-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathama3-revalidator.py
executable file
·82 lines (67 loc) · 2.64 KB
/
ama3-revalidator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python3
# This script revalidates an existing result without planning.
import numpy as np
import subprocess
import os
import sys
import latplan
import latplan.model
from latplan.util import *
from latplan.util.planner import *
from latplan.util.plot import *
import latplan.util.stacktrace
import os.path
import keras.backend as K
import tensorflow as tf
import math
import time
import json
float_formatter = lambda x: "%.3f" % x
np.set_printoptions(threshold=sys.maxsize,formatter={'float_kind':float_formatter})
def main(domainfile, problem_dir, heuristics):
network_dir = os.path.dirname(domainfile)
domainfile_rel = os.path.relpath(domainfile, network_dir)
def domain(path):
dom_prefix = domainfile_rel.replace("/","_")
root, ext = os.path.splitext(path)
return "{}_{}{}".format(os.path.splitext(dom_prefix)[0], root, ext)
def heur(path):
root, ext = os.path.splitext(path)
return "{}_{}{}".format(heuristics, root, ext)
log("loaded puzzle")
sae = latplan.model.load(network_dir,allow_failure=True)
log("loaded sae")
setup_planner_utils(sae, problem_dir, network_dir, "ama3")
p = puzzle_module(sae)
log("loaded puzzle")
###### files ################################################################
pngfile = problem(ama(network(domain(heur(f"problem.png")))))
jsonfile = problem(ama(network(domain(heur(f"problem.json")))))
npzfile = problem(ama(network(domain(heur(f"problem.npz")))))
log(f"start loading the plan")
with np.load(npzfile) as data:
plan_images = data["img_states"]
log(f"finished archiving the plan")
log(f"start visually validating the plan image : transitions")
# note: only puzzle, hanoi, lightsout have the custom validator, which are all monochrome.
plan_images = sae.render(plan_images) # unnormalize the image
validation = p.validate_transitions([plan_images[0:-1], plan_images[1:]])
print(validation)
valid = bool(np.all(validation))
log(f"finished visually validating the plan image : transitions")
log(f"start visually validating the plan image : states")
print(p.validate_states(plan_images))
log(f"finished visually validating the plan image : states")
with open(jsonfile,"r") as f:
data = json.load(f)
print(f"previously, this solution was {data['valid']}. Now it is {valid}")
data["valid"] = valid
with open(jsonfile,"w") as f:
json.dump(data, f, indent=2)
return valid
if __name__ == '__main__':
try:
main(*sys.argv[1:])
except:
import latplan.util.stacktrace
latplan.util.stacktrace.format()