-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_eval_stca_early_c.py
472 lines (400 loc) · 21.1 KB
/
train_eval_stca_early_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import argparse
import os
from datetime import datetime
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from torch.utils.data import DataLoader, BatchSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
import horovod.torch as hvd
import utils
from data import VCDBPairDataset,FSAVCDBPairDataset
from model import MoCo, CTCA
import wandb
from scipy.spatial.distance import cdist
import h5py
from data import FeatureDataset
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.multiprocessing.set_sharing_strategy('file_system')
def train(args):
# Horovod: initialize library.
hvd.init()
if args.cuda:
# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
# Horovod: limit # of CPU threads to be used per worker.
# torch.set_num_threads(1)
kwargs = {'num_workers': args.num_workers,
'pin_memory': True} if args.cuda else {}
# import h5py
# features = h5py.File(args.feature_path, 'r', swmr=True)
# import pdb;pdb.set_trace()
train_dataset = FSAVCDBPairDataset(annotation_path=args.annotation_path, frame_feature_path=args.frame_feature_path,segment_feature_path=args.segment_feature_path,
padding_size=args.padding_size, random_sampling=args.random_sampling, neg_num=args.neg_num,augmentation=args.augmentation)
# Horovod: use DistributedSampler to partition the training data.
train_sampler = DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank(), shuffle=True)
train_loader = DataLoader(train_dataset, batch_size=args.batch_sz,
sampler=train_sampler, drop_last=True, **kwargs)
model = CTCA(feature_size=args.pca_components, feedforward =args.feedforward, nlayers=args.num_layers, dropout=0.2)
# model = NeXtVLAD(feature_size=args.pca_components)
model = MoCo(model, dim=args.output_dim, K=args.moco_k, m=args.moco_m, T=args.moco_t,mlp=args.mlp)
# By default, Adasum doesn't need scaling up learning rate.
lr_scaler = hvd.size() if not args.use_adasum else 1
if args.cuda:
# Move model to GPU.
model.cuda()
# If using GPU Adasum allreduce, scale learning rate by local_size.
if args.use_adasum and hvd.nccl_built():
lr_scaler = hvd.local_size()
# criterion = nn.CrossEntropyLoss().cuda()
criterion = utils.CircleLoss(m=0.25, gamma=256).cuda()
# Horovod: scale learning rate by lr_scaler.
if False:
optimizer = torch.optim.SGD(model.parameters(),
lr=args.learning_rate * lr_scaler,
momentum=args.momentum,
weight_decay=args.weight_decay)
else:
optimizer = torch.optim.Adam(model.parameters(),
lr=args.learning_rate * lr_scaler,
weight_decay=args.weight_decay)
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
named_parameters=model.named_parameters(),
compression=compression,
op=hvd.Adasum if args.use_adasum else hvd.Average)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
# Wandb Initialization
if args.wandb:
run = wandb.init(project= args.dataset + '_' + str(args.pca_components) + '_train' , notes='')
wandb.config.update(args)
start = datetime.now()
model.train()
for epoch in range(1, args.epochs + 1):
# Horovod: set epoch to sampler for shuffling.
train_sampler.set_epoch(epoch)
# import pdb;pdb.set_trace()
train_loss = 0
for batch_idx, (a, p, n, len_a, len_p, len_n) in enumerate(train_loader):
if args.cuda:
a, p, n = a.cuda(), p.cuda(), n.cuda()
len_a, len_p, len_n = len_a.cuda(), len_p.cuda(), len_n.cuda()
# breakpoint()
output, target = model(a, p, n, len_a, len_p, len_n)
# print(torch.unique(target))
loss = criterion(output, target)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
if (batch_idx + 1) % args.print_freq == 0 and hvd.rank() == 0:
# Horovod: use train_sampler to determine the number of examples in
# this worker's partition.
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, (batch_idx + 1) * len(a), len(train_sampler),
100. * (batch_idx + 1) * len(a) / len(train_sampler), loss.item()))
scheduler.step()
if args.wandb:
wandb.log({'loss': train_loss / len(train_loader),'lr': scheduler.get_lr()[0]}, step=epoch)
if hvd.rank() == 0 and epoch % 2 == 0:
print("Epoch complete in: " + str(datetime.now() - start))
print("Saving model...")
os.makedirs(args.model_path,exist_ok=True)
torch.save(model.encoder_q.state_dict(), os.path.join(args.model_path,f'model_{epoch}.pth'))
if epoch == 40:
break
if args.wandb:
run.finish()
del model
del train_dataset
del train_loader
def calculate_similarities(query_features, target_feature, metric='euclidean', comparator=None):
"""
Args:
query_features: global features of the query videos
target_feature: global features of the target video
metric: distance metric of features
Returns:
similarities: the similarities of each query with the videos in the dataset
"""
similarities = []
if metric == 'euclidean':
dist = np.nan_to_num(
cdist(query_features, target_feature, metric='euclidean'))
for i, v in enumerate(query_features):
sim = np.round(1 - dist[i] / dist.max(), decimals=6)
similarities.append(sim.item())
elif metric == 'cosine':
# import pdb;pdb.set_trace()x
dist = np.nan_to_num(cdist(np.squeeze(query_features), target_feature, metric='cosine'))
for i, v in enumerate(query_features):
sim = 1 - dist[i]
similarities.append(sim.item())
elif metric == 'chamfer':
global debug_num
# if debug_num == 1:
# import pdb;
# pdb.set_trace()
for q_idx, query in enumerate(query_features):
sim = chamfer(query, target_feature, comparator)
# if q_idx == debug_num:
# print()
# print(query[0]==target_feature[0], sim,' ', q_idx,' ',len(query)==len(target_feature),' ',len(query))
similarities.append(sim)
debug_num += 1
elif metric == 'symm_chamfer':
for query in query_features:
sim1 = chamfer(query, target_feature, comparator)
sim2 = chamfer(target_feature, query, comparator)
similarities.append((sim1 + sim2) / 2.0)
else:
for query in query_features:
sim1 = chamfer(query, target_feature, comparator)
sim2 = chamfer(target_feature, query, comparator)
similarities.append((sim1 + sim2) / 2.0)
return similarities
def chamfer(query, target_feature, comparator=False):
query = torch.Tensor(query).cuda()
target_feature = torch.Tensor(target_feature).cuda()
simmatrix = torch.einsum('ik,jk->ij', [query, target_feature])
if comparator:
simmatrix = comparator(simmatrix).detach()
sim = simmatrix.max(dim=1)[0].sum().cpu().item() / simmatrix.shape[0]
return sim
def query_vs_database(model, dataset, args):
print('loading features...')
vid2features = h5py.File(args.eval_feature_path, 'r')
print('...features loaded')
# Wandb Initialization
run = None
if args.wandb:
run = wandb.init(project= args.dataset + '_' + str(args.pca_components) + '_eval' , notes='')
wandb.config.update(args)
model_list = os.listdir(args.model_path)
model_epochs = sorted([int(model_filename.split('.')[0].split('_')[1])for model_filename in model_list])
with torch.no_grad(): # no gradient to keys
for model_epoch in model_epochs:
model_path = os.path.join(args.model_path,f'model_{model_epoch}.pth')
print(f'{model_epoch}th loading weights...')
model.load_state_dict(torch.load(model_path))
model = model.eval()
if args.cuda:
model = model.cuda()
print(f'...{model_epoch}th weights loaded')
test_loader = DataLoader(
FeatureDataset(vid2features, dataset.get_queries(),
padding_size=args.eval_padding_size, random_sampling=args.eval_random_sampling),
batch_size=1, shuffle=False)
# Extract features of the queries
all_db, queries, queries_ids = set(), [], []
for feature, feature_len, query_id in tqdm(test_loader):
# import pdb;pdb.set_trace()
query_id = query_id[0]
if feature.shape[1] > 0:
if args.cuda:
feature = feature.cuda()
feature_len = feature_len.cuda()
# queries.append(model(feature, feature_len).detach().cpu().numpy()[0])
if args.metric == 'cosine':
queries.append(model(feature, feature_len).detach().cpu().numpy())
else:
queries.append(model.encode(feature, feature_len).detach().cpu().numpy()[0])
queries_ids.append(query_id)
all_db.add(query_id)
queries = np.array(queries)
test_loader = DataLoader(
FeatureDataset(vid2features, dataset.get_database(),
padding_size=args.eval_padding_size, random_sampling=args.eval_random_sampling),
batch_size=1, shuffle=False)
# Calculate similarities between the queries and the database videos
similarities = dict({query: dict() for query in queries_ids})
for feature, feature_len, video_id in tqdm(test_loader):
video_id = video_id[0]
# print('current video : {} {}'.format(video_id, feature.shape))
if feature.shape[1] > 0:
if args.cuda:
feature = feature.cuda()
feature_len = feature_len.cuda()
if args.metric == 'cosine':
embedding = model(feature, feature_len).detach().cpu().numpy()
else:
embedding = model.encode(
feature, feature_len).detach().cpu().numpy()[0]
all_db.add(video_id)
sims = calculate_similarities(queries, embedding, args.metric, None)
for i, s in enumerate(sims):
similarities[queries_ids[i]][video_id] = float(s)
if args.wandb:
if 'VCDB' in args.dataset:
avg_precs = dataset.evaluate(similarities, all_db)
if 'FIVR' in args.dataset:
DSVR, CSVR, ISVR = dataset.evaluate(similarities, all_db)
wandb.log({'DSVR': np.mean(DSVR), 'epoch': model_epoch})
wandb.log({'CSVR': np.mean(CSVR), 'epoch': model_epoch})
wandb.log({'ISVR': np.mean(ISVR), 'epoch': model_epoch})
if 'CC_WEB' in args.dataset:
dataset.evaluate(similarities, all_db)
del similarities
del all_db
if args.wandb:
run.finish()
def fivr_concat_features(new_concat_feature_path , eval_frame_feature_path, eval_segment_feature_path, version='5K'):
import pickle as pk
print('loading frame, segment features...')
with open('/workspace/CTCA/datasets/fivr.pickle', 'rb') as f:
dataset = pk.load(f)
annotation = dataset['annotation']
queries = dataset[version]['queries']
database = dataset[version]['database']
anno_videos = []
for q, types in annotation.items():
if q in queries:
for type, values in types.items():
for value in values:
anno_videos.append(value)
anno_videos = list(set(anno_videos))
need_5k = list(set(anno_videos + list(database) + queries))
frame_vid2features = h5py.File(eval_frame_feature_path, 'r')
segment_vid2features = h5py.File(eval_segment_feature_path, 'r')
# breakpoint()
i = 0
with h5py.File(new_concat_feature_path, 'w') as f:
for vid in tqdm(need_5k):
try:
if vid in segment_vid2features.keys():
frame_feat_a = frame_vid2features[vid]
segment_feat_a = segment_vid2features[vid]
f.create_dataset(vid, data=np.concatenate((frame_feat_a,segment_feat_a),axis=1))
i+=1
if i%100==0:
print(i)
except:
print(vid,' is not exists')
print('...concat features saved')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-ap', '--annotation_path', type=str, default='/workspace/CTCA/datasets/vcdb.pickle',
help='Path to the .pk file that contains the annotations of the train set')
parser.add_argument('-fp', '--frame_feature_path', type=str, default='/workspace/CTCA/pre_processing/vcdb-byol_rmac_89325.hdf5',
help='Path to the kv dataset that contains the features of the train set')
parser.add_argument('-sp', '--segment_feature_path', type=str, default='/workspace/CTCA/pre_processing/vcdb-segment_l2norm_89325.hdf5',
help='Path to the kv dataset that contains the features of the train set')
parser.add_argument('-mp', '--model_path', type=str, default='/mldisk/nfs_shared_/dh/weights/vcdb-byol_rmac-segment_89325_TCA_momentum',
help='Directory where the generated files will be stored')
parser.add_argument('-a', '--augmentation', type=bool, default=False,
help='augmentation of clip-level features')
# parser.add_argument('-nc', '--num_clusters', type=int, default=256,
# help='Number of clusters of the NetVLAD model')
parser.add_argument('-ff', '--feedforward', type=int, default=4096,
help='Number of dim of the Transformer feedforward.')
parser.add_argument('-od', '--output_dim', type=int, default=2048,
help='Dimention of the output embedding of the NetVLAD model')
parser.add_argument('-nl', '--num_layers', type=int, default=1,
help='Number of layers')
parser.add_argument('-ni', '--normalize_input', action='store_true',
help='If true, descriptor-wise L2 normalization is applied to input')
parser.add_argument('-nn', '--neg_num', type=int, default=16,
help='Number of negative samples of each batch')
parser.add_argument('-e', '--epochs', type=int, default=61,
help='Number of epochs to train the DML network. Default: 5')
parser.add_argument('-bs', '--batch_sz', type=int, default=64,
help='Number of triplets fed every training iteration. '
'Default: 256')
parser.add_argument('-lr', '--learning_rate', type=float, default=1e-5,
help='Learning rate of the DML network. Default: 10^-4')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('-wd', '--weight_decay', type=float, default=1e-4,
help='Regularization parameter of the DML network. Default: 10^-4')
parser.add_argument('-pc', '--pca_components', type=int, default=2048,
help='Number of components of the PCA module.')
parser.add_argument('-ps', '--padding_size', type=int, default=64,
help='Padding size of the input data at temporal axis.')
parser.add_argument('-rs', '--random_sampling', action='store_true',
help='Flag that indicates that the frames in a video are random sampled if max frame limit is exceeded')
parser.add_argument('-nr', '--num_readers', type=int, default=16,
help='Number of readers for reading data')
parser.add_argument('-nw', '--num_workers', type=int, default=8,
help='Number of workers of dataloader')
# moco specific configs:
parser.add_argument('-mk','--moco_k', default=65536, type=int,
help='queue size; number of negative keys (default: 65536)')
parser.add_argument('-mm','--moco_m', default=0.999, type=float,
help='moco momentum of updating key encoder (default: 0.999)')
parser.add_argument('-mt','--moco_t', default=0.07, type=float,
help='softmax temperature (default: 0.07)')
parser.add_argument('--mlp', default=False,
help='mlp layer after encoder')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
help='use fp16 compression during allreduce')
parser.add_argument('--use-adasum', action='store_true', default=False,
help='use adasum algorithm to do reduction')
# eval configs:
parser.add_argument('-d', '--dataset', type=str, default='FIVR-200K',
help='Name of evaluation dataset. Options: CC_WEB_VIDEO, VCDB, '
'\"FIVR-200K\", \"FIVR-5K\", \"EVVE\"')
parser.add_argument('-efp', '--eval_feature_path', type=str, default='/workspace/CTCA/pre_processing/fivr-byol_rmac_segment_l2norm.hdf5',
help='Path to the .hdf5 file that contains the features of the dataset')
parser.add_argument('-effp', '--eval_frame_feature_path', type=str, default='/workspace/CTCA/pre_processing/fivr-byol_rmac_187563.hdf5',
help='Path to the .hdf5 file that contains the features of the dataset')
parser.add_argument('-efsp', '--eval_segment_feature_path', type=str, default='/workspace/CTCA/pre_processing/fivr-segment_l2norm_7725.hdf5',
help='Path to the kv dataset that contains the features of the train set')
parser.add_argument('-eps', '--eval_padding_size', type=int, default=300,
help='Padding size of the input data at temporal axis')
parser.add_argument('-ers', '--eval_random_sampling', action='store_true',
help='Flag that indicates that the frames in a video are random sampled if max frame limit is exceeded')
parser.add_argument('-m', '--metric', type=str, default='cosine',
help='Metric that will be used for similarity calculation')
# log config:
parser.add_argument('--wandb', default=True,
help='wandb'
)
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
# clear model path
import shutil
if os.path.exists(args.model_path):
shutil.rmtree(args.model_path)
train(args)
if 'CC_WEB' in args.dataset:
from data import CC_WEB_VIDEO
dataset = CC_WEB_VIDEO()
eval_function = query_vs_database
elif 'VCDB' in args.dataset:
from data import VCDB
dataset = VCDB()
eval_function = query_vs_database
elif 'FIVR' in args.dataset:
from data import FIVR
dataset = FIVR(version=args.dataset.split('-')[1].lower())
eval_function = query_vs_database
elif 'EVVE' in args.dataset:
from data import EVVE
dataset = EVVE()
eval_function = query_vs_database
else:
raise Exception('[ERROR] Not supported evaluation dataset. '
'Supported options: \"CC_WEB_VIDEO\", \"VCDB\", \"FIVR-200K\", \"FIVR-5K\", \"EVVE\"')
model = CTCA(feature_size=args.pca_components, feedforward=args.feedforward , nlayers=args.num_layers)
if os.path.exists(args.eval_feature_path):
os.remove(args.eval_feature_path)
fivr_concat_features(args.eval_feature_path, args.eval_frame_feature_path,args.eval_segment_feature_path,version=args.dataset.split('-')[1].lower())
eval_function(model, dataset, args)
if __name__ == '__main__':
main()