-
Notifications
You must be signed in to change notification settings - Fork 293
/
Copy pathseq2seq.py
256 lines (205 loc) · 9.89 KB
/
seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from logging import warning
from typing import List
import tensorflow as tf
from neuraxle.data_container import DataContainer
from neuraxle.hyperparams.space import HyperparameterSamples
from neuraxle.metaopt.random import ValidationSplitWrapper
from neuraxle.metrics import MetricsWrapper
from neuraxle.pipeline import Pipeline, MiniBatchSequentialPipeline
from neuraxle.steps.data import EpochRepeater, DataShuffler
from neuraxle.steps.flow import TrainOnlyWrapper
from neuraxle.steps.loop import ForEachDataInput
from sklearn.metrics import mean_squared_error
from tensorflow_core.python.client import device_lib
from tensorflow_core.python.keras import Input, Model
from tensorflow_core.python.keras.layers import GRUCell, RNN, Dense
from tensorflow_core.python.training.adam import AdamOptimizer
from datasets import generate_data
from datasets import metric_3d_to_2d_wrapper
from neuraxle_tensorflow.tensorflow_v1 import TensorflowV1ModelStep
from neuraxle_tensorflow.tensorflow_v2 import Tensorflow2ModelStep
from plotting import plot_metrics
from steps import MeanStdNormalizer, ToNumpy, PlotPredictionsWrapper
def create_model(step: Tensorflow2ModelStep) -> tf.keras.Model:
"""
Create a TensorFlow v2 sequence to sequence (seq2seq) encoder-decoder model.
:param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
:return: TensorFlow v2 Keras model
"""
# shape: (batch_size, seq_length, input_dim)
encoder_inputs = Input(
shape=(None, step.hyperparams['input_dim']),
batch_size=None,
dtype=tf.dtypes.float32,
name='encoder_inputs'
)
last_encoder_outputs, last_encoders_states = _create_encoder(step, encoder_inputs)
decoder_outputs = _create_decoder(step, last_encoder_outputs, last_encoders_states)
return Model(encoder_inputs, decoder_outputs)
def _create_encoder(step: Tensorflow2ModelStep, encoder_inputs: Input) -> (tf.Tensor, List[tf.Tensor]):
"""
Create an encoder RNN using GRU Cells. GRU cells are similar to LSTM cells.
:param step: The base Neuraxle step for TensorFlow v2 (class Tensorflow2ModelStep)
:param encoder_inputs: encoder inputs layer of shape (batch_size, seq_length, input_dim)
:return: (last encoder outputs, last stacked encoders states)
last_encoder_outputs shape: (batch_size, hidden_dim)
last_encoder_states shape: (layers_stacked_count, batch_size, hidden_dim)
"""
encoder = RNN(cell=_create_stacked_rnn_cells(step), return_sequences=False, return_state=True)
last_encoder_outputs_and_states = encoder(encoder_inputs)
# last_encoder_outputs shape: (batch_size, hidden_dim)
# last_encoder_states shape: (layers_stacked_count, batch_size, hidden_dim)
# refer to: https://www.tensorflow.org/api_docs/python/tf/keras/layers/RNN?version=stable#output_shape_2
last_encoder_outputs, *last_encoders_states = last_encoder_outputs_and_states
return last_encoder_outputs, last_encoders_states
def _create_decoder(
step: Tensorflow2ModelStep, last_encoder_outputs: tf.Tensor,last_encoders_states: List[tf.Tensor]
) -> tf.Tensor:
"""
Create a decoder RNN using GRU cells.
:param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
:param last_encoders_states: last encoder states tensor
:param last_encoder_outputs: last encoder output tensor
:return: decoder output
"""
decoder_lstm = RNN(cell=_create_stacked_rnn_cells(step), return_sequences=True, return_state=False)
last_encoder_output = tf.expand_dims(last_encoder_outputs, axis=1)
# last encoder output shape: (batch_size, 1, hidden_dim)
replicated_last_encoder_output = tf.repeat(
input=last_encoder_output,
repeats=step.hyperparams['window_size_future'],
axis=1
)
# replicated last encoder output shape: (batch_size, window_size_future, hidden_dim)
decoder_outputs = decoder_lstm(replicated_last_encoder_output, initial_state=last_encoders_states)
# decoder outputs shape: (batch_size, window_size_future, hidden_dim)
decoder_dense = Dense(step.hyperparams['output_dim'])
# decoder outputs shape: (batch_size, window_size_future, output_dim)
return decoder_dense(decoder_outputs)
def _create_stacked_rnn_cells(step: Tensorflow2ModelStep) -> List[GRUCell]:
"""
Create a `layers_stacked_count` amount of GRU cells and stack them on top of each other.
They have a `hidden_dim` number of neuron layer size.
:param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
:return: list of gru cells
"""
cells = []
for _ in range(step.hyperparams['layers_stacked_count']):
cells.append(GRUCell(step.hyperparams['hidden_dim']))
return cells
def create_loss(step: Tensorflow2ModelStep, expected_outputs: tf.Tensor, predicted_outputs: tf.Tensor) -> tf.Tensor:
"""
Create model loss.
:param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
:param expected_outputs: expected outputs of shape (batch_size, window_size_future, output_dim)
:param predicted_outputs: expected outputs of shape (batch_size, window_size_future, output_dim)
:return: loss (a tf Tensor that is a float)
"""
l2 = step.hyperparams['lambda_loss_amount'] * sum(
tf.reduce_mean(tf.nn.l2_loss(tf_var))
for tf_var in step.model.trainable_variables
)
output_loss = sum(
tf.reduce_mean(tf.nn.l2_loss(pred - expected))
for pred, expected in zip(predicted_outputs, expected_outputs)
) / float(len(predicted_outputs))
return output_loss + l2
def create_optimizer(step: TensorflowV1ModelStep) -> AdamOptimizer:
"""
Create a TensorFlow 2 Optimizer: here the AdamOptimizer.
:param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
:return: optimizer
"""
return AdamOptimizer(learning_rate=step.hyperparams['learning_rate'])
def main(chosen_device):
exercice_number = 1
print('exercice {}\n=================='.format(exercice_number))
data_inputs, expected_outputs = generate_data(
# See: https://github.com/guillaume-chevalier/seq2seq-signal-prediction/blob/master/datasets.py
exercice_number=exercice_number,
n_samples=None,
window_size_past=None,
window_size_future=None
)
print('data_inputs shape: {} => (n_samples, window_size_past, input_dim)'.format(data_inputs.shape))
print('expected_outputs shape: {} => (n_samples, window_size_future, output_dim)'.format(expected_outputs.shape))
sequence_length = data_inputs.shape[1]
input_dim = data_inputs.shape[2]
output_dim = expected_outputs.shape[2]
batch_size = 100
epochs = 3
validation_size = 0.15
max_plotted_validation_predictions = 10
seq2seq_pipeline_hyperparams = HyperparameterSamples({
'hidden_dim': 100,
'layers_stacked_count': 2,
'lambda_loss_amount': 0.0003,
'learning_rate': 0.006,
'window_size_future': sequence_length,
'output_dim': output_dim,
'input_dim': input_dim
})
feature_0_metric = metric_3d_to_2d_wrapper(mean_squared_error)
metrics = {'mse': feature_0_metric}
signal_prediction_pipeline = Pipeline([
ForEachDataInput(MeanStdNormalizer()),
ToNumpy(),
PlotPredictionsWrapper(Tensorflow2ModelStep(
# See: https://github.com/Neuraxio/Neuraxle-TensorFlow
create_model=create_model,
create_loss=create_loss,
create_optimizer=create_optimizer,
expected_outputs_dtype=tf.dtypes.float32,
data_inputs_dtype=tf.dtypes.float32,
print_loss=True
).set_hyperparams(seq2seq_pipeline_hyperparams))
]).set_name('SignalPrediction')
pipeline = Pipeline([EpochRepeater(
ValidationSplitWrapper(
MetricsWrapper(Pipeline([
TrainOnlyWrapper(DataShuffler()),
MiniBatchSequentialPipeline([
MetricsWrapper(
signal_prediction_pipeline,
metrics=metrics,
name='batch_metrics'
)
], batch_size=batch_size)
]), metrics=metrics,
name='epoch_metrics',
print_metrics=True
),
test_size=validation_size,
scoring_function=feature_0_metric
), epochs=epochs)])
pipeline, outputs = pipeline.fit_transform(data_inputs, expected_outputs)
plot_metrics(pipeline=pipeline, exercice_number=exercice_number)
plot_predictions(data_inputs, expected_outputs, pipeline, max_plotted_validation_predictions)
def plot_predictions(data_inputs, expected_outputs, pipeline, max_plotted_predictions):
_, _, data_inputs_validation, expected_outputs_validation = \
pipeline.get_step_by_name('ValidationSplitWrapper').split(data_inputs, expected_outputs)
pipeline.apply('toggle_plotting')
pipeline.apply('set_max_plotted_predictions', max_plotted_predictions)
signal_prediction_pipeline = pipeline.get_step_by_name('SignalPrediction')
signal_prediction_pipeline.transform_data_container(DataContainer(
data_inputs=data_inputs_validation,
expected_outputs=expected_outputs_validation
))
def choose_tf_device():
"""
Choose a TensorFlow device (e.g.: GPU if available) to compute on.
"""
tf.debugging.set_log_device_placement(True)
devices = [x.name for x in device_lib.list_local_devices()]
print('You can use the following tf devices: {}'.format(devices))
try:
chosen_device = [d for d in devices if 'gpu' in d.lower()][0]
except:
warning(
"No GPU device found. Please make sure to do `Runtime > Change Runtime Type` and select GPU for Python 3.")
chosen_device = devices[0]
print('Chosen Device: {}'.format(chosen_device))
return chosen_device
if __name__ == '__main__':
chosen_device = choose_tf_device()
main(chosen_device)