4+LiEB8fr6juu3fv4oMPPkBsbCy8vLzMOtauD93Gx8dDo9EY/DRu3Njk/l27djXaX6PRoGfP//tOUgiBjz76CIGBgXB1dUVUVBQyMjIM6jl9+jT69OmDmjVrwsvLC506dcKOHTtsdp5ERESPmosXLyI3N1f/M2HCBEX1FRcX49VXX4UQAosWSTxnZILds4SaNWuGq1ev6n/27Nljct81a9YY7Jueng5HR0f069dPv8+MGTMwf/58LF68GAcOHIC7uzuio6Nx9+5d/T69evXC/fv3sX37dhw+fBhhYWHo1asXsrKybHquREREjwovLy+DHyVfB5UFK3/++Se2bNli9t0VQAVfCTk5OSEgIKBC+/r6+hq8Tk5Ohpubmz5gEUJg7ty5mDhxIvr06QMAWLFiBfz9/bFu3TrExMTgr7/+QkZGBhITE9GyZUsAwKeffoqFCxciPT29wn0hIiIieWXBSkZGBnbs2IEaNWpYVI/dA5aMjAwEBQXBxcUFkZGRmDZtWoWfGk5MTERMTAzc3d0BAJmZmcjKykJUVJR+H29vb0RERGDfvn2IiYlBjRo1EBoaihUrVqB169bQarVYsmQJatWqhTZt2phsq6ioCEVFRfrXZQ8jtRhyGu7u5d+omrXEdN/lVo6VSzt9FNlyZVi5uveHtbK47v0SZXIp5o8qqZRUW6fNW5rmqyR1XSm5PkulcitZdVuOXFqyXAq6XLmUJhJlSqcDsNcq09safiZZ3j1jbCX1RF3y8/Nx5swZ/evMzEykpaXB19cXgYGBeOWVV3DkyBFs2LABJSUl+m8zfH194ezsXOF27BqwREREYNmyZQgNDcXVq1cxefJkdO7cGenp6fD09JQ89uDBg0hPT0diYqJ+W9kg+Pv7G+zr7++vL9NoNNi6dSv69u0LT09PODg4oFatWti4cSOqV69usr1p06Zh8uTJlp4qERFRlXTo0CF069ZN/3r06NEAgMGDByM+Ph4//vgjACA8PNzguB07dqBr164VbseuAcuDedstW7ZEREQE6tati9WrV2Po0KGSxyYmJqJFixZo3769WW0KIaDT6VCrVi3s3r0brq6u+M9//oPevXsjNTUVgYGB5R43YcIE/ZsA/H2H5eEnqImIiB43Xbt2hRDCZLlUmTns/tDtg3x8fNCoUSODW0vlKSgoQHJyslFQU/b8SXZ2tsH27Oxsfdn27duxYcMGJCcno2PHjmjdujUWLlwIV1dXLF++3GSbWq3W6AEkIiIiqhyqCljy8/Nx9uxZk3c5yqSkpKCoqAgDBgww2B4SEoKAgABs27ZNvy0vLw8HDhxAZGQkgL+nCQYABwfDU3dwcEBpaak1ToOIiIiszK4By9ixY/Hrr7/i/Pnz2Lt3L1588UU4OjoiNjYWADBo0KBy874TExPRt29foyeNNRoNRo4ciSlTpuDHH3/E8ePHMWjQIAQFBaFv374AgMjISFSvXh2DBw/GsWPHcPr0aYwbNw6ZmZkG87kQERGRetj1GZZLly4hNjYWN27cgJ+fHzp16oT9+/fDz88PAHDhwgWjOyGnTp3Cnj17sHnz5nLrHD9+PAoKCjBs2DDk5OSgU6dO2LhxI1xcXAAANWvWxMaNG/Hhhx/imWeeQXFxMZo1a4b169cjLCzMtidMREREFtEIaz0N85jJy8uDt7c3prz4LFyqVbN3dx4JUqmIcmmMcqmfcunFUmnNJ2tIp9FLrRAsp+BOf8lyqTRIuTFRkhpvz1WmbZnGWxUpWd3a1mOppG9SlK5IL/W7MWT7eov6pFReYSG8R41Bbm6uTZ6BLPubtP7Heian2qiogoJS9HnhvM36ailVPcNCREREVB4GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqmf31ZofV3JppUnP9DFZ9qiu5CyViig3HmsRIlO7dBqkkvROZasAS61ZC6TB8jGBTHrmLKkyBWnLM9+WHstxi5WlLVuaKvu4pkNXxfOWWxV5DGRWRbYwddmW6fx3i4ttVvfjgndYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR7Tmu1EKm0ZUO9Ku7YiNx5Dtq+RLFe62rMUqdWc5VLM5VZUlqRwVVmptpWkxsulLSsltVKv1PusdBVoJatf25PUeT+qKc/ubt9Ils/abp/zUvI5UlBQAKzdbMXePH4YsBAREVUR7m7/gbubu7JKRAGAKLRr1w6Ojo7Q6XTQ6XRW6Z8SDFiIiIjISGpqKry8vOzdDT0+w0JERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPY0QQti7E4+ivLw8eHt7Y8qLz8KlWjWzj7dnarJUap7360Mkj81dliRZflV2VeXy5dQokSxXa0qpLcmu1mxDak2NlxqT/WGtJI+1Z4qvVL+VjrXU6tnTateSPNaWv1dKUoDtRSqlHgDqZZqe4gAAkvvWMFlWUFCAqKgo5Obm2uRB1rK/SVu3boW7u7IsIVv31VK8w0JERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6nHxw8eQ5HwUYQ2kD1Ywl0X9UYkmy9Q8z4rUfBJyc3uEv3VSsjxtSROTZXLzc9hynhapuT3GLX705tcA5OcFseU8Lbac10ZqrhW53ytbzgelZDzVOofL+ZALkuWz5iwyWXa3uNja3Xns8A4LERERqR4DFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WNas0LPHs+Eh6NjuWVNRo2wSZvPHzsrWf6zXGqyBN8pSyXLh2xfL1luy/RNe5FKz7RnqqwtZZ3eZ7JsViX2w6htieurY1irSuyJeRaEvGOybHim6VTYipBKXZb7rJgFZanztvp9l/u9kZoiAQACkWmy7KljRy3qE1A1P98eJbzDQkRERKrHgIWIiIgstmvXLvTu3RtBQUHQaDRYt26dQbkQAh999BECAwPh6uqKqKgoZGRkmN0OAxYiIiKyWEFBAcLCwvDFF1+UWz5jxgzMnz8fixcvxoEDB+Du7o7o6GjcvXvXrHb4DAsRERFZrEePHujRo0e5ZUIIzJ07FxMnTkSfPn0AACtWrIC/vz/WrVuHmJiYCrfDOyxERERkJC8vz+CnqKjI7DoyMzORlZWFqKgo/TZvb29ERERg3z7TD/eXh3dYiIiIqogWOW7wuueuqI68OwIAEBwcbLA9Li4O8fHxZtWVlZUFAPD39zfY7u/vry+rKAYsKiWVTiiXiqgk7VluddckmbRnSKT9SaUanpOuVZZcOratVoOWS7+US3tWkmJpS2pN37TlKr62TFGXSl22ZbtyUxzIfVacPDZfugEFUygocW7OUMnyF224krkUqc/tvMJCTFy7uRJ7o9zFixfh5eWlf63Vau3YG34lREREROXw8vIy+LEkYAkICAAAZGdnG2zPzs7Wl1UUAxYiIiKyiZCQEAQEBGDbtm36bXl5eThw4AAiIyPNqotfCREREZHF8vPzcebMGf3rzMxMpKWlwdfXF3Xq1MHIkSMxZcoUNGzYECEhIZg0aRKCgoLQt29fs9phwEJEREQWO3ToELp166Z/PXr0aADA4MGDsWzZMowfPx4FBQUYNmwYcnJy0KlTJ2zcuBEuLi5mtcOAhYiIiCzWtWtXCCFMlms0GiQkJCAhIUFRO3yGhYiIiFSPd1gU2twiBC7VqpVb1sRGbcquoCqT9ixFbhXUcxOl0wmljv9NJhVRimzqp43SlpWSS1uWSh+25Uq5cmngUunpcpSm6Uod/6iufi1FaWq8LdOeH1VKfq9s1e7d4mKbtfu44B0WIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqse05kfQ/rBWkuVjZI6XSr2TWwVVjtLjTVFrOqtcymlSjTrSFUi8F7ZcMdlWq1dXhC3TdB9Fcinmcin7tlzBWs7j9l4pSYl+FFdrVhveYSEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpnl0Dlvj4eGg0GoOfxo0bm9y/a9euRvtrNBr07Pl/D0IJIfDRRx8hMDAQrq6uiIqKQkZGhr58586d5dah0WiQmppq0/MlIiIiy9g9S6hZs2bYunWr/rWTk+kurVmzBvfu3dO/vnHjBsLCwtCvXz/9thkzZmD+/PlYvnw5QkJCMGnSJERHR+PEiRNwcXFBhw4dcPXqVYN6J02ahG3btqFt27ZWPDMiIiKyFrsHLE5OTggICKjQvr6+vgavk5OT4ebmpg9YhBCYO3cuJk6ciD59+gAAVqxYAX9/f6xbtw4xMTFwdnY2aK+4uBjr16/H8OHDodFozO7/8Kej4eXqavZxSihZAViO7GrNNkpbflTJpXU+f+ysZHlVXC1X6erDlloQ8o5k+fDMRTZpVyl7ppg/juy1QjpXa1bO7s+wZGRkICgoCPXr10f//v1x4cKFCh+bmJiImJgYuLu7AwAyMzORlZWFqKgo/T7e3t6IiIjAvn37yq3jxx9/xI0bNzBkyBDJtoqKipCXl2fwQ0RERJXDrgFLREQEli1bho0bN2LRokXIzMxE586dcfv2bdljDx48iPT0dPzrX//Sb8vKygIA+Pv7G+zr7++vL3tYYmIioqOjUbt2bcn2pk2bBm9vb/1PcHCwbB+JiIjIOuwasPTo0QP9+vVDy5YtER0djZ9//hk5OTlYvXq17LGJiYlo0aIF2rdvb3H7ly5dwqZNmzB0qPzXHBMmTEBubq7+5+LFixa3S0REROax+zMsD/Lx8UGjRo1w5swZyf0KCgqQnJyMhIQEg+1lz6ZkZ2cjMDBQvz07Oxvh4eFG9SQlJaFGjRp44YUXZPum1Wqh1WorcBZERET2cWNPLu5p7yuq43ZRAQCgXbt2cHR0hE6ng06ns0b3FLH7MywPys/Px9mzZw2CjfKkpKSgqKgIAwYMMNgeEhKCgIAAbNu2Tb8tLy8PBw4cQGRkpMG+QggkJSVh0KBBqFatmvVOgoiIqApITU3FiRMnVBGsAHYOWMaOHYtff/0V58+fx969e/Hiiy/C0dERsbGxAIBBgwZhwoQJRsclJiaib9++qFGjhsF2jUaDkSNHYsqUKfjxxx9x/PhxDBo0CEFBQejbt6/Bvtu3b0dmZqbBMzBERESkTnb9SujSpUuIjY3FjRs34Ofnh06dOmH//v3w8/MDAFy4cAEODoYx1alTp7Bnzx5s3lz+qpfjx49HQUEBhg0bhpycHHTq1AkbN26Ei4uLwX6JiYno0KGD5ER1trQ27CXJ8hePrTFZZstVfOXSlpn2bJ7cZUnSO9hptVu5FYJtmWprqxV+laYtK0m3tueqxY/bislqFv7WSZNlBQWlwNpK7EwVZNeAJTk5WbJ8586dRttCQ0MhhDB5jEajQUJCgtHzLQ/79ttvK9RHIiIisj9VPcNCREREVB4GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLV0wiplBsyKS8vD97e3sidM6vSV2veH9ZK0fGPYhqkWlc9tmd6sL0oXW3ZXtefVMopAFwI3m2ztodsX2+zuqXYcgoEMs/d4mJMXLsZubm58PLysnr9ZX+TToz8BZ5ad0V13S4qQNO5PWzWV0vxDgsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqmfX1ZqrggW7NsGlWrVyy8Y809MmbcrNYyE3T4ZUuVrnaLHXPCtylM6zIjU3SNqSJorqlqJkLhWl15+9yM2zYss5c2ZJlCn9nLDnXCv2un7p8cQ7LERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiKLlZSUYNKkSQgJCYGrqysaNGiAjz/+GNZeqpAP3RIREZHFpk+fjkWLFmH58uVo1qwZDh06hCFDhsDb2xsjRoywWjsMWIiIiMhie/fuRZ8+fdCz598Zb/Xq1cN3332HgwcPWrUdBiwK1dN9ATd3z3LLtt3pYPI4d7dvJOt96thRk2VyaZD7JUvVm7r8OLJX6qctU5OVXl/PHztrskwqvd13ylLJeuXSlu11zkrTku35Xll6/cr1+VH9jJL6bM4rLMTEtZsrsTeVp0OHDli6dClOnz6NRo0a4dixY9izZw9mz55t1XYYsBAREZGRvLw8g9darRZardZov3//+9/Iy8tD48aN4ejoiJKSEnzyySfo37+/VfvDgIWIiKiKWPPnHJOTmVbU3eJiAEBwcLDB9ri4OMTHxxvtv3r1anzzzTf49ttv0axZM6SlpWHkyJEICgrC4MGDFfXlQQxYiIiIyMjFixfh5eWlf13e3RUAGDduHP79738jJiYGANCiRQv8+eefmDZtGgMWIiIisi0vLy+DgMWUO3fuwMHBcJYUR0dHlJaWWrU/DFiIiIjIYr1798Ynn3yCOnXqoFmzZjh69Chmz56NN954w6rtMGBRyPPOP+CuKX/+ve4ZY00eN2u7zFPwKl1Ajh4P3q8PMV0osxCl0gyQP5btNF04Z6jJIlsuXmhPSrKAriLEij0xtiDkHZNlwzMXmSx7VLOAqHwLFizApEmT8O677+LatWsICgrCW2+9hY8++siq7TBgISIiIot5enpi7ty5mDt3rk3b4dT8REREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqxywhhdzd/gN3N/dyy/aHmT6uY1gryXqZ9lc1SC3kB0gv5mdPucuSTBfKXJtKr91zEqnL9Uclmix78dgaRe1CYsFRQHqRQlsu5qfmzwKp1GUpUu9jRUhdI7Ykt/Cs1DVSNt09WY53WIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREakeAxYiIiJSPc7DolC748fg5epq9nH7ZeZhkZrXQc3zMkh5LeQDk2WrMqdXYk8qj1rnWZGbN0SKPeeWUTzXymNGbr4TW85nomSuFVv2S8m1v19uB4l5WEg53mEhIiIi1WPAQkRERKrHgIWIiIhUz+yAZfDgwdi1a5ct+kJERERULrMDltzcXERFRaFhw4aYOnUqLl++bIt+EREREemZHbCsW7cOly9fxjvvvINVq1ahXr166NGjB77//nsUczVKIiIisgGNEEIoqeDIkSNISkrCf/7zH3h4eGDAgAF499130bBhQ2v1UZXy8vLg7e2N3DmzLEprllqGvKqSSoe1Z/qv3JLxUtT8PtprvOXSRr1fHyJZLtU3JamycinRan4vLaVkvADbphfbkpLUZSWkppy4W1yMiWs3Izc3F15eXlZvu+xv0uZvD8DdzUNRXQV38vHsPyPQqFEjODo6QqfTQafTWamnllM0D8vVq1exZcsWbNmyBY6Ojnj++edx/PhxNG3aFDNmzMCoUaOs1U8iIiKqRKmpqTYJrixl9ldCxcXF+OGHH9CrVy/UrVsXKSkpGDlyJK5cuYLly5dj69atWL16NRISEmzRXyIiInoMmX2HJTAwEKWlpYiNjcXBgwcRHh5utE+3bt3g4+Njhe4RERERWRCwzJkzB/369YOLi4vJfXx8fJCZmamoY0RERERlzA5YBg4caIt+EBEREZnEmW6JiIhI9bhas0ILdm2CS7Vq5ZZJptZVwRRKOY9q6rLUytodZVbdPlmjjmT5zYnDLOpTRUiNt9yKy5bWCyhLWwZk3isbrtYsd42oNe1Zqt+zFKYlKxmT8LdOmixLW9JEsl656zN3WZJkuaWeOnZUslzqs4Bsj3dYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUz64BS3x8PDQajcFP48aNTe7ftWtXo/01Gg169vy/J9mFEPjoo48QGBgIV1dXREVFISMjw6iun376CREREXB1dUX16tXRt29fW5wiERERWYHd05qbNWuGrVu36l87OZnu0po1a3Dv3j396xs3biAsLAz9+vXTb5sxYwbmz5+P5cuXIyQkBJMmTUJ0dDROnDihn533hx9+wJtvvompU6fimWeewf3795Genm5R/589ngkPR8fyC6XSO2VSO18L+cCi/lTEqWdfN1nWPWOsorrVmvqphNQKrHJk00IlyhaEvCN57PDMRRb06G+2TDFXlLYsY23YSybL5FYWnvm29PuYdXqfZLmSfkux5e+M0j7L9U0ypXqJ5e3KXp8yv5P2Wq2ZbMvuAYuTkxMCAgIqtK+vr6/B6+TkZLi5uekDFiEE5s6di4kTJ6JPnz4AgBUrVsDf3x/r1q1DTEwM7t+/j/fffx8zZ87E0KH/9wHXtGlTK50RERERWZvdn2HJyMhAUFAQ6tevj/79++PChQsVPjYxMRExMTFwd3cHAGRmZiIrKwtRUVH6fby9vREREYF9+/7+39ORI0dw+fJlODg4oFWrVggMDESPHj1k77AUFRUhLy/P4IeIiIgqh10DloiICCxbtgwbN27EokWLkJmZic6dO+P27duyxx48eBDp6en417/+pd+WlZUFAPD39zfY19/fX1927tw5AH8/PzNx4kRs2LAB1atXR9euXXHz5k2T7U2bNg3e3t76n+DgYLPPl4iIiCxj14ClR48e6NevH1q2bIno6Gj8/PPPyMnJwerVq2WPTUxMRIsWLdC+fXuz2iwtLQUAfPjhh3j55ZfRpk0bJCUlQaPRICUlxeRxEyZMQG5urv7n4sWLZrVLRERElrP7V0IP8vHxQaNGjXDmzBnJ/QoKCpCcnGzwDAoA/bMw2dnZBtuzs7P1ZYGBgQAMn1nRarWoX7++5NdRWq0WXl5eBj9ERERUOVQVsOTn5+Ps2bP6oMKUlJQUFBUVYcCAAQbbQ0JCEBAQgG3btum35eXl4cCBA4iMjAQAtGnTBlqtFqdOndLvU1xcjPPnz6Nu3bpWPBsiIiKyFrtmCY0dOxa9e/dG3bp1ceXKFcTFxcHR0RGxsbEAgEGDBuGJJ57AtGnTDI5LTExE3759UaNGDYPtGo0GI0eOxJQpU9CwYUN9WnNQUJB+nhUvLy+8/fbbiIuLQ3BwMOrWrYuZM2cCgEF6NBEREamHXQOWS5cuITY2Fjdu3ICfnx86deqE/fv3w8/PDwBw4cIFODgY3gQ6deoU9uzZg82bN5db5/jx41FQUIBhw4YhJycHnTp1wsaNG/VzsADAzJkz4eTkhIEDB6KwsBARERHYvn07qlevbvY5bG4RApdq1cw+Ts6qzOlWr1NPYmn3NFS9eVTsSckcG+dDZDLmQmTmeFHpnDhSc6nIefHYGtP1jkqUPDZL4thH2baGn5ksUzqvktw8LpLvpcT1Jzs/kYL5XwAAx45Kl1tIyZxMVd3ly5fxwQcf4JdffsGdO3fw5JNPIikpCW3btrVaG3YNWJKTkyXLd+7cabQtNDQUQgiTx2g0GiQkJCAhIcHkPtWqVcNnn32Gzz4z/YtORERE8m7duoWOHTuiW7du+OWXX+Dn54eMjAyLbgJIsfvEcURERPTomj59OoKDg5GUlKTfFhISYvV2VPXQLREREanDw5OlFhUVlbvfjz/+iLZt26Jfv36oVasWWrVqhS+//NLq/eEdFiIioioiInsPvFxdFdWRV1gIAEYTpMbFxSE+Pt5o/3PnzmHRokUYPXo0/ud//gepqakYMWIEnJ2dMXjwYEV9eRADFiIiIjJy8eJFgznHtFptufuVlpaibdu2mDp1KgCgVatWSE9Px+LFixmw0OPHd8pSyXKfGyZWzC5jowwRuVVhmVVgTG5VZUtXGJbKILI1JZlPUtk0FZEmkfXX/RlFVcuSHHMbrW4NyI+31DVmq1W3q6KKTpIaGBhotIBwkyZN8MMPP1i1P3yGhYiIiCzWsWNHg8lYAeD06dNWn4yVAQsRERFZbNSoUdi/fz+mTp2KM2fO4Ntvv8XSpUuh0+ms2g4DFiIiIrJYu3btsHbtWnz33Xdo3rw5Pv74Y8ydOxf9+/e3ajt8hoWIiIgU6dWrF3r16mXTNniHhYiIiFSPAQsRERGpHr8SUqie7gu4uXuWWyaXvimlvsRCbkrqfVTdnDhMulyuAolURrkUyfoS5Vfl2lXg5Jz5kuU/hzWwYev2k/RMH5NlQ7avt7heqUUCAWULBSpKqVa4EKAScnVLfQ4B0uddL7OOybI5faUXxBsjWQrZaQpOHjtrulAi1Vvq2gOgOAWdlOEdFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUj/OwKHT+Cx1cqlUrt+x5ibkA5ObQaPx6V5Nl52SOVbJ8ui3nfFBC7pzk5iyZBdPn9Vpmc4v6VBHnFBxry3lWpK5NW7ftO2WpZLnknDsS14Hstbu9iXT5W5bP02LP3xvJuVKUzA8D+fllpOYwmhNm+jjZuaQU/r43GTVCun4LKfkcyi8pwURrd+gxwzssREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI9pzQoNfzoaXq6u5RdKLGP+s0wapJK0Utkl0iX4yhwrmXKqgFy6oGzaqILxWpU53eJj1Uwq3fUPuYPl0k4VkLuGlKTlK5G2RDrtubvE77NcmrgtNZFIPbZnurVs6rIEuX4/L3O8VHqxkpRnuX6Nkag7r7AQGDXG4raJd1iIiIjoEcCAhYiIiFSPXwkRERFVEae+WAwPR0dFdeSXlAAA2rVrB0dHR+h0Ouh0Omt0TxEGLERERGQkNTUVXl5e9u6GHr8SIiIiItVjwEJERESqx6+EFPrfFi/Azd3T/ANtmG6oJPVYbiVdJccP2b7eZJlqV7uFsvTMqqjjKOk1Z0/WqCNZLnUdKCGXWvzHsp2S5XLvs9Q1Wl9B3UpTou35uyO1mvNaid8ruVWg5Zw8Jr1as6Xkrs1ZMsdLvRd3i4st6BE9iHdYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUjwELERERqR7TmsmAbMqp3Eq6NkpZtaWcGiWS5UpWD76U2VyyXK0rRUulep+UGS9bpS0D0qvwymn8elfJ8heVrOKrIPVdycrsgP1WtwZkUqqlymzcZyUrMktRMtZ5hYWYuHazFXvz+OEdFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHtGY7kVshWMlqprZcvVWubqm0P3uuKitFSRquXNqynNdCPjBZJpfyHP7WScny7gpXxDUl6Zk+Nqm3jOR1ojAFWMrPMten5ErmKr22bU3qGkxb0sRkmeLPApnrQOq9lPrsVbqKNNkW77AQERGR6jFgISIiItVjwEJERESqx4CFiIiIrOLTTz+FRqPByJEjrV43AxYiIiJSLDU1FUuWLEHLli1tUj8DFiIiIlIkPz8f/fv3x5dffonq1avbpA2mNSvU+/iP8HJ1LbdsbdhLJo97VNOWlVCS8txx1ETJ8t/mTLG4bTmS7yOk30dbjqdU2igApMF023LjIZWu7XPDUbpjVdTNicNMlj1/7KzksVIrMi8IeUfy2Dl920p37DFMxZ35tvTve9bpfaYLH8PxslReXp7Ba61WC61WW+6+Op0OPXv2RFRUFKZMkX5/LMWAhYiIqIoYPMYJjq7K/lNRUqgB3gGCg4MNtsfFxSE+Pt5o/+TkZBw5cgSpqamK2pXDgIWIiIiMXLx4EV5eXvrX5d1duXjxIt5//31s2bIFLi4uNu0PAxYiIiIy4uXlZRCwlOfw4cO4du0aWrdurd9WUlKCXbt24fPPP0dRUREcHa3zNTIDFiIiIrJI9+7dcfz4cYNtQ4YMQePGjfHBBx9YLVgBGLAQERGRhTw9PdG8ueFD+u7u7qhRo4bRdqWY1kxERESqZ9c7LPHx8Zg8ebLBttDQUPzxxx/l7t+1a1f8+uuvRtuff/55/PTT3ymcQgjExcXhyy+/RE5ODjp27IhFixahYcOG+v3r1auHP//806COadOm4d///rfSUzKgJHX55Jz5Jsuelzl2//9us7hdqdRNW5JcCRfAbzL9kjseClZkPjdnqMmy/TLp1r4yKxs3uXHBZJlcqrYScunWr4WY/p+R150OMrWPlSyVShMHgDESZbZME1eygvosiRRyQDqNfAxMXwMAsBbSac22mj6hIuRS621l3GLp3zsomMZAiW0NPzNZVlBQWok9sa+dO3fapF67fyXUrFkzbN26Vf/aycl0l9asWYN79+7pX9+4cQNhYWHo16+fftuMGTMwf/58LF++HCEhIZg0aRKio6Nx4sQJgyeYExIS8Oabb+pfe3p6WuuUiIiIyMrsHrA4OTkhICCgQvv6+voavE5OToabm5s+YBFCYO7cuZg4cSL69Pn7f7YrVqyAv78/1q1bh5iYGP2xnp6eFW6XiIiI7Mvuz7BkZGQgKCgI9evXR//+/XHhgvTt0QclJiYiJiYG7u7uAIDMzExkZWUhKipKv4+3tzciIiKwb5/hzIeffvopatSogVatWmHmzJm4f/++ZFtFRUXIy8sz+CEiIqLKYdc7LBEREVi2bBlCQ0Nx9epVTJ48GZ07d0Z6errsVzQHDx5Eeno6EhP/73vnrKwsAIC/v7/Bvv7+/voyABgxYgRat24NX19f7N27FxMmTMDVq1cxe/Zsk+1NmzbN6HkbIiIiqhx2DVh69Oih/3fLli0RERGBunXrYvXq1Rg61PSDjsDfd1datGiB9u3bm93u6NGjDdp1dnbGW2+9hWnTpplcJ2HChAkGx+Xl5RlNW0xERES2YfevhB7k4+ODRo0a4cyZM5L7FRQUIDk52SioKXsmJTs722B7dna25PMqERERuH//Ps6fP29yH61Wq5/1ryKz/xEREZH12P2h2wfl5+fj7NmzGDhwoOR+KSkpKCoqwoABAwy2h4SEICAgANu2bUN4eDiAv++EHDhwAO+8Y3pF1LS0NDg4OKBWrVqKz8FamowaYbJMKuUZUJaaLJceLFe3VNqpVGqnXL2yqy0rSFtOkkk9hoJUWqm0ZUA6dVnunG2Z4ls7JN104eZl0gdLHQtlqbZSYyKVUgooT8GVrH+7dN2W/l4A0mn1gHw6tpR6mXUky8+HSF+/SlZgV0LJ6uu2JHWN3S0uBnC+0vpSFdk1YBk7dix69+6NunXr4sqVK4iLi4OjoyNiY2MBAIMGDcITTzyBadOmGRyXmJiIvn37okaNGgbbNRoNRo4ciSlTpqBhw4b6tOagoCD07dsXALBv3z4cOHAA3bp1g6enJ/bt24dRo0ZhwIABqF69eqWcNxEREZnHrgHLpUuXEBsbixs3bsDPzw+dOnXC/v374efnBwC4cOECHBwMv7U6deoU9uzZg82bN5db5/jx41FQUIBhw4YhJycHnTp1wsaNG/VzsGi1WiQnJyM+Ph5FRUUICQnBqFGjDJ5PISIiInWxa8CSnJwsWV7ebHmhoaEQQpg8RqPRICEhAQkJCeWWt27dGvv37zern0RERGRfqnroloiIiKg8DFiIiIhI9RiwEBERkeoxYCEiIiLV0wipJ1jJpLy8PHh7eyN3zix4ubrauztmUTI/glrnP1ArublBumeMtfjYC8G7JcvrXOxsUbtVldx45rntlSxXMn+M1NxJP4c1kDxWbp4VJf2S+yyw51xAUtT6OSR1jRUUlKLPC+eRm5trk4lHy/4mNVnUBI6ujorqKikswcl3Ttqsr5biHRYiIiJSPQYsREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVT1WrNREREZLn9gc/By12rqI68giJ44yTatWsHR0dH6HQ66HQ6K/XQckxrttCjnNZ8KbO5ybItQ6VTLIdsX2/t7pCFlKRMV0UcD+uTS1uWSrmWSre2dTq0rdKeAxpFSpbveCfWZFl+SQnan8mweVpz7rpR1glY+s5hWjMRERGRuRiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHudheQzVDkmXKJVOayb1YJquIY6H9cmmB1u4UrRaV4GWS1vOOr1PuoJRI0wW5RUWAqPGWNIt+v94h4WIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPWYJaTQ1116wtXDs9yyqrhQYNIzfSw+9ubEYSbL5LIG5NqtimNNpHZS2TxSv9NyWUDhb52ULE9b0kS6YxaSzQIiu+IdFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWAhIiIi1WPAQkRERKrHgIWIiIhUj/Ow2Ila5xVR2q7Uecmu/CqB86wQPVqk5lpROs+Kks8SJZTMQ1WYfxtA1Vytedq0aVizZg3++OMPuLq6okOHDpg+fTpCQ0Ot2g7vsBAREZHFfv31V+h0Ouzfvx9btmxBcXExnn32WRQUFFi1Hd5hISIiIott3LjR4PWyZctQq1YtHD58GE8//bTV2mHAQkREREby8vIMXmu1Wmi1WtnjcnNzAQC+vr5W7Q8DFiIioirifz3ehZt7+evbVdQdzW0AcxAcHGywPS4uDvHx8ZLHlpaWYuTIkejYsSOaN2+uqB8PY8BCRERERi5evAgvLy/964rcXdHpdEhPT8eePXus3h8GLERERGTEy8vLIGCR895772HDhg3YtWsXateubfX+MGBRKPTmJbgXuZdbJpUCV1XTdC09L7WmeROR9XXPGCtd/kwldcRMcp9DStKeH2VCCAwfPhxr167Fzp07ERISYpN2GLAQERGRxXQ6Hb799lusX78enp6eyMrKAgB4e3vD1dXVau1wHhYiIiKy2KJFi5Cbm4uuXbsiMDBQ/7Nq1SqrtsM7LERERGQxIUSltMM7LERERKR6DFiIiIhI9RiwEBERkerxGRaFTvnWhqtH+bMKSqXASa1kCthvNVJ7YdqyuqwNe8lk2YvH1ti07W0NPzNZJpcOS5Wrqn1OtXBZKFn++s91pSuQ+Fy/W1xsSZfoAbzDQkRERKrHgIWIiIhUjwELERERqR4DFiIiIlI9BixERESkegxYiIiISPWY1qzQgF9/gpeJxZ2k0jPHgOmZpF5Sqcu2Tsln6jLZy/G770qWz4L0tV9/VKLJsjsFt4G1DS3qF/2Nd1iIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj27zsMSHx+PyZMnG2wLDQ3FH3/8Ue7+Xbt2xa+//mq0/fnnn8dPP/2dHy+EQFxcHL788kvk5OSgY8eOWLRoERo2NM5/LyoqQkREBI4dO4ajR48iPDxc+Uk9QMl8ElJzuHCeCrInpfOsUNUhNyePKba+hiztlxzZfkvMX5RXWGjl3jx+7D5xXLNmzbB161b9aycn011as2YN7t27p39948YNhIWFoV+/fvptM2bMwPz587F8+XKEhIRg0qRJiI6OxokTJ+Di4mJQ3/jx4xEUFIRjx45Z8YyIiIjsY8KGo3DQuimqo7ToDgCgXbt2cHR0hE6ng06ns0b3FLF7wOLk5ISAgIAK7evr62vwOjk5GW5ubvqARQiBuXPnYuLEiejTpw8AYMWKFfD398e6desQExOjP/aXX37B5s2b8cMPP+CXX36x0tkQERFVDampqfDy8rJ3N/Ts/gxLRkYGgoKCUL9+ffTv3x8XLlyo8LGJiYmIiYmBu7s7ACAzMxNZWVmIiorS7+Pt7Y2IiAjs27dPvy07OxtvvvkmVq5cCTc3ZZEoERER2Z5dA5aIiAgsW7YMGzduxKJFi5CZmYnOnTvj9u3bsscePHgQ6enp+Ne//qXflpWVBQDw9/c32Nff319fJoTA66+/jrfffhtt27atcF+LioqQl5dn8ENERESVw65fCfXo0UP/75YtWyIiIgJ169bF6tWrMXToUMljExMT0aJFC7Rv396sNhcsWIDbt29jwoQJZh03bdo0oweEiYiIqHLY/RmWB/n4+KBRo0Y4c+aM5H4FBQVITk5GQkKCwfayZ2Gys7MRGBio356dna3PANq+fTv27dsHrVZrcGzbtm3Rv39/LF++vNw2J0yYgNGjR+tf5+XlITg4uMLnZi5mAhGR2oW/ddJkmS0/w2yVBSRHKnsT4Oe2rdn9GZYH5efn4+zZswbBRnlSUlJQVFSEAQMGGGwPCQlBQEAAtm3bpt+Wl5eHAwcOIDIyEgAwf/58HDt2DGlpaUhLS8PPP/8MAFi1ahU++eQTk21qtVp4eXkZ/BAREVHlsOsdlrFjx6J3796oW7curly5gri4ODg6OiI2NhYAMGjQIDzxxBOYNm2awXGJiYno27cvatSoYbBdo9Fg5MiRmDJlCho2bKhPaw4KCkLfvn0BAHXq1DE4xsPDAwDQoEED1K5d20ZnSkRERErYNWC5dOkSYmNjcePGDfj5+aFTp07Yv38//Pz8AAAXLlyAg4PhTaBTp05hz5492Lx5c7l1jh8/HgUFBRg2bBhycnLQqVMnbNy40WgOFiIiInp02DVgSU5OlizfuXOn0bbQ0FAIIUweo9FokJCQYPR8iyn16tWTrI+IiIjsT1XPsBARERGVhwELERERqZ6q0pqJiOjRYa80XrstwJkh3a5UuvXd4mJr9+axwzssREREpHoMWIiIiEj1GLAQERGR6jFgISIiItVjwEJERESqx4CFiIiIVI8BCxEREake52EhIiICENAoUrI86/Q+yXKp+WHyCgsxcW35a+BRxfAOCxEREakeAxYiIiJSPQYsREREpMgXX3yBevXqwcXFBRERETh48KDV22DAQkRERBZbtWoVRo8ejbi4OBw5cgRhYWGIjo7GtWvXrNoOAxYiIiKy2OzZs/Hmm29iyJAhaNq0KRYvXgw3Nzd89dVXVm2HWUIWEkIAAPLu3rVzT4iIyBpKC/Ily/MKCy2uu+xvRdnfDlspLbpjtTry8vIMtmu1Wmi1WoNt9+7dw+HDhzFhwgT9NgcHB0RFRWHfPumsKnMxYLHQ7du3AQDBEz60c0+IiKgyeFuhjtu3b8Pb2xo1GXJ2dkZAQAAuL3rdKvV5eHggODjYYFtcXBzi4+MNtv31118oKSmBv7+/wXZ/f3/88ccfVulLGQYsFgoKCsLFixfh6ekJjUZjt37k5eUhODgYFy9ehJeXl9368SjhmFmG42Y+jpllquK4CSFw+/ZtBAUF2aR+FxcXZGZm4t69e1apTwhh9Lft4bsrlY0Bi4UcHBxQu3Zte3dDz8vLq8r8YlcWjpllOG7m45hZpqqNmy3urDzIxcUFLi4uNm3jYTVr1oSjoyOys7MNtmdnZyMgIMCqbfGhWyIiIrKIs7Mz2rRpg23btum3lZaWYtu2bYiMlJ452Fy8w0JEREQWGz16NAYPHoy2bduiffv2mDt3LgoKCjBkyBCrtsOA5RGn1WoRFxdn9+8WHyUcM8tw3MzHMbMMx+3R8tprr+H69ev46KOPkJWVhfDwcGzcuNHoQVylNMLWOVZERERECvEZFiIiIlI9BixERESkegxYiIiISPUYsBAREZHqMWCpRJ9++ik0Gg1Gjhyp39a1a1doNBqDn7ffftvguBEjRqBNmzbQarUIDw8vt+7ff/8dnTt3houLC4KDgzFjxgyjfVJSUtC4cWO4uLigRYsW+Pnnnw3KhRD46KOPEBgYCFdXV0RFRSEjI0PxeStlybgdO3YMsbGxCA4OhqurK5o0aYJ58+YZ1b1z5060bt0aWq0WTz75JJYtW2a0j9yy6Xfv3oVOp0ONGjXg4eGBl19+2WgSpcpmyZjduHEDzz33HIKCgqDVahEcHIz33nvPaD2RqjpmgOW/o2Vu3LiB2rVrQ6PRICcnx6Csqo6bpWP2cLlGo0FycrLBPlV1zMhCgirFwYMHRb169UTLli3F+++/r9/epUsX8eabb4qrV6/qf3Jzcw2OHT58uPj888/FwIEDRVhYmFHdubm5wt/fX/Tv31+kp6eL7777Tri6uoolS5bo9/ntt9+Eo6OjmDFjhjhx4oSYOHGiqFatmjh+/Lh+n08//VR4e3uLdevWiWPHjokXXnhBhISEiMLCQquPR0VZOm6JiYlixIgRYufOneLs2bNi5cqVwtXVVSxYsEC/z7lz54Sbm5sYPXq0OHHihFiwYIFwdHQUGzdu1O+TnJwsnJ2dxVdffSX++9//ijfffFP4+PiI7Oxs/T5vv/22CA4OFtu2bROHDh0STz31lOjQoYNtB0aCpWN28+ZNsXDhQpGamirOnz8vtm7dKkJDQ0VsbKx+n6o6ZkIo+x0t06dPH9GjRw8BQNy6dUu/vaqOm5IxAyCSkpIM9nnws6aqjhlZjgFLJbh9+7Zo2LCh2LJli+jSpYvRL/aDr6XExcWVG7AsXLhQVK9eXRQVFem3ffDBByI0NFT/+tVXXxU9e/Y0OC4iIkK89dZbQgghSktLRUBAgJg5c6a+PCcnR2i1WvHdd99VqH/WZq1xK/Puu++Kbt266V+PHz9eNGvWzGCf1157TURHR+tft2/fXuh0Ov3rkpISERQUJKZNmyaE+HuMqlWrJlJSUvT7nDx5UgAQ+/btM6t/1mDtMZs3b56oXbu2/nVVHDMhrDNuCxcuFF26dBHbtm0zCliq4rgpHTMAYu3atSbLq+KYkTL8SqgS6HQ69OzZE1FRUeWWf/PNN6hZsyaaN2+OCRMm4M4d85YH37dvH55++mk4Ozvrt0VHR+PUqVO4deuWfp+H24+OjtYv/52ZmYmsrCyDfby9vREREWH1JcIrytrjlpubC19fX/1ruTEpWzb9wX0eXjb98OHDKC4uNtincePGqFOnjl3GzZpjduXKFaxZswZdunTRb6uKYwYoH7cTJ04gISEBK1asgIOD8cdqVRw3a1xrOp0ONWvWRPv27fHVV19BPDAtWFUcM1KGM93aWHJyMo4cOYLU1NRyy//5z3+ibt26CAoKwu+//44PPvgAp06dwpo1ayrcRlZWFkJCQgy2lc0wmJWVherVqyMrK6vc5b+zsrL0+z14XHn7VCZrj9vevXuxatUq/PTTT/ptpsYkLy8PhYWFuHXrluyy6VlZWXB2doaPj4/RPpU9btYas9jYWKxfvx6FhYXo3bs3/vOf/+jLqtqYAcrHraioCLGxsZg5cybq1KmDc+fOGdVR1cbNGtdaQkICnnnmGbi5uWHz5s149913kZ+fjxEjRgCoemNGyjFgsaGLFy/i/fffx5YtW0yuoDls2DD9v1u0aIHAwEB0794dZ8+eRYMGDSqrq6pi7XFLT09Hnz59EBcXh2effdamfbcXa47ZnDlzEBcXh9OnT2PChAkYPXo0Fi5caPNzsAdrjNuECRPQpEkTDBgwoLK6bVfWutYmTZqk36dVq1YoKCjAzJkz9QEL0cP4lZANHT58GNeuXUPr1q3h5OQEJycn/Prrr5g/fz6cnJxQUlJidExERAQA4MyZMxVuJyAgoNylvcvKpPZ5sPzB48rbp7JYc9xOnDiB7t27Y9iwYZg4caJBmakx8fLygqura4WWTQ8ICMC9e/eMMkIqe9ysOWYBAQFo3LgxXnjhBSxZsgSLFi3C1atX9WVVZcwA64zb9u3bkZKSoj++e/fuAICaNWsiLi4OQNUaN1t9rkVERODSpUsoKioCULXGjKyDAYsNde/eHcePH0daWpr+p23btujfvz/S0tLg6OhodExaWhoAIDAwsMLtREZGYteuXSguLtZv27JlC0JDQ1G9enX9Pg8u/122T9ny3yEhIQgICDDYJy8vDwcOHLD6EuFyrDVu//3vf9GtWzcMHjwYn3zyidExcmNSkWXT27Rpg2rVqhnsc+rUKVy4cKFSx81W11ppaSkA6P+IVKUxA6wzbj/88AOOHTumP77sK7Tdu3dDp9MBqFrjZqtrLS0tDdWrV9cveFiVxoysxN5P/T5uHnx6/syZMyIhIUEcOnRIZGZmivXr14v69euLp59+2uCYjIwMcfToUfHWW2+JRo0aiaNHj4qjR4/qs4JycnKEv7+/GDhwoEhPTxfJycnCzc3NKK3ZyclJfPbZZ+LkyZMiLi6u3LRmHx8fsX79evH777+LPn362D2tuYy543b8+HHh5+cnBgwYYJA2ee3aNf0+ZWmT48aNEydPnhRffPFFuWmTWq1WLFu2TJw4cUIMGzZM+Pj4iKysLP0+b7/9tqhTp47Yvn27OHTokIiMjBSRkZG2HxQZ5o7ZTz/9JL766itx/PhxkZmZKTZs2CCaNGkiOnbsqN+nqo+ZEJb9jj5ox44dJtOaq+q4mTtmP/74o/jyyy/F8ePHRUZGhli4cKFwc3MTH330kX6fqj5mZD4GLJXswV/sCxcuiKefflr4+voKrVYrnnzySTFu3Dij+Qq6dOkiABj9ZGZm6vc5duyY6NSpk9BqteKJJ54Qn376qVHbq1evFo0aNRLOzs6iWbNm4qeffjIoLy0tFZMmTRL+/v5Cq9WK7t27i1OnTll9DCxh7rjFxcWVO2Z169Y1qHfHjh0iPDxcODs7i/r164ukpCSjthcsWCDq1KkjnJ2dRfv27cX+/fsNygsLC8W7774rqlevLtzc3MSLL74orl69au0hMJu5Y7Z9+3YRGRkpvL29hYuLi2jYsKH44IMPDP7wClG1x0wIy35HH1RewFK2vaqOm7lj9ssvv4jw8HDh4eEh3N3dRVhYmFi8eLEoKSkxqLcqjxmZTyPEA3lkRERERCrEZ1iIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiRa5fv46AgABMnTpVv23v3r1wdnY2Wm2XiMhSXEuIiBT7+eef0bdvX+zduxehoaEIDw9Hnz59MHv2bHt3jYiqCAYsRGQVOp0OW7duRdu2bXH8+HGkpqZCq9Xau1tEVEUwYCEiqygsLETz5s1x8eJFHD58GC1atLB3l4ioCuEzLERkFWfPnsWVK1dQWlqK8+fP27s7RFTF8A4LESl27949tG/fHuHh4QgNDcXcuXNx/Phx1KpVy95dI6IqggELESk2btw4fP/99zh27Bg8PDzQpUsXeHt7Y8OGDfbuGhFVEfxKiIgU2blzJ+bOnYuVK1fCy8sLDg4OWLlyJXbv3o1FixbZu3tEVEXwDgsRERGpHu+wEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFSPAQsRERGpHgMWIiIiUj0GLERERKR6DFiIiIhI9RiwEBERkeoxYCEiIiLVY8BCREREqseAhYiIiFTv/wHZh8+8LW3EewAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLQUlEQVR4nO3deVzU1eL/8fcAOiwKiCKL4Zr7kmZKqKVevSnXTLtq6XXLLLtFi2tdv2WQpbaaVi7ZJU1bTMusW301U0u9briVlCka5gqaCigqGJzfH32dnxOLMAzwCV/Px2MeD+d8zudzzucwzrznzGexGWOMAAAALMyjvDsAAABwNQQWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeQQWi6hbt67uueee8u4GgArunnvuUd26dV1at7zep1JTU9W/f39Vr15dNptNM2bMKPM+oPwRWMrQxo0bFRcXp7S0tPLuSplKSEjQww8/rObNm8vPz0+1a9fWXXfdpX379uVbf8+ePerZs6eqVKmioKAgDR06VCdPnnSq89NPP+nxxx9X69atVbVqVYWFhalXr17atm1bnu3t3btXY8aMUYcOHeTt7S2bzaaDBw8Wax/mzJmjAQMGqHbt2rLZbIW+aaelpWnUqFEKDg6Wn5+funbtqh07dhSrvfj4eDVt2lTe3t5q2LChXn/9dZf265577pHNZrvq48r9cff4F2bjxo3q1KmTfH19FRoaqkcffVTnzp3LUy8rK0tPPPGEwsPD5ePjo8jISK1atapYbRVlTCXp6NGjuuuuuxQYGCh/f3/16dNHP//8c7HaKm/Hjh1TXFycdu3aVd5dcYsxY8Zo5cqVmjhxohYtWqSePXuWWdtFfY2iDBiUmZdeeslIMsnJyXmWXbx40WRnZ5d9p8pAv379TGhoqHnkkUfMW2+9ZZ599lkTEhJi/Pz8zO7du53qHj582NSoUcM0aNDAzJw500yZMsVUq1bN3HDDDSYrK8tRb9y4cSYwMNCMHDnSvPnmm+bFF180DRo0MJ6enmbVqlVO25w/f77x8PAwLVq0MK1bty7wb1CYOnXqmKCgINOzZ0/j5eVlhg8fnm+9nJwc06FDB+Pn52fi4uLMG2+8YZo1a2aqVq1q9u3bV6S25s6daySZfv36mXnz5pmhQ4caSeb5558v9n5t3LjRLFq0yPGYPHmykWRGjRrlVL5x40ZjTOmMf0F27txpvL29TZs2bcycOXPMk08+aex2u+nZs2eeugMHDjReXl5m/Pjx5s033zRRUVHGy8vLrF+/3q1jevbsWdOwYUNTs2ZN88ILL5jp06ebiIgIc91115lff/21SG1ZQUJCgpFk5s+fn2dZdna2uXjxokvbrVOnToGv/dIUEhJiBg8eXObtFuc1itJHYClDhQWWiuy///2v04edMcbs27fP2O32PG9CDz74oPHx8TG//PKLo2zVqlVGknnzzTcdZdu2bTNnz551WvfXX381wcHBpmPHjk7lp06dMhkZGcYY1/8GBw8eNLm5ucYYY/z8/Ap80/7www+NJLN06VJH2YkTJ0xgYKAZNGjQVds5f/68qV69uunVq5dT+eDBg42fn585ffp0ifarsA8yY0pn/AsSHR1twsLCTHp6uqPsrbfeMpLMypUrHWVbtmwxksxLL73kKLtw4YJp0KCBiYqKumo7xRnTF154wUgyW7dudZTt2bPHeHp6mokTJxZpv6zgan9nV7kjsOTk5JgLFy4Uax2bzWZiYmJK1K4rivoaRdkgsJSR2NhYIynP4/IHzB/fCObPn28kmfXr15tHHnnE1KhRwwQEBJhRo0aZrKwsc+bMGTN06FATGBhoAgMDzYQJExwfqJfl5OSYV1991TRr1szY7XZTs2ZNM2rUKKc36PJ04403mhtvvNGprGbNmmbAgAF56jZq1Mh069btqtv8+9//boKCggpc7o7QWFhgGTBggAkJCTE5OTlO5aNGjTK+vr5X/Wb7xRdfGEnmiy++cCrfuHGjkWQWLVqU73ruCiylMf6ZmZlmz5495uTJk46y9PR04+XlZSZMmOBUNysry1SpUsWMHDnSUTZhwgTj6enp9KFhjDFTp041ksyhQ4ccZSdPnjR79uwxmZmZjrLijGm7du1Mu3bt8uzXbbfdZho0aHDV/c/P8ePHzT333GNq1aplKleubEJDQ80dd9zh9LeqU6eO6dWrl1m5cqW54YYbjN1uN02bNjUff/yx07ZOnTplxo0bZ1q0aGH8/PxM1apVTc+ePc2uXbscddauXZvve83lv/nw4cNNnTp1nLb70ksvmaioKBMUFGS8vb3NjTfe6BS6r+xncQOLJBMTE2Peffdd06xZM+Pl5WU++eQTY4wxR44cMSNGjDA1a9Y0lStXNs2aNTPx8fGOdS+/D/7xURaK8xpF2eAYljLy97//XYMGDZIkvfrqq1q0aJEWLVqk4ODgQtd75JFHlJSUpGeeeUZ33HGH5s2bp0mTJql3797KycnR1KlT1alTJ7300ktatGiR07oPPPCAJkyYoI4dO2rmzJkaMWKE3nvvPfXo0UOXLl0qtN2srCz9+uuvRXq4whij1NRU1ahRw1F29OhRnThxQjfddFOe+u3bt9fOnTuvut2UlBSnbZa1nTt36sYbb5SHh/N/rfbt2+v8+fMFHrdz5fqS8oxB27Zt5eHhUaQxcFVpjf/WrVvVtGlTvfHGG46y3bt367fffsvTVuXKldW6dWuntnbu3KlGjRrJ398/T58kOR2n8cYbb6hp06baunWr0/rS1cc0NzdX33//fYH7f+DAAZ09e/aqY/BH/fr10yeffKIRI0Zo9uzZevTRR3X27FkdOnTIqV5SUpLuvvtuRUdHa9q0afLy8tKAAQOcjtX5+eeftXz5ct1+++2aPn26JkyYoN27d6tz5846duyYJKlp06aaPHmyJGnUqFGO95pbb721wD7OnDlTbdq00eTJkzV16lRH21988UWx9zc/a9as0ZgxY3T33Xdr5syZqlu3rlJTU3XzzTfr66+/1sMPP6yZM2fq+uuv18iRIx0H1d56662O97W//vWvjn0pzJkzZ4r0vnX+/PlCt1Oc1yjKSHknpmtJYd+CC5ph6dGjh9PMSVRUlLHZbOaf//yno+y3334z1113nencubOjbP369UaSee+995zaWbFiRb7lf1TQN5v8Hq5YtGiRkeT0beryt/+FCxfmqT9hwgQjqdAZinXr1hmbzWYmTZpUYJ3SnmHx8/Mz9957b57yy9/yV6xYUei2Y2JijKenZ77LgoODzcCBA/Nd5o4ZltIa/8vf+GNjYx1lS5cuNZLMunXr8mxnwIABJjQ01PG8efPm5i9/+Uueej/88IORZObOnesouzyTuXbtWkdZUcf05MmTRpKZPHlynnqzZs0yksxPP/2U/84X4MyZM3l+zspPnTp1jCSnGZX09HQTFhZm2rRp4yi7ePFintm75ORkY7fbnfpd2N85vxmW8+fPOz3Pzs42LVq0yDPurs6weHh4mB9++MGpfOTIkSYsLCzPsUEDBw40AQEBTn3S/83SFMXlsbza48rXY36K8xpF2fAqnRgEdxk5cqRsNpvjeWRkpDZt2qSRI0c6yjw9PXXTTTdp+/btjrKlS5cqICBAf/3rX51mQdq2basqVapo7dq1+sc//lFguz169Cj2WRhF9dNPPykmJkZRUVEaPny4o/zChQuSJLvdnmcdb29vR538lp84cUL/+Mc/VK9ePT3++OOl0u+iKKh/V/b/autXrlw532Xe3t5XXb8kSmv8u3TpImNMsdq6cj+LM6ZxcXGKi4vL01ZRxrSo+18cPj4+qly5sr755huNHDlS1apVK7BueHi47rzzTsdzf39/DRs2TC+88IJSUlIUGhrq1LecnBylpaWpSpUqaty4cbHPRPtjPy87c+aMcnJydMstt+iDDz5weZtX6ty5s5o1a+Z4bozRxx9/rLvuukvGGKf3qB49emjx4sXasWOHOnbsWOy23nvvvSL9nerXr1/o8uK8RlE2CCwWV7t2bafnAQEBkqSIiIg85WfOnHE8T0pKUnp6umrWrJnvdk+cOFFou2FhYQoLC3Oly4VKSUlRr169FBAQoI8++kienp6OZZffNLOysvKsd/HiRac6V8rMzNTtt9+us2fPasOGDapSpYpLfTt58qRycnIcz6tUqVLsbfn4+BSp/wW15ePjo+zs7Hy3ffHixXz3313Kcvyv1taV7RR1TAtrqyhj6ur+F8Zut+uFF17QuHHjFBISoptvvlm33367hg0bptDQUKe6119/vdOXE0lq1KiRJOngwYMKDQ1Vbm6uZs6cqdmzZys5OdnpNVS9evVi9e1Kn3/+uZ577jnt2rXLaf//2B9X1atXz+n5yZMnlZaWpnnz5mnevHn5rnO196iCuBJy8lOc1yjKBoHF4q78QL9a+ZXfYnNzc1WzZk299957+a5/tWNnLly4oPT09CL18Y9vvAVJT09XdHS00tLStH79eoWHhzstvxyQjh8/nmfd48ePKygoKM+3nezsbP3973/X999/r5UrV6pFixZF6kt+2rVrp19++cXxPDY2Ns+39asJCwsrsP+SHPtcUFthYWHKycnRiRMnnMJmdna2Tp06lWfM3Kksx/9qbV25n2FhYTp69Gi+9SRddUyKOqaX968of7/iGD16tHr37q3ly5dr5cqVmjRpkqZNm6Y1a9aoTZs2xdrW1KlTNWnSJN1777169tlnFRQUJA8PD40ePVq5ubnF7pskrV+/XnfccYduvfVWzZ49W2FhYapUqZLmz5+v999/36Vt/tEfP9wv93XIkCFOs6xXatWqlUtt/fHLQEGu9oWkOK9RlA0CSxly17eVomjQoIG+/vprdezY0aVvAh9++KFGjBhRpLp/nO7Pz8WLF9W7d2/t27dPX3/9tdP08GW1atVScHBwvhcf27p1q1q3bu1Ulpubq2HDhmn16tVasmSJOnfuXKT+FuSPU8lXmzLOT+vWrbV+/Xrl5uY6HXi7ZcsW+fr6Or4xF9TW5X3ctm2b/va3vzmWb9u2Tbm5uXnGwJ3KcvxbtGghLy8vbdu2TXfddZejPDs7W7t27XIqa926tdauXauMjAynA2+3bNniWF6Yoo6ph4eHWrZsme/+b9myRfXr11fVqlWLvI9XatCggcaNG6dx48YpKSlJrVu31iuvvKJ3333XUWf//v0yxji9T1w+SPvylWk/+ugjde3aVfHx8U7bT0tLczrYuTjvNR9//LG8vb21cuVKp0A6f/78Yu1jcQQHB6tq1arKyclR9+7d3brtP34ZKMjVvpAU5zWKskFgKUN+fn6SVCZXur3rrrs0e/ZsPfvss5o6darTst9++03nzp1TYGBggeu78xiWnJwc3X333dq0aZM+/fRTRUVFFVi3X79+euedd3T48GHHz16rV6/Wvn37NGbMGKe6jzzyiD788EO9+eab+vvf/17ifrpjKrl///766KOPtGzZMvXv31+S9Ouvv2rp0qXq3bu34wOhoLb+8pe/KCgoSHPmzHH6cJ0zZ458fX3Vq1evEvexMKUx/ufPn9ehQ4dUo0YNx4dqQECAunfvrnfffVeTJk1yBIFFixbp3LlzGjBggGP9/v376+WXX9a8efM0fvx4Sb9P08+fP1+RkZFOP49ePgOkdu3a8vX1lVS8Me3fv7/+9a9/adu2bY6zQ/bu3as1a9Y42i6O8+fPy8PDw3EMjPR7eKlatWqenxqOHTumTz75xDGWGRkZWrhwoVq3bu2YxfT09MzzBWHp0qU6evSorr/+ekdZcd5rPD09ZbPZnGYlDh48qOXLlxdrX4vD09NT/fr10/vvv6/ExMQ8M3MnT5686ixwQdx1DEtxXqMoGwSWMtS2bVtJ0pNPPqmBAweqUqVK6t27t+PNxZ06d+6sBx54QNOmTdOuXbt02223qVKlSkpKStLSpUs1c+ZMxwdqftx5DMu4ceP02WefqXfv3jp9+rTTt0rp92nhy/7nf/5HS5cuVdeuXfXYY4/p3Llzeumll9SyZUunGZ8ZM2Zo9uzZioqKkq+vb55t3nnnnY5xTU9Pd1yG/b///a+k309/DQwMVGBgoB5++OGr7sN//vMffffdd5KkS5cu6fvvv9dzzz0nSbrjjjsc09f9+/fXzTffrBEjRujHH39UjRo1NHv2bOXk5OiZZ565ajs+Pj569tlnFRMTowEDBqhHjx5av3693n33XU2ZMkVBQUGOuu7Yrz8qjfHfunWrunbtmucb7ZQpU9ShQwd17txZo0aN0pEjR/TKK6/otttuc7r0emRkpAYMGKCJEyfqxIkTuv766/XOO+/o4MGDeWYa3njjDT3zzDNau3atunTpUuwxfeihh/TWW2+pV69eGj9+vCpVqqTp06crJCRE48aNc2qrS5cu+vbbbwudYdy3b5+6deumu+66S82aNZOXl5c++eQTpaamauDAgU51GzVqpJEjRyohIUEhISF6++23lZqa6jTTcfvtt2vy5MkaMWKEOnTooN27d+u9997L8+HboEEDBQYGau7cuapatar8/PwUGRmZ51gSSerVq5emT5+unj176h//+IdOnDihWbNm6frrr9f3339f4L6V1PPPP6+1a9cqMjJS999/v5o1a6bTp09rx44d+vrrr3X69GmXtuuuY1ikor9GUUbK7wSla9Ozzz5ratWqZTw8PIp04biEhASn9S+ftnnlRbiM+f1URT8/vzztzZs3z7Rt29b4+PiYqlWrmpYtW5rHH3/cHDt2zO37VpDOnTsX67ToxMREc9tttxlfX18TGBhoBg8ebFJSUpzqDB8+vNBtXnl6b3JycoH1/nh6Z0EKa++Pp46ePn3ajBw50lSvXt34+vqazp075/k7Xs28efNM48aNTeXKlU2DBg3Mq6++mufCgK7sV1GugOru8c/vtObL1q9fbzp06GC8vb1NcHCwiYmJcVy990oXLlww48ePN6GhocZut5t27drle4p4fqc1X1aUMTXm99sT9O/f3/j7+5sqVaqY22+/3SQlJeWp17Zt26ue2vrrr7+amJgY06RJE+Pn52cCAgJMZGSkWbJkiVO9Ky8c16pVK2O3202TJk3yXLzt4sWLZty4cSYsLMz4+PiYjh07mk2bNpnOnTs7XdbAGGM+/fRTx4Xarvyb53dac3x8vGnYsKGj3fnz5zvG8o/9dPXCcflJTU01MTExJiIiwlSqVMmEhoaabt26mXnz5hV5G6WtqK9RlD6bMUU4AAEA4HD27FkFBQVpxowZiomJKfH26tatqxYtWujzzz93Q++Aiokr3QJAMa1bt061atXS/fffX95dAa4ZHMMCAMXUq1evUj8A2upSUlIKXe7j4+O4bhTgDgQWAECxXe2g/OHDh2vBggVl0xlcEwgsAFDODh48WN5dKLarXfaAC6vB3TjoFgAAWB4H3QIAAMsjsAAAAMsjsAAAAMsjsLjBunXr1Lt3b4WHh8tms7l0Dw5jjF5++WU1atRIdrtdtWrV0pQpU9zfWQAA/oQ4S8gNMjMzdcMNN+jee+91+SZ8jz32mL766iu9/PLLatmypU6fPu3yvTQAAKhoOEvIzWw2mz755BP17dvXUZaVlaUnn3xSH3zwgdLS0tSiRQu98MILjpuz7dmzR61atVJiYqIaN25cPh0HAMDC+EmoDDz88MPatGmTFi9erO+//14DBgxQz549lZSUJOn3OwHXr19fn3/+uerVq6e6devqvvvuY4YFAID/Q2ApZYcOHdL8+fO1dOlS3XLLLWrQoIHGjx+vTp06OW4b//PPP+uXX37R0qVLtXDhQi1YsEDbt29X//79y7n3AABYA8ewlLLdu3crJydHjRo1cirPyspS9erVJUm5ubnKysrSwoULHfXi4+PVtm1b7d27l5+JAADXPAJLKTt37pw8PT21fft2eXp6Oi2rUqWKpN/vyeHl5eUUapo2bSrp9xkaAgsA4FpHYCllbdq0UU5Ojk6cOKFbbrkl3zodO3bUb7/9pgMHDqhBgwaSpH379kmS6tSpU2Z9BQDAqjhLyA3OnTun/fv3S/o9oEyfPl1du3ZVUFCQateurSFDhui///2vXnnlFbVp00YnT57U6tWr1apVK/Xq1Uu5ublq166dqlSpohkzZig3N1cxMTHy9/fXV199Vc57BwBA+SOwuME333yjrl275im/fHv1S5cu6bnnntPChQt19OhR1ahRQzfffLOeeeYZtWzZUpJ07NgxPfLII/rqq6/k5+en6OhovfLKKwoKCirr3QEAwHIILAAAwGXr1q3TSy+9pO3bt+v48eN5rkV2pX/+859688039eqrr2r06NHFaofTmgEAgMsuX+191qxZhdb75JNPtHnzZoWHh7vUDgfdAgAAl0VHRys6OrrQOkePHtUjjzyilStXqlevXi61Q2BxUW5uro4dO6aqVavKZrOVd3cAABZmjNHZs2cVHh4uD4/S+3Hj4sWLys7OLvF2jDF5Ptvsdrvsdnuxt5Wbm6uhQ4dqwoQJat68uct9IrC46NixY4qIiCjvbgAA/kQOHz6s6667rlS2ffHiRYXWrqP0kydKvK0qVaro3LlzTmWxsbGKi4sr9rZeeOEFeXl56dFHHy1RnwgsLqpataok6fC0KfL39i7n3gB/Hq+vW1no8kdu7VHo8v+0vKPAZQdnxbjUp6K0C5RExsWLipj4pOOzozRkZ2cr/eQJvbwuQT5VXG/nwrmzGn9rOx0+fFj+/v6OcldmV7Zv366ZM2dqx44dJf41gsDiossD7+/tLX8fn3LuDfDn4V2pUqHLr/b/ydev4Dfiq227JO0C7lAWhxD4VKlaosBymb+/v1NgccX69et14sQJ1a5d21GWk5OjcePGacaMGTp48GCRt0VgAQAApWLo0KHq3r27U1mPHj00dOhQjRgxoljbIrAAAACXXXm1d0lKTk7Wrl27HFd7v3yj38sqVaqk0NDQYt8nj8ACAABctm3bNqervY8dO1bS/7/au7sQWAAAgMu6dOmi4lw0vzjHrVyJwAKgTI37i2sXjbrszu+WFbywhNsGYF1cmh8AAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFgegQUAAFieV3l3AAAAuE/c0ZPy8Lvg8vq5meckSe3atZOnp6diYmIUExPjru65jMACAADySEhIkL+/f3l3w4GfhAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOWVa2CJi4uTzWZzejRp0qTA+l26dMlT32azqVevXo46xhg9/fTTCgsLk4+Pj7p3766kpCSn7dxxxx2qXbu2vL29FRYWpqFDh+rYsWOltp8AAKBkyn2GpXnz5jp+/LjjsWHDhgLrLlu2zKluYmKiPD09NWDAAEedF198Ua+99prmzp2rLVu2yM/PTz169NDFixcddbp27aolS5Zo7969+vjjj3XgwAH179+/VPcTAAC4zqvcO+DlpdDQ0CLVDQoKcnq+ePFi+fr6OgKLMUYzZszQU089pT59+kiSFi5cqJCQEC1fvlwDBw6UJI0ZM8axjTp16uhf//qX+vbtq0uXLqlSpUru2C0AAOBG5T7DkpSUpPDwcNWvX1+DBw/WoUOHirxufHy8Bg4cKD8/P0lScnKyUlJS1L17d0edgIAARUZGatOmTflu4/Tp03rvvffUoUOHQsNKVlaWMjIynB4AAKBslGtgiYyM1IIFC7RixQrNmTNHycnJuuWWW3T27Nmrrrt161YlJibqvvvuc5SlpKRIkkJCQpzqhoSEOJZd9sQTT8jPz0/Vq1fXoUOH9Omnnxba3rRp0xQQEOB4REREFHU3AQCosNatW6fevXsrPDxcNptNy5cvdyy7dOmSnnjiCbVs2VJ+fn4KDw/XsGHDXDputFwDS3R0tAYMGKBWrVqpR48e+vLLL5WWlqYlS5Zcdd34+Hi1bNlS7du3d6ntCRMmaOfOnfrqq6/k6empYcOGyRhTYP2JEycqPT3d8Th8+LBL7QIAUJFkZmbqhhtu0KxZs/IsO3/+vHbs2KFJkyZpx44dWrZsmfbu3as77rij2O2U+zEsVwoMDFSjRo20f//+QutlZmZq8eLFmjx5slP55WNhUlNTFRYW5ihPTU1V69atnerWqFFDNWrUUKNGjdS0aVNFRERo8+bNioqKyrdNu90uu93uwl4BAFBxRUdHKzo6Ot9lAQEBWrVqlVPZG2+8ofbt2+vQoUOqXbt2kdsp92NYrnTu3DkdOHDAKWzkZ+nSpcrKytKQIUOcyuvVq6fQ0FCtXr3aUZaRkaEtW7YUGEQkKTc3V9Lvx6kAAADlOW7TXZ+R6enpstlsCgwMLNZ65TrDMn78ePXu3Vt16tTRsWPHFBsbK09PTw0aNEiSNGzYMNWqVUvTpk1zWi8+Pl59+/ZV9erVncptNptGjx6t5557Tg0bNlS9evU0adIkhYeHq2/fvpKkLVu2KCEhQZ06dVK1atV04MABTZo0SQ0aNCg01AAA8GfwbzNUfsb1+YhMk6s+Up5jNWNjYxUXF1eivl28eFFPPPGEBg0aJH9//2KtW66B5ciRIxo0aJBOnTql4OBgderUSZs3b1ZwcLAk6dChQ/LwcB70vXv3asOGDfrqq6/y3ebjjz+uzMxMjRo1SmlpaerUqZNWrFghb29vSZKvr6+WLVum2NhYZWZmKiwsTD179tRTTz3FTz4AAPyfw4cPO4WKkn5GXrp0SXfddZeMMZozZ06x1y/XwLJ48eJCl3/zzTd5yho3blzowbE2m02TJ0/Oc3zLZS1bttSaNWuK1U8AAK41/v7+xZ4FKcjlsPLLL79ozZo1Lm3XUgfdAgCAiuVyWElKStLatWvzHM5RVAQWAADgsnPnzjmd3ZucnKxdu3YpKChIYWFh6t+/v3bs2KHPP/9cOTk5juuiBQUFqXLlykVuh8ACAABctm3bNnXt2tXxfOzYsZKk4cOHKy4uTp999pkk5bm8yNq1a9WlS5cit0NgAQAALuvSpUuhx5YWtqw4LHUdFgAAgPwQWAAAgOURWAAAgOURWAAAgOVx0C0AAEXwypovCl0+7i+9yqgn1yZmWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOURWAAAgOVxWjMAAEXAacvlixkWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeVyHBQCACsTP99/y8/VzfQMmU1J3tWvXTp6enoqJiVFMTIzb+ucqAgsAAMgjISFB/v7+5d0NB34SAgAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAAlkdgAQAALlu3bp169+6t8PBw2Ww2LV++3Gm5MUZPP/20wsLC5OPjo+7duyspKanY7RBYAACAyzIzM3XDDTdo1qxZ+S5/8cUX9dprr2nu3LnasmWL/Pz81KNHD128eLFY7Xi5o7MAAODaFB0drejo6HyXGWM0Y8YMPfXUU+rTp48kaeHChQoJCdHy5cs1cODAIrfDDAsAAMgjIyPD6ZGVlVXsbSQnJyslJUXdu3d3lAUEBCgyMlKbNm0q1raYYQEAoAJpmeYr/2w/l9fPOG8kSREREU7lsbGxiouLK9a2UlJSJEkhISFO5SEhIY5lRUVgAQAAeRw+fFj+/v6O53a7vRx7w09CAAAgH/7+/k4PVwJLaGioJCk1NdWpPDU11bGsqAgsAACgVNSrV0+hoaFavXq1oywjI0NbtmxRVFRUsbbFT0IAAMBl586d0/79+x3Pk5OTtWvXLgUFBal27doaPXq0nnvuOTVs2FD16tXTpEmTFB4err59+xarHQILAABw2bZt29S1a1fH87Fjx0qShg8frgULFujxxx9XZmamRo0apbS0NHXq1EkrVqyQt7d3sdohsAAAAJd16dJFxpgCl9tsNk2ePFmTJ08uUTscwwIAACyPwAIAACyPwAIAACyPwAIAACyvXANLXFycbDab06NJkyYF1u/SpUue+jabTb169XLUudptrA8ePKiRI0eqXr168vHxUYMGDRQbG6vs7OxS3VcAAOC6cj9LqHnz5vr6668dz728Cu7SsmXLnILFqVOndMMNN2jAgAGOssu3sX7nnXcc53v36NFDP/74o7y9vfXTTz8pNzdXb775pq6//nolJibq/vvvV2Zmpl5++eXS2UkAAFAi5R5YvLy8inx53qCgIKfnixcvlq+vryOwFOU21j179lTPnj0d26hfv7727t2rOXPmEFgAALCocj+GJSkpSeHh4apfv74GDx6sQ4cOFXnd+Ph4DRw4UH5+v9+V0tXbWKenp+cJQ3+UlZWV51bbAACgbJRrYImMjNSCBQu0YsUKzZkzR8nJybrlllt09uzZq667detWJSYm6r777nOUuXIb6/379+v111/XAw88UGh706ZNU0BAgOPxx9tuAwCA0lOugSU6OloDBgxQq1at1KNHD3355ZdKS0vTkiVLrrpufHy8WrZsqfbt27vc/tGjR9WzZ08NGDBA999/f6F1J06cqPT0dMfj8OHDLrcLAACKp9x/ErpSYGCgGjVq5HQTpfxkZmZq8eLFGjlypFN5cW5jfezYMXXt2lUdOnTQvHnzrto3u92e51bbAACgbFgqsJw7d04HDhxQWFhYofWWLl2qrKwsDRkyxKm8qLexPnr0qLp06aK2bdtq/vz58vCw1DAAAIA/KNdP6vHjx+vbb7/VwYMHtXHjRt15553y9PTUoEGDJEnDhg3TxIkT86wXHx+vvn37qnr16k7lNpvNcRvrzz77TLt379awYcOcbmN9OazUrl1bL7/8sk6ePKmUlJQCj3EBAADlr1xPaz5y5IgGDRqkU6dOKTg4WJ06ddLmzZsVHBwsSTp06FCe2Y+9e/dqw4YN+uqrr/Ld5tVuY71q1Srt379f+/fv13XXXee0bmF3mwQAAOXHZviUdklGRoYCAgKU/uor8vfxKe/uAAAsLOPCBQWMGaf09PRSOwby8udS6kcb5e9bxfXtnD+nkP4dSrWvruDgDQAAYHkEFgAAYHkEFgAAYHkEFgAAYHnlfvNDAADgPqc2pCvb/pvL65/NypQktWvXTp6enoqJiVFMTIy7uucyAgsAAMgjISGBs4QAAACKg8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAAAsj8ACAABclpOTo0mTJqlevXry8fFRgwYN9Oyzz8oY49Z2vNy6NQAAcE154YUXNGfOHL3zzjtq3ry5tm3bphEjRiggIECPPvqo29ohsAAAAJdt3LhRffr0Ua9evSRJdevW1QcffKCtW7e6tR1+EgIAAC7r0KGDVq9erX379kmSvvvuO23YsEHR0dFubYcZFgAAkEdGRobTc7vdLrvdnqfev/71L2VkZKhJkyby9PRUTk6OpkyZosGDB7u1PwQWAAAqkGW/vCrvSpVcXv/ipUuSpIiICKfy2NhYxcXF5am/ZMkSvffee3r//ffVvHlz7dq1S6NHj1Z4eLiGDx/ucj/+iMACAADyOHz4sPz9/R3P85tdkaQJEyboX//6lwYOHChJatmypX755RdNmzaNwAIAAEqXv7+/U2ApyPnz5+Xh4XxIrKenp3Jzc93aHwILAABwWe/evTVlyhTVrl1bzZs3186dOzV9+nTde++9bm2HwAIAAFz2+uuva9KkSXrooYd04sQJhYeH64EHHtDTTz/t1nYILAAAwGVVq1bVjBkzNGPGjFJth+uwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAy+NuzQCuCasbvlzo8m5J48uoJwBcwQwLAACwPAILAACwPAILAACwvGIHluHDh2vdunWl0RcAAIB8FTuwpKenq3v37mrYsKGmTp2qo0ePlka/AAAAHIodWJYvX66jR4/qwQcf1Icffqi6desqOjpaH330kS5dulQafQQAANc4mzHGlGQDO3bs0Pz58/Xvf/9bVapU0ZAhQ/TQQw+pYcOG7uqjJWVkZCggIEDpr74ifx+f8u4OAMDCMi5cUMCYcUpPT5e/v3/ptPF/n0tfvb9Ffr5VXN5O5vlzuu0fkWrUqJE8PT0VExOjmJgYN/bUNSW6Dsvx48e1atUqrVq1Sp6envrb3/6m3bt3q1mzZnrxxRc1ZswYd/UTAACUoYSEhFILV64o9k9Cly5d0scff6zbb79dderU0dKlSzV69GgdO3ZM77zzjr7++mstWbJEkydPLo3+AgCAa1CxZ1jCwsKUm5urQYMGaevWrWrdunWeOl27dlVgYKAbugcAAODCDMurr76qY8eOadasWfmGFUkKDAxUcnLyVbcVFxcnm83m9GjSpEmB9bt06ZKnvs1mU69evRx1jDF6+umnFRYWJh8fH3Xv3l1JSUlO25kyZYo6dOggX19fghUAAH8CxQ4sQ4cOlbe3t9s60Lx5cx0/ftzx2LBhQ4F1ly1b5lQ3MTFRnp6eGjBggKPOiy++qNdee01z587Vli1b5Ofnpx49eujixYuOOtnZ2RowYIAefPBBt+0HAAAoPeV+80MvLy+FhoYWqW5QUJDT88WLF8vX19cRWIwxmjFjhp566in16dNHkrRw4UKFhIRo+fLlGjhwoCTpmWeekSQtWLDATXsBAABKU7kHlqSkJIWHh8vb21tRUVGaNm2aateuXaR14+PjNXDgQPn5+UmSkpOTlZKSou7duzvqBAQEKDIyUps2bXIEFgB/XoXddZk7LgMVV7kGlsjISC1YsECNGzfW8ePH9cwzz+iWW25RYmKiqlatWui6W7duVWJiouLj4x1lKSkpkqSQkBCnuiEhIY5lrsrKylJWVpbjeUZGRom2BwAAiq5cA0t0dLTj361atVJkZKTq1KmjJUuWaOTIkYWuGx8fr5YtW6p9+/al3U1J0rRp0xw/JQEAgLJlqbs1BwYGqlGjRtq/f3+h9TIzM7V48eI8oebysTCpqalO5ampqUU+TqYgEydOVHp6uuNx+PDhEm0PAAAUnaUCy7lz53TgwAGFhYUVWm/p0qXKysrSkCFDnMrr1aun0NBQrV692lGWkZGhLVu2KCoqqkR9s9vt8vf3d3oAAICyUa4/CY0fP169e/dWnTp1dOzYMcXGxsrT01ODBg2SJA0bNky1atXStGnTnNaLj49X3759Vb16dadym82m0aNH67nnnlPDhg1Vr149TZo0SeHh4erbt6+j3qFDh3T69GkdOnRIOTk52rVrlyTp+uuvV5Uqrt9/AQAAlI5yDSxHjhzRoEGDdOrUKQUHB6tTp07avHmzgoODJf0eLDw8nCeB9u7dqw0bNuirr77Kd5uPP/64MjMzNWrUKKWlpalTp05asWKF07Vjnn76ab3zzjuO523atJEkrV27Vl26dHHzXgIAgJIq8d2ar1XcrRkAUFR/xrs1l2ZfXWGpY1gAAADyQ2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAAAlcvToUQ0ZMkTVq1eXj4+PWrZsqW3btrm1jXK90i0AAPhzO3PmjDp27KiuXbvqf//3fxUcHKykpCRVq1bNre0QWAAAgMteeOEFRUREaP78+Y6yevXqub0dfhICAAB5ZGRkOD2ysrLyrffZZ5/ppptu0oABA1SzZk21adNGb731ltv7wwwLAAAVSGTqhhLd4y7jwgVJUkREhFN5bGys4uLi8tT/+eefNWfOHI0dO1b/8z//o4SEBD366KOqXLmyhg8f7nI//ojAAgAA8jh8+LDTzQ/tdnu+9XJzc3XTTTdp6tSpkqQ2bdooMTFRc+fOdWtg4SchAACQh7+/v9OjoMASFhamZs2aOZU1bdpUhw4dcmt/CCwAAMBlHTt21N69e53K9u3bpzp16ri1HQILAABw2ZgxY7R582ZNnTpV+/fv1/vvv6958+YpJibGre0QWAAAgMvatWunTz75RB988IFatGihZ599VjNmzNDgwYPd2g4H3QIAgBK5/fbbdfvtt5dqG8ywAAAAyyOwAAAAy+MnIfwprG74cqHLuyWNL6OeAADKAzMsAADA8ggsAADA8ggsAADA8ggsAADA8ggsAADA8ggsAADA8ggsAADA8rgOC/4UuM4KLivsmjy8ToCKixkWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeQQWAABgeZzWDOBPhVOXgWsTMywAAMDyCCwAAMDy+EkIAIAKZO+suari6eny+udyciRJ7dq1k6enp2JiYhQTE+Ou7rmMwAIAAPJISEiQv79/eXfDgZ+EAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA2zz//POy2WwaPXq0W7dLYAEAAG6RkJCgN998U61atXL7tss1sMTFxclmszk9mjRpUmD9Ll265Klvs9nUq1cvRx1jjJ5++mmFhYXJx8dH3bt3V1JSktN2Tp8+rcGDB8vf31+BgYEaOXKkzp07V2r7CQBARXfu3DkNHjxYb731lqpVq+b27Zf7DEvz5s11/Phxx2PDhg0F1l22bJlT3cTERHl6emrAgAGOOi+++KJee+01zZ07V1u2bJGfn5969OihixcvOuoMHjxYP/zwg1atWqXPP/9c69at06hRo0p1PwEA+DPJyMhwemRlZRVaPyYmRr169VL37t1LpT9epbLV4nTAy0uhoaFFqhsUFOT0fPHixfL19XUEFmOMZsyYoaeeekp9+vSRJC1cuFAhISFavny5Bg4cqD179mjFihVKSEjQTTfdJEl6/fXX9be//U0vv/yywsPD3bh3AACUreHjvOTp4+ny+jkXbNKDUkREhFN5bGys4uLi8l1n8eLF2rFjhxISElxu92rKfYYlKSlJ4eHhql+/vgYPHqxDhw4Ved34+HgNHDhQfn5+kqTk5GSlpKQ4pbuAgABFRkZq06ZNkqRNmzYpMDDQEVYkqXv37vLw8NCWLVsKbCsrKytP2gQAoKI6fPiw0tPTHY+JEycWWO+xxx7Te++9J29v71LrT7kGlsjISC1YsEArVqzQnDlzlJycrFtuuUVnz5696rpbt25VYmKi7rvvPkdZSkqKJCkkJMSpbkhIiGNZSkqKatas6bTcy8tLQUFBjjr5mTZtmgICAhyPPyZPAAAqEn9/f6eH3W7Pt9727dt14sQJ3XjjjfLy8pKXl5e+/fZbvfbaa/Ly8lJOTo5b+lOuPwlFR0c7/t2qVStFRkaqTp06WrJkiUaOHFnouvHx8WrZsqXat29f2t2UJE2cOFFjx451PM/IyCC0AACued26ddPu3budykaMGKEmTZroiSeekKen6z9PXancj2G5UmBgoBo1aqT9+/cXWi8zM1OLFy/W5MmTncovHwuTmpqqsLAwR3lqaqpat27tqHPixAmn9X777TedPn260GNp7HZ7gekSAIBrVdWqVdWiRQunMj8/P1WvXj1PeUmU+zEsVzp37pwOHDjgFDbys3TpUmVlZWnIkCFO5fXq1VNoaKhWr17tKMvIyNCWLVsUFRUlSYqKilJaWpq2b9/uqLNmzRrl5uYqMjLSjXsDAADcpVxnWMaPH6/evXurTp06OnbsmGJjY+Xp6alBgwZJkoYNG6ZatWpp2rRpTuvFx8erb9++ql69ulP55SvrPffcc2rYsKHq1aunSZMmKTw8XH379pUkNW3aVD179tT999+vuXPn6tKlS3r44Yc1cOBAzhACAMANvvnmG7dvs1wDy5EjRzRo0CCdOnVKwcHB6tSpkzZv3qzg4GBJ0qFDh+Th4TwJtHfvXm3YsEFfffVVvtt8/PHHlZmZqVGjRiktLU2dOnXSihUrnI5cfu+99/Twww+rW7du8vDwUL9+/fTaa6+V3o4CAIASsRljTHl34s8oIyNDAQEBSn/1Ffn7+JR3dwAAFpZx4YICxoxTenq6/P39S6eN//tcajqnaQmvw5KjPQ/uKdW+usJSx7AAAADkh8ACAAAsj8ACAAAsj8ACAAAsz1IXjgOuNasbvlzo8m5J48uoJwBgbcywAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAyyOwAAAAy+M6LEA54jorAFA0zLAAAADLI7AAAADLI7AAAADLI7AAAADLI7AAAADL4ywhAAAqkM1hPeXvZ3d5/YzMLAVoj9q1aydPT0/FxMQoJibGjT10DYEFAADkkZCQIH9///LuhgM/CQEAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAJdNmzZN7dq1U9WqVVWzZk317dtXe/fudXs7BBYAAOCyb7/9VjExMdq8ebNWrVqlS5cu6bbbblNmZqZb2/Fy69YAAMA1ZcWKFU7PFyxYoJo1a2r79u269dZb3dYOgQUAAOSRkZHh9Nxut8tut191vfT0dElSUFCQW/tDYAEAoAL5T5WH5OtX1eX1z9vOSnpVERERTuWxsbGKi4srdN3c3FyNHj1aHTt2VIsWLVzuQ34ILAAAII/Dhw/L39/f8bwosysxMTFKTEzUhg0b3N4fAgsAAMjD39/fKbBczcMPP6zPP/9c69at03XXXef2/hBYAACAy4wxeuSRR/TJJ5/om2++Ub169UqlHQILAABwWUxMjN5//319+umnqlq1qlJSUiRJAQEB8vHxcVs7XIcFAAC4bM6cOUpPT1eXLl0UFhbmeHz44YdubYcZFgAA4DJjTJm0wwwLAACwPAILAACwPAILAACwPAILAACwPAILAACwPAILAACwPAILAACwPAILAACwPAILAACwPAILAACwvHINLHFxcbLZbE6PJk2aFLpOWlqaYmJiFBYWJrvdrkaNGunLL790LD979qxGjx6tOnXqyMfHRx06dFBCQoLTNlJTU3XPPfcoPDxcvr6+6tmzp5KSkkplHwEAQMmV+72Emjdvrq+//trx3Mur4C5lZ2frr3/9q2rWrKmPPvpItWrV0i+//KLAwEBHnfvuu0+JiYlatGiRwsPD9e6776p79+768ccfVatWLRlj1LdvX1WqVEmffvqp/P39NX36dEcdPz+/0txdAADggnIPLF5eXgoNDS1S3bffflunT5/Wxo0bValSJUlS3bp1HcsvXLigjz/+WJ9++qluvfVWSb/P4vznP//RnDlz9NxzzykpKUmbN29WYmKimjdvLun3O02Ghobqgw8+0H333efeHQQAACVW7sewJCUlKTw8XPXr19fgwYN16NChAut+9tlnioqKUkxMjEJCQtSiRQtNnTpVOTk5kqTffvtNOTk58vb2dlrPx8dHGzZskCRlZWVJklMdDw8P2e12R538ZGVlKSMjw+kBAADKRrkGlsjISC1YsEArVqzQnDlzlJycrFtuuUVnz57Nt/7PP/+sjz76SDk5Ofryyy81adIkvfLKK3ruueckSVWrVlVUVJSeffZZHTt2TDk5OXr33Xe1adMmHT9+XJLUpEkT1a5dWxMnTtSZM2eUnZ2tF154QUeOHHHUyc+0adMUEBDgeERERLh/QAAAQL7KNbBER0drwIABatWqlXr06KEvv/xSaWlpWrJkSb71c3NzVbNmTc2bN09t27bV3XffrSeffFJz58511Fm0aJGMMapVq5bsdrtee+01DRo0SB4ev+9qpUqVtGzZMu3bt09BQUHy9fXV2rVrFR0d7aiTn4kTJyo9Pd3xOHz4sHsHAwAAFKjcj2G5UmBgoBo1aqT9+/fnuzwsLEyVKlWSp6eno6xp06ZKSUlRdna2KleurAYNGujbb79VZmamMjIyFBYWprvvvlv169d3rNO2bVvt2rVL6enpys7OVnBwsCIjI3XTTTcV2De73S673e6+nQUAAEVW7sewXOncuXM6cOCAwsLC8l3esWNH7d+/X7m5uY6yffv2KSwsTJUrV3aq6+fnp7CwMJ05c0YrV65Unz598mwvICBAwcHBSkpK0rZt2/KtAwAAyl+5Bpbx48fr22+/1cGDB7Vx40bdeeed8vT01KBBgyRJw4YN08SJEx31H3zwQZ0+fVqPPfaY9u3bpy+++EJTp05VTEyMo87KlSu1YsUKJScna9WqVeratauaNGmiESNGOOosXbpU33zzjX7++Wd9+umn+utf/6q+ffvqtttuK7udBwAARVauPwkdOXJEgwYN0qlTpxQcHKxOnTpp8+bNCg4OliQdOnTI6biSiIgIrVy5UmPGjFGrVq1Uq1YtPfbYY3riiSccddLT0zVx4kQdOXJEQUFB6tevn6ZMmeI4DVqSjh8/rrFjxyo1NVVhYWEaNmyYJk2aVHY7DgBAKZn4+U552H1dXj8367wkqV27dvL09FRMTIzTxEB5sRljTHl34s8oIyNDAQEBSn/1Ffn7+JR3dwAAFpZx4YICxoxTenq6/P39S6eN//tcihi9pMSB5fCMu0q1r66w1DEsAAAA+SGwAAAAyyOwAAAAy7PUdVgAuM/qhi8XuKxb0vgy7AmuRZ/c8PdCl9/53bIy6gkqCmZYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5RFYAACA5XFaM1BBceoyylNFPG25sEsFSPyfK23MsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMsjsAAAAMvjOiwAABQB11kpX8ywAAAAyyOwAAAAyyOwAACAEps1a5bq1q0rb29vRUZGauvWrW7dPoEFAACUyIcffqixY8cqNjZWO3bs0A033KAePXroxIkTbmuDwAIAAEpk+vTpuv/++zVixAg1a9ZMc+fOla+vr95++223tcFZQi4yxkiSMi5eLOeeAACs7vJnxeXPjtKUm3XeLetnZGQ4ldvtdtnt9jz1s7OztX37dk2cONFR5uHhoe7du2vTpk0l6suVCCwuOnv2rCQpYuKT5dwTAMCfxdmzZxUQEFAq265cubJCQ0N1dM49Jd5WlSpVFBER4VQWGxuruLi4PHV//fVX5eTkKCQkxKk8JCREP/30U4n7chmBxUXh4eE6fPiwqlatKpvNVt7dcYuMjAxFRETo8OHD8vf3L+/u/CkwZq5h3IqPMXONVcbNGKOzZ88qPDy81Nrw9vZWcnKysrOzS7wtY0yez7b8ZlfKEoHFRR4eHrruuuvKuxulwt/fnzfEYmLMXMO4FR9j5horjFtpzaxcydvbW97e3qXezpVq1KghT09PpaamOpWnpqYqNDTUbe1w0C0AAHBZ5cqV1bZtW61evdpRlpubq9WrVysqKspt7TDDAgAASmTs2LEaPny4brrpJrVv314zZsxQZmamRowY4bY2CCxwsNvtio2NLfffKf9MGDPXMG7Fx5i5hnErG3fffbdOnjypp59+WikpKWrdurVWrFiR50DckrCZsjjHCgAAoAQ4hgUAAFgegQUAAFgegQUAAFgegQUAAFgegeVP6vnnn5fNZtPo0aPzLDPGKDo6WjabTcuXL3da9uijj6pt27ay2+1q3bp1vtv+/vvvdcstt8jb21sRERF68cUX89RZunSpmjRpIm9vb7Vs2VJffvllnj48/fTTCgsLk4+Pj7p3766kpCRXd9dtXBm37777ToMGDVJERIR8fHzUtGlTzZw5M8/633zzjW688UbZ7XZdf/31WrBgQZ46V7v9+sWLFxUTE6Pq1aurSpUq6tevX56LMZU1V8bs1KlT6tmzp8LDw2W32xUREaGHH344z71JKuqYSa7/H73s1KlTuu6662Sz2ZSWlua0rKKOm6tjZrPZ8jwWL17sVKeijtk1xeBPZ+vWraZu3bqmVatW5rHHHsuzfPr06SY6OtpIMp988onTskceecS88cYbZujQoeaGG27Is256eroJCQkxgwcPNomJieaDDz4wPj4+5s0333TU+e9//2s8PT3Niy++aH788Ufz1FNPmUqVKpndu3c76jz//PMmICDALF++3Hz33XfmjjvuMPXq1TMXLlxw1zAUm6vjFh8fbx599FHzzTffmAMHDphFixYZHx8f8/rrrzvq/Pzzz8bX19eMHTvW/Pjjj+b11183np6eZsWKFY46ixcvNpUrVzZvv/22+eGHH8z9999vAgMDTWpqqqPOP//5TxMREWFWr15ttm3bZm6++WbToUOHUhmPonB1zE6fPm1mz55tEhISzMGDB83XX39tGjdubAYNGuSoU1HHzJiS/R+9rE+fPo46Z86ccZRX1HEryZhJMvPnzzfHjx93PK58r6moY3atIbD8yZw9e9Y0bNjQrFq1ynTu3DnPf+ydO3eaWrVqmePHjxf6ZhgbG5tvYJk9e7apVq2aycrKcpQ98cQTpnHjxo7nd911l+nVq5fTepGRkeaBBx4wxhiTm5trQkNDzUsvveRYnpaWZux2u/nggw+Kucfu4a5xu+yhhx4yXbt2dTx//PHHTfPmzZ3q3H333aZHjx6O5+3btzcxMTGO5zk5OSY8PNxMmzbNGPP7GFWqVMksXbrUUWfPnj1Gktm0aVNxd7nE3D1mM2fONNddd53jeUUcM2PcM26zZ882nTt3NqtXr84TWCriuJV0zK72+quIY3Yt4iehP5mYmBj16tVL3bt3z7Ps/Pnz+sc//qFZs2a5fP+GTZs26dZbb1XlypUdZT169NDevXt15swZR50/tt+jRw/HbcSTk5OVkpLiVCcgIECRkZFuvdV4cbh73NLT0xUUFOR4frUxuXz79Svr/PH269u3b9elS5ec6jRp0kS1a9cul3Fz55gdO3ZMy5YtU+fOnR1lFXHMpJKP248//qjJkydr4cKF8vDI+xZdEcfNHa+1mJgY1ahRQ+3bt9fbb78tc8UlxirimF2LuNLtn8jixYu1Y8cOJSQk5Lt8zJgx6tChg/r06eNyGykpKapXr55T2eUrFaakpKhatWpKSUnJ9zbiKSkpjnpXrpdfnbLk7nHbuHGjPvzwQ33xxReOsoLGJCMjQxcuXNCZM2euevv1lJQUVa5cWYGBgXnqlPW4uWvMBg0apE8//VQXLlxQ79699e9//9uxrKKNmVTyccvKytKgQYP00ksvqXbt2vr555/z1Klo4+aO19rkyZP1l7/8Rb6+vvrqq6/00EMP6dy5c3r00UclVbwxu1YRWP4kDh8+rMcee0yrVq3K906cn332mdasWaOdO3eWQ++sy93jlpiYqD59+ig2Nla33Xabu7trCe4cs1dffVWxsbHat2+fJk6cqLFjx2r27Nml0e1y545xmzhxopo2baohQ4aUZlctw12vtUmTJjn+3aZNG2VmZuqll15yBBZUDPwk9Cexfft2nThxQjfeeKO8vLzk5eWlb7/9Vq+99pq8vLy0atUqHThwQIGBgY7lktSvXz916dKlyO2Ehobme4vwy8sKq3Pl8ivXy69OWXHnuP3444/q1q2bRo0apaeeesppWUFj4u/vLx8fnyLdfj00NFTZ2dl5zggp63Fz55iFhoaqSZMmuuOOO/Tmm29qzpw5On78uGNZRRkzyT3jtmbNGi1dutSxvFu3bpKkGjVqKDY2VlLFGrfSel+LjIzUkSNHlJWVJalijdm1jBmWP4lu3bpp9+7dTmUjRoxQkyZN9MQTT6hGjRp64IEHnJa3bNlSr776qnr37l3kdqKiovTkk0/q0qVLqlSpkiRp1apVaty4sapVq+aos3r1aqdTD1etWuW4jXi9evUUGhqq1atXO06dzsjI0JYtW/Tggw8Wd9dLxF3j9sMPP+gvf/mLhg8frilTpuRpJyoqKs+p3VeOyZW3X+/bt6+k/3/79YcffliS1LZtW1WqVEmrV69Wv379JEl79+7VoUOH3HqL9qsprddabm6uJDk+RCrSmEnuGbePP/5YFy5ccCxPSEjQvffeq/Xr16tBgwaSKta4ldZrbdeuXapWrZrjhocVacyuaeV91C9cl9/R9FdSPkfOJyUlmZ07d5oHHnjANGrUyOzcudPs3LnTcVZQWlqaCQkJMUOHDjWJiYlm8eLFxtfXN89pzV5eXubll182e/bsMbGxsfme1hwYGGg+/fRT8/3335s+ffqU+2nNlxV33Hbv3m2Cg4PNkCFDnE6bPHHihKPO5dMmJ0yYYPbs2WNmzZqV72mTdrvdLFiwwPz4449m1KhRJjAw0KSkpDjq/POf/zS1a9c2a9asMdu2bTNRUVEmKirKrfvviuKO2RdffGHefvtts3v3bpOcnGw+//xz07RpU9OxY0dHnYo+Zsa49n/0SmvXri3wtOaKOm7FHbPPPvvMvPXWW2b37t0mKSnJzJ492/j6+pqnn37aUaeij9m1gsDyJ+bKm2Hnzp2NpDyP5ORkR53vvvvOdOrUydjtdlOrVi3z/PPP59n2kiVLTKNGjUzlypVN8+bNzRdffOG0PDc310yaNMmEhIQYu91uunXrZvbu3VuS3XWb4o5bbGxsvmNWp04dp/XWrl1rWrdubSpXrmzq169v5s+fn2fbr7/+uqldu7apXLmyad++vdm8ebPT8gsXLpiHHnrIVKtWzfj6+po777zTHD9+vAR76x7FHbM1a9aYqKgoExAQYLy9vU3Dhg3NE0884fTBa0zFHjNjSiewXC6vqONW3DH73//9X9O6dWtTpUoV4+fnZ2644QYzd+5ck5OT47ReRR6za4XNmCvO/QIAALAgDroFAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABUGInT55UaGiopk6d6ijbuHGjKleurNWrV5djzwBUFNxLCIBbfPnll+rbt682btyoxo0bq3Xr1urTp4+mT59e3l0DUAEQWAC4TUxMjL7++mvddNNN2r17txISEmS328u7WwAqAAILALe5cOGCWrRoocOHD2v79u1q2bJleXcJQAXBMSwA3ObAgQM6duyYcnNzdfDgwfLuDoAKhBkWAG6RnZ2t9u3bq3Xr1mrcuLFmzJih3bt3q2bNmuXdNQAVAIEFgFtMmDBBH330kb777jtVqVJFnTt3VkBAgD7//PPy7hqACoCfhACU2DfffKMZM2Zo0aJF8vf3l4eHhxYtWqT169drzpw55d09ABUAMywAAMDymGEBAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACWR2ABAACW9/8AGbXTN82txS4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPhUlEQVR4nO3deVxUVeM/8M8wyLAOiCIMhoj7hksuhLtJIg+almKaW0bZMpl7PnyLwD3NBS3D7OHRNJekXHqqr7um5oa7PJmiYaAImsoqi8H5/eGX+/M6MMAwMFf8vF+veb2cc8+999zjMPOZM/fcqxJCCBAREREpmJWlG0BERERUFgYWIiIiUjwGFiIiIlI8BhYiIiJSPAYWIiIiUjwGFiIiIlI8BhYiIiJSPAYWIiIiUjwGFiIiIlI8BhaFaNiwIV577TVLN4OIarjXXnsNDRs2NGldS71PpaWlYejQoahTpw5UKhWioqKqvQ1keQws1ejIkSOIjIxEenq6pZtSreLi4vDee++hdevWcHBwQIMGDTBs2DBcvny5xPoXL15E//794ejoCFdXV4wePRq3b9+W1fn999/xwQcfoH379nBycoJOp0NwcDBOnjxpsL1Lly5h8uTJ6Nq1K2xtbaFSqXDt2rUKHUN0dDRCQkLQoEEDqFQqo2/a6enpGD9+PNzc3ODg4IA+ffrg9OnTFdpfTEwMWrZsCVtbWzRt2hSfffaZScf12muvQaVSlfl49HjM3f/GHDlyBN27d4e9vT08PDzw/vvvIzs726Befn4+ZsyYAU9PT9jZ2cHPzw+7d++u0L7K06cAcOPGDQwbNgwuLi7QarUYNGgQ/vjjjwrty9JSUlIQGRmJs2fPWropZjF58mTs3LkTYWFhWLduHfr3719t+y7va5SqgaBq8+mnnwoAIjEx0WBZXl6eKCgoqP5GVYMhQ4YIDw8PMWHCBPHVV1+J2bNnC3d3d+Hg4CAuXLggq5ucnCzq1q0rGjduLJYtWybmzp0rateuLdq1ayfy8/OlelOnThUuLi4iNDRUfPnll2LhwoWicePGQq1Wi927d8u2uXr1amFlZSXatGkj2rdvX+r/gTHe3t7C1dVV9O/fX1hbW4uxY8eWWK+wsFB07dpVODg4iMjISPH555+LVq1aCScnJ3H58uVy7WvlypUCgBgyZIhYtWqVGD16tAAgPvnkkwof15EjR8S6deukx6xZswQAMX78eFn5kSNHhBBV0/+lOXPmjLC1tRUdOnQQ0dHR4sMPPxQajUb079/foO7w4cOFtbW1mDZtmvjyyy+Fv7+/sLa2FocOHTJrn2ZlZYmmTZuKevXqiQULFoglS5YILy8v8cwzz4i//vqrXPtSgri4OAFArF692mBZQUGByMvLM2m73t7epb72q5K7u7sYOXJkte+3Iq9RqnoMLNXIWGCpyX799VfZh50QQly+fFloNBqDN6F33nlH2NnZiT///FMq2717twAgvvzyS6ns5MmTIisrS7buX3/9Jdzc3ES3bt1k5Xfu3BGZmZlCCNP/D65duyaKioqEEEI4ODiU+qb97bffCgAiNjZWKrt165ZwcXERI0aMKHM/9+/fF3Xq1BHBwcGy8pEjRwoHBwdx9+7dSh2XsQ8yIaqm/0sTFBQkdDqdyMjIkMq++uorAUDs3LlTKjt+/LgAID799FOpLDc3VzRu3Fj4+/uXuZ+K9OmCBQsEAHHixAmp7OLFi0KtVouwsLByHZcSlPX/bCpzBJbCwkKRm5tboXVUKpXQ6/WV2q8pyvsaperBwFJNIiIiBACDR/EHzONvBKtXrxYAxKFDh8SECRNE3bp1hbOzsxg/frzIz88X9+7dE6NHjxYuLi7CxcVFTJ8+XfpALVZYWCiWLl0qWrVqJTQajahXr54YP3687A3akp599lnx7LPPysrq1asnQkJCDOo2a9ZM9O3bt8xtvvzyy8LV1bXU5eYIjcYCS0hIiHB3dxeFhYWy8vHjxwt7e/syv9n+9NNPAoD46aefZOVHjhwRAMS6detKXM9cgaUq+j8nJ0dcvHhR3L59WyrLyMgQ1tbWYvr06bK6+fn5wtHRUYSGhkpl06dPF2q1WvahIYQQ8+bNEwBEUlKSVHb79m1x8eJFkZOTI5VVpE87d+4sOnfubHBc/fr1E40bNy7z+Ety8+ZN8dprr4n69esLGxsb4eHhIV588UXZ/5W3t7cIDg4WO3fuFO3atRMajUa0bNlSfP/997Jt3blzR0ydOlW0adNGODg4CCcnJ9G/f39x9uxZqc7+/ftLfK8p/j8fO3as8Pb2lm33008/Ff7+/sLV1VXY2tqKZ599Vha6H21nRQMLAKHX68U333wjWrVqJaytrcXWrVuFEEJcv35djBs3TtSrV0/Y2NiIVq1aiZiYGGnd4vfBxx/VoSKvUaoePIelmrz88ssYMWIEAGDp0qVYt24d1q1bBzc3N6PrTZgwAQkJCZg5cyZefPFFrFq1CuHh4Rg4cCAKCwsxb948dO/eHZ9++inWrVsnW/ett97C9OnT0a1bNyxbtgzjxo3D+vXrERgYiAcPHhjdb35+Pv76669yPUwhhEBaWhrq1q0rld24cQO3bt1Cp06dDOp36dIFZ86cKXO7qampsm1WtzNnzuDZZ5+FlZX8T6tLly64f/9+qeftPLo+AIM+6NixI6ysrMrVB6aqqv4/ceIEWrZsic8//1wqu3DhAv7++2+DfdnY2KB9+/ayfZ05cwbNmjWDVqs1aBMA2Xkan3/+OVq2bIkTJ07I1gfK7tOioiKcP3++1OO/evUqsrKyyuyDxw0ZMgRbt27FuHHj8MUXX+D9999HVlYWkpKSZPUSEhLwyiuvICgoCPPnz4e1tTVCQkJk5+r88ccf2LZtGwYMGIAlS5Zg+vTpuHDhAnr16oWUlBQAQMuWLTFr1iwAwPjx46X3mp49e5baxmXLlqFDhw6YNWsW5s2bJ+37p59+qvDxlmTfvn2YPHkyXnnlFSxbtgwNGzZEWloannvuOezZswfvvfceli1bhiZNmiA0NFQ6qbZnz57S+9oLL7wgHYsx9+7dK9f71v37941upyKvUaomlk5MTxNj34JLG2EJDAyUjZz4+/sLlUol3n77bans77//Fs8884zo1auXVHbo0CEBQKxfv162nx07dpRY/rjSvtmU9DDFunXrBADZt6nib/9r1641qD99+nQBwOgIxcGDB4VKpRLh4eGl1qnqERYHBwfx+uuvG5QXf8vfsWOH0W3r9XqhVqtLXObm5iaGDx9e4jJzjLBUVf8Xf+OPiIiQymJjYwUAcfDgQYPthISECA8PD+l569atxfPPP29Q77///a8AIFauXCmVFY9k7t+/Xyorb5/evn1bABCzZs0yqLdixQoBQPz+++8lH3wp7t27Z/BzVkm8vb0FANmISkZGhtDpdKJDhw5SWV5ensHoXWJiotBoNLJ2G/t/LmmE5f79+7LnBQUFok2bNgb9buoIi5WVlfjvf/8rKw8NDRU6nc7g3KDhw4cLZ2dnWZvwf6M05VHcl2U9Hn09lqQir1GqHtZVE4PIXEJDQ6FSqaTnfn5+OHr0KEJDQ6UytVqNTp064dSpU1JZbGwsnJ2d8cILL8hGQTp27AhHR0fs378fr776aqn7DQwMrPAsjPL6/fffodfr4e/vj7Fjx0rlubm5AACNRmOwjq2trVSnpOW3bt3Cq6++Ch8fH3zwwQdV0u7yKK19j7a/rPVtbGxKXGZra1vm+pVRVf3fu3dvCCEqtK9Hj7MifRoZGYnIyEiDfZWnT8t7/BVhZ2cHGxsbHDhwAKGhoahdu3apdT09PfHSSy9Jz7VaLcaMGYMFCxYgNTUVHh4esrYVFhYiPT0djo6OaN68eYVnoj3ezmL37t1DYWEhevTogY0bN5q8zUf16tULrVq1kp4LIfD9999j2LBhEELI3qMCAwOxadMmnD59Gt26davwvtavX1+u/6dGjRoZXV6R1yhVDwYWhWvQoIHsubOzMwDAy8vLoPzevXvS84SEBGRkZKBevXolbvfWrVtG96vT6aDT6UxpslGpqakIDg6Gs7MzvvvuO6jVamlZ8Ztmfn6+wXp5eXmyOo/KycnBgAEDkJWVhcOHD8PR0dGktt2+fRuFhYXSc0dHxwpvy87OrlztL21fdnZ2KCgoKHHbeXl5JR6/uVRn/5e1r0f3U94+Nbav8vSpqcdvjEajwYIFCzB16lS4u7vjueeew4ABAzBmzBh4eHjI6jZp0kT25QQAmjVrBgC4du0aPDw8UFRUhGXLluGLL75AYmKi7DVUp06dCrXtUT/++CPmzJmDs2fPyo7/8faYysfHR/b89u3bSE9Px6pVq7Bq1aoS1ynrPao0poScklTkNUrVg4FF4R79QC+r/NFvsUVFRahXrx7Wr19f4vplnTuTm5uLjIyMcrXx8Tfe0mRkZCAoKAjp6ek4dOgQPD09ZcuLA9LNmzcN1r158yZcXV0Nvu0UFBTg5Zdfxvnz57Fz5060adOmXG0pSefOnfHnn39KzyMiIgy+rZdFp9OV2n4A0jGXti+dTofCwkLcunVLFjYLCgpw584dgz4zp+rs/7L29ehx6nQ63Lhxo8R6AMrsk/L2afHxlef/ryImTZqEgQMHYtu2bdi5cyfCw8Mxf/587Nu3Dx06dKjQtubNm4fw8HC8/vrrmD17NlxdXWFlZYVJkyahqKiowm0DgEOHDuHFF19Ez5498cUXX0Cn06FWrVpYvXo1NmzYYNI2H/f4h3txW0eNGiUbZX1U27ZtTdrX418GSlPWF5KKvEapejCwVCNzfVspj8aNG2PPnj3o1q2bSd8Evv32W4wbN65cdR8f7i9JXl4eBg4ciMuXL2PPnj2y4eFi9evXh5ubW4kXHztx4gTat28vKysqKsKYMWOwd+9ebN68Gb169SpXe0vz+FByWUPGJWnfvj0OHTqEoqIi2Ym3x48fh729vfSNubR9FR/jyZMn8Y9//ENafvLkSRQVFRn0gTlVZ/+3adMG1tbWOHnyJIYNGyaVFxQU4OzZs7Ky9u3bY//+/cjMzJSdeHv8+HFpuTHl7VMrKyv4+vqWePzHjx9Ho0aN4OTkVO5jfFTjxo0xdepUTJ06FQkJCWjfvj0WL16Mb775Rqpz5coVCCFk7xPFJ2kXX5n2u+++Q58+fRATEyPbfnp6uuxk54q813z//fewtbXFzp07ZYF09erVFTrGinBzc4OTkxMKCwsREBBg1m0//mWgNGV9IanIa5SqBwNLNXJwcACAarnS7bBhw/DFF19g9uzZmDdvnmzZ33//jezsbLi4uJS6vjnPYSksLMQrr7yCo0ePYvv27fD39y+17pAhQ/D1118jOTlZ+tlr7969uHz5MiZPniyrO2HCBHz77bf48ssv8fLLL1e6neYYSh46dCi+++47bNmyBUOHDgUA/PXXX4iNjcXAgQOlD4TS9vX888/D1dUV0dHRsg/X6Oho2NvbIzg4uNJtNKYq+v/+/ftISkpC3bp1pQ9VZ2dnBAQE4JtvvkF4eLgUBNatW4fs7GyEhIRI6w8dOhSLFi3CqlWrMG3aNAAPh+lXr14NPz8/2c+jxTNAGjRoAHt7ewAV69OhQ4fin//8J06ePCnNDrl06RL27dsn7bsi7t+/DysrK+kcGOBheHFycjL4qSElJQVbt26V+jIzMxNr165F+/btpVFMtVpt8AUhNjYWN27cQJMmTaSyirzXqNVqqFQq2ajEtWvXsG3btgoda0Wo1WoMGTIEGzZsQHx8vMHI3O3bt8scBS6Nuc5hqchrlKoHA0s16tixIwDgww8/xPDhw1GrVi0MHDhQenMxp169euGtt97C/PnzcfbsWfTr1w+1atVCQkICYmNjsWzZMukDtSTmPIdl6tSp+OGHHzBw4EDcvXtX9q0SeDgsXOx//ud/EBsbiz59+mDixInIzs7Gp59+Cl9fX9mIT1RUFL744gv4+/vD3t7eYJsvvfSS1K8ZGRnSZdh//fVXAA+nv7q4uMDFxQXvvfdemcfwn//8B+fOnQMAPHjwAOfPn8ecOXMAAC+++KI0fD106FA899xzGDduHH777TfUrVsXX3zxBQoLCzFz5swy92NnZ4fZs2dDr9cjJCQEgYGBOHToEL755hvMnTsXrq6uUl1zHNfjqqL/T5w4gT59+hh8o507dy66du2KXr16Yfz48bh+/ToWL16Mfv36yS697ufnh5CQEISFheHWrVto0qQJvv76a1y7ds1gpOHzzz/HzJkzsX//fvTu3bvCffruu+/iq6++QnBwMKZNm4ZatWphyZIlcHd3x9SpU2X76t27N3755RejI4yXL19G3759MWzYMLRq1QrW1tbYunUr0tLSMHz4cFndZs2aITQ0FHFxcXB3d8e///1vpKWlyUY6BgwYgFmzZmHcuHHo2rUrLly4gPXr1xt8+DZu3BguLi5YuXIlnJyc4ODgAD8/P4NzSQAgODgYS5YsQf/+/fHqq6/i1q1bWLFiBZo0aYLz58+XemyV9cknn2D//v3w8/PDm2++iVatWuHu3bs4ffo09uzZg7t375q0XXOdwwKU/zVK1cRyE5SeTrNnzxb169cXVlZW5bpwXFxcnGz94mmbj16ES4iHUxUdHBwM9rdq1SrRsWNHYWdnJ5ycnISvr6/44IMPREpKitmPrTS9evWq0LTo+Ph40a9fP2Fvby9cXFzEyJEjRWpqqqzO2LFjjW7z0em9iYmJpdZ7fHpnaYzt7/Gpo3fv3hWhoaGiTp06wt7eXvTq1cvg/7Esq1atEs2bNxc2NjaicePGYunSpQYXBjTluMpzBVRz939J05qLHTp0SHTt2lXY2toKNzc3odfrpav3Pio3N1dMmzZNeHh4CI1GIzp37lziFPGSpjUXK0+fCvHw9gRDhw4VWq1WODo6igEDBoiEhASDeh07dixzautff/0l9Hq9aNGihXBwcBDOzs7Cz89PbN68WVbv0QvHtW3bVmg0GtGiRQuDi7fl5eWJqVOnCp1OJ+zs7ES3bt3E0aNHRa9evWSXNRBCiO3bt0sXanv0/7ykac0xMTGiadOm0n5Xr14t9eXj7TT1wnElSUtLE3q9Xnh5eYlatWoJDw8P0bdvX7Fq1apyb6Oqlfc1SlVPJUQ5TkAgIiJJVlYWXF1dERUVBb1eX+ntNWzYEG3atMGPP/5ohtYR1Uy80i0RUQUdPHgQ9evXx5tvvmnpphA9NXgOCxFRBQUHB1f5CdBKl5qaanS5nZ2ddN0oInNgYCEiogor66T8sWPHYs2aNdXTGHoqMLAQEVnYtWvXLN2ECivrsge8sBqZG0+6JSIiIsXjSbdERESkeAwsREREpHgMLERERKR4DCxmcPDgQQwcOBCenp5QqVQm3YNDCIFFixahWbNm0Gg0qF+/PubOnWv+xhIRET2BOEvIDHJyctCuXTu8/vrrJt+Eb+LEidi1axcWLVoEX19f3L171+R7aRAREdU0nCVkZiqVClu3bsXgwYOlsvz8fHz44YfYuHEj0tPT0aZNGyxYsEC6OdvFixfRtm1bxMfHo3nz5pZpOBERkYLxJ6Fq8N577+Ho0aPYtGkTzp8/j5CQEPTv3x8JCQkAHt4JuFGjRvjxxx/h4+ODhg0b4o033uAICxER0f9hYKliSUlJWL16NWJjY9GjRw80btwY06ZNQ/fu3aXbxv/xxx/4888/ERsbi7Vr12LNmjU4deoUhg4dauHWExERKQPPYaliFy5cQGFhIZo1ayYrz8/PR506dQAARUVFyM/Px9q1a6V6MTEx6NixIy5dusSfiYiI6KnHwFLFsrOzoVarcerUKajVatkyR0dHAA/vyWFtbS0LNS1btgTwcISGgYWIiJ52DCxVrEOHDigsLMStW7fQo0ePEut069YNf//9N65evYrGjRsDAC5fvgwA8Pb2rra2EhERKRVnCZlBdnY2rly5AuBhQFmyZAn69OkDV1dXNGjQAKNGjcKvv/6KxYsXo0OHDrh9+zb27t2Ltm3bIjg4GEVFRejcuTMcHR0RFRWFoqIi6PV6aLVa7Nq1y8JHR0REZHkMLGZw4MAB9OnTx6C8+PbqDx48wJw5c7B27VrcuHEDdevWxXPPPYeZM2fC19cXAJCSkoIJEyZg165dcHBwQFBQEBYvXgxXV9fqPhwiIiLFYWAhIiIikx08eBCffvopTp06hZs3bxpci+xRb7/9Nr788kssXboUkyZNqtB+OK2ZiIiITFZ8tfcVK1YYrbd161YcO3YMnp6eJu2HJ90SERGRyYKCghAUFGS0zo0bNzBhwgTs3LkTwcHBJu2HgcVERUVFSElJgZOTE1QqlaWbQ0RECiaEQFZWFjw9PWFlVXU/buTl5aGgoKDS2xFCGHy2aTQaaDSaCm+rqKgIo0ePxvTp09G6dWuT28TAYqKUlBR4eXlZuhlERPQESU5OxjPPPFMl287Ly4NHA29k3L5V6W05OjoiOztbVhYREYHIyMgKb2vBggWwtrbG+++/X6k2MbCYyMnJCQCQPH8utLa2Fm4NleVA48+MLu99dUI1tYSoen3Tq/Th91G//FSNLXm6ZeblwSvsQ+mzoyoUFBQg4/YtLDoYBztH0/eTm52FaT07Izk5GVqtVio3ZXTl1KlTWLZsGU6fPl3pXyMYWExU3PFaW1to7ews3Boqi4OD8SFY/h9STWXsg4uv++pXHacQ2Dk6VSqwFNNqtbLAYopDhw7h1q1baNCggVRWWFiIqVOnIioqCteuXSv3thhYiIiIqEqMHj0aAQEBsrLAwECMHj0a48aNq9C2GFiIiIjIZI9e7R0AEhMTcfbsWelq78U3+i1Wq1YteHh4VPg+eQwsREREZLKTJ0/KrvY+ZcoUAP//au/mwsBCREREJuvduzcqctH8ipy38igGFnoq9E2YZukmEFlEg+SS7xIPAKufP2R03XH7tpu7OUQm46X5iYiISPEYWIiIiEjxGFiIiIhI8RhYiIiISPEYWIiIiEjxGFiIiIhI8RhYiIiISPF4HRYiohrM6DWIEoxfZ2XxPuN3c576fOl3giYyN46wEBERkeIxsBAREZHiMbAQERGR4jGwEBERkeIxsBAREZHiMbAQERGR4nFaM5mVsWmQjSbHGF1Xe79rqcuMTs0EsLfpIqPLy1qfiAxx2jIpCUdYiIiISPEYWIiIiEjxGFiIiIhI8RhYiIiISPF40i0REVENEnnjNqwcck1evygnGwDQuXNnqNVq6PV66PV6czXPZAwsZFZGZxWc21LG2qbP5OEsoCcHb6hH9GSIi4uDVqu1dDMk/EmIiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj9OaiahacdoyEZmCIyxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeLwOC9FTyKOZv9HlqZePVlNLiIjKhyMsREREpHgWDSyRkZFQqVSyR4sWLUqt37t3b4P6KpUKwcH//8qZQgh8/PHH0Ol0sLOzQ0BAABISEmTbefHFF9GgQQPY2tpCp9Nh9OjRSElJqbLjJCIiosqx+AhL69atcfPmTelx+PDhUutu2bJFVjc+Ph5qtRohISFSnYULF2L58uVYuXIljh8/DgcHBwQGBiIvL0+q06dPH2zevBmXLl3C999/j6tXr2Lo0KFVepxERERkOoufw2JtbQ0PD49y1XV1dZU937RpE+zt7aXAIoRAVFQUPvroIwwaNAgAsHbtWri7u2Pbtm0YPnw4AGDy5MnSNry9vfHPf/4TgwcPxoMHD1CrVi1zHBYRERGZkcVHWBISEuDp6YlGjRph5MiRSEpKKve6MTExGD58OBwcHAAAiYmJSE1NRUBAgFTH2dkZfn5+OHq05JMI7969i/Xr16Nr165Gw0p+fj4yMzNlDyIiIqoeFg0sfn5+WLNmDXbs2IHo6GgkJiaiR48eyMrKKnPdEydOID4+Hm+88YZUlpqaCgBwd3eX1XV3d5eWFZsxYwYcHBxQp04dJCUlYfv27Ub3N3/+fDg7O0sPLy+v8h4mERFRjXXw4EEMHDgQnp6eUKlU2LZtm7TswYMHmDFjBnx9feHg4ABPT0+MGTPGpPNGLfqTUFBQkPTvtm3bws/PD97e3ti8eTNCQ0ONrhsTEwNfX1906dLFpH1Pnz4doaGh+PPPPzFz5kyMGTMGP/74I1QqVYn1w8LCMGXKFOl5ZmYmQws9sSo7bXn184NKXTZun/HwT0Q1S05ODtq1a4fXX38dL7/8smzZ/fv3cfr0aYSHh6Ndu3a4d+8eJk6ciBdffBEnT56s0H4sfg7Lo1xcXNCsWTNcuXLFaL2cnBxs2rQJs2bNkpUXnwuTlpYGnU4nlaelpaF9+/ayunXr1kXdunXRrFkztGzZEl5eXjh27Bj8/Uu+PoVGo4FGozHhqIiIiGquoKAg2QDEo5ydnbF7925Z2eeff44uXbogKSkJDRo0KPd+LH4Oy6Oys7Nx9epVWdgoSWxsLPLz8zFq1ChZuY+PDzw8PLB3716pLDMzE8ePHy81iABAUVERgIfnqRAREREMzts012dkRkYGVCoVXFxcKrSeRUdYpk2bhoEDB8Lb2xspKSmIiIiAWq3GiBEjAABjxoxB/fr1MX/+fNl6MTExGDx4MOrUqSMrV6lUmDRpEubMmYOmTZvCx8cH4eHh8PT0xODBgwEAx48fR1xcHLp3747atWvj6tWrCA8PR+PGjY2GGiIioifBv8RoOAjTxyNyRBEGAQanPURERCAyMrJSbcvLy8OMGTMwYsQIaLXaCq1r0cBy/fp1jBgxAnfu3IGbmxu6d++OY8eOwc3NDQCQlJQEKyt5p1+6dAmHDx/Grl27StzmBx98gJycHIwfPx7p6eno3r07duzYAVtbWwCAvb09tmzZgoiICOTk5ECn06F///746KOP+JMPERHR/0lOTpaFisp+Rj548ADDhg2DEALR0dEVXt+igWXTpk1Glx84cMCgrHnz5hBClLqOSqXCrFmzDM5vKebr64t9+/ZVqJ1ERERPG61WW+FRkNIUh5U///wT+/btM2m7ijrploiIiGqW4rCSkJCA/fv3G5zOUV4MLERVaPG+n4wun/p8sNHlllJWu12NTGsmoqdLdna2bHZvYmIizp49C1dXV+h0OgwdOhSnT5/Gjz/+iMLCQum6aK6urrCxsSn3fhhYiIiIyGQnT55Enz59pOfF1ywbO3YsIiMj8cMPPwCAweVF9u/fj969e5d7PwwsREREZLLevXsbPbfU2LKKUNR1WIiIiIhKwsBCREREisfAQkRERIrHwEJERESKx5NuiaqQUqctl8V1ziqjy3lHZiKqbhxhISIiIsVjYCEiIiLFY2AhIiIixWNgISIiIsVjYCEiIiLFY2AhIiIixeO0ZiIywGnLRKQ0HGEhIiIixWNgISIiIsVjYCEiIiLFY2AhIiIixWNgISIiIsVjYCEiIiLFY2AhIiIixeN1WIiIiGoQB/t/wcHewfQNiBwAAejcuTPUajX0ej30er3Z2mcqBhYiIiIyEBcXB61Wa+lmSPiTEBERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR5vfkhPhcX7fjK6fOrzwdXUEiIiMgVHWIiIiEjxGFiIiIhI8RhYiIiISPEYWIiIiEjxGFiIiIhI8RhYiIiISPE4rZmeCkqdtry13ctGl790bks1tYSUilPyiR7iCAsREREpHgMLERERmezgwYMYOHAgPD09oVKpsG3bNtlyIQQ+/vhj6HQ62NnZISAgAAkJCRXeDwMLERERmSwnJwft2rXDihUrSly+cOFCLF++HCtXrsTx48fh4OCAwMBA5OXlVWg/PIeFiIiITBYUFISgoKASlwkhEBUVhY8++giDBg0CAKxduxbu7u7Ytm0bhg8fXu79cISFiIiIDGRmZsoe+fn5Fd5GYmIiUlNTERAQIJU5OzvDz88PR48erdC2OMJCRERUg/im20Nb4GDy+pn3BQDAy8tLVh4REYHIyMgKbSs1NRUA4O7uLit3d3eXlpUXAwuZlUcz/1KXpV6uWJp+GnDaMpWl0eQY4xX4GqIqkpycDK1WKz3XaDQWbA1/EiIiIqISaLVa2cOUwOLh4QEASEtLk5WnpaVJy8qLgYWIiIiqhI+PDzw8PLB3716pLDMzE8ePH4e/f+kj8iXhT0JERERksuzsbFy5ckV6npiYiLNnz8LV1RUNGjTApEmTMGfOHDRt2hQ+Pj4IDw+Hp6cnBg8eXKH9MLAQERGRyU6ePIk+ffpIz6dMmQIAGDt2LNasWYMPPvgAOTk5GD9+PNLT09G9e3fs2LEDtra2FdoPAwsRERGZrHfv3hBClLpcpVJh1qxZmDVrVqX2w3NYiIiISPE4wkJmxanLRObFqe9ED3GEhYiIiBSPgYWIiIgUz6KBJTIyEiqVSvZo0aJFqfV79+5tUF+lUiE4OFiqU9ZtrK9du4bQ0FD4+PjAzs4OjRs3RkREBAoKCqr0WImIiMh0Fj+HpXXr1tizZ4/03Nq69CZt2bJFFizu3LmDdu3aISQkRCorvo31119/Lc33DgwMxG+//QZbW1v8/vvvKCoqwpdffokmTZogPj4eb775JnJycrBo0aKqOUgiIiKqFIsHFmtr63JfntfV1VX2fNOmTbC3t5cCS3luY92/f3/0799f2kajRo1w6dIlREdHM7AQEREplMXPYUlISICnpycaNWqEkSNHIikpqdzrxsTEYPjw4XBweHhXSlNvY52RkWEQhh6Xn59vcKttIiIiqh4WDSx+fn5Ys2YNduzYgejoaCQmJqJHjx7Iysoqc90TJ04gPj4eb7zxhlRmym2sr1y5gs8++wxvvfWW0f3Nnz8fzs7O0uPx224TERFR1bFoYAkKCkJISAjatm2LwMBA/Pzzz0hPT8fmzZvLXDcmJga+vr7o0qWLyfu/ceMG+vfvj5CQELz55ptG64aFhSEjI0N6JCcnm7xfIiIiqhiL/yT0KBcXFzRr1kx2E6WS5OTkYNOmTQgNDZWVV+Q21ikpKejTpw+6du2KVatWldk2jUZjcKttIiIiqh6KCizZ2dm4evUqdDqd0XqxsbHIz8/HqFGjZOXlvY31jRs30Lt3b3Ts2BGrV6+GlZWiuoGIiIgeY9FP6mnTpuGXX37BtWvXcOTIEbz00ktQq9UYMWIEAGDMmDEICwszWC8mJgaDBw9GnTp1ZOUqlUq6jfUPP/yACxcuYMyYMbLbWBeHlQYNGmDRokW4ffs2UlNTSz3HhYiIiCzPotOar1+/jhEjRuDOnTtwc3ND9+7dcezYMbi5uQEAkpKSDEY/Ll26hMOHD2PXrl0lbrOs21jv3r0bV65cwZUrV/DMM8/I1jV2t0kiIiKyHJXgp7RJMjMz4ezsjIyli6G1s7N0c4iISMEyc3PhPHkqMjIyquwcyOLPpbTvjkBr72j6du5nw31o1yptqyksfuE4IqKn2eJ9PxldPvX5YKPLiZ4WPNuUiIiIFI+BhYiIiBSPgYWIiIgUj+ewEBER1SB3DmegQPO3yetn5ecAADp37gy1Wg29Xg+9Xm+u5pmMgYWIiIgMxMXFKWqWEH8SIiIiIsXjCAsRkQVx2jJR+XCEhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiExWWFiI8PBw+Pj4wM7ODo0bN8bs2bMhhDDrfqzNujUiIiJ6qixYsADR0dH4+uuv0bp1a5w8eRLjxo2Ds7Mz3n//fbPth4GFiIiITHbkyBEMGjQIwcHBAICGDRti48aNOHHihFn3w5+EiIiIyGRdu3bF3r17cfnyZQDAuXPncPjwYQQFBZl1PxxhISIiIgOZmZmy5xqNBhqNxqDeP//5T2RmZqJFixZQq9UoLCzE3LlzMXLkSLO2h4GFiIioBtny51LY1qpl8vp5Dx4AALy8vGTlERERiIyMNKi/efNmrF+/Hhs2bEDr1q1x9uxZTJo0CZ6enhg7dqzJ7XgcAwsREREZSE5OhlarlZ6XNLoCANOnT8c///lPDB8+HADg6+uLP//8E/Pnz2dgISIioqql1WplgaU09+/fh5WV/JRYtVqNoqIis7aHgYWIiIhMNnDgQMydOxcNGjRA69atcebMGSxZsgSvv/66WffDwEJEREQm++yzzxAeHo53330Xt27dgqenJ9566y18/PHHZt0PAwsRERGZzMnJCVFRUYiKiqrS/fA6LERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeBUOLGPHjsXBgweroi1EREREJapwYMnIyEBAQACaNm2KefPm4caNG1XRLiIiIiJJhQPLtm3bcOPGDbzzzjv49ttv0bBhQwQFBeG7777DgwcPqqKNRERE9JSzNmUlNzc3TJkyBVOmTMHp06exevVqjB49Go6Ojhg1ahTeffddNG3a1NxtJSIiojJ0CZkNB3tHk9fPuZ8NbN2Fzp07Q61WQ6/XQ6/Xm7GFpjEpsBS7efMmdu/ejd27d0OtVuMf//gHLly4gFatWmHhwoWYPHmyudpJRERE1SguLg5ardbSzZBU+CehBw8e4Pvvv8eAAQPg7e2N2NhYTJo0CSkpKfj666+xZ88ebN68GbNmzaqK9hIREdFTqMIjLDqdDkVFRRgxYgROnDiB9u3bG9Tp06cPXFxczNA8IiIiIhNGWJYuXYqUlBSsWLGixLACAC4uLkhMTCxzW5GRkVCpVLJHixYtSq3fu3dvg/oqlQrBwcFSHSEEPv74Y+h0OtjZ2SEgIAAJCQmy7cydOxddu3aFvb09gxUREdEToMKBZfTo0bC1tTVbA1q3bo2bN29Kj8OHD5dad8uWLbK68fHxUKvVCAkJkeosXLgQy5cvx8qVK3H8+HE4ODggMDAQeXl5Up2CggKEhITgnXfeMdtxEBERUdWp1Em3ZmmAtTU8PDzKVdfV1VX2fNOmTbC3t5cCixACUVFR+OijjzBo0CAAwNq1a+Hu7o5t27Zh+PDhAICZM2cCANasWWOmoyAiIqKqZPFL8yckJMDT0xONGjXCyJEjkZSUVO51Y2JiMHz4cDg4OAAAEhMTkZqaioCAAKmOs7Mz/Pz8cPToUbO3nYiIiKqHRUdY/Pz8sGbNGjRv3hw3b97EzJkz0aNHD8THx8PJycnouidOnEB8fDxiYmKkstTUVACAu7u7rK67u7u0zFT5+fnIz8+XnmdmZlZqe0RERFR+Fg0sQUFB0r/btm0LPz8/eHt7Y/PmzQgNDTW6bkxMDHx9fdGlS5eqbiYAYP78+dJPSURERFS9LP6T0KNcXFzQrFkzXLlyxWi9nJwcbNq0ySDUFJ8Lk5aWJitPS0sr93kypQkLC0NGRob0SE5OrtT2iIiIqPwUFViys7Nx9epV6HQ6o/ViY2ORn5+PUaNGycp9fHzg4eGBvXv3SmWZmZk4fvw4/P39K9U2jUYDrVYrexAREVH1sOhPQtOmTcPAgQPh7e2NlJQUREREQK1WY8SIEQCAMWPGoH79+pg/f75svZiYGAwePBh16tSRlatUKkyaNAlz5sxB06ZN4ePjg/DwcHh6emLw4MFSvaSkJNy9exdJSUkoLCzE2bNnAQBNmjSBo6Pp918gIiKiqmHRwHL9+nWMGDECd+7cgZubG7p3745jx47Bzc0NwMNgYWUlHwS6dOkSDh8+jF27dpW4zQ8++AA5OTkYP3480tPT0b17d+zYsUN27ZiPP/4YX3/9tfS8Q4cOAID9+/ejd+/eZj5KIiIiqiyVEEJYuhFPoszMTDg7OyNj6WJo7ews3RwiIlKwzNxcOE+eioyMjCo7paD4c2nXhuOVvltzv1f9qrStplDUOSxEREREJWFgISIiIsVjYCEiIiLFY2AhIiIixWNgISIiIsVjYCEiIiLFY2AhIiIixWNgISIiokq5ceMGRo0ahTp16sDOzg6+vr44efKkWfdh0SvdEhER0ZPt3r176NatG/r06YP//d//hZubGxISElC7dm2z7oeBhYiIiEy2YMECeHl5YfXq1VKZj4+P2ffDn4SIiIjIQGZmpuyRn59fYr0ffvgBnTp1QkhICOrVq4cOHTrgq6++Mnt7OMJCRERUg/ilHa7UPe4yc3MBAF5eXrLyiIgIREZGGtT/448/EB0djSlTpuB//ud/EBcXh/fffx82NjYYO3asye14HAMLERERGUhOTpbd/FCj0ZRYr6ioCJ06dcK8efMAAB06dEB8fDxWrlxp1sDCn4SIiIjIgFarlT1KCyw6nQ6tWrWSlbVs2RJJSUlmbQ8DCxEREZmsW7duuHTpkqzs8uXL8Pb2Nut+GFiIiIjIZJMnT8axY8cwb948XLlyBRs2bMCqVaug1+vNuh8GFiIiIjJZ586dsXXrVmzcuBFt2rTB7NmzERUVhZEjR5p1PzzploiIiCplwIABGDBgQJXugyMsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR41pZuABE9eVY/P6jUZeP2ba/GlhDR04IjLERERKR4DCxERESkePxJiIiIqAa5tGIlHNVqk9fPLiwEAHTu3BlqtRp6vR56vd5czTMZAwsREREZiIuLg1artXQzJPxJiIiIiBSPgYWIiIgUjz8JEVGFVWbqsrEp0ZXdNhHVXBxhISIiIsVjYCEiIiLFY2AhIiIixWNgISIiIsVjYCEiIiLFY2AhIiIixeO0ZiKqVpy2TESm4AgLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHqc1E5GieDTzN7o89fLRamoJESkJR1iIiIhI8RhYiIiISPEYWIiIiEjxGFiIiIjIbD755BOoVCpMmjTJrNtlYCEiIiKziIuLw5dffom2bduafdsWDSyRkZFQqVSyR4sWLUqt37t3b4P6KpUKwcHBUh0hBD7++GPodDrY2dkhICAACQkJsu3cvXsXI0eOhFarhYuLC0JDQ5GdnV1lx0lERFTTZWdnY+TIkfjqq69Qu3Zts2/f4tOaW7dujT179kjPra1Lb9KWLVtQUFAgPb9z5w7atWuHkJAQqWzhwoVYvnw5vv76a/j4+CA8PByBgYH47bffYGtrCwAYOXIkbt68id27d+PBgwcYN24cxo8fjw0bNlTBERJRRXDaMpEyZGZmyp5rNBpoNJpS6+v1egQHByMgIABz5swxe3ssHlisra3h4eFRrrqurq6y55s2bYK9vb0UWIQQiIqKwkcffYRBgwYBANauXQt3d3ds27YNw4cPx8WLF7Fjxw7ExcWhU6dOAIDPPvsM//jHP7Bo0SJ4enqa8eiIiIiq19ip1lDbqU1evzBXBbwDeHl5ycojIiIQGRlZ4jqbNm3C6dOnERcXZ/J+y2Lxc1gSEhLg6emJRo0aYeTIkUhKSir3ujExMRg+fDgcHBwAAImJiUhNTUVAQIBUx9nZGX5+fjh69OG3tqNHj8LFxUUKKwAQEBAAKysrHD9+vNR95efnIzMzU/YgIiKqqZKTk5GRkSE9wsLCSq03ceJErF+/XvoloypYNLD4+flhzZo12LFjB6Kjo5GYmIgePXogKyurzHVPnDiB+Ph4vPHGG1JZamoqAMDd3V1W193dXVqWmpqKevXqyZZbW1vD1dVVqlOS+fPnw9nZWXo8njyJiIhqEq1WK3uU9nPQqVOncOvWLTz77LOwtraGtbU1fvnlFyxfvhzW1tYoLCw0S3ss+pNQUFCQ9O+2bdvCz88P3t7e2Lx5M0JDQ42uGxMTA19fX3Tp0qWqmwkACAsLw5QpU6TnmZmZDC1ERPTU69u3Ly5cuCArGzduHFq0aIEZM2ZArTb956lHWfwclke5uLigWbNmuHLlitF6OTk52LRpE2bNmiUrLz4XJi0tDTqdTipPS0tD+/btpTq3bt2Srff333/j7t27Rs+lKetkIyIioqeRk5MT2rRpIytzcHBAnTp1DMorw+LnsDwqOzsbV69elYWNksTGxiI/Px+jRo2Slfv4+MDDwwN79+6VyjIzM3H8+HH4+z+8oZq/vz/S09Nx6tQpqc6+fftQVFQEPz8/Mx4NERERmYtFR1imTZuGgQMHwtvbGykpKYiIiIBarcaIESMAAGPGjEH9+vUxf/582XoxMTEYPHgw6tSpIysvvrLenDlz0LRpU2las6enJwYPHgwAaNmyJfr3748333wTK1euxIMHD/Dee+9h+PDhnCFEVE5l3VHZGE5bJqr5Dhw4YPZtWjSwXL9+HSNGjMCdO3fg5uaG7t2749ixY3BzcwMAJCUlwcpKPgh06dIlHD58GLt27Spxmx988AFycnIwfvx4pKeno3v37tixY4fszOX169fjvffeQ9++fWFlZYUhQ4Zg+fLlVXegREREVCkqIYSwdCOeRJmZmXB2dkbG0sXQ2tlZujlE1YojLEQVk5mbC+fJU5GRkQGtVls1+/i/z6WW0S0reR2WQlx852KVttUUijqHhYiIiKgkDCxERESkeAwsREREpHgMLERERKR4irpwHBE9GXjiLBFVN46wEBERkeIxsBAREZHiMbAQERGR4jGwEBERkeIxsBAREZHiMbAQERGR4jGwEBERkeLxOixECra36aJSl/VNmFaNLSEisiyOsBAREZHiMbAQERGR4jGwEBERkeIxsBAREZHiMbAQERGR4nGWEBERUQ1yTNcfWgeNyetn5uTDGRfRuXNnqNVq6PV66PV6M7bQNAwsRArGqctET47F+34qdVnegwfV2BLziIuLg1artXQzJPxJiIiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI/TmomIzMCjmX+py1IvH63GlhDVTBxhISIiIsVjYCEiIiLFY2AhIiIixWNgISIiIsVjYCEiIiLF4ywhInqiKHU2DmcC1XzGbm4IAFOfDy51WWZuLj7ausvcTXqqcISFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI/XYamB9jZdVKn1+yZMM1NLiMyvqq53UtY1NhpNjjG6/I+loSbtt6ztvnRui0nbpdJtbfdyqctM/X98ms2fPx9btmzB77//Djs7O3Tt2hULFixA8+bNzbofjrAQERGRyX755Rfo9XocO3YMu3fvxoMHD9CvXz/k5OSYdT8cYSEiIiKT7dixQ/Z8zZo1qFevHk6dOoWePXuabT8MLERERGQgMzNT9lyj0UCj0ZS5XkZGBgDA1dXVrO1hYCEiIqpB/uP4LuwdnExe/74qC8BSeHl5ycojIiIQGRlpdN2ioiJMmjQJ3bp1Q5s2bUxuQ0kYWIiIiMhAcnIytFqt9Lw8oyt6vR7x8fE4fPiw2dvDwEJEREQGtFqtLLCU5b333sOPP/6IgwcP4plnnjF7exhYiIgATH0+2HiFMqYXLzZxv5actlzWVO4y+8QIY1OHAcset7Gpy5U55qeVEAITJkzA1q1bceDAAfj4+FTJfhhYiIiIyGR6vR4bNmzA9u3b4eTkhNTUVACAs7Mz7OzszLYfXoeFiIiITBYdHY2MjAz07t0bOp1Oenz77bdm3Q9HWIiIiMhkQohq2Q9HWIiIiEjxGFiIiIhI8RhYiIiISPF4DksNxLst09PK2FTasqbRVnaKr7HlZW27MpS67UZlTGuuzB2TOfX46cQRFiIiIlI8BhYiIiJSPAYWIiIiUjwGFiIiIlI8BhYiIiJSPAYWIiIiUjyLTmuOjIzEzJkzZWXNmzfH77//Xuo66enp+PDDD7FlyxbcvXsX3t7eiIqKwj/+8Q8AQFZWFsLDw7F161bcunULHTp0wLJly9C5c2dpG2lpaZgxYwZ27dqF9PR09OzZE5999hmaNm1aNQdKRE+8ykzxtdSU58pqNDnG6HJj04/LmkZubFpzVU9b5rToJ5PFr8PSunVr7NmzR3pubV16kwoKCvDCCy+gXr16+O6771C/fn38+eefcHFxkeq88cYbiI+Px7p16+Dp6YlvvvkGAQEB+O2331C/fn0IITB48GDUqlUL27dvh1arxZIlS6Q6Dg4OVXm4REREZAKLBxZra2t4eHiUq+6///1v3L17F0eOHEGtWrUAAA0bNpSW5+bm4vvvv8f27dvRs2dPAA9Hcf7zn/8gOjoac+bMQUJCAo4dO4b4+Hi0bt0awMM7TXp4eGDjxo144403zHuAREREVGkWP4clISEBnp6eaNSoEUaOHImkpKRS6/7www/w9/eHXq+Hu7s72rRpg3nz5qGwsBAA8Pfff6OwsBC2tray9ezs7HD48GEAQH5+PgDI6lhZWUGj0Uh1SpKfn4/MzEzZg4iIiKqHRQOLn58f1qxZgx07diA6OhqJiYno0aMHsrKySqz/xx9/4LvvvkNhYSF+/vlnhIeHY/HixZgzZw4AwMnJCf7+/pg9ezZSUlJQWFiIb775BkePHsXNmzcBAC1atECDBg0QFhaGe/fuoaCgAAsWLMD169elOiWZP38+nJ2dpYeXl5f5O4SIiIhKZNHAEhQUhJCQELRt2xaBgYH4+eefkZ6ejs2bN5dYv6ioCPXq1cOqVavQsWNHvPLKK/jwww+xcuVKqc66desghED9+vWh0WiwfPlyjBgxAlZWDw+1Vq1a2LJlCy5fvgxXV1fY29tj//79CAoKkuqUJCwsDBkZGdIjOTnZvJ1BREREpbL4OSyPcnFxQbNmzXDlypUSl+t0OtSqVQtqtVoqa9myJVJTU1FQUAAbGxs0btwYv/zyC3JycpCZmQmdTodXXnkFjRo1ktbp2LEjzp49i4yMDBQUFMDNzQ1+fn7o1KlTqW3TaDTQaDTmO1giIiIqN4ufw/Ko7OxsXL16FTqdrsTl3bp1w5UrV1BUVCSVXb58GTqdDjY2NrK6Dg4O0Ol0uHfvHnbu3IlBgwYZbM/Z2Rlubm5ISEjAyZMnS6xDRERElmfREZZp06Zh4MCB8Pb2RkpKCiIiIqBWqzFixAgAwJgxY1C/fn3Mnz8fAPDOO+/g888/x8SJEzFhwgQkJCRg3rx5eP/996Vt7ty5E0IING/eHFeuXMH06dPRokULjBs3TqoTGxsLNzc3NGjQABcuXMDEiRMxePBg9OvXr3o7gIjMqqxrfxhjqWtzlLVfS16npcz+NNJ2Y9dZITKFRQPL9evXMWLECNy5cwdubm7o3r07jh07Bjc3NwBAUlKS7LwSLy8v7Ny5E5MnT0bbtm1Rv359TJw4ETNmzJDqZGRkICwsDNevX4erqyuGDBmCuXPnStOgAeDmzZuYMmUK0tLSoNPpMGbMGISHh1ffgRMREVWRsB/PwEpjb/L6Rfn3AQCdO3eGWq2GXq+HXq83V/NMZtHAsmnTJqPLDxw4YFDm7++PY8eOlbrOsGHDMGzYMKPbff/992WjMkRERCQXFxcHrVZr6WZIFHUOCxEREVFJGFiIiIhI8RhYiIiISPEUdR2Wp83epotKXdY3YVo1toSo5itrtk1Zs3UuLl1udHnLyaWfF2dsxoyxOx6bg6VmP5U1w8jo/wfvpkwl4AgLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHqc1WxCnLhNVn8pO7zU2bRkoY5qukWWVbVdV3hyxKm9gOLUS61b2mC011ZsqhyMsREREpHgMLERERKR4DCxERESkeAwsREREpHgMLERERKR4DCxERESkeAwsREREpHi8DgsRkRmYem0Pj2b+RpenXj5aJfstj5fObTF53cpcw6WsdStzDZfK7Lsy/UGVxxEWIiIiUjwGFiIiIlI8BhYiIiKqtBUrVqBhw4awtbWFn58fTpw4YdbtM7AQERFRpXz77beYMmUKIiIicPr0abRr1w6BgYG4deuW2fbBwEJERESVsmTJErz55psYN24cWrVqhZUrV8Le3h7//ve/zbYPzhIykRACAJCZl2fhlhDRk6woJ9vo8szc3GpqiXndz8kyutzYcVVm3coytu/K7Lf4s6L4s6MqFeXfN8v6mZmZsnKNRgONRmNQv6CgAKdOnUJYWJhUZmVlhYCAABw9anyWW0UwsJgoK+vhi9or7EMLt4SIajJnSzfAZJWZfFyVE5ctu++srCw4O1fN/6qNjQ08PDxwI/q1Sm/L0dERXl5esrKIiAhERkYa1P3rr79QWFgId3d3Wbm7uzt+//33SrelGAOLiTw9PZGcnAwnJyeoVCpLN8eozMxMeHl5ITk5GVqt1tLNeWKw3yqOfWYa9lvFPWl9JoRAVlYWPD09q2wftra2SExMREFBQaW3JYQw+GwraXSlOjGwmMjKygrPPPOMpZtRIVqt9on4w1Ya9lvFsc9Mw36ruCepz6pqZOVRtra2sLW1rfL9PKpu3bpQq9VIS0uTlaelpcHDw8Ns++FJt0RERGQyGxsbdOzYEXv37pXKioqKsHfvXvj7G7+Sc0VwhIWIiIgqZcqUKRg7diw6deqELl26ICoqCjk5ORg3bpzZ9sHA8hTQaDSIiIiw+O+PTxr2W8Wxz0zDfqs49pmyvPLKK7h9+zY+/vhjpKamon379tixY4fBibiVoRLVMceKiIiIqBJ4DgsREREpHgMLERERKR4DCxERESkeAwsREREpHgOLAn3yySdQqVSYNGmSwTIhBIKCgqBSqbBt2zaD5WvWrEHbtm1ha2uLevXqQa/Xy5afP38ePXr0gK2tLby8vLBw4UKDbcTGxqJFixawtbWFr68vfv75Z4M2fPzxx9DpdLCzs0NAQAASEhIqdcyVZUqfrVmzBiqVqsTHo3cYPXDgAJ599lloNBo0adIEa9asMdhHWbdVz8vLg16vR506deDo6IghQ4YYXGTJEkx9rcXFxaFv375wcXFB7dq1ERgYiHPnzsnq8LW2TbZs79696Nq1K5ycnODh4YEZM2bg77//ltWpqX0GlNxvvXv3Nvjbe/vtt2XrJSUlITg4GPb29qhXrx6mT59u0G81+W+UHiFIUU6cOCEaNmwo2rZtKyZOnGiwfMmSJSIoKEgAEFu3bpUtW7x4sfD09BTr168XV65cEefOnRPbt2+XlmdkZAh3d3cxcuRIER8fLzZu3Cjs7OzEl19+KdX59ddfhVqtFgsXLhS//fab+Oijj0StWrXEhQsXpDqffPKJcHZ2Ftu2bRPnzp0TL774ovDx8RG5ublm74/yMLXP7t+/L27evCl7BAYGil69ekl1/vjjD2Fvby+mTJkifvvtN/HZZ58JtVotduzYIdXZtGmTsLGxEf/+97/Ff//7X/Hmm28KFxcXkZaWJtV5++23hZeXl9i7d684efKkeO6550TXrl2rojvKzdR+y8rKEq6uruK1114Tv//+u4iPjxdDhgwR7u7uoqCgQAjB19rjfXb27FlhY2MjZs6cKRISEsSBAwdEixYtxNSpU6U6NbXPhCi933r16iXefPNN2d9gRkaGtPzvv/8Wbdq0EQEBAeLMmTPi559/FnXr1hVhYWFSnZr8N0pyDCwKkpWVJZo2bSp2794tevXqZfCGeObMGVG/fn1x8+ZNgzfEu3fvCjs7O7Fnz55St//FF1+I2rVri/z8fKlsxowZonnz5tLzYcOGieDgYNl6fn5+4q233hJCCFFUVCQ8PDzEp59+Ki1PT08XGo1GbNy40ZTDrpTK9Nnjbt26JWrVqiXWrl0rlX3wwQeidevWsnqvvPKKCAwMlJ536dJF6PV66XlhYaHw9PQU8+fPF0I87J9atWqJ2NhYqc7FixcFAHH06FFTDrvSKtNvcXFxAoBISkqSys6fPy8AiISEBCEEX2uP91lYWJjo1KmTrP4PP/wgbG1tRWZmphCiZvaZEMb7raR+fNTPP/8srKysRGpqqlQWHR0ttFqt1E819W+UDPEnIQXR6/UIDg5GQECAwbL79+/j1VdfxYoVK0q8N8Pu3btRVFSEGzduoGXLlnjmmWcwbNgwJCcnS3WOHj2Knj17wsbGRioLDAzEpUuXcO/ePanO4/sPDAyUbhGemJiI1NRUWR1nZ2f4+fmZ9Tbi5VWZPnvc2rVrYW9vj6FDh0plZfVH8W3VH63z+G3VT506hQcPHsjqtGjRAg0aNLBInwGV67fmzZujTp06iImJQUFBAXJzcxETE4OWLVuiYcOGAPhae1x+fr7B/V3s7OyQl5eHU6dOAaiZfQYY7zcAWL9+PerWrYs2bdogLCwM9+/fl5YdPXoUvr6+souPBQYGIjMzE//973+lOjXxb5QM8Uq3CrFp0yacPn0acXFxJS6fPHkyunbtikGDBpW4/I8//kBRURHmzZuHZcuWwdnZGR999BFeeOEFnD9/HjY2NkhNTYWPj49sveI3gtTUVNSuXRupqakl3iI8NTVVqvfoeiXVqS6V7bPHxcTE4NVXX4WdnZ1UVlp/ZGZmIjc3F/fu3SvztuqpqamwsbGBi4uLQZ3q7jOg8v3m5OSEAwcOYPDgwZg9ezYAoGnTpti5cyesrR++pfC1JhcYGIioqChs3LgRw4YNQ2pqKmbNmgUAuHnzJoCa12dA2f326quvwtvbG56enjh//jxmzJiBS5cuYcuWLQBK//srXmaszpP8N0olY2BRgOTkZEycOBG7d+8u8S6bP/zwA/bt24czZ86Uuo2ioiI8ePAAy5cvR79+/QAAGzduhIeHB/bv34/AwMAqa78lmKPPHnX06FFcvHgR69atM3dTFcUc/Zabm4vQ0FB069YNGzduRGFhIRYtWoTg4GDExcXJAl9NYI4+69evHz799FO8/fbbGD16NDQaDcLDw3Ho0CFYWdXMge6y+g0Axo8fL/3b19cXOp0Offv2xdWrV9G4cePqaio9IWrmX8oT5tSpU7h16xaeffZZWFtbw9raGr/88guWL18Oa2tr7N69G1evXoWLi4u0HACGDBmC3r17AwB0Oh0AoFWrVtJ23dzcULduXSQlJQEAPDw8Srz9d/EyY3UeXf7oeiXVqQ7m6LNH/etf/0L79u3RsWNHWXlp/aHVamFnZ1eu26p7eHigoKAA6enppdapLubotw0bNuDatWtYvXo1OnfujOeeew4bNmxAYmIitm/fDoCvNcDwtTZlyhSkp6cjKSkJf/31lzQa06hRIwA1q8+AsvutsLDQYB0/Pz8AwJUrVwBUrk+e1L9RKh0DiwL07dsXFy5cwNmzZ6VHp06dMHLkSJw9exYffvghzp8/L1sOAEuXLsXq1asBAN26dQMAXLp0Sdru3bt38ddff8Hb2xsA4O/vj4MHD+LBgwdSnd27d6N58+aoXbu2VOfRW4QX1ym+RbiPjw88PDxkdTIzM3H8+HGz3ka8LObos2LZ2dnYvHkzQkNDDfZTVn+U57bqHTt2RK1atWR1Ll26hKSkpGrtM8A8/Xb//n1YWVlBpVJJ2y1+XlRUBICvNaDk15pKpYKnpyfs7OywceNGeHl54dlnnwVQs/oMKLvf1Gq1wTrFfVf8Bczf3x8XLlyQXWZg9+7d0Gq10pezmvY3SkZY+qxfKllZZ8+jhBkvgwYNEq1btxa//vqruHDhghgwYIBo1aqVNNU0PT1duLu7i9GjR4v4+HixadMmYW9vbzBt0traWixatEhcvHhRRERElDht0sXFRWzfvl2cP39eDBo0yOLTJoUwrc+EEOJf//qXsLW1Fffu3TNYVjxlcvr06eLixYtixYoVJU6Z1Gg0Ys2aNeK3334T48ePFy4uLrKZDW+//bZo0KCB2Ldvnzh58qTw9/cX/v7+lTlcs6lov128eFFoNBrxzjvviN9++03Ex8eLUaNGCWdnZ5GSkiKE4GutpNfawoULxfnz50V8fLyYNWuWqFWrlqxOTe8zIeT9duXKFTFr1ixx8uRJkZiYKLZv3y4aNWokevbsKdUvntbcr18/cfbsWbFjxw7h5uZW4rTmmvw3Sg8xsCiUKW+IGRkZ4vXXXxcuLi7C1dVVvPTSS7Kpp0IIce7cOdG9e3eh0WhE/fr1xSeffGKw7c2bN4tmzZoJGxsb0bp1a/HTTz/JlhcVFYnw8HDh7u4uNBqN6Nu3r7h06ZLJx2oupgYWf39/8eqrr5a63v79+0X79u2FjY2NaNSokVi9erVBnc8++0w0aNBA2NjYiC5duohjx47Jlufm5op3331X1K5dW9jb24uXXnpJ3Lx5s7yHVqVM6bddu3aJbt26CWdnZ1G7dm3x/PPPG0z/5Gttq6ysT58+wtnZWdja2go/Pz/x888/G6xXk/tMCHm/JSUliZ49ewpXV1eh0WhEkyZNxPTp02XXYRFCiGvXromgoCBhZ2cn6tatK6ZOnSoePHggq1PT/0bpIZUQQlhufIeIiIiobDyHhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIiIgUj4GFiIiIFI+BhYiIiBSPgYWIKu327dvw8PDAvHnzpLIjR47AxsbG4E66RESm4L2EiMgsfv75ZwwePBhHjhxB8+bN0b59ewwaNAhLliyxdNOIqAZgYCEis9Hr9dizZw86deqECxcuIC4uDhqNxtLNIqIagIGFiMwmNzcXbdq0QXJyMk6dOgVfX19LN4mIagiew0JEZnP16lWkpKSgqKgI165ds3RziKgG4QgLEZlFQUEBunTpgvbt26N58+aIiorChQsXUK9ePUs3jYhqAAYWIjKL6dOn47vvvsO5c+fg6OiIXr16wdnZGT/++KOlm0ZENQB/EiKiSjtw4ACioqKwbt06aLVaWFlZYd26dTh06BCio6Mt3TwiqgE4wkJERESKxxEWIiIiUjwGFiIiIlI8BhYiIiJSPAYWIiIiUjwGFiIiIlI8BhYiIiJSPAYWIiIiUjwGFiIiIlI8BhYiIiJSPAYWIiIiUjwGFiIiIlI8BhYiIiJSvP8HGC712qxocyEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHWCAYAAABUltILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOoklEQVR4nO3deVxUVeM/8M8wyLAOiCIMBoj7LuZCuJs8IeFWiklumWnLpLnmwzcR3FNzz7UvaZpFkltP9rhram64JmmKioEiYCogKGBwfn/05f4cBwZmGJgbft6v17xezrnn3nPucZj5zJ177lUIIQSIiIiIZMzK0h0gIiIiKg0DCxEREckeAwsRERHJHgMLERERyR4DCxEREckeAwsRERHJHgMLERERyR4DCxEREckeAwsRERHJHgOLTNSpUwdvvfWWpbtBRFXcW2+9hTp16pi0rqXep9LS0jBgwADUqFEDCoUCS5YsqfQ+kOUxsFSiY8eOISoqChkZGZbuSqWKi4vDhx9+iGbNmsHBwQHe3t4YOHAgrl69Wmz9y5cvo2fPnnB0dISrqyuGDh2Ku3fv6tT5/fff8fHHH8PPzw9OTk7QaDQICQnB6dOn9bZ35coVjB8/Hh06dICtrS0UCgVu3rxp1D6sWrUKoaGh8Pb2hkKhMPimnZGRgdGjR8PNzQ0ODg7o3r07zp49a1R70dHRaNKkCWxtbdGgQQMsX77cpP166623oFAoSn08vT/mHn9Djh07hk6dOsHe3h4eHh4YO3YssrOz9erl5eVhypQp8PT0hJ2dHfz9/bF3716j2irLmALA7du3MXDgQLi4uECtVqNv3764ceOGUW1ZWkpKCqKionD+/HlLd8Usxo8fj927dyM8PBwbN25Ez549K63tsr5GqRIIqjQLFiwQAERiYqLestzcXJGfn1/5naoE/fv3Fx4eHmLMmDHiiy++EDNnzhTu7u7CwcFBXLx4UaducnKyqFmzpqhXr55YunSpmD17tqhevbpo1aqVyMvLk+pNnDhRuLi4iJEjR4o1a9aI+fPni3r16gmlUin27t2rs81169YJKysr0bx5c+Hn51fi/4EhPj4+wtXVVfTs2VNYW1uL4cOHF1uvoKBAdOjQQTg4OIioqCjx+eefi6ZNmwonJydx9erVMrW1evVqAUD0799frF27VgwdOlQAEJ9++qnR+3Xs2DGxceNG6TFjxgwBQIwePVqn/NixY0KIihn/kpw7d07Y2tqK1q1bi1WrVolPPvlEqFQq0bNnT726gwYNEtbW1mLSpElizZo1IiAgQFhbW4sjR46YdUwfPnwoGjRoIGrVqiXmzZsnFi1aJLy8vMQLL7wg/vzzzzK1JQdxcXECgFi3bp3esvz8fJGbm2vSdn18fEp87Vckd3d3MXjw4Epv15jXKFU8BpZKZCiwVGW//PKLzoedEEJcvXpVqFQqvTeh999/X9jZ2Yk//vhDKtu7d68AINasWSOVnT59Wjx8+FBn3T///FO4ubmJjh076pTfu3dPZGVlCSFM/z+4efOmKCwsFEII4eDgUOKb9nfffScAiNjYWKksPT1duLi4iLCwsFLbefTokahRo4YICQnRKR88eLBwcHAQ9+/fL9d+GfogE6Jixr8kwcHBQqPRiMzMTKnsiy++EADE7t27pbKTJ08KAGLBggVS2ePHj0W9evVEQEBAqe0YM6bz5s0TAMSpU6ekssuXLwulUinCw8PLtF9yUNr/s6nMEVgKCgrE48ePjVpHoVAIrVZbrnZNUdbXKFUOBpZKEhkZKQDoPYo+YJ59I1i3bp0AII4cOSLGjBkjatasKZydncXo0aNFXl6eePDggRg6dKhwcXERLi4uYvLkydIHapGCggKxePFi0bRpU6FSqUStWrXE6NGjdd6gLenFF18UL774ok5ZrVq1RGhoqF7dhg0bih49epS6zddff124urqWuNwcodFQYAkNDRXu7u6ioKBAp3z06NHC3t6+1G+2O3fuFADEzp07dcqPHTsmAIiNGzcWu565AktFjH9OTo64fPmyuHv3rlSWmZkprK2txeTJk3Xq5uXlCUdHRzFy5EipbPLkyUKpVOp8aAghxJw5cwQAkZSUJJXdvXtXXL58WeTk5Ehlxoxpu3btRLt27fT265VXXhH16tUrdf+Lc+fOHfHWW2+J2rVrCxsbG+Hh4SH69Omj83/l4+MjQkJCxO7du0WrVq2ESqUSTZo0EVu2bNHZ1r1798TEiRNF8+bNhYODg3BychI9e/YU58+fl+ocPHiw2Peaov/z4cOHCx8fH53tLliwQAQEBAhXV1dha2srXnzxRZ3Q/XQ/jQ0sAIRWqxVff/21aNq0qbC2thbbtm0TQghx69YtMWLECFGrVi1hY2MjmjZtKqKjo6V1i94Hn31UBmNeo1Q5eA5LJXn99dcRFhYGAFi8eDE2btyIjRs3ws3NzeB6Y8aMQUJCAqZPn44+ffpg7dq1iIiIQO/evVFQUIA5c+agU6dOWLBgATZu3Kiz7rvvvovJkyejY8eOWLp0KUaMGIFNmzYhKCgIT548MdhuXl4e/vzzzzI9TCGEQFpaGmrWrCmV3b59G+np6Wjbtq1e/fbt2+PcuXOlbjc1NVVnm5Xt3LlzePHFF2Flpfun1b59ezx69KjE83aeXh+A3hi0adMGVlZWZRoDU1XU+J86dQpNmjTB559/LpVdvHgRf/31l15bNjY28PPz02nr3LlzaNiwIdRqtV6fAOicp/H555+jSZMmOHXqlM76QOljWlhYiF9//bXE/b9+/ToePnxY6hg8q3///ti2bRtGjBiBlStXYuzYsXj48CGSkpJ06iUkJOCNN95AcHAw5s6dC2tra4SGhuqcq3Pjxg1s374dvXr1wqJFizB58mRcvHgRXbt2RUpKCgCgSZMmmDFjBgBg9OjR0ntNly5dSuzj0qVL0bp1a8yYMQNz5syR2t65c6fR+1ucAwcOYPz48XjjjTewdOlS1KlTB2lpaXjppZewb98+fPjhh1i6dCnq16+PkSNHSifVdunSRXpf+9e//iXtiyEPHjwo0/vWo0ePDG7HmNcoVRJLJ6bniaFvwSUdYQkKCtI5chIQECAUCoV47733pLK//vpLvPDCC6Jr165S2ZEjRwQAsWnTJp12du3aVWz5s0r6ZlPcwxQbN24UAHS+TRV9+9+wYYNe/cmTJwsABo9QHD58WCgUChEREVFinYo+wuLg4CDefvttvfKib/m7du0yuG2tViuUSmWxy9zc3MSgQYOKXWaOIywVNf5F3/gjIyOlstjYWAFAHD58WG87oaGhwsPDQ3rerFkz8fLLL+vV++233wQAsXr1aqms6EjmwYMHpbKyjundu3cFADFjxgy9eitWrBAAxO+//178zpfgwYMHej9nFcfHx0cA0DmikpmZKTQajWjdurVUlpubq3f0LjExUahUKp1+G/p/Lu4Iy6NHj3Se5+fni+bNm+uNu6lHWKysrMRvv/2mUz5y5Eih0Wj0zg0aNGiQcHZ21ukT/u8oTVkUjWVpj6dfj8Ux5jVKlcO6YmIQmcvIkSOhUCik5/7+/jh+/DhGjhwplSmVSrRt2xZnzpyRymJjY+Hs7Ix//etfOkdB2rRpA0dHRxw8eBBvvvlmie0GBQUZPQujrH7//XdotVoEBARg+PDhUvnjx48BACqVSm8dW1tbqU5xy9PT0/Hmm2/C19cXH3/8cYX0uyxK6t/T/S9tfRsbm2KX2dralrp+eVTU+Hfr1g1CCKPaeno/jRnTqKgoREVF6bVVljEt6/4bw87ODjY2Njh06BBGjhyJ6tWrl1jX09MTr732mvRcrVZj2LBhmDdvHlJTU+Hh4aHTt4KCAmRkZMDR0RGNGjUyeibas/0s8uDBAxQUFKBz58749ttvTd7m07p27YqmTZtKz4UQ2LJlCwYOHAghhM57VFBQEGJiYnD27Fl07NjR6LY2bdpUpv+nunXrGlxuzGuUKgcDi8x5e3vrPHd2dgYAeHl56ZU/ePBAep6QkIDMzEzUqlWr2O2mp6cbbFej0UCj0ZjSZYNSU1MREhICZ2dnfP/991AqldKyojfNvLw8vfVyc3N16jwtJycHvXr1wsOHD3H06FE4Ojqa1Le7d++ioKBAeu7o6Gj0tuzs7MrU/5LasrOzQ35+frHbzs3NLXb/zaUyx7+0tp5up6xjaqitsoypqftviEqlwrx58zBx4kS4u7vjpZdeQq9evTBs2DB4eHjo1K1fv77OlxMAaNiwIQDg5s2b8PDwQGFhIZYuXYqVK1ciMTFR5zVUo0YNo/r2tB9//BGzZs3C+fPndfb/2f6YytfXV+f53bt3kZGRgbVr12Lt2rXFrlPae1RJTAk5xTHmNUqVg4FF5p7+QC+t/OlvsYWFhahVqxY2bdpU7PqlnTvz+PFjZGZmlqmPz77xliQzMxPBwcHIyMjAkSNH4OnpqbO8KCDduXNHb907d+7A1dVV79tOfn4+Xn/9dfz666/YvXs3mjdvXqa+FKddu3b4448/pOeRkZF639ZLo9FoSuw/AGmfS2pLo9GgoKAA6enpOmEzPz8f9+7d0xszc6rM8S+traf3U6PR4Pbt28XWA1DqmJR1TIv2ryz/f8YYN24cevfuje3bt2P37t2IiIjA3LlzceDAAbRu3dqobc2ZMwcRERF4++23MXPmTLi6usLKygrjxo1DYWGh0X0DgCNHjqBPnz7o0qULVq5cCY1Gg2rVqmHdunX45ptvTNrms579cC/q65AhQ3SOsj6tZcuWJrX17JeBkpT2hcSY1yhVDgaWSmSubytlUa9ePezbtw8dO3Y06ZvAd999hxEjRpSp7rOH+4uTm5uL3r174+rVq9i3b5/O4eEitWvXhpubW7EXHzt16hT8/Px0ygoLCzFs2DDs378fmzdvRteuXcvU35I8eyi5tEPGxfHz88ORI0dQWFioc+LtyZMnYW9vL31jLqmton08ffo0Xn31VWn56dOnUVhYqDcG5lSZ49+8eXNYW1vj9OnTGDhwoFSen5+P8+fP65T5+fnh4MGDyMrK0jnx9uTJk9JyQ8o6plZWVmjRokWx+3/y5EnUrVsXTk5OZd7Hp9WrVw8TJ07ExIkTkZCQAD8/PyxcuBBff/21VOfatWsQQui8TxSdpF10Zdrvv/8e3bt3R3R0tM72MzIydE52Nua9ZsuWLbC1tcXu3bt1Aum6deuM2kdjuLm5wcnJCQUFBQgMDDTrtp/9MlCS0r6QGPMapcrBwFKJHBwcAKBSrnQ7cOBArFy5EjNnzsScOXN0lv3111/Izs6Gi4tLieub8xyWgoICvPHGGzh+/Dh27NiBgICAEuv2798fX331FZKTk6Wfvfbv34+rV69i/PjxOnXHjBmD7777DmvWrMHrr79e7n6a41DygAED8P3332Pr1q0YMGAAAODPP/9EbGwsevfuLX0glNTWyy+/DFdXV6xatUrnw3XVqlWwt7dHSEhIuftoSEWM/6NHj5CUlISaNWtKH6rOzs4IDAzE119/jYiICCkIbNy4EdnZ2QgNDZXWHzBgAD777DOsXbsWkyZNAvD3Yfp169bB399f5+fRohkg3t7esLe3B2DcmA4YMAD//ve/cfr0aWl2yJUrV3DgwAGpbWM8evQIVlZW0jkwwN/hxcnJSe+nhpSUFGzbtk0ay6ysLGzYsAF+fn7SUUylUqn3BSE2Nha3b99G/fr1pTJj3muUSiUUCoXOUYmbN29i+/btRu2rMZRKJfr3749vvvkG8fHxekfm7t69W+pR4JKY6xwWY16jVDkYWCpRmzZtAACffPIJBg0ahGrVqqF3797Sm4s5de3aFe+++y7mzp2L8+fP45VXXkG1atWQkJCA2NhYLF26VPpALY45z2GZOHEifvjhB/Tu3Rv379/X+VYJ/H1YuMj//M//IDY2Ft27d8dHH32E7OxsLFiwAC1atNA54rNkyRKsXLkSAQEBsLe319vma6+9Jo1rZmamdBn2X375BcDf019dXFzg4uKCDz/8sNR9+M9//oMLFy4AAJ48eYJff/0Vs2bNAgD06dNHOnw9YMAAvPTSSxgxYgQuXbqEmjVrYuXKlSgoKMD06dNLbcfOzg4zZ86EVqtFaGgogoKCcOTIEXz99deYPXs2XF1dpbrm2K9nVcT4nzp1Ct27d9f7Rjt79mx06NABXbt2xejRo3Hr1i0sXLgQr7zyis6l1/39/REaGorw8HCkp6ejfv36+Oqrr3Dz5k29Iw2ff/45pk+fjoMHD6Jbt25Gj+kHH3yAL774AiEhIZg0aRKqVauGRYsWwd3dHRMnTtRpq1u3bvj5558NHmG8evUqevTogYEDB6Jp06awtrbGtm3bkJaWhkGDBunUbdiwIUaOHIm4uDi4u7vjyy+/RFpams6Rjl69emHGjBkYMWIEOnTogIsXL2LTpk16H7716tWDi4sLVq9eDScnJzg4OMDf31/vXBIACAkJwaJFi9CzZ0+8+eabSE9Px4oVK1C/fn38+uuvJe5beX366ac4ePAg/P39MWrUKDRt2hT379/H2bNnsW/fPty/f9+k7ZrrHBag7K9RqiSWm6D0fJo5c6aoXbu2sLKyKtOF4+Li4nTWL5q2+fRFuIT4e6qig4ODXntr164Vbdq0EXZ2dsLJyUm0aNFCfPzxxyIlJcXs+1aSrl27GjUtOj4+XrzyyivC3t5euLi4iMGDB4vU1FSdOsOHDze4zaen9yYmJpZY79npnSUx1N6zU0fv378vRo4cKWrUqCHs7e1F165d9f4fS7N27VrRqFEjYWNjI+rVqycWL16sd2FAU/arLFdANff4FzetuciRI0dEhw4dhK2trXBzcxNarVa6eu/THj9+LCZNmiQ8PDyESqUS7dq1K3aKeHHTmouUZUyF+Pv2BAMGDBBqtVo4OjqKXr16iYSEBL16bdq0KXVq659//im0Wq1o3LixcHBwEM7OzsLf319s3rxZp97TF45r2bKlUKlUonHjxnoXb8vNzRUTJ04UGo1G2NnZiY4dO4rjx4+Lrl276lzWQAghduzYIV2o7en/8+KmNUdHR4sGDRpI7a5bt04ay2f7aeqF44qTlpYmtFqt8PLyEtWqVRMeHh6iR48eYu3atWXeRkUr62uUKp5CiDKcgEBERJKHDx/C1dUVS5YsgVarLff26tSpg+bNm+PHH380Q++IqiZe6ZaIyEiHDx9G7dq1MWrUKEt3hei5wXNYiIiMFBISUuEnQMtdamqqweV2dnbSdaOIzIGBhYiIjFbaSfnDhw/H+vXrK6cz9FxgYCEisrCbN29augtGK+2yB7ywGpkbT7olIiIi2eNJt0RERCR7DCxEREQkewwsREREJHsMLGZw+PBh9O7dG56enlAoFCbdg0MIgc8++wwNGzaESqVC7dq1MXv2bPN3loiI6B+Is4TMICcnB61atcLbb79t8k34PvroI+zZswefffYZWrRogfv375t8Lw0iIqKqhrOEzEyhUGDbtm3o16+fVJaXl4dPPvkE3377LTIyMtC8eXPMmzdPujnb5cuX0bJlS8THx6NRo0aW6TgREZGM8SehSvDhhx/i+PHjiImJwa+//orQ0FD07NkTCQkJAP6+E3DdunXx448/wtfXF3Xq1ME777zDIyxERET/h4GlgiUlJWHdunWIjY1F586dUa9ePUyaNAmdOnWSbht/48YN/PHHH4iNjcWGDRuwfv16nDlzBgMGDLBw74mIiOSB57BUsIsXL6KgoAANGzbUKc/Ly0ONGjUAAIWFhcjLy8OGDRuketHR0WjTpg2uXLnCn4mIiOi5x8BSwbKzs6FUKnHmzBkolUqdZY6OjgD+vieHtbW1Tqhp0qQJgL+P0DCwEBHR846BpYK1bt0aBQUFSE9PR+fOnYut07FjR/z111+4fv066tWrBwC4evUqAMDHx6fS+kpERCRXnCVkBtnZ2bh27RqAvwPKokWL0L17d7i6usLb2xtDhgzBL7/8goULF6J169a4e/cu9u/fj5YtWyIkJASFhYVo164dHB0dsWTJEhQWFkKr1UKtVmPPnj0W3jsiIiLLY2Axg0OHDqF79+565UW3V3/y5AlmzZqFDRs24Pbt26hZsyZeeuklTJ8+HS1atAAApKSkYMyYMdizZw8cHBwQHByMhQsXwtXVtbJ3h4iISHYYWIiIiMhkhw8fxoIFC3DmzBncuXNH71pkT3vvvfewZs0aLF68GOPGjTOqHU5rJiIiIpMVXe19xYoVButt27YNJ06cgKenp0nt8KRbIiIiMllwcDCCg4MN1rl9+zbGjBmD3bt3IyQkxKR2GFhMVFhYiJSUFDg5OUGhUFi6O0REJGNCCDx8+BCenp6wsqq4Hzdyc3ORn59f7u0IIfQ+21QqFVQqldHbKiwsxNChQzF58mQ0a9bM5D4xsJgoJSUFXl5elu4GERH9gyQnJ+OFF16okG3n5ubCw9sHmXfTy70tR0dHZGdn65RFRkYiKirK6G3NmzcP1tbWGDt2bLn6xMBiIicnJwBA8tzZUNvaWrg3RERkDvXrty9x2bVrp0zeblZuLrzCP5E+OypCfn4+Mu+m47PDcbBzNL2dx9kPMalLOyQnJ0OtVkvlphxdOXPmDJYuXYqzZ8+W+9cIBhYTFQ282tYWajs7C/eGiIjMwcrBscRl5nivr4xTCOwcncoVWIqo1WqdwGKKI0eOID09Hd7e3lJZQUEBJk6ciCVLluDmzZtl3hYDCxEREVWIoUOHIjAwUKcsKCgIQ4cOxYgRI4zaFgMLERERmezpq70DQGJiIs6fPy9d7b3oRr9FqlWrBg8PD6Pvk8fAQkRERCY7ffq0ztXeJ0yYAOD/X+3dXBhYiIiIyGTdunWDMRfNN+a8lacxsBAREf2f1KvHLd0FKgEvzU9ERESyx8BCREREssfAQkRERLLHwEJERESyx8BCREREssfAQkRERLLHwEJERESyx8BCREREssfAQkRERLLHwEJERESyx8BCREREssfAQkRERLLHwEJERESyx8BCREREssfAQkRERLLHwEJERESyx8BCREREssfAQkRERLLHwEJERESyZ23pDhAREZH5RN2+CyuHxyavX5iTDQBo164dlEoltFottFqtubpnMgYWIiIz8GgYUOKy1KvHK7EnROYRFxcHtVpt6W5I+JMQERERyR4DCxEREckeAwsRERHJHgMLERERyR4DCxEREckeAwsRERHJHqc1ExGZAacuE1UsHmEhIiIi2WNgISIiItljYCEiIiLZY2AhIiIi2WNgISIiItljYCEiIiLZY2AhIiIi2WNgISIiItljYCEiIiLZs2hgiYqKgkKh0Hk0bty4xPrdunXTq69QKBASEiLVEUJg2rRp0Gg0sLOzQ2BgIBISEnS206dPH3h7e8PW1hYajQZDhw5FSkpKhe0nERERlY/Fj7A0a9YMd+7ckR5Hjx4tse7WrVt16sbHx0OpVCI0NFSqM3/+fCxbtgyrV6/GyZMn4eDggKCgIOTm5kp1unfvjs2bN+PKlSvYsmULrl+/jgEDBlTofhIREZHpLH4vIWtra3h4eJSprqurq87zmJgY2NvbS4FFCIElS5Zg6tSp6Nu3LwBgw4YNcHd3x/bt2zFo0CAAwPjx46Vt+Pj44N///jf69euHJ0+eoFq1aubYLSIiIjIjix9hSUhIgKenJ+rWrYvBgwcjKSmpzOtGR0dj0KBBcHBwAAAkJiYiNTUVgYGBUh1nZ2f4+/vj+PHib0x2//59bNq0CR06dDAYVvLy8pCVlaXzICIiosph0cDi7++P9evXY9euXVi1ahUSExPRuXNnPHz4sNR1T506hfj4eLzzzjtSWWpqKgDA3d1dp667u7u0rMiUKVPg4OCAGjVqICkpCTt27DDY3ty5c+Hs7Cw9vLy8yrqbREREVdbhw4fRu3dveHp6QqFQYPv27dKyJ0+eYMqUKWjRogUcHBzg6emJYcOGmXTeqEUDS3BwMEJDQ9GyZUsEBQXhp59+QkZGBjZv3lzqutHR0WjRogXat29vUtuTJ0/GuXPnsGfPHiiVSgwbNgxCiBLrh4eHIzMzU3okJyeb1C4REVFVkpOTg1atWmHFihV6yx49eoSzZ88iIiICZ8+exdatW3HlyhX06dPH6HYsfg7L01xcXNCwYUNcu3bNYL2cnBzExMRgxowZOuVF58KkpaVBo9FI5WlpafDz89OpW7NmTdSsWRMNGzZEkyZN4OXlhRMnTiAgIKDYNlUqFVQqlQl7RUREVHUFBwcjODi42GXOzs7Yu3evTtnnn3+O9u3bIykpCd7e3mVux+LnsDwtOzsb169f1wkbxYmNjUVeXh6GDBmiU+7r6wsPDw/s379fKsvKysLJkydLDCIAUFhYCODv81SIiIgIeudtmuszMjMzEwqFAi4uLkatZ9EjLJMmTULv3r3h4+ODlJQUREZGQqlUIiwsDAAwbNgw1K5dG3PnztVZLzo6Gv369UONGjV0yhUKBcaNG4dZs2ahQYMG8PX1RUREBDw9PdGvXz8AwMmTJxEXF4dOnTqhevXquH79OiIiIlCvXj2DoYaIiOif4H/FUDgI049H5IhC9AX0ztWMjIxEVFRUufqWm5uLKVOmICwsDGq12qh1LRpYbt26hbCwMNy7dw9ubm7o1KkTTpw4ATc3NwBAUlISrKx0B/3KlSs4evQo9uzZU+w2P/74Y+Tk5GD06NHIyMhAp06dsGvXLtja2gIA7O3tsXXrVkRGRiInJwcajQY9e/bE1KlT+ZMPERHR/0lOTtYJFeX9jHzy5AkGDhwIIQRWrVpl9PoWDSwxMTEGlx86dEivrFGjRgZPjlUoFJgxY4be+S1FWrRogQMHDhjVTyIioueNWq02+ihISYrCyh9//IEDBw6YtF1ZnXRLREREVUtRWElISMDBgwf1TucoKwYWIiIiMll2drbO7N7ExEScP38erq6u0Gg0GDBgAM6ePYsff/wRBQUF0nXRXF1dYWNjU+Z2GFiIiIjIZKdPn0b37t2l5xMmTAAADB8+HFFRUfjhhx8AQO/yIgcPHkS3bt3K3A4DCxEREZmsW7duBs8tNbTMGLK6DgsRERFRcRhYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9qwt3QEiIiIyHwf7/4WDvYPpGxA5AALRrl07KJVKaLVaaLVas/XPVAwsREREpCcuLg5qtdrS3ZDwJyEiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiIy2eHDh9G7d294enpCoVBg+/btOsuFEJg2bRo0Gg3s7OwQGBiIhIQEo9thYCEiIiKT5eTkoFWrVlixYkWxy+fPn49ly5Zh9erVOHnyJBwcHBAUFITc3Fyj2rE2R2eJiIjo+RQcHIzg4OBilwkhsGTJEkydOhV9+/YFAGzYsAHu7u7Yvn07Bg0aVOZ2eISFiIiI9GRlZek88vLyjN5GYmIiUlNTERgYKJU5OzvD398fx48fN2pbPMJCRERUhbTIsIc638Hk9bMeCQCAl5eXTnlkZCSioqKM2lZqaioAwN3dXafc3d1dWlZWDCxERESkJzk5GWq1WnquUqks2Bv+JERERETFUKvVOg9TAouHhwcAIC0tTac8LS1NWlZWDCxERERUIXx9feHh4YH9+/dLZVlZWTh58iQCAgKM2hZ/EiIiIiKTZWdn49q1a9LzxMREnD9/Hq6urvD29sa4ceMwa9YsNGjQAL6+voiIiICnpyf69etnVDsMLERERGSy06dPo3v37tLzCRMmAACGDx+O9evX4+OPP0ZOTg5Gjx6NjIwMdOrUCbt27YKtra1R7TCwEBERkcm6desGIUSJyxUKBWbMmIEZM2aUqx2ew0JERESyx8BCREREssfAQkRERLLHwEJERESyZ9HAEhUVBYVCofNo3LhxifW7deumV1+hUCAkJESqU9ptrG/evImRI0fC19cXdnZ2qFevHiIjI5Gfn1+h+0pERESms/gsoWbNmmHfvn3Sc2vrkru0detWnWBx7949tGrVCqGhoVJZ0W2sv/rqK2m+d1BQEC5dugRbW1v8/vvvKCwsxJo1a1C/fn3Ex8dj1KhRyMnJwWeffVYxO0lERETlYvHAYm1tXebL87q6uuo8j4mJgb29vRRYynIb6549e6Jnz57SNurWrYsrV65g1apVDCxEREQyZfFzWBISEuDp6Ym6deti8ODBSEpKKvO60dHRGDRoEBwc/r4rpam3sc7MzNQLQ8/Ky8vTu9U2ERERVQ6LHmHx9/fH+vXr0ahRI9y5cwfTp09H586dER8fDycnJ4Prnjp1CvHx8YiOjpbKTLmN9bVr17B8+fJSj67MnTsX06dPL8tuERHRc2jhgZ0lLst98qQSe1I1WfQIS3BwMEJDQ9GyZUsEBQXhp59+QkZGBjZv3lzqutHR0WjRogXat29vcvu3b99Gz549ERoailGjRhmsGx4ejszMTOmRnJxscrtERERkHIv/JPQ0FxcXNGzYUOcmSsXJyclBTEwMRo4cqVNuzG2sU1JS0L17d3To0AFr164ttW8qlUrvVttERERUOWQVWLKzs3H9+nVoNBqD9WJjY5GXl4chQ4bolJf1Nta3b99Gt27d0KZNG6xbtw5WVrIaBiIiInqGRT+pJ02ahJ9//hk3b97EsWPH8Nprr0GpVCIsLAwAMGzYMISHh+utFx0djX79+qFGjRo65QqFQrqN9Q8//ICLFy9i2LBhOrexLgor3t7e+Oyzz3D37l2kpqaWeI4LERERWZ5FT7q9desWwsLCcO/ePbi5uaFTp044ceIE3NzcAABJSUl6Rz+uXLmCo0ePYs+ePcVus7TbWO/duxfXrl3DtWvX8MILL+isa+huk0RERGQ5CsFPaZNkZWXB2dkZmYsXQm1nZ+nuEBGRhZU2S2jqtj3IzMyssHMgiz6X0r4/BrW9o+nbeZQN9wEdKrSvprD4heOIiIiqgo7jp5a4LCcnB9hW/C8DVDY825SIiIhkj4GFiIiIZI+BhYiIiGSP57AQERFVIfeOZiJf9ZfJ6z/MywEAtGvXDkqlElqtFlqt1lzdMxkDCxEREemJi4uT1Swh/iREREREsscjLERERGWwrdXrBpc3fqtbicuUBQVm7s3zh0dYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9jitmYiIqAxeu7DV4PKFreqVuCz3yRPgWoK5u/Rc4REWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj1eh4WIzGrhgZ0Gl098OaSSekJUuQy9trMeP8bUbXsqsTdVD4+wEBERkewxsBAREZHsMbAQERGR7DGwEBERkckKCgoQEREBX19f2NnZoV69epg5cyaEEGZthyfdEhERkcnmzZuHVatW4auvvkKzZs1w+vRpjBgxAs7Ozhg7dqzZ2mFgISIiIpMdO3YMffv2RUjI37Ok6tSpg2+//RanTp0yazsMLERUqTjtmahq6dChA9auXYurV6+iYcOGuHDhAo4ePYpFixaZtR0GFiIiItKTlZWl81ylUkGlUunV+/e//42srCw0btwYSqUSBQUFmD17NgYPHmzW/jCwEBERVSFb/1gM22rVTF4/98kTAICXl5dOeWRkJKKiovTqb968GZs2bcI333yDZs2a4fz58xg3bhw8PT0xfPhwk/vxLAYWIiIi0pOcnAy1Wi09L+7oCgBMnjwZ//73vzFo0CAAQIsWLfDHH39g7ty5DCxERERUsdRqtU5gKcmjR49gZaV7lRSlUonCwkKz9oeBhYiIiEzWu3dvzJ49G97e3mjWrBnOnTuHRYsW4e233zZrOwwsRGQ0QzN9OMuH6PmyfPlyRERE4IMPPkB6ejo8PT3x7rvvYtq0aWZth4GFiIiITObk5IQlS5ZgyZIlFdoOL81PREREssfAQkRERLLHwEJERESyx8BCREREssfAQkRERLLHWUJEZDROXSaiysYjLERERCR7DCxEREQkewwsREREJHsMLERERCR7DCxEREQkewwsREREJHsMLERERCR7DCxEREQkewwsREREJHsMLERERCR7DCxEREQke0YHluHDh+Pw4cMV0RciIiKiYhkdWDIzMxEYGIgGDRpgzpw5uH37dkX0i4iIiEhidGDZvn07bt++jffffx/fffcd6tSpg+DgYHz//fd48uRJRfSRiIiInnPWpqzk5uaGCRMmYMKECTh79izWrVuHoUOHwtHREUOGDMEHH3yABg0amLuvREREVIr2oTPhYO9o8vo5j7KBbXvQrl07KJVKaLVaaLVaM/bQNCYFliJ37tzB3r17sXfvXiiVSrz66qu4ePEimjZtivnz52P8+PHm6icRERFVori4OKjVakt3Q2L0T0JPnjzBli1b0KtXL/j4+CA2Nhbjxo1DSkoKvvrqK+zbtw+bN2/GjBkzKqK/RERE9Bwy+giLRqNBYWEhwsLCcOrUKfj5+enV6d69O1xcXMzQPSIiIiITjrAsXrwYKSkpWLFiRbFhBQBcXFyQmJhY6raioqKgUCh0Ho0bNy6xfrdu3fTqKxQKhISESHWEEJg2bRo0Gg3s7OwQGBiIhIQEne3Mnj0bHTp0gL29PYMVERHRP4DRgWXo0KGwtbU1WweaNWuGO3fuSI+jR4+WWHfr1q06dePj46FUKhEaGirVmT9/PpYtW4bVq1fj5MmTcHBwQFBQEHJzc6U6+fn5CA0Nxfvvv2+2/SAiIqKKU66Tbs3SAWtreHh4lKmuq6urzvOYmBjY29tLgUUIgSVLlmDq1Kno27cvAGDDhg1wd3fH9u3bMWjQIADA9OnTAQDr1683014QERFRRbL4pfkTEhLg6emJunXrYvDgwUhKSirzutHR0Rg0aBAcHBwAAImJiUhNTUVgYKBUx9nZGf7+/jh+/LjZ+05ERESVw6JHWPz9/bF+/Xo0atQId+7cwfTp09G5c2fEx8fDycnJ4LqnTp1CfHw8oqOjpbLU1FQAgLu7u05dd3d3aZmp8vLykJeXJz3Pysoq1/aIiIio7CwaWIKDg6V/t2zZEv7+/vDx8cHmzZsxcuRIg+tGR0ejRYsWaN++fUV3EwAwd+5c6ackIiIiqlwW/0noaS4uLmjYsCGuXbtmsF5OTg5iYmL0Qk3RuTBpaWk65WlpaWU+T6Yk4eHhyMzMlB7Jycnl2h4RERGVnawCS3Z2Nq5fvw6NRmOwXmxsLPLy8jBkyBCdcl9fX3h4eGD//v1SWVZWFk6ePImAgIBy9U2lUkGtVus8iIiIqHJY9CehSZMmoXfv3vDx8UFKSgoiIyOhVCoRFhYGABg2bBhq166NuXPn6qwXHR2Nfv36oUaNGjrlCoUC48aNw6xZs9CgQQP4+voiIiICnp6e6Nevn1QvKSkJ9+/fR1JSEgoKCnD+/HkAQP369eHoaPr9F4iIiKhiWDSw3Lp1C2FhYbh37x7c3NzQqVMnnDhxAm5ubgD+DhZWVroHga5cuYKjR49iz549xW7z448/Rk5ODkaPHo2MjAx06tQJu3bt0rl2zLRp0/DVV19Jz1u3bg0AOHjwILp162bmvSQiIqLyUgghhKU78U+UlZUFZ2dnZC5eCLWdnaW7Q0TPqYUHdhpc3nH81BKXvXThnLm7QyXIevwYzuMnIjMzs8JOKSj6XNrzzcly3635lTf9K7SvppDVOSxERERExWFgISIiItljYCEiIiLZY2AhIiIi2WNgISIiItljYCEiIiLZY2AhIiIi2bPoheOIiJ53pV1HZeLLIQaXG7rOSmlOtGptcDmv00Jldfv2bUyZMgX//e9/8ejRI9SvXx/r1q1D27ZtzdYGAwsRERGZ7MGDB+jYsSO6d++O//73v3Bzc0NCQgKqV69u1nYYWIiIiMhk8+bNg5eXF9atWyeV+fr6mr0dnsNCREREerKysnQeeXl5xdb74Ycf0LZtW4SGhqJWrVpo3bo1vvjiC7P3h0dYiIiIqhD/tKPlusdd1uPHAAAvLy+d8sjISERFRenVv3HjBlatWoUJEybgf/7nfxAXF4exY8fCxsYGw4cPN7kfz2JgISIiIj3Jyck6Nz9UqVTF1issLETbtm0xZ84cAEDr1q0RHx+P1atXM7AQEf2TlDYTyJB1L/c1uHzEgR0mb5vIELVaXaa7NWs0GjRt2lSnrEmTJtiyZYtZ+8NzWIiIiMhkHTt2xJUrV3TKrl69Ch8fH7O2w8BCREREJhs/fjxOnDiBOXPm4Nq1a/jmm2+wdu1aaLVas7bDwEJEREQma9euHbZt24Zvv/0WzZs3x8yZM7FkyRIMHjzYrO3wHBYiIiIql169eqFXr14V2gaPsBAREZHsMbAQERGR7PEnISIiMzA4/bgc05o5bblyeTQMMHnd1KvHzdgTehaPsBAREZHsMbAQERGR7DGwEBERkewxsBAREZHsMbAQERGR7DGwEBERkewxsBAREZHs8TosRERlYPA6Kyjleikvh5i5N1RReC0V+eIRFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj1OayZ6Dm1r9brB5a9d2FpJPfnnMDhtmYgqHI+wEBERkewxsBAREZHs8SchIiKiKuTKitVwVCpNXj+7oAAA0K5dOyiVSmi1Wmi1WnN1z2QMLERERKQnLi4OarXa0t2Q8CchIiIikj0GFiIiIpI9/iRE9Bz6J09bLm1KtqkyahQYXH5/6miDyyfyjsxEFYpHWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPY4rZmI/lEMTckuz5Rnl3uGL2U+opRpywsP7CxxGac8E5Ufj7AQERGR7DGwEBERkewxsBAREZHsMbAQERGR7DGwEBERkewxsBAREZHscVozEVUZGiSWuOylC+cMrlvalOjSltc1tPwffHdsIrngERYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiIym08//RQKhQLjxo0z63YZWIiIiMgs4uLisGbNGrRs2dLs27ZoYImKioJCodB5NG7cuMT63bp106uvUCgQEvL/bywmhMC0adOg0WhgZ2eHwMBAJCQk6Gzn/v37GDx4MNRqNVxcXDBy5EhkZ2dX2H4SERFVddnZ2Rg8eDC++OILVK9e3ezbt/i05mbNmmHfvn3Sc2vrkru0detW5OfnS8/v3buHVq1aITQ0VCqbP38+li1bhq+++gq+vr6IiIhAUFAQLl26BFtbWwDA4MGDcefOHezduxdPnjzBiBEjMHr0aHzzzTcVsIdEVFku1/AucdkvB2YZXNfgtGSi51BWVpbOc5VKBZVKVWJ9rVaLkJAQBAYGYtYsw39vprB4YLG2toaHh0eZ6rq6uuo8j4mJgb29vRRYhBBYsmQJpk6dir59+wIANmzYAHd3d2zfvh2DBg3C5cuXsWvXLsTFxaFt27YAgOXLl+PVV1/FZ599Bk9PTzPuHRERUeUaPtEaSjulyesXPFYA7wNeXl465ZGRkYiKiip2nZiYGJw9exZxcXEmt1sai5/DkpCQAE9PT9StWxeDBw9GUlJSmdeNjo7GoEGD4ODgAABITExEamoqAgMDpTrOzs7w9/fH8ePHAQDHjx+Hi4uLFFYAIDAwEFZWVjh58mSJbeXl5SErK0vnQUREVFUlJycjMzNTeoSHh5dY76OPPsKmTZukXzIqgkUDi7+/P9avX49du3Zh1apVSExMROfOnfHw4cNS1z116hTi4+PxzjvvSGWpqakAAHd3d5267u7u0rLU1FTUqlVLZ7m1tTVcXV2lOsWZO3cunJ2dpcezyZOIiKgqUavVOo+Sfg46c+YM0tPT8eKLL8La2hrW1tb4+eefsWzZMlhbW6OgoMAs/bHoT0LBwcHSv1u2bAl/f3/4+Phg8+bNGDlypMF1o6Oj0aJFC7Rv376iuwkACA8Px4QJE6TnWVlZDC1ERPTc69GjBy5evKhTNmLECDRu3BhTpkyBUmn6z1NPs/g5LE9zcXFBw4YNce3aNYP1cnJyEBMTgxkzZuiUF50Lk5aWBo1GI5WnpaXBz89PqpOenq6z3l9//YX79+8bPJemtJONiIiInkdOTk5o3ry5TpmDgwNq1KihV14eFj+H5WnZ2dm4fv26TtgoTmxsLPLy8jBkyBCdcl9fX3h4eGD//v1SWVZWFk6ePImAgAAAQEBAADIyMnDmzBmpzoEDB1BYWAh/f38z7g0RERGZi0WPsEyaNAm9e/eGj48PUlJSEBkZCaVSibCwMADAsGHDULt2bcydO1dnvejoaPTr1w81atTQKS+6st6sWbPQoEEDaVqzp6cn+vXrBwBo0qQJevbsiVGjRmH16tV48uQJPvzwQwwaNIgzhIj+ARYe2FnyQkPLyunGYsM/U098OcTgcqLnyaFDh8y+TYsGllu3biEsLAz37t2Dm5sbOnXqhBMnTsDNzQ0AkJSUBCsr3YNAV65cwdGjR7Fnz55it/nxxx8jJycHo0ePRkZGBjp16oRdu3bpnLm8adMmfPjhh+jRowesrKzQv39/LFu2rOJ2lIiIiMrFooElJibG4PLiElqjRo0ghChxHYVCgRkzZuid3/I0V1dXXiSOiIjoH0RW57AQERERFYeBhYiIiGSPgYWIiIhkj4GFiIiIZE9WF44jIvPZZuDuw69d2GpwXYNTh2HZKbymtm1oPABA/ahDKe1OMqldIjIPHmEhIiIi2WNgISIiItljYCEiIiLZY2AhIiIi2WNgISIiItljYCEiIiLZY2AhIiIi2eN1WGSqtOtgGMLb3BMAZNQoMHnd0l5Dhl6f5X39lfbarzs+usRlNxaPLHnFUq8tw+usEMkZj7AQERGR7DGwEBERkewxsBAREZHsMbAQERGR7DGwEBERkexxlhAREVEVckLTE2oHlcnrZ+XkwRmX0a5dOyiVSmi1Wmi1WjP20DQMLOW0/PBu2FarVuyy8kwNLY9trV43uPy1C1srpF0yXmmvgfJMER5xYIfJ61bUa7MsSv27MTB12dC6ltwnon+iuLg4qNVqS3dDwp+EiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9jituQKVZxqloTvSUtVRkVPf/6l37T7RqrXB5a4v9y153XtJJa9YylhW5BRzIio/HmEhIiIi2WNgISIiItljYCEiIiLZY2AhIiIi2WNgISIiItnjLKFyGtMlCGo7O7Nvd5uBZaXdvLDUmSWc7fCPYamZKeVpd52BWTxA6TdlfOnCOYPL77TyLXHZL4tnGVz3n4izl4j+xiMsREREJHsMLERERCR7DCxEREQkewwsREREJHsMLERERCR7DCxEREQkewwsREREJHu8DksVxOsykCWVdp2V0pR23ZG6rV4v1/ZNZak7Z/PvmeRu7ty52Lp1K37//XfY2dmhQ4cOmDdvHho1amTWdniEhYiIiEz2888/Q6vV4sSJE9i7dy+ePHmCV155BTk5OWZth0dYiIiIyGS7du3Seb5+/XrUqlULZ86cQZcuXczWDgMLERER6cnKytJ5rlKpoFKpSl0vMzMTAODq6mrW/jCwEBERVSH/cfwA9g5OJq//SPEQwGJ4eXnplEdGRiIqKsrguoWFhRg3bhw6duyI5s2bm9yH4jCwEBERkZ7k5GSo1WrpeVmOrmi1WsTHx+Po0aNm7w8DCxEREelRq9U6gaU0H374IX788UccPnwYL7zwgtn7w8AiU69d2GrpLhBZRGnTeBcuHllJPTEfS02JJqoMQgiMGTMG27Ztw6FDh+Dr61sh7TCwEBERkcm0Wi2++eYb7NixA05OTkhNTQUAODs7w87Ozmzt8DosREREZLJVq1YhMzMT3bp1g0ajkR7fffedWdvhERYiIiIymRCiUtrhERYiIiKSPQYWIiIikj0GFiIiIpI9nsPyHCptiiWnURIZr+746BKXGbpMQXmmPBM9T3iEhYiIiGSPgYWIiIhkj4GFiIiIZI+BhYiIiGSPgYWIiIhkj4GFiIiIZM+i05qjoqIwffp0nbJGjRrh999/L3GdjIwMfPLJJ9i6dSvu378PHx8fLFmyBK+++ioA4OHDh4iIiMC2bduQnp6O1q1bY+nSpWjXrp20jbS0NEyZMgV79uxBRkYGunTpguXLl6NBgwYVs6NmVt5pkKXeDdfA9jnlmeTM0OuzvH83hqYtlwf/pojKxuLXYWnWrBn27dsnPbe2LrlL+fn5+Ne//oVatWrh+++/R+3atfHHH3/AxcVFqvPOO+8gPj4eGzduhKenJ77++msEBgbi0qVLqF27NoQQ6NevH6pVq4YdO3ZArVZj0aJFUh0HB4eK3F0iIiIygcUDi7W1NTw8PMpU98svv8T9+/dx7NgxVKtWDQBQp04dafnjx4+xZcsW7NixA126dAHw91Gc//znP1i1ahVmzZqFhIQEnDhxAvHx8WjWrBmAv+806eHhgW+//RbvvPOOeXeQiIiIys3i57AkJCTA09MTdevWxeDBg5GUlFRi3R9++AEBAQHQarVwd3dH8+bNMWfOHBQUFAAA/vrrLxQUFMDW1lZnPTs7Oxw9ehQAkJeXBwA6daysrKBSqaQ6xcnLy0NWVpbOg4iIiCqHRQOLv78/1q9fj127dmHVqlVITExE586d8fDhw2Lr37hxA99//z0KCgrw008/ISIiAgsXLsSsWbMAAE5OTggICMDMmTORkpKCgoICfP311zh+/Dju3LkDAGjcuDG8vb0RHh6OBw8eID8/H/PmzcOtW7ekOsWZO3cunJ2dpYeXl5f5B4SIiIiKZdHAEhwcjNDQULRs2RJBQUH46aefkJGRgc2bNxdbv7CwELVq1cLatWvRpk0bvPHGG/jkk0+wevVqqc7GjRshhEDt2rWhUqmwbNkyhIWFwcrq712tVq0atm7diqtXr8LV1RX29vY4ePAggoODpTrFCQ8PR2ZmpvRITk4272AQERFRiSx+DsvTXFxc0LBhQ1y7dq3Y5RqNBtWqVYNSqZTKmjRpgtTUVOTn58PGxgb16tXDzz//jJycHGRlZUGj0eCNN95A3bp1pXXatGmD8+fPIzMzE/n5+XBzc4O/vz/atm1bYt9UKhVUKpX5dpaIiIjKzOLnsDwtOzsb169fh0ajKXZ5x44dce3aNRQWFkplV69ehUajgY2NjU5dBwcHaDQaPHjwALt370bfvn31tufs7Aw3NzckJCTg9OnTxdYhIiIiy7PoEZZJkyahd+/e8PHxQUpKCiIjI6FUKhEWFgYAGDZsGGrXro25c+cCAN5//318/vnn+OijjzBmzBgkJCRgzpw5GDt2rLTN3bt3QwiBRo0a4dq1a5g8eTIaN26MESNGSHViY2Ph5uYGb29vXLx4ER999BH69euHV155pVL3X663led1IaqGba1er7Bt31g8ssRllnz9lOcaQuX9ezQ0JgsNrMe/N6KysWhguXXrFsLCwnDv3j24ubmhU6dOOHHiBNzc3AAASUlJOueVeHl5Yffu3Rg/fjxatmyJ2rVr46OPPsKUKVOkOpmZmQgPD8etW7fg6uqK/v37Y/bs2dI0aAC4c+cOJkyYgLS0NGg0GgwbNgwRERGVt+NEREQVJPzHc7BS2Zu8fmHeIwBAu3btoFQqodVqodVqzdU9k1k0sMTExBhcfujQIb2ygIAAnDhxosR1Bg4ciIEDBxrc7tixY3WOyhAREZGuuLg4qNVqS3dDIqtzWIiIiIiKw8BCREREssfAQkRERLInq+uwUOUobTYEZy3Ix7qXS55qf3/qaMMrG/h/Lu3Ow4ZmvMhZeV67pa57YavBxYZmAhFR+fEICxEREckeAwsRERHJHgMLERERyR4DCxEREckeAwsRERHJHgMLERERyR6nNVuQoWmU+xt8VuKy82uaVER3SIZGHNhR4rJ1s9aavG5pU3RL27ZBhto1A1OnLpd2M8jXShmT0vByAP8chl4L5X0dUMXhERYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPV6HRaZ6JEwqednL5dv2wgM7TV7Oa038c6x7ua/J696fOtr0hiv4NVJRr8/SrtOiftTB4HJDf7OlbduQG4tHGlzOv0njGbrWCq/RIl88wkJERESyx8BCREREssfAQkREROW2YsUK1KlTB7a2tvD398epU6fMun0GFiIiIiqX7777DhMmTEBkZCTOnj2LVq1aISgoCOnp6WZrg4GFiIiIymXRokUYNWoURowYgaZNm2L16tWwt7fHl19+abY2OEvIREIIAEBWbq6Fe2K83CdPTF436/FjM/aEyuNx9sMK27acXyOG+mao7Uc55Rsv5aNCg8srqu3S/i/4N2lehv6vyjPWRZ8VRZ8dFakw75FZ1s/KytIpV6lUUKlUevXz8/Nx5swZhIeHS2VWVlYIDAzE8ePHy9UXHYJMkpycLADwwQcffPDBR5kfycnJFfa59PjxY+Hh4WGWfjo6OuqVRUZGFtvu7du3BQBx7NgxnfLJkyeL9u3bm23/eITFRJ6enkhOToaTkxMUCoXF+pGVlQUvLy8kJydDrVZbrB//NBw343HMTMNxM15VHDMhBB4+fAhPT88Ka8PW1haJiYnIz88v97aEEHqfbcUdXalMDCwmsrKywgsvvGDpbkjUanWV+cOuTBw343HMTMNxM15VGzNnZ+cKb8PW1ha2trYV3s7TatasCaVSibS0NJ3ytLQ0eHh4mK0dnnRLREREJrOxsUGbNm2wf/9+qaywsBD79+9HQECA2drhERYiIiIqlwkTJmD48OFo27Yt2rdvjyVLliAnJwcjRowwWxsMLP9wKpUKkZGRFv9t8Z+G42Y8jplpOG7G45j987zxxhu4e/cupk2bhtTUVPj5+WHXrl1wd3c3WxsKISphjhURERFROfAcFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BpZK9umnn0KhUGDcuHFSWbdu3aBQKHQe7733ns56Y8eORZs2baBSqeDn51fstn/99Vd07twZtra28PLywvz58/XqxMbGonHjxrC1tUWLFi3w008/6SwXQmDatGnQaDSws7NDYGAgEhISyr3f5WHKmF24cAFhYWHw8vKCnZ0dmjRpgqVLl+pt+9ChQ3jxxRehUqlQv359rF+/Xq9OabdMz83NhVarRY0aNeDo6Ij+/fvrXUDJEkwZt3v37qFnz57w9PSESqWCl5cXPvzwQ717ilTVcTP177PIvXv38MILL0ChUCAjI0NnWVUdM8D0cXt2uUKhQExMjE6dqjxuZCSzXeSfSnXq1ClRp04d0bJlS/HRRx9J5V27dhWjRo0Sd+7ckR6ZmZk6644ZM0Z8/vnnYujQoaJVq1Z6287MzBTu7u5i8ODBIj4+Xnz77bfCzs5OrFmzRqrzyy+/CKVSKebPny8uXbokpk6dKqpVqyYuXrwo1fn000+Fs7Oz2L59u7hw4YLo06eP8PX1FY8fPzb7eJSFqWMWHR0txo4dKw4dOiSuX78uNm7cKOzs7MTy5culOjdu3BD29vZiwoQJ4tKlS2L58uVCqVSKXbt2SXViYmKEjY2N+PLLL8Vvv/0mRo0aJVxcXERaWppU57333hNeXl5i//794vTp0+Kll14SHTp0qNiBKYWp43b//n2xcuVKERcXJ27evCn27dsnGjVqJMLCwqQ6VXXcyvP3WaRv374iODhYABAPHjyQyqvqmAlRvnEDINatW6dT5+n3mqo8bmQ8BpZK8vDhQ9GgQQOxd+9e0bVrV70/7KefGxIZGVlsYFm5cqWoXr26yMvLk8qmTJkiGjVqJD0fOHCgCAkJ0VnP399fvPvuu0IIIQoLC4WHh4dYsGCBtDwjI0OoVCrx7bfflql/5mSuMSvywQcfiO7du0vPP/74Y9GsWTOdOm+88YYICgqSnrdv315otVrpeUFBgfD09BRz584VQvw9PtWqVROxsbFSncuXLwsA4vjx40b1z1zMPW5Lly4VL7zwgvS8Ko6bOcZs5cqVomvXrmL//v16gaUqjpkQ5R83AGLbtm0lLq+q40am4U9ClUSr1SIkJASBgYHFLt+0aRNq1qyJ5s2bIzw8HI8eGXd78OPHj6NLly6wsbGRyoKCgnDlyhU8ePBAqvNs+0FBQdLtvxMTE5GamqpTx9nZGf7+/ua9RXgZmXvMMjMz4erqKj0vbTyKbpn+dJ1nb5l+5swZPHnyRKdO48aN4e3tbZExA8w7bikpKdi6dSu6du0qlVXFcSvvmF26dAkzZszAhg0bYGWl/7ZaFccMMM9rTavVombNmmjfvj2+/PJLiKcuDVZVx41MwyvdVoKYmBicPXsWcXFxxS5/88034ePjA09PT/z666+YMmUKrly5gq1bt5a5jdTUVPj6+uqUFV1hMDU1FdWrV0dqaqreVQfd3d2Rmpoq1Xt6veLqVBZzj9mxY8fw3XffYefOnVJZSeORlZWFx48f48GDBygoKCi2zu+//y5tw8bGBi4uLnp1KnvMAPONW1hYGHbs2IHHjx+jd+/e+N///V9pWVUbt/KOWV5eHsLCwrBgwQJ4e3vjxo0betuoamMGmOe1NmPGDLz88suwt7fHnj178MEHHyA7Oxtjx44FUDXHjUzHwFLBkpOT8dFHH2Hv3r0l3kFz9OjR0r9btGgBjUaDHj164Pr166hXr15ldVU2zD1m8fHx6Nu3LyIjI/HKK69UaN8tyZzjtnjxYkRGRuLq1asIDw/HhAkTsHLlygrfh8pmjjELDw9HkyZNMGTIkMrqtsWZ67UWEREh1WndujVycnKwYMECKbAQPY0/CVWwM2fOID09HS+++CKsra1hbW2Nn3/+GcuWLYO1tTUKCgr01vH39wcAXLt2rczteHh4FHtr76Jlhuo8vfzp9YqrUxnMOWaXLl1Cjx49MHr0aEydOlVnWUnjoVarYWdnV6Zbpnt4eCA/P19vRkhljxlg3nHz8PBA48aN0adPH6xZswarVq3CnTt3pGVVZdzMMWYHDhxAbGystH6PHj0AADVr1kRkZCSAqjVmQMW9r/n7++PWrVvIy8sDUPXGjcqHgaWC9ejRAxcvXsT58+elR9u2bTF48GCcP38eSqVSb53z588DADQaTZnbCQgIwOHDh/HkyROpbO/evWjUqBGqV68u1Xn69t9FdYpu/+3r6wsPDw+dOllZWTh58qRZbxFeGnON2W+//Ybu3btj+PDhmD17tt46pY1HWW6Z3qZNG1SrVk2nzpUrV5CUlFSpYwZU3GutsLAQAKQPkao0buYYsy1btuDChQvS+kU/nx05cgRarRZA1RozoOJea+fPn0f16tWlmx5WtXGjcrL0Wb/Po6fPnr927ZqYMWOGOH36tEhMTBQ7duwQdevWFV26dNFZJyEhQZw7d068++67omHDhuLcuXPi3Llz0qygjIwM4e7uLoYOHSri4+NFTEyMsLe315vWbG1tLT777DNx+fJlERkZWey0ZhcXF7Fjxw7x66+/ir59+1p0WnMRY8fs4sWLws3NTQwZMkRnymR6erpUp2jK5OTJk8Xly5fFihUrip0yqVKpxPr168WlS5fE6NGjhYuLi0hNTZXqvPfee8Lb21scOHBAnD59WgQEBIiAgICKH5QyMHbcdu7cKb788ktx8eJFkZiYKH788UfRpEkT0bFjR6lOVR83U/4+n3bw4MESpzVX1TETwvhx++GHH8QXX3whLl68KBISEsTKlSuFvb29mDZtmlTneRg3KjsGFgt4+g87KSlJdOnSRbi6ugqVSiXq168vJk+erHe9gq5duwoAeo/ExESpzoULF0SnTp2ESqUStWvXFp9++qle25s3bxYNGzYUNjY2olmzZmLnzp06ywsLC0VERIRwd3cXKpVK9OjRQ1y5csXsY2AsY8csMjKy2PHy8fHR2e7BgweFn5+fsLGxEXXr1hXr1q3Ta3v58uXC29tb2NjYiPbt24sTJ07oLH/8+LH44IMPRPXq1YW9vb147bXXxJ07d8w9BCYxdtwOHDggAgIChLOzs7C1tRUNGjQQU6ZM0fnwFaJqj5spf59PKy6wFJVX1TETwvhx++9//yv8/PyEo6OjcHBwEK1atRKrV68WBQUFOtut6uNGZacQ4qk5ZEREREQyxHNYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIiIiEj2GFiIiIhI9hhYiIiISPYYWIio3O7evQsPDw/MmTNHKjt27BhsbGz07rZLRGQK3kuIiMzip59+Qr9+/XDs2DE0atQIfn5+6Nu3LxYtWmTprhFRFcDAQkRmo9VqsW/fPrRt2xYXL15EXFwcVCqVpbtFRFUAAwsRmc3jx4/RvHlzJCcn48yZM2jRooWlu0REVQTPYSEis7l+/TpSUlJQWFiImzdvWro7RFSF8AgLEZlFfn4+2rdvDz8/PzRq1AhLlizBxYsXUatWLUt3jYiqAAYWIjKLyZMn4/vvv8eFCxfg6OiIrl27wtnZGT/++KOlu0ZEVQB/EiKicjt06BCWLFmCjRs3Qq1Ww8rKChs3bsSRI0ewatUqS3ePiKoAHmEhIiIi2eMRFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikj0GFiIiIpI9BhYiIiKSPQYWIiIikr3/B0LaeNZx5us9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for arr in res_arrays:\n", + " plt.figure()\n", + " ax = arr.plot(levels=code_id_map.values(), cmap=\"tab20\")\n", + " " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the classification map, we can see that the model is able to generate sound field shapes.\n", + "It is also visible that the model is able to distinguish between the different field-use classes.\n", + "When comparing the classification map to the NRW crop data, we can see that the model is able to predict the field-use classes for most of the fields.\n", + "There are some areas, mainly at the south border of the map, where the model predicted \"Greenland (GL)\".\n", + "This area is not covered by a field and therefore not labeled in the NRW crop data.\n", + "However, those areas are Greenland in OpenStreetMap and therefore the model predicted \"Greenland (GL)\" might be correct.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And finally, we can store the result as a new GeoTiFF file:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for i, arr in enumerate(res_arrays):\n", + " arr.rio.to_raster(\n", + " f\"arr_{i}.tif\",\n", + " tiled=True, # GDAL: By default striped TIFF files are created. This option can be used to force creation of tiled TIFF files.\n", + " windowed=True, # rioxarray: read & write one window at a time\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +}