-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevarsolve.ml
1759 lines (1611 loc) · 71.1 KB
/
evarsolve.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Sorts
open Util
open CErrors
open Names
open Context
open Constr
open Environ
open Termops
open Evd
open EConstr
open Vars
open Namegen
open Retyping
open Reductionops
open Evarutil
open Pretype_errors
type unify_flags = {
modulo_betaiota: bool;
open_ts : TransparentState.t;
closed_ts : TransparentState.t;
subterm_ts : TransparentState.t;
frozen_evars : Evar.Set.t;
allow_K_at_toplevel : bool;
with_cs : bool }
type unification_kind =
| TypeUnification
| TermUnification
(************************)
(* Unification results *)
(************************)
type unification_result =
| Success of evar_map
| UnifFailure of evar_map * unification_error
let is_success = function Success _ -> true | UnifFailure _ -> false
let test_success unify flags b env evd c c' rhs =
is_success (unify flags b env evd c c' rhs)
(** A unification function parameterized by:
- unification flags
- the kind of unification
- environment
- sigma
- conversion problem
- the two terms to unify. *)
type unifier = unify_flags -> unification_kind ->
env -> evar_map -> conv_pb -> constr -> constr -> unification_result
(** A conversion function: parameterized by the kind of unification,
environment, sigma, conversion problem and the two terms to convert.
Conversion is not allowed to instantiate evars contrary to unification. *)
type conversion_check = unify_flags -> unification_kind ->
env -> evar_map -> conv_pb -> constr -> constr -> bool
let normalize_evar evd ev =
match EConstr.kind evd (mkEvar ev) with
| Evar (evk,args) -> (evk,args)
| _ -> assert false
let get_polymorphic_positions env sigma f =
let open Declarations in
match EConstr.kind sigma f with
| Ind (ind, u) | Construct ((ind, _), u) ->
let mib,oib = Inductive.lookup_mind_specif env ind in
(match oib.mind_arity with
| RegularArity _ -> assert false
| TemplateArity templ -> templ.template_param_levels)
| _ -> assert false
let refresh_universes ?(status=univ_rigid) ?(onlyalg=false) ?(refreshset=false)
pbty env evd t =
let evdref = ref evd in
(* direction: true for fresh universes lower than the existing ones *)
let refresh_sort status ~direction s =
let s = ESorts.kind !evdref s in
let sigma, s' = new_sort_variable status !evdref in
evdref := sigma;
let evd =
if direction then set_leq_sort env !evdref s' s
else set_leq_sort env !evdref s s'
in evdref := evd; mkSort s'
in
let rec refresh ~onlyalg status ~direction t =
match EConstr.kind !evdref t with
| Sort s ->
begin match ESorts.kind !evdref s with
| Type u ->
(* TODO: check if max(l,u) is not ok as well *)
(match Univ.universe_level u with
| None -> refresh_sort status ~direction s
| Some l ->
(match Evd.universe_rigidity !evdref l with
| UnivRigid ->
if not onlyalg then refresh_sort status ~direction s
else t
| UnivFlexible alg ->
(if alg then
evdref := Evd.make_nonalgebraic_variable !evdref l);
t))
| Set when refreshset && not direction ->
(* Cannot make a universe "lower" than "Set",
only refreshing when we want higher universes. *)
refresh_sort status ~direction s
| _ -> t
end
| Prod (na,u,v) ->
let v' = refresh ~onlyalg status ~direction v in
if v' == v then t else mkProd (na, u, v')
| _ -> t
in
(* Refresh the types of evars under template polymorphic references *)
let rec refresh_term_evars ~onevars ~top t =
match EConstr.kind !evdref t with
| App (f, args) when Termops.is_template_polymorphic_ind env !evdref f ->
let pos = get_polymorphic_positions env !evdref f in
refresh_polymorphic_positions args pos; t
| App (f, args) when top && isEvar !evdref f ->
let f' = refresh_term_evars ~onevars:true ~top:false f in
let args' = Array.map (refresh_term_evars ~onevars ~top:false) args in
if f' == f && args' == args then t
else mkApp (f', args')
| Evar (ev, a) when onevars ->
let evi = Evd.find !evdref ev in
let ty = evi.evar_concl in
let ty' = refresh ~onlyalg univ_flexible ~direction:true ty in
if ty == ty' then t
else (evdref := Evd.downcast ev ty' !evdref; t)
| Sort s ->
(match ESorts.kind !evdref s with
| Type u when not (Univ.Universe.is_levels u) ->
refresh_sort Evd.univ_flexible ~direction:false s
| _ -> t)
| _ -> EConstr.map !evdref (refresh_term_evars ~onevars ~top:false) t
and refresh_polymorphic_positions args pos =
let rec aux i = function
| Some l :: ls ->
if i < Array.length args then
ignore(refresh_term_evars ~onevars:true ~top:false args.(i));
aux (succ i) ls
| None :: ls ->
if i < Array.length args then
ignore(refresh_term_evars ~onevars:false ~top:false args.(i));
aux (succ i) ls
| [] -> ()
in aux 0 pos
in
let t' =
if isArity !evdref t then
match pbty with
| None ->
(* No cumulativity needed, but we still need to refresh the algebraics *)
refresh ~onlyalg:true univ_flexible ~direction:false t
| Some direction -> refresh ~onlyalg status ~direction t
else refresh_term_evars ~onevars:false ~top:true t
in !evdref, t'
let get_type_of_refresh ?(polyprop=true) ?(lax=false) env sigma c =
let ty = Retyping.get_type_of ~polyprop ~lax env sigma c in
refresh_universes (Some false) env sigma ty
let add_conv_oriented_pb ?(tail=true) (pbty,env,t1,t2) evd =
match pbty with
| Some true -> add_conv_pb ~tail (Reduction.CUMUL,env,t1,t2) evd
| Some false -> add_conv_pb ~tail (Reduction.CUMUL,env,t2,t1) evd
| None -> add_conv_pb ~tail (Reduction.CONV,env,t1,t2) evd
(* We retype applications to ensure the universe constraints are collected *)
exception IllTypedInstance of env * EConstr.types * EConstr.types
let recheck_applications unify flags env evdref t =
let rec aux env t =
match EConstr.kind !evdref t with
| App (f, args) ->
let () = aux env f in
let fty = Retyping.get_type_of env !evdref f in
let argsty = Array.map (fun x -> aux env x; Retyping.get_type_of env !evdref x) args in
let rec aux i ty =
if i < Array.length argsty then
match EConstr.kind !evdref (whd_all env !evdref ty) with
| Prod (na, dom, codom) ->
(match unify flags TypeUnification env !evdref Reduction.CUMUL argsty.(i) dom with
| Success evd -> evdref := evd;
aux (succ i) (subst1 args.(i) codom)
| UnifFailure (evd, reason) ->
Pretype_errors.error_cannot_unify env evd ~reason (argsty.(i), dom))
| _ -> raise (IllTypedInstance (env, ty, argsty.(i)))
else ()
in aux 0 fty
| _ ->
iter_with_full_binders !evdref (fun d env -> push_rel d env) aux env t
in aux env t
(*------------------------------------*
* Restricting existing evars *
*------------------------------------*)
type 'a update =
| UpdateWith of 'a
| NoUpdate
open Context.Named.Declaration
let inst_of_vars sign = Array.map_of_list (get_id %> mkVar) sign
let restrict_evar_key evd evk filter candidates =
match filter, candidates with
| None, NoUpdate -> evd, evk
| _ ->
let evi = Evd.find_undefined evd evk in
let oldfilter = evar_filter evi in
begin match filter, candidates with
| Some filter, NoUpdate when Filter.equal oldfilter filter ->
evd, evk
| _ ->
let filter = match filter with
| None -> evar_filter evi
| Some filter -> filter in
let candidates = match candidates with
| NoUpdate -> evi.evar_candidates
| UpdateWith c -> Some c in
restrict_evar evd evk filter candidates
end
(* Restrict an applied evar and returns its restriction in the same context *)
(* (the filter is assumed to be at least stronger than the original one) *)
let restrict_applied_evar evd (evk,argsv) filter candidates =
let evd,newevk = restrict_evar_key evd evk filter candidates in
let newargsv = match filter with
| None -> (* optim *) argsv
| Some filter ->
let evi = Evd.find evd evk in
let subfilter = Filter.compose (evar_filter evi) filter in
Filter.filter_array subfilter argsv in
evd,(newevk,newargsv)
(* Restrict an evar in the current evar_map *)
let restrict_evar evd evk filter candidates =
fst (restrict_evar_key evd evk filter candidates)
(* Restrict an evar in the current evar_map *)
let restrict_instance evd evk filter argsv =
match filter with None -> argsv | Some filter ->
let evi = Evd.find evd evk in
Filter.filter_array (Filter.compose (evar_filter evi) filter) argsv
open Context.Rel.Declaration
let noccur_evar env evd evk c =
let cache = ref Int.Set.empty (* cache for let-ins *) in
let rec occur_rec check_types (k, env as acc) c =
match EConstr.kind evd c with
| Evar (evk',args' as ev') ->
if Evar.equal evk evk' then raise Occur
else (if check_types then
occur_rec false acc (existential_type evd ev');
Array.iter (occur_rec check_types acc) args')
| Rel i when i > k ->
if not (Int.Set.mem (i-k) !cache) then
let decl = Environ.lookup_rel i env in
if check_types then
(cache := Int.Set.add (i-k) !cache; occur_rec false acc (lift i (EConstr.of_constr (get_type decl))));
(match decl with
| LocalAssum _ -> ()
| LocalDef (_,b,_) -> cache := Int.Set.add (i-k) !cache; occur_rec false acc (lift i (EConstr.of_constr b)))
| Proj (p,c) -> occur_rec true acc c
| _ -> iter_with_full_binders evd (fun rd (k,env) -> (succ k, push_rel rd env))
(occur_rec check_types) acc c
in
try occur_rec false (0,env) c; true with Occur -> false
(***************************************)
(* Managing chains of local definitons *)
(***************************************)
type alias =
| RelAlias of int
| VarAlias of Id.t
let of_alias = function
| RelAlias n -> mkRel n
| VarAlias id -> mkVar id
let to_alias sigma c = match EConstr.kind sigma c with
| Rel n -> Some (RelAlias n)
| Var id -> Some (VarAlias id)
| _ -> None
let is_alias sigma c alias = match EConstr.kind sigma c, alias with
| Var id, VarAlias id' -> Id.equal id id'
| Rel n, RelAlias n' -> Int.equal n n'
| _ -> false
let eq_alias a b = match a, b with
| RelAlias n, RelAlias m -> Int.equal m n
| VarAlias id1, VarAlias id2 -> Id.equal id1 id2
| _ -> false
type aliasing = EConstr.t option * alias list
let empty_aliasing = None, []
let make_aliasing c = Some c, []
let push_alias (alias, l) a = (alias, a :: l)
let lift_aliasing n (alias, l) =
let map a = match a with
| VarAlias _ -> a
| RelAlias m -> RelAlias (m + n)
in
(Option.map (fun c -> lift n c) alias, List.map map l)
type aliases = {
rel_aliases : aliasing Int.Map.t;
var_aliases : aliasing Id.Map.t;
(** Only contains [VarAlias] *)
}
(* Expand rels and vars that are bound to other rels or vars so that
dependencies in variables are canonically associated to the most ancient
variable in its family of aliased variables *)
let compute_var_aliases sign sigma =
let open Context.Named.Declaration in
List.fold_right (fun decl aliases ->
let id = get_id decl in
match decl with
| LocalDef (_,t,_) ->
(match EConstr.kind sigma t with
| Var id' ->
let aliases_of_id =
try Id.Map.find id' aliases with Not_found -> empty_aliasing in
Id.Map.add id (push_alias aliases_of_id (VarAlias id')) aliases
| _ ->
Id.Map.add id (make_aliasing t) aliases)
| LocalAssum _ -> aliases)
sign Id.Map.empty
let compute_rel_aliases var_aliases rels sigma =
snd (List.fold_right
(fun decl (n,aliases) ->
(n-1,
match decl with
| LocalDef (_,t,u) ->
(match EConstr.kind sigma t with
| Var id' ->
let aliases_of_n =
try Id.Map.find id' var_aliases with Not_found -> empty_aliasing in
Int.Map.add n (push_alias aliases_of_n (VarAlias id')) aliases
| Rel p ->
let aliases_of_n =
try Int.Map.find (p+n) aliases with Not_found -> empty_aliasing in
Int.Map.add n (push_alias aliases_of_n (RelAlias (p+n))) aliases
| _ ->
Int.Map.add n (make_aliasing (lift n (mkCast(t,DEFAULTcast,u)))) aliases)
| LocalAssum _ -> aliases)
)
rels
(List.length rels,Int.Map.empty))
let make_alias_map env sigma =
(* We compute the chain of aliases for each var and rel *)
let var_aliases = compute_var_aliases (named_context env) sigma in
let rel_aliases = compute_rel_aliases var_aliases (rel_context env) sigma in
{ var_aliases; rel_aliases }
let lift_aliases n aliases =
if Int.equal n 0 then aliases else
let rel_aliases =
Int.Map.fold (fun p l -> Int.Map.add (p+n) (lift_aliasing n l))
aliases.rel_aliases Int.Map.empty
in
{ aliases with rel_aliases }
let get_alias_chain_of sigma aliases x = match x with
| RelAlias n -> (try Int.Map.find n aliases.rel_aliases with Not_found -> empty_aliasing)
| VarAlias id -> (try Id.Map.find id aliases.var_aliases with Not_found -> empty_aliasing)
let normalize_alias_opt_alias sigma aliases x =
match get_alias_chain_of sigma aliases x with
| _, [] -> None
| _, a :: _ -> Some a
let normalize_alias_opt sigma aliases x = match to_alias sigma x with
| None -> None
| Some a -> normalize_alias_opt_alias sigma aliases a
let normalize_alias sigma aliases x =
match normalize_alias_opt_alias sigma aliases x with
| Some a -> a
| None -> x
let normalize_alias_var sigma var_aliases id =
let aliases = { var_aliases; rel_aliases = Int.Map.empty } in
match normalize_alias sigma aliases (VarAlias id) with
| VarAlias id -> id
| RelAlias _ -> assert false (** var only aliases to variables *)
let extend_alias sigma decl { var_aliases; rel_aliases } =
let rel_aliases =
Int.Map.fold (fun n l -> Int.Map.add (n+1) (lift_aliasing 1 l))
rel_aliases Int.Map.empty in
let rel_aliases =
match decl with
| LocalDef(_,t,_) ->
(match EConstr.kind sigma t with
| Var id' ->
let aliases_of_binder =
try Id.Map.find id' var_aliases with Not_found -> empty_aliasing in
Int.Map.add 1 (push_alias aliases_of_binder (VarAlias id')) rel_aliases
| Rel p ->
let aliases_of_binder =
try Int.Map.find (p+1) rel_aliases with Not_found -> empty_aliasing in
Int.Map.add 1 (push_alias aliases_of_binder (RelAlias (p+1))) rel_aliases
| _ ->
Int.Map.add 1 (make_aliasing (lift 1 t)) rel_aliases)
| LocalAssum _ -> rel_aliases in
{ var_aliases; rel_aliases }
let expand_alias_once sigma aliases x =
match get_alias_chain_of sigma aliases x with
| None, [] -> None
| Some a, [] -> Some a
| _, l -> Some (of_alias (List.last l))
let expansions_of_var sigma aliases x =
let (_, l) = get_alias_chain_of sigma aliases x in
x :: List.rev l
let expansion_of_var sigma aliases x =
match get_alias_chain_of sigma aliases x with
| None, [] -> (false, of_alias x)
| Some a, _ -> (true, a)
| None, a :: _ -> (true, of_alias a)
let rec expand_vars_in_term_using sigma aliases t = match EConstr.kind sigma t with
| Rel n -> of_alias (normalize_alias sigma aliases (RelAlias n))
| Var id -> of_alias (normalize_alias sigma aliases (VarAlias id))
| _ ->
let self aliases c = expand_vars_in_term_using sigma aliases c in
map_constr_with_full_binders sigma (extend_alias sigma) self aliases t
let expand_vars_in_term env sigma = expand_vars_in_term_using sigma (make_alias_map env sigma)
let free_vars_and_rels_up_alias_expansion env sigma aliases c =
let acc1 = ref Int.Set.empty and acc2 = ref Id.Set.empty in
let acc3 = ref Int.Set.empty and acc4 = ref Id.Set.empty in
let cache_rel = ref Int.Set.empty and cache_var = ref Id.Set.empty in
let is_in_cache depth = function
| RelAlias n -> Int.Set.mem (n-depth) !cache_rel
| VarAlias s -> Id.Set.mem s !cache_var
in
let put_in_cache depth = function
| RelAlias n -> cache_rel := Int.Set.add (n-depth) !cache_rel
| VarAlias s -> cache_var := Id.Set.add s !cache_var
in
let rec frec (aliases,depth) c =
match EConstr.kind sigma c with
| Rel _ | Var _ as ck ->
let ck = match ck with
| Rel n -> RelAlias n
| Var id -> VarAlias id
| _ -> assert false
in
if is_in_cache depth ck then () else begin
put_in_cache depth ck;
let expanded, c' = expansion_of_var sigma aliases ck in
(if expanded then (* expansion, hence a let-in *)
match ck with
| VarAlias id -> acc4 := Id.Set.add id !acc4
| RelAlias n -> if n >= depth+1 then acc3 := Int.Set.add (n-depth) !acc3);
match EConstr.kind sigma c' with
| Var id -> acc2 := Id.Set.add id !acc2
| Rel n -> if n >= depth+1 then acc1 := Int.Set.add (n-depth) !acc1
| _ -> frec (aliases,depth) c end
| Const _ | Ind _ | Construct _ ->
acc2 := Id.Set.union (vars_of_global env (fst @@ EConstr.destRef sigma c)) !acc2
| _ ->
iter_with_full_binders sigma
(fun d (aliases,depth) -> (extend_alias sigma d aliases,depth+1))
frec (aliases,depth) c
in
frec (aliases,0) c;
(!acc1,!acc2,!acc3,!acc4)
(********************************)
(* Managing pattern-unification *)
(********************************)
let expand_and_check_vars sigma aliases l =
let map a = match get_alias_chain_of sigma aliases a with
| None, [] -> Some a
| None, a :: _ -> Some a
| Some _, _ -> None
in
Option.List.map map l
let alias_distinct l =
let rec check (rels, vars) = function
| [] -> true
| RelAlias n :: l ->
not (Int.Set.mem n rels) && check (Int.Set.add n rels, vars) l
| VarAlias id :: l ->
not (Id.Set.mem id vars) && check (rels, Id.Set.add id vars) l
in
check (Int.Set.empty, Id.Set.empty) l
let get_actual_deps env evd aliases l t =
if occur_meta_or_existential evd t then
(* Probably no restrictions on allowed vars in presence of evars *)
l
else
(* Probably strong restrictions coming from t being evar-closed *)
let (fv_rels,fv_ids,_,_) = free_vars_and_rels_up_alias_expansion env evd aliases t in
List.filter (function
| VarAlias id -> Id.Set.mem id fv_ids
| RelAlias n -> Int.Set.mem n fv_rels
) l
open Context.Named.Declaration
let remove_instance_local_defs evd evk args =
let evi = Evd.find evd evk in
let len = Array.length args in
let rec aux sign i = match sign with
| [] ->
let () = assert (i = len) in []
| LocalAssum _ :: sign ->
let () = assert (i < len) in
(Array.unsafe_get args i) :: aux sign (succ i)
| LocalDef _ :: sign ->
aux sign (succ i)
in
aux (evar_filtered_context evi) 0
(* Check if an applied evar "?X[args] l" is a Miller's pattern *)
let find_unification_pattern_args env evd l t =
let aliases = make_alias_map env evd in
match expand_and_check_vars evd aliases l with
| Some l as x when alias_distinct (get_actual_deps env evd aliases l t) -> x
| _ -> None
let is_unification_pattern_meta env evd nb m l t =
(* Variables from context and rels > nb are implicitly all there *)
(* so we need to be a rel <= nb *)
let map a = match EConstr.kind evd a with
| Rel n -> if n <= nb then Some (RelAlias n) else None
| _ -> None
in
match Option.List.map map l with
| Some l ->
begin match find_unification_pattern_args env evd l t with
| Some _ as x when not (occur_metavariable evd m t) -> x
| _ -> None
end
| None ->
None
let is_unification_pattern_evar env evd (evk,args) l t =
match Option.List.map (fun c -> to_alias evd c) l with
| Some l when noccur_evar env evd evk t ->
let args = remove_instance_local_defs evd evk args in
let args = Option.List.map (fun c -> to_alias evd c) args in
begin match args with
| None -> None
| Some args ->
let n = List.length args in
match find_unification_pattern_args env evd (args @ l) t with
| Some l -> Some (List.skipn n l)
| _ -> None
end
| _ -> None
let is_unification_pattern_pure_evar env evd (evk,args) t =
let is_ev = is_unification_pattern_evar env evd (evk,args) [] t in
match is_ev with
| None -> false
| Some _ -> true
let is_unification_pattern (env,nb) evd f l t =
match EConstr.kind evd f with
| Meta m -> is_unification_pattern_meta env evd nb m l t
| Evar ev -> is_unification_pattern_evar env evd ev l t
| _ -> None
(* From a unification problem "?X l = c", build "\x1...xn.(term1 l2)"
(pattern unification). It is assumed that l is made of rel's that
are distinct and not bound to aliases. *)
(* It is also assumed that c does not contain metas because metas
*implicitly* depend on Vars but lambda abstraction will not reflect this
dependency: ?X x = ?1 (?1 is a meta) will return \_.?1 while it should
return \y. ?1{x\y} (non constant function if ?1 depends on x) (BB) *)
let solve_pattern_eqn env sigma l c =
let c' = List.fold_right (fun a c ->
let c' = subst_term sigma (lift 1 (of_alias a)) (lift 1 c) in
match a with
(* Rem: if [a] links to a let-in, do as if it were an assumption *)
| RelAlias n ->
let open Context.Rel.Declaration in
let d = map_constr (lift n) (lookup_rel n env) in
mkLambda_or_LetIn d c'
| VarAlias id ->
let d = lookup_named id env in mkNamedLambda_or_LetIn d c'
)
l c in
(* Warning: we may miss some opportunity to eta-reduce more since c'
is not in normal form *)
shrink_eta c'
(*****************************************)
(* Refining/solving unification problems *)
(*****************************************)
(* Knowing that [Gamma |- ev : T] and that [ev] is applied to [args],
* [make_projectable_subst ev args] builds the substitution [Gamma:=args].
* If a variable and an alias of it are bound to the same instance, we skip
* the alias (we just use eq_constr -- instead of conv --, since anyway,
* only instances that are variables -- or evars -- are later considered;
* morever, we can bet that similar instances came at some time from
* the very same substitution. The removal of aliased duplicates is
* useful to ensure the uniqueness of a projection.
*)
let make_projectable_subst aliases sigma evi args =
let sign = evar_filtered_context evi in
let evar_aliases = compute_var_aliases sign sigma in
let (_,full_subst,cstr_subst,_) =
List.fold_right_i
(fun i decl (args,all,cstrs,revmap) ->
match decl,args with
| LocalAssum ({binder_name=id},c), a::rest ->
let revmap = Id.Map.add id i revmap in
let cstrs =
let a',args = decompose_app_vect sigma a in
match EConstr.kind sigma a' with
| Construct cstr ->
let l = try Constrmap.find (fst cstr) cstrs with Not_found -> [] in
Constrmap.add (fst cstr) ((args,id)::l) cstrs
| _ -> cstrs in
let all = Int.Map.add i [a,normalize_alias_opt sigma aliases a,id] all in
(rest,all,cstrs,revmap)
| LocalDef ({binder_name=id},c,_), a::rest ->
let revmap = Id.Map.add id i revmap in
(match EConstr.kind sigma c with
| Var id' ->
let idc = normalize_alias_var sigma evar_aliases id' in
let ic, sub =
try let ic = Id.Map.find idc revmap in ic, Int.Map.find ic all
with Not_found -> i, [] (* e.g. [idc] is a filtered variable: treat [id] as an assumption *) in
if List.exists (fun (c,_,_) -> EConstr.eq_constr sigma a c) sub then
(rest,all,cstrs,revmap)
else
let all = Int.Map.add ic ((a,normalize_alias_opt sigma aliases a,id)::sub) all in
(rest,all,cstrs,revmap)
| _ ->
let all = Int.Map.add i [a,normalize_alias_opt sigma aliases a,id] all in
(rest,all,cstrs,revmap))
| _ -> anomaly (Pp.str "Instance does not match its signature.")) 0
sign (Array.rev_to_list args,Int.Map.empty,Constrmap.empty,Id.Map.empty) in
(full_subst,cstr_subst)
(*------------------------------------*
* operations on the evar constraints *
*------------------------------------*)
(* We have a unification problem Σ; Γ |- ?e[u1..uq] = t : s where ?e is not yet
* declared in Σ but yet known to be declarable in some context x1:T1..xq:Tq.
* [define_evar_from_virtual_equation ... Γ Σ t (x1:T1..xq:Tq) .. (u1..uq) (x1..xq)]
* declares x1:T1..xq:Tq |- ?e : s such that ?e[u1..uq] = t holds.
*)
let define_evar_from_virtual_equation define_fun env evd src t_in_env ty_t_in_sign sign filter inst_in_env =
let (evd, evar_in_env) = new_evar_instance sign evd ty_t_in_sign ~filter ~src inst_in_env in
let t_in_env = whd_evar evd t_in_env in
let (evk, _) = destEvar evd evar_in_env in
let evd = define_fun env evd None (destEvar evd evar_in_env) t_in_env in
let ctxt = named_context_of_val sign in
let inst_in_sign = inst_of_vars (Filter.filter_list filter ctxt) in
let evar_in_sign = mkEvar (evk, inst_in_sign) in
(evd,whd_evar evd evar_in_sign)
(* We have x1..xq |- ?e1 : τ and had to solve something like
* Σ; Γ |- ?e1[u1..uq] = (...\y1 ... \yk ... c), where c is typically some
* ?e2[v1..vn], hence flexible. We had to go through k binders and now
* virtually have x1..xq, y1'..yk' | ?e1' : τ' and the equation
* Γ, y1..yk |- ?e1'[u1..uq y1..yk] = c.
* [materialize_evar Γ evd k (?e1[u1..uq]) τ'] extends Σ with the declaration
* of ?e1' and returns both its instance ?e1'[x1..xq y1..yk] in an extension
* of the context of e1 so that e1 can be instantiated by
* (...\y1' ... \yk' ... ?e1'[x1..xq y1'..yk']),
* and the instance ?e1'[u1..uq y1..yk] so that the remaining equation
* ?e1'[u1..uq y1..yk] = c can be registered
*
* Note that, because invert_definition does not check types, we need to
* guess the types of y1'..yn' by inverting the types of y1..yn along the
* substitution u1..uq.
*)
exception MorePreciseOccurCheckNeeeded
let materialize_evar define_fun env evd k (evk1,args1) ty_in_env =
if Evd.is_defined evd evk1 then
(* Some circularity somewhere (see e.g. #3209) *)
raise MorePreciseOccurCheckNeeeded;
let (evk1,args1) = destEvar evd (mkEvar (evk1,args1)) in
let evi1 = Evd.find_undefined evd evk1 in
let env1,rel_sign = env_rel_context_chop k env in
let sign1 = evar_hyps evi1 in
let filter1 = evar_filter evi1 in
let src = subterm_source evk1 evi1.evar_source in
let ids1 = List.map get_id (named_context_of_val sign1) in
let avoid = Environ.ids_of_named_context_val sign1 in
let inst_in_sign = List.map mkVar (Filter.filter_list filter1 ids1) in
let open Context.Rel.Declaration in
let (sign2,filter2,inst2_in_env,inst2_in_sign,_,evd,_) =
List.fold_right (fun d (sign,filter,inst_in_env,inst_in_sign,env,evd,avoid) ->
let LocalAssum (na,t_in_env) | LocalDef (na,_,t_in_env) = d in
let id = map_annot (fun na -> next_name_away na avoid) na in
let evd,t_in_sign =
let s = Retyping.get_sort_of env evd t_in_env in
let evd,ty_t_in_sign = refresh_universes
~status:univ_flexible (Some false) env evd (mkSort s) in
define_evar_from_virtual_equation define_fun env evd src t_in_env
ty_t_in_sign sign filter inst_in_env in
let evd,d' = match d with
| LocalAssum _ -> evd, Context.Named.Declaration.LocalAssum (id,t_in_sign)
| LocalDef (_,b,_) ->
let evd,b = define_evar_from_virtual_equation define_fun env evd src b
t_in_sign sign filter inst_in_env in
evd, Context.Named.Declaration.LocalDef (id,b,t_in_sign) in
(push_named_context_val d' sign, Filter.extend 1 filter,
(mkRel 1)::(List.map (lift 1) inst_in_env),
(mkRel 1)::(List.map (lift 1) inst_in_sign),
push_rel d env,evd,Id.Set.add id.binder_name avoid))
rel_sign
(sign1,filter1,Array.to_list args1,inst_in_sign,env1,evd,avoid)
in
let evd,ev2ty_in_sign =
let s = Retyping.get_sort_of env evd ty_in_env in
let evd,ty_t_in_sign = refresh_universes
~status:univ_flexible (Some false) env evd (mkSort s) in
define_evar_from_virtual_equation define_fun env evd src ty_in_env
ty_t_in_sign sign2 filter2 inst2_in_env in
let (evd, ev2_in_sign) =
new_evar_instance sign2 evd ev2ty_in_sign ~filter:filter2 ~src inst2_in_sign in
let ev2_in_env = (fst (destEvar evd ev2_in_sign), Array.of_list inst2_in_env) in
(evd, ev2_in_sign, ev2_in_env)
let restrict_upon_filter evd evk p args =
let oldfullfilter = evar_filter (Evd.find_undefined evd evk) in
let len = Array.length args in
Filter.restrict_upon oldfullfilter len (fun i -> p (Array.unsafe_get args i))
let check_evar_instance unify flags evd evk1 body =
let evi = Evd.find evd evk1 in
let evenv = evar_env evi in
(* FIXME: The body might be ill-typed when this is called from w_merge *)
(* This happens in practice, cf MathClasses build failure on 2013-3-15 *)
let ty =
try Retyping.get_type_of ~lax:true evenv evd body
with Retyping.RetypeError _ -> user_err (Pp.(str "Ill-typed evar instance"))
in
match unify flags TypeUnification evenv evd Reduction.CUMUL ty evi.evar_concl with
| Success evd -> evd
| UnifFailure _ -> raise (IllTypedInstance (evenv,ty,evi.evar_concl))
(***************)
(* Unification *)
(* Inverting constructors in instances (common when inferring type of match) *)
let find_projectable_constructor env evd cstr k args cstr_subst =
try
let l = Constrmap.find cstr cstr_subst in
let args = Array.map (lift (-k)) args in
let l =
List.filter (fun (args',id) ->
(* is_conv is maybe too strong (and source of useless computation) *)
(* (at least expansion of aliases is needed) *)
Array.for_all2 (fun c1 c2 -> is_conv env evd c1 c2) args args') l in
List.map snd l
with Not_found ->
[]
(* [find_projectable_vars env sigma y subst] finds all vars of [subst]
* that project on [y]. It is able to find solutions to the following
* two kinds of problems:
*
* - ?n[...;x:=y;...] = y
* - ?n[...;x:=?m[args];...] = y with ?m[args] = y recursively solvable
*
* (see test-suite/success/Fixpoint.v for an example of application of
* the second kind of problem).
*
* The seek for [y] is up to variable aliasing. In case of solutions that
* differ only up to aliasing, the binding that requires the less
* steps of alias reduction is kept. At the end, only one solution up
* to aliasing is kept.
*
* [find_projectable_vars] also unifies against evars that themselves mention
* [y] and recursively.
*
* In short, the following situations give the following solutions:
*
* problem evar ctxt soluce remark
* z1; z2:=z1 |- ?ev[z1;z2] = z1 y1:A; y2:=y1 y1 \ thanks to defs kept in
* z1; z2:=z1 |- ?ev[z1;z2] = z2 y1:A; y2:=y1 y2 / subst and preferring =
* z1; z2:=z1 |- ?ev[z1] = z2 y1:A y1 thanks to expand_var
* z1; z2:=z1 |- ?ev[z2] = z1 y1:A y1 thanks to expand_var
* z3 |- ?ev[z3;z3] = z3 y1:A; y2:=y1 y2 see make_projectable_subst
*
* Remark: [find_projectable_vars] assumes that identical instances of
* variables in the same set of aliased variables are already removed (see
* [make_projectable_subst])
*)
type evar_projection =
| ProjectVar
| ProjectEvar of EConstr.existential * evar_info * Id.t * evar_projection
exception NotUnique
exception NotUniqueInType of (Id.t * evar_projection) list
let rec assoc_up_to_alias sigma aliases y yc = function
| [] -> raise Not_found
| (c,cc,id)::l ->
if is_alias sigma c y then id
else
match l with
| _ :: _ -> assoc_up_to_alias sigma aliases y yc l
| [] ->
(* Last chance, we reason up to alias conversion *)
match (normalize_alias_opt sigma aliases c) with
| Some cc when eq_alias yc cc -> id
| _ -> if is_alias sigma c yc then id else raise Not_found
let rec find_projectable_vars with_evars aliases sigma y subst =
let yc = normalize_alias sigma aliases y in
let is_projectable idc idcl (subst1,subst2 as subst') =
(* First test if some [id] aliased to [idc] is bound to [y] in [subst] *)
try
let id = assoc_up_to_alias sigma aliases y yc idcl in
(id,ProjectVar)::subst1,subst2
with Not_found ->
(* Then test if [idc] is (indirectly) bound in [subst] to some evar *)
(* projectable on [y] *)
if with_evars then
let f (c,_,id) = isEvar sigma c in
let idcl' = List.filter f idcl in
match idcl' with
| [c,_,id] ->
begin
let (evk,argsv as t) = destEvar sigma c in
let evi = Evd.find sigma evk in
let subst,_ = make_projectable_subst aliases sigma evi argsv in
let l = find_projectable_vars with_evars aliases sigma y subst in
match l with
| [id',p] -> (subst1,(id,ProjectEvar (t,evi,id',p))::subst2)
| _ -> subst'
end
| [] -> subst'
| _ -> anomaly (Pp.str "More than one non var in aliases class of evar instance.")
else
subst' in
let subst1,subst2 = Int.Map.fold is_projectable subst ([],[]) in
(* We return the substitution with ProjectVar first (from most
recent to oldest var), followed by ProjectEvar (from most recent
to oldest var too) *)
subst1 @ subst2
(* [filter_solution] checks if one and only one possible projection exists
* among a set of solutions to a projection problem *)
let filter_solution = function
| [] -> raise Not_found
| (id,p)::_::_ -> raise NotUnique
| [id,p] -> (mkVar id, p)
let project_with_effects aliases sigma effects t subst =
let c, p =
filter_solution (find_projectable_vars false aliases sigma t subst) in
effects := p :: !effects;
c
open Context.Named.Declaration
let rec find_solution_type evarenv = function
| (id,ProjectVar)::l -> get_type (lookup_named id evarenv)
| [id,ProjectEvar _] -> (* bugged *) get_type (lookup_named id evarenv)
| (id,ProjectEvar _)::l -> find_solution_type evarenv l
| [] -> assert false
(* In case the solution to a projection problem requires the instantiation of
* subsidiary evars, [do_projection_effects] performs them; it
* also try to instantiate the type of those subsidiary evars if their
* type is an evar too.
*
* Note: typing creates new evar problems, which induces a recursive dependency
* with [define]. To avoid a too large set of recursive functions, we
* pass [define] to [do_projection_effects] as a parameter.
*)
let rec do_projection_effects unify flags define_fun env ty evd = function
| ProjectVar -> evd
| ProjectEvar ((evk,argsv),evi,id,p) ->
let evd = check_evar_instance unify flags evd evk (mkVar id) in
let evd = Evd.define evk (EConstr.mkVar id) evd in
(* TODO: simplify constraints involving evk *)
let evd = do_projection_effects unify flags define_fun env ty evd p in
let ty = whd_all env evd (Lazy.force ty) in
if not (isSort evd ty) then
(* Don't try to instantiate if a sort because if evar_concl is an
evar it may commit to a univ level which is not the right
one (however, regarding coercions, because t is obtained by
unif, we know that no coercion can be inserted) *)
let subst = make_pure_subst evi argsv in
let ty' = replace_vars subst evi.evar_concl in
if isEvar evd ty' then define_fun env evd (Some false) (destEvar evd ty') ty else evd
else
evd
(* Assuming Σ; Γ, y1..yk |- c, [invert_arg_from_subst Γ k Σ [x1:=u1..xn:=un] c]
* tries to return φ(x1..xn) such that equation φ(u1..un) = c is valid.
* The strategy is to imitate the structure of c and then to invert
* the variables of c (i.e. rels or vars of Γ) using the algorithm
* implemented by project_with_effects/find_projectable_vars.
* It returns either a unique solution or says whether 0 or more than
* 1 solutions is found.
*
* Precondition: Σ; Γ, y1..yk |- c /\ Σ; Γ |- u1..un
* Postcondition: if φ(x1..xn) is returned then
* Σ; Γ, y1..yk |- φ(u1..un) = c /\ x1..xn |- φ(x1..xn)
*
* The effects correspond to evars instantiated while trying to project.
*
* [invert_arg_from_subst] is used on instances of evars. Since the
* evars are flexible, these instances are potentially erasable. This
* is why we don't investigate whether evars in the instances of evars
* are unifiable, to the contrary of [invert_definition].
*)
type projectibility_kind =
| NoUniqueProjection
| UniqueProjection of EConstr.constr * evar_projection list
type projectibility_status =
| CannotInvert
| Invertible of projectibility_kind
let invert_arg_from_subst evd aliases k0 subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders =
let effects = ref [] in
let rec aux k t =
match EConstr.kind evd t with
| Rel i when i>k0+k -> aux' k (RelAlias (i-k))
| Var id -> aux' k (VarAlias id)
| _ -> map_with_binders evd succ aux k t
and aux' k t =
try project_with_effects aliases evd effects t subst_in_env_extended_with_k_binders
with Not_found ->
match expand_alias_once evd aliases t with
| None -> raise Not_found
| Some c -> aux k (lift k c) in
try
let c = aux 0 c_in_env_extended_with_k_binders in
Invertible (UniqueProjection (c,!effects))
with
| Not_found -> CannotInvert
| NotUnique -> Invertible NoUniqueProjection
let invert_arg fullenv evd aliases k evk subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders =
let res = invert_arg_from_subst evd aliases k subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders in
match res with
| Invertible (UniqueProjection (c,_)) when not (noccur_evar fullenv evd evk c)
->
CannotInvert
| _ ->
res
exception NotEnoughInformationToInvert
let extract_unique_projection = function
| Invertible (UniqueProjection (c,_)) -> c
| _ ->
(* For instance, there are evars with non-invertible arguments and *)
(* we cannot arbitrarily restrict these evars before knowing if there *)
(* will really be used; it can also be due to some argument *)
(* (typically a rel) that is not inversible and that cannot be *)
(* inverted either because it is needed for typing the conclusion *)