-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdcgan.py
122 lines (97 loc) · 3.54 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os, sys, time
from torch.autograd import Variable
import torch
import torch.nn as nn
import torch.optim as optim
sys.path.append('utils')
from nets import *
from data import *
def sample_z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
class DCGAN():
def __init__(self, generator, discriminator, data, cuda=True):
self.generator = generator
self.discriminator = discriminator
self.data = data
self.cuda = cuda
self.z_dim = self.data.z_dim
self.size = self.data.size
self.channel = self.data.channel
if self.cuda:
self.generator.cuda()
self.discriminator.cuda()
def train(self, sample_dir, ckpt_dir, training_epochs=500000, batch_size=32):
fig_count = 0
g_lr = 2e-4
d_lr = 1e-4
if self.cuda:
input = Variable(torch.FloatTensor(batch_size, self.channel, self.size, self.size).cuda())
z = Variable(torch.FloatTensor(batch_size, self.z_dim).cuda())
label = Variable(torch.FloatTensor(batch_size).cuda())
criterion = nn.BCELoss().cuda()
else:
input = Variable(torch.FloatTensor(batch_size, self.channel, self.size, self.size))
z = Variable(torch.FloatTensor(batch_size, self.z_dim))
label = Variable(torch.FloatTensor(batch_size))
criterion = nn.BCELoss()
optimizer_D = optim.Adam(self.discriminator.parameters(), lr=d_lr, betas=(0.5, 0.999))
optimizer_G = optim.Adam(self.generator.parameters(), lr=g_lr, betas=(0.5, 0.999))
for epoch in range(training_epochs):
begin_time = time.time()
# update D
self.discriminator.zero_grad()
# real samples
X_b_real = self.data(batch_size)
input.data.copy_(torch.from_numpy(X_b_real))
label.data.fill_(1)
D_real = self.discriminator(input)
D_loss_real = criterion(D_real, label)
D_loss_real.backward()
# fake samples
z.data.copy_(torch.from_numpy(sample_z(batch_size, self.z_dim)))
label.data.fill_(0)
X_b_fake = self.generator(z)
D_fake = self.discriminator(X_b_fake.detach()) # detach so that backward will not apply to generator
D_loss_fake = criterion(D_fake, label)
D_loss_fake.backward()
D_loss = D_loss_fake + D_loss_real
optimizer_D.step()
# update G
self.generator.zero_grad()
D_fake = self.discriminator(X_b_fake)
label.data.fill_(1)
G_loss = criterion(D_fake, label)
G_loss.backward()
optimizer_G.step()
elapse_time = time.time() - begin_time
print('Iter[%s], d_loss: %.4f, g_loss: %.4f, time elapsed: %.4fsec' % \
(epoch+1, D_loss.cpu().data.numpy(), G_loss.cpu().data.numpy(), elapse_time))
if epoch % 500 == 0:
z.data.copy_(torch.from_numpy(sample_z(batch_size, self.z_dim)))
samples = self.generator(z).cpu().data.numpy()
fig = self.data.data2fig(samples)
plt.savefig('{}/{}.png'.format(sample_dir, str(fig_count).zfill(3)), bbox_inches='tight')
fig_count += 1
plt.close(fig)
if epoch % 5000 == 0:
torch.save(self.generator.state_dict(), os.path.join(ckpt_dir, 'G_epoch-%s.pth' % epoch))
torch.save(self.discriminator.state_dict(), os.path.join(ckpt_dir, 'D_epoch-%s.pth' % epoch))
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# save generated images
sample_dir = 'Samples/dcgan'
ckpt_dir = 'Models/dcgan'
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
generator = G_conv()
discriminator = D_conv()
data = celebA()
dcgan = DCGAN(generator, discriminator, data)
dcgan.train(sample_dir, ckpt_dir, batch_size=64)