-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathclass_definitions.py
272 lines (244 loc) · 14.3 KB
/
class_definitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import random
import numpy as np
import matplotlib.pyplot as plt
class NetworkScenario:
def __init__(self, time_slot_in_seconds, num_BSs, num_DCs, num_apps, demand, app_groups,
start_time_index, latency_cloud, latency_DC, compute_capacities, mem_capacities,
resilience_per_app):
self.num_BSs = num_BSs
self.num_DCs = num_DCs
self.num_apps = num_apps
self.time_slot_in_seconds = time_slot_in_seconds
self.app_groups = app_groups
self.start_time_index = start_time_index
self.latency_cloud = latency_cloud
self.latency_DC = latency_DC
self.compute_capacities = compute_capacities
self.mem_capacities = mem_capacities
self.resilience_per_app = resilience_per_app
# Costs in the objective function
self.fixed_cost = [1000 for j in range(self.num_DCs)]
self.op_cost = [350 for j in range(self.num_DCs)]
self.slack_cost = [200 for s in range(self.num_apps)]
self.cloud_cost = [200 for s in range(self.num_apps)]
self.demand = demand
# Keep application requirements unchanged for both random scenarios and use cases
self.max_latency_per_app = {"Video": 50, # 70
"Compute": 20,
"AR": 20,
"Health": 40} # 100
self.compute_factor_per_app = {"Video": 3,
"Compute": 433,
"AR": 8,
"Health": 1}
self.model_loading_per_app = {"Video": 15,
"Compute": 10,
"AR": 15,
"Health": 2}
self.memory_per_app = {"Video": 1192,
"Compute": 1100,
"AR": 1320,
"Health": 1240}
self.input_size_per_app = {"Video": 0.4,
"Compute": 1,
"AR": 0.6,
"Health": 0.3}
self.resilience = [1 for s in range(self.num_apps)]
self.max_latency = [0 for s in range(self.num_apps)]
self.compute_factor = [0 for s in range(self.num_apps)]
self.mem_factor = [0 for s in range(self.num_apps)]
self.input_size = [0 for s in range(self.num_apps)]
self.model_loading_latency = [0 for s in range(self.num_apps)]
self.latency_priority = [0 for s in range(self.num_apps)]
#self.model_load_energy = [random.randint(10,15) for s in range(self.num_apps)]
self.model_load_energy = [12, 10, 10, 12, 15, 10, 15, 15, 15, 12, 15, 12, 15, 15, 11, 10, 12, 14, 13, 11] #cost_1
#self.model_first_download_energy = [random.randint(20,30) for s in range(self.num_apps)]
self.model_first_download_energy = [28, 26, 21, 21, 25, 29, 24, 23, 29, 22, 22, 22, 30, 28, 30, 24, 22, 21, 27, 20] # cost_2
for s in range(self.num_apps):
for key, value in self.app_groups.items():
if s in value:
self.max_latency[s] = self.max_latency_per_app[key]
self.compute_factor[s] = self.compute_factor_per_app[key]
self.mem_factor[s] = self.memory_per_app[key]
self.input_size[s] = self.input_size_per_app[key]
self.model_loading_latency[s] = self.model_loading_per_app[key]
self.resilience[s] = self.resilience_per_app[key]
if key == "Compute" or key == "AR":
self.latency_priority[s] = 1
class SolutionObject:
def __init__(self, scenario, objective_value, num_DCs_open,
w_isj_solution, z_j_solution, x_sj_solution, on_sj_solution, slack_variable):
self.scenario = scenario
self.objective_value = objective_value
self.num_DCs_open = num_DCs_open
self.fraction_assigned = w_isj_solution
self.DCs_open = z_j_solution
self.apps_loaded = x_sj_solution
self.apps_loaded_curr_timeslot = on_sj_solution
self.latency_exceed = slack_variable
def calculate_total_requests_on_DCs(self, time_slot_index):
total_requests_DC = [0 for _ in range(self.scenario.num_DCs)]
for j in range(self.scenario.num_DCs):
total_requests_DC[j] = 0
for s in range(self.scenario.num_apps):
for i in range(self.scenario.num_BSs):
total_requests_DC[j] += self.scenario.demand[i][s][time_slot_index] * \
self.fraction_assigned[i][s][j+1]
return total_requests_DC
def calculate_demand_on_cloud(self, time_slot_index):
total_demand_cloud = 0
for i in range(self.scenario.num_BSs):
for s in range(self.scenario.num_apps):
total_demand_cloud += self.fraction_assigned[i][s][0] * self.scenario.demand[i][s][time_slot_index]
return total_demand_cloud
def calculate_utilization_DCs(self, time_slot_index):
util = [0 for _ in range(self.scenario.num_DCs)]
for j in range(self.scenario.num_DCs):
util[j] = 0
for s in range(self.scenario.num_apps):
for i in range(self.scenario.num_BSs):
util[j] += self.scenario.compute_factor[s] * self.scenario.demand[i][s][time_slot_index] * \
self.fraction_assigned[i][s][
j + 1]
util[j] = util[j] / self.scenario.compute_capacities[j]
return util
def calculate_objective_with_fixed_load_costs(self, time_slot_index):
utilization_per_DC = self.calculate_utilization_DCs(time_slot_index)
energy_cost = 0
latency_cost = 0
cloud_cost = 0
apps_loaded = 0
apps_loaded_first = 0
for j in range(self.scenario.num_DCs):
if self.DCs_open[j] > 0:
energy_cost = energy_cost + self.scenario.fixed_cost[j]
energy_cost = energy_cost + self.scenario.op_cost[j] * utilization_per_DC[j]
# Cost for loading apps
x_sj = np.array(self.apps_loaded)
energy_cost = energy_cost + np.sum(x_sj[:, j])
apps_loaded += np.sum(x_sj[:,j])
# Calculate energy required for loading app in this time slot
on_sj = np.array(self.apps_loaded_curr_timeslot)
energy_cost = energy_cost + np.sum(on_sj[:, j])
apps_loaded_first += np.sum(on_sj[:,j])
# Cost for assigning to cloud
for i in range(self.scenario.num_BSs):
for s in range(self.scenario.num_apps):
cloud_cost = cloud_cost + self.scenario.cloud_cost[s] * self.fraction_assigned[i][s][0]
# Cost for exceeding latency
avg_latencies = self.calculate_average_latency(time_slot_index)
for s in range(self.scenario.num_apps):
if avg_latencies[s] > self.scenario.max_latency[s]:
latency_cost = latency_cost + self.scenario.slack_cost[s] * (avg_latencies[s]-self.scenario.max_latency[s])
objective = energy_cost + latency_cost + cloud_cost
print("Time slot = {}, overall apps_loaded = {}, overall apps_loaded_first = {}".format(time_slot_index, apps_loaded, apps_loaded_first))
return objective, energy_cost, latency_cost, cloud_cost
def calculate_energy_DCs(self, time_slot_index):
utilization_per_DC = self.calculate_utilization_DCs(time_slot_index)
energy = [0 for _ in range(self.scenario.num_DCs)]
for j in range(self.scenario.num_DCs):
if np.isclose(self.DCs_open[j], 1):
energy[j] = energy[j] + 200
energy[j] = energy[j] + 350 * utilization_per_DC[j]
# Calculate energy required for loading apps with cost=1
x_sj = np.array(self.apps_loaded)
energy[j] = energy[j] + np.sum(x_sj[:,j])
# Calculate energy required for loading app in this time slot with cost=1
on_sj = np.array(self.apps_loaded_curr_timeslot)
energy[j] = energy[j] + np.sum(on_sj[:, j])
return energy, utilization_per_DC
def print_app_loaded_per_DC(self, time_slot_index):
apps_loaded_per_DC = [[] for j in range(self.scenario.num_DCs)]
apps_loaded_curr_time_per_DC = [[] for j in range(self.scenario.num_DCs)]
app_load_count = [0 for s in range(self.scenario.num_apps)]
for j in range(self.scenario.num_DCs):
for s in range(self.scenario.num_apps):
if self.apps_loaded[s][j] > 0:
app_load_count[s] = app_load_count[s] + 1
apps_loaded_per_DC[j].append(s)
# app is loaded and in this time slot
if self.apps_loaded_curr_timeslot[s][j] > 0:
apps_loaded_curr_time_per_DC[j].append(s)
print("Time slot = {}, DC {}. Apps loaded = {}, Apps loaded in this time slot = {}. "
"Number of apps loaded = {}, and in this time slot = {}".format(time_slot_index,
j,
apps_loaded_per_DC[j],
apps_loaded_curr_time_per_DC[j],
len(apps_loaded_per_DC[j]),
len(apps_loaded_curr_time_per_DC[j]),
))
for s in range(self.scenario.num_apps):
print("Time slot = {}, App {} loaded in {} DCs".format(time_slot_index, s, app_load_count[s]))
def calculate_memory_utilization(self, time_slot_index):
memory = [0 for j in range(self.scenario.num_DCs)]
for j in range(self.scenario.num_DCs):
memory_workload = 0
for s in range(self.scenario.num_apps):
# Memory consumed by loading models
if self.apps_loaded[s][j] == 1:
memory[j] = memory[j] + self.scenario.mem_factor[s]
for i in range(self.scenario.num_BSs):
memory_workload = memory_workload + (self.fraction_assigned[i][s][j + 1] *
self.scenario.demand[i][s][time_slot_index] *
self.scenario.input_size[s])
memory_workload = memory_workload / self.scenario.time_slot_in_seconds
memory[j] = memory[j] + memory_workload
memory[j] = memory[j] / self.scenario.mem_capacities[j]
return memory
def calculate_average_latency(self, time_slot_index):
latency = [0 for s in range(self.scenario.num_apps)]
for s in range(self.scenario.num_apps):
total_demand_for_s = sum(
[self.scenario.demand[i][s][time_slot_index] for i in range(self.scenario.num_BSs)])
if total_demand_for_s > 0:
for i in range(self.scenario.num_BSs):
# latency of requests that go to the cloud
latency[s] = latency[s] + (
self.fraction_assigned[i][s][0] * self.scenario.demand[i][s][time_slot_index] *
self.scenario.latency_cloud[i])
for j in range(self.scenario.num_DCs):
# model loading latency
if self.apps_loaded[s][j] > 0 and self.apps_loaded_curr_timeslot[s][j] > 0:
latency[s] = latency[s] + (
self.fraction_assigned[i][s][j + 1] * self.scenario.model_loading_latency[s] *
self.scenario.demand[i][s][time_slot_index] / self.scenario.time_slot_in_seconds)
# latency of reaching each DC
latency[s] = latency[s] + (
self.fraction_assigned[i][s][j + 1] * self.scenario.latency_DC[i][j] *
self.scenario.demand[i][s][time_slot_index])
latency[s] = latency[s] / total_demand_for_s
#print("Average latency for application {} = {}, demand = {}".format(s, latency[s], total_demand_for_s))
return latency
def analyze_fractions_assigned(self, time_slot_index):
demand_assigned = np.array(
[[0.0 for j in range(self.scenario.num_DCs + 1)] for i in range(self.scenario.num_BSs)])
for s in range(self.scenario.num_apps):
total_demand = sum([self.scenario.demand[i][s][time_slot_index] for i in range(self.scenario.num_BSs)])
demand_to_cloud = 0
for i in range(self.scenario.num_BSs):
demand_to_cloud += (self.fraction_assigned[i][s][0] * self.scenario.demand[i][s][time_slot_index])
print("Demand assignment for BS {} = {}".format(i, self.fraction_assigned[i][s]))
for j in range(self.scenario.num_DCs + 1):
demand_assigned[i][j] = self.fraction_assigned[i][s][
j] # * self.scenario.demand[i][s][time_slot_index]
print("Application {}, demand assigned to cloud = {}".format(s, demand_to_cloud))
def calculate_cost_on_sj(self, cost, num_DCs):
on_sj = np.array(self.apps_loaded_curr_timeslot)
total_cost = 0
for j in range(num_DCs):
cost_per_DC = np.sum(on_sj[:,j] * cost)
total_cost = total_cost + cost_per_DC
print("Number of apps loaded in this time slot = {}".format(np.sum(on_sj)))
return total_cost
def calculate_cost_x_sj(self, cost, num_DCs):
x_sj = np.array(self.apps_loaded)
total_cost = 0
for j in range(num_DCs):
cost_per_DC = np.sum(x_sj[:,j] * cost)
total_cost = total_cost + cost_per_DC
print("Number of apps loaded = {}".format(np.sum(x_sj)))
return total_cost
def check_slack_values(self):
for s in range(self.scenario.num_apps):
if self.latency_exceed[s] > 0:
print("Latency exceeded for app {} by {}".format(s, self.latency_exceed[s]))