-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathama3-planner.py
executable file
·190 lines (162 loc) · 7.71 KB
/
ama3-planner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python3
options = {
"lmcut" : "--search astar(lmcut())",
"blind" : "--search astar(blind())",
"hmax" : "--search astar(hmax())",
"ff" : "--search eager(single(ff()))",
"lff" : "--search lazy_greedy(ff())",
"lffpo" : "--evaluator h=ff() --search lazy_greedy(h, preferred=h)",
"gc" : "--search eager(single(goalcount()))",
"lgc" : "--search lazy_greedy(goalcount())",
"lgcpo" : "--evaluator h=goalcount() --search lazy_greedy(h, preferred=h)",
"cg" : "--search eager(single(cg()))",
"lcg" : "--search lazy_greedy(cg())",
"lcgpo" : "--evaluator h=cg() --search lazy_greedy(h, preferred=h)",
"lama" : "--alias lama-first",
"oldmands" : "--search astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(max_states=50000,greedy=false),merge_strategy=merge_dfp(),label_reduction=exact(before_shrinking=true,before_merging=false)))",
"mands" : "--search astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50k,threshold_before_merge=1))",
"pdb" : "--search astar(pdb())",
"cpdb" : "--search astar(cpdbs())",
"ipdb" : "--search astar(ipdb())",
"zopdb" : "--search astar(zopdbs())",
}
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("domainfile", help="pathname to a PDDL domain file")
parser.add_argument("problem_dir", help="pathname to a directory containing init.png and goal.png")
parser.add_argument("heuristics", choices=options.keys(),
help="heuristics configuration passed to fast downward. The details are:\n"+
"\n".join([ " "*4+key+"\n"+" "*8+value for key,value in options.items()]))
parser.add_argument("cycle", type=int, default=1, nargs="?",
help="number of autoencoding cycles to perform on the initial/goal images")
parser.add_argument("sigma", type=float, default=None, nargs="?",
help="sigma of the Gaussian noise added to the normalized initial/goal images.")
args = parser.parse_args()
import subprocess
import os
import sys
import latplan
import latplan.model
from latplan.util import *
from latplan.util.planner import *
from latplan.util.plot import *
import latplan.util.stacktrace
import os.path
import keras.backend as K
import tensorflow as tf
import math
import time
import json
import numpy as np
float_formatter = lambda x: "%.3f" % x
np.set_printoptions(threshold=sys.maxsize,formatter={'float_kind':float_formatter})
def main(domainfile, problem_dir, heuristics, cycle, sigma):
network_dir = os.path.dirname(domainfile)
domainfile_rel = os.path.relpath(domainfile, network_dir)
def domain(path):
dom_prefix = domainfile_rel.replace("/","_")
root, ext = os.path.splitext(path)
return "{}_{}{}".format(os.path.splitext(dom_prefix)[0], root, ext)
def heur(path):
root, ext = os.path.splitext(path)
return "{}_{}{}".format(heuristics, root, ext)
log("loaded puzzle")
sae = latplan.model.load(network_dir,allow_failure=True)
log("loaded sae")
setup_planner_utils(sae, problem_dir, network_dir, "ama3")
p = puzzle_module(sae)
log("loaded puzzle")
log(f"loading init/goal")
init, goal = init_goal_misc(p,cycle,noise=sigma)
log(f"loaded init/goal")
log(f"start planning")
bits = np.concatenate((init,goal))
###### files ################################################################
ig = problem(ama(network(domain(heur(f"problem.ig")))))
problemfile = problem(ama(network(domain(heur(f"problem.pddl")))))
planfile = problem(ama(network(domain(heur(f"problem.plan")))))
tracefile = problem(ama(network(domain(heur(f"problem.trace")))))
csvfile = problem(ama(network(domain(heur(f"problem.csv")))))
pngfile = problem(ama(network(domain(heur(f"problem.png")))))
jsonfile = problem(ama(network(domain(heur(f"problem.json")))))
logfile = problem(ama(network(domain(heur(f"problem.log")))))
npzfile = problem(ama(network(domain(heur(f"problem.npz")))))
negfile = problem(ama(network(domain(heur(f"problem.negative")))))
valid = False
found = False
try:
###### preprocessing ################################################################
log(f"start generating problem")
os.path.exists(ig) or np.savetxt(ig,[bits],"%d")
echodo(["helper/ama3-problem.sh",ig,problemfile])
log(f"finished generating problem")
###### do planning #############################################
log(f"start planning")
echodo(["helper/fd-latest.sh", options[heuristics], problemfile, domainfile])
log(f"finished planning")
if not os.path.exists(planfile):
return valid
found = True
log(f"start running a validator")
echodo(["arrival", domainfile, problemfile, planfile, tracefile])
log(f"finished running a validator")
log(f"start parsing the plan")
with open(csvfile,"w") as f:
echodo(["lisp/ama3-read-latent-state-traces.bin", tracefile, str(len(init))],
stdout=f)
plan = np.loadtxt(csvfile, dtype=int)
log(f"finished parsing the plan")
if plan.ndim != 2:
assert plan.ndim == 1
print("Found a plan with length 0; single state in the plan.")
return valid
log(f"start plotting the plan")
sae.plot_plan(plan, pngfile, verbose=True)
log(f"finished plotting the plan")
log(f"start archiving the plan")
plan_images = sae.decode(plan)
np.savez_compressed(npzfile,img_states=plan_images)
log(f"finished archiving the plan")
log(f"start visually validating the plan image : transitions")
# note: only puzzle, hanoi, lightsout have the custom validator, which are all monochrome.
plan_images = sae.render(plan_images) # unnormalize the image
validation = p.validate_transitions([plan_images[0:-1], plan_images[1:]])
print(validation)
valid = bool(np.all(validation))
log(f"finished visually validating the plan image : transitions")
log(f"start visually validating the plan image : states")
print(p.validate_states(plan_images))
log(f"finished visually validating the plan image : states")
return valid
finally:
with open(jsonfile,"w") as f:
parameters = sae.parameters.copy()
del parameters["mean"]
del parameters["std"]
json.dump({
"network":network_dir,
"problem":os.path.normpath(problem_dir).split("/")[-1],
"domain" :os.path.normpath(problem_dir).split("/")[-2],
"noise":sigma,
"times":times,
"heuristics":heuristics,
"domainfile":domainfile,
"problemfile":problemfile,
"planfile":planfile,
"tracefile":tracefile,
"csvfile":csvfile,
"pngfile":pngfile,
"jsonfile":jsonfile,
"statistics":json.loads(echo_out(["helper/fd-parser.awk", logfile])),
"parameters":parameters,
"valid":valid,
"found":found,
"exhausted": os.path.exists(negfile),
"cycle":cycle,
}, f, indent=2)
if __name__ == '__main__':
try:
main(**vars(args))
except:
import latplan.util.stacktrace
latplan.util.stacktrace.format()