-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
66 lines (53 loc) · 2.43 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.nn.functional as F
class AngularPenaltySMLoss(nn.Module):
def __init__(self, in_features, out_features, loss_type='arcface', eps=1e-7, s=None, m=None):
'''
Angular Penalty Softmax Loss
Three 'loss_types' available: ['arcface', 'sphereface', 'cosface']
These losses are described in the following papers:
ArcFace: https://arxiv.org/abs/1801.07698
SphereFace: https://arxiv.org/abs/1704.08063
CosFace/Ad Margin: https://arxiv.org/abs/1801.05599
'''
super(AngularPenaltySMLoss, self).__init__()
loss_type = loss_type.lower()
assert loss_type in ['arcface', 'sphereface', 'cosface']
if loss_type == 'arcface':
self.s = 64.0 if not s else s
self.m = 0.5 if not m else m
if loss_type == 'sphereface':
self.s = 64.0 if not s else s
self.m = 1.35 if not m else m
if loss_type == 'cosface':
self.s = 30.0 if not s else s
self.m = 0.4 if not m else m
self.loss_type = loss_type
self.in_features = in_features
self.out_features = out_features
self.fc = nn.Linear(in_features, out_features, bias=False)
self.eps = eps
def forward(self, x, labels):
'''
input shape (N, in_features)
'''
assert len(x) == len(labels)
assert torch.min(labels) >= 0
assert torch.max(labels) < self.out_features
for W in self.fc.parameters():
W = F.normalize(W, p=2, dim=1)
x = F.normalize(x, p=2, dim=1)
wf = self.fc(x)
if self.loss_type == 'cosface':
numerator = self.s * (torch.diagonal(wf.transpose(0, 1)[labels]) - self.m)
if self.loss_type == 'arcface':
numerator = self.s * torch.cos(torch.acos(
torch.clamp(torch.diagonal(wf.transpose(0, 1)[labels]), -1. + self.eps, 1 - self.eps)) + self.m)
if self.loss_type == 'sphereface':
numerator = self.s * torch.cos(self.m * torch.acos(
torch.clamp(torch.diagonal(wf.transpose(0, 1)[labels]), -1. + self.eps, 1 - self.eps)))
excl = torch.cat([torch.cat((wf[i, :y], wf[i, y + 1:])).unsqueeze(0) for i, y in enumerate(labels)], dim=0)
denominator = torch.exp(numerator) + torch.sum(torch.exp(self.s * excl), dim=1)
L = numerator - torch.log(denominator)
return -torch.mean(L)