-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathmultitask_classifier.py
242 lines (184 loc) · 9.21 KB
/
multitask_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import time, random, numpy as np, argparse, sys, re, os
from types import SimpleNamespace
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from bert import BertModel
from optimizer import AdamW
from tqdm import tqdm
from datasets import SentenceClassificationDataset, SentencePairDataset, \
load_multitask_data, load_multitask_test_data
from evaluation import model_eval_sst, test_model_multitask
TQDM_DISABLE=True
# fix the random seed
def seed_everything(seed=11711):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
BERT_HIDDEN_SIZE = 768
N_SENTIMENT_CLASSES = 5
class MultitaskBERT(nn.Module):
'''
This module should use BERT for 3 tasks:
- Sentiment classification (predict_sentiment)
- Paraphrase detection (predict_paraphrase)
- Semantic Textual Similarity (predict_similarity)
'''
def __init__(self, config):
super(MultitaskBERT, self).__init__()
# You will want to add layers here to perform the downstream tasks.
# Pretrain mode does not require updating bert paramters.
self.bert = BertModel.from_pretrained('bert-base-uncased')
for param in self.bert.parameters():
if config.option == 'pretrain':
param.requires_grad = False
elif config.option == 'finetune':
param.requires_grad = True
### TODO
raise NotImplementedError
def forward(self, input_ids, attention_mask):
'Takes a batch of sentences and produces embeddings for them.'
# The final BERT embedding is the hidden state of [CLS] token (the first token)
# Here, you can start by just returning the embeddings straight from BERT.
# When thinking of improvements, you can later try modifying this
# (e.g., by adding other layers).
### TODO
raise NotImplementedError
def predict_sentiment(self, input_ids, attention_mask):
'''Given a batch of sentences, outputs logits for classifying sentiment.
There are 5 sentiment classes:
(0 - negative, 1- somewhat negative, 2- neutral, 3- somewhat positive, 4- positive)
Thus, your output should contain 5 logits for each sentence.
'''
### TODO
raise NotImplementedError
def predict_paraphrase(self,
input_ids_1, attention_mask_1,
input_ids_2, attention_mask_2):
'''Given a batch of pairs of sentences, outputs a single logit for predicting whether they are paraphrases.
Note that your output should be unnormalized (a logit); it will be passed to the sigmoid function
during evaluation, and handled as a logit by the appropriate loss function.
'''
### TODO
raise NotImplementedError
def predict_similarity(self,
input_ids_1, attention_mask_1,
input_ids_2, attention_mask_2):
'''Given a batch of pairs of sentences, outputs a single logit corresponding to how similar they are.
Note that your output should be unnormalized (a logit).
'''
### TODO
raise NotImplementedError
def save_model(model, optimizer, args, config, filepath):
save_info = {
'model': model.state_dict(),
'optim': optimizer.state_dict(),
'args': args,
'model_config': config,
'system_rng': random.getstate(),
'numpy_rng': np.random.get_state(),
'torch_rng': torch.random.get_rng_state(),
}
torch.save(save_info, filepath)
print(f"save the model to {filepath}")
## Currently only trains on sst dataset
def train_multitask(args):
device = torch.device('cuda') if args.use_gpu else torch.device('cpu')
# Load data
# Create the data and its corresponding datasets and dataloader
sst_train_data, num_labels,para_train_data, sts_train_data = load_multitask_data(args.sst_train,args.para_train,args.sts_train, split ='train')
sst_dev_data, num_labels,para_dev_data, sts_dev_data = load_multitask_data(args.sst_dev,args.para_dev,args.sts_dev, split ='train')
sst_train_data = SentenceClassificationDataset(sst_train_data, args)
sst_dev_data = SentenceClassificationDataset(sst_dev_data, args)
sst_train_dataloader = DataLoader(sst_train_data, shuffle=True, batch_size=args.batch_size,
collate_fn=sst_train_data.collate_fn)
sst_dev_dataloader = DataLoader(sst_dev_data, shuffle=False, batch_size=args.batch_size,
collate_fn=sst_dev_data.collate_fn)
# Init model
config = {'hidden_dropout_prob': args.hidden_dropout_prob,
'num_labels': num_labels,
'hidden_size': 768,
'data_dir': '.',
'option': args.option}
config = SimpleNamespace(**config)
model = MultitaskBERT(config)
model = model.to(device)
lr = args.lr
optimizer = AdamW(model.parameters(), lr=lr)
best_dev_acc = 0
# Run for the specified number of epochs
for epoch in range(args.epochs):
model.train()
train_loss = 0
num_batches = 0
for batch in tqdm(sst_train_dataloader, desc=f'train-{epoch}', disable=TQDM_DISABLE):
b_ids, b_mask, b_labels = (batch['token_ids'],
batch['attention_mask'], batch['labels'])
b_ids = b_ids.to(device)
b_mask = b_mask.to(device)
b_labels = b_labels.to(device)
optimizer.zero_grad()
logits = model.predict_sentiment(b_ids, b_mask)
loss = F.cross_entropy(logits, b_labels.view(-1), reduction='sum') / args.batch_size
loss.backward()
optimizer.step()
train_loss += loss.item()
num_batches += 1
train_loss = train_loss / (num_batches)
train_acc, train_f1, *_ = model_eval_sst(sst_train_dataloader, model, device)
dev_acc, dev_f1, *_ = model_eval_sst(sst_dev_dataloader, model, device)
if dev_acc > best_dev_acc:
best_dev_acc = dev_acc
save_model(model, optimizer, args, config, args.filepath)
print(f"Epoch {epoch}: train loss :: {train_loss :.3f}, train acc :: {train_acc :.3f}, dev acc :: {dev_acc :.3f}")
def test_model(args):
with torch.no_grad():
device = torch.device('cuda') if args.use_gpu else torch.device('cpu')
saved = torch.load(args.filepath)
config = saved['model_config']
model = MultitaskBERT(config)
model.load_state_dict(saved['model'])
model = model.to(device)
print(f"Loaded model to test from {args.filepath}")
test_model_multitask(args, model, device)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--sst_train", type=str, default="data/ids-sst-train.csv")
parser.add_argument("--sst_dev", type=str, default="data/ids-sst-dev.csv")
parser.add_argument("--sst_test", type=str, default="data/ids-sst-test-student.csv")
parser.add_argument("--para_train", type=str, default="data/quora-train.csv")
parser.add_argument("--para_dev", type=str, default="data/quora-dev.csv")
parser.add_argument("--para_test", type=str, default="data/quora-test-student.csv")
parser.add_argument("--sts_train", type=str, default="data/sts-train.csv")
parser.add_argument("--sts_dev", type=str, default="data/sts-dev.csv")
parser.add_argument("--sts_test", type=str, default="data/sts-test-student.csv")
parser.add_argument("--seed", type=int, default=11711)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--option", type=str,
help='pretrain: the BERT parameters are frozen; finetune: BERT parameters are updated',
choices=('pretrain', 'finetune'), default="pretrain")
parser.add_argument("--use_gpu", action='store_true')
parser.add_argument("--sst_dev_out", type=str, default="predictions/sst-dev-output.csv")
parser.add_argument("--sst_test_out", type=str, default="predictions/sst-test-output.csv")
parser.add_argument("--para_dev_out", type=str, default="predictions/para-dev-output.csv")
parser.add_argument("--para_test_out", type=str, default="predictions/para-test-output.csv")
parser.add_argument("--sts_dev_out", type=str, default="predictions/sts-dev-output.csv")
parser.add_argument("--sts_test_out", type=str, default="predictions/sts-test-output.csv")
# hyper parameters
parser.add_argument("--batch_size", help='sst: 64, cfimdb: 8 can fit a 12GB GPU', type=int, default=8)
parser.add_argument("--hidden_dropout_prob", type=float, default=0.3)
parser.add_argument("--lr", type=float, help="learning rate, default lr for 'pretrain': 1e-3, 'finetune': 1e-5",
default=1e-5)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
args.filepath = f'{args.option}-{args.epochs}-{args.lr}-multitask.pt' # save path
seed_everything(args.seed) # fix the seed for reproducibility
train_multitask(args)
test_model(args)