-
Notifications
You must be signed in to change notification settings - Fork 52
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Why do I get the opposite conclusion from the paper #4
Comments
Which dataset did you use? |
I also encountered similar problem. I suspect they're already over-fitting. |
I compared two configs and their results are respectively as below:
**********USE LEAF CONFIG:
"
AudioClassifier.frontend = @leaf()
AudioClassifier.encoder = @pann()
PANN.depth = 7
PANN.dropout_rate = 0.3
"
**********RESULT:
Epoch 1/10
2021-04-06 15:54:15.856190: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
2021-04-06 15:54:16.161494: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
1665/1665 [==============================] - 483s 290ms/step - loss: 0.5501 - sparse_categorical_accuracy: 0.8316 - val_loss: 0.0369 - val_sparse_categorical_accuracy: 1.0000
Epoch 2/10
1665/1665 [==============================] - 480s 288ms/step - loss: 0.2049 - sparse_categorical_accuracy: 0.9349 - val_loss: 0.0120 - val_sparse_categorical_accuracy: 1.0000
Epoch 3/10
1665/1665 [==============================] - 480s 288ms/step - loss: 0.1594 - sparse_categorical_accuracy: 0.9496 - val_loss: 0.0132 - val_sparse_categorical_accuracy: 1.0000
Epoch 4/10
1665/1665 [==============================] - 479s 288ms/step - loss: 0.1363 - sparse_categorical_accuracy: 0.9572 - val_loss: 0.0063 - val_sparse_categorical_accuracy: 1.0000
Epoch 5/10
1665/1665 [==============================] - 480s 288ms/step - loss: 0.1175 - sparse_categorical_accuracy: 0.9635 - val_loss: 0.0018 - val_sparse_categorical_accuracy: 1.0000
Epoch 6/10
1665/1665 [==============================] - 480s 288ms/step - loss: 0.1048 - sparse_categorical_accuracy: 0.9676 - val_loss: 0.0021 - val_sparse_categorical_accuracy: 1.0000
Epoch 7/10
1665/1665 [==============================] - 480s 288ms/step - loss: 0.0920 - sparse_categorical_accuracy: 0.9715 - val_loss: 1.4136e-04 - val_sparse_categorical_accuracy: 1.0000
Epoch 8/10
1665/1665 [==============================] - 480s 288ms/step - loss: 0.0820 - sparse_categorical_accuracy: 0.9743 - val_loss: 9.0474e-04 - val_sparse_categorical_accuracy: 1.0000
Epoch 9/10
1665/1665 [==============================] - 479s 288ms/step - loss: 0.0749 - sparse_categorical_accuracy: 0.9768 - val_loss: 0.0013 - val_sparse_categorical_accuracy: 1.0000
Epoch 10/10
1665/1665 [==============================] - 479s 288ms/step - loss: 0.0697 - sparse_categorical_accuracy: 0.9786 - val_loss: 1.9908e-04 - val_sparse_categorical_accuracy: 1.0000
**********USE MEL CONFIG:
"
AudioClassifier.frontend = @MelFilterbanks()
AudioClassifier.encoder = @pann()
PANN.depth = 7
PANN.dropout_rate = 0.3
"
**********RESULT:
2/1665 [..............................] - ETA: 2:14 - loss: 3.8187 - sparse_categorical_accuracy: 0.3047
WARNING:tensorflow:Callbacks method
on_train_batch_end
is slow compared to the batch time (batch time: 0.0491s vson_train_batch_end
time: 0.1113s). Check your callbacks.W0406 14:51:43.080209 139667338893120 callbacks.py:325] Callbacks method
on_train_batch_end
is slow compared to the batch time (batch time: 0.0491s vson_train_batch_end
time: 0.1113s1665/1665 [==============================] - 280s 168ms/step - loss: 0.5950 - sparse_categorical_accuracy: 0.8227 - val_loss: 0.0011 - val_sparse_categorical_accuracy: 1.0000
Epoch 2/10
1665/1665 [==============================] - 280s 168ms/step - loss: 0.1996 - sparse_categorical_accuracy: 0.9364 - val_loss: 7.6344e-04 - val_sparse_categorical_accuracy: 1.0000
Epoch 3/10
1665/1665 [==============================] - 281s 169ms/step - loss: 0.1499 - sparse_categorical_accuracy: 0.9533 - val_loss: 8.7197e-04 - val_sparse_categorical_accuracy: 1.0000
Epoch 4/10
1665/1665 [==============================] - 281s 169ms/step - loss: 0.1268 - sparse_categorical_accuracy: 0.9611 - val_loss: 0.0029 - val_sparse_categorical_accuracy: 1.0000
Epoch 5/10
1665/1665 [==============================] - 280s 168ms/step - loss: 0.1081 - sparse_categorical_accuracy: 0.9671 - val_loss: 0.0014 - val_sparse_categorical_accuracy: 1.0000
Epoch 6/10
1665/1665 [==============================] - 282s 169ms/step - loss: 0.0981 - sparse_categorical_accuracy: 0.9698 - val_loss: 0.0017 - val_sparse_categorical_accuracy: 1.0000
Epoch 7/10
1665/1665 [==============================] - 280s 168ms/step - loss: 0.0863 - sparse_categorical_accuracy: 0.9732 - val_loss: 0.1274 - val_sparse_categorical_accuracy: 0.9669
Epoch 8/10
1665/1665 [==============================] - 282s 169ms/step - loss: 0.0793 - sparse_categorical_accuracy: 0.9755 - val_loss: 0.0349 - val_sparse_categorical_accuracy: 1.0000
Epoch 9/10
1665/1665 [==============================] - 280s 168ms/step - loss: 0.0713 - sparse_categorical_accuracy: 0.9782 - val_loss: 0.0388 - val_sparse_categorical_accuracy: 0.9917
Epoch 10/10
1665/1665 [==============================] - 282s 169ms/step - loss: 0.0638 - sparse_categorical_accuracy: 0.9802 - val_loss: 0.0225 - val_sparse_categorical_accuracy: 1.0000
The text was updated successfully, but these errors were encountered: