-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmc-nvt.f
636 lines (451 loc) · 22.1 KB
/
mc-nvt.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
********************************************************************************
** FICHE F.11. CONSTANT-NVT MONTE CARLO FOR LENNARD JONES ATOMS **
** This FORTRAN code is intended to illustrate points made in the text. **
** To our knowledge it works correctly. However it is the responsibility of **
** the user to test it, if it is to be used in a research application. **
********************************************************************************
PROGRAM MCNVT
COMMON / BLOCK1 / RX, RY, RZ
C *******************************************************************
C ** MONTE CARLO SIMULATION PROGRAM IN THE CONSTANT-NVT ENSEMBLE. **
C ** **
C ** THIS PROGRAM TAKES A CONFIGURATION OF LENNARD JONES ATOMS **
C ** AND PERFORMS A CONVENTIONAL NVT MC SIMULATION. THE BOX IS OF **
C ** UNIT LENGTH, -0.5 TO +0.5 AND THERE ARE NO LOOKUP TABLES. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N NUMBER OF MOLECULES **
C ** INTEGER NSTEP MAXIMUM NUMBER OF CYCLES **
C ** REAL RX(N),RY(N),RZ(N) POSITIONS **
C ** REAL DENS REDUCED DENSITY **
C ** REAL TEMP REDUCED TEMPERATURE **
C ** REAL SIGMA REDUCED LJ DIAMETER **
C ** REAL RMIN MINIMUM REDUCED PAIR SEPARATION **
C ** REAL RCUT REDUCED CUTOFF DISTANCE **
C ** REAL DRMAX REDUCED MAXIMUM DISPLACEMENT **
C ** REAL V THE POTENTIAL ENERGY **
C ** REAL W THE VIRIAL **
C ** REAL PRES THE PRESSURE **
C ** **
C ** USAGE: **
C ** **
C ** THE PROGRAM TAKES IN A CONFIGURATION OF ATOMS **
C ** AND RUNS A MONTE CARLO SIMULATION AT THE GIVEN TEMPERATURE **
C ** FOR THE SPECIFIED NUMBER OF CYCLES. **
C ** **
C ** UNITS: **
C ** **
C ** THE PROGRAM USES LENNARD-JONES UNITS FOR USER INPUT AND **
C ** OUTPUT BUT CONDUCTS THE SIMULATION IN A BOX OF UNIT LENGTH. **
C ** FOR EXAMPLE, FOR A BOXLENGTH L, AND LENNARD-JONES PARAMETERS **
C ** EPSILON AND SIGMA, THE UNITS ARE: **
C ** **
C ** PROPERTY LJ UNITS PROGRAM UNITS **
C ** **
C ** TEMP EPSILON/K EPSILON/K **
C ** PRES EPSILON/SIGMA**3 EPSILON/L**3 **
C ** V EPSILON EPSILON **
C ** DENS 1/SIGMA**3 1/L**3 **
C ** **
C ** ROUTINES REFERENCED: **
C ** **
C ** SUBROUTINE SUMUP ( RCUT, RMIN, SIGMA, OVRLAP, V, W ) **
C ** CALCULATES THE TOTAL POTENTIAL ENERGY FOR A CONFIGURATION **
C ** SUBROUTINE ENERGY ( RXI, RYI, RZI, I, RCUT, SIGMA, V, W ) **
C ** CALCULATES THE POTENTIAL ENERGY OF ATOM I WITH ALL THE **
C ** OTHER ATOMS IN THE LIQUID **
C ** SUBROUTINE READCN (CNFILE ) **
C ** READS IN A CONFIGURATION **
C ** SUBROUTINE WRITCN ( CNFILE ) **
C ** WRITES OUT A CONFIGURATION **
C ** REAL FUNCTION RANF ( DUMMY ) **
C ** RETURNS A UNIFORM RANDOM NUMBER BETWEEN ZERO AND ONE **
C *******************************************************************
INTEGER N
PARAMETER ( N = 108 )
REAL RX(N), RY(N), RZ(N)
REAL DRMAX, DENS, TEMP, DENSLJ, SIGMA, RMIN, RCUT, BETA
REAL RANF, DUMMY, ACM, ACATMA, PI, RATIO, SR9, SR3
REAL V, VNEW, VOLD, VEND, VN, DELTV, DELTVB, VS
REAL W, WEND, WNEW, WOLD, PRES, DELTW, WS, PS
REAL VLRC, VLRC6, VLRC12, WLRC, WLRC6, WLRC12
REAL RXIOLD, RYIOLD, RZIOLD, RXINEW, RYINEW, RZINEW
REAL AVV, AVP, AVW, ACV, ACP, ACVSQ, ACPSQ, FLV, FLP
INTEGER STEP, I, NSTEP, IPRINT, ISAVE, IRATIO
LOGICAL OVRLAP
CHARACTER TITLE*80, CNFILE*30
PARAMETER ( PI = 3.1415927 )
C ****************************************************************
C ** READ INPUT DATA **
WRITE(*,'(1H1,'' **** PROGRAM MCLJ **** ''/)')
WRITE(*,'('' CONSTANT-NVT MONTE CARLO PROGRAM '' )')
WRITE(*,'('' FOR LENNARD JONES ATOMS '')')
WRITE(*,'('' ENTER THE RUN TITLE '')')
READ (*,'(A)') TITLE
WRITE(*,'('' ENTER NUMBER OF CYCLES '')')
READ (*,*) NSTEP
WRITE(*,'('' ENTER NUMBER OF STEPS BETWEEN OUTPUT LINES '')')
READ (*,*) IPRINT
WRITE(*,'('' ENTER NUMBER OF STEPS BETWEEN DATA SAVES '')')
READ (*,*) ISAVE
WRITE(*,'('' ENTER INTERVAL FOR UPDATE OF MAX. DISPL. '')')
READ (*,*) IRATIO
WRITE(*,'('' ENTER THE CONFIGURATION FILE NAME '')')
READ (*,'(A)') CNFILE
WRITE(*,'('' ENTER THE FOLLOWING IN LENNARD-JONES UNITS '',/)')
WRITE(*,'('' ENTER THE DENSITY '')')
READ (*,*) DENS
WRITE(*,'('' ENTER THE TEMPERATURE '')')
READ (*,*) TEMP
WRITE(*,'('' ENTER THE POTENTIAL CUTOFF DISTANCE '')')
READ (*,*) RCUT
C ** WRITE INPUT DATA **
WRITE(*,'( //1X ,A )') TITLE
WRITE(*,'('' NUMBER OF ATOMS '',I10 )') N
WRITE(*,'('' NUMBER OF CYCLES '',I10 )') NSTEP
WRITE(*,'('' OUTPUT FREQUENCY '',I10 )') IPRINT
WRITE(*,'('' SAVE FREQUENCY '',I10 )') ISAVE
WRITE(*,'('' RATIO UPDATE FREQUENCY '',I10 )') IRATIO
WRITE(*,'('' CONFIGURATION FILE NAME '',A )') CNFILE
WRITE(*,'('' TEMPERATURE '',F10.4 )') TEMP
WRITE(*,'('' DENSITY '',F10.4 )') DENS
WRITE(*,'('' POTENTIAL CUTOFF '',F10.4 )') RCUT
C ** READ INITIAL CONFIGURATION **
CALL READCN ( CNFILE )
C ** CONVERT INPUT DATA TO PROGRAM UNITS **
BETA = 1.0 / TEMP
SIGMA = ( DENS / REAL ( N ) ) ** ( 1.0 / 3.0 )
RMIN = 0.70 * SIGMA
RCUT = RCUT * SIGMA
DRMAX = 0.15 * SIGMA
DENSLJ = DENS
DENS = DENS / ( SIGMA ** 3 )
IF ( RCUT .GT. 0.5 ) STOP ' CUT-OFF TOO LARGE '
C ** ZERO ACCUMULATORS **
ACV = 0.0
ACVSQ = 0.0
ACP = 0.0
ACPSQ = 0.0
FLV = 0.0
FLP = 0.0
ACM = 0.0
ACATMA = 0.0
C ** CALCULATE LONG RANGE CORRECTIONS **
C ** SPECIFIC TO THE LENNARD JONES FLUID **
SR3 = ( SIGMA / RCUT ) ** 3
SR9 = SR3 ** 3
VLRC12 = 8.0 * PI * DENSLJ * REAL ( N ) * SR9 / 9.0
VLRC6 = - 8.0 * PI * DENSLJ * REAL ( N ) * SR3 / 3.0
VLRC = VLRC12 + VLRC6
WLRC12 = 4.0 * VLRC12
WLRC6 = 2.0 * VLRC6
WLRC = WLRC12 + WLRC6
C ** WRITE OUT SOME USEFUL INFORMATION **
WRITE(*,'('' SIGMA/BOX = '',F10.4)') SIGMA
WRITE(*,'('' RMIN/BOX = '',F10.4)') RMIN
WRITE(*,'('' RCUT/BOX = '',F10.4)') RCUT
WRITE(*,'('' LRC FOR <V> = '',F10.4)') VLRC
WRITE(*,'('' LRC FOR <W> = '',F10.4)') WLRC
C ** CALCULATE INITIAL ENERGY AND CHECK FOR OVERLAPS **
CALL SUMUP ( RCUT, RMIN, SIGMA, OVRLAP, V, W )
IF ( OVRLAP ) STOP ' OVERLAP IN INITIAL CONFIGURATION '
VS = ( V + VLRC ) / REAL ( N )
WS = ( W + WLRC ) / REAL ( N )
PS = DENS * TEMP + W + WLRC
PS = PS * SIGMA ** 3
WRITE(*,'('' INITIAL V = '', F10.4 )' ) VS
WRITE(*,'('' INITIAL W = '', F10.4 )' ) WS
WRITE(*,'('' INITIAL P = '', F10.4 )' ) PS
WRITE(*,'(//'' START OF MARKOV CHAIN ''//)')
WRITE(*,'('' NMOVE RATIO V/N P''/)')
C *******************************************************************
C ** LOOPS OVER ALL CYCLES AND ALL MOLECULES **
C *******************************************************************
DO 100 STEP = 1, NSTEP
DO 99 I = 1, N
RXIOLD = RX(I)
RYIOLD = RY(I)
RZIOLD = RZ(I)
C ** CALCULATE THE ENERGY OF I IN THE OLD CONFIGURATION **
CALL ENERGY ( RXIOLD, RYIOLD, RZIOLD, I, RCUT, SIGMA,
: VOLD, WOLD )
C ** MOVE I AND PICKUP THE CENTRAL IMAGE **
RXINEW = RXIOLD + ( 2.0 * RANF ( DUMMY ) - 1.0 ) * DRMAX
RYINEW = RYIOLD + ( 2.0 * RANF ( DUMMY ) - 1.0 ) * DRMAX
RZINEW = RZIOLD + ( 2.0 * RANF ( DUMMY ) - 1.0 ) * DRMAX
RXINEW = RXINEW - ANINT ( RXINEW )
RYINEW = RYINEW - ANINT ( RYINEW )
RZINEW = RZINEW - ANINT ( RZINEW )
C ** CALCULATE THE ENERGY OF I IN THE NEW CONFIGURATION **
CALL ENERGY ( RXINEW, RYINEW, RZINEW, I, RCUT, SIGMA,
: VNEW, WNEW )
C ** CHECK FOR ACCEPTANCE **
DELTV = VNEW - VOLD
DELTW = WNEW - WOLD
DELTVB = BETA * DELTV
IF ( DELTVB .LT. 75.0 ) THEN
IF ( DELTV .LE. 0.0 ) THEN
V = V + DELTV
W = W + DELTW
RX(I) = RXINEW
RY(I) = RYINEW
RZ(I) = RZINEW
ACATMA = ACATMA + 1.0
ELSEIF ( EXP ( - DELTVB ) .GT. RANF ( DUMMY ) ) THEN
V = V + DELTV
W = W + DELTW
RX(I) = RXINEW
RY(I) = RYINEW
RZ(I) = RZINEW
ACATMA = ACATMA + 1.0
ENDIF
ENDIF
ACM = ACM + 1.0
C ** CALCULATE INSTANTANEOUS VALUES **
VN = ( V + VLRC ) / REAL ( N )
PRES = DENS * TEMP + W + WLRC
C ** CONVERT PRESSURE TO LJ UNITS **
PRES = PRES * SIGMA ** 3
C ** ACCUMULATE AVERAGES **
ACV = ACV + VN
ACP = ACP + PRES
ACVSQ = ACVSQ + VN * VN
ACPSQ = ACPSQ + PRES * PRES
C *************************************************************
C ** ENDS LOOP OVER ATOMS **
C *************************************************************
99 CONTINUE
C ** PERFORM PERIODIC OPERATIONS **
IF ( MOD ( STEP, IRATIO ) .EQ. 0 ) THEN
C ** ADJUST MAXIMUM DISPLACEMENT **
RATIO = ACATMA / REAL ( N * IRATIO )
IF ( RATIO .GT. 0.5 ) THEN
DRMAX = DRMAX * 1.05
ELSE
DRMAX = DRMAX * 0.95
ENDIF
ACATMA = 0.0
ENDIF
IF ( MOD ( STEP, IPRINT ) .EQ. 0 ) THEN
C ** WRITE OUT RUNTIME INFORMATION **
WRITE(*,'(I8,3F12.6)') INT(ACM), RATIO, VN, PRES
ENDIF
IF ( MOD ( STEP, ISAVE ) .EQ. 0 ) THEN
C ** WRITE OUT THE CONFIGURATION AT INTERVALS **
CALL WRITCN ( CNFILE )
ENDIF
100 CONTINUE
C *******************************************************************
C ** ENDS THE LOOP OVER CYCLES **
C *******************************************************************
WRITE(*,'(//'' END OF MARKOV CHAIN ''//)')
C ** CHECKS FINAL VALUE OF THE POTENTIAL ENERGY IS CONSISTENT **
CALL SUMUP ( RCUT, RMIN, SIGMA, OVRLAP, VEND, WEND )
IF ( ABS ( VEND - V ) .GT. 1.0E-03 ) THEN
WRITE(*,'('' PROBLEM WITH ENERGY,'')')
WRITE(*,'('' VEND = '', E20.6)') VEND
WRITE(*,'('' V = '', E20.6)') V
ENDIF
C ** WRITE OUT THE FINAL CONFIGURATION FROM THE RUN **
CALL WRITCN ( CNFILE )
C ** CALCULATE AND WRITE OUT RUNNING AVERAGES **
AVV = ACV / ACM
ACVSQ = ( ACVSQ / ACM ) - AVV ** 2
AVP = ACP / ACM
ACPSQ = ( ACPSQ / ACM ) - AVP ** 2
C ** CALCULATE FLUCTUATIONS **
IF ( ACVSQ .GT. 0.0 ) FLV = SQRT ( ACVSQ )
IF ( ACPSQ .GT. 0.0 ) FLP = SQRT ( ACPSQ )
WRITE(*,'(/'' AVERAGES ''/ )')
WRITE(*,'('' <V/N> = '',F10.6)') AVV
WRITE(*,'('' <P> = '',F10.6)') AVP
WRITE(*,'(/'' FLUCTUATIONS ''/)')
WRITE(*,'('' FLUCTUATION IN <V/N> = '',F10.6)') FLV
WRITE(*,'('' FLUCTUATION IN <P> = '',F10.6)') FLP
WRITE(*,'(/'' END OF SIMULATION '')')
STOP
END
SUBROUTINE SUMUP ( RCUT, RMIN, SIGMA, OVRLAP, V, W )
COMMON / BLOCK1 / RX, RY, RZ
C *******************************************************************
C ** CALCULATES THE TOTAL POTENTIAL ENERGY FOR A CONFIGURATION. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N THE NUMBER OF ATOMS **
C ** REAL RX(N(,RY(N),RZ(N) THE POSITIONS OF THE ATOMS **
C ** REAL V THE POTENTIAL ENERGY **
C ** REAL W THE VIRIAL **
C ** LOGICAL OVRLAP TRUE FOR SUBSTANTIAL ATOM OVERLAP **
C ** **
C ** USAGE: **
C ** **
C ** THE SUBROUTINE RETURNS THE TOTAL POTENTIAL ENERGY AT THE **
C ** BEGINNING AND END OF THE RUN. **
C *******************************************************************
INTEGER N
PARAMETER ( N = 108 )
REAL RX(N), RY(N), RZ(N)
REAL SIGMA, RMIN, RCUT, V, W
LOGICAL OVRLAP
REAL RCUTSQ, RMINSQ, SIGSQ, RXIJ, RYIJ, RZIJ
REAL RXI, RYI, RZI, VIJ, WIJ, SR2, SR6, RIJSQ
INTEGER I, J
C *******************************************************************
OVRLAP = .FALSE.
RCUTSQ = RCUT * RCUT
RMINSQ = RMIN * RMIN
SIGSQ = SIGMA * SIGMA
V = 0.0
W = 0.0
C ** LOOP OVER ALL THE PAIRS IN THE LIQUID **
DO 100 I = 1, N - 1
RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)
DO 99 J = I + 1, N
RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZ(J)
C ** MINIMUM IMAGE THE PAIR SEPARATIONS **
RXIJ = RXIJ - ANINT ( RXIJ )
RYIJ = RYIJ - ANINT ( RYIJ )
RZIJ = RZIJ - ANINT ( RZIJ )
RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ
IF ( RIJSQ .LT. RMINSQ ) THEN
OVRLAP = .TRUE.
RETURN
ELSEIF ( RIJSQ .LT. RCUTSQ ) THEN
SR2 = SIGSQ / RIJSQ
SR6 = SR2 * SR2 * SR2
VIJ = SR6 * ( SR6 - 1.0 )
WIJ = SR6 * ( SR6 - 0.5 )
V = V + VIJ
W = W + WIJ
ENDIF
99 CONTINUE
100 CONTINUE
V = 4.0 * V
W = 48.0 * W / 3.0
RETURN
END
SUBROUTINE ENERGY ( RXI, RYI, RZI, I, RCUT, SIGMA, V, W )
COMMON / BLOCK1 / RX, RY, RZ
C *******************************************************************
C ** RETURNS THE POTENTIAL ENERGY OF ATOM I WITH ALL OTHER ATOMS. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER I THE ATOM OF INTEREST **
C ** INTEGER N THE NUMBER OF ATOMS **
C ** REAL RX(N),RY(N),RZ(N) THE ATOM POSITIONS **
C ** REAL RXI,RYI,RZI THE COORDINATES OF ATOM I **
C ** REAL V THE POTENTIAL ENERGY OF ATOM I **
C ** REAL W THE VIRIAL OF ATOM I **
C ** **
C ** USAGE: **
C ** **
C ** THIS SUBROUTINE IS USED TO CALCULATE THE CHANGE OF ENERGY **
C ** DURING A TRIAL MOVE OF ATOM I. IT IS CALLED BEFORE AND **
C ** AFTER THE RANDOM DISPLACEMENT OF I. **
C *******************************************************************
INTEGER N
PARAMETER ( N = 108 )
REAL RX(N), RY(N), RZ(N)
REAL RCUT, SIGMA, RXI, RYI, RZI, V, W
INTEGER I
REAL RCUTSQ, SIGSQ, SR2, SR6
REAL RXIJ, RYIJ, RZIJ, RIJSQ, VIJ, WIJ
INTEGER J
C ******************************************************************
RCUTSQ = RCUT * RCUT
SIGSQ = SIGMA * SIGMA
V = 0.0
W = 0.0
C ** LOOP OVER ALL MOLECULES EXCEPT I **
DO 100 J = 1, N
IF ( I .NE. J ) THEN
RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZ(J)
RXIJ = RXIJ - ANINT ( RXIJ )
RYIJ = RYIJ - ANINT ( RYIJ )
RZIJ = RZIJ - ANINT ( RZIJ )
RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ
IF ( RIJSQ .LT. RCUTSQ ) THEN
SR2 = SIGSQ / RIJSQ
SR6 = SR2 * SR2 * SR2
VIJ = SR6 * ( SR6 - 1.0 )
WIJ = SR6 * ( SR6 - 0.5 )
V = V + VIJ
W = W + WIJ
ENDIF
ENDIF
100 CONTINUE
V = 4.0 * V
W = 48.0 * W / 3.0
RETURN
END
REAL FUNCTION RANF ( DUMMY )
C *******************************************************************
C ** RETURNS A UNIFORM RANDOM VARIATE IN THE RANGE 0 TO 1. **
C ** **
C ** *************** **
C ** ** WARNING ** **
C ** *************** **
C ** **
C ** GOOD RANDOM NUMBER GENERATORS ARE MACHINE SPECIFIC. **
C ** PLEASE USE THE ONE RECOMMENDED FOR YOUR MACHINE. **
C *******************************************************************
INTEGER L, C, M
PARAMETER ( L = 1029, C = 221591, M = 1048576 )
INTEGER SEED
REAL DUMMY
SAVE SEED
DATA SEED / 0 /
C *******************************************************************
SEED = MOD ( SEED * L + C, M )
RANF = REAL ( SEED ) / M
RETURN
END
SUBROUTINE READCN ( CNFILE )
COMMON / BLOCK1 / RX, RY, RZ
C *******************************************************************
C ** SUBROUTINE TO READ IN THE CONFIGURATION FROM UNIT 10 **
C *******************************************************************
INTEGER N
PARAMETER ( N = 108 )
CHARACTER CNFILE*(*)
REAL RX(N), RY(N), RZ(N)
INTEGER CNUNIT
PARAMETER ( CNUNIT = 10 )
INTEGER NN
C ********************************************************************
OPEN ( UNIT = CNUNIT, FILE = CNFILE, STATUS = 'OLD',
: FORM = 'UNFORMATTED' )
READ ( CNUNIT ) NN
IF ( NN .NE. N ) STOP 'N ERROR IN READCN'
READ ( CNUNIT ) RX, RY, RZ
CLOSE ( UNIT = CNUNIT )
RETURN
END
SUBROUTINE WRITCN ( CNFILE )
COMMON / BLOCK1 / RX, RY, RZ
C *******************************************************************
C ** SUBROUTINE TO WRITE OUT THE CONFIGURATION TO UNIT 10 **
C *******************************************************************
INTEGER N
PARAMETER ( N = 108 )
CHARACTER CNFILE*(*)
REAL RX(N), RY(N), RZ(N)
INTEGER CNUNIT
PARAMETER ( CNUNIT = 10 )
C ********************************************************************
OPEN ( UNIT = CNUNIT, FILE = CNFILE, STATUS = 'UNKNOWN',
: FORM = 'UNFORMATTED' )
WRITE ( CNUNIT ) N
WRITE ( CNUNIT ) RX, RY, RZ
CLOSE ( UNIT = CNUNIT )
RETURN
END