-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheckpoint.py
246 lines (201 loc) · 9.09 KB
/
checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import collections
import dataclasses
import os
import flax
import jax
import jax.numpy as jnp
import numpy as np
import scipy
from tensorflow.io import gfile # pylint: disable=import-error
def _flatten_dict(d, parent_key='', sep='/'):
"""Flattens a dictionary, keeping empty leaves."""
items = []
for k, v in d.items():
path = parent_key + sep + k if parent_key else k
if isinstance(v, collections.MutableMapping):
items.extend(_flatten_dict(v, path, sep=sep).items())
else:
items.append((path, v))
# Keeps the empty dict if it was set explicitly.
if parent_key and not d:
items.append((parent_key, {}))
return dict(items)
def inspect_params(*,
params,
expected,
logger,
fail_if_extra=True,
fail_if_missing=True):
"""Inspects whether the params are consistent with the expected keys."""
params_flat = _flatten_dict(params)
expected_flat = _flatten_dict(expected)
missing_keys = expected_flat.keys() - params_flat.keys()
extra_keys = params_flat.keys() - expected_flat.keys()
# Adds back empty dict explicitly, to support layers without weights.
# Context: FLAX ignores empty dict during serialization.
empty_keys = set()
for k in missing_keys:
if isinstance(expected_flat[k], dict) and not expected_flat[k]:
params[k] = {}
empty_keys.add(k)
missing_keys -= empty_keys
if empty_keys:
logger.warning('Inspect recovered empty keys:\n%s', empty_keys)
if missing_keys:
logger.info('Inspect missing keys:\n%s', missing_keys)
if extra_keys:
logger.info('Inspect extra keys:\n%s', extra_keys)
if (missing_keys and fail_if_missing) or (extra_keys and fail_if_extra):
raise ValueError(f'Missing params from checkpoint: {missing_keys}.\n'
f'Extra params in checkpoint: {extra_keys}.\n'
f'Restored params from checkpoint: {params_flat.keys()}.\n'
f'Expected params from code: {expected_flat.keys()}.')
return params
def recover_tree(keys, values):
"""Recovers a tree as a nested dict from flat names and values.
This function is useful to analyze checkpoints that are without need to access
the exact source code of the experiment. In particular, it can be used to
extract an reuse various subtrees of the scheckpoint, e.g. subtree of
parameters.
Args:
keys: a list of keys, where '/' is used as separator between nodes.
values: a list of leaf values.
Returns:
A nested tree-like dict.
"""
tree = {}
sub_trees = collections.defaultdict(list)
for k, v in zip(keys, values):
if '/' not in k:
tree[k] = v
else:
k_left, k_right = k.split('/', 1)
sub_trees[k_left].append((k_right, v))
for k, kv_pairs in sub_trees.items():
k_subtree, v_subtree = zip(*kv_pairs)
tree[k] = recover_tree(k_subtree, v_subtree)
return tree
def _traverse_with_names(tree):
"""Traverses nested dicts/dataclasses and emits (leaf_name, leaf_val)."""
if dataclasses.is_dataclass(tree):
tree = flax.serialization.to_state_dict(tree)
if isinstance(tree, dict):
keys = sorted(tree.keys())
for key in keys:
for path, v in _traverse_with_names(tree[key]):
yield (key + '/' + path).rstrip('/'), v
else:
yield '', tree
def tree_flatten_with_names(tree):
"""Populates tree_flatten with leaf names.
This function populates output of tree_flatten with leaf names, using a
custom traversal that produces names is provided. The custom traversal does
NOT have to traverse tree in the same order as jax, as we take care of
automatically aligning jax' and custom traversals.
Args:
tree: python tree.
Returns:
A list of values with names: [(name, value), ...]
"""
vals, tree_def = jax.tree_flatten(tree)
# "Fake" token tree that is use to track jax internal tree traversal and
# adjust our custom tree traversal to be compatible with it.
tokens = range(len(vals))
token_tree = tree_def.unflatten(tokens)
val_names, perm = zip(*_traverse_with_names(token_tree))
inv_perm = np.argsort(perm)
# Custom traverasal should visit the same number of leaves.
assert len(val_names) == len(vals)
return [(val_names[i], v) for i, v in zip(inv_perm, vals)], tree_def
def save(data, path):
"""Util for checkpointing: saves jax pytree objects to the disk.
These checkpoints can later be recovered with `load()`.
Args:
data: arbitrary jax pytree to be saved.
path: a path to save the data.
"""
names_and_vals, _ = tree_flatten_with_names(data)
io_buffer = io.BytesIO()
# savez uses `seek()` API call, which is not supported by cns. Thus, we first
# write the checkpoint to the temp buffer and then write it to the disk.
np.savez(io_buffer, **{k: v for k, v in names_and_vals})
# In order to be robust to interruptions we first save checkpoint to the
# temporal file and then move to actual path name.
path_tmp = path + '-TEMPORARY'
gfile.makedirs(os.path.dirname(path))
with gfile.GFile(path_tmp, 'wb') as f:
f.write(io_buffer.getvalue())
gfile.rename(path_tmp, path, overwrite=True)
def load(path):
"""Loads params from a checkpoint previously stored with `save()`."""
with gfile.GFile(path, 'rb') as f:
ckpt_dict = np.load(f, allow_pickle=False)
keys, values = zip(*list(ckpt_dict.items()))
return recover_tree(keys, values)
def load_pretrained(*, pretrained_path, init_params, model_config, logger):
"""Loads/converts a pretrained checkpoint for fine tuning.
Args:
logger: Logger to use to output diagnostic messages.
init_params: Parameters from model. Will be used for the head of the model
and to verify that the model is compatible with the stored checkpoint.
init_file: File pointing to pretrained checkpoint.
model_config: Configuration of the model. Will be used to configure the
head and rescale the position embeddings.
Returns:
Parameters like `init_params`, but loaded with pretrained weights from
`init_file` and adapted accordingly.
"""
restored_params = inspect_params(
params=load(pretrained_path),
expected=init_params,
logger=logger,
fail_if_extra=False,
fail_if_missing=False)
# The following allows implementing fine-tuning head variants depending on the
# value of `representation_size` in the fine-tuning job:
# - `None` : drop the whole head and attach a nn.Linear.
# - same number as in pre-training means : keep the head but reset the last
# layer (logits) for the new task.
if model_config.representation_size is None:
if 'pre_logits' in restored_params:
logger.info('load_pretrained: drop-head variant')
restored_params['pre_logits'] = {}
restored_params['head']['kernel'] = init_params['head']['kernel']
restored_params['head']['bias'] = init_params['head']['bias']
if 'posembed_input' in restored_params.get('Transformer', {}):
# Rescale the grid of position embeddings. Param shape is (1,N,1024)
posemb = restored_params['Transformer']['posembed_input']['pos_embedding']
posemb_new = init_params['Transformer']['posembed_input']['pos_embedding']
if posemb.shape != posemb_new.shape:
logger.info('load_pretrained: resized variant: %s to %s', posemb.shape,
posemb_new.shape)
ntok_new = posemb_new.shape[1]
if model_config.classifier == 'token':
posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
ntok_new -= 1
else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(np.sqrt(len(posemb_grid)))
gs_new = int(np.sqrt(ntok_new))
logger.info('load_pretrained: grid-size from %s to %s', gs_old, gs_new)
posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1)
zoom = (gs_new / gs_old, gs_new / gs_old, 1)
posemb_grid = scipy.ndimage.zoom(posemb_grid, zoom, order=1)
posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1)
posemb = jnp.array(np.concatenate([posemb_tok, posemb_grid], axis=1))
restored_params['Transformer']['posembed_input']['pos_embedding'] = posemb
return restored_params