-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathclient_streamlit.py
107 lines (86 loc) · 4.26 KB
/
client_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import streamlit as st
import numpy as np
from PIL import Image
from detectron2 import model_zoo
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.engine import DefaultPredictor
from detectron2.data import MetadataCatalog
# https://en.wikipedia.org/wiki/YUV#SDTV_with_BT.601
_M_RGB2YUV = [[0.299, 0.587, 0.114], [-0.14713, -0.28886, 0.436], [0.615, -0.51499, -0.10001]]
_M_YUV2RGB = [[1.0, 0.0, 1.13983], [1.0, -0.39465, -0.58060], [1.0, 2.03211, 0.0]]
def convert_PIL_to_numpy(image, format):
if format is not None:
# PIL only supports RGB, so convert to RGB and flip channels over below
conversion_format = format
if format in ["BGR", "YUV-BT.601"]:
conversion_format = "RGB"
image = image.convert(conversion_format)
image = np.asarray(image)
# PIL squeezes out the channel dimension for "L", so make it HWC
if format == "L":
image = np.expand_dims(image, -1)
# handle formats not supported by PIL
elif format == "BGR":
# flip channels if needed
image = image[:, :, ::-1]
elif format == "YUV-BT.601":
image = image / 255.0
image = np.dot(image, np.array(_M_RGB2YUV).T)
return image
def read_image(file, format=None):
image = Image.open(file).convert('RGB')
return convert_PIL_to_numpy(image, format)
# @app.route('/health')
# def health():
# return "ok"
# @app.route('/')
# def main():
# return render_template('index.html')
panoptic_cfg = get_cfg()
panoptic_cfg.merge_from_file(model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml"))
panoptic_cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")
panopticPredictor = DefaultPredictor(panoptic_cfg)
instance_cfg = get_cfg()
instance_cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
instance_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
instance_cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
instancePredictor = DefaultPredictor(instance_cfg)
keypoint_cfg = get_cfg()
keypoint_cfg.merge_from_file(model_zoo.get_config_file("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"))
keypoint_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
keypoint_cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml")
keypointPredictor = DefaultPredictor(keypoint_cfg)
def predict(path, np):
if path == 'keypoint':
cfg = keypoint_cfg
predictions = keypointPredictor(np)["instances"]
visualizer = Visualizer(np[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.0)
instances = predictions.to('cpu')
vis_output = visualizer.draw_instance_predictions(predictions=instances)
elif path == 'instancesegmentation':
cfg = instance_cfg
predictions = instancePredictor(np)["instances"]
visualizer = Visualizer(np[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.0)
instances = predictions.to('cpu')
vis_output = visualizer.draw_instance_predictions(predictions=instances)
elif path == 'panopticsegmentation':
cfg = panoptic_cfg
panoptic_seg, segments_info = panopticPredictor(np)["panoptic_seg"]
visualizer = Visualizer(np[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.0)
vis_output = visualizer.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"), segments_info)
else:
return 'nothing'
result_image = vis_output.get_image()[:, :, ::-1]
return result_image
st.title("사진을 넣어 물체를 인식해보세요!")
st.subheader("사진을 넣고 다양한 모델을 이용하여 사진의 물체들을 인식해보세요.")
model = st.selectbox('모델 선택', list(['instancesegmentation', 'panopticsegmentation', 'keypoint']))
input_file = st.file_uploader("파일을 넣어주세요.")
if input_file is not None:
input_file = read_image(input_file)
st.write('입력한 사진')
st.image(input_file)
st.write('결과물')
input_file = predict(model, input_file)
st.image(input_file)