-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
143 lines (124 loc) · 4.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright 2024 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CALM training script for finetuning.
Hugging Face Trainer is used to train the CALM model.
Reference:
https://huggingface.co/docs/transformers/main_classes/trainer
"""
from collections.abc import Sequence
from absl import app
from absl import flags
from absl import logging
import datasets
from model import calm
from transformers import AutoTokenizer
from transformers import DataCollatorForLanguageModeling
from transformers import Trainer
from transformers import TrainingArguments
_ANCHOR_MODEL_DIR = flags.DEFINE_string(
'anchor_model_dir', None, 'anchor model path.'
)
_AUG_MODEL_DIR = flags.DEFINE_string('aug_model_dir', None, 'aug model path.')
_OUTPUT_DIR = flags.DEFINE_string('output_dir', None, 'output directory.')
_LEARNING_RATE = flags.DEFINE_float('learning_rate', 2e-5, 'learning rate.')
_EPOCHS = flags.DEFINE_integer('epochs', 3, 'number of epochs.')
_BATCH_SIZE = flags.DEFINE_integer('batch_size', 1, 'batch size.')
_NUM_HEADS = flags.DEFINE_integer('num_heads', 1, 'number of heads.')
_NUM_CONNECTIONS = flags.DEFINE_integer(
'num_connections', 2, 'number of connections.'
)
_CONNECTIONS = flags.DEFINE_list(
'connections',
None,
'connections between the anchor and aug model. You cannot provide both'
'connections and num_connections simultaneously.',
)
_EVAL_STEPS = flags.DEFINE_integer('eval_steps', 50, 'eval steps.')
_LOGGING_STEPS = flags.DEFINE_integer('logging_steps', 50, 'logging steps.')
_SAVE_STEPS = flags.DEFINE_integer('save_steps', 50, 'save steps.')
_MAX_STEPS = flags.DEFINE_integer('max_steps', 100, 'max steps.')
def train(argv: Sequence[str]) -> None:
"""Trains the CALM model."""
del argv # Unused.
anchor_model_path = _ANCHOR_MODEL_DIR.value
aug_model_path = _AUG_MODEL_DIR.value
num_heads = _NUM_HEADS.value
num_connections = _NUM_CONNECTIONS.value
logging.info('anchor_model_path: %s', anchor_model_path)
logging.info('aug_model_path: %s', aug_model_path)
logging.info('Loading Tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(anchor_model_path)
logging.info('Loading Composed Model...')
calm_config = calm.CALMConfig(
anchor_model=anchor_model_path,
aug_model=aug_model_path,
anchor_config=None,
aug_config=None,
num_connections=num_connections,
num_heads=num_heads,
)
model = calm.CALM(calm_config)
train_data = datasets.load_dataset(
path='Salesforce/wikitext', name='wikitext-2-raw-v1'
)
def preprocess_function(examples):
return tokenizer(
examples['text'], truncation=True, padding='max_length', max_length=512
)
train_data = train_data.map(preprocess_function, batched=True)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False
)
epochs = _EPOCHS.value
batch_size = _BATCH_SIZE.value
learning_rate = _LEARNING_RATE.value
output_dir = _OUTPUT_DIR.value
eval_steps = _EVAL_STEPS.value
logging_steps = _LOGGING_STEPS.value
save_steps = _SAVE_STEPS.value
max_steps = _MAX_STEPS.value
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
num_train_epochs=epochs,
do_train=True,
do_eval=True,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
eval_strategy='steps', # pylint:disable=unexpected-keyword-arg
eval_steps=eval_steps,
logging_steps=logging_steps,
save_steps=save_steps,
max_steps=max_steps,
learning_rate=learning_rate,
label_names=[],
report_to=['tensorboard'],
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_data['train'],
eval_dataset=train_data['test'],
data_collator=data_collator,
tokenizer=tokenizer,
)
trainer.can_return_loss = True
trainer.train()
trainer.save_model(
output_dir,
)
print(f'Training complete! Model saved to {output_dir}')
if __name__ == '__main__':
app.run(train)