-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysisDashboard.py
328 lines (281 loc) · 12.1 KB
/
analysisDashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 28 22:07:27 2021
Author: Giddy Physicist
Analysis Dashboard Module
Part of the PETA-Bot hackathon repo. This module is called using streamlit to
start a local web app analysis dashboard for viewing and interacting with current
and historical price data and price edge for the DODO midprice quote and the Chainlink
price feed.
"""
import os
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import scipy.stats as stats
import altair as alt
import datetime
import dataStoreInterface as DSI
def priceLineChart(df, returnFig=False):
"""
Make Matplotlib chart of historical price data from input dataframe, along
with distrubution statistical data.
Parameters
----------
df : pandas.core.frame.DataFrame
pandas dataframe containing the stored historical price data for dodo and
chainlink for a given currency pair.
returnFig : bool
flag indicating whether or not to generated the figure. default to False
Raises
------
NotImplementedError
DESCRIPTION.
Returns
-------
fig : matplotlib.pyplot figure
matplotlib figure.
peMin : float
minimum historical price edge value percentage.
peMax : float
maximum historical price edge value percentage.
pe25 : float
25th percentile historical price edge value percentage.
pe75 : float
75th percentile historical price edge value percentage.
peMean : float
average historical price edge value percentage.
"""
currencyPair = df.currencyPair[0]
sns.jointplot(x=df.queryTimestamp-np.min(df.queryTimestamp),
y=df.dodoPriceEdgePercentage,
hue=df.currencyPair)
if returnFig:
fig = plt.gcf()
fig.delaxes(fig.axes[1])
fig.axes[0].get_legend().remove()
ax = fig.axes[0]
xlims = ax.get_xlim()
ylims = ax.get_ylim()
ax.fill_between(xlims, 0, np.max([0,*ylims]),color='green',alpha=0.1,zorder=-10)
ax.fill_between(xlims, 0, np.min([0,*ylims]),color='red',alpha=0.1,zorder=-10)
ax.plot(xlims,[0,0],color='black',linewidth=3)
ax.grid(True)
ax.set_title(currencyPair)
else:
fig = None
pe = df.dodoPriceEdgePercentage
pe25, pe75 = np.percentile(pe,[25,75])
peMin = np.min(pe)
peMax = np.max(pe)
peMean = np.mean(pe)
return fig, peMin, peMax, pe25, pe75, peMean
def pricesChart(df):
"""
Given input dataframe containing price quote data from mainnet chainlink
and dodo, along with time query data, build a scatter plot containing the
data of each price quote location.
Parameters
----------
df : pandas.core.frame.DataFrame
pandas dataframe containing the stored historical price data for dodo and
chainlink for a given currency pair.
Returns
-------
altair.vegalite.v4.api.LayerChart
altair composite chart containing scatterplot data of the prices.
"""
df['time'] = [datetime.datetime.fromtimestamp(x) for x in df.queryTimestamp.values]
data = df
ylims = (min([data['dodoPrice'].min(),data['chainlinkPrice'].min()]),
max([data['dodoPrice'].max(),data['chainlinkPrice'].max()]))
dodoChart = alt.Chart(data).mark_point(color='#fffe7a').encode(
alt.X('time:T',
axis=alt.Axis(title='Data Query Time',titleFontWeight=500,titleFontSize=15)),
alt.Y('dodoPrice:Q',
scale=alt.Scale(domain=ylims),
axis=alt.Axis(title="$ Price (DODO=yellow, Chainlink=blue)",titleFontWeight=500,titleFontSize=14))
).interactive()
chainlinkChart = alt.Chart(data).mark_point(color='#93CAED').encode(
alt.X('time:T',
axis=alt.Axis(title='')),
alt.Y('chainlinkPrice:Q',
scale=alt.Scale(domain=ylims),
axis=alt.Axis(title=''))
).interactive()
return dodoChart + chainlinkChart
def altairEdgePercentageHistoram(df):
"""
Construct an altair area plot for dodo price edge histogram.
Parameters
----------
df : pandas.core.frame.DataFrame
pandas dataframe containing the stored historical price data for dodo and
chainlink for a given currency pair.
Returns
-------
chart : altair.vegalite.v4.api.LayerChart
altair composite chart containing histogram data of price advantage percentage.
"""
source = pd.DataFrame()
currentEdge = df.dodoPriceEdgePercentage.values[-1]
#define vertical line data for zero and for current (most recent) edge value
verticals = pd.DataFrame([{"zero": 0, "currentEdge":currentEdge}])
yy = df.dodoPriceEdgePercentage
x = np.linspace(np.min(yy),np.max(yy),200)
#use scipy stats module to build kde histogram function, rather than dealing with bins:
y = stats.gaussian_kde(yy)(x)
#get the symmetric x limits based on max mag data value:
maxmag = np.max(np.abs(yy))
xlims = (-maxmag,maxmag)
source['percentEdge'] = x
source['kdeWeight'] = y
#build positive edge histogram (green):
histPos = alt.Chart(source).transform_filter(
alt.datum.percentEdge>=0).mark_area(
line={'color':'darkgreen'},
color=alt.Gradient(
gradient='linear',
stops=[alt.GradientStop(color='lightGreen', offset=0),
alt.GradientStop(color='darkGreen', offset=1)],
x1=1,
x2=1,
y1=1,
y2=0
)
).encode(
alt.X('percentEdge:Q',
scale=alt.Scale(domain=xlims)),
alt.Y('kdeWeight:Q')
).interactive()
#build negative edge histogram (red)
histNeg = alt.Chart(source).transform_filter(
alt.datum.percentEdge<0).mark_area(
line={'color':'#8b0000'},
color=alt.Gradient(
gradient='linear',
stops=[alt.GradientStop(color='#E6676B', offset=0),
alt.GradientStop(color='#8b0000', offset=1)],
x1=1,
x2=1,
y1=1,
y2=0
)
).encode(
alt.X('percentEdge:Q',
axis=alt.Axis(title="DODO % Price Edge",titleFontWeight=500,titleFontSize=20),
scale=alt.Scale(domain=xlims)),
alt.Y('kdeWeight:Q',axis=alt.Axis(title="historical distribution",labels=False,titleFontWeight=500,titleFontSize=20))
).interactive()
#add vertical line at zero for visual reference
zeroRule = alt.Chart(verticals).mark_rule(color="white").encode(
alt.X("zero:Q",axis=alt.Axis(title='')))
#add vertical line at current edge value in yellow for visual reference
currentEdgeRule = alt.Chart(verticals).mark_rule(color="yellow").encode(
alt.X("currentEdge:Q",axis=alt.Axis(title=''))).interactive()
#construct chart as composite of components charts and lines
chart = (zeroRule + currentEdgeRule + histNeg + histPos).interactive()
return chart
# def extractData():
# path = r'./data'
# dfs = [pd.read_csv(os.path.join(path,x)) for x in os.listdir(path)]
# updateTime = datetime.datetime.now()
# return dfs, updateTime
################################################################
#PAGE LAYOUT:
def buildAnalysisDashboardApp():
"""
main function for this module. run this using
>> streamlit run ./analysisDashboard.py
in a command window to build the streamlit server
Returns
-------
None.
"""
# dfs,updateTime = extractData()
dfs = DSI.loadAllDatabases()
updateTime = datetime.datetime.now()
st.set_page_config(page_title='PETA-Bot Dashboard',
page_icon=None,
layout='centered',
initial_sidebar_state='auto')
st.beta_container()
icol1, icol2, icol3 = st.beta_columns(3)
with icol1:
pass
with icol2:
st.image('./img/PETA-Bot-logo.png')
with icol3:
pass
st.markdown('## DODO/LINK PETA-BOT Analysis Dashboard')
st.text('Price Edge & Twitter Analysis Bot')
st.markdown('Check us out on [Github](https://github.com/giddyphysicist/ChainlinkHackathon2021)!')
st.markdown('Follow our Alert Bot on [Twitter @DodoPetaBot](https://twitter.com/DodoPetaBot)!')
st.markdown('Like the PETA-Bot Project? Consider Donating ETH!')
st.markdown('0x2263B05F52e30b84416EF4C6a060E966645Cc66e')
st.markdown('---')
aboutExpander = st.beta_expander("About Us")
with aboutExpander:
st.markdown('The Price Edge & Twitter Analysis Bot (PETA-Bot) was developed during the 2021 Chainlink Hackathon.')
st.markdown('The PETA-Bot Project consists of four main components:')
st.markdown('1. Twitter Bot')
st.markdown('2. Analysis Dashboard')
st.markdown('3. Price Query Data API')
st.markdown('4. Data Storage Interface to IPFS')
st.markdown('The first two components (the twitter bot and the analysis dashboard) are the front end portions. The 3rd component, the price query data API, uses the smart contract price feeds supplied by DODO and Chainlink for mainnet price comparisons between the exhanges. When the DODO exchange has a better midprice than the price quoted in chainlink, the twitter bot announces the percentage advantage in a tweet. The data files are stored locally, but are backed up to a directory on the decentralized IPFS, using the IPNS feature to tag a (regularly updated) data directory with a constant IPNS name.')
st.markdown(f'You can view a version of the price history data on the IPFS, located on the named [IPNS url]({DSI.getIPNSurl()})')
st.image('./img/PETA-Bot_chart.png')
st.markdown('---')
st.text(f"Data Updated {updateTime}")
ecol1,ecol2 = st.beta_columns(2)
with ecol1:
st.info('Positive edge : DODO has a lower price')
displayPositiveEdge = st.checkbox('Show Only Positive Edge')
with ecol2:
st.info('Negative edge : Chainlink has a lower price')
st.markdown('---')
cp2ce = {df.currencyPair[0]:df.dodoPriceEdgePercentage.values[-1] for df in dfs}
cp2display = {k:(not displayPositiveEdge or cp2ce[k]>0) for k in cp2ce}
cp2df = {df.currencyPair[0]:df for df in dfs}
for currencyPair,df in cp2df.items():
# currentEdge = df.dodoPriceEdgePercentage.values[-1]
currentEdge = cp2ce[currencyPair]
if cp2display[currencyPair]:
col1, col2 = st.beta_columns(2)
currencyPair = df.currencyPair[0]
col1.header(currencyPair)
fig, peMin, peMax, pe25, pe75,peMean = priceLineChart(df)
lastQueryTime = datetime.datetime.fromtimestamp(np.max(df["queryTimestamp"]))
if currentEdge > 0:
col2.success(f"Current Edge for {currencyPair}: {currentEdge:.3f} %")
col2.text(f'Last Query Time: {lastQueryTime}')
else:
col2.error(f"Current Edge for {currencyPair}: {currentEdge:.3f} %")
col2.text(f'Last Query Time: {lastQueryTime}')
# st.pyplot(fig)
expander = st.beta_expander(f"Historical Stats for {currencyPair}")
# clicked = expander.button('Historical Stats')
with expander:
expcol1, expcol2 = st.beta_columns(2)
with expcol1:
st.info(f'Average Historical Edge: {peMean:.3f} %')
st.info(f'Minimum Historical Edge: {peMin:.3f} %')
st.info(f'Maximum Historical Edge: {peMax:.3f} %')
with expcol2:
st.altair_chart(altairEdgePercentageHistoram(df))
pc = pricesChart(df)
st.altair_chart(pc,use_container_width=True)
st.markdown(' ')
st.markdown(' ')
st.markdown('---')
footerCol1,footerCol2 = st.beta_columns(2)
with footerCol1:
st.markdown('Check us out on [Github](https://github.com/giddyphysicist/ChainlinkHackathon2021)!')
with footerCol2:
st.markdown('Follow our Alert Bot on [Twitter @DodoPetaBot](https://twitter.com/DodoPetaBot)! ')
# st.text(f'25th perc.: {pe25:.3f} %')
# st.text(f'75th perc.: {pe75:.3f} %')
if __name__ == '__main__':
buildAnalysisDashboardApp()