-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
123 lines (104 loc) · 4.36 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from skimage import data, novice
from skimage.transform import resize, rotate
from random import randint
from PIL import Image as PIL_Image
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import itertools
PWD = os.getcwd()
image_path = os.path.join(PWD, 'release/data/train_images/')
csv_path = os.path.join(PWD, 'release/data/train.csv')
df = pd.read_csv(csv_path)
def combine_rows(dataframe):
left = 1 << 30
top = 1 << 30
right = -1
bottom = -1
img = novice.open(os.path.join(image_path, dataframe.iloc[0].FileName))
digits = dataframe['DigitLabel'].tolist()
digits = [i if i != 10 else 0 for i in digits]
number = dataframe.iloc[0].FileName[:-4]
left = dataframe['Left'].min()
top = dataframe['Top'].min()
right = dataframe[['Left', 'Width']].sum(axis=1).max()
bottom = dataframe[['Top', 'Height']].sum(axis=1).max()
new_df = pd.DataFrame([[int(number), int(''.join(str(d) for d in digits)),
digits, len(digits), img.width, img.height,
[left, top, right, bottom]]],
columns=['Number', 'Value', 'Digits', 'Length', 'Width', 'Height', 'Box'])
return new_df
ndf = df.groupby('FileName')['FileName', 'DigitLabel',
'Left', 'Top', 'Width',
'Height'].apply(combine_rows).reset_index()
ndf = ndf.drop(ndf.columns[[1]], axis=1).set_index('Number').sort_index()
ndf.to_csv(os.path.join(PWD, 'processed.csv'))
def transform_image(path, box, final_dim, rand_rotate=0, rand_crop=10):
"""Transforms an image and returns a numpy array from it
The image is resized around the bounding box after padding the image,
randomly rotating it and randomly cropping it
Parameters
----------
path: str
path to the image
box: list
dimensions of the left, top, right and bottom coordinates of the bounding box
final_dim: tuple
dimensions of the final image after cropping it
rand_rotate: int, optional
rotation angle in degrees
rand_crop: int, optional
crop size
Returns
-------
A numpy array of shape final_dim[0]xfinal_dim[1]x3
"""
# open the image
img = data.imread(path)
if rand_rotate:
img = rotate(img, randint(-rand_rotate, rand_rotate+1), mode='wrap')
left, top, right, bottom = box
width = right - left
height = bottom - top
left = max(0, int(left - width * 0.15))
right = min(img.shape[1], int(right + width * 0.15))
top = max(0, int(top - height * 0.15))
bottom = min(img.shape[0], int(bottom + width * 0.15))
# resize the image to bounding box + 30%
img = img[top:bottom, left:right]
# crop to bounding box + 30% + crop delta
img = resize(img, final_dim)
if rand_crop:
crop_size = randint(0, rand_crop + 1)
top = randint(0, crop_size)
bottom = img.shape[0] - (crop_size - top)
left = randint(0, crop_size)
right = img.shape[1] - (crop_size - left)
img = img[top:bottom, left:right]
img = resize(img, (final_dim[0] + rand_crop, final_dim[1] + rand_crop))
return img
def create_input_data(df, final_dim, rand_rotate, rand_crop):
img_data = np.zeros((df.shape[0], final_dim[0], final_dim[1], 3), dtype=float)
val = np.zeros((df.shape[0]), dtype=int)
digits = np.full((df.shape[0], 6), 10)
lengths = np.zeros((df.shape[0]), dtype=int)
for i, row in df.iterrows():
val[i] = row['Value']
lengths[i] = row['Length']
tmp = list(map(int, row['Digits'].strip('[').strip(']').split(',')))
while len(tmp) < 6:
tmp.append(10)
digits[i] = np.array(tmp)
img_data[i] = transform_image(os.path.join(PWD, 'release/data/train_images/', row['FileName']),
list(map(int, row['Box'].strip('[').strip(']').split(','))),
final_dim,
rand_rotate,
rand_crop)
return img_data, val, digits, lengths
tdf = pd.read_csv('processed.csv')
i_data, val, digits, lengths = create_input_data(tdf, (32, 32), 4, 5)
np.save('images-32x32.npy', i_data)
np.save('val-32x32.npy', val)
np.save('digits-32x32.npy', digits)
np.save('lengths-32x32.npy', lengths)