This repository has been archived by the owner on Sep 7, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathoptimizer.py
53 lines (44 loc) · 1.79 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library with optimization definitions and functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def set_optimizer(optimizer, lr, opt_eps=1.0, opt_momentum=0.9, rms_decay=0.9,
adam_beta1=0.9, adam_beta2=0.999):
"""Sets optimizer optimizer op.
Args:
optimizer: A string (sgd, momentum, adagrad, adam, rmsprop).
lr: learning rate, a float.
opt_eps: Optimizer epsilon (for ADAM and RMSprop).
opt_momentum: Optimizer momentum. Common for Momentum and RMSProp.
rms_decay: RMSProp decay parameter.
adam_beta1: beta_1 parameter for ADAM.
adam_beta2: beta_2 parameter for ADAM.
Returns:
opt, the optimizer op.
"""
if optimizer == "sgd":
opt = tf.train.GradientDescentOptimizer(lr)
elif optimizer == "momentum":
opt = tf.train.MomentumOptimizer(lr, opt_momentum)
elif optimizer == "adagrad":
opt = tf.train.AdagradOptimizer(lr)
elif optimizer == "adam":
opt = tf.train.AdamOptimizer(lr, beta1=adam_beta1, beta2=adam_beta2,
epsilon=opt_eps)
elif optimizer == "rmsprop":
opt = tf.train.RMSPropOptimizer(lr, rms_decay, opt_momentum, opt_eps)
return opt