-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdaytrader.py
162 lines (140 loc) · 5.43 KB
/
daytrader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from time import sleep
from analyser import Analyser
from executor import Executor
from monitor import Monitor
from planner import Planner
from copy import deepcopy
from keras.models import load_model
from common_methods import load_pickle
forecasting_time = '5m'
offset = ''
METRICS = {
'pods': {
'current': 0,
'models': {},
'query': '(sum(kube_deployment_spec_replicas{namespace="$n", deployment=~"$s.*"} ' + offset + ') by ('
'deployment))',
'time_series': []
},
'conn-pool_jdbc_TradeDataSource': {
'current': 0,
'desired': 0,
'models': {},
'query': 'avg(avg_over_time(vendor_connectionpool_managedConnections{pod=~"$s.*", name!~".*POD.*,", '
'datasource="jdbc_TradeDataSource"}[1m]' + offset + '))',
'time_series': []
},
'conn-pool_jms_TradeStreamerTCF': {
'current': 0,
'desired': 0,
'models': {},
'query': 'avg(avg_over_time(vendor_connectionpool_managedConnections{pod=~"$s.*", name!~".*POD.*,", '
'datasource="jms_TradeStreamerTCF"}[1m]' + offset + '))',
'time_series': []
},
'cpu': {
'current': 0,
'desired': 0.8,
'models': {},
'query': 'sum(rate(base_cpu_processCpuTime_seconds{app="daytrader"}[1m]' + offset + '))',
'time_series': []
},
'heap': {
'current': 0,
'models': {},
'query': 'sum(avg_over_time(base_memory_maxHeap_bytes{pod=~"$s.*"}[1m]' + offset + '))',
'time_series': []
},
'jvm_total_scavenge': {
'current': 0,
'models': {},
'query': '(sum(rate(base_gc_total{name="scavenge"}[1m]' + offset + ')))',
'time_series': []
},
'jvm_total_global': {
'current': 0,
'models': {},
'query': '(sum(rate(base_gc_total{name="global"}[1m]' + offset + ')))',
'time_series': []
},
'jvm_seconds_scavenge': {
'current': 0,
'models': {},
'query': '(sum(rate(base_gc_time_seconds{name="scavenge"}[1m]' + offset + ')) / sum(deriv(base_gc_time_seconds{'
'name="scavenge"}[1m]' + offset + ')))',
'time_series': []
},
'jvm_seconds_global': {
'current': 0,
'models': {},
'query': '(sum(rate(base_gc_time_seconds{name="global"}[1m]' + offset + ')) / sum(deriv('
'base_gc_time_seconds{name="global"}['
'1m]' + offset + ')))',
'time_series': []
},
'memory': {
'current': 0,
'models': {},
'query': 'sum(max_over_time(container_memory_working_set_bytes{id=~".*kubepods.*", namespace="$n",'
'pod=~"$s-.*", name!~".*POD.*", container=""}[1m]' + offset + '))',
'time_series': []
},
'rt': {
'current': 0,
'models': {},
'query': '(sum by (app) (rate(vendor_servlet_responseTime_total_seconds{pod=~"$s.*", '
'servlet!~"com_ibm_ws_microprofile.*"}[1m]' + offset + ') / rate(vendor_servlet_request_total{'
'pod=~"$s.*", '
'servlet!~"com_ibm_ws_microprofile.*"}[1m]' +
offset + ') > 0))',
'time_series': []
},
'tp': {
'current': 0,
'models': {},
'query': 'sum(rate(vendor_servlet_request_total{pod=~"$s.*",' 'servlet!~"com_ibm_ws_microprofile.*|.*Trade'
'.*"}[1m]' + offset + '))',
'time_series': []
},
'thread_pool': {
'current': 0,
'models': {},
'query': 'avg(avg_over_time(vendor_threadpool_activeThreads{pod=~"$s.*", name!~".*POD.*"}[1m]' + offset + '))',
'time_series': []
},
}
deploys = {
'daytrader-service': {'queries': deepcopy(METRICS), 'namespace': 'daytrader',
'replicas': {'current': 0, 'needed': 0, 'min': 1, 'max': 10},
'stabilization': {'scale': -1},
'adaptation_command': '',
'lstm': load_model('knowledge/models/daytrader-service/' + forecasting_time + '/model.h5'),
'slstm': load_pickle('daytrader-service/' + forecasting_time + '/scaler'),
}
}
URL_PROMETHEUS = 'http://10.66.66.53:30000/'
enable_proactive = 68
m1 = None
if forecasting_time == '1m':
m1 = Monitor(URL_PROMETHEUS, end_time='now', start_time='19m', step='60') # 1m
elif forecasting_time == '3m':
m1 = Monitor(URL_PROMETHEUS, end_time='now', start_time='20m', step='180') # 3m
elif forecasting_time == '5m':
m1 = Monitor(URL_PROMETHEUS, end_time='now', start_time='19m', step='300') # 5m
m2 = Monitor(URL_PROMETHEUS, end_time='now', start_time='1m', step='60')
analyser = Analyser(replica_conflict='only')
planner = Planner()
executor = Executor()
a = 0
while True:
print('Iteration: ', a)
if a >= enable_proactive:
m1.proactive(deploys)
analyser.predict_multivariate(deploys)
analyser.proactive(deploys)
else:
m2.reactive(deploys)
analyser.reactive(deploys)
executor.execute(deploys)
a += 1
sleep(15)