-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathprofile_bug.yaml
78 lines (77 loc) · 3.14 KB
/
profile_bug.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# calling THEANO_FLAGS="device=gpu,profile=1" train.py <this file> results in profile
# printout hanging
!obj:pylearn2.scripts.train.Train {
dataset: &data !obj:galatea.datasets.zca_dataset.ZCA_Dataset {
preprocessed_dataset: !obj:pylearn2.datasets.dense_design_matrix.from_dataset {
dataset: !pkl: "/data/lisa/data/cifar10/pylearn2_gcn_whitened/train.pkl",
num_examples: 1000
},
preprocessor: !pkl: "/data/lisa/data/cifar10/pylearn2_gcn_whitened/preprocessor.pkl"
},
model: !obj:galatea.dbm.inpaint.super_dbm.ditch_mu {
model: !obj:galatea.dbm.inpaint.super_dbm.add_layers {
super_dbm: !obj:galatea.dbm.inpaint.super_dbm.SuperDBM {
batch_size : 25,
niter: 6, #note: since we have to backprop through the whole thing, this does
#increase the memory usage
visible_layer: !obj:galatea.dbm.inpaint.super_dbm.GaussianConvolutionalVisLayer {
rows: 32,
cols: 32,
channels: 3,
init_beta: 3.7,
init_mu: 0.
},
hidden_layers: [
!obj:galatea.dbm.inpaint.super_dbm.ConvMaxPool {
border_mode : 'full',
output_axes : ['b', 'c', 0, 1],
output_channels: 64,
kernel_rows: 8,
kernel_cols: 8,
pool_rows: 3,
pool_cols: 3,
irange: 0.05,
layer_name: 'h0',
init_bias: -5.
},
!obj:galatea.dbm.inpaint.super_dbm.ConvMaxPool {
border_mode : 'full',
output_channels: 64,
output_axes: ['b', 'c', 0, 1],
kernel_rows: 6,
kernel_cols: 6,
pool_rows: 3,
pool_cols: 3,
irange: 0.3,
layer_name: 'h1',
init_bias: -5.
}
]
},
new_layers: [
!obj:galatea.dbm.inpaint.super_dbm.Softmax {
irange: 0.05,
n_classes: 10,
layer_name: 'class_layer',
}
]
}},
algorithm: !obj:pylearn2.training_algorithms.sgd.SGD {
termination_criterion: !obj:pylearn2.training_algorithms.sgd.EpochCounter {
max_epochs: 1
},
learning_rate: 1e-3,
init_momentum: .5,
monitoring_batches : 1,
monitoring_dataset : *data,
cost : !obj:galatea.dbm.inpaint.super_dbm.SuperDBM_ConditionalNLL {
},
},
callbacks: [ !obj:pylearn2.training_algorithms.sgd.MomentumAdjustor {
start: 0,
saturate: 10,
final_momentum: .9
}
],
save_freq : 0
}