-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathckpt2pth.py
250 lines (223 loc) · 10.1 KB
/
ckpt2pth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os, sys
import argparse
import json
import yaml
import torch
import pytorch_lightning as pl
from neptune.new.integrations.pytorch_lightning import NeptuneLogger
import asteroid
from asteroid import engine
import numpy as np
import datasets
import models
import losses
import utils
pl.seed_everything(1, workers=True)
# Keys which are not in the conf.yml file can be added here.
# In the hierarchical dictionary created when parsing, the key `key` can be
# found at dic['main_args'][key]
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
"--checkpoint", type=str, required=True, help="the checkpoint to export as best model"
)
def main(conf):
# dataloader_kwargs = ({})
# train_set = datasets.CombineDatasets(
# speech_dirs=conf["data"]["speech_train_dir"],
# music_dirs=conf["data"]["music_train_dir"],
# sample_rate=conf["data"]["sample_rate"],
# original_sample_rate=conf["data"]["original_sample_rate"],
# segment=conf["data"]["segment"],
# shuffle_tracks=True,
# multi_speakers=conf["training"]["multi_speakers"],
# multi_speakers_frequency=conf["training"]["multi_speakers_frequency"],
# data_ratio=conf["training"]["data_ratio"] if "data_ratio" in conf["training"] else 1.,
# new_data=conf["training"]["new_data"] if "new_data" in conf["training"] else False
# )
# val_set = datasets.CombineDatasets(
# speech_dirs=conf["data"]["speech_valid_dir"],
# music_dirs=conf["data"]["music_valid_dir"],
# sample_rate=conf["data"]["sample_rate"],
# original_sample_rate=conf["data"]["original_sample_rate"],
# segment=conf["data"]["segment"],
# shuffle_tracks=False,
# multi_speakers=conf["training"]["multi_speakers"],
# multi_speakers_frequency=conf["training"]["multi_speakers_frequency"],
# data_ratio=1.,
# new_data=False
# )
# train_loader = torch.utils.data.DataLoader(
# train_set,
# shuffle=True,
# batch_size=conf["training"]["batch_size"],
# drop_last=True,
# **dataloader_kwargs
# )
# val_loader = torch.utils.data.DataLoader(
# val_set,
# shuffle=False,
# batch_size=conf["training"]["batch_size"],
# drop_last=True,
# pin_memory=torch.cuda.is_available(),
# num_workers=conf["training"]["num_workers"],
# )
###Models
if(conf["model"]["name"] == "ConvTasNet"):
conf["masknet"].update({"n_src": conf["data"]["n_src"]})
model = models.ConvTasNetNorm(
conf["filterbank"],
conf["masknet"],
sample_rate=conf["data"]["sample_rate"],
device=arg_dic["main_args"]["device"]
)
elif (conf["model"]["name"] == "UNet"):
# UNet with logl2 time loss and normalization inside model
model = models.UNet(
conf["data"]["sample_rate"],
conf["data"]["fft_size"],
conf["data"]["hop_size"],
conf["data"]["window_size"],
conf["model"]["kernel_size"],
conf["model"]["stride"],
device=arg_dic["main_args"]["device"],
mask_logit=conf["model"]["mask_logit"]
)
elif (conf["model"]["name"] == "UNetP"):
# UNet with logl2 time loss and normalization inside model
model = models.UNetP(
conf["data"]["sample_rate"],
conf["data"]["fft_size"],
conf["data"]["hop_size"],
conf["data"]["window_size"],
conf["model"]["kernel_size"],
conf["model"]["stride"],
device=arg_dic["main_args"]["device"],
mask_logit=conf["model"]["mask_logit"]
)
elif(conf["model"]["name"] == "OUMX"):
scaler_mean, scaler_std = datasets.get_statistics(conf, val_set)
max_bin = utils.bandwidth_to_max_bin(conf["data"]["sample_rate"], conf["model"]["in_chan"], conf["model"]["bandwidth"])
#scaler_mean, scaler_std = np.array([0]*max_bin), np.array([0.5]*max_bin)
model = models.OUMX(
window_length=conf["model"]["window_length"],
input_mean=scaler_mean,
input_scale=scaler_std,
nb_channels=conf["model"]["nb_channels"],
hidden_size=conf["model"]["hidden_size"],
in_chan=conf["model"]["in_chan"],
n_hop=conf["model"]["nhop"],
sources=conf["data"]["sources"],
max_bin=max_bin,
bidirectional=conf["model"]["bidirectional"],
sample_rate=conf["data"]["sample_rate"],
spec_power=conf["model"]["spec_power"],
)
elif(conf["model"]["name"] == "UNetAttn"):
#scaler_mean, scaler_std = datasets.get_statistics(conf, val_set)
max_bins = utils.bandwidth_to_max_bin(conf["data"]["sample_rate"], conf["model"]["in_chan"], conf["model"]["bandwidth"])
#scaler_mean, scaler_std = np.array([0]*max_bin), np.array([0.5]*max_bin)
model = models.UNetAttn(
window_length=conf["model"]["window_length"],
nb_channels=conf["model"]["nb_channels"],
in_chan=conf["model"]["in_chan"],
n_hop=conf["model"]["nhop"],
max_bins=max_bins,
sample_rate=conf["data"]["sample_rate"],
spec_power=conf["model"]["spec_power"],
n_src=conf["data"]["n_src"],
mask_logit=conf["model"]["mask_logit"],
k=conf["model"]["k"],
hidden_size=conf["model"]["hidden_size"]
)
# ###Losses
# loss_module = utils.my_import("losses."+conf["training"]['loss'])
# if 'weighted' in conf["training"]['loss']:
# loss_func = loss_module(weights=np.array(conf["training"]['class_weights'].split(';'),dtype=np.float32))
# elif 'MultiDomain' in conf["training"]['loss']:
# loss_func = losses.MultiDomainLoss(
# window_length=conf["model"]["window_length"],
# in_chan=conf["model"]["in_chan"],
# n_hop=conf["model"]["nhop"],
# spec_power=conf["model"]["spec_power"],
# nb_channels=conf["model"]["nb_channels"],
# loss_combine_sources=conf["training"]['loss_combine_sources'],
# loss_use_multidomain=conf["training"]['loss_use_multidomain'],
# mix_coef=conf["training"]['mix_coef'],
# )
# else:
# loss_func = loss_module()
# ###Optimizer
# optimizer = asteroid.engine.optimizers.make_optimizer(model.parameters(), lr=conf["optim"]["lr"], weight_decay=conf["optim"]["weight_decay"])
# if conf["training"]["half_lr"]:
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
# optimizer=optimizer, factor=conf["optim"]["lr_decay_gamma"], patience=conf["optim"]["lr_decay_patience"], cooldown=10
# )
# # Just after instantiating, save the args. Easy loading in the future.
# exp_dir = os.path.join(conf["main_args"]["exp_dir"],conf["main_args"]['config'].split('.yml')[0])
# os.makedirs(exp_dir, exist_ok=True)
# conf_path = os.path.join(exp_dir, "conf.yml")
# with open(conf_path, "w") as outfile:
# yaml.safe_dump(conf, outfile)
# ### delete paths key which raises error
# if "speech_train_dir" in conf["data"]: del conf["data"]["speech_train_dir"]
# if "speech_valid_dir" in conf["data"]: del conf["data"]["speech_valid_dir"]
# if "music_train_dir" in conf["data"]: del conf["data"]["music_train_dir"]
# if "music_valid_dir" in conf["data"]: del conf["data"]["music_valid_dir"]
# system = asteroid.engine.system.System(
# model=model,
# loss_func=loss_func,
# optimizer=optimizer,
# train_loader=train_loader,
# val_loader=val_loader,
# scheduler=scheduler,
# config=conf
# )
# callbacks = []
# checkpoint_dir = os.path.join(exp_dir, "checkpoints")
# checkpoint = pl.callbacks.ModelCheckpoint(
# checkpoint_dir,
# monitor="val_loss",
# mode="min",
# save_top_k=5,
# verbose=True
# )
# callbacks.append(checkpoint)
# if conf["training"]["early_stop"]:
# callbacks.append(pl.callbacks.EarlyStopping(
# monitor="val_loss",
# mode="min",
# patience=conf["optim"]["patience"],
# verbose=True
# ))
# if conf["main_args"]["load"]:
# checkpoint_files = [os.path.join(checkpoint_dir, x) for x in os.listdir(checkpoint_dir) if x.endswith(".ckpt")]
# if len(checkpoint_files)>0:
# newest_checkpoint = max(checkpoint_files, key = os.path.getctime)
# else:
# newest_checkpoint = None
# else:
# newest_checkpoint = None
device = torch.device(conf["main_args"]["device"])
state_dict = torch.load(conf["main_args"]["checkpoint"], map_location=device)
to_save = model.serialize()
#to_save.update(train_set.get_infos())
torch.save(to_save, conf["main_args"]["output_model"])
if __name__ == "__main__":
args = parser.parse_args()
# We start with opening the config file conf.yml as a dictionary from
# which we can create parsers. Each top level key in the dictionary defined
# by the YAML file creates a group in the parser.
config_model = os.path.join(os.path.dirname(args.checkpoint).replace(os.path.sep+'checkpoints',''), "conf.yml")
with open(config_model) as f:
def_conf = yaml.safe_load(f)
parser = asteroid.utils.prepare_parser_from_dict(def_conf, parser=parser)
# Arguments are then parsed into a hierarchical dictionary (instead of
# flat, as returned by argparse) to facilitate calls to the different
# asteroid methods (see in main).
# plain_args is the direct output of parser.parse_args() and contains all
# the attributes in an non-hierarchical structure. It can be useful to also
# have it so we included it here but it is not used.
arg_dic, plain_args = asteroid.utils.parse_args_as_dict(parser, return_plain_args=True)
arg_dic["main_args"]["device"] = 'cpu'
arg_dic["main_args"]["output_model"] = os.path.join(os.path.dirname(args.checkpoint).replace(os.path.sep+'checkpoints',''), "best_model.pth")
main(arg_dic)