-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathalpacaModifier.py
101 lines (87 loc) · 4.28 KB
/
alpacaModifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import gradio as gr
import openai
import json
from setfit import SetFitModel
OAI_PROMPT = "You are a helpful assistant. You answer in a concise and accurate manner. Your responses are short and to the point."
class AlpacaModifier:
def __init__(self):
self.input = ''
self.instruction = ''
self.old_output = ''
self.modified_output = ''
def ask_gpt(self, instruction='', input='', output='', model='', key=''):
openai.api_key = key
composite_content = f"""Given the following JSON prompt for a large language model, your task is to suggest a better prompt in the same JSON format.
{{
"instruction": "{instruction}",
"input": "{input}",
"output: "{output}"
}}
Improved Prompt:
"""
print(f'Sending:\n{composite_content}')
completion = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": OAI_PROMPT},
{"role": "user", "content": composite_content}
]
)
gpt_out = None
try:
gpt_out = json.loads(completion["choices"][0]["message"]["content"])
except:
pass
if gpt_out:
return gpt_out["instruction"],gpt_out["input"],gpt_out["output"]
return "","",""
def run(self):
with gr.Blocks(css=".warning {background-color: yellow}; .danger {background-color: red}", themes=gr.themes.Soft()) as demo:
with gr.Column():
gr.Markdown("""
## 🦙 Alpaca Dataset Editor
Cleaned Dataset: [Github](https://github.com/gururise/AlpacaDataCleaned) - [Hugging Face](https://huggingface.co/datasets/yahma/alpaca-cleaned)
*To use GPT to generate answers, OpenAI API key is required*
""")
instruction_text = gr.Textbox(lines=2, label="Original Instruction", value=self.instruction, interactive=True, elem_classes="")
input_text = gr.Textbox(lines=1, label="Original Input", value=self.input, interactive=True, elem_classes="")
output_text = gr.Textbox(lines=15, label="Original Output", value=self.old_output, interactive=True, elem_classes="")
bar_plot = gr.BarPlot(vertical=False,title="Predicted Quality",x="label",y="score", y_lim=[0,1.0], show_label=False,color="score",caption="",width=400)
with gr.Accordion("GPT Suggestion", open=False):
modified_instruction_text = gr.Textbox(lines=2, label="Suggested Instruction", value=self.instruction, interactive=False)
modified_input_text = gr.Textbox(lines=1, label="Suggested Input", value=self.input, interactive=False)
modified_output_text = gr.Textbox(lines=5, label="Suggested Output", value=self.modified_output, interactive=False)
with gr.Row():
index = gr.Number(label="Index", value=0, every=1, interactive=True)
index.change(self.get_index,
inputs=[index],
outputs=[index, instruction_text, input_text, output_text, bar_plot])
button_reset = gr.Button(value="Reset Index")
button_reset.click(self.reset_callback,
outputs=[index, instruction_text, input_text, output_text, bar_plot])
button_reset = gr.Button(value="Find Next Bad")
button_reset.click(self.find_next_bad,
outputs=[index, instruction_text, input_text, output_text, bar_plot])
with gr.Row():
button_previous = gr.Button(value="Previous")
button_previous.click(self.previous_callback,
outputs=[index, instruction_text, input_text, output_text, bar_plot])
button_next = gr.Button(value="Next")
button_next.click(self.next_callback,
outputs=[index, instruction_text, input_text, output_text, bar_plot])
button_save = gr.Button(value="Save Entry")
button_save.click(self.save_callback,
inputs=[index, instruction_text, input_text, output_text])
button_delete= gr.Button(value="Delete Entry")
button_delete.click(self.delete_callback,
outputs=[index, instruction_text, input_text, output_text])
button_export = gr.Button(value="Export File")
button_export.click(self.export_callback)
with gr.Row():
gpt_api_key = gr.Textbox(label="API key", placeholder="Enter your OpenAI API Key (optional)")
gpt_model = gr.Dropdown(label="OpenAI Model", choices=["gpt-3.5-turbo","text-davinci-003"],value="gpt-3.5-turbo")
button_ask_gpt = gr.Button(value="Ask GPT")
button_ask_gpt.click(self.ask_gpt,
inputs=[instruction_text, input_text, output_text, gpt_model, gpt_api_key],
outputs=[modified_instruction_text, modified_input_text, modified_output_text])
demo.launch()