-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine_finetune.py
167 lines (129 loc) · 6.14 KB
/
engine_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import math
import sys
from typing import Iterable, Optional, Union
import numpy as np
import torch
from einops import rearrange
from timm.data import Mixup
from timm.utils import accuracy
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm
import util.misc as misc
import util.lr_sched as lr_sched
from util.misc import AMP_PRECISIONS
from models_simmim import VisionTransformerSimMIM
from models_vit import VisionTransformer
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples, targets) in tqdm(enumerate(metric_logger.log_every(data_loader, print_freq, header))):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast(
enabled=args.amp != "none",
dtype=AMP_PRECISIONS[args.amp]
):
model_wo_ddp = model if not isinstance(model, DistributedDataParallel) else model.module
if isinstance(model_wo_ddp, (VisionTransformer, VisionTransformerSimMIM)):
outputs = model(samples, return_features=args.cls_features, return_block=args.return_block)
else:
outputs = model(samples)
loss = criterion(outputs, targets)
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
metric_logger.update(acc1=acc1.item(), acc5=acc5.item())
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
if torch.cuda.is_available():
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(
data_loader,
model: VisionTransformer,
device, *,
return_targets_and_preds: bool = False, cls_features: str = "cls",
return_block: Optional[int] = None
):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
targets = []
preds = []
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
model_wo_ddp = model if not isinstance(model, DistributedDataParallel) else model.module
if isinstance(model_wo_ddp, MaskedAutoencoderViT):
assert return_block is None, f"{return_block=} not used"
_, _, _, (_, output, _, _, _) = model.forward(images, cls_features)
elif isinstance(model_wo_ddp, (VisionTransformer, VisionTransformerSimMIM)):
output = model.forward(images, return_features=cls_features, return_block=return_block)
else:
assert return_block is None, f"{return_block=} not used"
output = model.forward(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
pred = output.argmax(dim=1).detach().cpu()
targets.append(target.cpu())
preds.append(pred.cpu())
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if return_targets_and_preds:
stats["targets"] = torch.cat(targets)
stats["preds"] = torch.cat(preds)
return stats