-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcompsoc.py
909 lines (794 loc) · 41 KB
/
compsoc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
def elite_families_collection(path='data/elite_families/'):
'''
Description: Loads the normalized elite families data collection.
Output: Four dataframes in this order: families, parties, relations, domains
'''
import pandas as pd
families = pd.read_csv(path+'families.txt', sep='\t', encoding='utf-8')
parties = pd.read_csv(path+'parties.txt', sep='\t', encoding='utf-8')
relations = pd.read_csv(path+'relations.txt', sep='\t', encoding='utf-8')
domains = pd.read_csv(path+'domains.txt', sep='\t', encoding='utf-8')
return families, parties, relations, domains
def sns_collection(path='data/sns/'):
'''
Description: Loads the normalized Social Network Science data collection.
Output: Six dataframes in this order: publications, subfields, authors, authorships,
words, usages
'''
import pandas as pd
publications = pd.read_csv(path+'publications.txt', sep='\t', encoding='utf-8')
subfields = pd.read_csv(path+'subfields.txt', sep='\t', encoding='utf-8')
authors = pd.read_csv(path+'authors.txt', sep='\t', encoding='utf-8')
authorships = pd.read_csv(path+'authorships.txt', sep='\t', encoding='utf-8')
words = pd.read_csv(path+'words.txt', sep='\t', encoding='utf-8')
usages = pd.read_csv(path+'usages.txt', sep='\t', encoding='utf-8')
return publications, subfields, authors, authorships, words, usages
def copenhagen_collection(path='data/copenhagen/'):
'''
Description: Loads the normalized Copenhagen Networks Study data collection.
Output: Six dataframes in this order: users, genders, bluetooth, calls, sms, facebook_friends
'''
# functions
def replace_timestamp(df, timestamp):
minute = (df[timestamp]/60).astype(int)
hour = (minute/60).astype(int)
day = (hour/24).astype(int).rename('day')
hour = (hour-day*24).rename('hour')
minute = (minute-day*24*60-hour*60).rename('minute')
second = (df[timestamp]-day*24*60*60-hour*60*60-minute*60).rename('second')
df.rename(columns={timestamp: 'time'}, inplace=True)
df = pd.concat([df, day, hour, minute, second], axis=1)
return df
def replace_identifier(df, old_identifier, new_identifier):
df = pd.merge(left=df, right=users[['user', 'user_id']], left_on=old_identifier, right_on='user')
df.rename(columns={'user_id': new_identifier}, inplace=True)
df.drop([old_identifier, 'user'], axis=1, inplace=True)
return df
# load data
import os
import pandas as pd
bluetooth = pd.read_csv(os.path.join(path, 'bt_symmetric.csv'))
calls = pd.read_csv(os.path.join(path, 'calls.csv'))
sms = pd.read_csv(os.path.join(path, 'sms.csv'))
facebook_friends = pd.read_csv(os.path.join(path, 'fb_friends.csv'))
attributes = pd.read_csv(os.path.join(path, 'genders.csv'))
# create ``users`` dataframe
import itertools
users = set(itertools.chain(*[
bluetooth['user_a'].to_list(),
bluetooth['user_b'].to_list(),
calls['caller'].to_list(),
calls['callee'].to_list(),
sms['sender'].to_list(),
sms['recipient'].to_list(),
facebook_friends['# user_a'].to_list(),
facebook_friends['user_b'].to_list(),
attributes['# user'].to_list()
]))
users = pd.DataFrame(list(users), columns=['user'])
users = users[users['user'] >= 0]
users = pd.merge(left=users, right=attributes, left_on='user', right_on='# user', how='left')
users.fillna(2, inplace=True)
users.rename(columns={'female': 'gender_id'}, inplace=True)
users['gender_id'] = users['gender_id'].astype(int)
users.drop(['# user'], axis=1, inplace=True)
users['user_id'] = users.index
users = users[['user_id', 'user', 'gender_id']]
# create ``genders`` dataframe
genders = pd.DataFrame([[0, 'male'], [1, 'female'], [2, 'unknown']], columns=['gender_id', 'gender'])
# create ``bluetooth`` dataframe
bluetooth = replace_timestamp(bluetooth, '# timestamp')
bluetooth = bluetooth[bluetooth['rssi'] < 0]
bluetooth['rssi'] = bluetooth['rssi']+100
bluetooth.rename(columns={'rssi': 'strength'}, inplace=True)
bluetooth = bluetooth[~bluetooth['user_b'].isin([-1, -2])]
bluetooth = replace_identifier(bluetooth, 'user_a', 'user_id_from')
bluetooth = replace_identifier(bluetooth, 'user_b', 'user_id_to')
bluetooth_reversed = bluetooth.copy()[['time', 'strength', 'day', 'hour', 'minute', 'second', 'user_id_to', 'user_id_from']]
bluetooth_reversed.columns = bluetooth.columns
bluetooth = bluetooth.append(bluetooth_reversed)
bluetooth.sort_values(['time', 'user_id_from', 'user_id_to'], inplace=True)
bluetooth.reset_index(drop=True, inplace=True)
bluetooth = bluetooth[['user_id_from', 'user_id_to', 'strength', 'time', 'day', 'hour', 'minute', 'second']]
# create ``calls`` dataframe
calls = replace_timestamp(calls, 'timestamp')
calls = replace_identifier(calls, 'caller', 'user_id_from')
calls = replace_identifier(calls, 'callee', 'user_id_to')
calls['duration'].replace(-1, 0, inplace=True)
calls.sort_values(['time', 'user_id_from', 'user_id_to'], inplace=True)
calls.reset_index(drop=True, inplace=True)
calls = calls[['user_id_from', 'user_id_to', 'duration', 'time', 'day', 'hour', 'minute', 'second']]
# create ``sms`` dataframe
sms = replace_timestamp(sms, 'timestamp')
sms = replace_identifier(sms, 'sender', 'user_id_from')
sms = replace_identifier(sms, 'recipient', 'user_id_to')
sms.sort_values(['time', 'user_id_from', 'user_id_to'], inplace=True)
sms.reset_index(drop=True, inplace=True)
sms = sms[['user_id_from', 'user_id_to', 'time', 'day', 'hour', 'minute', 'second']]
# create ``facebook_friends`` dataframe
facebook_friends = replace_identifier(facebook_friends, '# user_a', 'user_id_from')
facebook_friends = replace_identifier(facebook_friends, 'user_b', 'user_id_to')
facebook_friends.sort_values(['user_id_from', 'user_id_to'], inplace=True)
facebook_friends.reset_index(drop=True, inplace=True)
return users, genders, bluetooth, calls, sms, facebook_friends
def weighted_edge_list_to_unlayered(
edge_list,
function='sum'
):
'''
Description: Transforms a weighted layered to an unlayered edge list.
Inputs:
edge_list: Dataframe of a weighted layered edge list; first column must be
identifier of node u, second column must be identifier of node v, third column
must be edge weight w, fourth column must be the layer identifier; the layer
identifier must be an integer from 0 to n-1 where n is the number of layers;
all but the first four columns will be discarded.
function: Function to chose edge weight after transformation; if 'min' the
smaller weight will be chosen, if 'max' the larger weight will be chosen, if
'sum' the weights of (u, v) and (v, u) will be summed; set to 'sum' by default.
Output: Dataframe of a weighted unlayered edge list.
'''
df = edge_list.copy()
if function == 'sum':
df = df.groupby(df.columns[:2].tolist()).sum().reset_index()
if function == 'min':
df = df.groupby(df.columns[:2].tolist()).min().reset_index()
if function == 'max':
df = df.groupby(df.columns[:2].tolist()).max().reset_index()
return df[df.columns[:3]]
def weighted_edge_list_to_undirected(
edge_list,
reciprocal=False,
function='sum'
):
'''
Description: Transforms a directed to an undirected weighted edge list.
Inputs:
edge_list: Dataframe of a directed weighted edge list; first column must be
identifier of node u, second column must be identifier of node v, third column
must be edge weight w; all but the first three columns will be discarded.
reciprocal: Boolean variable if only reciprocated ties should be kept; set to
False by default.
function: Function to chose edge weight after transformation; if 'min' the
smaller weight will be chosen, if 'max' the larger weight will be chosen, if
'sum' the weights of (u, v) and (v, u) will be summed; set to 'sum' by default.
Output: Dataframe of an undirected weighted edge list.
'''
import numpy as np
import pandas as pd
# order node tuples
df = edge_list[edge_list.columns[:2]].copy()
df = df.T
df = df.transform(np.sort)
df = df.T
df = pd.concat([df, edge_list[edge_list.columns[2]]], axis=1)
# flag reciprocal edges
if reciprocal:
df_count = df.groupby(df.columns[:2].tolist()).count().reset_index()
# apply function
if function == 'sum':
df = df.groupby(df.columns[:2].tolist()).sum().reset_index()
if function == 'min':
df = df.groupby(df.columns[:2].tolist()).min().reset_index()
if function == 'max':
df = df.groupby(df.columns[:2].tolist()).max().reset_index()
# keep only reciprocal edges
if reciprocal:
df = df[df_count[df_count.columns[2]] == 2].reset_index(drop=True)
return df
def weighted_layered_edge_list_to_undirected(
edge_list,
reciprocal=False,
function='sum'
):
'''
Description: Transforms a directed to an undirected weighted layered edge list.
Inputs:
edge_list: Dataframe of a directed weighted layered edge list; first column must
be identifier of node u, second column must be identifier of node v, third
column must be edge weight w, fourth column must be the layer identifier; the
layer identifier must be an integer from 0 to n-1 where n is the number of
layers; all but the first four columns will be discarded.
reciprocal: Boolean variable if only reciprocated ties should be kept; set to
False by default.
function: Function to chose edge weight after transformation; if 'min' the
smaller weight will be chosen, if 'max' the larger weight will be chosen, if
'sum' the weights of (u, v) and (v, u) will be summed; set to 'sum' by default.
Output: Dataframe of an undirected weighted layered edge list.
'''
import compsoc as cs
import pandas as pd
edge_list_undirected = pd.DataFrame(columns=edge_list.columns[:4])
for identifier in set(edge_list[edge_list.columns[3]]):
df = edge_list[edge_list[edge_list.columns[3]] == identifier]
df = cs.weighted_edge_list_to_undirected(edge_list=df, reciprocal=reciprocal, function=function)
df[edge_list.columns[3]] = identifier
edge_list_undirected = pd.concat([edge_list_undirected, df])
return edge_list_undirected.reset_index(drop=True)
def project_selection_matrix(
selections,
how,
transaction_id,
fact_id,
norm=True,
remove_loops=True,
symmetrize=True
):
'''
Description: This function uses the terminology of the compsoc unified data model
according to which "transactions select facts"; these selections are stored in a
selection matrics; the function projects a selection matrix to a transaction
similarity matrix or a fact co-selection matrix; computes fact attributes;
computes cumulative co-selection fractions for matrix filtering.
Inputs:
selections: Dataframe containing the selection matrix indices and data; must
contain a 'weight' column that contains the cell weights.
how: String that specifies which projection is to be made; must be either
'transactions' or 'facts'; if 'transactions', then the matrix of transactions
coupled by facts will be created; if 'facts', then the matrix of facts
coupled by transactions will be created.
transaction_id: Name of the column of the dataframe ``selections`` that holds the
identifiers of the transactions selecting facts.
fact_id: Name of the column of the dataframe ``selections`` that holds the
identifiers of the facts getting selected in transactions.
norm: Boolean parameter specifying if matrix normalization should be performed.
remove_loops: Boolean parameter specifying if the matrix diagonal should be
removed; if False, loops will be included in computing cumulative
co-selection fractions.
symmetrize: Boolean parameter specifying if the lower portion of the matrix
should be removed.
Output: A dataframe containing the projected matrices (enriched by cumulative
fractions in the case of a normalized projection to the fact mode); a dataframe
containing matrix-based attributes of transactions or facts (depending on the
type of projection)
'''
# function
def get_unique(s):
l = s.unique().tolist()
return {identifier: index for index, identifier in enumerate(l)}
# map identifiers of transactions and facts to unique integers
import pandas as pd
d_transactions_indices = get_unique(selections[transaction_id])
d_facts_indices = get_unique(selections[fact_id])
# construct selection matrix
rows = [d_transactions_indices[transaction_id] for transaction_id in selections[transaction_id].values]
columns = [d_facts_indices[fact_id] for fact_id in selections[fact_id].values]
cells = selections['weight'].tolist()
from scipy.sparse import csr_matrix, coo_matrix, triu
G = coo_matrix((cells, (rows, columns))).tocsr()
GT = csr_matrix.transpose(G)
from sklearn.preprocessing import normalize
GN = normalize(G, norm='l1', axis=1)
# project selection matrix ...
import numpy as np
# ... to transaction similarity matrix
if how == 'transactions':
if norm == True:
GNT = csr_matrix.transpose(GN)
H = GN*GNT
else:
H = G*GT
# derive transaction attributes dataframe
H_nodiag = H.tolil()
H_nodiag.setdiag(values=0)
k = pd.Series([len(i) for i in H_nodiag.data.tolist()])
w = pd.Series(np.array(H.diagonal()))
if norm == True:
w = (1/w).round(4)
else:
w = w.round(4)
d_indices_transactions = {index: identifier for identifier, index in d_transactions_indices.items()}
transaction_attributes = pd.concat([pd.Series(d_indices_transactions), k, w], axis=1)
transaction_attributes.columns = [transaction_id, 'degree', 'weight']
# construct similarities dataframe
if remove_loops == True:
H = H.tolil()
H.setdiag(0)
if symmetrize == True:
H = triu(H.tocoo()).tocsr()
else:
H = H.tocsr()
transaction_id_from = [d_indices_transactions[index] for index in H.nonzero()[0].tolist()]
transaction_id_to = [d_indices_transactions[index] for index in H.nonzero()[1].tolist()]
weight = H.data.tolist()
similarities = pd.concat([pd.Series(transaction_id_from), pd.Series(transaction_id_to), pd.Series(weight)], axis=1)
similarities.columns = [transaction_id+'_from', transaction_id+'_to', 'similarity']
return similarities, transaction_attributes
# ... to fact co-selection matrix
if how == 'facts':
if norm == True:
I = GT*GN
else:
I = GT*G
# derive fact attributes dataframe
I_nodiag = I.tolil()
I_nodiag.setdiag(values=0)
k = pd.Series([len(i) for i in I_nodiag.data.tolist()])
d_indices_facts = {index: identifier for identifier, index in d_facts_indices.items()}
if norm == True:
w = pd.Series(np.squeeze(np.array(I.sum(axis=1)))).round(4)
a = pd.Series(np.array(I.diagonal())).round(4)
e = (1-a/w).round(4)
s = (k/w).round(4)
fact_attributes = pd.concat([pd.Series(d_indices_facts), k, w, a, e, s], axis=1)
fact_attributes.columns = [fact_id, 'degree', 'weight', 'autocatalysis', 'embeddedness', 'sociability']
else:
fact_attributes = pd.concat([pd.Series(d_indices_facts), k], axis=1)
fact_attributes.columns = [fact_id, 'degree']
# construct co-selections dataframe with cumulative co-selection fractions
if remove_loops == True:
I = I.tolil()
I.setdiag(0)
if symmetrize == True:
I = triu(I.tocoo()).tocsr()
else:
I = I.tocsr()
fact_id_from = [d_indices_facts[index] for index in I.nonzero()[0].tolist()]
fact_id_to = [d_indices_facts[index] for index in I.nonzero()[1].tolist()]
weight = I.data.tolist()
co_selections = pd.concat([pd.Series(fact_id_from), pd.Series(fact_id_to), pd.Series(weight)], axis=1)
co_selections.columns = [fact_id+'_from', fact_id+'_to', 'weight']
co_selections_cumfrac = co_selections.copy()
co_selections_cumfrac.index = co_selections_cumfrac.weight
co_selections_cumfrac = co_selections_cumfrac['weight'].groupby(co_selections_cumfrac.index).sum()
co_selections_cumfrac = co_selections_cumfrac.sort_index(ascending=False)
co_selections_cumfrac = co_selections_cumfrac.cumsum()/sum(co_selections_cumfrac)
co_selections_cumfrac = co_selections_cumfrac.round(4)
co_selections_cumfrac.rename('cumfrac', inplace=True)
co_selections = pd.merge(left=co_selections, right=co_selections_cumfrac, left_on='weight', right_on=co_selections_cumfrac.index)
return co_selections, fact_attributes
def meaning_structures(
selections,
transaction_id,
fact_id,
multiplex=False,
transactions=None,
domain_id=None,
facts=None,
norm=True,
remove_loops=True,
symmetrize=True
):
'''
Description: Projects a selection matrix to (multiplex) co-selection matrix.
Inputs:
selections: Dataframe containing the selection matrix indices and data; must
contain a 'weight' column that contains the cell weights.
transaction_id: Name of the column of the dataframe ``selections`` that holds the
identifiers of the transactions selecting facts.
fact_id: Name of the column of the dataframe ``selections`` that holds the
identifiers of the facts getting selected in transactions.
multiplex: Boolean parameter specifying if selections occurr in multiple domains;
set to False by default.
transactions: Dataframe containing the ``transaction_id`` identifiers of the
``selections`` dataframe; must be specified if ``multiplex=True``; set to None
by default.
domain_id: Name of the column of the dataframe ``transactions`` that holds the
identifiers of the domains the transactions belong to; must be an integer from
0 to d where d is the number of domains; must be specified if
``multiplex=True``; set to None by default.
facts: Dataframe containing the ``fact_id`` identifiers of the ``selections``
dataframe; if specified, it will be enriched by fact attributes; set to None
by default.
norm: Boolean parameter specifying if matrix normalization should be performed.
remove_loops: Boolean parameter specifying if the matrix diagonal should be
removed; if False, loops will be included in computing cumulative
co-selection fractions.
symmetrize: Boolean parameter specifying if the lower portion of the matrix
should be removed.
Output: At least two dataframes will be returned: first, a dataframe containing the
co-selection matrix independent of domain; second, a dataframe containing fact
attributes (if no ``facts`` dataframe is provided), or an enriched ``facts``
dataframe (if one is provided), independent of domain. When ``multiplex=True``
two additional dataframes will be returned: third, a dataframe containing the
co-selection matrix for domains; fourth, a list of dataframes containing fact
attributes (if no ``facts`` dataframe is provided), or a list of enriched
``facts`` dataframes (if a ``facts`` dataframe is provided), for domains.
'''
if multiplex == True:
if transactions is None:
print('A transactions dataframe must be specified.')
else:
if domain_id is None:
print('The domain identifier for the transactions dataframe must be specified.')
else:
if domain_id not in transactions.columns:
print('The specified domain identifier is not a column in the transactions dataframe.')
else:
domain_ids = set(transactions[domain_id])
if (len(domain_ids) > 1) & (min(domain_ids) == 0) & (max(domain_ids) == len(domain_ids)-1):
# co-selections and fact attributes dataframes independent of domain
co_selections, fact_attributes = project_selection_matrix(selections=selections, how='facts', transaction_id=transaction_id, fact_id=fact_id, norm=norm, remove_loops=remove_loops, symmetrize=symmetrize)
# co-selections and fact attributes dataframes for domains
import pandas as pd
co_selections_domain = pd.DataFrame(columns=[fact_id+'_from', fact_id+'_to', 'weight', 'cumfrac', domain_id])
fact_attributes_domain = []
facts_enriched_domain = []
for identifier in set(transactions[domain_id]):
df = selections[selections[transaction_id].isin(transactions[transactions[domain_id] == identifier][transaction_id])]
df_co_selections, df_fact_attributes = project_selection_matrix(selections=df, how='facts', transaction_id=transaction_id, fact_id=fact_id, norm=norm, remove_loops=remove_loops, symmetrize=symmetrize)
df_co_selections[domain_id] = identifier
co_selections_domain = pd.concat([co_selections_domain, df_co_selections])
if facts is None:
fact_attributes_domain.append(df_fact_attributes)
else:
df_facts_enriched = pd.merge(left=facts, right=df_fact_attributes, on=fact_id, how='left')
facts_enriched_domain.append(df_facts_enriched)
co_selections_domain.reset_index(drop=True, inplace=True)
if facts is None:
return co_selections, fact_attributes, co_selections_domain, fact_attributes_domain
else:
facts_enriched = pd.merge(left=facts, right=fact_attributes, on=fact_id, how='left')
return co_selections, facts_enriched, co_selections_domain, facts_enriched_domain
else:
print('The specified domain identifier does not contain multiple domains or domains are not coded as integers starting with zero.')
else:
# co-selections and fact attributes dataframes independent of domain
co_selections, fact_attributes = project_selection_matrix(selections=selections, how='facts', transaction_id=transaction_id, fact_id=fact_id, norm=norm, remove_loops=remove_loops, symmetrize=symmetrize)
if facts is None:
return co_selections, fact_attributes
else:
facts_enriched = pd.merge(left=facts, right=fact_attributes, on=fact_id, how='left')
return co_selections, facts_enriched
def uniform_vertex_property(
g,
vertex_property
):
'''
Description: Creates a uniform vertex property.
Inputs:
g: Graph for which the property should be created; must be a networkx graph object.
vertex_property: Uniform property; can be anything from a hexadecimal color to a
string or numerical.
Output: Dictionary with vertex identifiers as keys and properties as values.
'''
return dict(zip(g.nodes, g.number_of_nodes()*[vertex_property]))
def partition_to_vertex_property(
partition,
_dict
):
'''
Description: Creates a vertex property dictionary.
Inputs:
partition: Dataframe column (series); indices must be integers from 0 to n-1 where
n is the number of vrtices in the graph for whch the vertext property is made;
values must be integers from 0 to m-1 where m is the number of partitions of
vertex partitions.
_dict: Dictionary that maps partition identifiers (keys) to vertex properties
(values); properties can be anything from hexadecimal colors to strings and
numericals.
Output: Dictionary with vertex identifiers as keys and properties as values.
'''
return {index: _dict[identifier] for index, identifier in partition.items()}
def node_attribute_to_list(g, node_attribute):
'''
Description: Returns a node attribute as a list.
Inputs:
g: networkx graph object.
node_attribute: Name of the edge attribute; must be a string.
Output: List.
'''
import networkx as nx
return list(nx.get_node_attributes(g, node_attribute).values())
def edge_attribute_to_list(g, edge_attribute):
'''
Description: Returns an edge attribute as a list.
Inputs:
g: networkx graph object.
edge_attribute: Name of the edge attribute; must be a string.
Output: List.
'''
import networkx as nx
return list(nx.get_edge_attributes(g, edge_attribute).values())
def construct_graph(
directed,
multiplex,
graph_name,
node_list,
edge_list,
node_pos=None,
node_size=None,
node_color=None,
node_shape=None,
node_border_color=None,
node_label=None,
attribute_shape={0: 's', 1: 'o', 2: '^', 3: '>', 4: 'v', 5: '<', 6: 'd', 7: 'p', 8: 'h', 9: '8'},
layer_color={0: '#e41a1c', 1: '#377eb8', 2: '#4daf4a', 3: '#984ea3', 4: '#ff7f00', 5: '#ffff33', 6: '#a65628', 7: '#f781bf', 8: '#999999'}
):
'''
Description: Constructs a graph from a node list and an edge list
Inputs:
directed: Boolean parameter specifying if graph should be directed.
multiplex: Boolean parameter specifying if graph should be multiplex.
graph_name: Name of the graph (string); must be specified.
node_list: Dataframe containing the node properties; must contain a continuous
index from 0 to N-1 where N is the number of vertices; must contain a column
holding the name of each vertex; must contain a column holding an integer that
codes the class a vertex belongs to (used to color the vertices).
node_pos: List of two columns of the dataframe ``node_list`` that hold the x and y
positions of each node; must be numerical variables; set to ``None`` by default.
node_size: Name of the column of the dataframe ``node_list`` that holds the size
of each node; must be a numerical variable; set to ``None`` by default.
node_color: Name of the column of the dataframe ``node_list`` that holds the color
of each node; must be a hexadecimal color variable; set to ``None`` by default.
node_shape: Name of the column of the dataframe ``node_list`` that codes the shape
of each node; must be an integer between 0 and 9; set to ``None`` by default.
node_border_color: Name of the column of the dataframe ``node_list`` that holds
the color of each node border; must be a hexadecimal color variable; set to
``None`` by default.
node_label: Name of the column of the dataframe ``node_list`` that holds the name
of each node; must be a string variable; set to ``None`` by default.
attribute_shape: Dictionary containing the mapping from the integer stored in the
'node_shape' column to a shape; matplotlib.scatter markers 'so^>v<dph8' are
used by default.
edge_list: Dataframe with exactly three columns (source node id, target node id,
edge weight; in that order) containing the edges of the graph; if the graph is
multiplex, a fourth column must contain an integer between 0 and N-1 where N
is the number of edge layers; must be specified.
layer_color: Dictionary containing the mapping from the layer integer stored in
the fourth column of the ``edge_list`` to a hexadecimal color; a dictionary of
nine colors that are qualitatively distinguishable is used by default.
Output: networkx graph object, potentially with graph, node, and edge attributes.
'''
# create graph object
import networkx as nx
if directed:
if multiplex: g = nx.MultiDiGraph(name=graph_name)
else: g = nx.DiGraph(name=graph_name)
else:
if multiplex: g = nx.MultiGraph(name=graph_name)
else: g = nx.Graph(name=graph_name)
# populate graph with vertices and their properties
for i in node_list.index:
g.add_node(i)
if node_pos: g.nodes[i]['node_pos'] = node_list[node_pos].values[i]
if node_size: g.nodes[i]['node_size'] = node_list[node_size][i]
if node_color: g.nodes[i]['node_color'] = node_list[node_color][i]
if node_shape: g.nodes[i]['node_shape'] = attribute_shape[node_list[node_shape][i]]
if node_border_color: g.nodes[i]['node_border_color'] = node_list[node_border_color][i]
if node_label: g.nodes[i]['node_label'] = node_list[node_label][i]
# populate graph with edges and their properties
if multiplex == True:
edge_list = edge_list[edge_list.columns[:4]]
edge_list.loc[:, 'color'] = [layer_color[identifier] for identifier in edge_list[edge_list.columns[3]].values]
edge_list.loc[:, 'dict'] = edge_list[[edge_list.columns[2], 'color']].to_dict(orient='records')
edge_list.drop([edge_list.columns[2], 'color'], axis=1, inplace=True)
g.add_edges_from(edge_list.values)
else:
g.add_weighted_edges_from(edge_list[edge_list.columns[:3]].values)
return g
def draw_graph(
g,
node_pos='internal',
node_size='internal',
node_size_factor=1,
node_color='internal',
node_shape='internal',
node_border_color='internal',
node_border_width=1,
node_label='internal',
font_size='node_size',
font_size_factor=1,
font_color='black',
edge_width='internal',
edge_width_factor=1,
edge_color='internal',
edge_transparency=1,
curved_edges=False,
arrow_size=18,
labels=None,
label_transparency=1,
figsize='large',
margins=.1,
pdf=None,
png=None
):
'''
Description: Draws a graph with internal node and edge properties
Inputs:
g: Graph to be drawn; must be networkx graph object.
node_pos: Node positions to be used for drawing; when set to 'internal'
(default), then the 'node_pos' attribute will be used, else a standard
spring layout is inferred; node color will be 'white'; parameter can take a
dictionary with node positions as values; when set to None, then a standard
spring layout is inferred.
node_size: Node sizes to be used for drawing; when set to 'internal' (default),
then the 'node_size' attribute will be used, else node size will depend on
the number of nodes; parameter can take a dictionary with node sizes as
values; when set to None, node size will depend on the number of nodes.
node_size_factor: Factor to change node size; set to 1 by default.
node_color: Node colors to be used for drawing; when set to 'internal' (default),
then the 'node_color' attribute will be used, else node color will be
'white'; parameter can take a dictionary with hexadecimal or string node
colors as values; when set to None, node color will be 'white'.
node_shape: Node shapes to be used for drawing; when set to 'internal' (default),
then the 'node_shape' attribute will be used, else node shape will be 'o';
parameter can take a dictionary with node shapes as values; when set to None,
node shape will be 'o'.
node_border_color: Node border colors to be used for drawing; when set to
'internal' (default), then the 'node_border_color' attribute will be used,
else node border color will be 'gray'; parameter can take a dictionary with
hexadecimal node colors as values; when set to None, node border color will
be 'gray'.
node_border_width: Width of node border; set to 1 by default.
node_label: Node labels to be used for drawing; when set to 'internal' (default),
then the 'node_label' attribute will be used.
font_size: Font sizes to be used for drawing; when set to 'node_size' (default),
then the 'node_size' attribute will be used, else font size will be 12;
parameter can take a dictionary with font sizes as values; when set to None,
font size will be 12.
font_size_factor: Factor to change font size; set to 1 by default.
font_color: set to 'black' by default; parameter can take a hexadecimal or string
color.
edge_width: Edge widths to be used for drawing; when set to 'internal' (default),
then the 'edge_width' attribute will be used, else edge width will be 1;
parameter can take a list of edge widths; when set to None, edge width will
be 1.
edge_width_factor: Factor to change edge width; set to 1 by default.
edge_color: Edge colors to be used for drawing; when set to 'internal' (default),
then the 'edge_color' attribute will be used, else edge width be 1; parameter
can take a list of edge colors; when set to None, edge width will be 1.
edge_transparency: Alpha transparency of edge colors; set to 1 by default.
curved_edges: Boolean parameter specifying if edges should be curved.
arrow_size: Size of arrows; set to 18 by default; must be numerical.
labels: If 'text', then the internal 'node_label' attribute will be used; if
'id', then the node identifier will be used.
label_transparency: Alpha transparency of font color; set to 1 by default.
figsize: Size of the figure; when set to 'small', then the plot will have size
(4, 4); when set to 'medium', then the plot will have size (8, 8); when set
to 'large', then the plot will have size (12, 12); set to 'large' by default.
margins: Margins of the figure; set to .1 by default; increase it if nodes extend
outside the drawing area.
pdf: Name of a pdf file to be written.
png: Name of a png file to be written.
Output: The graph will be drawn.
'''
# use internal node and edge attributes for drawing, otherwise use external attributes or none
import networkx as nx
if node_pos == 'internal':
if bool(nx.get_node_attributes(g, 'node_pos')):
vp_node_pos = nx.get_node_attributes(g, 'node_pos')
else:
vp_node_pos = nx.spring_layout(g)
else:
if node_pos:
vp_node_pos = node_pos
else:
vp_node_pos = nx.spring_layout(g)
if node_size == 'internal':
if bool(nx.get_node_attributes(g, 'node_size')):
vp_node_size = nx.get_node_attributes(g, 'node_size')
else:
vp_node_size = dict(zip(g.nodes, g.number_of_nodes()*[int(30000/g.number_of_nodes())]))
else:
if node_size:
vp_node_size = node_size
else:
vp_node_size = dict(zip(g.nodes, g.number_of_nodes()*[int(30000/g.number_of_nodes())]))
if node_size_factor != 1:
vp_node_size = {key: node_size_factor*value for key, value in vp_node_size.items()}
if node_color == 'internal':
if bool(nx.get_node_attributes(g, 'node_color')):
vp_node_color = nx.get_node_attributes(g, 'node_color')
else:
vp_node_color = dict(zip(g.nodes, g.number_of_nodes()*['white']))
else:
if node_color:
vp_node_color = node_color
else:
vp_node_color = dict(zip(g.nodes, g.number_of_nodes()*['white']))
if node_shape == 'internal':
if bool(nx.get_node_attributes(g, 'node_shape')):
vp_node_shape = nx.get_node_attributes(g, 'node_shape')
else:
vp_node_shape = dict(zip(g.nodes, g.number_of_nodes()*['o']))
else:
if node_shape:
vp_node_shape = node_shape
else:
vp_node_shape = dict(zip(g.nodes, g.number_of_nodes()*['o']))
if node_border_color == 'internal':
if bool(nx.get_node_attributes(g, 'node_border_color')):
vp_node_border_color = nx.get_node_attributes(g, 'node_border_color')
else:
vp_node_border_color = dict(zip(g.nodes, g.number_of_nodes()*['gray']))
else:
if node_border_color:
vp_node_border_color = node_border_color
else:
vp_node_border_color = dict(zip(g.nodes, g.number_of_nodes()*['gray']))
if font_size == 'node_size':
if bool(nx.get_node_attributes(g, 'node_size')):
vp_font_size = nx.get_node_attributes(g, 'node_size')
else:
vp_font_size = dict(zip(g.nodes, g.number_of_nodes()*[12]))
else:
if font_size:
vp_font_size = font_size
else:
vp_font_size = dict(zip(g.nodes, g.number_of_nodes()*[12]))
if font_size_factor != 1:
vp_font_size = {key: font_size_factor*value for key, value in vp_font_size.items()}
if edge_width == 'internal':
if bool(nx.get_edge_attributes(g, 'weight')):
ep_edge_width = list(nx.get_edge_attributes(g, 'weight').values())
else:
ep_edge_width = g.number_of_edges()*[1]
else:
if edge_width:
ep_edge_width = edge_width
else:
ep_edge_width = g.number_of_edges()*[1]
if edge_width_factor != 1:
ep_edge_width = [edge_width_factor*x for x in ep_edge_width]
if edge_color == 'internal':
if bool(nx.get_edge_attributes(g, 'color')):
ep_edge_color = list(nx.get_edge_attributes(g, 'color').values())
else:
ep_edge_color = g.number_of_edges()*['gray']
else:
if edge_color:
ep_edge_color = edge_color
else:
ep_edge_color = g.number_of_edges()*['gray']
# draw nodes
import matplotlib.pyplot as plt
if figsize == 'small':
plt.figure(figsize=(4, 4))
if figsize == 'medium':
plt.figure(figsize=(8, 8))
if figsize == 'large':
plt.figure(figsize=(12, 12))
for shape in set(vp_node_shape.values()):
nodelist = [key for key, value in vp_node_shape.items() if value == shape]
nx.draw_networkx_nodes(
g,
pos=vp_node_pos,
nodelist=nodelist,
node_size=[vp_node_size[i] for i in nodelist],
node_color=[vp_node_color[i] for i in nodelist],
node_shape=shape,
linewidths=node_border_width,
edgecolors=[vp_node_border_color[i] for i in nodelist]
)
# draw edges
nx.draw_networkx_edges(
g,
pos=vp_node_pos,
width=ep_edge_width,
edge_color=ep_edge_color,
alpha=edge_transparency,
arrowstyle='->',
arrowsize=arrow_size,
connectionstyle='arc3, rad=.1' if curved_edges else 'arc3, rad=0',
#node_size=vp_node_size ###################
)
# label nodes if desired
if labels == 'text':
for node, attributes in g.nodes(data=True):
nx.draw_networkx_labels(
g,
pos=vp_node_pos,
labels={node: attributes['node_label']},
font_size=vp_font_size[node],
font_color=font_color,
alpha=label_transparency,
nodelist=[node]
)
if labels == 'id':
for node, attributes in g.nodes(data=True):
nx.draw_networkx_labels(
g,
pos=vp_node_pos,
labels={node: str(node)},
font_size=vp_font_size[node],
font_color=font_color,
alpha=label_transparency,
nodelist=[node]
)
plt.axis('off')
plt.margins(margins)
if pdf:
plt.savefig(pdf+'.pdf')
if png:
plt.savefig(png+'.png', transparent=True)