-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_singlevae_v2.py
executable file
·411 lines (321 loc) · 15.5 KB
/
test_singlevae_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
'''
Controllability evaluation of Music FaderNets, single VAE (Pati et al.).
'''
import json
import torch
from model_v2 import *
import os
from sklearn.model_selection import train_test_split
from ptb_v2 import *
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pretty_midi
from IPython.display import Audio
from tqdm import tqdm
from polyphonic_event_based_v2 import *
from collections import Counter
from torch.distributions import Normal
from sklearn.linear_model import LinearRegression
from scipy.stats import pearsonr
import matplotlib.pyplot as plt
import seaborn as sns
import random
from test_class import *
sns.set()
class SingleEvaluator(BaseEvaluator):
def __init__(self, ds, epochs=10, num_of_samples=100):
self.epochs = epochs
self.num_of_samples = num_of_samples
super().__init__(ds, epochs=epochs, num_of_samples=num_of_samples)
def evaluate(self, model, min_val, max_val, r_std, n_std):
c_lst, v_lst, r_lst, m_lst = [], [], [], []
for _ in range(self.epochs):
gap = (max_val - min_val) / 8
value_lst = np.array([min_val + k * gap for k in range(8)])
print(min_val, max_val)
print(value_lst)
r_density_lst_new, n_density_lst_new = [], []
result = []
i = 0
r_out_all_lst = []
n_out_all_lst = []
values_dict = {}
while len(result) < self.num_of_samples:
print(len(result), end="\r")
r_density_lst = []
n_density_lst = []
z_r_lst_infer = []
z_n_lst_infer = []
z_lst = []
random_idx = random.randint(0, len(self.ds))
d, r, n, c, r_density, n_density = self.ds[random_idx]
d, r, n, c = torch.from_numpy(d).cuda().long(), torch.from_numpy(r).cuda().long(), \
torch.from_numpy(n).cuda().long(), torch.from_numpy(c).cuda().float()
r_density_lst.append(r_density)
n_density_lst.append(n_density)
d_oh = convert_to_one_hot(d, EVENT_DIMS).unsqueeze(0)
r_oh = convert_to_one_hot(r, RHYTHM_DIMS).unsqueeze(0)
n_oh = convert_to_one_hot(n, NOTE_DIMS).unsqueeze(0)
res = self.model_forward(model, d_oh, r_oh, n_oh, c)
out, dis, _ = res
# get original latent variables
z = repar(dis.mean, dis.stddev)
z_0 = z[:, 0].item()
z_lst.append(z)
# generation part
try:
r_infer_lst, n_infer_lst = [], []
for val in value_lst:
d_shifted, z_r_0 = self.shift(model, d, r, n, c, target_z_value=val)
pm = magenta_decode_midi(clean_output(d_shifted))
pm.write('tmp.mid')
# get class
track = pypianoroll.parse('tmp.mid', beat_resolution=4).tracks
if len(track) < 1: continue
pr = track[0].pianoroll
_, rhythm, note, chroma, _ = get_music_attributes(pr, beat=4)
r_density_shifted, n_density_shifted, _, _ = get_classes(rhythm, note)
r_density_lst_new.append(r_density_shifted)
n_density_lst_new.append(n_density_shifted)
# inferred
z_r_lst_infer.append(z[:, 0].item())
z_n_lst_infer.append(z[:, 0])
if self.is_density_lst_length(r_density_lst_new, n_density_lst_new, value_lst):
# if some tracks has length < 0
r_density_lst_new = []
n_density_lst_new = []
continue
# consistency, restrictiveness
r_out_all_lst.append(np.array(r_density_lst_new))
n_out_all_lst.append(np.array(n_density_lst_new))
# monotonicity
result.append(self.calculate_monotonicity(r_density_lst_new,
n_density_lst_new,
value_lst))
except Exception as e:
print(e)
print(i)
i += 1
r_density_lst_new = []
n_density_lst_new = []
continue
i += 1
r_density_lst_new = []
n_density_lst_new = []
# consistency
r_out_all_lst = np.array(r_out_all_lst) / r_std
n_out_all_lst = np.array(n_out_all_lst) / n_std
consistency_score = 1 - self.calculate_consistency(r_out_all_lst, n_out_all_lst)
restrictiveness_score = 1 - self.calculate_restrictiveness(r_out_all_lst, n_out_all_lst)
monotonicity_score = sum(result) / len(result)
# monotonicity
print("Generator consistency: ", consistency_score)
print("Generator restrictiveness: ", restrictiveness_score)
print("Generator monotonicity:", monotonicity_score)
c_lst.append(consistency_score)
r_lst.append(restrictiveness_score)
m_lst.append(monotonicity_score)
c_lst = np.array(c_lst)
r_lst = np.array(r_lst)
m_lst = np.array(m_lst)
print("============================================")
print("Consistency: {} +/- {}".format(np.mean(c_lst), np.std(c_lst)))
print("Restrictiveness: {} +/- {}".format(np.mean(r_lst), np.std(r_lst)))
print("Monotonicity: {} +/- {}".format(np.mean(m_lst), np.std(m_lst)))
print("============================================")
def model_forward(self, model, d_oh, r_oh, n_oh, c):
res = model(d_oh, c.unsqueeze(0))
return res
def shift(self, model, d, r, n, c, target_z_value):
raise NotImplementedError
def is_density_lst_length(self, r_density_lst_new, n_density_lst_new, value_lst):
raise NotImplementedError
def calculate_consistency(self, r_out_all_lst, n_out_all_lst):
raise NotImplementedError
def calculate_variance(self, r_out_all_lst, n_out_all_lst):
raise NotImplementedError
def calculate_restrictiveness(self, r_out_all_lst, n_out_all_lst):
raise NotImplementedError
def calculate_monotonicity(self, r_density_lst_new, n_density_lst_new, value_lst):
raise NotImplementedError
class SingleRhythmEvaluator(SingleEvaluator):
def __init__(self, ds, epochs=10, num_of_samples=100):
self.epochs = epochs
self.num_of_samples = num_of_samples
super().__init__(ds, epochs=epochs, num_of_samples=num_of_samples)
def shift(self, model, d, r, n, c, target_z_value):
d_oh = convert_to_one_hot(d, EVENT_DIMS).unsqueeze(0)
r_oh = convert_to_one_hot(r, RHYTHM_DIMS).unsqueeze(0)
n_oh = convert_to_one_hot(n, NOTE_DIMS).unsqueeze(0)
c = c.unsqueeze(0)
res = model(d_oh, c)
out, dis, _ = res
# get original latent variables
z = repar(dis.mean, dis.stddev)
z_0 = z[:, 0].item()
# shifting
z[:, 0] = target_z_value
model.eval()
z = torch.cat([z, c], dim=1)
out = model.global_decoder(z, steps=100)
return out, z_0
def is_density_lst_length(self, r_density_lst_new, n_density_lst_new, value_lst):
return len(r_density_lst_new) < len(value_lst)
def calculate_consistency(self, r_out_all_lst, n_out_all_lst):
return np.average(np.std(r_out_all_lst, axis=0))
def calculate_variance(self, r_out_all_lst, n_out_all_lst):
return np.average(np.std(r_out_all_lst, axis=-1))
def calculate_restrictiveness(self, r_out_all_lst, n_out_all_lst):
return np.average(np.std(n_out_all_lst, axis=-1))
def calculate_monotonicity(self, r_density_lst_new, n_density_lst_new, value_lst):
r_density_lst = np.expand_dims(np.array(r_density_lst_new), axis=-1)
z_r_0_lst = np.expand_dims(value_lst, axis=-1)
reg = LinearRegression().fit(z_r_0_lst, r_density_lst)
return reg.score(z_r_0_lst, r_density_lst)
class SingleNoteEvaluator(SingleEvaluator):
def __init__(self, ds, epochs=10, num_of_samples=100):
self.epochs = epochs
self.num_of_samples = num_of_samples
super().__init__(ds, epochs=epochs, num_of_samples=num_of_samples)
def shift(self, model, d, r, n, c, target_z_value):
d_oh = convert_to_one_hot(d, EVENT_DIMS).unsqueeze(0)
r_oh = convert_to_one_hot(r, RHYTHM_DIMS).unsqueeze(0)
n_oh = convert_to_one_hot(n, NOTE_DIMS).unsqueeze(0)
c = c.unsqueeze(0)
res = model(d_oh, c)
out, dis, _ = res
# get original latent variables
z = repar(dis.mean, dis.stddev)
z_0 = z[:, 0].item()
# shifting
z[:, 1] = target_z_value
model.eval()
z = torch.cat([z, c], dim=1)
out = model.global_decoder(z, steps=100)
return out, z_0
def is_density_lst_length(self, r_density_lst_new, n_density_lst_new, value_lst):
return len(n_density_lst_new) < len(value_lst)
def calculate_consistency(self, r_out_all_lst, n_out_all_lst):
return np.average(np.std(n_out_all_lst, axis=0))
def calculate_variance(self, r_out_all_lst, n_out_all_lst):
return np.average(np.std(n_out_all_lst, axis=-1))
def calculate_restrictiveness(self, r_out_all_lst, n_out_all_lst):
return np.average(np.std(r_out_all_lst, axis=-1))
def calculate_monotonicity(self, r_density_lst_new, n_density_lst_new, value_lst):
n_density_lst = np.expand_dims(np.array(n_density_lst_new), axis=-1)
z_n_0_lst = np.expand_dims(value_lst, axis=-1)
reg = LinearRegression().fit(z_n_0_lst, n_density_lst)
return reg.score(z_n_0_lst, n_density_lst)
def run_through(dl):
r_mean, n_mean, t_mean, v_mean = [], [], [], []
r_lst, n_lst = [], []
c_r_lst, c_n_lst, c_t_lst, c_v_lst = [], [], [], []
z_lst = []
r_density_lst, n_density_lst = [], []
r_density_lst_actual, n_density_lst_actual = [], []
temp_count = 0
for j, x in tqdm(enumerate(dl), total=len(dl)):
d, r, n, c, r_density, n_density = x
d, r, n, c = d.cuda().long(), r.cuda().long(), \
n.cuda().long(), c.cuda().float()
r_lst.append(r)
n_lst.append(n)
r_density_lst.append(r_density.float())
n_density_lst.append(n_density.float())
d_oh = convert_to_one_hot(d, EVENT_DIMS)
r_oh = convert_to_one_hot(r, RHYTHM_DIMS)
n_oh = convert_to_one_hot(n, NOTE_DIMS)
res = model(d_oh, c)
# package output
out, dis, z = res
z_lst.append(z.cpu().detach())
r_density_lst = torch.cat(r_density_lst, dim=0).cpu().detach().numpy()
n_density_lst = torch.cat(n_density_lst, dim=0).cpu().detach().numpy()
z_lst = torch.cat(z_lst, dim=0).cpu().detach().numpy()
r_lst = torch.cat(r_lst, dim=0).cpu().detach().numpy()
n_lst = torch.cat(n_lst, dim=0).cpu().detach().numpy()
r_min, r_max = np.amin(z_lst[:, 0]), np.amax(z_lst[:, 0])
n_min, n_max = np.amin(z_lst[:, 1]), np.amax(z_lst[:, 1])
return r_density_lst, n_density_lst, z_lst, \
r_lst, n_lst, \
r_min, r_max, n_min, n_max
def train_test_evaluation(dl, is_hierachical=False, is_vgmidi=False):
r_density_lst, n_density_lst, z_lst, \
r_lst, n_lst, \
r_min, r_max, n_min, n_max = run_through(dl)
# monotonicity
r_density_lst = np.expand_dims(np.array(r_density_lst), axis=-1)
z_r_0_lst = np.expand_dims(z_lst[:, 0], axis=-1)
reg = LinearRegression().fit(z_r_0_lst, r_density_lst)
rhythm_linear_score = reg.score(z_r_0_lst, r_density_lst)
print("Rhythm monotonicity score (z): {}".format(rhythm_linear_score))
n_density_lst = np.expand_dims(np.array(n_density_lst), axis=-1)
z_n_0_lst = np.expand_dims(z_lst[:, 1], axis=-1)
reg = LinearRegression().fit(z_n_0_lst, n_density_lst)
note_linear_score = reg.score(z_n_0_lst, n_density_lst)
print("Note monotonicity score (z): {}".format(note_linear_score))
print()
# get r and n std
r_std = np.std(r_lst)
n_std = np.std(n_lst)
return r_min, r_max, n_min, n_max, r_std, n_std
if __name__ == "__main__":
# some initialization
with open('model_config_v2.json') as f:
args = json.load(f)
if not os.path.isdir('log'):
os.mkdir('log')
if not os.path.isdir('params'):
os.mkdir('params')
from datetime import datetime
timestamp = str(datetime.now())
save_path_timing = 'params/{}.pt'.format(args['name'] + "_" + timestamp)
# model dimensions
EVENT_DIMS = 342
RHYTHM_DIMS = 3
NOTE_DIMS = 16
CHROMA_DIMS = 24
is_adversarial = False
save_path = "params/music_attr_vae_reg_singlevae.pt"
model = MusicAttrSingleVAE(roll_dims=EVENT_DIMS, rhythm_dims=RHYTHM_DIMS, note_dims=NOTE_DIMS,
chroma_dims=CHROMA_DIMS,
hidden_dims=args['hidden_dim'], z_dims=args['z_dim'],
n_step=args['time_step'])
if os.path.exists(save_path):
print("Loading {}".format(save_path))
model.load_state_dict(torch.load(save_path))
else:
print("No save path!!")
if torch.cuda.is_available():
print('Using: ', torch.cuda.get_device_name(torch.cuda.current_device()))
model.cuda()
else:
print('CPU mode')
step, pre_epoch = 0, 0
batch_size = args["batch_size"]
# model.train()
# dataloaders
data_lst, rhythm_lst, note_density_lst, chroma_lst = get_classic_piano()
tlen, vlen = int(0.8 * len(data_lst)), int(0.9 * len(data_lst))
train_ds_dist = YamahaDataset(data_lst, rhythm_lst, note_density_lst,
chroma_lst, mode="train")
train_dl_dist = DataLoader(train_ds_dist, batch_size=batch_size, shuffle=False, num_workers=0)
val_ds_dist = YamahaDataset(data_lst, rhythm_lst, note_density_lst,
chroma_lst, mode="val")
val_dl_dist = DataLoader(val_ds_dist, batch_size=batch_size, shuffle=False, num_workers=0)
test_ds_dist = YamahaDataset(data_lst, rhythm_lst, note_density_lst,
chroma_lst, mode="test")
test_dl_dist = DataLoader(test_ds_dist, batch_size=batch_size, shuffle=False, num_workers=0)
dl = test_dl_dist
print(len(train_ds_dist), len(val_ds_dist), len(test_ds_dist))
# ================= Implementation =================== #
print("Train")
_, _, _, _, r_std, n_std = train_test_evaluation(train_dl_dist, is_hierachical=True)
print("Test")
r_min, r_max, n_min, n_max, _, _ = train_test_evaluation(test_dl_dist, is_hierachical=True)
print("Rhythm Generation")
rhythm_evaluator = SingleRhythmEvaluator(test_ds_dist, epochs=2, num_of_samples=20)
rhythm_evaluator.evaluate(model, r_min, r_max, r_std, n_std)
print("Note Generation")
note_evaluator = SingleNoteEvaluator(test_ds_dist, epochs=2, num_of_samples=20)
note_evaluator.evaluate(model, r_min, r_max, r_std, n_std)