You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Train
I only test with small dataset and 1 epoch: $ python train.py --corpora_dir data/lang8_processed/ --output_weights_path model/own_model/ --dataset_len 601 --n_epochs 1
This is an error what I met:
I want to run training model by myself. This are what I did:
$ python utils/preprocess_lang8.py --source data/lang8_raw/lang-8-20111007-L1-v2.dat --output_dir data/lang8_processed/ --processes 1
I only test with small dataset and 1 epoch:
$ python train.py --corpora_dir data/lang8_processed/ --output_weights_path model/own_model/ --dataset_len 601 --n_epochs 1
This is an error what I met:
1/19 [>.............................] - ETA: 56s - loss: 1.6039 - labels_probs_loss: 1.4222 - detect_probs_loss: 0.1817 - labels_probs_sparse_categorical_a 2/19 [==>...........................] - ETA: 1s - loss: 1.5281 - labels_probs_loss: 1.3574 - detect_probs_loss: 0.1707 - labels_probs_sparse_categorical_ac 3/19 [===>..........................] - ETA: 1s - loss: 1.5821 - labels_probs_loss: 1.4066 - detect_probs_loss: 0.1755 - labels_probs_sparse_categorical_ac 4/19 [=====>........................] - ETA: 1s - loss: 1.6311 - labels_probs_loss: 1.4459 - detect_probs_loss: 0.1851 - labels_probs_sparse_categorical_ac 5/19 [======>.......................] - ETA: 1s - loss: 1.6209 - labels_probs_loss: 1.4385 - detect_probs_loss: 0.1825 - labels_probs_sparse_categorical_ac 6/19 [========>.....................] - ETA: 1s - loss: 1.5972 - labels_probs_loss: 1.4161 - detect_probs_loss: 0.1811 - labels_probs_sparse_categorical_ac 7/19 [==========>...................] - ETA: 0s - loss: 1.5838 - labels_probs_loss: 1.4040 - detect_probs_loss: 0.1798 - labels_probs_sparse_categorical_ac 8/19 [===========>..................] - ETA: 0s - loss: 1.5876 - labels_probs_loss: 1.4068 - detect_probs_loss: 0.1808 - labels_probs_sparse_categorical_ac 9/19 [=============>................] - ETA: 0s - loss: 1.5598 - labels_probs_loss: 1.3826 - detect_probs_loss: 0.1772 - labels_probs_sparse_categorical_ac10/19 [==============>...............] - ETA: 0s - loss: 1.5784 - labels_probs_loss: 1.3990 - detect_probs_loss: 0.1794 - labels_probs_sparse_categorical_ac11/19 [================>.............] - ETA: 0s - loss: 1.5696 - labels_probs_loss: 1.3923 - detect_probs_loss: 0.1773 - labels_probs_sparse_categorical_ac12/19 [=================>............] - ETA: 0s - loss: 1.5995 - labels_probs_loss: 1.4196 - detect_probs_loss: 0.1800 - labels_probs_sparse_categorical_ac13/19 [===================>..........] - ETA: 0s - loss: 1.5999 - labels_probs_loss: 1.4193 - detect_probs_loss: 0.1806 - labels_probs_sparse_categorical_ac14/19 [=====================>........] - ETA: 0s - loss: 1.6040 - labels_probs_loss: 1.4234 - detect_probs_loss: 0.1805 - labels_probs_sparse_categorical_ac15/19 [======================>.......] - ETA: 0s - loss: 1.6082 - labels_probs_loss: 1.4267 - detect_probs_loss: 0.1815 - labels_probs_sparse_categorical_ac16/19 [========================>.....] - ETA: 0s - loss: 1.5982 - labels_probs_loss: 1.4178 - detect_probs_loss: 0.1805 - labels_probs_sparse_categorical_ac17/19 [=========================>....] - ETA: 0s - loss: 1.5868 - labels_probs_loss: 1.4080 - detect_probs_loss: 0.1788 - labels_probs_sparse_categorical_ac18/19 [===========================>..] - ETA: 0s - loss: 1.5961 - labels_probs_loss: 1.4159 - detect_probs_loss: 0.1801 - labels_probs_sparse_categorical_accuracy: 0.0000e+00 - detect_probs_sparse_categorical_accuracy: 0.4525Traceback (most recent call last):
File "train.py", line 123, in
main(args)
File "train.py", line 78, in main
train(args.corpora_dir, args.output_weights_path, args.vocab_dir,
File "train.py", line 72, in train
gec.model.fit(train_set, epochs=n_epochs, batch_size=batch_size, validation_data=dev_set,
File "/home/sunt/anaconda3/envs/jp_grm_crt/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 1183, in fit
tmp_logs = self.train_function(iterator)
File "/home/sunt/anaconda3/envs/jp_grm_crt/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py", line 889, in call
result = self._call(*args, **kwds)
File "/home/sunt/anaconda3/envs/jp_grm_crt/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py", line 917, in _call
return self._stateless_fn(*args, **kwds) # pylint: disable=not-callable
File "/home/sunt/anaconda3/envs/jp_grm_crt/lib/python3.8/site-packages/tensorflow/python/eager/function.py", line 3023, in call
return graph_function._call_flat(
File "/home/sunt/anaconda3/envs/jp_grm_crt/lib/python3.8/site-packages/tensorflow/python/eager/function.py", line 1960, in _call_flat
return self._build_call_outputs(self._inference_function.call(
File "/home/sunt/anaconda3/envs/jp_grm_crt/lib/python3.8/site-packages/tensorflow/python/eager/function.py", line 591, in call
outputs = execute.execute(
File "/home/sunt/anaconda3/envs/jp_grm_crt/lib/python3.8/site-packages/tensorflow/python/eager/execute.py", line 59, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.FailedPreconditionError: 2 root error(s) found.
(0) Failed precondition: Input dataset was expected to contain 601 elements but contained at least 602 elements.
[[node IteratorGetNext (defined at train.py:72) ]]
(1) Failed precondition: Input dataset was expected to contain 601 elements but contained at least 602 elements.
[[node IteratorGetNext (defined at train.py:72) ]]
[[IteratorGetNext/_10]]
0 successful operations.
0 derived errors ignored. [Op:__inference_train_function_23931]
Function call stack:
train_function -> train_function
I tried to solve but I can't. Please help me with a solution how to pass this error.
Thank you very much!
The text was updated successfully, but these errors were encountered: