-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretyping.ml
1181 lines (1092 loc) · 47.7 KB
/
pretyping.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* This file contains the syntax-directed part of the type inference
algorithm introduced by Murthy in Coq V5.10, 1995; the type
inference algorithm was initially developed in a file named trad.ml
which formerly contained a simple concrete-to-abstract syntax
translation function introduced in CoC V4.10 for implementing the
"exact" tactic, 1989 *)
(* Support for typing term in Ltac environment by David Delahaye, 2000 *)
(* Type inference algorithm made a functor of the coercion and
pattern-matching compilation by Matthieu Sozeau, March 2006 *)
(* Fixpoint guard index computation by Pierre Letouzey, July 2007 *)
(* Structural maintainer: Hugo Herbelin *)
(* Secondary maintenance: collective *)
open Pp
open CErrors
open Util
open Names
open Evd
open Constr
open Context
open Termops
open Environ
open EConstr
open Vars
open Reductionops
open Type_errors
open Typing
open Globnames
open Evarutil
open Evardefine
open Pretype_errors
open Glob_term
open Glob_ops
open GlobEnv
open Evarconv
module NamedDecl = Context.Named.Declaration
type typing_constraint = OfType of types | IsType | WithoutTypeConstraint
let (!!) env = GlobEnv.env env
(************************************************************************)
(* This concerns Cases *)
open Inductive
open Inductiveops
(************************************************************************)
(* An auxiliary function for searching for fixpoint guard indexes *)
exception Found of int array
let nf_fix sigma (nas, cs, ts) =
let inj c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in
(nas, Array.map inj cs, Array.map inj ts)
let search_guard ?loc env possible_indexes fixdefs =
(* Standard situation with only one possibility for each fix. *)
(* We treat it separately in order to get proper error msg. *)
let is_singleton = function [_] -> true | _ -> false in
if List.for_all is_singleton possible_indexes then
let indexes = Array.of_list (List.map List.hd possible_indexes) in
let fix = ((indexes, 0),fixdefs) in
(try check_fix env fix
with reraise ->
let (e, info) = CErrors.push reraise in
let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in
iraise (e, info));
indexes
else
(* we now search recursively among all combinations *)
(try
List.iter
(fun l ->
let indexes = Array.of_list l in
let fix = ((indexes, 0),fixdefs) in
(* spiwack: We search for a unspecified structural
argument under the assumption that we need to check the
guardedness condition (otherwise the first inductive argument
will be chosen). A more robust solution may be to raise an
error when totality is assumed but the strutural argument is
not specified. *)
try
let flags = { (typing_flags env) with Declarations.check_guarded = true } in
let env = Environ.set_typing_flags flags env in
check_fix env fix; raise (Found indexes)
with TypeError _ -> ())
(List.combinations possible_indexes);
let errmsg = "Cannot guess decreasing argument of fix." in
user_err ?loc ~hdr:"search_guard" (Pp.str errmsg)
with Found indexes -> indexes)
let esearch_guard ?loc env sigma indexes fix =
let fix = nf_fix sigma fix in
try search_guard ?loc env indexes fix
with TypeError (env,err) ->
raise (PretypeError (env,sigma,TypingError (map_ptype_error of_constr err)))
(* To force universe name declaration before use *)
let is_strict_universe_declarations =
Goptions.declare_bool_option_and_ref
~depr:false
~name:"strict universe declaration"
~key:["Strict";"Universe";"Declaration"]
~value:true
(** Miscellaneous interpretation functions *)
let interp_known_universe_level evd qid =
try
let open Libnames in
if qualid_is_ident qid then Evd.universe_of_name evd @@ qualid_basename qid
else raise Not_found
with Not_found ->
let qid = Nametab.locate_universe qid in
Univ.Level.make qid
let interp_universe_level_name ~anon_rigidity evd qid =
try evd, interp_known_universe_level evd qid
with Not_found ->
if Libnames.qualid_is_ident qid then (* Undeclared *)
let id = Libnames.qualid_basename qid in
if not (is_strict_universe_declarations ()) then
new_univ_level_variable ?loc:qid.CAst.loc ~name:id univ_rigid evd
else user_err ?loc:qid.CAst.loc ~hdr:"interp_universe_level_name"
(Pp.(str "Undeclared universe: " ++ Id.print id))
else
let dp, i = Libnames.repr_qualid qid in
let num =
try int_of_string (Id.to_string i)
with Failure _ ->
user_err ?loc:qid.CAst.loc ~hdr:"interp_universe_level_name"
(Pp.(str "Undeclared global universe: " ++ Libnames.pr_qualid qid))
in
let level = Univ.Level.(make (UGlobal.make dp num)) in
let evd =
try Evd.add_global_univ evd level
with UGraph.AlreadyDeclared -> evd
in evd, level
let interp_universe ?loc evd = function
| [] -> let evd, l = new_univ_level_variable ?loc univ_rigid evd in
evd, Univ.Universe.make l
| l ->
List.fold_left (fun (evd, u) l ->
let evd', u' =
match l with
| Some (l,n) ->
(* [univ_flexible_alg] can produce algebraic universes in terms *)
let anon_rigidity = univ_flexible in
let evd', l = interp_universe_level_name ~anon_rigidity evd l in
let u' = Univ.Universe.make l in
(match n with
| 0 -> evd', u'
| 1 -> evd', Univ.Universe.super u'
| _ ->
user_err ?loc ~hdr:"interp_universe"
(Pp.(str "Cannot interpret universe increment +" ++ int n)))
| None ->
let evd, l = new_univ_level_variable ?loc univ_flexible evd in
evd, Univ.Universe.make l
in (evd', Univ.sup u u'))
(evd, Univ.Universe.type0m) l
let interp_known_level_info ?loc evd = function
| UUnknown | UAnonymous ->
user_err ?loc ~hdr:"interp_known_level_info"
(str "Anonymous universes not allowed here.")
| UNamed qid ->
try interp_known_universe_level evd qid
with Not_found ->
user_err ?loc ~hdr:"interp_known_level_info" (str "Undeclared universe " ++ Libnames.pr_qualid qid)
let interp_level_info ?loc evd : level_info -> _ = function
| UUnknown -> new_univ_level_variable ?loc univ_rigid evd
| UAnonymous -> new_univ_level_variable ?loc univ_flexible evd
| UNamed s -> interp_universe_level_name ~anon_rigidity:univ_flexible evd s
type inference_hook = env -> evar_map -> Evar.t -> evar_map * constr
type inference_flags = {
use_typeclasses : bool;
solve_unification_constraints : bool;
fail_evar : bool;
expand_evars : bool;
program_mode : bool;
polymorphic : bool;
}
(* Compute the set of still-undefined initial evars up to restriction
(e.g. clearing) and the set of yet-unsolved evars freshly created
in the extension [sigma'] of [sigma] (excluding the restrictions of
the undefined evars of [sigma] to be freshly created evars of
[sigma']). Otherwise said, we partition the undefined evars of
[sigma'] into those already in [sigma] or deriving from an evar in
[sigma] by restriction, and the evars properly created in [sigma'] *)
type frozen =
| FrozenId of evar_info Evar.Map.t
(** No pending evars. We do not put a set here not to reallocate like crazy,
but the actual data of the map is not used, only keys matter. All
functions operating on this type must have the same behaviour on
[FrozenId map] and [FrozenProgress (Evar.Map.domain map, Evar.Set.empty)] *)
| FrozenProgress of (Evar.Set.t * Evar.Set.t) Lazy.t
(** Proper partition of the evar map as described above. *)
let frozen_and_pending_holes (sigma, sigma') =
let undefined0 = Option.cata Evd.undefined_map Evar.Map.empty sigma in
(* Fast path when the undefined evars where not modified *)
if undefined0 == Evd.undefined_map sigma' then
FrozenId undefined0
else
let data = lazy begin
let add_derivative_of evk evi acc =
match advance sigma' evk with None -> acc | Some evk' -> Evar.Set.add evk' acc in
let frozen = Evar.Map.fold add_derivative_of undefined0 Evar.Set.empty in
let fold evk _ accu = if not (Evar.Set.mem evk frozen) then Evar.Set.add evk accu else accu in
let pending = Evd.fold_undefined fold sigma' Evar.Set.empty in
(frozen, pending)
end in
FrozenProgress data
let apply_typeclasses ~program_mode env sigma frozen fail_evar =
let filter_frozen = match frozen with
| FrozenId map -> fun evk -> Evar.Map.mem evk map
| FrozenProgress (lazy (frozen, _)) -> fun evk -> Evar.Set.mem evk frozen
in
let sigma = Typeclasses.resolve_typeclasses
~filter:(if program_mode
then (fun evk evi -> Typeclasses.no_goals_or_obligations evk evi && not (filter_frozen evk))
else (fun evk evi -> Typeclasses.no_goals evk evi && not (filter_frozen evk)))
~split:true ~fail:fail_evar env sigma in
let sigma = if program_mode then (* Try optionally solving the obligations *)
Typeclasses.resolve_typeclasses
~filter:(fun evk evi -> Typeclasses.all_evars evk evi && not (filter_frozen evk)) ~split:true ~fail:false env sigma
else sigma in
sigma
let apply_inference_hook hook env sigma frozen = match frozen with
| FrozenId _ -> sigma
| FrozenProgress (lazy (_, pending)) ->
Evar.Set.fold (fun evk sigma ->
if Evd.is_undefined sigma evk (* in particular not defined by side-effect *)
then
try
let sigma, c = hook env sigma evk in
Evd.define evk c sigma
with Exit ->
sigma
else
sigma) pending sigma
let apply_heuristics env sigma fail_evar =
(* Resolve eagerly, potentially making wrong choices *)
let flags = default_flags_of (Typeclasses.classes_transparent_state ()) in
try solve_unif_constraints_with_heuristics ~flags env sigma
with e when CErrors.noncritical e ->
let e = CErrors.push e in
if fail_evar then iraise e else sigma
let check_typeclasses_instances_are_solved ~program_mode env current_sigma frozen =
(* Naive way, call resolution again with failure flag *)
apply_typeclasses ~program_mode env current_sigma frozen true
let check_extra_evars_are_solved env current_sigma frozen = match frozen with
| FrozenId _ -> ()
| FrozenProgress (lazy (_, pending)) ->
Evar.Set.iter
(fun evk ->
if not (Evd.is_defined current_sigma evk) then
let (loc,k) = evar_source evk current_sigma in
match k with
| Evar_kinds.ImplicitArg (gr, (i, id), false) -> ()
| _ ->
error_unsolvable_implicit ?loc env current_sigma evk None) pending
(* [check_evars] fails if some unresolved evar remains *)
let check_evars env initial_sigma sigma c =
let rec proc_rec c =
match EConstr.kind sigma c with
| Evar (evk, _) ->
if not (Evd.mem initial_sigma evk) then
let (loc,k) = evar_source evk sigma in
begin match k with
| Evar_kinds.ImplicitArg (gr, (i, id), false) -> ()
| _ -> Pretype_errors.error_unsolvable_implicit ?loc env sigma evk None
end
| _ -> EConstr.iter sigma proc_rec c
in proc_rec c
let check_evars_are_solved ~program_mode env sigma frozen =
let sigma = check_typeclasses_instances_are_solved ~program_mode env sigma frozen in
check_problems_are_solved env sigma;
check_extra_evars_are_solved env sigma frozen
(* Try typeclasses, hooks, unification heuristics ... *)
let solve_remaining_evars ?hook flags env ?initial sigma =
let program_mode = flags.program_mode in
let frozen = frozen_and_pending_holes (initial, sigma) in
let sigma =
if flags.use_typeclasses
then apply_typeclasses ~program_mode env sigma frozen false
else sigma
in
let sigma = match hook with
| None -> sigma
| Some hook -> apply_inference_hook hook env sigma frozen
in
let sigma = if flags.solve_unification_constraints
then apply_heuristics env sigma false
else sigma
in
if flags.fail_evar then check_evars_are_solved ~program_mode env sigma frozen;
sigma
let check_evars_are_solved ~program_mode env ?initial current_sigma =
let frozen = frozen_and_pending_holes (initial, current_sigma) in
check_evars_are_solved ~program_mode env current_sigma frozen
let process_inference_flags flags env initial (sigma,c,cty) =
let sigma = solve_remaining_evars flags env ~initial sigma in
let c = if flags.expand_evars then nf_evar sigma c else c in
sigma,c,cty
let adjust_evar_source sigma na c =
match na, kind sigma c with
| Name id, Evar (evk,args) ->
let evi = Evd.find sigma evk in
begin match evi.evar_source with
| loc, Evar_kinds.QuestionMark {
Evar_kinds.qm_obligation=b;
Evar_kinds.qm_name=Anonymous;
Evar_kinds.qm_record_field=recfieldname;
} ->
let src = (loc,Evar_kinds.QuestionMark {
Evar_kinds.qm_obligation=b;
Evar_kinds.qm_name=na;
Evar_kinds.qm_record_field=recfieldname;
}) in
let (sigma, evk') = restrict_evar sigma evk (evar_filter evi) ~src None in
sigma, mkEvar (evk',args)
| _ -> sigma, c
end
| _, _ -> sigma, c
(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j = function
| None -> sigma, j
| Some t ->
Coercion.inh_conv_coerce_to ?loc ~program_mode resolve_tc !!env sigma j t
let check_instance loc subst = function
| [] -> ()
| (id,_) :: _ ->
if List.mem_assoc id subst then
user_err ?loc (Id.print id ++ str "appears more than once.")
else
user_err ?loc (str "No such variable in the signature of the existential variable: " ++ Id.print id ++ str ".")
(* used to enforce a name in Lambda when the type constraints itself
is named, hence possibly dependent *)
let orelse_name name name' = match name with
| Anonymous -> name'
| _ -> name
let pretype_id pretype loc env sigma id =
(* Look for the binder of [id] *)
try
let (n,_,typ) = lookup_rel_id id (rel_context !!env) in
sigma, { uj_val = mkRel n; uj_type = lift n typ }
with Not_found ->
try
GlobEnv.interp_ltac_variable ?loc (fun env -> pretype env sigma) env sigma id
with Not_found ->
(* Check if [id] is a section or goal variable *)
try
sigma, { uj_val = mkVar id; uj_type = NamedDecl.get_type (lookup_named id !!env) }
with Not_found ->
(* [id] not found, standard error message *)
error_var_not_found ?loc !!env sigma id
(*************************************************************************)
(* Main pretyping function *)
let interp_known_glob_level ?loc evd = function
| GSProp -> Univ.Level.sprop
| GProp -> Univ.Level.prop
| GSet -> Univ.Level.set
| GType s -> interp_known_level_info ?loc evd s
let interp_glob_level ?loc evd : glob_level -> _ = function
| GSProp -> evd, Univ.Level.sprop
| GProp -> evd, Univ.Level.prop
| GSet -> evd, Univ.Level.set
| GType s -> interp_level_info ?loc evd s
let interp_instance ?loc evd l =
let evd, l' =
List.fold_left
(fun (evd, univs) l ->
let evd, l = interp_glob_level ?loc evd l in
(evd, l :: univs)) (evd, [])
l
in
if List.exists (fun l -> Univ.Level.is_prop l) l' then
user_err ?loc ~hdr:"pretype"
(str "Universe instances cannot contain Prop, polymorphic" ++
str " universe instances must be greater or equal to Set.");
evd, Some (Univ.Instance.of_array (Array.of_list (List.rev l')))
let pretype_global ?loc rigid env evd gr us =
let evd, instance =
match us with
| None -> evd, None
| Some l -> interp_instance ?loc evd l
in
Evd.fresh_global ?loc ~rigid ?names:instance !!env evd gr
let pretype_ref ?loc sigma env ref us =
match ref with
| VarRef id ->
(* Section variable *)
(try sigma, make_judge (mkVar id) (NamedDecl.get_type (lookup_named id !!env))
with Not_found ->
(* This may happen if env is a goal env and section variables have
been cleared - section variables should be different from goal
variables *)
Pretype_errors.error_var_not_found ?loc !!env sigma id)
| ref ->
let sigma, c = pretype_global ?loc univ_flexible env sigma ref us in
let ty = unsafe_type_of !!env sigma c in
sigma, make_judge c ty
let judge_of_Type ?loc evd s =
let evd, s = interp_universe ?loc evd s in
let judge =
{ uj_val = mkType s; uj_type = mkType (Univ.super s) }
in
evd, judge
let pretype_sort ?loc sigma = function
| GSProp -> sigma, judge_of_sprop
| GProp -> sigma, judge_of_prop
| GSet -> sigma, judge_of_set
| GType s -> judge_of_Type ?loc sigma s
let new_type_evar env sigma loc =
new_type_evar env sigma ~src:(Loc.tag ?loc Evar_kinds.InternalHole)
let mark_obligation_evar sigma k evc =
match k with
| Evar_kinds.QuestionMark _
| Evar_kinds.ImplicitArg (_, _, false) ->
Evd.set_obligation_evar sigma (fst (destEvar sigma evc))
| _ -> sigma
(* [pretype tycon env sigma lvar lmeta cstr] attempts to type [cstr] *)
(* in environment [env], with existential variables [sigma] and *)
(* the type constraint tycon *)
let rec pretype ~program_mode ~poly resolve_tc (tycon : type_constraint) (env : GlobEnv.t) (sigma : evar_map) t =
let inh_conv_coerce_to_tycon ?loc = inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc in
let pretype_type = pretype_type ~program_mode ~poly resolve_tc in
let pretype = pretype ~program_mode ~poly resolve_tc in
let open Context.Rel.Declaration in
let loc = t.CAst.loc in
match DAst.get t with
| GRef (ref,u) ->
let sigma, t_ref = pretype_ref ?loc sigma env ref u in
inh_conv_coerce_to_tycon ?loc env sigma t_ref tycon
| GVar id ->
let sigma, t_id = pretype_id (fun e r t -> pretype tycon e r t) loc env sigma id in
inh_conv_coerce_to_tycon ?loc env sigma t_id tycon
| GEvar (id, inst) ->
(* Ne faudrait-il pas s'assurer que hyps est bien un
sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
let id = interp_ltac_id env id in
let evk =
try Evd.evar_key id sigma
with Not_found -> error_evar_not_found ?loc !!env sigma id in
let hyps = evar_filtered_context (Evd.find sigma evk) in
let sigma, args = pretype_instance ~program_mode ~poly resolve_tc env sigma loc hyps evk inst in
let c = mkEvar (evk, args) in
let j = Retyping.get_judgment_of !!env sigma c in
inh_conv_coerce_to_tycon ?loc env sigma j tycon
| GPatVar kind ->
let sigma, ty =
match tycon with
| Some ty -> sigma, ty
| None -> new_type_evar env sigma loc in
let k = Evar_kinds.MatchingVar kind in
let sigma, uj_val = new_evar env sigma ~src:(loc,k) ty in
sigma, { uj_val; uj_type = ty }
| GHole (k, naming, None) ->
let open Namegen in
let naming = match naming with
| IntroIdentifier id -> IntroIdentifier (interp_ltac_id env id)
| IntroAnonymous -> IntroAnonymous
| IntroFresh id -> IntroFresh (interp_ltac_id env id) in
let sigma, ty =
match tycon with
| Some ty -> sigma, ty
| None -> new_type_evar env sigma loc in
let sigma, uj_val = new_evar env sigma ~src:(loc,k) ~naming ty in
let sigma = if program_mode then mark_obligation_evar sigma k uj_val else sigma in
sigma, { uj_val; uj_type = ty }
| GHole (k, _naming, Some arg) ->
let sigma, ty =
match tycon with
| Some ty -> sigma, ty
| None -> new_type_evar env sigma loc in
let c, sigma = GlobEnv.interp_glob_genarg env poly sigma ty arg in
sigma, { uj_val = c; uj_type = ty }
| GRec (fixkind,names,bl,lar,vdef) ->
let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in
let rec type_bl env sigma ctxt = function
| [] -> sigma, ctxt
| (na,bk,None,ty)::bl ->
let sigma, ty' = pretype_type empty_valcon env sigma ty in
let rty' = Sorts.relevance_of_sort ty'.utj_type in
let dcl = LocalAssum (make_annot na rty', ty'.utj_val) in
let dcl', env = push_rel ~hypnaming sigma dcl env in
type_bl env sigma (Context.Rel.add dcl' ctxt) bl
| (na,bk,Some bd,ty)::bl ->
let sigma, ty' = pretype_type empty_valcon env sigma ty in
let rty' = Sorts.relevance_of_sort ty'.utj_type in
let sigma, bd' = pretype (mk_tycon ty'.utj_val) env sigma bd in
let dcl = LocalDef (make_annot na rty', bd'.uj_val, ty'.utj_val) in
let dcl', env = push_rel ~hypnaming sigma dcl env in
type_bl env sigma (Context.Rel.add dcl' ctxt) bl in
let sigma, ctxtv = Array.fold_left_map (fun sigma -> type_bl env sigma Context.Rel.empty) sigma bl in
let sigma, larj =
Array.fold_left2_map
(fun sigma e ar ->
pretype_type empty_valcon (snd (push_rel_context ~hypnaming sigma e env)) sigma ar)
sigma ctxtv lar in
let lara = Array.map (fun a -> a.utj_val) larj in
let ftys = Array.map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in
let nbfix = Array.length lar in
let names = Array.map (fun id -> Name id) names in
let sigma =
match tycon with
| Some t ->
let fixi = match fixkind with
| GFix (vn,i) -> i
| GCoFix i -> i
in
begin match Evarconv.unify_delay !!env sigma ftys.(fixi) t with
| exception Evarconv.UnableToUnify _ -> sigma
| sigma -> sigma
end
| None -> sigma
in
let names = Array.map2 (fun na t ->
make_annot na (Retyping.relevance_of_type !!(env) sigma t))
names ftys
in
(* Note: bodies are not used by push_rec_types, so [||] is safe *)
let names,newenv = push_rec_types ~hypnaming sigma (names,ftys) env in
let sigma, vdefj =
Array.fold_left2_map_i
(fun i sigma ctxt def ->
(* we lift nbfix times the type in tycon, because of
* the nbfix variables pushed to newenv *)
let (ctxt,ty) =
decompose_prod_n_assum sigma (Context.Rel.length ctxt)
(lift nbfix ftys.(i)) in
let ctxt,nenv = push_rel_context ~hypnaming sigma ctxt newenv in
let sigma, j = pretype (mk_tycon ty) nenv sigma def in
sigma, { uj_val = it_mkLambda_or_LetIn j.uj_val ctxt;
uj_type = it_mkProd_or_LetIn j.uj_type ctxt })
sigma ctxtv vdef in
let sigma = Typing.check_type_fixpoint ?loc !!env sigma names ftys vdefj in
let nf c = nf_evar sigma c in
let ftys = Array.map nf ftys in (* FIXME *)
let fdefs = Array.map (fun x -> nf (j_val x)) vdefj in
let fixj = match fixkind with
| GFix (vn,i) ->
(* First, let's find the guard indexes. *)
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem worth the effort (except for huge mutual
fixpoints ?) *)
let possible_indexes =
Array.to_list (Array.mapi
(fun i annot -> match annot with
| Some n -> [n]
| None -> List.map_i (fun i _ -> i) 0 ctxtv.(i))
vn)
in
let fixdecls = (names,ftys,fdefs) in
let indexes = esearch_guard ?loc !!env sigma possible_indexes fixdecls in
make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i)
| GCoFix i ->
let fixdecls = (names,ftys,fdefs) in
let cofix = (i, fixdecls) in
(try check_cofix !!env (i, nf_fix sigma fixdecls)
with reraise ->
let (e, info) = CErrors.push reraise in
let info = Option.cata (Loc.add_loc info) info loc in
iraise (e, info));
make_judge (mkCoFix cofix) ftys.(i)
in
inh_conv_coerce_to_tycon ?loc env sigma fixj tycon
| GSort s ->
let sigma, j = pretype_sort ?loc sigma s in
inh_conv_coerce_to_tycon ?loc env sigma j tycon
| GApp (f,args) ->
let sigma, fj = pretype empty_tycon env sigma f in
let floc = loc_of_glob_constr f in
let length = List.length args in
let candargs =
(* Bidirectional typechecking hint:
parameters of a constructor are completely determined
by a typing constraint *)
if program_mode && length > 0 && isConstruct sigma fj.uj_val then
match tycon with
| None -> []
| Some ty ->
let ((ind, i), u) = destConstruct sigma fj.uj_val in
let npars = inductive_nparams !!env ind in
if Int.equal npars 0 then []
else
try
let IndType (indf, args) = find_rectype !!env sigma ty in
let ((ind',u'),pars) = dest_ind_family indf in
if eq_ind ind ind' then List.map EConstr.of_constr pars
else (* Let the usual code throw an error *) []
with Not_found -> []
else []
in
let app_f =
match EConstr.kind sigma fj.uj_val with
| Const (p, u) when Recordops.is_primitive_projection p ->
let p = Option.get @@ Recordops.find_primitive_projection p in
let p = Projection.make p false in
let npars = Projection.npars p in
fun n ->
if n == npars + 1 then fun _ v -> mkProj (p, v)
else fun f v -> applist (f, [v])
| _ -> fun _ f v -> applist (f, [v])
in
let rec apply_rec env sigma n resj candargs = function
| [] -> sigma, resj
| c::rest ->
let argloc = loc_of_glob_constr c in
let sigma, resj = Coercion.inh_app_fun ~program_mode resolve_tc !!env sigma resj in
let resty = whd_all !!env sigma resj.uj_type in
match EConstr.kind sigma resty with
| Prod (na,c1,c2) ->
let tycon = Some c1 in
let sigma, hj = pretype tycon env sigma c in
let sigma, candargs, ujval =
match candargs with
| [] -> sigma, [], j_val hj
| arg :: args ->
begin match Evarconv.unify_delay !!env sigma (j_val hj) arg with
| exception Evarconv.UnableToUnify _ ->
sigma, [], j_val hj
| sigma ->
sigma, args, nf_evar sigma (j_val hj)
end
in
let sigma, ujval = adjust_evar_source sigma na.binder_name ujval in
let value, typ = app_f n (j_val resj) ujval, subst1 ujval c2 in
let j = { uj_val = value; uj_type = typ } in
apply_rec env sigma (n+1) j candargs rest
| _ ->
let sigma, hj = pretype empty_tycon env sigma c in
error_cant_apply_not_functional
?loc:(Loc.merge_opt floc argloc) !!env sigma resj [|hj|]
in
let sigma, resj = apply_rec env sigma 1 fj candargs args in
let sigma, resj =
match EConstr.kind sigma resj.uj_val with
| App (f,args) ->
if Termops.is_template_polymorphic_ind !!env sigma f then
(* Special case for inductive type applications that must be
refreshed right away. *)
let c = mkApp (f, args) in
let sigma, c = Evarsolve.refresh_universes (Some true) !!env sigma c in
let t = Retyping.get_type_of !!env sigma c in
sigma, make_judge c (* use this for keeping evars: resj.uj_val *) t
else sigma, resj
| _ -> sigma, resj
in
inh_conv_coerce_to_tycon ?loc env sigma resj tycon
| GLambda(name,bk,c1,c2) ->
let sigma, tycon' =
match tycon with
| None -> sigma, tycon
| Some ty ->
let sigma, ty' = Coercion.inh_coerce_to_prod ?loc ~program_mode !!env sigma ty in
sigma, Some ty'
in
let sigma, (name',dom,rng) = split_tycon ?loc !!env sigma tycon' in
let dom_valcon = valcon_of_tycon dom in
let sigma, j = pretype_type dom_valcon env sigma c1 in
let name = {binder_name=name; binder_relevance=Sorts.relevance_of_sort j.utj_type} in
let var = LocalAssum (name, j.utj_val) in
let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in
let var',env' = push_rel ~hypnaming sigma var env in
let sigma, j' = pretype rng env' sigma c2 in
let name = get_name var' in
let resj = judge_of_abstraction !!env (orelse_name name name'.binder_name) j j' in
inh_conv_coerce_to_tycon ?loc env sigma resj tycon
| GProd(name,bk,c1,c2) ->
let sigma, j = pretype_type empty_valcon env sigma c1 in
let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in
let sigma, name, j' = match name with
| Anonymous ->
let sigma, j = pretype_type empty_valcon env sigma c2 in
sigma, name, { j with utj_val = lift 1 j.utj_val }
| Name _ ->
let r = Sorts.relevance_of_sort j.utj_type in
let var = LocalAssum (make_annot name r, j.utj_val) in
let var, env' = push_rel ~hypnaming sigma var env in
let sigma, c2_j = pretype_type empty_valcon env' sigma c2 in
sigma, get_name var, c2_j
in
let resj =
try
judge_of_product !!env name j j'
with TypeError _ as e ->
let (e, info) = CErrors.push e in
let info = Option.cata (Loc.add_loc info) info loc in
iraise (e, info) in
inh_conv_coerce_to_tycon ?loc env sigma resj tycon
| GLetIn(name,c1,t,c2) ->
let sigma, tycon1 =
match t with
| Some t ->
let sigma, t_j = pretype_type empty_valcon env sigma t in
sigma, mk_tycon t_j.utj_val
| None ->
sigma, empty_tycon in
let sigma, j = pretype tycon1 env sigma c1 in
let sigma, t = Evarsolve.refresh_universes
~onlyalg:true ~status:Evd.univ_flexible (Some false) !!env sigma j.uj_type in
let r = Retyping.relevance_of_term !!env sigma j.uj_val in
let var = LocalDef (make_annot name r, j.uj_val, t) in
let tycon = lift_tycon 1 tycon in
let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in
let var, env = push_rel ~hypnaming sigma var env in
let sigma, j' = pretype tycon env sigma c2 in
let name = get_name var in
sigma, { uj_val = mkLetIn (make_annot name r, j.uj_val, t, j'.uj_val) ;
uj_type = subst1 j.uj_val j'.uj_type }
| GLetTuple (nal,(na,po),c,d) ->
let sigma, cj = pretype empty_tycon env sigma c in
let (IndType (indf,realargs)) =
try find_rectype !!env sigma cj.uj_type
with Not_found ->
let cloc = loc_of_glob_constr c in
error_case_not_inductive ?loc:cloc !!env sigma cj
in
let ind = fst (fst (dest_ind_family indf)) in
let cstrs = get_constructors !!env indf in
if not (Int.equal (Array.length cstrs) 1) then
user_err ?loc (str "Destructing let is only for inductive types" ++
str " with one constructor.");
let cs = cstrs.(0) in
if not (Int.equal (List.length nal) cs.cs_nargs) then
user_err ?loc:loc (str "Destructing let on this type expects " ++
int cs.cs_nargs ++ str " variables.");
let fsign, record =
let set_name na d = set_name na (map_rel_decl EConstr.of_constr d) in
match Environ.get_projections !!env ind with
| None ->
List.map2 set_name (List.rev nal) cs.cs_args, false
| Some ps ->
let rec aux n k names l =
match names, l with
| na :: names, (LocalAssum (na', t) :: l) ->
let t = EConstr.of_constr t in
let proj = Projection.make ps.(cs.cs_nargs - k) true in
LocalDef ({na' with binder_name = na},
lift (cs.cs_nargs - n) (mkProj (proj, cj.uj_val)), t)
:: aux (n+1) (k + 1) names l
| na :: names, (decl :: l) ->
set_name na decl :: aux (n+1) k names l
| [], [] -> []
| _ -> assert false
in aux 1 1 (List.rev nal) cs.cs_args, true in
let fsign = Context.Rel.map (whd_betaiota sigma) fsign in
let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in
let fsign,env_f = push_rel_context ~hypnaming sigma fsign env in
let obj ind rci p v f =
if not record then
let f = it_mkLambda_or_LetIn f fsign in
let ci = make_case_info !!env (fst ind) rci LetStyle in
mkCase (ci, p, cj.uj_val,[|f|])
else it_mkLambda_or_LetIn f fsign
in
(* Make dependencies from arity signature impossible *)
let arsgn, indr =
let arsgn,s = get_arity !!env indf in
List.map (set_name Anonymous) arsgn, Sorts.relevance_of_sort_family s
in
let indt = build_dependent_inductive !!env indf in
let psign = LocalAssum (make_annot na indr, indt) :: arsgn in (* For locating names in [po] *)
let psign = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign in
let predenv = Cases.make_return_predicate_ltac_lvar env sigma na c cj.uj_val in
let nar = List.length arsgn in
let psign',env_p = push_rel_context ~hypnaming ~force_names:true sigma psign predenv in
(match po with
| Some p ->
let sigma, pj = pretype_type empty_valcon env_p sigma p in
let ccl = nf_evar sigma pj.utj_val in
let p = it_mkLambda_or_LetIn ccl psign' in
let inst =
(Array.map_to_list EConstr.of_constr cs.cs_concl_realargs)
@[EConstr.of_constr (build_dependent_constructor cs)] in
let lp = lift cs.cs_nargs p in
let fty = hnf_lam_applist !!env sigma lp inst in
let sigma, fj = pretype (mk_tycon fty) env_f sigma d in
let v =
let ind,_ = dest_ind_family indf in
let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val p in
obj ind rci p cj.uj_val fj.uj_val
in
sigma, { uj_val = v; uj_type = (substl (realargs@[cj.uj_val]) ccl) }
| None ->
let tycon = lift_tycon cs.cs_nargs tycon in
let sigma, fj = pretype tycon env_f sigma d in
let ccl = nf_evar sigma fj.uj_type in
let ccl =
if noccur_between sigma 1 cs.cs_nargs ccl then
lift (- cs.cs_nargs) ccl
else
error_cant_find_case_type ?loc !!env sigma
cj.uj_val in
(* let ccl = refresh_universes ccl in *)
let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign' in
let v =
let ind,_ = dest_ind_family indf in
let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val p in
obj ind rci p cj.uj_val fj.uj_val
in sigma, { uj_val = v; uj_type = ccl })
| GIf (c,(na,po),b1,b2) ->
let sigma, cj = pretype empty_tycon env sigma c in
let (IndType (indf,realargs)) =
try find_rectype !!env sigma cj.uj_type
with Not_found ->
let cloc = loc_of_glob_constr c in
error_case_not_inductive ?loc:cloc !!env sigma cj in
let cstrs = get_constructors !!env indf in
if not (Int.equal (Array.length cstrs) 2) then
user_err ?loc
(str "If is only for inductive types with two constructors.");
let arsgn, indr =
let arsgn,s = get_arity !!env indf in
(* Make dependencies from arity signature impossible *)
List.map (set_name Anonymous) arsgn, Sorts.relevance_of_sort_family s
in
let nar = List.length arsgn in
let indt = build_dependent_inductive !!env indf in
let psign = LocalAssum (make_annot na indr, indt) :: arsgn in (* For locating names in [po] *)
let psign = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign in
let predenv = Cases.make_return_predicate_ltac_lvar env sigma na c cj.uj_val in
let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in
let psign,env_p = push_rel_context ~hypnaming sigma psign predenv in
let sigma, pred, p = match po with
| Some p ->
let sigma, pj = pretype_type empty_valcon env_p sigma p in
let ccl = nf_evar sigma pj.utj_val in
let pred = it_mkLambda_or_LetIn ccl psign in
let typ = lift (- nar) (beta_applist sigma (pred,[cj.uj_val])) in
sigma, pred, typ
| None ->
let sigma, p = match tycon with
| Some ty -> sigma, ty
| None -> new_type_evar env sigma loc
in
sigma, it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in
let pred = nf_evar sigma pred in
let p = nf_evar sigma p in
let f sigma cs b =
let n = Context.Rel.length cs.cs_args in
let pi = lift n pred in (* liftn n 2 pred ? *)
let pi = beta_applist sigma (pi, [EConstr.of_constr (build_dependent_constructor cs)]) in
let cs_args = List.map (fun d -> map_rel_decl EConstr.of_constr d) cs.cs_args in
let cs_args = Context.Rel.map (whd_betaiota sigma) cs_args in
let csgn =
List.map (set_name Anonymous) cs_args
in
let _,env_c = push_rel_context ~hypnaming sigma csgn env in
let sigma, bj = pretype (mk_tycon pi) env_c sigma b in
sigma, it_mkLambda_or_LetIn bj.uj_val cs_args in
let sigma, b1 = f sigma cstrs.(0) b1 in
let sigma, b2 = f sigma cstrs.(1) b2 in
let v =
let ind,_ = dest_ind_family indf in
let pred = nf_evar sigma pred in
let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val pred in
let ci = make_case_info !!env (fst ind) rci IfStyle in
mkCase (ci, pred, cj.uj_val, [|b1;b2|])
in
let cj = { uj_val = v; uj_type = p } in
inh_conv_coerce_to_tycon ?loc env sigma cj tycon
| GCases (sty,po,tml,eqns) ->
Cases.compile_cases ?loc ~program_mode sty (pretype, sigma) tycon env (po,tml,eqns)
| GCast (c,k) ->
let sigma, cj =
match k with
| CastCoerce ->
let sigma, cj = pretype empty_tycon env sigma c in
Coercion.inh_coerce_to_base ?loc ~program_mode !!env sigma cj
| CastConv t | CastVM t | CastNative t ->
let k = (match k with CastVM _ -> VMcast | CastNative _ -> NATIVEcast | _ -> DEFAULTcast) in
let sigma, tj = pretype_type empty_valcon env sigma t in
let sigma, tval = Evarsolve.refresh_universes
~onlyalg:true ~status:Evd.univ_flexible (Some false) !!env sigma tj.utj_val in
let tval = nf_evar sigma tval in
let (sigma, cj), tval = match k with
| VMcast ->
let sigma, cj = pretype empty_tycon env sigma c in
let cty = nf_evar sigma cj.uj_type and tval = nf_evar sigma tval in
if not (occur_existential sigma cty || occur_existential sigma tval) then
match Reductionops.vm_infer_conv !!env sigma cty tval with
| Some sigma -> (sigma, cj), tval
| None ->
error_actual_type ?loc !!env sigma cj tval
(ConversionFailed (!!env,cty,tval))
else user_err ?loc (str "Cannot check cast with vm: " ++
str "unresolved arguments remain.")
| NATIVEcast ->
let sigma, cj = pretype empty_tycon env sigma c in
let cty = nf_evar sigma cj.uj_type and tval = nf_evar sigma tval in
begin
match Nativenorm.native_infer_conv !!env sigma cty tval with
| Some sigma -> (sigma, cj), tval
| None ->
error_actual_type ?loc !!env sigma cj tval
(ConversionFailed (!!env,cty,tval))
end
| _ ->
pretype (mk_tycon tval) env sigma c, tval
in
let v = mkCast (cj.uj_val, k, tval) in
sigma, { uj_val = v; uj_type = tval }
in inh_conv_coerce_to_tycon ?loc env sigma cj tycon
| GInt i ->
let resj =
try Typing.judge_of_int !!env i
with Invalid_argument _ ->
user_err ?loc ~hdr:"pretype" (str "Type of int63 should be registered first.")
in
inh_conv_coerce_to_tycon ?loc env sigma resj tycon
and pretype_instance ~program_mode ~poly resolve_tc env sigma loc hyps evk update =
let f decl (subst,update,sigma) =
let id = NamedDecl.get_id decl in
let b = Option.map (replace_vars subst) (NamedDecl.get_value decl) in
let t = replace_vars subst (NamedDecl.get_type decl) in
let check_body sigma id c =
match b, c with
| Some b, Some c ->
if not (is_conv !!env sigma b c) then
user_err ?loc (str "Cannot interpret " ++
pr_existential_key sigma evk ++
strbrk " in current context: binding for " ++ Id.print id ++
strbrk " is not convertible to its expected definition (cannot unify " ++
quote (Termops.Internal.print_constr_env !!env sigma b) ++