From e57cb96e29c5a238acda3b7f555542ff5fb2ad12 Mon Sep 17 00:00:00 2001 From: Blampey Quentin Date: Fri, 12 Jan 2024 09:45:39 +0100 Subject: [PATCH 1/8] phenocycler config readme --- workflow/config/phenocycler/README.md | 5 +++++ 1 file changed, 5 insertions(+) create mode 100644 workflow/config/phenocycler/README.md diff --git a/workflow/config/phenocycler/README.md b/workflow/config/phenocycler/README.md new file mode 100644 index 00000000..693aa9d5 --- /dev/null +++ b/workflow/config/phenocycler/README.md @@ -0,0 +1,5 @@ +For PhenoCycler data, there are multiple config files based on the resolution setting of the PhenoCycler. +Choose the right one according to your settings: +- 10X (1 micron is 1 pixel) +- 20X (1 micron is 2 pixels) +- 40X (1 micron is 4 pixels) \ No newline at end of file From 8ec9d5f47ab17ff4c356ccd1a38c6351f2287635 Mon Sep 17 00:00:00 2001 From: Blampey Quentin Date: Fri, 12 Jan 2024 09:45:58 +0100 Subject: [PATCH 2/8] run CI on master (push and PR) --- .github/workflows/ci.yml | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 92e01870..9c63ee9b 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -1,8 +1,12 @@ name: ci on: push: + branches: [master] tags: - v* + pull_request: + branches: [master] + jobs: deploy-doc: runs-on: ubuntu-latest @@ -46,6 +50,7 @@ jobs: run: poetry run mkdocs gh-deploy --force publish: needs: [deploy-doc] + if: contains(github.ref, 'tags') runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 From 577ae069c22f8e6a3f8cd68621427dc69ffe12b2 Mon Sep 17 00:00:00 2001 From: Blampey Quentin Date: Fri, 12 Jan 2024 10:40:49 +0100 Subject: [PATCH 3/8] improve on shapes: filter area based on shapely, not baysor area --- docs/tutorials/snakemake.md | 4 ++-- sopa/_constants.py | 1 + sopa/segmentation/baysor/resolve.py | 2 +- sopa/segmentation/shapes.py | 2 +- workflow/Snakefile | 4 ++-- workflow/config/toy/uniform_baysor.yaml | 2 ++ workflow/utils.py | 7 +++++++ 7 files changed, 16 insertions(+), 6 deletions(-) diff --git a/docs/tutorials/snakemake.md b/docs/tutorials/snakemake.md index 508b135e..977489f8 100644 --- a/docs/tutorials/snakemake.md +++ b/docs/tutorials/snakemake.md @@ -72,7 +72,7 @@ Make sure you have installed everything as detailed in this tutorial, and then r cd workflow # run this at the root of the 'sopa' directory # you can replace tuto.zarr by another path where the data will be saved - snakemake --config data_path=. sdata_path=tuto.zarr --configfile=config/toy/uniform_cellpose.yaml --cores 1 --use-conda + snakemake --config sdata_path=tuto.zarr --configfile=config/toy/uniform_cellpose.yaml --cores 1 --use-conda ``` === "Baysor usage" @@ -82,7 +82,7 @@ Make sure you have installed everything as detailed in this tutorial, and then r cd workflow # run this at the root of the 'sopa' directory # replace tuto.zarr by the path where you want the data to be saved - snakemake --config data_path=. sdata_path=tuto.zarr --configfile=config/toy/uniform_baysor.yaml --cores 1 --use-conda + snakemake --config sdata_path=tuto.zarr --configfile=config/toy/uniform_baysor.yaml --cores 1 --use-conda ``` !!! notes diff --git a/sopa/_constants.py b/sopa/_constants.py index 11f2e9fe..a4d2026c 100644 --- a/sopa/_constants.py +++ b/sopa/_constants.py @@ -16,6 +16,7 @@ class SopaKeys: INSTANCE_KEY = "cell_id" BAYSOR_DEFAULT_CELL_KEY = "cell" BAYSOR_AREA_OBS = "baysor_area" + AREA_OBS = "area" Z_SCORES = "z_scores" diff --git a/sopa/segmentation/baysor/resolve.py b/sopa/segmentation/baysor/resolve.py index f7dbd141..604607c1 100644 --- a/sopa/segmentation/baysor/resolve.py +++ b/sopa/segmentation/baysor/resolve.py @@ -30,7 +30,6 @@ def read_baysor( directory / "segmentation_counts.loom", obs_names="Name", var_names="Name" ) adata.obs.rename(columns={"area": SopaKeys.BAYSOR_AREA_OBS}, inplace=True) - adata = adata[adata.obs[SopaKeys.BAYSOR_AREA_OBS] > min_area] cells_num = pd.Series(adata.obs.CellID.astype(int), index=adata.obs_names) @@ -48,6 +47,7 @@ def read_baysor( gdf.geometry = gdf.geometry.map(lambda cell: shapes._ensure_polygon(make_valid(cell))) gdf = gdf[~gdf.geometry.isna()] + gdf = gdf[gdf.area > min_area] return gdf.geometry.values, adata[gdf.index].copy() diff --git a/sopa/segmentation/shapes.py b/sopa/segmentation/shapes.py index a116870f..c26ee429 100644 --- a/sopa/segmentation/shapes.py +++ b/sopa/segmentation/shapes.py @@ -162,7 +162,7 @@ def geometrize( cells = [cell for cell in cells if cell is not None] log.info( - f"Percentage of non-geometrized cells: {(max_cells - len(cells)) / max_cells:.2%} (this can be due to cellpose artefacts)" + f"Percentage of non-geometrized cells: {(max_cells - len(cells)) / max_cells:.2%} (usually due to segmentation artefacts)" ) return cells diff --git a/workflow/Snakefile b/workflow/Snakefile index 062aadf7..e340c344 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -21,7 +21,7 @@ rule all: rule to_spatialdata: input: - paths.data_path, + paths.data_path if config["read"]["technology"] != "uniform" else [], output: paths.sdata_zgroup if paths.data_path else [], conda: @@ -138,7 +138,7 @@ rule resolve_baysor: """ sopa resolve baysor {paths.sdata_path} --gene-column {args.gene_column} {params.args_min_area} {params.args_patches_dirs} - #rm -r {paths.smk_baysor_temp_dir} # cleanup large baysor files + rm -r {paths.smk_baysor_temp_dir} # cleanup large baysor files """ rule aggregate: diff --git a/workflow/config/toy/uniform_baysor.yaml b/workflow/config/toy/uniform_baysor.yaml index b04326e8..c7f5eef5 100644 --- a/workflow/config/toy/uniform_baysor.yaml +++ b/workflow/config/toy/uniform_baysor.yaml @@ -10,6 +10,8 @@ patchify: segmentation: baysor: + min_area: 500 + config: data: force_2d: true diff --git a/workflow/utils.py b/workflow/utils.py index b7a073fa..0b5f9151 100644 --- a/workflow/utils.py +++ b/workflow/utils.py @@ -3,6 +3,13 @@ def sanity_check_config(config: dict): + assert ( + "read" in config and "technology" in config["read"] + ), "The `config['read']['technology'] parameter is mandatory" + + if config["read"]["technology"] == "uniform": + config["data_path"] = "." + assert ( "data_path" in config or "sdata_path" in config ), "Invalid config. Provide '--config data_path=...' when running the pipeline" From 617800fa48c3a1317ef46db7ed61ac41f46d5070 Mon Sep 17 00:00:00 2001 From: Blampey Quentin Date: Fri, 12 Jan 2024 13:28:49 +0100 Subject: [PATCH 4/8] show right micron scale in the Xenium Explorer --- CHANGELOG.md | 3 ++- docs/cli.md | 1 + sopa/cli/explorer.py | 5 +++++ sopa/io/explorer/_constants.py | 5 +++-- sopa/io/explorer/converter.py | 20 ++++++++++++++------ sopa/io/explorer/points.py | 9 ++++++--- sopa/io/explorer/shapes.py | 9 +++++++-- workflow/Snakefile | 2 +- workflow/config/example_commented.yaml | 2 +- workflow/config/hyperion/base.yaml | 1 + workflow/config/macsima/base.yaml | 1 + workflow/config/merscope/base.yaml | 1 + workflow/config/merscope/repro_liver.yaml | 1 + workflow/config/phenocycler/base_10X.yaml | 1 + workflow/config/phenocycler/base_20X.yaml | 1 + workflow/config/phenocycler/base_40X.yaml | 1 + workflow/config/toy/uniform_baysor.yaml | 3 ++- workflow/config/toy/uniform_cellpose.yaml | 1 + 18 files changed, 50 insertions(+), 17 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 929faacd..6262a2a5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,10 +2,11 @@ ### Fix - When geometries are `GeometryCollection`, convert them back to Polygons (#11) -- Snakemake pipeline fixed when providing `min_area` parameter to Baysor +- Give `min_area` parameter to the right Baysor function in snakemake ### Added - Docstrings for the snakemake pipeline utils +- Show right micron scale in the Xenium Explorer ## [1.0.1] - 2024-01-10 diff --git a/docs/cli.md b/docs/cli.md index c3b17c4a..312d7042 100644 --- a/docs/cli.md +++ b/docs/cli.md @@ -323,6 +323,7 @@ $ sopa explorer write [OPTIONS] SDATA_PATH * `--output-path TEXT`: Path to a directory where Xenium Explorer's outputs will be saved. By default, writes to the same path as `sdata_path` but with the `.explorer` suffix * `--gene-column TEXT`: Column name of the points dataframe containing the gene names * `--shapes-key TEXT`: Sdata key for the boundaries. By default, uses the baysor boundaires, else the cellpose boundaries +* `--pixelsize FLOAT`: Number of microns in a pixel. Invalid value can lead to inconsistent scales in the Explorer. [default: 0.2125] * `--lazy / --no-lazy`: If `True`, will not load the full images in memory (except if the image memory is below `ram_threshold_gb`) [default: lazy] * `--ram-threshold-gb INTEGER`: Threshold (in gygabytes) from which image can be loaded in memory. If `None`, the image is never loaded in memory [default: 4] * `--mode TEXT`: String that indicated which files should be created. `'-ib'` means everything except images and boundaries, while `'+tocm'` means only transcripts/observations/counts/metadata (each letter corresponds to one explorer file). By default, keeps everything diff --git a/sopa/cli/explorer.py b/sopa/cli/explorer.py index 64c96895..476f5c52 100644 --- a/sopa/cli/explorer.py +++ b/sopa/cli/explorer.py @@ -19,6 +19,10 @@ def write( None, help="Sdata key for the boundaries. By default, uses the baysor boundaires, else the cellpose boundaries", ), + pixelsize: float = typer.Option( + 0.2125, + help="Number of microns in a pixel. Invalid value can lead to inconsistent scales in the Explorer.", + ), lazy: bool = typer.Option( True, help="If `True`, will not load the full images in memory (except if the image memory is below `ram_threshold_gb`)", @@ -52,6 +56,7 @@ def write( sdata, shapes_key=shapes_key, gene_column=gene_column, + pixelsize=pixelsize, lazy=lazy, ram_threshold_gb=ram_threshold_gb, mode=mode, diff --git a/sopa/io/explorer/_constants.py b/sopa/io/explorer/_constants.py index d3d8d274..8a0cc7f3 100644 --- a/sopa/io/explorer/_constants.py +++ b/sopa/io/explorer/_constants.py @@ -12,6 +12,7 @@ class ExplorerConstants: GRID_SIZE = 250 QUALITY_SCORE = 40 MICRONS_TO_PIXELS = 4.705882 + PIXELS_TO_MICRONS = 0.2125 COLORS = ["white", 400, 500, 600, 700] NUCLEUS_COLOR = "white" @@ -72,7 +73,7 @@ def group_attrs() -> dict: } -def experiment_dict(run_name: str, region_name: str, num_cells: int) -> dict: +def experiment_dict(run_name: str, region_name: str, num_cells: int, pixelsize: float) -> dict: return { "major_version": Versions.EXPERIMENT[0], "minor_version": Versions.EXPERIMENT[1], @@ -92,7 +93,7 @@ def experiment_dict(run_name: str, region_name: str, num_cells: int) -> dict: "panel_organism": "Human", "panel_num_targets_predesigned": 0, "panel_num_targets_custom": 0, - "pixel_size": 0.2125, + "pixel_size": pixelsize, "instrument_sn": "N/A", "instrument_sw_version": "N/A", "analysis_sw_version": "xenium-1.3.0.5", diff --git a/sopa/io/explorer/converter.py b/sopa/io/explorer/converter.py index ba1dadd7..37164ba1 100644 --- a/sopa/io/explorer/converter.py +++ b/sopa/io/explorer/converter.py @@ -45,6 +45,7 @@ def write( shapes_key: str | None = None, points_key: str | None = None, gene_column: str | None = None, + pixelsize: float = 0.2125, layer: str | None = None, polygon_max_vertices: int = 13, lazy: bool = True, @@ -83,6 +84,7 @@ def write( shapes_key: Name of the cell shapes (key of `sdata.shapes`). points_key: Name of the transcripts (key of `sdata.points`). gene_column: Column name of the points dataframe containing the gene names. + pixelsize: Number of microns in a pixel. Invalid value can lead to inconsistent scales in the Explorer. layer: Layer of `sdata.table` where the gene counts are saved. If `None`, uses `sdata.table.X`. polygon_max_vertices: Maximum number of vertices for the cell polygons. lazy: If `True`, will not load the full images in memory (except if the image memory is below `ram_threshold_gb`). @@ -119,7 +121,7 @@ def write( if sdata.table is not None: geo_df = geo_df.loc[adata.obs[adata.uns["spatialdata_attrs"]["instance_key"]]] - write_polygons(path, geo_df.geometry, polygon_max_vertices) + write_polygons(path, geo_df.geometry, polygon_max_vertices, pixelsize=pixelsize) ### Saving transcripts df = get_element(sdata, "points", points_key) @@ -127,17 +129,17 @@ def write( if _should_save(mode, "t") and df is not None: if gene_column is not None: df = to_intrinsic(sdata, df, image_key) - write_transcripts(path, df, gene_column) + write_transcripts(path, df, gene_column, pixelsize=pixelsize) else: log.warn("The argument 'gene_column' has to be provided to save the transcripts") ### Saving image if _should_save(mode, "i"): - write_image(path, image, lazy=lazy, ram_threshold_gb=ram_threshold_gb) + write_image(path, image, lazy=lazy, ram_threshold_gb=ram_threshold_gb, pixelsize=pixelsize) ### Saving experiment.xenium file if _should_save(mode, "m"): - write_metadata(path, image_key, shapes_key, _get_n_obs(sdata, geo_df)) + write_metadata(path, image_key, shapes_key, _get_n_obs(sdata, geo_df), pixelsize) if save_h5ad: sdata.table.write_h5ad(path / FileNames.H5AD) @@ -153,7 +155,12 @@ def _get_n_obs(sdata: SpatialData, geo_df: gpd.GeoDataFrame) -> int: def write_metadata( - path: str, image_key: str = "NA", shapes_key: str = "NA", n_obs: int = 0, is_dir: bool = True + path: str, + image_key: str = "NA", + shapes_key: str = "NA", + n_obs: int = 0, + is_dir: bool = True, + pixelsize: float = 0.2125, ): """Create an `experiment.xenium` file that can be open by the Xenium Explorer. @@ -166,9 +173,10 @@ def write_metadata( shapes_key: Key of `SpatialData` object containing the boundaries shown on the explorer. n_obs: Number of cells is_dir: If `False`, then `path` is a path to a single file, not to the Xenium Explorer directory. + pixelsize: Number of microns in a pixel. Invalid value can lead to inconsistent scales in the Explorer. """ path = explorer_file_path(path, FileNames.METADATA, is_dir) with open(path, "w") as f: - metadata = experiment_dict(image_key, shapes_key, n_obs) + metadata = experiment_dict(image_key, shapes_key, n_obs, pixelsize) json.dump(metadata, f, indent=4) diff --git a/sopa/io/explorer/points.py b/sopa/io/explorer/points.py index b6102785..792061cc 100644 --- a/sopa/io/explorer/points.py +++ b/sopa/io/explorer/points.py @@ -23,6 +23,7 @@ def write_transcripts( gene: str = "gene", max_levels: int = 15, is_dir: bool = True, + pixelsize: float = 0.2125, ): """Write a `transcripts.zarr.zip` file containing pyramidal transcript locations @@ -32,6 +33,7 @@ def write_transcripts( gene: Column of `df` containing the genes names. max_levels: Maximum number of levels in the pyramid. is_dir: If `False`, then `path` is a path to a single file, not to the Xenium Explorer directory. + pixelsize: Number of microns in a pixel. Invalid value can lead to inconsistent scales in the Explorer. """ path = explorer_file_path(path, FileNames.POINTS, is_dir) @@ -39,10 +41,11 @@ def write_transcripts( df = df.compute() num_transcripts = len(df) + grid_size = ExplorerConstants.GRID_SIZE / ExplorerConstants.PIXELS_TO_MICRONS * pixelsize df[gene] = df[gene].astype("category") location = df[["x", "y"]] - location /= ExplorerConstants.MICRONS_TO_PIXELS + location *= pixelsize location = np.concatenate([location, np.zeros((num_transcripts, 1))], axis=1) if location.min() < 0: @@ -84,7 +87,7 @@ def write_transcripts( GRIDS_ATTRS = { "grid_key_names": ["grid_x_loc", "grid_y_loc"], "grid_zip": False, - "grid_size": [ExplorerConstants.GRID_SIZE], + "grid_size": [grid_size], "grid_array_shapes": [], "grid_number_objects": [], "grid_keys": [], @@ -100,7 +103,7 @@ def write_transcripts( log.info(f" > Level {level}: {len(location)} transcripts") level_group = grids.create_group(level) - tile_size = ExplorerConstants.GRID_SIZE * 2**level + tile_size = grid_size * 2**level indices = np.floor(location[:, :2] / tile_size).clip(0).astype(int) tiles_str_indices = np.array([f"{tx},{ty}" for (tx, ty) in indices]) diff --git a/sopa/io/explorer/shapes.py b/sopa/io/explorer/shapes.py index d282d860..94ff40b7 100644 --- a/sopa/io/explorer/shapes.py +++ b/sopa/io/explorer/shapes.py @@ -45,7 +45,11 @@ def pad_polygon( def write_polygons( - path: Path, polygons: Iterable[Polygon], max_vertices: int, is_dir: bool = True + path: Path, + polygons: Iterable[Polygon], + max_vertices: int, + is_dir: bool = True, + pixelsize: float = 0.2125, ) -> None: """Write a `cells.zarr.zip` file containing the cell polygonal boundaries @@ -54,12 +58,13 @@ def write_polygons( polygons: A list of `shapely` polygons to be written max_vertices: The number of vertices per polygon (they will be transformed to have the right number of vertices) is_dir: If `False`, then `path` is a path to a single file, not to the Xenium Explorer directory. + pixelsize: Number of microns in a pixel. Invalid value can lead to inconsistent scales in the Explorer. """ path = explorer_file_path(path, FileNames.SHAPES, is_dir) log.info(f"Writing {len(polygons)} cell polygons") coordinates = np.stack([pad_polygon(p, max_vertices) for p in polygons]) - coordinates /= ExplorerConstants.MICRONS_TO_PIXELS + coordinates *= pixelsize num_cells = len(coordinates) cells_fourth = ceil(num_cells / 4) diff --git a/workflow/Snakefile b/workflow/Snakefile index e340c344..27eab60a 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -186,7 +186,7 @@ rule image_write: mem_mb=64_000, partition="longq" params: - args_explorer = str(args["explorer"].where(keys=['lazy', 'ram_threshold_gb'])), + args_explorer = str(args["explorer"].where(keys=['lazy', 'ram_threshold_gb', 'pixelsize'])), shell: """ sopa explorer write {paths.sdata_path} --output-path {paths.explorer_directory} {params.args_explorer} --mode '+i' --no-save-h5ad diff --git a/workflow/config/example_commented.yaml b/workflow/config/example_commented.yaml index 13f15a2c..a039d80f 100644 --- a/workflow/config/example_commented.yaml +++ b/workflow/config/example_commented.yaml @@ -101,7 +101,7 @@ annotation: explorer: # parameters related to the conversion to the Xenium Explorer (Sopa's visualizer) gene_column: "gene" # [optional] name of the column of the transcript dataframe indicating the genes names. Provide this if you want to see transcripts on the explorer ram_threshold_gb: 16 # [optional] images below this RAM threshold will be loaded in memory during conversion. It can accelerate image writing - + pixelsize: 0.2125 # [optional] this is the number of microns in a pixel for the technology used (see the config of your technology of interest) executables: baysor: ~/.julia/bin/baysor # [optional] if you run baysor, put here the path to the 'baysor' executable \ No newline at end of file diff --git a/workflow/config/hyperion/base.yaml b/workflow/config/hyperion/base.yaml index 33e3c32a..9f9c1c44 100644 --- a/workflow/config/hyperion/base.yaml +++ b/workflow/config/hyperion/base.yaml @@ -21,3 +21,4 @@ aggregate: explorer: ram_threshold_gb: 8 + pixelsize: 1 diff --git a/workflow/config/macsima/base.yaml b/workflow/config/macsima/base.yaml index 1fa40d75..b46e9741 100644 --- a/workflow/config/macsima/base.yaml +++ b/workflow/config/macsima/base.yaml @@ -21,3 +21,4 @@ aggregate: explorer: ram_threshold_gb: 8 + pixelsize: 0.170 diff --git a/workflow/config/merscope/base.yaml b/workflow/config/merscope/base.yaml index 3280e2b7..6e7a59fa 100644 --- a/workflow/config/merscope/base.yaml +++ b/workflow/config/merscope/base.yaml @@ -52,6 +52,7 @@ aggregate: explorer: gene_column: "gene" ram_threshold_gb: 16 + pixelsize: 0.108 executables: baysor: ~/.julia/bin/baysor # if you run baysor, put here the path to the baysor executable diff --git a/workflow/config/merscope/repro_liver.yaml b/workflow/config/merscope/repro_liver.yaml index ebb7e891..2e13e10c 100644 --- a/workflow/config/merscope/repro_liver.yaml +++ b/workflow/config/merscope/repro_liver.yaml @@ -54,6 +54,7 @@ annotation: explorer: gene_column: "gene" ram_threshold_gb: 16 + pixelsize: 0.108 executables: baysor: /mnt/beegfs/merfish/bin/baysor/bin/baysor diff --git a/workflow/config/phenocycler/base_10X.yaml b/workflow/config/phenocycler/base_10X.yaml index 46de0cd6..53610adc 100644 --- a/workflow/config/phenocycler/base_10X.yaml +++ b/workflow/config/phenocycler/base_10X.yaml @@ -21,3 +21,4 @@ aggregate: explorer: ram_threshold_gb: 8 + pixelsize: 1 \ No newline at end of file diff --git a/workflow/config/phenocycler/base_20X.yaml b/workflow/config/phenocycler/base_20X.yaml index d9bed315..406101c0 100644 --- a/workflow/config/phenocycler/base_20X.yaml +++ b/workflow/config/phenocycler/base_20X.yaml @@ -21,3 +21,4 @@ aggregate: explorer: ram_threshold_gb: 8 + pixelsize: 0.5 diff --git a/workflow/config/phenocycler/base_40X.yaml b/workflow/config/phenocycler/base_40X.yaml index 6f3cb381..2762f35b 100644 --- a/workflow/config/phenocycler/base_40X.yaml +++ b/workflow/config/phenocycler/base_40X.yaml @@ -21,3 +21,4 @@ aggregate: explorer: ram_threshold_gb: 8 + pixelsize: 0.25 \ No newline at end of file diff --git a/workflow/config/toy/uniform_baysor.yaml b/workflow/config/toy/uniform_baysor.yaml index c7f5eef5..6a0234fd 100644 --- a/workflow/config/toy/uniform_baysor.yaml +++ b/workflow/config/toy/uniform_baysor.yaml @@ -11,7 +11,7 @@ patchify: segmentation: baysor: min_area: 500 - + config: data: force_2d: true @@ -51,6 +51,7 @@ annotation: explorer: gene_column: "genes" ram_threshold_gb: 16 + pixelsize: 1 executables: baysor: ~/.julia/bin/baysor diff --git a/workflow/config/toy/uniform_cellpose.yaml b/workflow/config/toy/uniform_cellpose.yaml index e09fc31b..22954c94 100644 --- a/workflow/config/toy/uniform_cellpose.yaml +++ b/workflow/config/toy/uniform_cellpose.yaml @@ -31,6 +31,7 @@ annotation: explorer: gene_column: "genes" ram_threshold_gb: 16 + pixelsize: 1 executables: baysor: ~/.julia/bin/baysor From bb2d84c8dedfd22ec342377dc7f54a8c91a37c22 Mon Sep 17 00:00:00 2001 From: Blampey Quentin Date: Mon, 15 Jan 2024 15:38:43 +0100 Subject: [PATCH 5/8] snakemake issue due to pulp depreciation --- poetry.lock | 636 ++++++++++++++++++++++++++++++++++--------------- pyproject.toml | 7 +- 2 files changed, 453 insertions(+), 190 deletions(-) diff --git a/poetry.lock b/poetry.lock index 066a9749..d35aedfd 100644 --- a/poetry.lock +++ b/poetry.lock @@ -257,6 +257,25 @@ files = [ [package.extras] dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] +[[package]] +name = "beautifulsoup4" +version = "4.12.2" +description = "Screen-scraping library" +category = "main" +optional = true +python-versions = ">=3.6.0" +files = [ + {file = "beautifulsoup4-4.12.2-py3-none-any.whl", hash = "sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a"}, + {file = "beautifulsoup4-4.12.2.tar.gz", hash = "sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da"}, +] + +[package.dependencies] +soupsieve = ">1.2" + +[package.extras] +html5lib = ["html5lib"] +lxml = ["lxml"] + [[package]] name = "black" version = "22.12.0" @@ -292,16 +311,35 @@ d = ["aiohttp (>=3.7.4)"] jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] uvloop = ["uvloop (>=0.15.2)"] +[[package]] +name = "bleach" +version = "6.1.0" +description = "An easy safelist-based HTML-sanitizing tool." +category = "main" +optional = true +python-versions = ">=3.8" +files = [ + {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, + {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, +] + +[package.dependencies] +six = ">=1.9.0" +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.3)"] + [[package]] name = "botocore" -version = "1.34.13" +version = "1.34.19" description = "Low-level, data-driven core of boto 3." category = "main" optional = false python-versions = ">= 3.8" files = [ - {file = "botocore-1.34.13-py3-none-any.whl", hash = "sha256:b39f96e658865bd1f3c2d043794b91cd6206f9db531c0a06b53093ed82d41ef7"}, - {file = "botocore-1.34.13.tar.gz", hash = "sha256:1680b0e0633a546b8d54d1bbd5154e30bb1044d0496e0df7cfd24a383e10b0d3"}, + {file = "botocore-1.34.19-py3-none-any.whl", hash = "sha256:a4a39c7092960f5da2439efc5f6220730dab634aaff4c1444bbd1dfa43bc28cc"}, + {file = "botocore-1.34.19.tar.gz", hash = "sha256:64352b2f05de5c6ab025c1d5232880c22775356dcc5a53d798a6f65db847e826"}, ] [package.dependencies] @@ -746,14 +784,14 @@ tests = ["pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "dask" -version = "2023.12.1" +version = "2024.1.0" description = "Parallel PyData with Task Scheduling" category = "main" optional = false python-versions = ">=3.9" files = [ - {file = "dask-2023.12.1-py3-none-any.whl", hash = "sha256:55f316f32da9e68fe995e2c0dc460cb8888cd4a1af32096753788e8af45a8d10"}, - {file = "dask-2023.12.1.tar.gz", hash = "sha256:0ac3acd5bdbfacb5ad6401ac7663a1135955b3fa051a118e1b8a88e87b6b44a2"}, + {file = "dask-2024.1.0-py3-none-any.whl", hash = "sha256:717102ef7c309297291095a0061d374f3b72e11ce4e1115ab9faff940e274b4b"}, + {file = "dask-2024.1.0.tar.gz", hash = "sha256:f24fdc7a07e59a1403bf6903e6d8dc15ed6f8607d3311b4f00f88d8a2ac63e49"}, ] [package.dependencies] @@ -773,7 +811,7 @@ array = ["numpy (>=1.21)"] complete = ["dask[array,dataframe,diagnostics,distributed]", "lz4 (>=4.3.2)", "pyarrow (>=7.0)", "pyarrow-hotfix"] dataframe = ["dask[array]", "pandas (>=1.3)"] diagnostics = ["bokeh (>=2.4.2)", "jinja2 (>=2.10.3)"] -distributed = ["distributed (==2023.12.1)"] +distributed = ["distributed (==2024.1.0)"] test = ["pandas[test]", "pre-commit", "pytest", "pytest-cov", "pytest-rerunfailures", "pytest-timeout", "pytest-xdist"] [[package]] @@ -910,22 +948,34 @@ files = [ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] +[[package]] +name = "defusedxml" +version = "0.7.1" +description = "XML bomb protection for Python stdlib modules" +category = "main" +optional = true +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, + {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, +] + [[package]] name = "distributed" -version = "2023.12.1" +version = "2024.1.0" description = "Distributed scheduler for Dask" category = "main" optional = false python-versions = ">=3.9" files = [ - {file = "distributed-2023.12.1-py3-none-any.whl", hash = "sha256:f0c5e50c26b6cf5106b2d4116bf168dfccebe42e9670ddf58cfe3618b8b94ed8"}, - {file = "distributed-2023.12.1.tar.gz", hash = "sha256:56e69d90c6099e066751907956144cf94d0bc7050bd69ef2ec8003e890c2540c"}, + {file = "distributed-2024.1.0-py3-none-any.whl", hash = "sha256:b552c9331350ba0e7cb8eccb1da8942b44997ccb680338f61c43fe9843c69988"}, + {file = "distributed-2024.1.0.tar.gz", hash = "sha256:f1d0e2dd5249085e32c6ff5c0ce0521c7e844dd52337683a69363a6bb1799a30"}, ] [package.dependencies] click = ">=8.0" cloudpickle = ">=1.5.0" -dask = "2023.12.1" +dask = "2024.1.0" jinja2 = ">=2.10.3" locket = ">=1.0.0" msgpack = ">=1.0.0" @@ -1152,54 +1202,54 @@ test = ["Fiona[s3]", "pytest (>=7)", "pytest-cov", "pytz"] [[package]] name = "fonttools" -version = "4.47.0" +version = "4.47.2" description = "Tools to manipulate font files" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2d2404107626f97a221dc1a65b05396d2bb2ce38e435f64f26ed2369f68675d9"}, - {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c01f409be619a9a0f5590389e37ccb58b47264939f0e8d58bfa1f3ba07d22671"}, - {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d986b66ff722ef675b7ee22fbe5947a41f60a61a4da15579d5e276d897fbc7fa"}, - {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8acf6dd0434b211b3bd30d572d9e019831aae17a54016629fa8224783b22df8"}, - {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:495369c660e0c27233e3c572269cbe520f7f4978be675f990f4005937337d391"}, - {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c59227d7ba5b232281c26ae04fac2c73a79ad0e236bca5c44aae904a18f14faf"}, - {file = "fonttools-4.47.0-cp310-cp310-win32.whl", hash = "sha256:59a6c8b71a245800e923cb684a2dc0eac19c56493e2f896218fcf2571ed28984"}, - {file = "fonttools-4.47.0-cp310-cp310-win_amd64.whl", hash = "sha256:52c82df66201f3a90db438d9d7b337c7c98139de598d0728fb99dab9fd0495ca"}, - {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:854421e328d47d70aa5abceacbe8eef231961b162c71cbe7ff3f47e235e2e5c5"}, - {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:511482df31cfea9f697930f61520f6541185fa5eeba2fa760fe72e8eee5af88b"}, - {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0e2c88c8c985b7b9a7efcd06511fb0a1fe3ddd9a6cd2895ef1dbf9059719d7"}, - {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7a0a8848726956e9d9fb18c977a279013daadf0cbb6725d2015a6dd57527992"}, - {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e869da810ae35afb3019baa0d0306cdbab4760a54909c89ad8904fa629991812"}, - {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dd23848f877c3754f53a4903fb7a593ed100924f9b4bff7d5a4e2e8a7001ae11"}, - {file = "fonttools-4.47.0-cp311-cp311-win32.whl", hash = "sha256:bf1810635c00f7c45d93085611c995fc130009cec5abdc35b327156aa191f982"}, - {file = "fonttools-4.47.0-cp311-cp311-win_amd64.whl", hash = "sha256:61df4dee5d38ab65b26da8efd62d859a1eef7a34dcbc331299a28e24d04c59a7"}, - {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e3f4d61f3a8195eac784f1d0c16c0a3105382c1b9a74d99ac4ba421da39a8826"}, - {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:174995f7b057e799355b393e97f4f93ef1f2197cbfa945e988d49b2a09ecbce8"}, - {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea592e6a09b71cb7a7661dd93ac0b877a6228e2d677ebacbad0a4d118494c86d"}, - {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40bdbe90b33897d9cc4a39f8e415b0fcdeae4c40a99374b8a4982f127ff5c767"}, - {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:843509ae9b93db5aaf1a6302085e30bddc1111d31e11d724584818f5b698f500"}, - {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9acfa1cdc479e0dde528b61423855913d949a7f7fe09e276228298fef4589540"}, - {file = "fonttools-4.47.0-cp312-cp312-win32.whl", hash = "sha256:66c92ec7f95fd9732550ebedefcd190a8d81beaa97e89d523a0d17198a8bda4d"}, - {file = "fonttools-4.47.0-cp312-cp312-win_amd64.whl", hash = "sha256:e8fa20748de55d0021f83754b371432dca0439e02847962fc4c42a0e444c2d78"}, - {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c75e19971209fbbce891ebfd1b10c37320a5a28e8d438861c21d35305aedb81c"}, - {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e79f1a3970d25f692bbb8c8c2637e621a66c0d60c109ab48d4a160f50856deff"}, - {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:562681188c62c024fe2c611b32e08b8de2afa00c0c4e72bed47c47c318e16d5c"}, - {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a77a60315c33393b2bd29d538d1ef026060a63d3a49a9233b779261bad9c3f71"}, - {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b4fabb8cc9422efae1a925160083fdcbab8fdc96a8483441eb7457235df625bd"}, - {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2a78dba8c2a1e9d53a0fb5382979f024200dc86adc46a56cbb668a2249862fda"}, - {file = "fonttools-4.47.0-cp38-cp38-win32.whl", hash = "sha256:e6b968543fde4119231c12c2a953dcf83349590ca631ba8216a8edf9cd4d36a9"}, - {file = "fonttools-4.47.0-cp38-cp38-win_amd64.whl", hash = "sha256:4a9a51745c0439516d947480d4d884fa18bd1458e05b829e482b9269afa655bc"}, - {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:62d8ddb058b8e87018e5dc26f3258e2c30daad4c87262dfeb0e2617dd84750e6"}, - {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5dde0eab40faaa5476133123f6a622a1cc3ac9b7af45d65690870620323308b4"}, - {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4da089f6dfdb822293bde576916492cd708c37c2501c3651adde39804630538"}, - {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:253bb46bab970e8aae254cebf2ae3db98a4ef6bd034707aa68a239027d2b198d"}, - {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1193fb090061efa2f9e2d8d743ae9850c77b66746a3b32792324cdce65784154"}, - {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:084511482dd265bce6dca24c509894062f0117e4e6869384d853f46c0e6d43be"}, - {file = "fonttools-4.47.0-cp39-cp39-win32.whl", hash = "sha256:97620c4af36e4c849e52661492e31dc36916df12571cb900d16960ab8e92a980"}, - {file = "fonttools-4.47.0-cp39-cp39-win_amd64.whl", hash = "sha256:e77bdf52185bdaf63d39f3e1ac3212e6cfa3ab07d509b94557a8902ce9c13c82"}, - {file = "fonttools-4.47.0-py3-none-any.whl", hash = "sha256:d6477ba902dd2d7adda7f0fd3bfaeb92885d45993c9e1928c9f28fc3961415f7"}, - {file = "fonttools-4.47.0.tar.gz", hash = "sha256:ec13a10715eef0e031858c1c23bfaee6cba02b97558e4a7bfa089dba4a8c2ebf"}, + {file = "fonttools-4.47.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3b629108351d25512d4ea1a8393a2dba325b7b7d7308116b605ea3f8e1be88df"}, + {file = "fonttools-4.47.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c19044256c44fe299d9a73456aabee4b4d06c6b930287be93b533b4737d70aa1"}, + {file = "fonttools-4.47.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8be28c036b9f186e8c7eaf8a11b42373e7e4949f9e9f370202b9da4c4c3f56c"}, + {file = "fonttools-4.47.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f83a4daef6d2a202acb9bf572958f91cfde5b10c8ee7fb1d09a4c81e5d851fd8"}, + {file = "fonttools-4.47.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4a5a5318ba5365d992666ac4fe35365f93004109d18858a3e18ae46f67907670"}, + {file = "fonttools-4.47.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8f57ecd742545362a0f7186774b2d1c53423ed9ece67689c93a1055b236f638c"}, + {file = "fonttools-4.47.2-cp310-cp310-win32.whl", hash = "sha256:a1c154bb85dc9a4cf145250c88d112d88eb414bad81d4cb524d06258dea1bdc0"}, + {file = "fonttools-4.47.2-cp310-cp310-win_amd64.whl", hash = "sha256:3e2b95dce2ead58fb12524d0ca7d63a63459dd489e7e5838c3cd53557f8933e1"}, + {file = "fonttools-4.47.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:29495d6d109cdbabe73cfb6f419ce67080c3ef9ea1e08d5750240fd4b0c4763b"}, + {file = "fonttools-4.47.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0a1d313a415eaaba2b35d6cd33536560deeebd2ed758b9bfb89ab5d97dc5deac"}, + {file = "fonttools-4.47.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:90f898cdd67f52f18049250a6474185ef6544c91f27a7bee70d87d77a8daf89c"}, + {file = "fonttools-4.47.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3480eeb52770ff75140fe7d9a2ec33fb67b07efea0ab5129c7e0c6a639c40c70"}, + {file = "fonttools-4.47.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0255dbc128fee75fb9be364806b940ed450dd6838672a150d501ee86523ac61e"}, + {file = "fonttools-4.47.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f791446ff297fd5f1e2247c188de53c1bfb9dd7f0549eba55b73a3c2087a2703"}, + {file = "fonttools-4.47.2-cp311-cp311-win32.whl", hash = "sha256:740947906590a878a4bde7dd748e85fefa4d470a268b964748403b3ab2aeed6c"}, + {file = "fonttools-4.47.2-cp311-cp311-win_amd64.whl", hash = "sha256:63fbed184979f09a65aa9c88b395ca539c94287ba3a364517698462e13e457c9"}, + {file = "fonttools-4.47.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4ec558c543609e71b2275c4894e93493f65d2f41c15fe1d089080c1d0bb4d635"}, + {file = "fonttools-4.47.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e040f905d542362e07e72e03612a6270c33d38281fd573160e1003e43718d68d"}, + {file = "fonttools-4.47.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6dd58cc03016b281bd2c74c84cdaa6bd3ce54c5a7f47478b7657b930ac3ed8eb"}, + {file = "fonttools-4.47.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32ab2e9702dff0dd4510c7bb958f265a8d3dd5c0e2547e7b5f7a3df4979abb07"}, + {file = "fonttools-4.47.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3a808f3c1d1df1f5bf39be869b6e0c263570cdafb5bdb2df66087733f566ea71"}, + {file = "fonttools-4.47.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ac71e2e201df041a2891067dc36256755b1229ae167edbdc419b16da78732c2f"}, + {file = "fonttools-4.47.2-cp312-cp312-win32.whl", hash = "sha256:69731e8bea0578b3c28fdb43dbf95b9386e2d49a399e9a4ad736b8e479b08085"}, + {file = "fonttools-4.47.2-cp312-cp312-win_amd64.whl", hash = "sha256:b3e1304e5f19ca861d86a72218ecce68f391646d85c851742d265787f55457a4"}, + {file = "fonttools-4.47.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:254d9a6f7be00212bf0c3159e0a420eb19c63793b2c05e049eb337f3023c5ecc"}, + {file = "fonttools-4.47.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:eabae77a07c41ae0b35184894202305c3ad211a93b2eb53837c2a1143c8bc952"}, + {file = "fonttools-4.47.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a86a5ab2873ed2575d0fcdf1828143cfc6b977ac448e3dc616bb1e3d20efbafa"}, + {file = "fonttools-4.47.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13819db8445a0cec8c3ff5f243af6418ab19175072a9a92f6cc8ca7d1452754b"}, + {file = "fonttools-4.47.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4e743935139aa485fe3253fc33fe467eab6ea42583fa681223ea3f1a93dd01e6"}, + {file = "fonttools-4.47.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d49ce3ea7b7173faebc5664872243b40cf88814ca3eb135c4a3cdff66af71946"}, + {file = "fonttools-4.47.2-cp38-cp38-win32.whl", hash = "sha256:94208ea750e3f96e267f394d5588579bb64cc628e321dbb1d4243ffbc291b18b"}, + {file = "fonttools-4.47.2-cp38-cp38-win_amd64.whl", hash = "sha256:0f750037e02beb8b3569fbff701a572e62a685d2a0e840d75816592280e5feae"}, + {file = "fonttools-4.47.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3d71606c9321f6701642bd4746f99b6089e53d7e9817fc6b964e90d9c5f0ecc6"}, + {file = "fonttools-4.47.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86e0427864c6c91cf77f16d1fb9bf1bbf7453e824589e8fb8461b6ee1144f506"}, + {file = "fonttools-4.47.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a00bd0e68e88987dcc047ea31c26d40a3c61185153b03457956a87e39d43c37"}, + {file = "fonttools-4.47.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5d77479fb885ef38a16a253a2f4096bc3d14e63a56d6246bfdb56365a12b20c"}, + {file = "fonttools-4.47.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5465df494f20a7d01712b072ae3ee9ad2887004701b95cb2cc6dcb9c2c97a899"}, + {file = "fonttools-4.47.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4c811d3c73b6abac275babb8aa439206288f56fdb2c6f8835e3d7b70de8937a7"}, + {file = "fonttools-4.47.2-cp39-cp39-win32.whl", hash = "sha256:5b60e3afa9635e3dfd3ace2757039593e3bd3cf128be0ddb7a1ff4ac45fa5a50"}, + {file = "fonttools-4.47.2-cp39-cp39-win_amd64.whl", hash = "sha256:7ee48bd9d6b7e8f66866c9090807e3a4a56cf43ffad48962725a190e0dd774c8"}, + {file = "fonttools-4.47.2-py3-none-any.whl", hash = "sha256:7eb7ad665258fba68fd22228a09f347469d95a97fb88198e133595947a20a184"}, + {file = "fonttools-4.47.2.tar.gz", hash = "sha256:7df26dd3650e98ca45f1e29883c96a0b9f5bb6af8d632a6a108bc744fa0bd9b3"}, ] [package.extras] @@ -1396,21 +1446,21 @@ smmap = ">=3.0.1,<6" [[package]] name = "gitpython" -version = "3.1.40" +version = "3.1.41" description = "GitPython is a Python library used to interact with Git repositories" category = "main" optional = true python-versions = ">=3.7" files = [ - {file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"}, - {file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"}, + {file = "GitPython-3.1.41-py3-none-any.whl", hash = "sha256:c36b6634d069b3f719610175020a9aed919421c87552185b085e04fbbdb10b7c"}, + {file = "GitPython-3.1.41.tar.gz", hash = "sha256:ed66e624884f76df22c8e16066d567aaa5a37d5b5fa19db2c6df6f7156db9048"}, ] [package.dependencies] gitdb = ">=4.0.1,<5" [package.extras] -test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"] +test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar", "sumtypes"] [[package]] name = "griffe" @@ -1637,14 +1687,14 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio" [[package]] name = "ipython" -version = "8.19.0" +version = "8.20.0" description = "IPython: Productive Interactive Computing" category = "main" optional = true python-versions = ">=3.10" files = [ - {file = "ipython-8.19.0-py3-none-any.whl", hash = "sha256:2f55d59370f59d0d2b2212109fe0e6035cfea436b1c0e6150ad2244746272ec5"}, - {file = "ipython-8.19.0.tar.gz", hash = "sha256:ac4da4ecf0042fb4e0ce57c60430c2db3c719fa8bdf92f8631d6bd8a5785d1f0"}, + {file = "ipython-8.20.0-py3-none-any.whl", hash = "sha256:bc9716aad6f29f36c449e30821c9dd0c1c1a7b59ddcc26931685b87b4c569619"}, + {file = "ipython-8.20.0.tar.gz", hash = "sha256:2f21bd3fc1d51550c89ee3944ae04bbc7bc79e129ea0937da6e6c68bfdbf117a"}, ] [package.dependencies] @@ -1709,14 +1759,14 @@ testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] [[package]] name = "jinja2" -version = "3.1.2" +version = "3.1.3" description = "A very fast and expressive template engine." category = "main" optional = false python-versions = ">=3.7" files = [ - {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, - {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, + {file = "Jinja2-3.1.3-py3-none-any.whl", hash = "sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa"}, + {file = "Jinja2-3.1.3.tar.gz", hash = "sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90"}, ] [package.dependencies] @@ -1811,14 +1861,14 @@ test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pyt [[package]] name = "jupyter-core" -version = "5.7.0" +version = "5.7.1" description = "Jupyter core package. A base package on which Jupyter projects rely." category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "jupyter_core-5.7.0-py3-none-any.whl", hash = "sha256:16eea462f7dad23ba9f86542bdf17f830804e2028eb48d609b6134d91681e983"}, - {file = "jupyter_core-5.7.0.tar.gz", hash = "sha256:cb8d3ed92144d2463a3c5664fdd686a3f0c1442ea45df8babb1c1a9e6333fe03"}, + {file = "jupyter_core-5.7.1-py3-none-any.whl", hash = "sha256:c65c82126453a723a2804aa52409930434598fd9d35091d63dfb919d2b765bb7"}, + {file = "jupyter_core-5.7.1.tar.gz", hash = "sha256:de61a9d7fc71240f688b2fb5ab659fbb56979458dc66a71decd098e03c79e218"}, ] [package.dependencies] @@ -1830,6 +1880,48 @@ traitlets = ">=5.3" docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +description = "Pygments theme using JupyterLab CSS variables" +category = "main" +optional = true +python-versions = ">=3.8" +files = [ + {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"}, + {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"}, +] + +[[package]] +name = "jupytext" +version = "1.16.1" +description = "Jupyter notebooks as Markdown documents, Julia, Python or R scripts" +category = "main" +optional = true +python-versions = ">=3.8" +files = [ + {file = "jupytext-1.16.1-py3-none-any.whl", hash = "sha256:796ec4f68ada663569e5d38d4ef03738a01284bfe21c943c485bc36433898bd0"}, + {file = "jupytext-1.16.1.tar.gz", hash = "sha256:68c7b68685e870e80e60fda8286fbd6269e9c74dc1df4316df6fe46eabc94c99"}, +] + +[package.dependencies] +markdown-it-py = ">=1.0" +mdit-py-plugins = "*" +nbformat = "*" +packaging = "*" +pyyaml = "*" +toml = "*" + +[package.extras] +dev = ["jupytext[test-cov,test-external]"] +docs = ["myst-parser", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"] +test = ["pytest", "pytest-randomly", "pytest-xdist"] +test-cov = ["jupytext[test-integration]", "pytest-cov (>=2.6.1)"] +test-external = ["autopep8", "black", "flake8", "gitpython", "isort", "jupyter-fs (<0.4.0)", "jupytext[test-integration]", "pre-commit", "sphinx-gallery (<0.8)"] +test-functional = ["jupytext[test]"] +test-integration = ["ipykernel", "jupyter-server (!=2.11)", "jupytext[test-functional]", "nbconvert"] +test-ui = ["calysto-bash"] + [[package]] name = "kiwisolver" version = "1.4.5" @@ -2043,14 +2135,14 @@ setuptools = "*" [[package]] name = "markdown" -version = "3.5.1" +version = "3.5.2" description = "Python implementation of John Gruber's Markdown." category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "Markdown-3.5.1-py3-none-any.whl", hash = "sha256:5874b47d4ee3f0b14d764324d2c94c03ea66bee56f2d929da9f2508d65e722dc"}, - {file = "Markdown-3.5.1.tar.gz", hash = "sha256:b65d7beb248dc22f2e8a31fb706d93798093c308dc1aba295aedeb9d41a813bd"}, + {file = "Markdown-3.5.2-py3-none-any.whl", hash = "sha256:d43323865d89fc0cb9b20c75fc8ad313af307cc087e84b657d9eec768eddeadd"}, + {file = "Markdown-3.5.2.tar.gz", hash = "sha256:e1ac7b3dc550ee80e602e71c1d168002f062e49f1b11e26a36264dafd4df2ef8"}, ] [package.extras] @@ -2216,6 +2308,26 @@ files = [ [package.dependencies] traitlets = "*" +[[package]] +name = "mdit-py-plugins" +version = "0.4.0" +description = "Collection of plugins for markdown-it-py" +category = "main" +optional = true +python-versions = ">=3.8" +files = [ + {file = "mdit_py_plugins-0.4.0-py3-none-any.whl", hash = "sha256:b51b3bb70691f57f974e257e367107857a93b36f322a9e6d44ca5bf28ec2def9"}, + {file = "mdit_py_plugins-0.4.0.tar.gz", hash = "sha256:d8ab27e9aed6c38aa716819fedfde15ca275715955f8a185a8e1cf90fb1d2c1b"}, +] + +[package.dependencies] +markdown-it-py = ">=1.0.0,<4.0.0" + +[package.extras] +code-style = ["pre-commit"] +rtd = ["myst-parser", "sphinx-book-theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + [[package]] name = "mdurl" version = "0.1.2" @@ -2240,6 +2352,18 @@ files = [ {file = "mergedeep-1.3.4.tar.gz", hash = "sha256:0096d52e9dad9939c3d975a774666af186eda617e6ca84df4c94dec30004f2a8"}, ] +[[package]] +name = "mistune" +version = "3.0.2" +description = "A sane and fast Markdown parser with useful plugins and renderers" +category = "main" +optional = true +python-versions = ">=3.7" +files = [ + {file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"}, + {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"}, +] + [[package]] name = "mkdocs" version = "1.5.3" @@ -2287,16 +2411,36 @@ files = [ Markdown = ">=3.3" mkdocs = ">=1.1" +[[package]] +name = "mkdocs-jupyter" +version = "0.24.6" +description = "Use Jupyter in mkdocs websites" +category = "main" +optional = true +python-versions = ">=3.9" +files = [ + {file = "mkdocs_jupyter-0.24.6-py3-none-any.whl", hash = "sha256:56fb7ad796f2414a4143d54a966b805caf315c32413e97f85591623fa87dceca"}, + {file = "mkdocs_jupyter-0.24.6.tar.gz", hash = "sha256:89fcbe8a9523864d5416de1a60711640b6bc2972279d2adf46ed2776c2d9ff7c"}, +] + +[package.dependencies] +ipykernel = ">6.0.0,<7.0.0" +jupytext = ">1.13.8,<2" +mkdocs = ">=1.4.0,<2" +mkdocs-material = ">9.0.0" +nbconvert = ">=7.2.9,<8" +pygments = ">2.12.0" + [[package]] name = "mkdocs-material" -version = "9.5.3" +version = "9.5.4" description = "Documentation that simply works" category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "mkdocs_material-9.5.3-py3-none-any.whl", hash = "sha256:76c93a8525cceb0b395b9cedab3428bf518cf6439adef2b940f1c1574b775d89"}, - {file = "mkdocs_material-9.5.3.tar.gz", hash = "sha256:5899219f422f0a6de784232d9d40374416302ffae3c160cacc72969fcc1ee372"}, + {file = "mkdocs_material-9.5.4-py3-none-any.whl", hash = "sha256:efd7cc8ae03296d728da9bd38f4db8b07ab61f9738a0cbd0dfaf2a15a50e7343"}, + {file = "mkdocs_material-9.5.4.tar.gz", hash = "sha256:3d196ee67fad16b2df1a458d650a8ac1890294eaae368d26cee71bc24ad41c40"}, ] [package.dependencies] @@ -2356,14 +2500,14 @@ python-legacy = ["mkdocstrings-python-legacy (>=0.2.1)"] [[package]] name = "mkdocstrings-python" -version = "1.7.5" +version = "1.8.0" description = "A Python handler for mkdocstrings." category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "mkdocstrings_python-1.7.5-py3-none-any.whl", hash = "sha256:5f6246026353f0c0785135db70c3fe9a5d9318990fc7ceb11d62097b8ffdd704"}, - {file = "mkdocstrings_python-1.7.5.tar.gz", hash = "sha256:c7d143728257dbf1aa550446555a554b760dcd40a763f077189d298502b800be"}, + {file = "mkdocstrings_python-1.8.0-py3-none-any.whl", hash = "sha256:4209970cc90bec194568682a535848a8d8489516c6ed4adbe58bbc67b699ca9d"}, + {file = "mkdocstrings_python-1.8.0.tar.gz", hash = "sha256:1488bddf50ee42c07d9a488dddc197f8e8999c2899687043ec5dd1643d057192"}, ] [package.dependencies] @@ -2602,6 +2746,67 @@ files = [ fast = ["fastnumbers (>=2.0.0)"] icu = ["PyICU (>=1.0.0)"] +[[package]] +name = "nbclient" +version = "0.9.0" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +category = "main" +optional = true +python-versions = ">=3.8.0" +files = [ + {file = "nbclient-0.9.0-py3-none-any.whl", hash = "sha256:a3a1ddfb34d4a9d17fc744d655962714a866639acd30130e9be84191cd97cd15"}, + {file = "nbclient-0.9.0.tar.gz", hash = "sha256:4b28c207877cf33ef3a9838cdc7a54c5ceff981194a82eac59d558f05487295e"}, +] + +[package.dependencies] +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" +nbformat = ">=5.1" +traitlets = ">=5.4" + +[package.extras] +dev = ["pre-commit"] +docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "7.14.1" +description = "Converting Jupyter Notebooks" +category = "main" +optional = true +python-versions = ">=3.8" +files = [ + {file = "nbconvert-7.14.1-py3-none-any.whl", hash = "sha256:aa83e3dd27ea38d0c1d908e3ce9518d15fa908dd30521b6d5040bd23f33fffb0"}, + {file = "nbconvert-7.14.1.tar.gz", hash = "sha256:20cba10e0448dc76b3bebfe1adf923663e3b98338daf77b97b42511ef5a88618"}, +] + +[package.dependencies] +beautifulsoup4 = "*" +bleach = "!=5.0.0" +defusedxml = "*" +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +markupsafe = ">=2.0" +mistune = ">=2.0.3,<4" +nbclient = ">=0.5.0" +nbformat = ">=5.7" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +tinycss2 = "*" +traitlets = ">=5.1" + +[package.extras] +all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] +docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] +qtpdf = ["nbconvert[qtpng]"] +qtpng = ["pyqtwebengine (>=5.15)"] +serve = ["tornado (>=6.1)"] +test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest"] +webpdf = ["playwright"] + [[package]] name = "nbformat" version = "5.9.2" @@ -3104,6 +3309,18 @@ sql-other = ["SQLAlchemy (>=1.4.36)"] test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.8.0)"] +[[package]] +name = "pandocfilters" +version = "1.5.0" +description = "Utilities for writing pandoc filters in python" +category = "main" +optional = true +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, + {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, +] + [[package]] name = "param" version = "2.0.1" @@ -3978,14 +4195,14 @@ dev = ["laminci", "nbproject-test", "nox", "pre-commit", "pytest (>=6.0)", "pyte [[package]] name = "referencing" -version = "0.32.0" +version = "0.32.1" description = "JSON Referencing + Python" category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "referencing-0.32.0-py3-none-any.whl", hash = "sha256:bdcd3efb936f82ff86f993093f6da7435c7de69a3b3a5a06678a6050184bee99"}, - {file = "referencing-0.32.0.tar.gz", hash = "sha256:689e64fe121843dcfd57b71933318ef1f91188ffb45367332700a86ac8fd6161"}, + {file = "referencing-0.32.1-py3-none-any.whl", hash = "sha256:7e4dc12271d8e15612bfe35792f5ea1c40970dadf8624602e33db2758f7ee554"}, + {file = "referencing-0.32.1.tar.gz", hash = "sha256:3c57da0513e9563eb7e203ebe9bb3a1b509b042016433bd1e45a2853466c3dd3"}, ] [package.dependencies] @@ -4150,14 +4367,14 @@ jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "roifile" -version = "2023.8.30" +version = "2024.1.10" description = "Read and write ImageJ ROI format" category = "main" optional = true python-versions = ">=3.9" files = [ - {file = "roifile-2023.8.30-py3-none-any.whl", hash = "sha256:14d04b2d4b46b8d326ec18e0fe5e4e9448cb6d6731efb6953eac969aef091277"}, - {file = "roifile-2023.8.30.tar.gz", hash = "sha256:70cb05e2c24650716fd0ae7335d2d5535423a6e4b4f1020e0714dcfdfa25c832"}, + {file = "roifile-2024.1.10-py3-none-any.whl", hash = "sha256:0dde8f4d0971439cc373250b8a312c0acf662249560161d61a191d0d09af1aa1"}, + {file = "roifile-2024.1.10.tar.gz", hash = "sha256:8bbc05a96c0a291429214cb6829426378e89931d1a7d3ad945aa2fea5765e434"}, ] [package.dependencies] @@ -4168,111 +4385,111 @@ all = ["matplotlib", "tifffile"] [[package]] name = "rpds-py" -version = "0.16.2" +version = "0.17.1" description = "Python bindings to Rust's persistent data structures (rpds)" category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "rpds_py-0.16.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:509b617ac787cd1149600e731db9274ebbef094503ca25158e6f23edaba1ca8f"}, - {file = "rpds_py-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:413b9c17388bbd0d87a329d8e30c1a4c6e44e2bb25457f43725a8e6fe4161e9e"}, - {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2946b120718eba9af2b4dd103affc1164a87b9e9ebff8c3e4c05d7b7a7e274e2"}, - {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:35ae5ece284cf36464eb160880018cf6088a9ac5ddc72292a6092b6ef3f4da53"}, - {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc6a7620ba7639a3db6213da61312cb4aa9ac0ca6e00dc1cbbdc21c2aa6eb57"}, - {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8cb6fe8ecdfffa0e711a75c931fb39f4ba382b4b3ccedeca43f18693864fe850"}, - {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6dace7b26a13353e24613417ce2239491b40a6ad44e5776a18eaff7733488b44"}, - {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1bdbc5fcb04a7309074de6b67fa9bc4b418ab3fc435fec1f2779a0eced688d04"}, - {file = "rpds_py-0.16.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f42e25c016927e2a6b1ce748112c3ab134261fc2ddc867e92d02006103e1b1b7"}, - {file = "rpds_py-0.16.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:eab36eae3f3e8e24b05748ec9acc66286662f5d25c52ad70cadab544e034536b"}, - {file = "rpds_py-0.16.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0474df4ade9a3b4af96c3d36eb81856cb9462e4c6657d4caecfd840d2a13f3c9"}, - {file = "rpds_py-0.16.2-cp310-none-win32.whl", hash = "sha256:84c5a4d1f9dd7e2d2c44097fb09fffe728629bad31eb56caf97719e55575aa82"}, - {file = "rpds_py-0.16.2-cp310-none-win_amd64.whl", hash = "sha256:2bd82db36cd70b3628c0c57d81d2438e8dd4b7b32a6a9f25f24ab0e657cb6c4e"}, - {file = "rpds_py-0.16.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:adc0c3d6fc6ae35fee3e4917628983f6ce630d513cbaad575b4517d47e81b4bb"}, - {file = "rpds_py-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ec23fcad480e77ede06cf4127a25fc440f7489922e17fc058f426b5256ee0edb"}, - {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07aab64e2808c3ebac2a44f67e9dc0543812b715126dfd6fe4264df527556cb6"}, - {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a4ebb8b20bd09c5ce7884c8f0388801100f5e75e7f733b1b6613c713371feefc"}, - {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a3d7e2ea25d3517c6d7e5a1cc3702cffa6bd18d9ef8d08d9af6717fc1c700eed"}, - {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f28ac0e8e7242d140f99402a903a2c596ab71550272ae9247ad78f9a932b5698"}, - {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19f00f57fdd38db4bb5ad09f9ead1b535332dbf624200e9029a45f1f35527ebb"}, - {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3da5a4c56953bdbf6d04447c3410309616c54433146ccdb4a277b9cb499bc10e"}, - {file = "rpds_py-0.16.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ec2e1cf025b2c0f48ec17ff3e642661da7ee332d326f2e6619366ce8e221f018"}, - {file = "rpds_py-0.16.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e0441fb4fdd39a230477b2ca9be90868af64425bfe7b122b57e61e45737a653b"}, - {file = "rpds_py-0.16.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9f0350ef2fba5f34eb0c9000ea328e51b9572b403d2f7f3b19f24085f6f598e8"}, - {file = "rpds_py-0.16.2-cp311-none-win32.whl", hash = "sha256:5a80e2f83391ad0808b4646732af2a7b67550b98f0cae056cb3b40622a83dbb3"}, - {file = "rpds_py-0.16.2-cp311-none-win_amd64.whl", hash = "sha256:e04e56b4ca7a770593633556e8e9e46579d66ec2ada846b401252a2bdcf70a6d"}, - {file = "rpds_py-0.16.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:5e6caa3809e50690bd92fa490f5c38caa86082c8c3315aa438bce43786d5e90d"}, - {file = "rpds_py-0.16.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e53b9b25cac9065328901713a7e9e3b12e4f57ef4280b370fbbf6fef2052eef"}, - {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:af27423662f32d7501a00c5e7342f7dbd1e4a718aea7a239781357d15d437133"}, - {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:43d4dd5fb16eb3825742bad8339d454054261ab59fed2fbac84e1d84d5aae7ba"}, - {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e061de3b745fe611e23cd7318aec2c8b0e4153939c25c9202a5811ca911fd733"}, - {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b811d182ad17ea294f2ec63c0621e7be92a1141e1012383461872cead87468f"}, - {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5552f328eaef1a75ff129d4d0c437bf44e43f9436d3996e8eab623ea0f5fcf73"}, - {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dcbe1f8dd179e4d69b70b1f1d9bb6fd1e7e1bdc9c9aad345cdeb332e29d40748"}, - {file = "rpds_py-0.16.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8aad80645a011abae487d356e0ceb359f4938dfb6f7bcc410027ed7ae4f7bb8b"}, - {file = "rpds_py-0.16.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b6f5549d6ed1da9bfe3631ca9483ae906f21410be2445b73443fa9f017601c6f"}, - {file = "rpds_py-0.16.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d452817e0d9c749c431a1121d56a777bd7099b720b3d1c820f1725cb40928f58"}, - {file = "rpds_py-0.16.2-cp312-none-win32.whl", hash = "sha256:888a97002e986eca10d8546e3c8b97da1d47ad8b69726dcfeb3e56348ebb28a3"}, - {file = "rpds_py-0.16.2-cp312-none-win_amd64.whl", hash = "sha256:d8dda2a806dfa4a9b795950c4f5cc56d6d6159f7d68080aedaff3bdc9b5032f5"}, - {file = "rpds_py-0.16.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:071980663c273bf3d388fe5c794c547e6f35ba3335477072c713a3176bf14a60"}, - {file = "rpds_py-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:726ac36e8a3bb8daef2fd482534cabc5e17334052447008405daca7ca04a3108"}, - {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9e557db6a177470316c82f023e5d571811c9a4422b5ea084c85da9aa3c035fc"}, - {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:90123853fc8b1747f80b0d354be3d122b4365a93e50fc3aacc9fb4c2488845d6"}, - {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a61f659665a39a4d17d699ab3593d7116d66e1e2e3f03ef3fb8f484e91908808"}, - {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cc97f0640e91d7776530f06e6836c546c1c752a52de158720c4224c9e8053cad"}, - {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44a54e99a2b9693a37ebf245937fd6e9228b4cbd64b9cc961e1f3391ec6c7391"}, - {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bd4b677d929cf1f6bac07ad76e0f2d5de367e6373351c01a9c0a39f6b21b4a8b"}, - {file = "rpds_py-0.16.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:5ef00873303d678aaf8b0627e111fd434925ca01c657dbb2641410f1cdaef261"}, - {file = "rpds_py-0.16.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:349cb40897fd529ca15317c22c0eab67f5ac5178b5bd2c6adc86172045210acc"}, - {file = "rpds_py-0.16.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2ddef620e70eaffebed5932ce754d539c0930f676aae6212f8e16cd9743dd365"}, - {file = "rpds_py-0.16.2-cp38-none-win32.whl", hash = "sha256:882ce6e25e585949c3d9f9abd29202367175e0aab3aba0c58c9abbb37d4982ff"}, - {file = "rpds_py-0.16.2-cp38-none-win_amd64.whl", hash = "sha256:f4bd4578e44f26997e9e56c96dedc5f1af43cc9d16c4daa29c771a00b2a26851"}, - {file = "rpds_py-0.16.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:69ac7ea9897ec201ce68b48582f3eb34a3f9924488a5432a93f177bf76a82a7e"}, - {file = "rpds_py-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a9880b4656efe36ccad41edc66789e191e5ee19a1ea8811e0aed6f69851a82f4"}, - {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee94cb58c0ba2c62ee108c2b7c9131b2c66a29e82746e8fa3aa1a1effbd3dcf1"}, - {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:24f7a2eb3866a9e91f4599851e0c8d39878a470044875c49bd528d2b9b88361c"}, - {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ca57468da2d9a660bcf8961637c85f2fbb2aa64d9bc3f9484e30c3f9f67b1dd7"}, - {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ccd4e400309e1f34a5095bf9249d371f0fd60f8a3a5c4a791cad7b99ce1fd38d"}, - {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80443fe2f7b3ea3934c5d75fb0e04a5dbb4a8e943e5ff2de0dec059202b70a8b"}, - {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4d6a9f052e72d493efd92a77f861e45bab2f6be63e37fa8ecf0c6fd1a58fedb0"}, - {file = "rpds_py-0.16.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:35953f4f2b3216421af86fd236b7c0c65935936a94ea83ddbd4904ba60757773"}, - {file = "rpds_py-0.16.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:981d135c7cdaf6cd8eadae1c950de43b976de8f09d8e800feed307140d3d6d00"}, - {file = "rpds_py-0.16.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d0dd7ed2f16df2e129496e7fbe59a34bc2d7fc8db443a606644d069eb69cbd45"}, - {file = "rpds_py-0.16.2-cp39-none-win32.whl", hash = "sha256:703d95c75a72e902544fda08e965885525e297578317989fd15a6ce58414b41d"}, - {file = "rpds_py-0.16.2-cp39-none-win_amd64.whl", hash = "sha256:e93ec1b300acf89730cf27975ef574396bc04edecc358e9bd116fb387a123239"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:44627b6ca7308680a70766454db5249105fa6344853af6762eaad4158a2feebe"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:3f91df8e6dbb7360e176d1affd5fb0246d2b88d16aa5ebc7db94fd66b68b61da"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d904c5693e08bad240f16d79305edba78276be87061c872a4a15e2c301fa2c0"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:290a81cfbe4673285cdf140ec5cd1658ffbf63ab359f2b352ebe172e7cfa5bf0"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b634c5ec0103c5cbebc24ebac4872b045cccb9456fc59efdcf6fe39775365bd2"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a297a4d08cc67c7466c873c78039d87840fb50d05473db0ec1b7b03d179bf322"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2e75e17bd0bb66ee34a707da677e47c14ee51ccef78ed6a263a4cc965a072a1"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f1b9d9260e06ea017feb7172976ab261e011c1dc2f8883c7c274f6b2aabfe01a"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:162d7cd9cd311c1b0ff1c55a024b8f38bd8aad1876b648821da08adc40e95734"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:9b32f742ce5b57201305f19c2ef7a184b52f6f9ba6871cc042c2a61f0d6b49b8"}, - {file = "rpds_py-0.16.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:ac08472f41ea77cd6a5dae36ae7d4ed3951d6602833af87532b556c1b4601d63"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:495a14b72bbe217f2695dcd9b5ab14d4f8066a00f5d209ed94f0aca307f85f6e"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:8d6b6937ae9eac6d6c0ca3c42774d89fa311f55adff3970fb364b34abde6ed3d"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a61226465bda9283686db8f17d02569a98e4b13c637be5a26d44aa1f1e361c2"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5cf6af100ffb5c195beec11ffaa8cf8523057f123afa2944e6571d54da84cdc9"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6df15846ee3fb2e6397fe25d7ca6624af9f89587f3f259d177b556fed6bebe2c"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1be2f033df1b8be8c3167ba3c29d5dca425592ee31e35eac52050623afba5772"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96f957d6ab25a78b9e7fc9749d754b98eac825a112b4e666525ce89afcbd9ed5"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:088396c7c70e59872f67462fcac3ecbded5233385797021976a09ebd55961dfe"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4c46ad6356e1561f2a54f08367d1d2e70a0a1bb2db2282d2c1972c1d38eafc3b"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:47713dc4fce213f5c74ca8a1f6a59b622fc1b90868deb8e8e4d993e421b4b39d"}, - {file = "rpds_py-0.16.2-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:f811771019f063bbd0aa7bb72c8a934bc13ebacb4672d712fc1639cfd314cccc"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f19afcfc0dd0dca35694df441e9b0f95bc231b512f51bded3c3d8ca32153ec19"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:a4b682c5775d6a3d21e314c10124599976809455ee67020e8e72df1769b87bc3"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c647ca87fc0ebe808a41de912e9a1bfef9acb85257e5d63691364ac16b81c1f0"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:302bd4983bbd47063e452c38be66153760112f6d3635c7eeefc094299fa400a9"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bf721ede3eb7b829e4a9b8142bd55db0bdc82902720548a703f7e601ee13bdc3"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:358dafc89ce3894c7f486c615ba914609f38277ef67f566abc4c854d23b997fa"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cad0f59ee3dc35526039f4bc23642d52d5f6616b5f687d846bfc6d0d6d486db0"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cffa76b385dfe1e38527662a302b19ffb0e7f5cf7dd5e89186d2c94a22dd9d0c"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:83640a5d7cd3bff694747d50436b8b541b5b9b9782b0c8c1688931d6ee1a1f2d"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:ed99b4f7179d2111702020fd7d156e88acd533f5a7d3971353e568b6051d5c97"}, - {file = "rpds_py-0.16.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:4022b9dc620e14f30201a8a73898a873c8e910cb642bcd2f3411123bc527f6ac"}, - {file = "rpds_py-0.16.2.tar.gz", hash = "sha256:781ef8bfc091b19960fc0142a23aedadafa826bc32b433fdfe6fd7f964d7ef44"}, + {file = "rpds_py-0.17.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:4128980a14ed805e1b91a7ed551250282a8ddf8201a4e9f8f5b7e6225f54170d"}, + {file = "rpds_py-0.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ff1dcb8e8bc2261a088821b2595ef031c91d499a0c1b031c152d43fe0a6ecec8"}, + {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d65e6b4f1443048eb7e833c2accb4fa7ee67cc7d54f31b4f0555b474758bee55"}, + {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a71169d505af63bb4d20d23a8fbd4c6ce272e7bce6cc31f617152aa784436f29"}, + {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:436474f17733c7dca0fbf096d36ae65277e8645039df12a0fa52445ca494729d"}, + {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10162fe3f5f47c37ebf6d8ff5a2368508fe22007e3077bf25b9c7d803454d921"}, + {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:720215373a280f78a1814becb1312d4e4d1077b1202a56d2b0815e95ccb99ce9"}, + {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:70fcc6c2906cfa5c6a552ba7ae2ce64b6c32f437d8f3f8eea49925b278a61453"}, + {file = "rpds_py-0.17.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:91e5a8200e65aaac342a791272c564dffcf1281abd635d304d6c4e6b495f29dc"}, + {file = "rpds_py-0.17.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:99f567dae93e10be2daaa896e07513dd4bf9c2ecf0576e0533ac36ba3b1d5394"}, + {file = "rpds_py-0.17.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:24e4900a6643f87058a27320f81336d527ccfe503984528edde4bb660c8c8d59"}, + {file = "rpds_py-0.17.1-cp310-none-win32.whl", hash = "sha256:0bfb09bf41fe7c51413f563373e5f537eaa653d7adc4830399d4e9bdc199959d"}, + {file = "rpds_py-0.17.1-cp310-none-win_amd64.whl", hash = "sha256:20de7b7179e2031a04042e85dc463a93a82bc177eeba5ddd13ff746325558aa6"}, + {file = "rpds_py-0.17.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:65dcf105c1943cba45d19207ef51b8bc46d232a381e94dd38719d52d3980015b"}, + {file = "rpds_py-0.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:01f58a7306b64e0a4fe042047dd2b7d411ee82e54240284bab63e325762c1147"}, + {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:071bc28c589b86bc6351a339114fb7a029f5cddbaca34103aa573eba7b482382"}, + {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ae35e8e6801c5ab071b992cb2da958eee76340e6926ec693b5ff7d6381441745"}, + {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149c5cd24f729e3567b56e1795f74577aa3126c14c11e457bec1b1c90d212e38"}, + {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e796051f2070f47230c745d0a77a91088fbee2cc0502e9b796b9c6471983718c"}, + {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e820ee1004327609b28db8307acc27f5f2e9a0b185b2064c5f23e815f248f8"}, + {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1957a2ab607f9added64478a6982742eb29f109d89d065fa44e01691a20fc20a"}, + {file = "rpds_py-0.17.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8587fd64c2a91c33cdc39d0cebdaf30e79491cc029a37fcd458ba863f8815383"}, + {file = "rpds_py-0.17.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4dc889a9d8a34758d0fcc9ac86adb97bab3fb7f0c4d29794357eb147536483fd"}, + {file = "rpds_py-0.17.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:2953937f83820376b5979318840f3ee47477d94c17b940fe31d9458d79ae7eea"}, + {file = "rpds_py-0.17.1-cp311-none-win32.whl", hash = "sha256:1bfcad3109c1e5ba3cbe2f421614e70439f72897515a96c462ea657261b96518"}, + {file = "rpds_py-0.17.1-cp311-none-win_amd64.whl", hash = "sha256:99da0a4686ada4ed0f778120a0ea8d066de1a0a92ab0d13ae68492a437db78bf"}, + {file = "rpds_py-0.17.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1dc29db3900cb1bb40353772417800f29c3d078dbc8024fd64655a04ee3c4bdf"}, + {file = "rpds_py-0.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:82ada4a8ed9e82e443fcef87e22a3eed3654dd3adf6e3b3a0deb70f03e86142a"}, + {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d36b2b59e8cc6e576f8f7b671e32f2ff43153f0ad6d0201250a7c07f25d570e"}, + {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3677fcca7fb728c86a78660c7fb1b07b69b281964673f486ae72860e13f512ad"}, + {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:516fb8c77805159e97a689e2f1c80655c7658f5af601c34ffdb916605598cda2"}, + {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df3b6f45ba4515632c5064e35ca7f31d51d13d1479673185ba8f9fefbbed58b9"}, + {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a967dd6afda7715d911c25a6ba1517975acd8d1092b2f326718725461a3d33f9"}, + {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dbbb95e6fc91ea3102505d111b327004d1c4ce98d56a4a02e82cd451f9f57140"}, + {file = "rpds_py-0.17.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:02866e060219514940342a1f84303a1ef7a1dad0ac311792fbbe19b521b489d2"}, + {file = "rpds_py-0.17.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:2528ff96d09f12e638695f3a2e0c609c7b84c6df7c5ae9bfeb9252b6fa686253"}, + {file = "rpds_py-0.17.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:bd345a13ce06e94c753dab52f8e71e5252aec1e4f8022d24d56decd31e1b9b23"}, + {file = "rpds_py-0.17.1-cp312-none-win32.whl", hash = "sha256:2a792b2e1d3038daa83fa474d559acfd6dc1e3650ee93b2662ddc17dbff20ad1"}, + {file = "rpds_py-0.17.1-cp312-none-win_amd64.whl", hash = "sha256:292f7344a3301802e7c25c53792fae7d1593cb0e50964e7bcdcc5cf533d634e3"}, + {file = "rpds_py-0.17.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:8ffe53e1d8ef2520ebcf0c9fec15bb721da59e8ef283b6ff3079613b1e30513d"}, + {file = "rpds_py-0.17.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4341bd7579611cf50e7b20bb8c2e23512a3dc79de987a1f411cb458ab670eb90"}, + {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f4eb548daf4836e3b2c662033bfbfc551db58d30fd8fe660314f86bf8510b93"}, + {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b686f25377f9c006acbac63f61614416a6317133ab7fafe5de5f7dc8a06d42eb"}, + {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4e21b76075c01d65d0f0f34302b5a7457d95721d5e0667aea65e5bb3ab415c25"}, + {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b86b21b348f7e5485fae740d845c65a880f5d1eda1e063bc59bef92d1f7d0c55"}, + {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f175e95a197f6a4059b50757a3dca33b32b61691bdbd22c29e8a8d21d3914cae"}, + {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1701fc54460ae2e5efc1dd6350eafd7a760f516df8dbe51d4a1c79d69472fbd4"}, + {file = "rpds_py-0.17.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9051e3d2af8f55b42061603e29e744724cb5f65b128a491446cc029b3e2ea896"}, + {file = "rpds_py-0.17.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7450dbd659fed6dd41d1a7d47ed767e893ba402af8ae664c157c255ec6067fde"}, + {file = "rpds_py-0.17.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:5a024fa96d541fd7edaa0e9d904601c6445e95a729a2900c5aec6555fe921ed6"}, + {file = "rpds_py-0.17.1-cp38-none-win32.whl", hash = "sha256:da1ead63368c04a9bded7904757dfcae01eba0e0f9bc41d3d7f57ebf1c04015a"}, + {file = "rpds_py-0.17.1-cp38-none-win_amd64.whl", hash = "sha256:841320e1841bb53fada91c9725e766bb25009cfd4144e92298db296fb6c894fb"}, + {file = "rpds_py-0.17.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:f6c43b6f97209e370124baf2bf40bb1e8edc25311a158867eb1c3a5d449ebc7a"}, + {file = "rpds_py-0.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5e7d63ec01fe7c76c2dbb7e972fece45acbb8836e72682bde138e7e039906e2c"}, + {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81038ff87a4e04c22e1d81f947c6ac46f122e0c80460b9006e6517c4d842a6ec"}, + {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:810685321f4a304b2b55577c915bece4c4a06dfe38f6e62d9cc1d6ca8ee86b99"}, + {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:25f071737dae674ca8937a73d0f43f5a52e92c2d178330b4c0bb6ab05586ffa6"}, + {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa5bfb13f1e89151ade0eb812f7b0d7a4d643406caaad65ce1cbabe0a66d695f"}, + {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dfe07308b311a8293a0d5ef4e61411c5c20f682db6b5e73de6c7c8824272c256"}, + {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a000133a90eea274a6f28adc3084643263b1e7c1a5a66eb0a0a7a36aa757ed74"}, + {file = "rpds_py-0.17.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d0e8a6434a3fbf77d11448c9c25b2f25244226cfbec1a5159947cac5b8c5fa4"}, + {file = "rpds_py-0.17.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:efa767c220d94aa4ac3a6dd3aeb986e9f229eaf5bce92d8b1b3018d06bed3772"}, + {file = "rpds_py-0.17.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:dbc56680ecf585a384fbd93cd42bc82668b77cb525343170a2d86dafaed2a84b"}, + {file = "rpds_py-0.17.1-cp39-none-win32.whl", hash = "sha256:270987bc22e7e5a962b1094953ae901395e8c1e1e83ad016c5cfcfff75a15a3f"}, + {file = "rpds_py-0.17.1-cp39-none-win_amd64.whl", hash = "sha256:2a7b2f2f56a16a6d62e55354dd329d929560442bd92e87397b7a9586a32e3e76"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a3264e3e858de4fc601741498215835ff324ff2482fd4e4af61b46512dd7fc83"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f2f3b28b40fddcb6c1f1f6c88c6f3769cd933fa493ceb79da45968a21dccc920"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9584f8f52010295a4a417221861df9bea4c72d9632562b6e59b3c7b87a1522b7"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c64602e8be701c6cfe42064b71c84ce62ce66ddc6422c15463fd8127db3d8066"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:060f412230d5f19fc8c8b75f315931b408d8ebf56aec33ef4168d1b9e54200b1"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9412abdf0ba70faa6e2ee6c0cc62a8defb772e78860cef419865917d86c7342"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9737bdaa0ad33d34c0efc718741abaafce62fadae72c8b251df9b0c823c63b22"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9f0e4dc0f17dcea4ab9d13ac5c666b6b5337042b4d8f27e01b70fae41dd65c57"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1db228102ab9d1ff4c64148c96320d0be7044fa28bd865a9ce628ce98da5973d"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:d8bbd8e56f3ba25a7d0cf980fc42b34028848a53a0e36c9918550e0280b9d0b6"}, + {file = "rpds_py-0.17.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:be22ae34d68544df293152b7e50895ba70d2a833ad9566932d750d3625918b82"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bf046179d011e6114daf12a534d874958b039342b347348a78b7cdf0dd9d6041"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:1a746a6d49665058a5896000e8d9d2f1a6acba8a03b389c1e4c06e11e0b7f40d"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0b8bf5b8db49d8fd40f54772a1dcf262e8be0ad2ab0206b5a2ec109c176c0a4"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f7f4cb1f173385e8a39c29510dd11a78bf44e360fb75610594973f5ea141028b"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7fbd70cb8b54fe745301921b0816c08b6d917593429dfc437fd024b5ba713c58"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9bdf1303df671179eaf2cb41e8515a07fc78d9d00f111eadbe3e14262f59c3d0"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fad059a4bd14c45776600d223ec194e77db6c20255578bb5bcdd7c18fd169361"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3664d126d3388a887db44c2e293f87d500c4184ec43d5d14d2d2babdb4c64cad"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:698ea95a60c8b16b58be9d854c9f993c639f5c214cf9ba782eca53a8789d6b19"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:c3d2010656999b63e628a3c694f23020322b4178c450dc478558a2b6ef3cb9bb"}, + {file = "rpds_py-0.17.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:938eab7323a736533f015e6069a7d53ef2dcc841e4e533b782c2bfb9fb12d84b"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1e626b365293a2142a62b9a614e1f8e331b28f3ca57b9f05ebbf4cf2a0f0bdc5"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:380e0df2e9d5d5d339803cfc6d183a5442ad7ab3c63c2a0982e8c824566c5ccc"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b760a56e080a826c2e5af09002c1a037382ed21d03134eb6294812dda268c811"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5576ee2f3a309d2bb403ec292d5958ce03953b0e57a11d224c1f134feaf8c40f"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1f3c3461ebb4c4f1bbc70b15d20b565759f97a5aaf13af811fcefc892e9197ba"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:637b802f3f069a64436d432117a7e58fab414b4e27a7e81049817ae94de45d8d"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffee088ea9b593cc6160518ba9bd319b5475e5f3e578e4552d63818773c6f56a"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3ac732390d529d8469b831949c78085b034bff67f584559340008d0f6041a049"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:93432e747fb07fa567ad9cc7aaadd6e29710e515aabf939dfbed8046041346c6"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:7b7d9ca34542099b4e185b3c2a2b2eda2e318a7dbde0b0d83357a6d4421b5296"}, + {file = "rpds_py-0.17.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:0387ce69ba06e43df54e43968090f3626e231e4bc9150e4c3246947567695f68"}, + {file = "rpds_py-0.17.1.tar.gz", hash = "sha256:0210b2668f24c078307260bf88bdac9d6f1093635df5123789bfee4d8d7fc8e7"}, ] [[package]] @@ -4705,6 +4922,18 @@ files = [ {file = "sortedcontainers-2.4.0.tar.gz", hash = "sha256:25caa5a06cc30b6b83d11423433f65d1f9d76c4c6a0c90e3379eaa43b9bfdb88"}, ] +[[package]] +name = "soupsieve" +version = "2.5" +description = "A modern CSS selector implementation for Beautiful Soup." +category = "main" +optional = true +python-versions = ">=3.8" +files = [ + {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"}, + {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"}, +] + [[package]] name = "spatial-image" version = "0.3.0" @@ -5007,6 +5236,25 @@ numpy = "*" [package.extras] all = ["defusedxml", "fsspec", "imagecodecs (>=2023.8.12)", "lxml", "matplotlib", "zarr"] +[[package]] +name = "tinycss2" +version = "1.2.1" +description = "A tiny CSS parser" +category = "main" +optional = true +python-versions = ">=3.7" +files = [ + {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, + {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, +] + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx_rtd_theme"] +test = ["flake8", "isort", "pytest"] + [[package]] name = "toml" version = "0.10.2" @@ -5323,14 +5571,26 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "wcwidth" -version = "0.2.12" +version = "0.2.13" description = "Measures the displayed width of unicode strings in a terminal" category = "main" optional = true python-versions = "*" files = [ - {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, - {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +category = "main" +optional = true +python-versions = "*" +files = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, ] [[package]] @@ -5683,11 +5943,11 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p [extras] baysor = ["loompy", "toml"] cellpose = ["cellpose", "opencv-python", "torch"] -dev = ["black", "ipykernel", "isort", "mkdocs-material", "mkdocstrings", "mkdocstrings-python", "pytest"] -snakemake = ["snakemake"] +dev = ["black", "ipykernel", "isort", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings", "mkdocstrings-python", "pytest"] +snakemake = ["pulp", "snakemake"] tangram = ["tangram-sc"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.11" -content-hash = "ac7ef4b4f152433a95164a9599c6bd0d892887107d985265272a73d4645a171c" +content-hash = "977234c9fae0a78884783b221a10679ce689f35298d003a6142de30e9bf38b4a" diff --git a/pyproject.toml b/pyproject.toml index 98614834..24928029 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -34,6 +34,7 @@ isort = { version = "^5.10.1", optional = true } pytest = { version = "^7.1.3", optional = true } ipykernel = { version = "^6.25.2", optional = true } mkdocs-material = { version = "^9.3.2", optional = true } +mkdocs-jupyter = { version = "^0.24.6", optional = true } mkdocstrings = { version = "^0.23.0", optional = true } mkdocstrings-python = { version = "^1.7.3", optional = true } @@ -46,13 +47,14 @@ loompy = { version = "^3.0.7", optional = true } tangram-sc = { version = "^1.0.4", optional = true } -snakemake = { version = "^7.32.4", optional = true } +snakemake = { version = "^7.32.4,<8.1.3", optional = true } +pulp = { version = ">=2.3.1,<2.8", optional = true } [tool.poetry.extras] cellpose = ["cellpose", "opencv-python", "torch"] baysor = ["toml", "loompy"] tangram = ["tangram-sc"] -snakemake = ["snakemake"] +snakemake = ["snakemake", "pulp"] dev = [ "black", "isort", @@ -61,6 +63,7 @@ dev = [ "mkdocs-material", "mkdocstrings", "mkdocstrings-python", + "mkdocs-jupyter", ] [build-system] From 38b33bba7e02f75e6e9d8fc46d2a4972e746b771 Mon Sep 17 00:00:00 2001 From: Blampey Quentin Date: Mon, 15 Jan 2024 15:40:26 +0100 Subject: [PATCH 6/8] refactor sopa.stats -> sopa.spatial --- docs/api/spatial.md | 23 + docs/api/stats.md | 19 - docs/tutorials/spatial.ipynb | 919 ++++++++++++++++++++++++++++ docs/tutorials/stats.md | 1 - sopa/{stats => spatial}/__init__.py | 2 +- sopa/{stats => spatial}/_build.py | 2 +- sopa/{stats => spatial}/_graph.py | 0 sopa/{stats => spatial}/distance.py | 60 +- sopa/{stats => spatial}/morpho.py | 4 +- 9 files changed, 1005 insertions(+), 25 deletions(-) create mode 100644 docs/api/spatial.md delete mode 100644 docs/api/stats.md create mode 100644 docs/tutorials/spatial.ipynb delete mode 100644 docs/tutorials/stats.md rename sopa/{stats => spatial}/__init__.py (58%) rename sopa/{stats => spatial}/_build.py (97%) rename sopa/{stats => spatial}/_graph.py (100%) rename sopa/{stats => spatial}/distance.py (61%) rename sopa/{stats => spatial}/morpho.py (97%) diff --git a/docs/api/spatial.md b/docs/api/spatial.md new file mode 100644 index 00000000..4331fc49 --- /dev/null +++ b/docs/api/spatial.md @@ -0,0 +1,23 @@ +::: sopa.spatial.mean_distance + options: + show_root_heading: true + +::: sopa.spatial.geometrize_niches + options: + show_root_heading: true + +::: sopa.spatial.niches_geometry_stats + options: + show_root_heading: true + +::: sopa.spatial.cells_to_groups + options: + show_root_heading: true + +::: sopa.spatial.spatial_neighbors + options: + show_root_heading: true + +::: sopa.spatial.prepare_network + options: + show_root_heading: true diff --git a/docs/api/stats.md b/docs/api/stats.md deleted file mode 100644 index 8c746d45..00000000 --- a/docs/api/stats.md +++ /dev/null @@ -1,19 +0,0 @@ -::: sopa.stats.mean_distance - options: - show_root_heading: true - -::: sopa.stats.geometrize_niches - options: - show_root_heading: true - -::: sopa.stats.niches_geometry_stats - options: - show_root_heading: true - -::: sopa.stats.cells_to_groups - options: - show_root_heading: true - -::: sopa.stats.spatial_neighbors - options: - show_root_heading: true diff --git a/docs/tutorials/spatial.ipynb b/docs/tutorials/spatial.ipynb new file mode 100644 index 00000000..6688f86e --- /dev/null +++ b/docs/tutorials/spatial.ipynb @@ -0,0 +1,919 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import anndata\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import sopa\n", + "import sopa.spatial\n", + "\n", + "heatmap_kwargs = {\"vmax\": 40, \"cmap\": sns.cm.rocket_r, \"cbar_kws\": {'label': 'Mean hop distance'}}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Prepare your data\n", + "\n", + "You'll need the `AnnData` output of Sopa. If using the `SpatialData` object itself, simply extract the table.\n", + "\n", + "Make sure you have at least a cell-type annotation (i.e. a column in `adata.obs` corresponding to cell-types), and eventually a niche annotation (with algorithms such as [STAGATE](https://github.com/zhanglabtools/STAGATE)).\n", + "\n", + "#### (Optional) Download the tutorial data\n", + "\n", + "The `.h5ad` file used in this tutorial is publicly available on Zenodo [here](https://doi.org/10.5281/zenodo.10512440)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "adata = anndata.read_h5ad(\"adata_liver_merscope.h5ad\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, compute the Delaunay graph on your data. Especially, use the `radius` argument to drop long edges. In this examples, edges longer than 50 microns are removed.\n", + "> The later function comes from [Squidpy](https://squidpy.readthedocs.io/en/latest/api/squidpy.gr.spatial_neighbors.html#squidpy.gr.spatial_neighbors)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.spatial._build)\u001b[0m Computing delaunay graph\n" + ] + } + ], + "source": [ + "sopa.spatial.spatial_neighbors(adata, radius=[0, 50])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Distances between cell categories\n", + "\n", + "You can compute the mean hop-distance between all pairs of cell-types:\n", + "> Below, `'cell_type'` is the name of the column of `adata.obs` containing the cell-type annotation" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 28/28 [00:08<00:00, 3.37it/s]\n" + ] + } + ], + "source": [ + "cell_type_to_cell_type = sopa.spatial.mean_distance(adata, \"cell_type\", \"cell_type\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAKTCAYAAADbrIRdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeTxV+f8H8NexXTuRQlmSNVG0TFKiFFompbSYpH2hTavvTKKSalq1aKemfd+mtGi0m9armiQZ0kIrinJt9/eHX3e6ubidQ5T3cx7n8XDP+Xw+78+5Md7O/SyMUCgUghBCCCGEEPLVZGq6A4QQQgghhHyvKJkmhBBCCCGEJUqmCSGEEEIIYYmSaUIIIYQQQliiZJoQQgghhBCWKJkmhBBCCCGEJUqmCSGEEEIIYYmSaUIIIYQQQliiZJoQQgghhBCWKJkmhBBCCCGEJUqmCSGEEEJIrbNw4UIwDIPJkyeLzuXn58Pf3x/a2tpQVVWFl5cXXrx4UXOdBCXThBBCCCGklrl+/TrWr18PW1tbsfNTpkzBsWPHsG/fPpw/fx7Pnz9H3759a6iXpSiZJoQQQgghtUZubi58fHywceNG1KtXT3Q+JycHmzdvxrJly9C5c2e0atUKUVFRuHLlCuLj42usv5RME0IIIYSQaiEQCPDu3TuxQyAQVFjH398fPXr0gKurq9j5mzdvorCwUOy8paUlDA0NcfXq1WrpvzTkaiwyIdWo8PW/nOoX/3uTdV2ZBk04xS6MXso+tpUlp9gy1u1Z1y15/YRTbOE/t1jXZVRVOcVmrFqxritMvc8pNvSMWFct3LGLU2j5zuz/vZH7nlPs/BM3WNdV+jWQU2xhEvufbyircIudxv7/TTfC33CKnS+UZV23e9ZFTrFzL61gXbdo73ZOsWU9erCumzWb28+YWlv2/29SW3GMU+yvIafQqNra/u1/oxAaGip2bs6cOQgJCZFYfvfu3bh16xauX79e5lpmZiYUFBSgqakpdr5hw4bIzMysqi5/NUqmCSGEEEJItQgKCkJgoPgfwDweT2LZJ0+eYNKkSThz5gwUFRW/RfeqBA3zqGIMw+Dw4cOc2nB2dhabufqt+Pn5wdPT85vHJYQQQkjNYarx4PF4UFdXFzvKS6Zv3ryJly9fwt7eHnJycpCTk8P58+cREREBOTk5NGzYEAUFBcjOzhar9+LFC+jq6lblW/JVKJn+SpmZmZgwYQJMTEzA4/FgYGCAXr16ITY2tqa7xtnKlSsRHR39zeJFR0eX+aiGEEIIIXVTly5dcPfuXfD5fNHRunVr+Pj4iL6Wl5cXy7mSkpKQnp4OBweHGus3DfP4CmlpaXB0dISmpiZ+//132NjYoLCwEKdOnYK/vz8ePHhQ013kRENDo6a7QAghhJBvjGGYmu4CAEBNTQ3NmzcXO6eiogJtbW3R+REjRiAwMBBaWlpQV1fHhAkT4ODggHbt2tVElwHQk+mvMn78eDAMg2vXrsHLywvm5uawtrZGYGCg2JIsr1+/Rp8+faCsrAwzMzMcPXpUrJ3z58+jbdu24PF40NPTw6xZs1BUVFRu3D/++AOtW7eGmpoadHV1MXjwYLx8+VJ0PS4uDgzDIDY2Fq1bt4aysjLat2+PpKQksXbmz5+PBg0aQE1NDSNHjsSsWbPQsmVL0fUvh3kIBAJMnDgRDRo0gKKiIjp06FBmQsA///yDnj17Ql1dHWpqaujYsSNSUlJw4cIFyMvLl5kQMHnyZHTs2BFxcXEYNmwYcnJywDAMGIYRTUYQCASYNm0aGjVqBBUVFfz000+Ii4ur6J+GEEIIISx9+j1cHUdVW758OXr27AkvLy84OTlBV1cXBw8erPI4X4OSaSm9ffsWMTEx8Pf3h4pK2dncnw9XCA0Nhbe3N+7cuYPu3bvDx8cHb9++BQA8e/YM3bt3R5s2bZCQkIDIyEhs3rwZ8+fPLzd2YWEh5s2bh4SEBBw+fBhpaWnw8/MrU+7XX3/F0qVLcePGDcjJyWH48OGiazt27EBYWBgWLVqEmzdvwtDQEJGRkRXe84wZM3DgwAFs3boVt27dgqmpKdzc3MTuxcnJCTweD+fOncPNmzcxfPhwFBUVwcnJCSYmJvjjjz/E7mPHjh0YPnw42rdvjxUrVkBdXR0ZGRnIyMjAtGnTAAABAQG4evUqdu/ejTt37qB///5wd3dHcnJyhf0lhBBCyI8lLi4OK1asEL1WVFTEmjVr8PbtW+Tl5eHgwYM1Ol4aoGEeUnv06BGEQiEsLStfeszPzw+DBg0CACxYsAARERG4du0a3N3dsXbtWhgYGGD16tVgGAaWlpZ4/vw5Zs6cieDgYMjIlP375vOk2MTEBBEREWjTpg1yc3Oh+tmSYGFhYejUqRMAYNasWejRowfy8/OhqKiIVatWYcSIERg2bBgAIDg4GKdPn0Zubq7Ee8jLy0NkZCSio6Ph4eEBANi4cSPOnDmDzZs3Y/r06VizZg00NDSwe/duyMvLAwDMzc1FbYwYMQJRUVGYPn06AODYsWPIz8+Ht7c3FBQUoKGhAYZhxH4I0tPTERUVhfT0dOjr6wMApk2bhpiYGERFRWHBggVl+ioQCMqsWSkjEJQ7wYEQQggh/2FQO4Z5fK/oybSUhEKh1GU/3/pSRUUF6urqomEZiYmJcHBwEPvow9HREbm5uXj69KnE9m7evIlevXrB0NAQampqooQ5PT293Lh6enoAIIqblJSEtm3bipX/8vXnUlJSUFhYCEdHR9E5eXl5tG3bFomJiQAAPp+Pjh07ihLpL/n5+eHRo0eiITDR0dHw9vaW+GT/k7t376K4uBjm5uZQVVUVHefPn0dKSorEOuHh4dDQ0BA7Fq1cV24MQgghhJCqQk+mpWRmZgaGYaSaZPhlcskwDEpKSljFzcvLg5ubG9zc3LBjxw7o6OggPT0dbm5uKCgoKDfup2SdbVxpKCkpVXi9QYMG6NWrF6KiotCkSROcPHmy0rHPubm5kJWVxc2bNyErK77BgGo5G3NIWsNS5v2zym+AEEIIIbVmAuL3ip5MS0lLSwtubm5Ys2YN8vLyylz/cs3D8lhZWeHq1atiT7ovX74MNTU1NG7cuEz5Bw8e4M2bN1i4cCE6duwIS0tLscmH0rKwsCgzeVDS7kKfNG3aFAoKCrh8+bLoXGFhIa5fv45mzZoBKH0SfvHiRRQWFpbbzsiRI7Fnzx5s2LABTZs2FXvSraCggOLiYrHydnZ2KC4uxsuXL2Fqaip2lDcm6mvWsCSEEEIIqUqUTH+FNWvWoLi4GG3btsWBAweQnJyMxMRERERESL2+4fjx4/HkyRNMmDABDx48wJEjRzBnzhwEBgZKHC9taGgIBQUFrFq1Cv/++y+OHj2KefPmfXXfJ0yYgM2bN2Pr1q1ITk7G/PnzcefOnXL/GlVRUcG4ceMwffp0xMTE4P79+xg1ahQ+fPiAESNGACidKPju3TsMHDgQN27cQHJyMv744w+xVUTc3Nygrq6O+fPni8Zrf2JsbIzc3FzExsbi9evX+PDhA8zNzeHj4wNfX18cPHgQqampuHbtGsLDw/Hnn39+9X0TQgghpGIyDFNtR11AyfRXMDExwa1bt+Di4oKpU6eiefPm6Nq1K2JjYytdGeOTRo0a4cSJE7h27RpatGiBsWPHYsSIEfjtt98kltfR0UF0dDT27duHZs2aYeHChViyZMlX993HxwdBQUGYNm0a7O3tkZqaCj8/vwq361y4cCG8vLwwZMgQ2Nvb49GjRzh16hTq1asHANDW1sa5c+eQm5uLTp06oVWrVti4caPYcBMZGRn4+fmhuLgYvr6+Yu23b98eY8eOxYABA6Cjo4PFixcDAKKiouDr64upU6fCwsICnp6euH79OgwNDb/6vgkhhBBCqhMj/JqZdeSH0rVrV+jq6ootX1cdRowYgVevXpVZb7s6Fb7+l1P94n9vsq4r06AJp9iF0UvZx7aqfLWZCutbt2ddt+T1E06xhf/cYl2XKWc8vdT1rVqxritMvc8pNvSMWFct3LGLU2j5zuz/vZH7nlPs/BM3WNdV+jWw8kIVECax//mGcvkTqKWKncb+/003wt9wip0vlK28UDm6Z13kFDv30grWdYv2bucUW9ajB+u6WbO5/YyptWX//ya1Fcc4xf4aqsrcfm9VJPdDarW1XVvQBMQ64sOHD1i3bh3c3NwgKyuLXbt24ezZszhz5ky1xczJycHdu3exc+fOb5pIE0IIIUR6dWU4RnWhZLqOYBgGJ06cQFhYGPLz82FhYYEDBw7A1dW12mL27t0b165dw9ixY9G1a9dqi0MIIYQQUlMoma4jlJSUcPbs2W8asya3AN9oF8yp/qjbc1nXLcnKrLxQBWR+km4yqyR5Kw5wiq221o113ffztnKKnfVMmXXdxkMbcIrNZMeyr1xYxCk20h+zrnrsmA6n0H3b5LCuKyzhNkJw9Y1GrOtOe8xxaI2uAfu62a85hWbU1VnXXaiQXnmhCrSQ0WRfOYtTaJTcvMC6bvohbj9jxuaJrOteTNXnFPvlE/ZPfCes4BT6q9DSeNzQBERCCCGEEEJYomT6KzEMg8OHD9d0NzgzNjYW2+u+Jnz+XqalpYFhGPD5/BrtEyGEEFLXyICptqMuqNFk+tWrVxg3bhwMDQ3B4/Ggq6sLNzc3sY1CakpISAhatmxZ090ghBBCCCG1WI2Omfby8kJBQQG2bt0KExMTvHjxArGxsXjzhtvyP4QQQgghRDo0ZpqbGnsynZ2djYsXL2LRokVwcXGBkZER2rZti6CgIPz888+icgzDYP369ejZsyeUlZVF23E/evQIzs7OUFFRQfv27ZGSkiLWfmRkpGhLbAsLizJrKaenp6N3795QVVWFuro6vL298eLFCwBAdHQ0QkNDkZCQAIZhwDAMoqOjRXVfv36NPn36QFlZGWZmZpUu+2ZsbIz58+fD19cXqqqqMDIywtGjR/Hq1StRH2xtbXHjxn/rrkp6Mr5ixQoYGxuLXsfFxaFt27ZQUVGBpqYmHB0d8fjxf5OZjh07hjZt2kBRURH169dHnz59Kvz3GDlyJHR0dKCuro7OnTsjISGhwvt6+vQpBg0aBC0tLaioqKB169b4+++/RdePHDkCe3t7KCoqwsTEBKGhoSgqkm4iSVZWFnx8fKCjowMlJSWYmZkhKipKqrqEEEIIId9KjSXTqqqqUFVVxeHDhyEQCCosO2/ePPj6+oLP58PS0hKDBw/GmDFjEBQUhBs3bkAoFCIgIEBU/tChQ5g0aRKmTp2Ke/fuYcyYMRg2bBj++usvAEBJSQl69+6Nt2/f4vz58zhz5gz+/fdfDBgwAAAwYMAATJ06FdbW1sjIyEBGRoboGgCEhobC29sbd+7cQffu3eHj44O3b99WeA/Lly+Ho6Mjbt++jR49emDIkCHw9fXFL7/8glu3bqFp06bw9fWFtHvoFBUVwdPTE506dcKdO3dw9epVjB49WvTX5Z9//ok+ffqge/fuuH37NmJjY9G2bdty2+vfvz9evnyJkydP4ubNm7C3t0eXLl3Kva9Pux4+e/YMR48eRUJCAmbMmIGSkhIAwMWLF+Hr64tJkybh/v37WL9+PaKjoxEWFibV/c2ePRv379/HyZMnkZiYiMjISNSvX1+quoQQQgiRHm0nzk2NDfOQk5NDdHQ0Ro0ahXXr1sHe3h6dOnXCwIEDYWtrK1Z22LBh8Pb2BgDMnDkTDg4OmD17NtzcSpfxmjRpEoYNGyYqv2TJEvj5+WH8+PEAgMDAQMTHx2PJkiVwcXFBbGws7t69i9TUVBgYlC6RtG3bNlhbW+P69eto06YNVFVVIScnB11d3TJ99/Pzw6BBgwAACxYsQEREBK5duwZ3d/dy77d79+4YM2YMACA4OBiRkZFo06YN+vfvL3ZfL168kBjzS+/evUNOTg569uyJpk2bAgCsrKxE18PCwjBw4ECEhoaKzrVo0UJiW5cuXcK1a9fw8uVL8Hg80Xt4+PBh7N+/H6NHjy5TZ+fOnXj16hWuX78OLS0tAICpqanoemhoKGbNmoWhQ4cCKN2Kfd68eZgxYwbmzJlT6f2lp6fDzs4OrVu3BgCxJ/KEEEIIqTo0zIObGp2A6OXlhefPn+Po0aNwd3dHXFwc7O3txYZUABBLrhs2bAgAsLGxETuXn5+Pd+/eAQASExPh6Ogo1oajoyMSExNF1w0MDESJNAA0a9YMmpqaojIV+bw/KioqUFdXx8uXL6WuU949AKi0nU+0tLTg5+cHNzc39OrVCytXrkRGRoboOp/PR5cuXaRqKyEhAbm5udDW1hZ9YqCqqorU1NQyw2c+b9/Ozk6USEtqc+7cuWLtjRo1ChkZGfjw4UOlfRo3bhx2796Nli1bYsaMGbhy5Uq5ZQUCAd69eyd2FAqLpbp3QgghhBAuanxpPEVFRXTt2hWzZ8/GlStX4OfnV+bJpby8vOjrT389STr3aYhBdfs89qf4lcX+2nuQkZEpM+SjsLBQ7HVUVBSuXr2K9u3bY8+ePTA3N0d8fDyA0k1apJWbmws9PT3w+XyxIykpCdOnT5dYp7L2c3NzERoaKtbe3bt3kZycDEVFxUr75OHhgcePH2PKlCl4/vw5unTpgmnTpkksGx4eDg0NDbHj9Lt/Kr9xQgghhNDSeBzVeDL9pWbNmiEvL49TG1ZWVmWW17t8+TKaNWsmuv7kyRM8efJEdP3+/fvIzs4WlVFQUEBxcc093dTR0UFmZqZYQi1pDWY7OzsEBQXhypUraN68OXbu3Amg9El4bKx0u7rZ29sjMzMTcnJyMDU1FTvKG6dsa2sLPp9f7phqe3t7JCUllWnP1NQUMjLSfdvp6Ohg6NCh2L59O1asWIENGzZILBcUFIScnByxo5u6tVQxCCGEEEK4qLEx02/evEH//v0xfPhw2NraQk1NDTdu3MDixYvRu3dvTm1Pnz4d3t7esLOzg6urK44dO4aDBw+KttN2dXWFjY0NfHx8sGLFChQVFWH8+PHo1KmT2Bjd1NRU8Pl8NG7cGGpqaqLxxN+Cs7MzXr16hcWLF6Nfv36IiYnByZMnof7/W9GmpqZiw4YN+Pnnn6Gvr4+kpCQkJyfD19cXADBnzhx06dIFTZs2xcCBA1FUVIQTJ05g5syZZWK5urrCwcEBnp6eWLx4MczNzfH8+XPRJMZP78nnBg0ahAULFsDT0xPh4eHQ09PD7du3oa+vDwcHBwQHB6Nnz54wNDREv379ICMjg4SEBNy7dw/z58+v9P6Dg4PRqlUrWFtbQyAQ4Pjx42Jjwj/H4/HK/NvIM7KVxiCEEEIIjZnmqkZX8/jpp5+wfPlyODk5oXnz5pg9ezZGjRqF1atXc2rb09MTK1euxJIlS2BtbY3169cjKioKzs7OAEq/aY4cOYJ69erByckJrq6uMDExwZ49e0RteHl5wd3dHS4uLtDR0cGuXbs49elrWVlZYe3atVizZg1atGiBa9euiQ1zUFZWxoMHD+Dl5QVzc3OMHj0a/v7+okmOzs7O2LdvH44ePYqWLVuic+fOuHbtmsRYDMPgxIkTcHJywrBhw2Bubo6BAwfi8ePHorHcX1JQUMDp06fRoEEDdO/eHTY2Nli4cCFkZUuTWDc3Nxw/fhynT59GmzZt0K5dOyxfvhxGRkZS3b+CggKCgoJga2sLJycnyMrKYvfu3V/zFhJCCCGEVDtGKO1abIR8R9Ya/MKp/qjbc1nXLcnK5BS75NGNyguVI2/FAU6x1dYuYl03Z3TZTz2+RtYzZdZ1Gw9twCk2oyz9HIMyCqVbO71cQvZzPQ4tL+AUuu9c9u+bsITbr46lYdJNtpZk2gqbygtVRJPDMpvZr7nFzq54GdWKeM25xyl0CxlN1nV/f36eU+x3K/uyrpu25F9OsY1nmrOue2wO++9TAHgpx/6J74Qn2znF/hp6ms2qre2M7PvV1nZtUevGTBNCCCGEEPK9qNHtxAkhhBBCSM2qK5urVBdKpgkhhBBC6jCagMgNJdPkh9RF5Q2n+sWJlysvVA5ZK8fKC1WgpJj9GFzFltqcYqPgI+uqyvaSN/CRloJuDuu6TD1NTrEZo6bsK2dz+14Dh/XxHRvEc4utZsa6KlPIbby2fT6HfQG0K98ltkJc9iRQ0+QW+y37MddtmXqcQrf/yH651985RQYYfYPKC5VD1/YOt9i6jVjXbab4iFPsdvXY/z+VfD8omSaEEEIIqcPqyuYq1YUmIH4HnJ2dMXnyZNFrY2NjrFixolpiMQyDw4cPl3s9LS0NDMNI3ECGEEIIIaSuoWS6FvHz8wPDMGWOxYsXY968eTXdvWoREhKCli1b1nQ3CCGEkDpLUu5RVUddQMM8ahl3d3dERUWJndPR0RFthsJWYWEh5OXlObVBCCGEEELE0ZPpWobH40FXV1fs6NKli9gwDwB4//49Bg0aBBUVFTRq1Ahr1qwRu84wDCIjI/Hzzz9DRUUFYWFhAIDIyEg0bdoUCgoKsLCwwB9//FGmDxkZGfDw8ICSkhJMTEywf//+cvtbXFyMESNGoEmTJlBSUoKFhQVWrlwpViYuLg5t27aFiooKNDU14ejoiMePHyM6OhqhoaFISEgQ/QUbHR0NoVCIkJAQGBoagsfjQV9fHxMnTmT5jhJCCCGkIjJgqu2oCyiZ/k79/vvvaNGiBW7fvo1Zs2Zh0qRJOHPmjFiZkJAQ9OnTB3fv3sXw4cNx6NAhTJo0CVOnTsW9e/cwZswYDBs2DH/99ZdYvdmzZ8PLywsJCQnw8fHBwIEDkZiYKLEfJSUlaNy4Mfbt24f79+8jODgY//vf/7B3714AQFFRETw9PdGpUyfcuXMHV69exejRo8EwDAYMGICpU6fC2toaGRkZyMjIwIABA3DgwAEsX74c69evR3JyMg4fPgwbG447nhFCCCGEVAMa5lHLHD9+HKqqqqLXHh4eEss5Ojpi1qxZAABzc3NcvnwZy5cvR9euXUVlBg8ejGHDholeDxo0CH5+fhg/fjwAIDAwEPHx8ViyZAlcXFxE5fr374+RI0cCAObNm4czZ85g1apVWLt2bZl+yMvLIzQ0VPS6SZMmuHr1Kvbu3Qtvb2+8e/cOOTk56NmzJ5o2LV1+zMrKSlReVVUVcnJy0NX9b6mr9PR06OrqwtXVFfLy8jA0NETbtm3Lfc8EAgEEAoHYuYKSEijI0N+KhBBCSGUYhn5fckHvXi3j4uICPp8vOiIiIiSWc3BwKPP6y6fHrVu3FnudmJgIR0fxNZAdHR3L1JOm7c+tWbMGrVq1go6ODlRVVbFhwwakp6cDALS0tODn5wc3Nzf06tULK1euREZGRrltAaXJ/MePH2FiYoJRo0bh0KFDKCoqf+3l8PBwaGhoiB3r36ZUGIMQQgghpZhq/K8uoGS6llFRUYGpqano0NPT49RWddu9ezemTZuGESNG4PTp0+Dz+Rg2bBgKCv7b0CEqKgpXr15F+/btsWfPHpibmyM+vvzNJgwMDJCUlIS1a9dCSUkJ48ePh5OTEwoLCyWWDwoKQk5OjtgxRovDJhyEEEIIIVKiZPo79WUyGh8fLzZ8QhIrKytcviy+s9/ly5fRrFkz1m1fvnwZ7du3x/jx42FnZwdTU1OkpJR9KmxnZ4egoCBcuXIFzZs3x86dOwEACgoKKC4uuyuXkpISevXqhYiICMTFxeHq1au4e/euxD7weDyoq6uLHTTEgxBCCJGODMNU21EX0Jjp79Tly5exePFieHp64syZM9i3bx/+/PPPCutMnz4d3t7esLOzg6urK44dO4aDBw/i7NmzYuX27duH1q1bo0OHDtixYweuXbuGzZs3S2zTzMwM27Ztw6lTp9CkSRP88ccfuH79Opo0aQIASE1NxYYNG/Dzzz9DX18fSUlJSE5Ohq+vL4DSDWhSU1PB5/PRuHFjqKmpYdeuXSguLsZPP/0EZWVlbN++HUpKSjAyMqqCd44QQgghpOpQMv2dmjp1Km7cuIHQ0FCoq6tj2bJlcHNzq7COp6cnVq5ciSVLlmDSpElo0qQJoqKi4OzsLFYuNDQUu3fvxvjx46Gnp4ddu3aVeXr9yZgxY3D79m0MGDAADMNg0KBBGD9+PE6ePAkAUFZWxoMHD7B161a8efMGenp68Pf3x5gxYwAAXl5eOHjwIFxcXJCdnY2oqChoampi4cKFCAwMRHFxMWxsbHDs2DFoa2tzf+MIIYQQIqaujG2uLpRM1yLR0dESz8fFxYm9TktLq7QtoVAo8fy4ceMwbty4Sut9WvHjS8bGxmJt83g8REVFldloJjw8HADQsGFDHDp0qNx4PB5P4jrWnp6e5dYhhBBCCKktKJkmhBBCCKnD6srY5upCs7QIIYQQQghhiZ5Mkx+Sc+ZjTvX//ZDDum7xswecYsu182Rdd2LAVU6xV/sUVF6oHBv3cFuKUUnIvr6Pzr+cYuduv8O6rpIBp9B4l8z+mYbj40xOsR/e+4d1XUZdtfJCFRhdwP49f3hRnlNsmY6dWdcVJt3jFJsxMmFdd37GLk6xdVXrcarPxbvlJ1jX3ZvC7YdsePNrrOsuESpwin3gAfvvl1xOkb8OjZnmhpJpQgghhJA6jIZ5cEPDPAghhBBCCGGJkuka4OfnJ3G1iri4ODAMg+zs7G/Wl+joaGhqan6zeJ+EhISgZcuW3zwuIYQQQsTRduLcUDJNCCGEEEIIS5RM12KXLl1Cx44doaSkBAMDA0ycOBF5eXmi68bGxpg3bx4GDRoEFRUVNGrUCGvWrBFrY9myZbCxsYGKigoMDAwwfvx45OaWTmuIi4vDsGHDkJOTA4ZhwDAMQkJCAABZWVnw9fVFvXr1oKysDA8PDyQnJ4u1ffnyZTg7O0NZWRn16tWDm5sbsrKysG3bNmhra0MgEIiV9/T0xJAhQxAdHY3Q0FAkJCSI4n5aYzs7OxsjR46Ejo4O1NXV0blzZyQkJFTxO0sIIYSQT2rLduKRkZGwtbWFuro61NXV4eDgINoEDgCcnZ1FecOnY+zYsVX9dnw1SqZrqZSUFLi7u8PLywt37tzBnj17cOnSJQQEBIiV+/3339GiRQvcvn0bs2bNwqRJk3DmzBnRdRkZGUREROCff/7B1q1bce7cOcyYMQMA0L59e6xYsQLq6urIyMhARkYGpk2bBqB0KMqNGzdw9OhRXL16FUKhEN27d0dhYSEAgM/no0uXLmjWrBmuXr2KS5cuoVevXiguLkb//v1RXFyMo0ePivrx8uVL/Pnnnxg+fDgGDBiAqVOnwtraWhR3wIABAID+/fvj5cuXOHnyJG7evAl7e3t06dIFb9++rdb3mxBCCCE1q3Hjxli4cCFu3ryJGzduoHPnzujduzf++ee/lYdGjRolyh0yMjKwePHiGuxxKVrNo4YcP34cqqriS0sVFxeLvg4PD4ePjw8mT54MADAzM0NERAQ6deqEyMhIKCoqAgAcHR0xa9YsAIC5uTkuX76M5cuXo2vXrgAgqg+UPsmeP38+xo4di7Vr10JBQQEaGhpgGAa6urqicsnJyTh69CguX76M9u3bAwB27NgBAwMDHD58GP3798fixYvRunVrrF27VlTP2tpa9PXgwYMRFRWF/v37AwC2b98OQ0ND0V+VqqqqkJOTE4t76dIlXLt2DS9fvgSPxwMALFmyBIcPH8b+/fsxevRodm82IYQQQspVW8Y29+rVS+x1WFgYIiMjER8fL8oxlJWVxXKH2oCS6Rri4uKCyMhIsXN///03fvnlFwBAQkIC7ty5gx07doiuC4VClJSUIDU1FVZWVgAABwcHsTYcHBywYsUK0euzZ88iPDwcDx48wLt371BUVIT8/Hx8+PABysrKEvuWmJgIOTk5/PTTT6Jz2trasLCwQGJiIoDSJ9OfEmVJRo0ahTZt2uDZs2do1KgRoqOj4efnB6aCj3wSEhKQm5sLbW1tsfMfP35ESkpKufUEAkGZISVCYQkYhj54IYQQQmqSpN/RPB5P9NCsPMXFxdi3bx/y8vLEcp0dO3Zg+/bt0NXVRa9evTB79uxy85lvhZLpGqKiogJTU1Oxc0+fPhV9nZubizFjxmDixIll6hoaGkoVIy0tDT179sS4ceMQFhYGLS0tXLp0CSNGjEBBQQGnbz4lJaUKr9vZ2aFFixbYtm0bunXrhn/++Qd//vlnhXVyc3Ohp6eHuLi4MtcqWnEkPDwcoaGhYudUePWhpqhTYTxCCCGEADLV+GRa0u/oOXPmiOZofenu3btwcHBAfn4+VFVVcejQITRr1gxA6afeRkZG0NfXx507dzBz5kwkJSXh4MGD1dZ/aVAyXUvZ29vj/v37ZRLuL8XHx5d5/emp9c2bN1FSUoKlS5dCRqb0Ke3evXvFyisoKIgNLwEAKysrFBUV4e+//xYN83jz5g2SkpJE39C2traIjY0t8wPyuZEjR2LFihV49uwZXF1dYWDw3y5WkuLa29sjMzMTcnJyMDY2rvC+PxcUFITAwECxc+YGbaWuTwghhJDqIel3dEVPpS0sLMDn85GTk4P9+/dj6NChOH/+PJo1ayY23NPGxgZ6enro0qULUlJS0LRp02q7h8rQ5+C11MyZM3HlyhUEBASAz+cjOTkZR44cKTMB8fLly1i8eDEePnyINWvWYN++fZg0aRIAwNTUFIWFhVi1ahX+/fdf/PHHH1i3bp1YfWNjY+Tm5iI2NhavX7/Ghw8fYGZmht69e2PUqFG4dOkSEhIS8Msvv6BRo0bo3bs3gNIfjuvXr2P8+PG4c+cOHjx4gMjISLx+/VrU9uDBg/H06VNs3LgRw4cPLxM3NTUVfD4fr1+/hkAggKurKxwcHODp6YnTp08jLS0NV65cwa+//oobN26U+17xeDzRzN9PBw3xIIQQQqTz5QoZVXlI+h1dUTKtoKAAU1NTtGrVCuHh4WjRogVWrlwpseyn4aiPHj2qlvdFWpRx1FK2trY4f/48Hj58iI4dO8LOzg7BwcHQ19cXKzd16lTcuHEDdnZ2mD9/PpYtWwY3NzcAQIsWLbBs2TIsWrQIzZs3x44dOxAeHi5Wv3379hg7diwGDBgAHR0d0azYqKgotGrVCj179oSDgwOEQiFOnDgBeXl5AKWTHU+fPo2EhAS0bdsWDg4OOHLkCOTk/vuwQ0NDA15eXlBVVS2zSY2Xlxfc3d3h4uICHR0d7Nq1CwzD4MSJE3BycsKwYcNgbm6OgQMH4vHjx2jYsGFVv8WEEEIIQekwj+o6uCopKSkz5voTPp8PANDT0+Mchwsa5lEDPq2p/CVnZ2cIhULR6zZt2uD06dMVtqWurl5m6MbnpkyZgilTpoidGzJkiNjryMjIMpMh69Wrh23btlUYu1OnTrh8+XKFZZ49ewYfH58yf4XyeDzs37+/THk1NTVEREQgIiKiwnYJIYQQ8mMJCgqCh4cHDA0N8f79e+zcuRNxcXE4deoUUlJSsHPnTnTv3h3a2tq4c+cOpkyZAicnJ9ja2tZovymZJtUiKysLcXFxiIuLE1s+jxBCCCG1S0UrbX1LL1++hK+vLzIyMqChoQFbW1ucOnUKXbt2xZMnT3D27FmsWLECeXl5MDAwgJeXF3777bea7jYl06R62NnZISsrC4sWLYKFhUVNd4cQQgghtdzmzZvLvWZgYIDz589/w95Ij5Lp71haWlpNd6FctblvhBBCCPlPbdm05XtFyTT5ISW6cZuwyChrsK4ro8ltZ6aiExtZ1117YxGn2CXPk1nXHTvfoPJCFShOfMi6rqxVc06x6w35qfJC5RBmZXKK3YCnwrpu4vbtnGLLtG7NvnJhAafYMZqvWNeVde/LKTaXfzPGhsN7BkB46yrrugt1XTjFblsgeRKXNDrjCqfYGksns647dO0aTrFlnMvfYKwyYad3c4q9qkvFy9uSHwMl04QQQgghdVh1btpSF9DSeLWMn59fmWXkqoqzszMmT55cLW1zUZ33TAghhBBSner0k2k/Pz9kZ2fj8OHDNd2VKhUXFwcXFxdkZWWJbcN98OBB0TrRhBBCCCFA7VnN43tVp5PpukZLS6umu0AIIYSQWoaGeXBDwzy+IBQKYWpqiiVLloid5/P5YBhGtGUlwzBYv349evbsCWVlZVhZWeHq1at49OgRnJ2doaKigvbt2yMlJUXURkhICFq2bIn169fDwMAAysrK8Pb2Rk5OTpl+LFmyBHp6etDW1oa/vz8KCwtF1/744w+0bt0aampq0NXVxeDBg/Hy5UsApatouLiUTlKpV68eGIaBn58fgLLDPAQCAWbOnAkDAwPweDyYmppWuCyNQCDAtGnT0KhRI6ioqOCnn35CXFyc6Hp0dDQ0NTVx6tQpWFlZQVVVFe7u7sjIyBCVKS4uRmBgIDQ1NaGtrY0ZM2aIbVTzKc7EiRPRoEEDKCoqokOHDrh+/Xq5/SKEEEIIqSmUTH+BYRgMHz4cUVFRYuejoqLg5OQEU9P/ZubOmzcPvr6+4PP5sLS0xODBgzFmzBgEBQXhxo0bEAqFCAgIEGvn0aNH2Lt3L44dO4aYmBjcvn0b48ePFyvz119/ISUlBX/99Re2bt2K6OhosV0TCwsLMW/ePCQkJODw4cNIS0sTJcwGBgY4cOAAACApKQkZGRnl7mnv6+uLXbt2ISIiAomJiVi/fj1UVVXLfW8CAgJw9epV7N69G3fu3EH//v3h7u6O5OT/VoD48OEDlixZgj/++AMXLlxAeno6pk2bJrq+dOlSREdHY8uWLbh06RLevn2LQ4cOicWZMWMGDhw4gK1bt+LWrVswNTWFm5sb3r59W27fCCGEEMJObd5O/HtAwzwk8PPzQ3BwMK5du4a2bduisLAQO3fuLPO0etiwYfD29gYAzJw5Ew4ODpg9ezbc3NwAAJMmTcKwYcPE6uTn52Pbtm1o1KgRAGDVqlXo0aMHli5dCl3d0iXV6tWrh9WrV0NWVhaWlpbo0aMHYmNjMWrUKADA8OHDRe2ZmJggIiICbdq0QW5uLlRVVUXDORo0aCA2ZvpzDx8+xN69e3HmzBm4urqK2ipPeno6oqKikJ6eDn19fQDAtGnTEBMTg6ioKCxYsABAaaK/bt06NG3aFEBpAj537lxROytWrEBQUBD69i1d2mrdunU4deqU6HpeXh4iIyMRHR0NDw8PAMDGjRtx5swZbN68GdOnTy/TN4FAAIFAfMknQXEJeLL0tyIhhBBCqhdlGxLo6+ujR48e2LJlCwDg2LFjEAgE6N9ffK3Kz/eCb9iwdF1jGxsbsXP5+fl49+6d6JyhoaEokQYABwcHlJSUICkpSXTO2toasrKyotd6enqiYRwAcPPmTfTq1QuGhoZQU1NDp06dAJQmvNLi8/mQlZUV1a3M3bt3UVxcDHNzc6iqqoqO8+fPiw1lUVZWFiXSX/Y9JycHGRkZ+Omn/9b0lZOTQ+vP1rpNSUlBYWEhHB0dRefk5eXRtm1bJCYmSuxbeHg4NDQ0xI7liY+leyMIIYSQOo6pxqMuoCfT5Rg5ciSGDBmC5cuXIyoqCgMGDICysrJYmc9Xxvg0E1bSuZKSkq+K/eWKGwzDiNrIy8uDm5sb3NzcsGPHDujo6CA9PR1ubm4oKJB+EwUlJaWv6lNubi5kZWVx8+ZNsUQfgNjQEEl9/3JMdFULCgpCYGCg2LmPw3tVa0xCCCGEEICeTJere/fuUFFRQWRkJGJiYsSGVnCRnp6O58+fi17Hx8dDRkYGFhYWUtV/8OAB3rx5g4ULF6Jjx46wtLQUe2oNAAoKCgBKJ/uVx8bGBiUlJVLvc29nZ4fi4mK8fPkSpqamYsen4SmV0dDQgJ6eHv7++2/RuaKiIty8eVP0umnTplBQUMDly5dF5woLC3H9+nU0a9ZMYrs8Hg/q6upiBw3xIIQQQqQjwzDVdtQFdf7JdE5ODvh8vtg5bW1tGBgYwM/PD0FBQTAzM4ODg0OVxFNUVMTQoUOxZMkSvHv3DhMnToS3t7fUCamhoSEUFBSwatUqjB07Fvfu3cO8efPEyhgZGYFhGBw/fhzdu3eHkpJSmYmFxsbGGDp0KIYPH46IiAi0aNECjx8/xsuXL0XjwD9nbm4OHx8f+Pr6YunSpbCzs8OrV68QGxsLW1tb9OjRQ6r+T5o0CQsXLoSZmRksLS2xbNkyZGdni66rqKhg3LhxmD59OrS0tGBoaIjFixfjw4cPGDFihFQxCCGEEEK+lTr/+C4uLg52dnZiR2hoKABgxIgRKCgoKDOJkAtTU1P07dsX3bt3R7du3WBra4u1a9dKXV9HRwfR0dHYt28fmjVrhoULF5aZGNmoUSOEhoZi1qxZaNiwYZkVRT6JjIxEv379MH78eFhaWmLUqFHIy8srN3ZUVBR8fX0xdepUWFhYwNPTE9evX4ehoaHU/Z86dSqGDBmCoUOHwsHBAWpqaujTp49YmYULF8LLywtDhgyBvb09Hj16hFOnTqFevXpSxyGEEEKIdJhq/K8uYITVPaD1O3bx4kV06dIFT548EU0w5CIkJASHDx8u8yScVL3sAS6c6isGsB/WI2NozSl28fl9rOvKdR/FKXbJ8+TKC5VXlx/HKXZx4kPWdWWtzDnFZqx/qrxQOYRZmdxi81RY1y3Yvp1TbPnuXdhXLpR+joYkj6b/XXmhcpjt5/YpFad/MwVFbrFvXWVdd+2y8h92SKNtgaDyQuXo/PYKp9i5V9ewrluwln1dAJAf3L/yQuV487/dnGKrN5etvFB5dTef4RT7a3Rp3K3a2o59erra2q4t6vwwD0kEAgFevXqFkJAQ9O/fv0oSaUIIIYQQ8uOp88M8JNm1axeMjIyQnZ2NxYsX13R3CCGEEEKqDcMw1XbUBfRkWgI/Pz/RjoJVKSQkBCEhIVXeLilrXXyjygtVYPIUBdZ1hQX5nGIzlvas6z5xGcsptsFf61jXfTVqEafYuVnsPz43HPWCU2zh6z851eeiRMB+uMT2EzqcYvu1ymBdl5Fl//E1AGwRsh/esiDlDqfY0JV+nkcZbzgO69HTZ103SnCCU+yXSuVvzFXdSi7FsK6b/hePU+ymDg9Y1z3/hP2/FwC8Zv8jhkmcIpNviZJpQgghhJA6rK5s+11daJjHDyguLg4Mw4gtOcdGdHR0uduRSystLQ0Mw4gmXbLpm7OzMyZPnsypH4QQQggh1YGS6Rrm5+cncYyRu7v7N+2HsbExVqxYUe1x2rdvj4yMDGhoaFR7LEIIIYRUjpbG44aGedQC7u7uiIqKEjvH43EbI1ZbKSgoSL1BDSGEEEJIbUdPpmsBHo8HXV1dsePTBiUMw2DTpk3o06cPlJWVYWZmhqNHj4rVP3HiBMzNzaGkpAQXFxekpaWViXHgwAFYW1uDx+PB2NgYS5cuFV1zdnbG48ePMWXKFImzb0+dOgUrKyuoqqrC3d0dGRniMyo2bdoEKysrKCoqwtLSssJNaL4c5vHmzRsMGjQIjRo1grKyMmxsbLBr166vefsIIYQQwoFMNR51QV25z+9aaGgovL29cefOHXTv3h0+Pj54+/YtAODJkyfo27cvevXqBT6fj5EjR2LWrFli9W/evAlvb28MHDgQd+/eRUhICGbPno3o6GgAwMGDB9G4cWPMnTsXGRkZYsnyhw8fsGTJEvzxxx+4cOEC0tPTMW3aNNH1HTt2IDg4GGFhYUhMTMSCBQswe/ZsbN26Vap7y8/PR6tWrfDnn3/i3r17GD16NIYMGYJr165xfNcIIYQQIg1aGo8bSqZrgePHj0NVVVXsWLBggei6n58fBg0aBFNTUyxYsAC5ubmiZDMyMhJNmzbF0qVLYWFhAR8fnzLL+i1btgxdunTB7NmzYW5uDj8/PwQEBOD3338HAGhpaUFWVhZqamqiJ+OfFBYWYt26dWjdujXs7e0REBCA2NhY0fU5c+Zg6dKl6Nu3L5o0aYK+fftiypQpWL9+vVT33qhRI0ybNg0tW7aEiYkJJkyYAHd3d+zdu5ft20kIIYQQ8s3QmOlawMXFBZGRkWLntLS0RF/b2tqKvlZRUYG6ujpevnwJAEhMTMRPP4lvhezg4CD2OjExEb179xY75+joiBUrVqC4uBiyFawXq6ysjKZNm4pe6+npiWLn5eUhJSUFI0aMwKhR/21jXVRUJPUEw+LiYixYsAB79+7Fs2fPUFBQAIFAAGVlZanqA6U7VgoE4tvkFgmLIcdwWweXEEIIqQtoaTxuKJmuBVRUVGBqalrudXl5ebHXDMOgpKSkurtVbmyhUAgAyM3NBQBs3LixTEJfUYL+ud9//x0rV67EihUrYGNjAxUVFUyePBkFBdJvZBEeHo7Q0FCxc13UbeCqaVtODUIIIYSQqkHJ9HfOysqqzITE+Pj4MmUuX74sdu7y5cswNzcXJb0KCgooLi7+qtgNGzaEvr4+/v33X/j4+LDofWk/evfujV9++QUAUFJSgocPH6JZs2ZStxEUFITAwECxcxHNx7DqDyGEEFLX1JUl7KoLJdO1gEAgQGam+Ba1cnJyqF+/fqV1x44di6VLl2L69OkYOXIkbt68KZpY+MnUqVPRpk0bzJs3DwMGDMDVq1exevVqsVU3jI2NceHCBQwcOBA8Hk+q2EDp5MiJEydCQ0MD7u7uEAgEuHHjBrKyssokuJKYmZlh//79uHLlCurVq4dly5bhxYsXX5VM83i8MksJ0hAPQgghhHwLNAGxFoiJiYGenp7Y0aFDB6nqGhoa4sCBAzh8+DBatGiBdevWiU1eBAB7e3vs3bsXu3fvRvPmzREcHIy5c+eKTVScO3cu0tLS0LRpU+jo6Ejd95EjR2LTpk2IioqCjY0NOnXqhOjoaDRp0kSq+r/99hvs7e3h5uYGZ2dn6OrqwtPTU+r4hBBCCOGGlsbjhp5M17Do6OgyT5I/92l88ue+3Iq7Z8+e6Nmzp9i5YcOGib328vKCl5dXuXHatWuHhIQEsXN+fn5lVgbx9PQs06fBgwdj8ODBEts1NjYWK+/s7Cz2WktLC4cPHy63X0Dp2tSEEEIIIbURJdOEEEIIIXUYrebBDSXThBBCCCF1WF3ZXKW61JXhLIQQQgghhFQ5ejJNfkiTZjeosdiMogqn+sV//8W6rl64O6fYJS9SWddt+OcmTrG19i1nXZfRkm71mXLrW7ZhXVf49CGn2DJaDVnX9c3exyk2o1mPfeX8j5xiz26RwbouY+HLKbbwyQP2lZVVucV+xP77ZayCGafYJh+/bvnTzy3jFBmQ6dSz8kLlaPJ6G7fgTSxZV3W1uMkptLI1t98H3wo9WeWG3j9CCCGEEEJYomSa1Ag/Pz+xJfCcnZ0xefLkGusPIYQQUlcx1fhfXUDJdB3n5+cHhmFEh7a2Ntzd3XHnzp2a7hohhBBCSK1HyTSBu7s7MjIykJGRgdjYWMjJyZVZt5oQQgghPyYZMNV21AWUTBPweDzo6upCV1cXLVu2xKxZs/DkyRO8evWq3DolJSVYvHgxTE1NwePxYGhoiLCwMNH1J0+ewNvbG5qamtDS0kLv3r2RlpYmdZ/Wrl0LMzMzKCoqomHDhujXrx+XWySEEEIIqRaUTBMxubm52L59O0xNTaGtrV1uuaCgICxcuBCzZ8/G/fv3sXPnTjRsWLoqQWFhIdzc3KCmpoaLFy/i8uXLUFVVhbu7OwoKCirtw40bNzBx4kTMnTsXSUlJiImJgZOTU5XdIyGEEEL+Q9uJc0NL4xEcP34cqqqlyz3l5eVBT08Px48fh4yM5B+D9+/fY+XKlVi9ejWGDh0KAGjatCk6dOgAANizZw9KSkqwadMm0ULwUVFR0NTURFxcHLp161Zhf9LT06GiooKePXtCTU0NRkZGsLOzK7e8QCCAQCAQO1dSWASePH17E0IIIZWpKxMFq0td+aOBVMDFxQV8Ph98Ph/Xrl2Dm5sbPDw88PjxY4nlExMTIRAI0KVLF4nXExIS8OjRI6ipqUFVVRWqqqrQ0tJCfn4+UlJSKu1P165dYWRkBBMTEwwZMgQ7duzAhw8fyi0fHh4ODQ0NseP3k9elu3lCCCGEEA4omSZQUVGBqakpTE1N0aZNG2zatAl5eXnYuHGjxPJKSkoVtpebm4tWrVqJEvRPx8OHDzF48OBK+6OmpoZbt25h165d0NPTQ3BwMFq0aIHs7GyJ5YOCgpCTkyN2TPdgvwkHIYQQUpfQBERuKJkmZTAMAxkZGXz8KHmHMzMzMygpKSE2NlbidXt7eyQnJ6NBgwaiJP3ToaGhIVUf5OTk4OrqisWLF+POnTtIS0vDuXPnJJbl8XhQV1cXO2iIByGEEEK+BUqmCQQCATIzM5GZmYnExERMmDABubm56NWrl8TyioqKmDlzJmbMmIFt27YhJSUF8fHx2Lx5MwDAx8cH9evXR+/evXHx4kWkpqYiLi4OEydOxNOnTyvtz/HjxxEREQE+n4/Hjx9j27ZtKCkpgYWFRZXeNyGEEEIAphqPuoCSaYKYmBjo6elBT08PP/30E65fv459+/bB2dm53DqzZ8/G1KlTERwcDCsrKwwYMAAvX74EACgrK+PChQswNDRE3759YWVlhREjRiA/Px/q6uqV9kdTUxMHDx5E586dYWVlhXXr1mHXrl2wtrauqlsmhBBCSC0TGRkJW1tb0afMDg4OOHnypOh6fn4+/P39oa2tDVVVVXh5eeHFixc12ONS9Fl4HRcdHY3o6OivricjI4Nff/0Vv/76q8Trurq62Lp1a4VxPxcXFyf6ukOHDmKvCSGEEFJ9ZJja8Qy5cePGWLhwIczMzCAUCrF161b07t0bt2/fhrW1NaZMmYI///wT+/btg4aGBgICAtC3b19cvny5RvtNyTQhhBBCCKlxXw4vDQsLQ2RkJOLj49G4cWNs3rwZO3fuROfOnQGULrtrZWWF+Ph4tGvXria6DICSaUIIIYSQOq06x/xK2guCx+OBx+NVWK+4uBj79u1DXl4eHBwccPPmTRQWFsLV1VVUxtLSEoaGhrh69Sol04RUtQ9HbnKqr2zanH3lkmJOsZkGDVnXFaY+4hQbxjasqxYdXs0ptHz/KexjX97PKTYEeezrKqtyi11UxLqq8L3kFXekpqHFvq58LqfQL+6rsK7bhMu/FwDIK7Cvy9TcVKMbstz+vY0ZDvfNkfDda/aVlStejrUyjAL7+srW7L9PAUBGg1v9b6U6N20JDw9HaGio2Lk5c+YgJCREYvm7d+/CwcEB+fn5UFVVxaFDh9CsWTPw+XwoKChAU1NTrHzDhg2RmZlZTb2XDiXThBBCCCGkWgQFBSEwMFDsXEVPpS0sLMDn85GTk4P9+/dj6NChOH/+fHV3kxNazYPUiLS0NDAMAz6fD6B0AiLDMOVuzEIIIYSQ6iFTjYfEvSAqSKYVFBRgamqKVq1aITw8HC1atMDKlSuhq6uLgoKCMnnCixcvoKurW1VvBSuUTH8Dfn5+YBhGdGhra8Pd3R137tyRWH7MmDGQlZXFvn37ylwLCQkRa+vTcfbsWamuf+lTUvvp+PRNPH/+fAiFwqp7EwghhBBCvlJJSQkEAgFatWoFeXl5sQ3jkpKSkJ6eDgcHhxrsIQ3z+Gbc3d0RFRUFAMjMzMRvv/2Gnj17Ij09Xazchw8fsHv3bsyYMQNbtmxB//79y7RlbW1dJjnW0tKS+rokZ8+ehbW1NQQCAS5duoSRI0dCT08PI0aM+Kr7JIQQQsj3pTrHTH+NoKAgeHh4wNDQEO/fv8fOnTsRFxeHU6dOQUNDAyNGjEBgYCC0tLSgrq6OCRMmwMHBoUYnHwL0ZPqb4fF40NXVha6uLlq2bIlZs2bhyZMnePXqlVi5ffv2oVmzZpg1axYuXLiAJ0+elGlLTk5O1NanQ0FBQerrkmhra0NXVxdGRkbw8fGBo6Mjbt26VWGdf/75Bz179oS6ujrU1NTQsWNHpKSkiK5v2rQJVlZWUFRUhKWlJdauXSvNWwUAePz4MXr16oV69epBRUUF1tbWOHHihNT1CSGEEPJ9efnyJXx9fWFhYYEuXbrg+vXrOHXqFLp27QoAWL58OXr27AkvLy84OTlBV1cXBw8erOFe05PpGpGbm4vt27fD1NQU2traYtc2b96MX375BRoaGvDw8EB0dDRmz579Tft348YN3Lx5E76+vuWWefbsGZycnODs7Ixz585BXV0dly9fRtH/r0ywY8cOBAcHY/Xq1bCzs8Pt27cxatQoqKioYOjQoZX2wd/fHwUFBbhw4QJUVFRw//59qKpyXDWBEEIIIWXUliermzdvrvC6oqIi1qxZgzVr1nyjHkmHkulv5Pjx46JkMC8vD3p6ejh+/DhkZP77Fk5OTkZ8fLzor6xffvkFgYGB+O2338B8tjvR3bt3xRLLZs2a4dq1a1Jfl6R9+/aQkZFBQUEBCgsLMXr06AqT6TVr1kBDQwO7d++GvLw8AMDc3Fx0fc6cOVi6dCn69u0LAGjSpAnu37+P9evXS5VMp6enw8vLCzY2pUu1mZiYVFqHEEIIIeRbo2T6G3FxcUFkZCQAICsrC2vXroWHhweuXbsGIyMjAMCWLVvg5uaG+vXrAwC6d++OESNG4Ny5c+jSpYuoLQsLCxw9elT0+stZsZVdl2TPnj2wsrJCYWEh7t27hwkTJqBevXpYuHChxPJ8Ph8dO3YUJdKfy8vLQ0pKCkaMGIFRo0aJzhcVFUFDQ6PSvgDAxIkTMW7cOJw+fRqurq7w8vKCra2txLKSFoQXFJeAJ1tb/tYmhBBCai+ZWjJm+ntFyfQ3oqKiAlNTU9HrTZs2QUNDAxs3bsT8+fNRXFyMrVu3IjMzE3Jy//2zFBcXY8uWLWLJ9KcVN8pT2XVJDAwMRHWsrKyQkpKC2bNnIyQkBIqKimXKKymVvwh+bm7pZg4bN27ETz/9JHZNVlZWqv6MHDkSbm5u+PPPP3H69GmEh4dj6dKlmDBhQpmykhaEn25miJkWxlLFIoQQQuoySqW5oWS6hjAMAxkZGXz8WLqj1YkTJ/D+/Xvcvn1bLOG8d+8ehg0bhuzs7DK7/lQnWVlZFBUVoaCgQGIybWtri61bt6KwsLDM0+mGDRtCX18f//77L3x8fFj3wcDAAGPHjsXYsWMRFBSEjRs3SkymJS0InzuwB+u4hBBCCCHSomT6GxEIBKLtLrOysrB69Wrk5uaiV69eAEoH3ffo0QMtWrQQq9esWTNMmTIFO3bsgL+/f7X1782bN8jMzERRURHu3r2LlStXwsXFBerq6hLLBwQEYNWqVRg4cCCCgoKgoaGB+Ph4tG3bFhYWFggNDcXEiROhoaEBd3d3CAQC3LhxA1lZWWUSX0kmT54MDw8PmJubIysrC3/99ResrKwkluXxeGWGshTSEA9CCCFEKjTMgxtKpr+RmJgY6OnpAQDU1NRgaWmJffv2wdnZGS9evMCff/6JnTt3lqknIyODPn36YPPmzdWaTLu6ugIofSKtp6eH7t27IywsrNzy2traOHfuHKZPn45OnTpBVlYWLVu2hKOjI4DSYRrKysr4/fffMX36dKioqMDGxgaTJ0+Wqj/FxcXw9/fH06dPoa6uDnd3dyxfvpzzfRJCCCGEVCVKpr+B6OhoREdHl3u9YcOGKCwsLPf65+szh4SEICQkpNyylV3/krGxMeudDm1tbXHq1Klyrw8ePBiDBw+WKq6zs7PY61WrVrHqEyGEEEK+Dn2Wyw29f4QQQgghhLBET6YJIYQQQuqw2rKd+PeKnkwTQgghhBDCEj2ZJj+km9f0ONXvKCxhXVdYVMApNho0Yl1VsP8vTqGVO3uxrltwMYFT7PyTw1nXVV2/hVPsoriyk3+lVsF8B2kIZdg/03h0XIFTbMuOr9hX5tBvADhcoMW67uQ3GZxiQ0XyKkVSyX7NKTTz/5tysZFe9IRT7MfyDTnV5+RJCuuqeWfTOIVWM3vMuu6jo2U3JvsaWQL2T3w7l78GQJWjJ6vc0PtHCCGEEEIIS5RMkxpjbGyMFStWiF4zDIPDhw/XWH8IIYSQuoipxqMuoGT6B+bn5weGYbBw4UKx84cPHwbD/PctHhcXB4ZhkJ2dLTr3/Plz2NjYwMnJCTk5Od+qy4QQQgj5xmTAVNtRF1Ay/YNTVFTEokWLkJWVJXWdlJQUdOjQAUZGRjh16hQ0NDSqsYeEEEIIId8vSqZ/cK6urtDV1UV4eLhU5e/cuYMOHTrAwcEBhw8fhpKSUrlls7OzMWbMGDRs2BCKiopo3rw5jh8/Lrp+6dIldOzYEUpKSjAwMMDEiRORl5cnVT8KCgoQEBAAPT09KCoqwsjISOp7IIQQQoj0ZKrxqAvqyn3WWbKysliwYAFWrVqFp0+fVlj2ypUr6NSpE7y8vLB9+3bIyZW/2EtJSQk8PDxw+fJlbN++Hffv38fChQshKysLoPTptru7O7y8vHDnzh3s2bMHly5dQkBAgFT9joiIwNGjR7F3714kJSVhx44dMDY2lvq+CSGEEEK+BVoarw7o06cPWrZsiTlz5mDz5s0VlhswYABWr15daZtnz57FtWvXkJiYCHNzcwCAiYmJ6Hp4eDh8fHwwefJkAICZmRkiIiLQqVMnREZGQlFRscL209PTYWZmhg4dOoBhGBgZGZVbViAQQCAQiJ0rEBZDgZGt9D4IIYSQuq5ujGyuPvRkuo5YtGgRtm7disTExHLL9O7dG4cOHcLFixcrbY/P56Nx48aiRPpLCQkJiI6Ohqqqquhwc3NDSUkJUlNTK23fz88PfD4fFhYWmDhxIk6fPl1u2fDwcGhoaIgde/LKv09CCCGEkKpCyXQd4eTkBDc3NwQFBZVbZv369Rg4cCA8PDxw4cKFCturaCw1AOTm5mLMmDHg8/miIyEhAcnJyWjatGml/bW3t0dqairmzZuHjx8/wtvbG/369ZNYNigoCDk5OWLHABWrSmMQQgghhFbz4IqGedQhCxcuRMuWLWFhYSHxOsMw2LBhA2RkZNC9e3f8+eef6NSpk8Sytra2ePr0KR4+fCjx6bS9vT3u378PU1NT1v1VV1fHgAEDMGDAAPTr1w/u7u54+/YttLTEd07j8Xjg8Xhi52iIByGEEEK+BUqm6xAbGxv4+PggIiKi3DIMw2DdunWQlZUVJdTOzs5lynXq1AlOTk7w8vLCsmXLYGpqigcPHoBhGLi7u2PmzJlo164dAgICMHLkSKioqOD+/fs4c+aMVGOyly1bBj09PdjZ2UFGRgb79u2Drq4uNDU1ObwDhBBCCPkSDVPght6/Ombu3LkoKSmpsAzDMFizZg2GDRuGHj164K+//pJY7sCBA2jTpg0GDRqEZs2aYcaMGSguLgZQ+uT6/PnzePjwITp27Ag7OzsEBwdDX19fqn6qqalh8eLFaN26Ndq0aYO0tDScOHECMjL0LUsIIYRUJdoBkRt6Mv0Di46OLnPO2Ni4zMoXzs7OEAqFYucYhsHq1asrfIqspaWFLVu2lHu9TZs2FU4cTEtLE3v9eR9GjRqFUaNGlVuXEEIIIaQ2oGSaEEIIIaQOqysTBasLfWZOCCGEEEIIS/RkmvyQfur+mlsDsux/NBg5BW6x0x+xrqrYvzO32MKKx9NXRKFrO26hc3JY1y26uJdTbDnnwexj3694GcnKMEpqrOua+dzhFBtaOuzr5r3jFHpQvRes6zINDDnFFmZlsq+sqMwt9mv2/2/qJtuQU+w2hR841eeCsWzFuq5K+yRuwRs0Zl21iWMsp9BmhvU41f9WZISVlyHloyfThBBCCCGEsETJNKkRaWlpYBgGfD4fABAXFweGYZCdnV2j/SKEEELqGplqPOqCunKftVpmZiYmTJgAExMT8Hg8GBgYoFevXoiN/e/jJWNjYzAMA4ZhoKSkBGNjY3h7e+PcuXPltvvmzRs0bty4wiQ1Ojpa1G55x5erbhBCCCGEkFKUTNewtLQ0tGrVCufOncPvv/+Ou3fvIiYmBi4uLvD39xcrO3fuXGRkZCApKQnbtm2DpqYmXF1dERYWJrHtESNGwNbWtsL4AwYMQEZGhuhwcHDAqFGjxM4ZGBhU2f0SQgghpHahdaa5oWS6ho0fPx4Mw+DatWvw8vKCubk5rK2tERgYiPj4eLGyampq0NXVhaGhIZycnLBhwwbMnj0bwcHBSEoSn6ARGRmJ7OxsTJs2rcL4SkpK0NXVFR0KCgpQVlYWOycrK3lr7n/++Qc9e/aEuro61NTU0LFjR6SkpIiub9q0CVZWVlBUVISlpSXWrl0r9fvy+PFj9OrVC/Xq1YOKigqsra1x4sQJqesTQgghRDo0zIObunKftdLbt28RExMDf39/qKiolLkuzdbZkyZNglAoxJEjR0Tn7t+/j7lz52Lbtm3VtmPgs2fP4OTkBB6Ph3PnzuHmzZsYPnw4ioqKAAA7duxAcHAwwsLCkJiYiAULFmD27NnYunWrVO37+/tDIBDgwoULuHv3LhYtWgRVVdVquRdCCCGEELZoabwa9OjRIwiFQlhaWrJuQ0tLCw0aNBCNaxYIBBg0aBB+//13GBoa4t9//62i3opbs2YNNDQ0sHv3bsjLywMAzM3NRdfnzJmDpUuXom/fvgCAJk2a4P79+1i/fj2GDh1aafvp6enw8vKCjY0NAMDExKQa7oIQQgghtGkLN5RM16Avt/Dm0g7DlP4gBAUFwcrKCr/88kuVtF0ePp+Pjh07ihLpz+Xl5SElJQUjRowQ2xK8qKgIGhoaUrU/ceJEjBs3DqdPn4arqyu8vLzKHf8tEAjKbJEuKC4BT5Y+eCGEEEJI9aJsowaZmZmBYRg8ePCAdRtv3rzBq1ev0KRJEwDAuXPnsG/fPsjJyUFOTg5dunQBANSvXx9z5sypkn4DpWOty5ObmwsA2LhxI/h8vui4d+9emXHg5Rk5ciT+/fdfDBkyBHfv3kXr1q2xatUqiWXDw8OhoaEhdiy7k/bV90QIIYTURTQBkRtKpmuQlpYW3NzcsGbNGuTl5ZW5Ls2ayytXroSMjAw8PT0BAAcOHEBCQoIogd20aRMA4OLFi2VWB+HC1tYWFy9eRGFhYZlrDRs2hL6+Pv7991+YmpqKHZ+SfmkYGBhg7NixOHjwIKZOnYqNGzdKLBcUFIScnByxI9DWmO2tEUIIIYRIjYZ51LA1a9bA0dERbdu2xdy5c2Fra4uioiKcOXMGkZGRSExMFJV9//49MjMzUVhYiNTUVGzfvh2bNm1CeHg4TE1NAQBNmzYVa//1/29da2VlJdWERmkFBARg1apVGDhwIIKCgqChoYH4+Hi0bdsWFhYWCA0NxcSJE6GhoQF3d3cIBALcuHEDWVlZCAwMrLT9yZMnw8PDA+bm5sjKysJff/0FKysriWV5PB54PJ7YOSEN8SCEEEKkQr8xuaFkuoaZmJjg1q1bCAsLw9SpU5GRkQEdHR20atUKkZGRYmWDg4MRHBwMBQUF6Orqol27doiNjYWLi8s377e2tjbOnTuH6dOno1OnTpCVlUXLli3h6OgIoHSYhrKyMn7//XdMnz4dKioqsLGxweTJk6Vqv7i4GP7+/nj69CnU1dXh7u6O5cuXV+MdEUIIIYR8PUqmawE9PT2sXr0aq1evLrcM210InZ2dv2qiY1xcnNRlbW1tcerUqXKvDx48GIMHD5Z4zdjYWKxfX/azvPHRhBBCCKlaMlWzHkKdRck0IYQQQkgdVlcmClYXGiZDCCGEEEIIS/RkmhBCCCGkDqMnq9xQMk1+SC/iuX1rGwzjUFlYwik2GrPf7VF4+xq32NaOrKuWPH7CLfaHj6yrMg11OYUuTv6bdV25Zk6cYhfdPce6bsH915xiKzlx+F6VU+AU+8aLBqzr9swvu5To12CU1FjXFRaXXQ70q2I3bMi67jOG2462BSU1lzIJ379lXbfkzXtOsWUKC1jX/cjxf2vyb9+wrqvKLTT5hiiZJoQQQgipw+jJNDf0/pEa4efnJ9poBihdzUPaZfMIIYQQQtj4448/4OjoCH19fTx+/BgAsGLFChw5coR1m5RMV6HMzExMmDABJiYm4PF4MDAwQK9evRAbGysqY2xsDIZhwDAMlJSUYGxsDG9vb5w7V/5HvW/evEHjxo3BMIzEXRG3bt2KDh06ACjdyjsgIACNGzeGkpISmjVrhnXr1pXb9uf9kXT4+fmxfj8IIYQQUvvJCKvvqE0iIyMRGBiI7t27Izs7G8XFxQAATU1NrFixgnW7lExXkbS0NLRq1Qrnzp3D77//jrt37yImJgYuLi5ltvGeO3cuMjIykJSUhG3btkFTUxOurq4ICwuT2PaIESNga2tbbuwjR47g559/BgAEBgYiJiYG27dvR2JiIiZPnoyAgAAcPXpUYt3r168jIyMDGRkZOHDgAAAgKSlJdG7lypVs3g5CCCGEkK8SHh6ONm3aQE1NDQ0aNICnpyeSkpLEyjg7O5d58Dd27Fip2l+1ahU2btyIX3/9FbKysqLzrVu3xt27d1n3m5LpKjJ+/HgwDINr167By8sL5ubmsLa2RmBgIOLj48XKqqmpQVdXF4aGhnBycsKGDRswe/ZsBAcHl/mmiYyMRHZ2NqZNmyYxbn5+Pk6fPi1Kpq9cuYKhQ4fC2dkZxsbGGD16NFq0aIFr1yRPTNPR0YGuri50dXWhpaUFAGjQoIHonIaGhsR6JSUlWLx4MUxNTcHj8WBoaCj2x8CTJ0/g7e0NTU1NaGlpoXfv3l+18czatWthZmYGRUVFNGzYEP369ZO6LiGEEEKkx1Tj8TXOnz8Pf39/xMfH48yZMygsLES3bt2Qlyc+6XjUqFGih34ZGRlYvHixVO2npqbCzs6uzHkej1cmxtegZLoKvH37FjExMfD394eKikqZ65qampW2MWnSJAiFQrExO/fv38fcuXOxbds2yMhI/qeKjY1Fo0aNYGlpCQBo3749jh49imfPnkEoFOKvv/7Cw4cP0a1bN3Y3V46goCAsXLgQs2fPxv3797Fz5040/P9Z6oWFhXBzc4OamhouXryIy5cvQ1VVFe7u7igoqHxW9Y0bNzBx4kTMnTsXSUlJiImJgZMTtxUTCCGEECKZTDUeXyMmJgZ+fn6wtrZGixYtEB0djfT0dNy8eVOsnLKysuihn66uLtTV1aVqv0mTJuDz+RLjWllZfWVv/0OreVSBR48eQSgUihJaNrS0tNCgQQPR01uBQIBBgwbh999/h6GhIf79V/KSSJ8P8QBKP8IYPXo0GjduDDk5OcjIyGDjxo1Vmoy+f/8eK1euxOrVqzF06FAAQNOmTUXjtvfs2YOSkhJs2rQJDFP6d2lUVBQ0NTURFxdXaWKfnp4OFRUV9OzZE2pqajAyMpL4l+QnAoEAAoFA7FxBSQkUyvkDhBBCCCHfhqTf0TweDzwer9K6OTk5ACD65PyTHTt2YPv27dDV1UWvXr0we/ZsKCsrV9peYGAg/P39kZ+fD6FQiGvXrmHXrl0IDw/Hpk2bvuKuxFEyXQWEwqoZYS8UCkXJZ1BQEKysrPDLL79UWP7YsWPYu3ev6NyqVasQHx+Po0ePwsjICBcuXIC/vz/09fXh6upaJf1MTEyEQCBAly5dJF5PSEjAo0ePoKYmvpZrfn4+UlJSKm2/a9euMDIygomJCdzd3eHu7o4+ffqU+4MSHh6O0NBQsXMB2k0xQcdUyjsihBBC6q7qfPQk6Xf0nDlzEBISUmG9kpISTJ48GY6OjmjevLno/ODBg2FkZAR9fX3cuXMHM2fORFJSEg4ePFhpX0aOHAklJSX89ttv+PDhAwYPHgx9fX2sXLkSAwcOZHV/ACXTVcLMzAwMw+DBgwes23jz5g1evXqFJk2aAADOnTuHu3fvYv/+/QD+S9jr16+PX3/9FaGhobh27RqKiorQvn17AMDHjx/xv//9D4cOHUKPHj0AALa2tuDz+ViyZEmVJdNKSkoVXs/NzUWrVq2wY8eOMtd0dHQqbV9NTQ23bt1CXFwcTp8+jeDgYISEhOD69esSh8wEBQUhMDBQ7Fx6GxpjTQghhNQ0Sb+jpXkq7e/vj3v37uHSpUti50ePHi362sbGBnp6eujSpQtSUlLQtGnTStv18fGBj48PPnz4gNzcXDRowH4DqU8oma4CWlpacHNzw5o1azBx4sQy46azs7MrHTe9cuVKyMjIiNZePnDgAD5+/G9HuOvXr2P48OG4ePGi6JvlyJEj6NGjh2hGamFhIQoLC8uMr5aVlUVJCcdd+T5jZmYGJSUlxMbGYuTIkWWu29vbY8+ePWjQoIHU45i+JCcnB1dXV7i6umLOnDnQ1NTEuXPn0Ldv3zJlJX1cREM8CCGEEOkw1biEnbRDOj4XEBCA48eP48KFC2jcuHGFZX/66ScApUNuK0umU1NTUVRUBDMzMygrK4s+8U5OToa8vDyMjY2/qp+fUMZRRdasWYPi4mK0bdsWBw4cQHJyMhITExEREQEHBwexsu/fv0dmZiaePHmCCxcuYPTo0Zg/fz7CwsJgalo6NKFp06Zo3ry56Pj0xNrKykr0V9TRo0fFxkurq6ujU6dOmD59OuLi4pCamoro6Ghs27YNffr0qbJ7VVRUxMyZMzFjxgxs27YNKSkpiI+Px+bNmwGU/tVXv3599O7dGxcvXkRqairi4uIwceJEPH36tNL2jx8/joiICPD5fDx+/Bjbtm1DSUkJLCwsquweCCGEEFK7CIVCBAQE4NChQzh37pwo96nIpwmFenp6lZb18/PDlStXypz/+++/Oe2rQU+mq4iJiQlu3bqFsLAwTJ06FRkZGdDR0UGrVq0QGRkpVjY4OBjBwcFQUFCArq4u2rVrh9jYWLi4uEgdLyUlBY8ePYKbm5vY+d27dyMoKAg+Pj54+/YtjIyMEBYWJvUajNKaPXs25OTkEBwcjOfPn0NPT08UQ1lZGRcuXMDMmTPRt29fvH//Ho0aNUKXLl2kelKtqamJgwcPIiQkBPn5+TAzM8OuXbtgbW1dpfdACCGEkNrzZNXf3x87d+7EkSNHoKamhszMTACAhoYGlJSUkJKSgp07d6J79+7Q1tbGnTt3MGXKFDg5OVW4H8cnt2/fhqOjY5nz7dq1Q0BAAOt+UzJdhfT09LB69WqsXr263DJfs9by55ydncUmOh45cgSdO3cuM6REV1cXUVFRVRKjIjIyMvj111/x66+/Sryuq6uLrVu3lls/Ojpa7HVcXJzo6w4dOoi9JoQQQsiP79PDR2dnZ7HzUVFR8PPzg4KCAs6ePYsVK1YgLy8PBgYG8PLywm+//SZV+wzD4P3792XO5+TkiHZDZIOS6e9U48aNERQUVNPdIIQQQsh3rrY8ma7sgZ6BgQHOnz/Pun0nJyeEh4dj165dovlmxcXFCA8PFy3vywYl098pb2/vmu4CIYQQQn4AMtU4AbE2WbRoEZycnGBhYYGOHTsCAC5evIh3797h3LlzrNulZJr8kBq2K+LWQGHlOzVWm6eSN+iRBmNoyCm0sEhQeaFyyFiYc4qNvFz2ddU0OYVm1Oqzrluc/Den2HI2nVnX5bX6i1NsyHL4FfCRw78XgNYNX7KvLK/AKbbw3Rv2lT9wu++S5MrX2i/P45IPnGI/ZzQ41eeC0WS//Jhsk8onllUYW6Hi5VwrompfdlfjryGjpVZ5IfLNNGvWDHfu3MHq1auRkJAAJSUl+Pr6IiAgoMzGMF+DkmlCCCGEkDqMqekOfEP6+vpYsGBBlbZJyTSpMQzD4NChQ/D09ERaWhqaNGmC27dvo2XLljXdNUIIIYT8gLKzs3Ht2jW8fPmyzB4cvr6+rNqsLWPO67TMzExMmDABJiYm4PF4MDAwQK9evRAbGysqY2xsDIZhwDAMlJSUYGxsDG9vb4ljfK5fv44uXbpAU1MT9erVg5ubGxISEiTGjouLE7Vb3kEraxBCCCE/LplqPGqTY8eOwdDQEO7u7ggICMCkSZNEx+TJk1m3W9vus85JS0tDq1atcO7cOfz++++4e/cuYmJi4OLiAn9/f7Gyc+fORUZGBpKSkrBt2zZoamrC1dUVYWFhojK5ublwd3eHoaEh/v77b1y6dAlqampwc3NDYWFhmfjt27dHRkaG6PD29oa7u7vYuU/blRNCCCGEfK+mTp2K4cOHIzc3F9nZ2cjKyhIdb9++Zd0uJdM1bPz48WAYBteuXYOXlxfMzc1hbW2NwMBAxMfHi5VVU1ODrq4uDA0N4eTkhA0bNmD27NkIDg5GUlISAODBgwd4+/Yt5s6dCwsLC1hbW2POnDl48eIFHj9+XCb+p41jPh1KSkrg8Xhi5xQUJE/2efr0KQYNGgQtLS2oqKigdevW+Pvv/yZjHTlyBPb29lBUVISJiQlCQ0NRVCTdxMCsrCz4+PhAR0cHSkpKMDMzY71+NiGEEELKJyOsvqM2efbsGSZOnCjaRryqUDJdg96+fYuYmBj4+/uX2XwFKN0JsDKTJk2CUCjEkSNHAAAWFhbQ1tbG5s2bUVBQgI8fP2Lz5s2wsrJivee8JLm5uejUqROePXuGo0ePIiEhATNmzBCNP7p48SJ8fX0xadIk3L9/H+vXr0d0dLTYU/SKzJ49G/fv38fJkyeRmJiIyMhI1K/PfsUFQgghhNRtbm5uuHHjRpW3SxMQa9CjR48gFAphaWnJug0tLS00aNBAtLOimpoa4uLi4OnpiXnz5gEAzMzMcOrUKcjJVd0/986dO/Hq1Stcv35dtJyMqamp6HpoaChmzZqFoUOHAijdbn3evHmYMWMG5syZU2n76enpsLOzQ+vWrQGgSv8QIIQQQsh/6spqHj169MD06dNx//592NjYQF5eXuz6zz//zKpdSqZrkLRbd0vTDsOU/ih8/PgRI0aMgKOjI3bt2oXi4mIsWbIEPXr0wPXr16GkxH69zc/x+XzY2dmVuy5jQkICLl++LPYkuri4GPn5+fjw4UOlH7GMGzcOXl5euHXrFrp16wZPT89yx24LBAIIBOLrIwuKS8CTpQ9eCCGEkMrIoJaNx6gmo0aNAlA6B+1LDMOw3lKcso0aZGZmBoZh8ODBA9ZtvHnzBq9evUKTJk0AlD4xTktLQ1RUFNq0aYN27dph586dSE1NFQ0FqQqVJeW5ubkIDQ0Fn88XHXfv3kVycjIUFRUrbd/DwwOPHz/GlClT8Pz5c3Tp0gXTpk2TWDY8PBwaGhpix7I7aWxuixBCCCE/qJKSknIPtok0QMl0jdLS0oKbmxvWrFmDvLy8Mtezs7MrbWPlypWQkZGBp6cnAODDhw+QkZERPakGIHr95XqKXNja2oLP55c7+9Xe3h5JSUkwNTUtc8jISPdtp6Ojg6FDh2L79u1YsWIFNmzYILFcUFAQcnJyxI5AW2O2t0YIIYTUKXVlAmJ1oWEeNWzNmjVwdHRE27ZtMXfuXNja2qKoqAhnzpxBZGQkEhMTRWXfv3+PzMxMFBYWIjU1Fdu3b8emTZsQHh4uGq/ctWtXTJ8+Hf7+/pgwYQJKSkqwcOFCyMnJwcXFpcr6PWjQICxYsACenp4IDw+Hnp4ebt++DX19fTg4OCA4OBg9e/aEoaEh+vXrBxkZGSQkJODevXuYP39+pe0HBwejVatWsLa2hkAgwPHjx2FlZSWxLI/HA4/HEzsnpCEehBBCCPlCXl4ezp8/j/T0dBQUFIhdmzhxIqs2KZmuYSYmJrh16xbCwsIwdepUZGRkQEdHB61atUJkZKRY2eDgYAQHB4uWs2vXrh1iY2PFkmRLS0scO3YMoaGhcHBwgIyMDOzs7BATEwM9Pb0q67eCggJOnz6NqVOnonv37igqKkKzZs2wZs0aAKUzZo8fP465c+di0aJFkJeXh6WlJUaOHCl1+0FBQUhLS4OSkhI6duyI3bt3V1n/CSGEEFKqrjx+un37Nrp3744PHz4gLy8PWlpaeP36NZSVldGgQQNKpr9nenp6WL16NVavXl1umU+rdUija9eu6Nq1K6u+REdHS13WyMgI+/fvL/e6m5sb3Nzcyr3++QRMY2Njsde//fYbfvvtN6n7QgghhBBSkSlTpqBXr15Yt24dNDQ0EB8fD3l5efzyyy+YNGkS63bryh8jhBBCCCFEAqYaj9qEz+dj6tSpkJGRgaysLAQCAQwMDLB48WL873//Y90uJdOEEEIIIeSHJy8vL1oEoUGDBkhPTwcAaGho4MmTJ6zbpWEehBBCCCF1mEwV7XtR29nZ2eH69eswMzNDp06dEBwcjNevX+OPP/5A8+bNWbdLyTQhksgrsK/LcPzAp6iIfd0CQeVlKsAwsqzrCvM/cootfPOGdV1GRZVTbHBYNlIo4Hbfxcl/s66rMH4ep9hF8YfZVxZw+177mCdfeaHyyPEqL1MRLsuEqqhzCs3Ul7zRlTTaMBzeMwDGDLfvVU4K2McueviUU2j5NoWs6+beKrts7ddQNsvnVP9bqSvDFBYsWID3798DAMLCwuDr64tx48bBzMwMmzdvZt0uJdOEEEIIIeSH17p1a9HXDRo0QExMTJW0W1f+GCG1TEhICFq2bCl67efnJ9p4hhBCCCHfTl2ZgNi5c2eJG+K9e/cOnTt3Zt0uJdMs+fn5gWEYMAwDeXl5NGzYEF27dsWWLVvK7DTIMAwOHz4ssY3PE8jU1FQMHjwY+vr6UFRUROPGjdG7d2+x7cY/xWQYBhoaGnB0dMS5c+dE1y9cuIBevXpBX1+/3Lifc3Z2Fmvzy8PZ2ZnN20MIIYQQUqvExcWV2agFAPLz83Hx4kXW7XIa5vHo0SOkpKTAyckJSkpKEAqFYttY/+jc3d0RFRWF4uJivHjxAjExMZg0aRL279+Po0ePQk5O+re3sLAQXbt2hYWFBQ4ePAg9PT08ffoUJ0+eLPNXVFRUFNzd3fH69Wv8+uuv6NmzJ+7duwcTExPk5eWhRYsWGD58OPr27Vtp3IMHD4q+sZ48eYK2bdvi7NmzsLa2BlC6eQohhBBCflwy+LEnIN65c0f09f3795GZmSl6XVxcjJiYGDRq1Ih1+6yS6Tdv3mDAgAE4d+4cGIZBcnIyTExMMGLECNSrVw9Lly5l3aHvCY/Hg66uLgCgUaNGsLe3R7t27dClSxdER0dLvdsfAPzzzz9ISUlBbGwsjIyMAJRuiuLo6FimrKamJnR1daGrq4vIyEg0atQIZ86cwZgxY+Dh4QEPDw+p42pp/TcZJj+/dKKEtra26L4qsmXLFixduhSPHj2ClpYWvLy8RBvPZGdnY9q0aThy5AgEAgFat26N5cuXo0WLFlL1a//+/QgNDcWjR4+grKwMOzs7HDlyBCoqKlLfGyGEEEJIy5YtRZ+4SxrOoaSkhFWrVrFun9UwjylTpkBOTg7p6elQVlYWnR8wYECVDeb+XnXu3BktWrTAwYMHv6qejo4OZGRksH//fhQXF0tdT0lJCQAkfmxRnSIjI+Hv74/Ro0fj7t27OHr0KExNTUXX+/fvj5cvX+LkyZO4efMm7O3t0aVLF7x9+7bStjMyMjBo0CAMHz4ciYmJiIuLQ9++fcV2SCSEEEJI1ZARVt9RG6SmpiIlJQVCoRDXrl1Damqq6Hj27BnevXuH4cOHs26f1ZPp06dP49SpU2jcuLHYeTMzMzx+/Jh1Z34UlpaWYh8pSKNRo0aIiIjAjBkzEBoaitatW8PFxQU+Pj4wMTGRWOfDhw/47bffICsri06dOlVF16U2f/58TJ06VWz7zTZt2gAALl26hGvXruHly5fg8UqXsFqyZAkOHz6M/fv3Y/To0RW2nZGRgaKiIvTt21f0lN7Gxqbc8gKBAIIvlukSFJeAJ0tTAgghhJC67lMu8eWctqrCKtvIy8sTeyL9ydu3b0XJU13Gduy4v78/MjMzsWPHDjg4OGDfvn2wtrbGmTNnxMoNGjQIqqqqUFNTw4EDB7B582bY2tpWVfcr9fLlSzx//hxdunSReD0hIQG5ubnQ1taGqqqq6Pj0l2FlWrRogS5dusDGxgb9+/fHxo0bkZWVVW758PBwaGhoiB3L7qSxvT1CCCGkTmEgrLajNtm6dSv+/PNP0esZM2ZAU1MT7du35/QwmFUy3bFjR2zbtk30mmEYlJSUYPHixXBxcWHdmR9FYmIimjRpInqtpqaGnJycMuWys7OhoaEhdk5NTQ29evVCWFgYEhIS0LFjR8yfP1+szPLly8Hn85GZmYnMzEwMHTq0em6kHJ+GlpQnNzcXenp64PP5YkdSUhKmT59eafuysrI4c+YMTp48iWbNmmHVqlWwsLBAamqqxPJBQUHIyckROwJtjdncGiGEEFLnyFTjUZssWLBAlMNcvXoVq1evxuLFi1G/fn1MmTKFdbus7nPx4sXYsGEDPDw8UFBQgBkzZqB58+a4cOECFi1axLozP4Jz587h7t278PLyEp2zsLDAzZs3xcoVFxcjISEB5ubm5bbFMAwsLS2Rlye+A5Ouri5MTU2ho6NTtZ2XkpqaGoyNjREbGyvxur29PTIzMyEnJwdTU1Oxo379+lLFYBgGjo6OCA0Nxe3bt6GgoIBDhw5JLMvj8aCuri520BAPQgghhHzuyZMnovldhw8fRr9+/TB69GiEh4d/+6XxmjdvjocPH2L16tVQU1NDbm4u+vbtC39/f+jp6bHuzPdGIBAgMzNTbGm88PBw9OzZE76+vqJygYGBGDFiBCwtLdG1a1fk5eVh1apVyMrKEq34wefzMWfOHAwZMgTNmjWDgoICzp8/jy1btmDmzJlS9yk3NxePHj0SvU5NTQWfz4eWlhYMDQ2r7N5DQkIwduxYNGjQAB4eHnj//j0uX76MCRMmwNXVFQ4ODvD09MTixYthbm6O58+f488//0SfPn3EdiCS5O+//0ZsbCy6deuGBg0a4O+//8arV69gZWVVZf0nhBBCSKm68vhJVVUVb968gaGhIU6fPo3AwEAAgKKiIj5+ZL/lPet1pjU0NPDrr7+yDvwjiImJgZ6eHuTk5FCvXj20aNECERERGDp0KGRk/vvWHDRoEIRCIZYtW4ZZs2ZBWVkZrVq1woULF9CwYUMAQOPGjWFsbIzQ0FCkpaWBYRjR66/56OHGjRtiQ20+faMMHToU0dHRVXPj/99efn4+li9fjmnTpqF+/fro168fgNKnyidOnMCvv/6KYcOG4dWrV9DV1YWTk5Pofiuirq6OCxcuYMWKFXj37h2MjIywdOnSr1ryjxBCCCHkc127dsXIkSNhZ2eHhw8fonv37gBKlyc2NjZm3S4jZLneWFZWFjZv3ozExEQAQLNmzTBs2DCxdYsJqSk5w1w51VcY9gvrurJG3CaDFp/dyb4yxwnAMrZOrOuW3LnAKbbw5UvWdRlDI06xZczbsK5b8vYZp9gMr+I5CBWRNfuJU+yi+MPsK78vOw/ka6QFX2ddt8mesZxiC18/ZV9ZltNeZxDeu8W67pJl7znFditk/+TN8fXfnGLnXlrBum7Bxo2cYsv7DGRdN/u3PzjFVjaTZV1XI+osp9hf40zDAdXWdtcXe6qt7a+VnZ2N3377DU+ePMG4cePg7u4OAJgzZw4UFBRYPyRm9X+FT1tWa2hoiD6yj4iIwNy5c3Hs2DE4ObH/hUwIIYQQQkhV09TUFG0u97nQ0FBO7bJKpv39/TFgwABERkZCVrb0r67i4mKMHz8e/v7+uHv3LqdOEUIIIYSQb+NHHjN9584dNG/eHDIyMpXuAcJ2mWFWyfSjR4+wf/9+USINlC5nFhgYKLZkHiE1JSam8rHZFfl5GPu6wiJuu1Ey5tJtuS5J/totnGIr2ZXdZlVaH3Zd4hSby//NlXqUXff+a5TI3mZfubiIU2zhFxsOfY3kX7Zzim32N/vtc4vOcYt9Pp/9kEDjF2mcYjOa7FdCEuZxG97C6OmzrqssfMgptrys9LvrfklHWaPyQhUQpiWyrlv4nP3PCADIv81kXffFEzVOsYXpX7/nxCd2nCKTT1q2bInMzEw0aNBAtK345yOcP71mGOardqD+HKtk2t7eHomJibCwsBA7n5iYiBYt2CcChBBCCCHk26ptm6tUpdTUVNFSwuXtV8EVq2R64sSJmDRpEh49eoR27doBAOLj47FmzRosXLhQ7DH6t9yZj3w/nJ2d0bJlS6xYsQIAYGxsjMmTJ2Py5Mk12i9CCCGE/Dg+bSX+5ddViVUyPWjQIACl2zBKulYVj8y/F35+fti6dWuZ88nJyaKFwZ88eYI5c+YgJiYGr1+/hp6eHjw9PREcHAxtbW0UFxejY8eO0NXVxcGDB0Vt5OTkoHnz5vD19UVYWBjS0tLEdlbU0tJCq1atsGjRItjZlX4gFBISgt27d+PJkydQUFBAq1atEBYWhp9+kjzrv7Jtz+fMmYOQkJCvfVsIIYQQ8p2Q+YGfTB89elTqsj///DOrGKyS6ep6TP69cnd3R1RUlNi5Tx8p/Pvvv3BwcIC5uTl27dqFJk2a4J9//sH06dNx8uRJxMfHQ0tLC9HR0WjZsiV27NgBHx8fAMCECROgpaWFOXPmiLV99uxZWFtb4+nTp5g4cSI8PDzw4MEDaGpqwtzcHKtXr4aJiQk+fvyI5cuXo1u3bnj06JHEHRMzMjJEX+/ZswfBwcFISkoSnVNVVa2y94kQQgghtY8M+6HdtZ6np6fYa0ljpj9h+wCY1ZSf+vXrw8jISKqjLuDxeNDV1RU7Pk3O9Pf3h4KCAk6fPo1OnTrB0NAQHh4eOHv2LJ49eyZa09Dc3BwLFy7EhAkTkJGRgSNHjmD37t3Ytm0bFBQUxOJpa2tDV1cXrVu3xpIlS/DixQv8/XfpGqCDBw+Gq6srTExMYG1tjWXLluHdu3flzmD9vM8aGhpgGEbsXHnJtEAgwMyZM2FgYAAejwdTU1Ns3rxZdP3evXvw8PCAqqoqGjZsiCFDhuD169dSvZ9CoRAhISEwNDQEj8eDvr4+Jk6cKFVdQgghhJBPSkpKRMfp06fRsmVLnDx5EtnZ2cjOzsaJEydgb2+PmJgY1jFYJdMNGzbE8OHDcekSx9n7P7i3b9/i1KlTGD9+PJSUxDdm0NXVhY+PD/bs2SP6C2nChAlo0aIFhgwZgtGjRyM4OLjSCZ2f2i0oKLuCREFBATZs2AANDY0qnxjq6+uLXbt2ISIiAomJiVi/fr0o8c7Ozkbnzp1hZ2eHGzduICYmBi9evIC3t7dUbR84cADLly/H+vXrkZycjMOHD8PGxqZK+08IIYSQUgyE1XbUJpMnT8bKlSvh5uYGdXV1qKurw83NDcuWLeP00I7VMI/t27cjOjoanTt3hrGxMYYPHw5fX1/o67Nf8ud7dvz4cbEnuB4eHti3bx+Sk5MhFAphZWUlsZ6VlRWysrLw6tUrNGjQAAzDIDIyElZWVrCxscGsWbMqjJudnY158+ZBVVUVbdu2FevPwIED8eHDB+jp6eHMmTOoX79+1dwsgIcPH2Lv3r04c+YMXF1Ldxo0MTERXV+9ejXs7OywYMEC0bktW7bAwMAADx8+hLm5eYXtp6enQ1dXF66urpCXl4ehoaHY/RFCCCGEfK2UlBRoamqWOa+hoYG0tDTW7bJ6Mu3p6YnDhw/j2bNnGDt2LHbu3AkjIyP07NkTBw8eRFERt3VXvzcuLi7g8/miIyIiQuz61+zYvmXLFigrKyM1NRVPn0re8rZ9+/ZQVVVFvXr1kJCQgD179qBhw//WVf7UnytXrsDd3R3e3t54yWGr5i/x+XzIysqiU6dOEq8nJCTgr7/+gqqqquiwtLQEUPqNXJn+/fvj48ePMDExwahRo3Do0KEKv6cEAgHevXsndhQKf+yJr4QQQkhVkanGozZp06YNAgMD8eLFC9G5Fy9eYPr06Zwe2nG6Tx0dHQQGBuLOnTtYtmwZzp49i379+kFfXx/BwcH48OEDl+a/GyoqKjA1NRUdenp6AABTU1MwDIPERMmL1ScmJqJevXqiiYFXrlzB8uXLcfz4cbRt2xYjRoyQmIjv2bMHCQkJyMrKQkpKCrp37y6xP+3atcPmzZshJycnNp6Zqy+HrHwpNzcXvXr1EvsDg8/nIzk5Waqt5g0MDJCUlIS1a9dCSUkJ48ePh5OTEwoLCyWWDw8Ph4aGhthxOPcfVvdGCCGEkB/Tli1bkJGRAUNDQ1HOZmhoiGfPnnHKk1gN8/jkxYsX2Lp1K6Kjo/H48WP069cPI0aMwNOnT7Fo0SLEx8fj9OnTXEJ817S1tdG1a1esXbsWU6ZMEUtCMzMzsWPHDvj6+oJhGHz48AF+fn4YN24cXFxc0KRJE9jY2GDdunUYN26cWLsGBgZo2rSp1P0oKSmBgMMua1+ysbFBSUkJzp8/Lxrm8Tl7e3scOHAAxsbGkJNj9y2mpKSEXr16oVevXvD394elpSXu3r0Le3v7MmWDgoIQGBgodu6o+WhWcQkhhJC6hmFq19jm6mJqaoo7d+7gzJkzePDgAYDSIbeurq6VLhVcEVaZzsGDBxEVFYVTp06hWbNmGD9+PH755RexcSjt27cvd6xwXbJ69Wq0b98ebm5umD9/vtjSeI0aNUJYWBiA0oRQKBRi4cKFAEo3MVmyZAmmTZsGDw8PGBsbVxorLy8PYWFh+Pnnn6Gnp4fXr19jzZo1ePbsGfr3719l92RsbIyhQ4di+PDhiIiIQIsWLfD48WO8fPkS3t7e8Pf3x8aNGzFo0CDMmDEDWlpaePToEXbv3o1NmzaJbUMvSXR0NIqLi/HTTz9BWVkZ27dvh5KSUrmrw/B4PPB4PLFz8kzFMQghhBBS9zAMg27duqFbt25V1iarYR7Dhg2Dvr4+Ll++DD6fj4CAgDIDuvX19UXLvtVlZmZmuHHjBkxMTODt7Y2mTZti9OjRcHFxwdWrV6GlpYXz589jzZo1iIqKgrKysqjumDFj0L59+3KHe3xJVlYWDx48gJeXF8zNzdGrVy+8efMGFy9ehLW1dZXeV2RkJPr164fx48fD0tISo0aNQl5eHgCIvjeKi4vRrVs32NjYYPLkydDU1ISMTOXfcpqamti4cSMcHR1ha2uLs2fP4tixY9DW1q7SeyCEEEIIIMMIq+2oC1g9mc7IyBBL+iRRUlIqs9nIjyg6OrrSMkZGRhWW69SpU7kT7E6dOiX62tjYuMKkWlFRUWwHxa/l5+cHPz8/qcoqKipi2bJlWLZsmcTrZmZmFfYlLi5O7PXns2g9PT3LLLJOCCGEkOpRW/ZsCQ8Px8GDB/HgwQMoKSmhffv2WLRoESwsLERl8vPzMXXqVOzevRsCgQBubm5Yu3at2EIM3xqrJ9NqamoSV4d48+ZNpR/hE0IIIYQQ8qXz58/D398f8fHxOHPmDAoLC9GtWzfRJ98AMGXKFBw7dgz79u3D+fPn8fz5c/Tt27cGe83yyXR5T0cFAkGZ3foIIYQQQkjtVVuGY3y5C2F0dDQaNGiAmzdvwsnJCTk5Odi8eTN27tyJzp07AwCioqJgZWWF+Ph4tGvXria6/XXJ9Kf1kxmGwaZNm8Q2KikuLsaFCxdE6wkTQgghhJC6TSAQlFlRTNLCAZLk5OQAALS0tAAAN2/eRGFhodhKYpaWljA0NMTVq1elSqaLi4tx6NAh0bLFVlZW8PT0ZL36GPCVyfTy5csBlD6ZXrdundiQDgUFBRgbG2PdunWsO0NIVXkuz20EGMNhNRCG4bhMfT1d1lVzkrgNs1KSYoJoeYryuL3nskocnoxw6DcAIP9jjcUWvn/Hum5yngan2E1i/2BdV67LEE6xTzGTWNcdWsxxYzCFitfKr9CH99xiK6tWXqYcy9/f5hT6nUZL1nVffcjhFFv4/Bnruvlvuf1/TVmWfZL0Mr/i+WGVeSzPPrYdp8hfpzqXxgsPD0doaKjYuTlz5iAkJKTCeiUlJZg8eTIcHR3RvHlzAKXLCisoKJRZ9KJhw4bIzMystC///PMPfv75Z2RmZorGYS9atAg6Ojo4duyYKM7X+qp/5dTUVAClO+wdPHgQ9erVYxWUEEIIIYT8+CTtBSHNU2l/f3/cu3cPly5dqrK+jBw5EtbW1rhx44Yoh83KyoKfnx9Gjx6NK1eusGqX1SOVv/76S6pEWl1dHf/++y+bEKQOMDY2xooVK0SvGYbB4cOHa6w/hBBCSF1UnUvj8Xg8qKurix2VJdMBAQE4fvw4/vrrLzRu3Fh0XldXFwUFBcjOzhYr/+LFC+jqVv6pLp/PR3h4uFgOW69ePYSFheH2bfaf/FTrtunSrI38o2MYpsIjJCQEaWlpYBgGfD6/TH1nZ2dMnjxZ9PrgwYPo1q0btLW1Jdb51JakY9++fWXar6j8p0Oa5f8IIYQQQrgQCoUICAjAoUOHcO7cOTRp0kTseqtWrSAvL4/Y2FjRuaSkJKSnp8PBwaHS9s3NzfHixYsy51++fAlTU1PW/ea0nTipXEZGhujrPXv2IDg4GElJSaJzqqqqeP36tdTt5eXloUOHDvD29saoUaPKXDcwMBCLCQAbNmzA77//Dg8Pj0rLL1myBDExMTh79qzonIYGt3GZhBBCCKm9OOykXaX8/f2xc+dOHDlyBGpqaqJx0BoaGlBSUoKGhgZGjBiBwMBAaGlpQV1dHRMmTICDg4NUkw/Dw8MxceJEhISEiMrHx8dj7ty5WLRoEd69+28Oi7q6utT9pmS6mn3+sYOGhgYYhinzUcTXJNNDhpRO+vl8k5PPycrKlmn/0KFD8Pb2Flt9pbzyqqqqkJOTk+rjkuzsbMycOROHDx9GTk4OTE1NsXDhQvTs2RMAcOnSJQQFBeHGjRuoX78++vTpg/DwcKioqFTadkFBAQIDA3HgwAFkZWWhYcOGGDt2LIKCgiqtSwghhBDpVecExK8RGRkJoPRT+c9FRUWJNpVbvnw5ZGRk4OXlJbZpizQ+5Sfe3t5g/v8viE+jKHr16iV6zTAMiouLpe43JdM/uJs3b4LP52PNmjVV2m5JSQk8PDzw/v17bN++HU2bNsX9+/dFK7ykpKTA3d0d8+fPx5YtW/Dq1SsEBAQgICAAUVFRlbYfERGBo0ePYu/evTA0NMSTJ0/w5MmTKr0HQgghhNQe0gwPVlRUxJo1a1jlNX/99RebblWqWpNpprZ8bvCdaN++PWS+WGbr48ePaNmyJes2N2/eDCsrK7Rv355j78SdPXsW165dQ2JiIszNzQEAJiYmouvh4eHw8fERjfc2MzNDREQEOnXqhMjISCgqKlbYfnp6OszMzNChQwcwDAMjI6Nyy0paw7JIWAw5DsvbEUIIIXVFbdm0pbp16tSpWtqt1mSaJiB+nT179sDKykrsnI+PD+v2Pn78iJ07d2L27Nlcu1YGn89H48aNRYn0lxISEnDnzh3s2LFDdE4oFKKkpASpqall7vNLfn5+6Nq1KywsLODu7o6ePXuiW7duEstKWsOym7oN3DVsv/KuCCGEEPIjy87OxubNm0WbtlhbW2P48OGc5odV62oeJ0+eRKNGjaozxA/FwMAApqamYoeSEvvNBfbv348PHz7A19e3CntZqrJ+5ebmYsyYMeDz+aIjISEBycnJaNq0aaXt29vbIzU1FfPmzcPHjx/h7e2Nfv36SSwbFBSEnJwcscNV3ZrVfRFCCCF1DcNU31Gb3LhxA02bNsXy5cvx9u1bvH37FsuWLUPTpk1x69Yt1u1K/WT6ywW3K7Js2TIAQIcOHb6+R6TKbN68GT///DN0dHSqvG1bW1s8ffoUDx8+lPh02t7eHvfv3+e01Iy6ujoGDBiAAQMGoF+/fnB3d8fbt29F24p+ImlbUhriQQghhJDPTZkyBT///DM2btwo2j68qKgII0eOxOTJk3HhwgVW7UqdTEu7mDWNk65eb9++RXp6Op4/fw4AomX2dHV1xVbgePToES5cuIATJ05USz86deoEJycneHl5YdmyZTA1NcWDBw/AMAzc3d0xc+ZMtGvXDgEBARg5ciRUVFRw//59nDlzBqtXr660/WXLlkFPTw92dnaQkZHBvn37oKurW2YLUUIIIYRwU1tW86huN27cEEukAUBOTg4zZsxA69atWbcrdTJdXTMgydc5evQohg0bJno9cOBAAGX3ud+yZQsaN25c7jjjqnDgwAFMmzYNgwYNQl5enmhpPKD0yfX58+fx66+/omPHjhAKhWjatCkGDBggVdtqampYvHgxkpOTISsrizZt2uDEiRNlJmgSQgghhEhDXV0d6enpsLS0FDv/5MkTqKmpsW6Xlsb7hvz8/ETrJH7O2Ni43MmacXFxUrXxpQULFmDBggVf3ceQkBCxpLwiWlpa2LJlS7nX27Rpg9OnT5d7/cu1sj9/D0aNGiVxUxpCCCGEVK26sprHgAEDMGLECCxZskS0ytnly5cxffp0DBo0iHW7UifTffv2lbrRgwcPsuoMIYQQQgj5thiZupFML1myBAzDwNfXF0VFRQAAeXl5jBs3TvTJOhtSJ9O0pTQhhBBCCPleKSgoYOXKlQgPD0dKSgoAoGnTplBWVubUrtTJtDS71hFSW/j99JRTfWGRoPJC5ZHlNnqq+PwR1nV1Bhhwii0U5LGuq+pW/sY60ii49Zh13ZKH/3KKLeviwj72zeucYjMN6rOu28klg1NsFDZhX3XXEk6h995aybpu0X12M+4/EaY/YF+5uIhb7FT236vHVNmvjgQAKM5lXXWziian0Ex99t/nyvpJnGJDkM+6qrneG06hW2oXcKr/rdS1tSOUlZVhY2NTZe2x/q1fVFSEuLg4pKSkYPDgwVBTU8Pz58+hrq4OVVXVKusgIYQQQgghXOXl5WHhwoWIjY3Fy5cvUVJSInb933/Z/bHLKpl+/Pgx3N3dkZ6eDoFAgK5du0JNTQ2LFi2CQCDAunXrWHWG1C0Mw+DQoUPw9PREWloamjRpgtu3b3PaPp0QQgghX6eujJkeOXIkzp8/jyFDhkBPT6/KlnNmlUxPmjQJrVu3RkJCArS1tUXn+/TpQyswVAM/Pz9s3boVY8aMKfOHir+/P9auXYuhQ4ciOjq6SuJ9nuQSQgghhPwITp48iT///BOOjo5V2i6rRXsvXryI3377DQoKCmLnjY2N8ezZsyrpGBFnYGCA3bt34+PHj6Jz+fn52LlzJwwNDWuwZ4QQQgj5njGMsNqO2qRevXpldlGuCqyS6ZKSEhQXF5c5//TpU06LXpPy2dvbw8DAQGzZwYMHD8LQ0BB2dnZiZWNiYtChQwdoampCW1sbPXv2FM1aBYCCggIEBARAT08PioqKMDIyQnh4OIDSP4iA0k8ZGIYRvZbk6dOnGDRoELS0tKCiooLWrVvj77//Fl0/cuQI7O3toaioCBMTE4SGhoqWoqlMVlYWfHx8oKOjAyUlJZiZmdEkWEIIIYSwNm/ePAQHB+PDhw9V2i6rYR7dunXDihUrsGHDBgClwwJyc3MxZ84cdO/evUo7SP4zfPhwREVFwcfHB0DpLofDhg0rs7FLXl4eAgMDYWtri9zcXAQHB6NPnz7g8/mQkZFBREQEjh49ir1798LQ0BBPnjzBkydPAADXr19HgwYNEBUVBXd3d8jKykrsS25uLjp16oRGjRrh6NGj0NXVxa1bt0SD+S9evAhfX19ERESgY8eOSElJwejRowGU7tZYmdmzZ+P+/fs4efIk6tevj0ePHok9lSeEEEJI1fiRN22xs7MTGxv96NEjNGzYEMbGxpCXlxcre+vWLVYxWCXTS5cuhZubG5o1a4b8/HwMHjwYycnJ0NbWxq5du1h1hFTul19+QVBQEB4/Ll1C7PLly9i9e3eZZNrLy0vs9ZYtW6Cjo4P79++jefPmSE9Ph5mZGTp06ACGYWBk9N+SZjo6OgAATU1N6OrqltuXnTt34tWrV7h+/broIxNT0/+WbQoNDcWsWbMwdOhQAICJiQnmzZuHGTNmSJVMp6enw87ODq1btwaACp+QE0IIIYQ9htU4he/Dt5j/xSqZbty4MRISErBnzx4kJCQgNzcXI0aMgI+PD5SUlKq6j+T/6ejooEePHoiOjoZQKESPHj1QX8LancnJyQgODsbff/+N169fi54Wp6eno3nz5vDz80PXrl1hYWEBd3d39OzZE926dfuqvvD5fNjZ2ZU79ighIQGXL19GWFiY6FxxcTHy8/Px4cOHShdIHzduHLy8vHDr1i1069YNnp6eoq0/vyQQCCAQiK8LLSguAU/2B/6/AyGEEEIqJc0DPK5YJdPh4eFo2LAhhg8fLhpyAJQ+AX316hVmzpxZZR0k4oYPH46AgAAAwJo1aySW6dWrF4yMjLBx40bo6+ujpKQEzZs3R0FB6eLx9vb2SE1NxcmTJ3H27Fl4e3vD1dUV+/fvl7oflf3RlJubi9DQUInb0CsqKlbavoeHBx4/fowTJ07gzJkz6NKlC/z9/bFkSdmNIsLDwxEaGip2boaVEWZZG1cahxBCCKnrattEwe8Nq0d369evh6WlZZnz1tbWtMZ0NXN3d0dBQQEKCwvh5uZW5vqbN2+QlJSE3377DV26dIGVlRWysrLKlFNXV8eAAQOwceNG7NmzBwcOHMDbt28BlO5TL2mC6edsbW3B5/NFdb5kb2+PpKQkmJqaljlkZKT7ttPR0cHQoUOxfft2sTH6XwoKCkJOTo7YMcWSVjghhBBCSPVj9WQ6MzMTenp6Zc7r6OggI4Pj9rakQrKyskhMTBR9/aV69epBW1sbGzZsgJ6eHtLT0zFr1iyxMsuWLYOenh7s7OwgIyODffv2QVdXF5qamgBKxyfHxsbC0dERPB4P9erVKxNn0KBBWLBgATw9PREeHg49PT3cvn0b+vr6cHBwQHBwMHr27AlDQ0P069cPMjIySEhIwL3/Y+++o6K43j6AfweW3quAUpVeFHuvRLBgF2sUsUasqCixobF3o0ZjAzUabKhEI4oosTcURUFFFLGADUEFpd73D1/257rL7rIDasLzOWfOkTv3mefO7IJ3Z+/ce+sW5s2bJ/M8Z82ahXr16sHV1RX5+fk4fPgwnJ2dJdZVU1ODmpqaSFkxDfEghBBC5FJVFm2pLAr1OCwtLXHu3Dmx8nPnzsHCwoJ3o4h0urq60NXVlbhPSUkJERERiI+Ph5ubGyZOnIilS5eK1NHR0cGSJUtQv359NGjQAGlpafj777+Fd4yXL1+OmJgYWFpaik27V0pVVRXHjx+HqakpOnbsCHd3dyxatEjYwff29sbhw4dx/PhxNGjQAI0bN8bKlStFHnaURlVVFSEhIfDw8EDLli2hrKyMiIgIeS8RIYQQQshXodCd6eHDh2PChAkoLCxE27ZtAQCxsbEIDg7GpEmTKrSBBDJXNjx48KDIz15eXkhKShIpY+x/nzqHDx8udaVKX19f+Pr6ymyXtbW11HHW3t7eEoeiSGqTjY2NyM8zZszAjBkzZLaBEEIIIfxU0KraVZZCnekpU6bg9evXGD16tPChNnV1dUydOhUhISEV2kBCCCGEEEL4Ki4uRnh4OGJjY/HixQvhbGelTp48qdBxFepMcxyHxYsXY+bMmUhOThauUPfluFVCCCGEEPJ9qypjpsePH4/w8HB06tQJbm5uIou58KFQZ7qUtrY2GjRoUCENIYQQQgghX19V6UxHRERgz549Fb5aN6/ONCHfK07A79Mmp/rtFh/ijE0UjmVlLP8ud24Vxc9byVTxdgOAis1bhWOV3cWn6iwPTl/xtivVrccrN1Rlz7teFhZ7g19uTS2FQ/nez7ldb4LCsa7xq3jlLrpxQvFgViK7jjQ6LxUOPY8CXqnrFn1QOPZ5bjav3LCyVzhU2fAKv9z64oubyUtJwO/1VlLlFU4qmKqqqshqzRWF5g8jhBBCCKnCOK7ytu/JpEmTsHr1apEJDyoC3ZkmhBBCCCH/eWfPnsWpU6dw9OhRuLq6QkVFRWR/ZGSkQselO9PfMX9/f3Ach1GjRontCwwMBMdx8Pf3//oN+0JoaCg4joOPj4/YvqVLl4LjOLRu3frrN4wQQgghMnFKrNK274m+vj66d++OVq1awdjYGHp6eiKboujO9HfO0tISERERWLlyJTQ0Po1n/fjxI3bt2gUrq+9nyWxzc3OcOnUKT548QY0aNYTlW7du/a7aSQghhJCqKSwsrFKOS3emv3N169aFpaWlyFcPkZGRsLKyEludMD8/H+PGjYOpqSnU1dXRvHlzXLnyvwc34uLiwHEcYmNjUb9+fWhqaqJp06a4e/euyHHWr1+PmjVrQlVVFY6OjtixY4fMdpqamqJ9+/bYtm2bsOz8+fN49eoVOnXqJFL3ypUr+OGHH4SfClu1aoVr166J1MnOzsbIkSNRrVo1qKurw83NDYcPH5Z9wQghhBBSLpxS5W1VQRU5zX+3gIAAkU9TW7duxZAhQ8TqBQcHY//+/di2bRuuXbuGWrVqwdvbG1lZWSL1pk+fjuXLl+Pq1asQCAQICAgQ7jtw4ADGjx+PSZMm4datWxg5ciSGDBmCU6dOydXOz1dr3Lp1KwYMGABVVdHHmd+9e4fBgwfj7NmzuHjxIuzt7dGxY0e8e/cOAFBSUoIOHTrg3Llz+OOPP5CUlCSyVDkhhBBCiCL27dsHPz8/NG7cGHXr1hXZFEWd6X+BgQMH4uzZs3j06BEePXqEc+fOYeDAgSJ1cnNzsX79eixduhQdOnSAi4sLNm3aBA0NDWzZskWk7vz589GqVSu4uLhg2rRpOH/+PD5+/AgAWLZsGfz9/TF69Gg4ODggKCgIPXr0wLJly2S2s3Pnznj79i1Onz6N3Nxc7NmzR6SjXqpt27YYOHAgnJyc4OzsjI0bNyIvLw///PMPAODEiRO4fPkyIiMj8cMPP8DOzg6dO3dGhw4dJObNz8/H27dvRbb8Yp7TVxFCCCFVBMexStu+J7/++iuGDBmCatWq4fr162jYsCGMjIzw4MGDMvsY8qDO9L+AiYkJOnXqhPDwcISFhaFTp04wNhadNzM1NRWFhYVo1qyZsExFRQUNGzZEcnKySF0PDw/hv83NzQEAL168AAAkJyeLHAMAmjVrJnYMSVRUVDBw4ECEhYVh7969cHBwEMlV6vnz5xg+fDjs7e2hp6cHXV1dvH//Hunp6QCAhIQE1KhRAw4ODjJzAsDChQvFHiJYmfRIrlhCCCGkqqsqwzx+++03bNy4EWvWrIGqqiqCg4MRExODcePGIScnR+Hj0gOI/xIBAQEYM2YMAGDdunW8jvX5VDClS2l+uT69ogICAtCoUSPcunVL4l1pABg8eDBev36N1atXw9raGmpqamjSpAkKCj4tSFD6oKW8QkJCEBQUJFL2YZivYidACCGEkP+k9PR0NG3aFMCnvkbp8NIff/wRjRs3xtq1axU67nf2mYGUxcfHBwUFBSgsLIS3t7fY/tIHBs+dOycsKywsxJUrV+Di4iJ3HmdnZ5FjAMC5c+fkPoarqytcXV1x69Yt9O/fX2Kdc+fOYdy4cejYsSNcXV2hpqaGV69eCfd7eHjgyZMnuHfvnlw51dTUoKurK7KpKdNbmxBCCJFHVZkaz8zMTPgcmZWVFS5evAgAePjwIa+FXOjO9L+EsrKycKiFpAfxtLS08NNPP2HKlCkwNDSElZUVlixZgry8PAwdOlTuPFOmTIGfnx88PT3h5eWFv/76C5GRkThxQv7ld0+ePInCwkLo6+tL3G9vb48dO3agfv36ePv2LaZMmSJyN7pVq1Zo2bIlevbsiRUrVqBWrVq4c+dOmXNZE0IIIYTI0rZtW0RFRcHT0xNDhgzBxIkTsW/fPly9ehU9evRQ+LjUmf4X0dXVlbp/0aJFKCkpwY8//oh3796hfv36OHbsGAwMDOTO0a1bN6xevRrLli3D+PHjYWtri7CwsHItuqKlpSV1/5YtWzBixAjhtH8LFizA5MmTRers378fkydPRr9+/ZCbm4tatWph0aJFcreBEEIIIfL53sY2V5aNGzcKh7UGBgbCyMgI58+fR5cuXTBy5EiFj8uxil6gnJDvQHa/Nrzi1ccMUzhWqYYzr9zFF/9SOJa9yZJdSQrlFl0Uji25eJRX7uI7qQrHKrs78crN1XRTOJa9ec4rN1TVFQ79uGkPr9Tq/dorHpyXyyv33emJCse6xq/ilbvohvzftIlh/J4vYfdlP8xdlq3zX/PKXbfog8KxLV9f5JX73Yn5CscW7tjFK7dK724Kx778eT+v3JomRQrHGh/9h1fu8nheiasUV4uLq7Rjfy+qyGcRQgghhBAiEccqb/vOnDlzBgMHDkSTJk3w9OlTAMCOHTtw9uxZhY9JnWlCCCGEEPKft3//fnh7e0NDQwPXr19Hfn4+ACAnJwcLFixQ+Lg0Zpr8J824YMorfulPhQrHsvw8XrmVPNspHHu15SpeueufUvzzder8O7xyFxQqvsKlk3Emr9wsg0e8Cr8/oyz7ncKxv12uzit3UMdsxYM/m2JTESEliv+ORUZvkV1JCoGP/A9lf6no4kFeuTnrmgrHrvhwmldufy35Z3aqaOyC4kMWHhxXfCgUADjUVXxozdFMc165775SfJjHCl6Zy6eqjJmeN28eNmzYgEGDBiEiIkJY3qxZM8ybN0/h41JnmhBCCCGkCqsqnem7d++iZcuWYuV6enrIzs5W+LhV5PL99+Xl5aFnz57Q1dUFx3HIzs6WWPa9SEtLA8dxSEhIAADExcV9d20khBBCyH+HmZkZ7t+/L1Z+9uxZ2NnZKXxc6kxXMn9/f3Tr1k2kbN++fVBXV8fy5csrLM+2bdtw5swZnD9/HhkZGdDT05NYRgghhBDyuaqynPjw4cMxfvx4XLp0CRzH4dmzZ9i5cycmT56Mn376SeHj0jCPr2zz5s0IDAzEhg0bMGTIkAo7bmpqKpydneHm5ia1rLyKi4vBcRyUlL6z3whCCCGEkHKYNm0aSkpK0K5dO+Tl5aFly5ZQU1PD5MmTMXbsWIWPSz2kr2jJkiUYO3YsIiIihB1pSXeuJ0yYILJISuvWrTFmzBiMGTMGenp6MDY2xsyZM4VLX7Zu3RrLly/H6dOnwXEcWrduLbEMAPLz8zF58mRUr14dWlpaaNSoEeI+mwMyPDwc+vr6iIqKgouLC9TU1JCeni7xfG7fvo3OnTtDV1cXOjo6aNGiBVJT/zdX8ObNm+Hs7Ax1dXU4OTnht99+k/taPXr0CL6+vjAwMICWlhZcXV3x999/yx1PCCGEEDkpVeJWTqdPn4avry8sLCzAcRwOHjwost/f3x8cx4ls8q6OzHEcpk+fjqysLNy6dQsXL17Ey5cv8csvv5S/oZ+hO9NfydSpU/Hbb7/h8OHDaNeu/LM1bNu2DUOHDsXly5dx9epVjBgxAlZWVhg+fDgiIyMxbdo03Lp1C5GRkVBVVQUAiWVjxoxBUlISIiIiYGFhgQMHDsDHxweJiYmwt7cH8Gn89eLFi7F582YYGRnB1FR8ZoynT5+iZcuWaN26NU6ePAldXV2cO3cORUWfnlzeuXMnZs2ahbVr18LT0xPXr1/H8OHDoaWlhcGDB8s838DAQBQUFOD06dPQ0tJCUlIStLW1y33dCCGEEPLvkZubi9q1ayMgIKDMJb59fHwQFhYm/FlNTa1cOVRVVeHiUnGz21Bn+is4evQoDh06hNjYWLRt21ahY1haWmLlypXgOA6Ojo5ITEzEypUrMXz4cBgaGkJTUxOqqqowMzMTxnxZlp6ejrCwMKSnp8PCwgIAMHnyZERHRyMsLEw4x2JhYSF+++031K5du8z2rFu3Dnp6eoiIiIDK/0+R5eDgINw/e/ZsLF++XPiLYGtri6SkJPz+++9ydabT09PRs2dPuLu7AwCvBwMIIYQQUrbvaWxzhw4d0KFDB6l11NTURPo7sgQEBMhVb+vWrXIf83PUmf4KPDw88OrVK8yePRsNGzZU6A5r48aNwXGc8OcmTZpg+fLlKC4uhrKyfPPzJiYmori4WKTTC3wa+mFkZCT8WVVVFR4eHlKPlZCQgBYtWgg70p/Lzc1Famoqhg4diuHDhwvLi4qK5H4Icty4cfjpp59w/PhxeHl5oWfPnmW2KT8/XzjxeqliVgxlTvF5iwkhhBDCn6T/o9XU1Mp9N/lzcXFxMDU1hYGBAdq2bYt58+aJ9GO+FB4eDmtra3h6egqHyFYk6kx/BdWrV8e+ffvQpk0b+Pj44OjRo9DR0QEAKCkpib2whYWKL2Ygzfv376GsrIz4+HixDvjnHXwNDQ2RjrskGhoaUvMAwKZNm9CoUSORffJ2/IcNGwZvb28cOXIEx48fx8KFC7F8+XKJDwgsXLgQc+bMESlroOeChvqKP3hJCCGEVBmVeGda0v/Rs2fPRmhoqELH8/HxQY8ePWBra4vU1FT8/PPP6NChAy5cuFBmH+Onn37Cn3/+iYcPH2LIkCEYOHAgDA0NFcovyXd0Y/+/zdraGv/88w8yMzPh4+ODd+8+rXpmYmKCjIwMkbqlcy9/7tKlSyI/X7x4Efb29nJ3TgHA09MTxcXFePHiBWrVqiWylefrEuDT3fYzZ85I7PhXq1YNFhYWePDggVgeW1tbuXNYWlpi1KhRiIyMxKRJk7Bp0yaJ9UJCQpCTkyOy1dNzLtf5EEIIIaTiSfo/OiQkROHj9e3bF126dIG7uzu6deuGw4cP48qVKyKTKXxp3bp1yMjIQHBwMP766y9YWlrCz88Px44dq5A71dSZ/oosLS0RFxeHFy9ewNvbG2/fvkXbtm1x9epVbN++HSkpKZg9ezZu3bolFpueno6goCDcvXsXf/75J9asWYPx48eXK7+DgwMGDBiAQYMGITIyEg8fPsTly5excOFCHDlypFzHGjNmDN6+fYu+ffvi6tWrSElJwY4dO3D37l0AwJw5c7Bw4UL8+uuvuHfvHhITExEWFoYVK+RbIHXChAk4duwYHj58iGvXruHUqVNwdpbcQVZTU4Ourq7IRkM8CCGEEPlU5jzTkv6P5jPE40t2dnYwNjaWuBjL59TU1NCvXz/ExMQgKSkJrq6uGD16NGxsbITfqCuKOtNfWY0aNRAXF4dXr17B29sbTZo0wcyZMxEcHIwGDRrg3bt3GDRokFjcoEGD8OHDBzRs2BCBgYEYP348RowYUe78YWFhGDRoECZNmgRHR0d069YNV65cgZWVVbmOY2RkhJMnT+L9+/do1aoV6tWrh02bNgnHUA8bNgybN29GWFgY3N3d0apVK4SHh8t9Z7q4uBiBgYFwdnaGj48PHBwcyjW1HiGEEELk9B1NjVdeT548wevXr2Fubi53jJKSEjiOA2MMxcXFvNtAY6YrWXh4uFhZ9erVce/ePeHPc+bMERtP9CUVFRWsWrUK69evl7h/1apVcpWpqKhIzefv7w9/f3+pbSnl4eGBY8eOlbm/f//+6N+/v8R9NjY2Il+ttG7dWuTnNWvWyNUGQgghhPx3vH//XuQu88OHD5GQkABDQ0MYGhpizpw56NmzJ8zMzJCamorg4GDUqlUL3t7eUo+bn5+PyMhIbN26FWfPnkXnzp2xdu1a+Pj48F6YjjrThBBCCCFVGKckfdKBr+nq1ato06aN8OegoCAAwODBg7F+/XrcvHkT27ZtQ3Z2NiwsLNC+fXv88ssvUoeOjB49GhEREbC0tERAQAD+/PNPGBsbV1ibqTNNCCGEEEK+C19+U/0lad+Il2XDhg2wsrKCnZ0d/vnnH/zzzz8S60VGRpb72AB1pv8VpD2hSgghhBDCy3/8CbpBgwbJnPKXD+pMk/8kx2LxxWTKpaRE4VBOTZNX6uJHNxWOdfN+wys3H4ZmubziNa15BBvwWyGTs66peHBhAb/c73IUju2jdZFXbpjU4xfPQwNlHnO8msj/oJEkxQ+vKxwraNyNV+6ik38oHPuLqiuv3F62TxSOPVrkILuSFJy9vcKxNo3T+OW2sFQ4tqkKv9wdjPJ4xZOKIen5tYpEnWlCCCGEkCrsexoz/W/0H7+xTwghhBBCSOWhzrQMmZmZGDt2LOzs7KCmpgZLS0v4+voiNjZWpN758+fRsWNHGBgYQF1dHe7u7lixYoXY/IUcx+HgwYMSc338+BH+/v5wd3eHQCBAt27dymzXhw8fYGhoCGNjY7E17wFg48aNaN26NXR1dcFxHLKzs2Weq7+/PziOw6hRo8T2BQYGguM4uafNI4QQQsi/xL94nunvQRU5TcWkpaWhXr16OHnyJJYuXYrExERER0ejTZs2CAwMFNY7cOAAWrVqhRo1auDUqVO4c+cOxo8fj3nz5qFv375yL1VZXFwMDQ0NjBs3Dl5eXlLr7t+/H66urnBycpLYOc/Ly4OPjw9+/vnncp2zpaUlIiIi8OHDB2HZx48fsWvXrnIv7FJeBQX8xp4SQgghRAFKXOVtVQB1pqUYPXo0OI7D5cuX0bNnTzg4OMDV1RVBQUG4ePHTgz+5ubkYPnw4unTpgo0bN6JOnTqwsbHBsGHDsG3bNuzbtw979uyRK5+WlhbWr1+P4cOHw8zMTGrdLVu2YODAgRg4cCC2bNkitn/ChAmYNm0aGjduXK5zrlu3LiwtLUWmh4mMjISVlRU8PT1F6kZHR6N58+bQ19eHkZEROnfujNTUVJE6T548Qb9+/WBoaAgtLS3Ur18fly5dAgCEhoaiTp062Lx5M2xtbaGurg7g09LpXbt2hba2NnR1deHn54fnz5+X6zwIIYQQQr4G6kyXISsrC9HR0QgMDISWlpbYfn19fQDA8ePH8fr1a0yePFmsjq+vLxwcHPDnn39WaNtSU1Nx4cIF+Pn5wc/PD2fOnMGjR48q7PgBAQEICwsT/rx161YMGTJErF5ubi6CgoJw9epVxMbGQklJCd27d0fJ/8+EUbrU+NOnTxEVFYUbN24gODhYuB8A7t+/j/379yMyMhIJCQkoKSlB165dkZWVhX/++QcxMTF48OAB+vTpU2HnRwghhJD/4ZS4StuqAprNowz3798HYwxOTk5S65UuC+7s7Cxxv5OTk8jS4RVh69at6NChAwwMDAAA3t7eCAsLQ2hoaIUcf+DAgQgJCRF20M+dO4eIiAix+a579uwp1i4TExMkJSXBzc0Nu3btwsuXL3HlyhUYGn6aBqtWrVoiMQUFBdi+fTtMTEwAADExMUhMTMTDhw9haflpOqPt27fD1dUVV65cQYMGDcTam5+fLzZuvJAVQ4VTVvwiEEIIIYTIge5Ml0Hecc6K1ldUcXExtm3bhoEDBwrLBg4ciPDwcJE7vnyYmJigU6dOCA8PR1hYGDp16iRx2c2UlBT069cPdnZ20NXVhY2NDYBPwzQAICEhAZ6ensKOtCTW1tbCjjQAJCcnw9LSUtiRBgAXFxfo6+sjOTlZ4jEWLlwIPT09kS3m7W1FTp0QQgipeugBRF6qyGmWn729PTiOw507d6TWc3D4NJF9WR295ORkYZ2KcOzYMTx9+hR9+vSBQCCAQCBA37598ejRI7EZRvgICAhAeHg4tm3bhoCAAIl1fH19kZWVhU2bNuHSpUvCsdClDxJqaGjIzCNpCE15hYSEICcnR2T7QZff4gaEEEIIIfKgznQZDA0N4e3tjXXr1iE3V3xlt9Kp5tq3bw9DQ0MsX75crE5UVJTw7m1F2bJlC/r27YuEhASRrW/fvhIfRFSUj48PCgoKUFhYCG9vb7H9r1+/xt27dzFjxgy0a9cOzs7OePNGdPU9Dw8PJCQkICsrS+68zs7OePz4MR4/fiwsS0pKQnZ2NlxcXCTGqKmpQVdXV2SjIR6EEEKInGg2D15ozLQU69atQ7NmzdCwYUPMnTsXHh4eKCoqQkxMDNavX4/k5GRoaWnh999/R9++fTFixAiMGTMGurq6iI2NxZQpU9CrVy/4+fmJHPfhw4dISEgQKbO3t4eWlhaSkpJQUFCArKwsvHv3TlivTp06ePnyJf766y9ERUXBzc1NJH7QoEHo3r07srKyYGhoiMzMTGRmZuL+/fsAgMTEROjo6MDKykrqsItSysrKwrvtysriHVMDAwMYGRlh48aNMDc3R3p6OqZNmyZSp1+/fliwYAG6deuGhQsXwtzcHNevX4eFhQWaNGkiMa+Xlxfc3d0xYMAArFq1CkVFRRg9ejRatWqF+vXry2w3IYQQQsjXRJ1pKezs7HDt2jXMnz8fkyZNQkZGBkxMTFCvXj2sX79eWK9Xr144deoU5s+fjxYtWuDjx4+wt7fH9OnTMWHCBHCc6CezoKAgsVxnzpxB8+bN0bFjR5GZOUqno2OMYfv27dDS0kK7du3E4tu1awcNDQ388ccfGDduHDZs2IA5c+YI97ds2RIAEBYWJvfCK7q6umXuU1JSQkREBMaNGwc3Nzc4Ojri119/RevWrYV1VFVVcfz4cUyaNAkdO3ZEUVERXFxcsG7dujKPy3EcDh06hLFjx6Jly5ZQUlKCj48P1qxZI1ebCSGEEFI+VWXWjcrCsa/15BwhX9Eay4GyK0kxbEdbhWOVbevwyl386KbCsQVbdvDKrT5thsKxr4fO5ZVb01rxWNU2dXjl5qxrKh5cyHOxoXc5Coc+/eUir9TVl4gP4fpaFo6JVzg25HfJ32zJizM0VzhW2dZTdiUpik7+oXBs5AR+M0N5OTxROLZbCr/O1sk1Pygcm787hldutf4dFI69P+EMr9x6RnkKx1pdrbjnoGR5O7x9pR1bd9PxSjv294LGTBNCCCGEEKIgGuZBCCGEEFKV0TAPXqgzTf6T/lF6yyt+mJLiX9qw929kV5JC2cpNdqUyxEcb8crdLFjxucrT0wx45X6bqqpwbDO317xys0eKf/3N6Wrzyl3yUv7Zbr60Jo/fNV+Uqfh5g+P3xebxgqcKx4Y8S+eVGwbVFA4tOrOHV2pBW8WHoK2CP6/cKQ8tZVcqw5WXcbxyl9yyUDg28R9+f9fqNX2gcOzhEj1euU89L1Q49r8/OOK/gzrThBBCCCFV2JcTJZDyoTHThBBCCCGEKKjKdKZfvnyJn376CVZWVlBTU4OZmRm8vb1x7tw5YR0bGxtwHCe2LVq0CACQlpYmUm5oaIhWrVrhzBnRp31DQ0OFdQQCAWxsbDBx4kS8f/9e5Dilc0iX/mxqaop3796JHKtOnToIDQ0VO58///wTysrKCAwMFNv38eNH+Pv7w93dHQKBAN26dZPrGpW2+eJF0RkC8vPzYWRkBI7jEBcXJ9exCCGEEPIvQYu28FJlOtM9e/bE9evXsW3bNty7dw9RUVFo3bo1Xr8WHWs5d+5cZGRkiGxjx44VqXPixAlkZGTg9OnTsLCwQOfOnfH8+XOROq6ursjIyEBaWhoWL16MjRs3YtKkSVLb+O7dOyxbtkyu89myZQuCg4Px559/4uPHjyL7iouLoaGhgXHjxsHLy0uu45WytLREWFiYSNmBAwegrc1vXKg8SpchJ4QQQgj5t6gSnens7GycOXMGixcvRps2bWBtbY2GDRsiJCQEXbp0Eamro6MDMzMzkU1LS0ukjpGREczMzODm5oaff/4Zb9++xaVLl0TqCAQCmJmZoUaNGujTpw8GDBiAqKgoqe0cO3YsVqxYgRcvXkit9/DhQ5w/fx7Tpk2Dg4MDIiMjRfZraWlh/fr1GD58OMzMzGRdHhGDBw9GREQEPnz4ICzbunUrBg8eLFZ36tSpcHBwgKamJuzs7DBz5kwUFoo+bPHXX3+hQYMGUFdXh7GxMbp37y7cZ2Njg19++QWDBg2Crq4uRowYAQDYv38/XF1doaamBhsbG4lLtRNCCCGkgtCdaV6qRGdaW1sb2traOHjwIPLz8yvsuB8+fMD27dsBfFrtTxoNDQ2Zd1779euHWrVqYe5c6YtfhIWFoVOnTtDT08PAgQOxZcuW8jVcinr16sHGxgb79+8HAKSnp+P06dP48ccfxerq6OggPDwcSUlJWL16NTZt2oSVK1cK9x85cgTdu3dHx44dcf36dcTGxqJhw4Yix1i2bBlq166N69evY+bMmYiPj4efnx/69u2LxMREhIaGYubMmQgPD6+wcySEEELIZ5SUKm+rAqrEWQoEAoSHh2Pbtm3Q19dHs2bN8PPPP+PmTfGV5qZOnSrsfJduX46Jbtq0KbS1taGlpYVly5ahXr16Epf4LhUfH49du3ahbVvpq+qVjs/euHEjUlNTJdYpKSlBeHg4Bg78NL1S3759cfbsWTx8+FDWZZBbQEAAtm7dCgAIDw9Hx44dYWJiIlZvxowZaNq0KWxsbODr64vJkydjz57/TRs1f/589O3bF3PmzIGzszNq166NkJAQkWO0bdsWkyZNQs2aNVGzZk2sWLEC7dq1w8yZM+Hg4AB/f3+MGTMGS5curbDzI4QQQgipKFWiMw18GjP97NkzREVFwcfHB3Fxcahbt67YHc8pU6YgISFBZKtfv75Ind27d+P69evYv38/atWqhfDwcKioqIjUSUxMhLa2NjQ0NNCwYUM0adIEa9euldlOb29vNG/eHDNnzpS4PyYmBrm5uejYsSMAwNjYGD/88IOw81sRBg4ciAsXLuDBgwcIDw9HQECAxHq7d+9Gs2bNYGZmBm1tbcyYMQPp6f+b/zUhIUHqhwwAYtc2OTkZzZo1Eylr1qwZUlJSUFxcLPEY+fn5ePv2rchWzCTXJYQQQsgXaJgHL1WmMw0A6urq+OGHHzBz5kycP38e/v7+mD17tkgdY2Nj1KpVS2TT0NAQqWNpaQl7e3t0794dCxYsQPfu3cWGjzg6OiIhIQHJycn48OEDoqKiUK2afAsFLFq0SNhh/9KWLVuQlZUFDQ0NCAQCCAQC/P3339i2bRtKShRfcONzRkZG6Ny5M4YOHYqPHz+iQ4cOYnUuXLiAAQMGoGPHjjh8+DCuX7+O6dOniwxl+fK6SfLleHRFLFy4EHp6eiLb3Zz7vI9LCCGEECJLlepMf8nFxQW5ubm8jtGrVy8IBAL89ttvIuWqqqqoVasWbGxsZI6n/lLDhg3Ro0cPTJs2TaT89evXOHToECIiIkTunF+/fh1v3rzB8eMVt15SQEAA4uLiMGjQICgrK4vtP3/+PKytrTF9+nTUr18f9vb2ePTokUgdDw8PxMbGliuvs7OzyHSFAHDu3Dk4ODhIbAcAhISEICcnR2Rz1KtVrryEEEJIVcUpcZW2VQVVYgXE169fo3fv3ggICICHhwd0dHRw9epVLFmyBF27dhWp++7dO2RmZoqUaWpqQldXV+KxOY7DuHHjEBoaipEjR0JTU7NC2jx//ny4urpCIPjfS7Rjxw4YGRnBz89PbLWijh07YsuWLfDx8QEAJCUloaCgAFlZWXj37p1wTus6derIld/HxwcvX74s87zt7e2Rnp6OiIgINGjQAEeOHMGBAwdE6syePRvt2rVDzZo10bdvXxQVFeHvv//G1KlTy8w7adIkNGjQAL/88gv69OmDCxcuYO3atWIfVj6npqYGNTU1kTJlTnLHmxBCCCGkIlWJO9Pa2tpo1KgRVq5ciZYtW8LNzQ0zZ87E8OHDxcYxz5o1C+bm5iJbcHCw1OMPHjwYhYWFco2JlpeDgwMCAgJE5pDeunUrunfvLnHZz549eyIqKgqvXr0C8Klz7enpib/++gtxcXHw9PSEp6en3Pk5joOxsXGZd9W7dOmCiRMnYsyYMahTpw7Onz8vNs67devW2Lt3L6KiolCnTh20bdsWly9flpq3bt262LNnDyIiIuDm5oZZs2Zh7ty58Pf3l7vthBBCCCkHGjPNC8cYY9+6EYRUtF7WXWRXkmLHjh4KxyoZWfLKzWnpKRx7ttESXrmbnRypcOz1H9bxyv22uHzDoT7XbJzisQCAvA+y65SB0+W3oFHJyyyFY6fvk/1cgjSLZlgoHszxuxfTZuZVhWNPzW8ou5IUnGsDhWPZU8kzLclL0MJP4dimHv68cndSUfxv07yMOF65c2a0Vjj22m/8prStF2KscOzqFe955T5V8krh2OOPo3nlLo/3k7vKrqQg7WWHKu3Y34sqMcyDEEIIIYSUgeeH46qOOtOEEEIIIVVZFRmOUVnoowghhBBCCCEKojvT5D9Jn+M3hpZdv6h4cAd+0/K9HjhF4dhGE6x45S7JSFE41sIih1fuP14pPq7RM+6R7EpSaAe0Vji26Iz0h2plUbI0VTjW7yO/qT2hq69waHF8Aq/UfQQ1FA/W0+eVuyT+tOLBBYW8chdsmKVw7Pmb4bxyFz+IVzh2mmo/XrkLt25QOFZfg99dU87AQOFYnRJ+Y6bDahTIrvQ9oDvTvNCdaUIIIYQQQhREd6YJIYQQQqowTonurfJBV6+CZGZmYuzYsbCzs4OamhosLS3h6+srsgKgjY0NOI4T2xYtWgQASEtLEykvXUVx3rx5+HwGw9DQUGEdgUAAGxsbTJw4Ee/fvy/Xcb5UGqesrIynT5+K7MvIyIBAIADHcUhLS6vAK0cIIYQQ8u9Fd6YrQFpaGpo1awZ9fX0sXboU7u7uKCwsxLFjxxAYGIg7d+4I686dOxfDhw8XidfR0RH5+cSJE3B1dUV+fj7Onj2LYcOGwdzcHEOHDhXWcXV1xYkTJ1BUVIRz584hICAAeXl5+P3338t1HEmqV6+O7du3IyQkRFi2bds2VK9eHenp6QpdI3kVFhZCRUWlUnMQQggh5DM0ZpoXujNdAUaPHg2O43D58mX07NkTDg4OcHV1RVBQEC5eFH2QTUdHB2ZmZiKblpaWSB0jIyOYmZnB2toaAwYMQLNmzXDt2jWROgKBAGZmZqhRowb69OmDAQMGICoqqtzHkWTw4MEICwsTKQsLC8PgwYNFyoqLizF06FDY2tpCQ0MDjo6OWL16tdjxtm7dCldXV6ipqcHc3BxjxowR7uM4DuvXr0eXLl2gpaWF+fPnAwDWr1+PmjVrQlVVFY6OjtixY4fMdhNCCCGEfG3UmeYpKysL0dHRCAwMFOsUA4C+vj6v41+9ehXx8fFo1KiR1HoaGhooKCj7qWF5jwN8Wir8zZs3OHv2LADg7NmzePPmDXx9fUXqlZSUoEaNGti7dy+SkpIwa9Ys/Pzzz9izZ4+wzvr16xEYGIgRI0YgMTERUVFRqFVLdLaL0NBQdO/eHYmJiQgICMCBAwcwfvx4TJo0Cbdu3cLIkSMxZMgQnDp1SmbbCSGEEFJOnFLlbVUADfPg6f79+2CMwcnJSa76U6dOxYwZM0TKjh49ihYtWgh/btq0KZSUlFBQUIDCwkKMGDECgwYNKvOY8fHx2LVrF9q2bStSXt7jlFJRUcHAgQOxdetWNG/eHFu3bsXAgQPFhl+oqKhgzpw5wp9tbW1x4cIF7NmzB35+n5bMnTdvHiZNmoTx48cL6zVoILqUb//+/TFkyBDhz/369YO/vz9Gjx4NAMI7/MuWLUObNm3E2pufn4/8fNHlZotZMZQ5ZZnnSgghhFR5NMyDF+pM8yTtgT5JpkyZAn9/f5Gy6tWri/y8e/duODs7o7CwELdu3cLYsWNhYGAgfFARABITE6GtrY3i4mIUFBSgU6dOWLt2bbmPU5aAgAA0bdoUCxYswN69e3HhwgUUFRWJ1Vu3bh22bt2K9PR0fPjwAQUFBahTpw4A4MWLF3j27BnatWsnNVf9+vVFfk5OTsaIESNEypo1ayZxCAkALFy4UKRTDwCees6oq+8i6zQJIYQQQnihzjRP9vb24DhO5CFDaYyNjcWGOXzJ0tJSWMfZ2RmpqamYOXMmQkNDoa6uDgBwdHREVFQUBAIBLCwsoKoqvkiJPMcpi7u7O5ycnNCvXz84OzvDzc0NCQkJInUiIiIwefJkLF++HE2aNIGOjg6WLl2KS5cuAfg09EQekobHlEdISAiCgoJEysa7Dy6jNiGEEEJE0NR4vNDV48nQ0BDe3t5Yt24dcnPFVyPLzs7mnUNZWRlFRUUiY6JLp7uzsbGR2JGW9zjSBAQEIC4uDgEBARL3nzt3Dk2bNsXo0aPh6emJWrVqITU1VbhfR0cHNjY2ItMDysPZ2Rnnzp0Ty+XiIvlOs5qaGnR1dUU2GuJBCCGEkK+B7kxXgHXr1qFZs2Zo2LAh5s6dCw8PDxQVFSEmJgbr169HcnKysO67d++QmZkpEq+pqQldXV3hz69fv0ZmZiaKioqQmJiI1atXo02bNiJ15MH3OMOHD0fv3r3LfIjS3t4e27dvx7Fjx2Bra4sdO3bgypUrsLW1FdYJDQ3FqFGjYGpqig4dOuDdu3c4d+4cxo4dW2beKVOmwM/PD56envDy8sJff/2FyMhInDhxolznTwghhBA50JhpXujOdAWws7PDtWvX0KZNG0yaNAlubm744YcfEBsbi/Xr14vUnTVrFszNzUW24OBgkTpeXl4wNzeHjY0NRowYgY4dO2L37t3lbhff4wgEAhgbG0MgkPyZa+TIkejRowf69OmDRo0a4fXr18KHBksNHjwYq1atwm+//QZXV1d07twZKSkpUvN269YNq1evxrJly+Dq6orff/8dYWFhaN26tdxtJ4QQQsi/z+nTp+Hr6wsLCwtwHIeDBw+K7GeMCftSGhoa8PLyktmvqGx0Z7qCmJubY+3atWIPAX5O1sqBNjY2cj3QGBoaitDQUN7HKW9cnTp1RParqakhLCxMbE7qhQsXivw8cuRIjBw5UuIxy8r3008/4aeffpK36YQQQghR1Hc0hV1ubi5q166NgIAA9OjRQ2z/kiVL8Ouvv2Lbtm2wtbXFzJkz4e3tjaSkJJnPg1UW6kwTQgghhJDvQocOHdChQweJ+xhjWLVqFWbMmIGuXbsCALZv345q1arh4MGD6Nu379dsqtD381GEEEIIIYR8fUpcpW35+fl4+/atyPbl2hDyevjwITIzM+Hl5SUs09PTQ6NGjXDhwoWKuhrlRnemyX+SIVRkV5KCs7FTPFaV39dMen2cFQ8W8JvFhDOxUjg2N0eNV+6OHxR/AEaztTWv3DBXPF7gxe+8+Xy9am5ykl9uQ1OFQ5VdHHilVsITxYN5fiXN2dgrHmtkzit3ySXFV3ItuhbNK7egro/iuZNO88vdprniuQ/y7CSpKf432aSo/EMmP6db79sMOygvrhKnxpO0FsTs2bOlDlctS+kEDtWqVRMpr1atmtjkDl8TdaYJIYQQQkilkLQWhJoaz5sQ3xnqTBNCCCGEVGWVODWemppahXWezczMAADPnz+Hufn/viV6/vy5cPXlb4HGTH9l/v7+6NatW5n7bWxswHEcOI6DpqYm3N3dsXnzZpE6cXFxwjocx6FatWro2bMnHjx4IKyzceNGtG7dGrq6uuA4Tq7FY/z9/cFxHEaNGiW2LzAwEBzHiS2FTgghhBDyNdja2sLMzExkMbi3b9/i0qVLaNKkyTdrF3Wmv0Nz585FRkYGbt26hYEDB2L48OE4evSoWL27d+/i2bNn2Lt3L27fvg1fX18UFxcDAPLy8uDj44Off/65XLktLS0RERGBDx8+CMs+fvyIXbt2wcpK8fG08pB3ZUZCCCGEVCBOqfK2cnr//j0SEhKQkJAA4NNDhwkJCUhPTwfHcZgwYQLmzZuHqKgoJCYmYtCgQbCwsJB6o7KyUWf6O6SjowMzMzPY2dlh6tSpMDQ0RExMjFg9U1NTmJubo2XLlpg1axaSkpJw//59AMCECRMwbdo0NG7cuFy569atC0tLS0RGRgrLIiMjYWVlBU9PT5G60dHRaN68OfT19WFkZITOnTuLLCcOAE+ePEG/fv1gaGgILS0t1K9fH5cuXQLwab7sOnXqYPPmzbC1tRXOD5meno6uXbtCW1sburq68PPzw/Pnz8t1HoQQQgj597l69So8PT2FfY6goCB4enpi1qxZAIDg4GCMHTsWI0aMQIMGDfD+/XtER0d/szmmAepMf9dKSkqwf/9+vHnzBqqqqlLramhoAKiYu7sBAQEiC7Fs3boVQ4YMEauXm5uLoKAgXL16FbGxsVBSUkL37t1RUlIC4NOny1atWuHp06eIiorCjRs3EBwcLNwPAPfv38f+/fsRGRmJhIQElJSUoGvXrsjKysI///yDmJgYPHjwAH369OF9XoQQQgiRoBKnxiuv1q1bgzEmtoWHhwMAOI7D3LlzkZmZiY8fP+LEiRNwcOA3uxBf9ADid2jq1KmYMWMG8vPzUVRUBENDQwwbNqzM+hkZGVi2bBmqV68OR0dH3vkHDhyIkJAQPHr0CABw7tw5REREIC4uTqRez549RX7eunUrTExMkJSUBDc3N+zatQsvX77ElStXYGhoCACoVauWSExBQQG2b98OExMTAEBMTAwSExPx8OFDWFpaAvg0IburqyuuXLmCBg0a8D4/QgghhJCKQnemv0NTpkxBQkICTp48iUaNGmHlypVinVAAqFGjBrS0tGBhYYHc3Fzs379f5h1seZiYmKBTp04IDw9HWFgYOnXqBGNjY7F6KSkp6NevH+zs7KCrqwsbGxsAn4ZpAEBCQgI8PT2FHWlJrK2thR1pAEhOToalpaWwIw0ALi4u0NfXR3JyssRjSJoQvogVK3LqhBBCSNWjpFR5WxVAd6a/Q8bGxqhVqxZq1aqFvXv3wt3dHfXr14eLi4tIvTNnzkBXVxempqbQ0dGp0DYEBARgzJgxAIB169ZJrOPr6wtra2ts2rQJFhYWKCkpgZubm3CoSenQE2m0tLR4t1XShPBN9VzRTN+d97EJIYSQ/zyu8qbGqwqqxkeGfzFLS0v06dMHISEhYvtsbW1Rs2bNCu9IA4CPjw8KCgpQWFgIb29vsf2vX7/G3bt3MWPGDLRr1w7Ozs548+aNSB0PDw8kJCQgKytL7rzOzs54/PgxHj9+LCxLSkpCdna22IeJUiEhIcjJyRHZGulJrksIIYQQUpHozvQ3kJOTI5zypZSRkZHI0IbPjR8/Hm5ubrh69Srq168vV47MzExkZmYKZ/dITEyEjo4OrKyspA67KKWsrCwcVqGsLL5EtYGBAYyMjLBx40aYm5sjPT0d06ZNE6nTr18/LFiwAN26dcPChQthbm6O69evw8LCosz5IL28vODu7o4BAwZg1apVKCoqwujRo9GqVasyz13ShPACjt+y2oQQQkiVUUWGY1QWunrfQFxcnHDal9Lty2EKn3NxcUH79u2F08LIY8OGDfD09MTw4cMBAC1btoSnpyeioqLkPoauri50dXUl7lNSUkJERATi4+Ph5uaGiRMnYunSpSJ1VFVVcfz4cZiamqJjx45wd3fHokWLJHbOS3Ech0OHDsHAwAAtW7aEl5cX7OzssHv3brnbTQghhBDytdCd6a8sPDxcOL2LJGlpaRLLo6Ojhf8unTZGmtDQUISGhpa7bdIcPHhQ5GcvLy8kJSWJlH3ZLmtra+zbt69cbbSyssKhQ4dktpcQQgghFYDuTPNCV48QQgghhBAF0Z1pQgghhJCqTIHFVcj/0J1pQgghhBBCFER3psl/0t2Sd7zi2R3JC8TIFevYiFfu4pR0xYOL+C1Ww1ncUjj2ba46r9zpqor/OSq89Vh2JSnUzJJkVyoDy8nhlRvFir9mL19r80pt/jJD4diS+w945TYrVFE8+PULXrlZfoHiwU/T+OV++17hWOXq/Fa4LX56R+FYgUtLXrkL1k5XOPZJgSav3E7vFP8dfaLC745t4eNcXvFfDUf3Vvmgq0cIIYQQQoiC6M40IYQQQkhVRrN58EJXT0Ecx0ndQkNDkZaWJlJmaGiIVq1a4cyZMyLHCg0NlXgMJycnYZ3WrVuD4zgsWrRIrC2dOnUS5gSAwsJCTJ06Fe7u7tDS0oKFhQUGDRqEZ8+eST0nf39/cByHUaNGie0LDAwEx3Hw9/cv/8UihBBCyHeLU+IqbasKqDOtoIyMDOG2atUq6OrqipRNnjxZWPfEiRPIyMjA6dOnYWFhgc6dO+P58+cix3N1dRWJz8jIwNmzZ0XqWFpais0F/fTpU8TGxsLc3FxYlpeXh2vXrmHmzJm4du0aIiMjcffuXXTp0kXmeVlaWiIiIgIfPnwQln38+BG7du2ClZVVeS5RuRUU8BjHSAghhBDyDVBnWkFmZmbCTU9PDxzHiZRpa//vwSAjIyOYmZnBzc0NP//8M96+fYtLly6JHE8gEIjEm5mZwdjYWKRO586d8erVK5w7d05Ytm3bNrRv3x6mpqbCMj09PcTExMDPzw+Ojo5o3Lgx1q5di/j4eKSnS3+4rW7durC0tERkZKSwLDIyElZWVvD09BSpGx0djebNm0NfXx9GRkbo3LkzUlNTReo8efIE/fr1g6GhIbS0tFC/fn3huYeGhqJOnTrYvHkzbG1toa7+6QG29PR0dO3aFdra2tDV1YWfn5/Yhw9CCCGEVBBOqfK2KqBqnOV34sOHD9i+fTuAT0ttl5eqqioGDBiAsLAwYVl4eDgCAgJkxubk5IDjOOjr68usGxAQIJJj69atGDJkiFi93NxcBAUF4erVq4iNjYWSkhK6d++OkpISAMD79+/RqlUrPH36FFFRUbhx4waCg4OF+wHg/v372L9/PyIjI5GQkICSkhJ07doVWVlZ+OeffxATE4MHDx6gT58+MttNCCGEEPK10QOIX0HTpk2hpKSEvLw8MMZQr149tGvXTqROYmKiyN1sABg4cCA2bNggUhYQEIAWLVpg9erViI+PR05ODjp37ix16fCPHz9i6tSp6NevH3R1dWW2d+DAgQgJCcGjR48AAOfOnUNERATi4uJE6vXs2VPk561bt8LExARJSUlwc3PDrl278PLlS1y5cgWGhoYAgFq1aonEFBQUYPv27TAxMQEAxMTEIDExEQ8fPoSlpSUAYPv27XB1dcWVK1fQoEEDsfbm5+cjPz9fpKyYFUOZU5Z5roQQQkiVRw8g8kKd6a9g9+7dcHJywq1btxAcHIzw8HCoqIjOsero6IioqCiRMkkd39q1a8Pe3h779u3DqVOn8OOPP0IgKPtlLCwshJ+fHxhjWL9+vVztNTExQadOnRAeHg7GGDp16iQ25AQAUlJSMGvWLFy6dAmvXr0S3nFOT0+Hm5sbEhIS4OnpKexIS2JtbS3sSANAcnIyLC0thR1pAHBxcYG+vj6Sk5MldqYXLlyIOXPmiJQ56NrDSc9BrvMlhBBCCFEUdaa/AktLS9jb28Pe3h5FRUXo3r07bt26BTU1NWEdVVVVsbu2ZQkICMC6deuQlJSEy5cvl1mvtCP96NEjnDx5Uq670p/nGDNmDABg3bp1Euv4+vrC2toamzZtgoWFBUpKSuDm5iZ8kFBDQ0NmHi0tLbnbVJaQkBAEBQWJlPV3pWEhhBBCiFzozjQvdPW+sl69ekEgEOC3335T+Bj9+/dHYmIi3Nzc4OLiIrFOaUc6JSUFJ06cgJGRUbly+Pj4oKCgAIWFhfD29hbb//r1a9y9exczZsxAu3bt4OzsjDdv3ojU8fDwQEJCArKysuTO6+zsjMePH+Px4/+taJeUlITs7Owyz1VNTQ26uroiGw3xIIQQQsjXQJ3pr4zjOIwbNw6LFi1CXl6esLyoqAiZmZkiW1kzWBgYGCAjIwOxsbES9xcWFqJXr164evUqdu7cieLiYuEx5Z1+TllZGcnJyUhKSoKysnjH1MDAAEZGRti4cSPu37+PkydPit0d7tevH8zMzNCtWzecO3cODx48wP79+3HhwoUy83p5ecHd3R0DBgzAtWvXcPnyZQwaNAitWrVC/fr15Wo7IYQQQsqB4ypvqwKoM/0NDB48GIWFhVi7dq2w7Pbt2zA3NxfZrK2tyzyGvr5+mUMkSmfPePLkCerUqSNyzPPnz8vdztK7vJIoKSkhIiIC8fHxcHNzw8SJE7F06VKROqqqqjh+/DhMTU3RsWNHuLu7Y9GiRRI756U4jsOhQ4dgYGCAli1bwsvLC3Z2dti9e7fc7SaEEEJIOSgpVd5WBdCY6Qrg7+8vcWVAGxsbMMbEyjU1NUWGPoSGhkqdjQOA2EwaX0pISJCZV5YvF4T50sGDB0V+9vLyQlJSkkjZl3mtra2xb98+iccr67ytrKxw6NAhme0lhBBCCPnWqDNNCCGEEFKVVZHFVSoLXT1CCCGEEEIURHemyX/S9jYfeMUrtfJROJbT0OGVW1DbSfFgHfmnP5REyUF8Hm95eSx9xyu3W+oDhWOVHFvzys3ZuSke/IbfUvecjoHCsS4Pt/PKDS3F36tKNla8UjetcV3hWK52D165+b5mfHBvFf892d0+THYlKTwEbxWOrZ8Rzyv3h2dnFI5t83YCr9ywkm/aWUkGu/I7bxVz2VPEfheqyNjmykJXjxBCCCGEEAXRnWlCCCGEkKqM7kzzQlePEEIIIYQQBVFn+juRmZmJsWPHws7ODmpqarC0tISvr6/IwiwbN25E69atoaurC47jkJ2dLfFYhw8fRqtWraCjowNNTU00aNBA5rR3ANC6dWtwHIdFixaJ7evUqRM4jpM5hR8hhBBC/mVo0RZeqDP9HUhLS0O9evVw8uRJLF26FImJiYiOjkabNm0QGBgorJeXlwcfHx/8/PPPZR5rzZo16Nq1K5o1a4ZLly7h5s2b6Nu3L0aNGoXJkyfLbIulpaVYx/vp06eIjY2Fubm5wucoD3lXZySEEEJIBaJFW3ipGmf5nRs9ejQ4jsPly5fRs2dPODg4wNXVFUFBQbh48aKw3oQJEzBt2jQ0btxY4nEeP36MSZMmYcKECViwYAFcXFxQq1YtTJo0CUuXLsXy5ctx6dIlqW3p3LkzXr16hXPnzgnLtm3bhvbt28PU1FSk7o4dO1C/fn3o6OjAzMwM/fv3x4sXL0Tq3L59G507d4auri50dHTQokULpKamAvi02E23bt0wf/58WFhYwNHREQCQmJiItm3bQkNDA0ZGRhgxYgTev38v/wUlhBBCCPlKqDP9jWVlZSE6OhqBgYESlwfX19eX+1j79u1DYWGhxDvQI0eOhLa2Nv7880+px1BVVcWAAQMQFva/KZjCw8MREBAgVrewsBC//PILbty4gYMHDyItLU1kJcinT5+iZcuWUFNTw8mTJxEfH4+AgAAUFRUJ68TGxuLu3buIiYnB4cOHkZubC29vbxgYGODKlSvYu3cvTpw4gTFjxsh9HQghhBBSDnRnmheazeMbu3//PhhjcHLiMbfw/7t37x709PQkDsdQVVWFnZ0d7t27J/M4AQEBaNGiBVavXo34+Hjk5OSgc+fOYuOlP+9g29nZ4ddff0WDBg3w/v17aGtrY926ddDT00NERARUVFQAAA4ODiLH0NLSwubNm6GqqgoA2LRpEz5+/Ijt27cLP1ysXbsWvr6+WLx4MapVqybW3vz8fOTn54uWFZdATblq/BITQggh5Nuh3sY3xhj7qvlKO63S1K5dG/b29ti3bx+2bt2KH3/8EQKB+Oeu+Ph4+Pr6wsrKCjo6OmjVqhUAID09HQCQkJCAFi1aCDvSkri7u4u0KTk5GbVr1xa5S9+sWTOUlJTg7t27Eo+xcOFC6OnpiWwrEtNknichhBBC8Gk58craqoCqcZbfMXt7e3Achzt37lTIsXJycvDs2TOxfQUFBUhNTRW7M1yWgIAArFu3Dvv27ZM4xKN0OIauri527tyJK1eu4MCBA8JcAKChIXvlJ0lDW8orJCQEOTk5IluQuw3v4xJCCCGEyEKd6W/M0NAQ3t7eWLduHXJzc8X2lzX9nSS9evWCQCDA8uXLxfZt2LABeXl5GDRokFzH6t+/PxITE+Hm5gYXFxex/Xfu3MHr16+xaNEitGjRAk5OTmIPH3p4eODMmTMoLCyU+xycnZ1x48YNkWtx7tw5KCkpCR9Q/JKamhp0dXVFNhriQQghhMiJxkzzUjXO8ju3bt06FBcXo2HDhti/fz9SUlKQnJyMX3/9FU2aNBHWy8zMREJCAu7fvw/g06wXCQkJyMrKAgBYWVlhyZIlWLVqFaZPn447d+4gNTUVK1asQHBwMObNmwc3Nze52mRgYICMjAyRea4/Z2VlBVVVVaxZswYPHjxAVFQUfvnlF5E6Y8aMwdu3b9G3b19cvXoVKSkp2LFjR5nDNQBgwIABUFdXx+DBg3Hr1i2cOnUKY8eOxY8//ihxvDQhhBBCyLdEnenvgJ2dHa5du4Y2bdpg0qRJcHNzww8//IDY2FisX79eWG/Dhg3w9PTE8OHDAQAtW7aEp6cnoqKihHUmTpyIyMhInDlzBvXr1xdOjRceHi51fmpJ9PX1yxyGYWJigvDwcOzduxcuLi5YtGgRli1bJlLHyMgIJ0+exPv379GqVSvUq1cPmzZtkjqGWlNTE8eOHUNWVhYaNGiAXr16oV27dli7dm252k4IIYQQOdGYaV449rWfgCNfVVZWFtq1awddXV0cPXoUmpqa37pJX0XO4Ha84tV+GqFwrJK5Pa/cxSd2KR6so8srt5J7C4VjS66d5JW7JPWBwrFKjvI9C1AWzk6+b2wkYW+e88utY6BwbOGO7bxyC3x4/J68zOSV+9WG6wrHmvw2mlduvq8Zr9y3FD/vfcs/8MrtIXircGz9jHheuT88O6NwbP6CCbxyK/v4KBybu3I3r9xq1rKfHSqLzoZoXrnL48PhFZV2bI3OQZV27O9F1fjIUIUZGhrixIkTaNeuHS5cuPCtm0MIIYQQ8p9C80xXAUZGRpg1a9a3bgYhhBBCvkdVZDhGZaHONPlPenxG8a/WAKDmEPGZVeTGSnjlhp3iC/iU/CP5gVF5Kbk2Uzx3yn1euVFczC+eB/bhHY9gfq83e/dG4di85DxeuXV9Zc87X6ZqFrxy30t/rHCsyUd+583pGikcy+u9AoAzUHxYT4IKv9zmH/j9XeSjKP5vhWPVfl7FL/etOIVjiz/ySo2Cx/yG5pB/B+pME0IIIYRUZVVkCrvKQlePEEIIIYQQBVFnmvDCcZxw09LSgr29Pfz9/REfL/7kN2MMGzduRKNGjaCtrQ19fX3Ur18fq1atQl7ep69tb9++jZ49e8LGxgYcx2HVqlVf+YwIIYSQKoYWbeGlapwlqVRhYWHIyMjA7du3sW7dOrx//x6NGjXC9u2i03b9+OOPmDBhArp27YpTp04hISEBM2fOxKFDh3D8+HEAQF5eHuzs7LBo0SKYmZl9i9MhhBBCyDcQGhoqcpOO4zg4OSn+HNHXQmOmiUwlJSVYtmwZNm7ciMePH6NatWoYOXIkpk+fDuDT4i6lHV8bGxu0b98egwcPxpgxY+Dr6wsDAwPs2bMHO3fuxMGDB9G1a1fhsW1sbNClSxe8fftp/tMGDRqgQYMGAIBp06Z95TMlhBBCqqDvaDYPV1dXnDhxQvizQPD9d1W/n6tHvlshISFYtGgRZs6ciaSkJOzatUvm0t4TJ07Eu3fvEBMTAwDYuXMnHB0dRTrSpTiOg56eXqW0nRBCCCEyfEfDPAQCAczMzISbsbFxJZxwxfr+u/vkm3r37h1Wr16NtWvXYvDgwQCAmjVronnz5lLjSr+WSUtLAwCkpKTA0dGxUtqYn5+P/Px8kbICVgxVTrlS8hFCCCFEPpL+j1ZTU4OamprE+ikpKbCwsIC6ujqaNGmChQsXwsrK6ms0VWF0Z5pIlZycjPz8fLRrV75lh0tXqec4TuTnyrBw4ULo6emJbJuzUystHyGEEPKfwilV2ibp/+iFCxdKbEajRo0QHh6O6OhorF+/Hg8fPkSLFi3w7h2/OdYrG92ZJlJpaCg2yX9ycjIAwNbWFgDg4OCAO3fuVFi7PhcSEoKgoCCRsvu1+1RKLkIIIYTIT9L/0WXdle7QoYPw3x4eHmjUqBGsra2xZ88eDB06tFLbyQfdmSZS2dvbQ0NDA7Gx5VtZb9WqVdDV1YWXlxcAoH///rh37x4OHTokVpcxhpycHIXbqKamBl1dXZGNhngQQgghcqrEMdOS/o8uqzP9JX19fTg4OOD+fZ4r7FYy6kwTqdTV1TF16lQEBwdj+/btSE1NxcWLF7FlyxZhnezsbGRmZuLRo0eIiYlBr169sGvXLqxfvx76+voAAD8/P/Tp0wf9+vXDggULcPXqVTx69AiHDx+Gl5cXTp06BQAoKChAQkICEhISUFBQgKdPnyIhIeG7/0UihBBCSMV6//49UlNTYW5u/q2bIhUN8yAyzZw5EwKBALNmzcKzZ89gbm6OUaNGCfcPGTIEwKeOd/Xq1dG8eXNcvnwZdevWFdbhOA67du3Cxo0bsXXrVsyfPx8CgQD29vYYNGgQvL29AQDPnj2Dp6enMG7ZsmVYtmwZWrVqhbi4uK9zwoQQQkhV8p1MjTd58mT4+vrC2toaz549w+zZs6GsrIx+/fp966ZJRZ1pIpOSkhKmT58unFf6c+V5sFBJSQmjRo0S6Yh/ycbGplIfViSEEELI9+nJkyfo168fXr9+DRMTEzRv3hwXL16EiYnJt26aVNSZJoQQQgipyr6TZb8jIiK+dRMUQp1pQgghhJAqjKOH9nmhzjT5T1JRLeYVzymrVFBLFMgtkO8p5+8OzzsbJa8Un9FFqbCAV27wieebu7hI4dC8LFVeqXU/5ikezPP1firg8TvG9y4a39eMD3XFphsFgHTG4/UC8EJZl1c8Lzzeax+mjuSVWmPx7wrH5mX9ySu34H2JwrFGvDKTr4k604QQQgghVdl3Mszj34quHiGEEEIIIQqiO9OEEEIIIVUZ3Znmha4eEfL39wfHceA4DioqKqhWrRp++OEHbN26FSUlouO+rl+/jt69e6NatWpQV1eHvb09hg8fjnv37gEAbty4gX79+sHS0hIaGhpwdnbG6tWrJebdtm0bmjdvDgAIDQ2Fk5MTtLS0YGBgAC8vL1y6dKlyT5wQQgghREHUmSYifHx8kJGRgbS0NBw9ehRt2rTB+PHj0blzZxQVfXpQ6vDhw2jcuDHy8/Oxc+dOJCcn448//oCenh5mzpwJAIiPj4epqSn++OMP3L59G9OnT0dISAjWrl0rlvPQoUPo0qULAMDBwQFr165FYmIizp49CxsbG7Rv3x4vX778eheBEEIIqUo4pcrbqgAa5kFEqKmpwczMDABQvXp11K1bF40bN0a7du0QHh6O/v37Y8iQIejYsSMOHDggjLO1tUWjRo2QnZ0NAAgICBA5rp2dHS5cuIDIyEiMGTNGWP7x40ccP34cCxYsAAD0799fJG7FihXYsmULbt68iXbt2lXGKRNCCCGEKIw600Smtm3bonbt2oiMjISRkRFevXqF4OBgiXX19fXLPE5OTg4MDQ1FymJjY1G9enU4OTmJ1S8oKMDGjRuhp6eH2rVr8zoHQgghhJSBxkzzQp1pIhcnJyfcvHkTKSkpwp/L4/z589i9ezeOHDkiUv75EI9Shw8fRt++fZGXlwdzc3PExMTA2Ni4zGPn5+cjPz9fpKygpASq9MeBEEIIka2KDMeoLHT1iFwYY+A4DoyxcsfeunULXbt2xezZs9G+fXuRY/71119inek2bdogISEB58+fh4+PD/z8/PDixYsyj79w4ULo6emJbL9npZa7nYQQQggh5UWdaSKX5ORk2NrawsHBAQBw584dueKSkpLQrl07jBgxAjNmzBDZd/nyZRQVFaFp06Yi5VpaWqhVqxYaN26MLVu2QCAQYMuWLWXmCAkJQU5Ojsg20rBmOc+QEEIIqaKUlCtvqwKoM01kOnnyJBITE9GzZ0+0b98exsbGWLJkicS6pQ8gAsDt27fRpk0bDB48GPPnzxere+jQIXTq1AnKytJ/2UpKSsSGcXxOTU0Nurq6IhsN8SCEEELI10BjpomI/Px8ZGZmori4GM+fP0d0dDQWLlyIzp07Y9CgQVBWVsbmzZvRu3dvdOnSBePGjUOtWrXw6tUr7NmzB+np6YiIiMCtW7fQtm1beHt7IygoCJmZmQAAZWVlmJiYAACioqIwd+5cYe7c3FzMnz8fXbp0gbm5OV69eoV169bh6dOn6N279ze5HoQQQsh/Ho2Z5oU600REdHQ0zM3NIRAIYGBggNq1a+PXX3/F4MGDofT/d3u7du2K8+fPY+HChejfvz/evn0LS0tLtG3bFvPmzQMA7Nu3Dy9fvsQff/yBP/74Q3h8a2trpKWlITU1Fffv34e3t7dwn7KyMu7cuYNt27bh1atXMDIyQoMGDXDmzBm4urp+3QtBCCGEECIH6kwTofDwcISHh8tVt379+ti/f3+Z+0NDQxEaGlrm/kOHDqFt27bQ0tISlqmrqyMyMlLe5hJCCCGkItDQSF7o6pFvokaNGggJCfnWzSCEEEII4YXuTJNvws/P71s3gRBCCCEAjZnmiTrT5D+J48o/H/bnWFHZs4dUNvb+jeLBJfzOG8VFCoey3A+8UivbWCgerKklu440KqqKxzJNfrmVFf8zrGtVwC+3lq7isTzeKwDgjFxe8d9M3nte4SwnW+HYfFbCK7dAgXUCKoyGtsKhnIYKr9TFyecUjq0R+zuv3Lnjh/GK/1o4rmpMYVdZ6KMIIYQQQgghCqI704QQQgghVRk9gMgLXb1/uczMTIwdOxZ2dnZQU1ODpaUlfH19ERsbK1Lv+vXr6N27N6pVqwZ1dXXY29tj+PDhuHfvHgAgLS0NHMcJN0NDQ7Rq1QpnzpwROU7r1q1F6pVunTp1KrON4eHhwnrKysowMDBAo0aNMHfuXOTk5Ch8ToQQQggh3xp1pv/F0tLSUK9ePZw8eRJLly5FYmIioqOj0aZNGwQGBgrrHT58GI0bN0Z+fj527tyJ5ORk/PHHH9DT08PMmTNFjnnixAlkZGTg9OnTsLCwQOfOnfH8+XPh/sjISGRkZAi3W7duQVlZWeaiKrq6usjIyMCTJ09w/vx5jBgxAtu3b0edOnXw7Nmzcp8TIYQQQioIp1R5WxVAwzz+xUaPHg2O43D58mWR+ZpdXV0REBAAAMjLy8OQIUPQsWNHHDhwQFjH1tYWjRo1Eln+GwCMjIxgZmYGMzMz/Pzzz4iIiMClS5fQpUsXAIChoaFI/YiICGhqasrsTHMcBzMzMwCAubk5nJ2d4evrC1dXVwQHBwsXdpHnnAghhBBCvhdV4yPDf1BWVhaio6MRGBgo0ukspa+vDwA4duwYXr16heDgYInHKa33pQ8fPmD79u0AAFXVsmc62LJlC/r27SuxDbKYmppiwIABiIqKQnFxsdznRAghhJAKpKRUeVsVQHem/6Xu378PxhicnJyk1ktJSQEAmfVKNW3aFEpKSsjLywNjDPXq1UO7du0k1r18+TJu3bqFLVu2lK/xn3FycsK7d+/w+vVrpKWlyXVOX8rPz0d+vuhUdgUlJVCtIr/EhBBCCPl2qLfxL8XknC9U3nqldu/ejevXr2P//v2oVasWwsPDoaIieY7PLVu2wN3dHQ0bNixXDknt4ziu3G0ttXDhQujp6Ylsv79+oHCbCCGEkCqFxkzzQnem/6Xs7e3BcRzu3LkjtZ6DgwMA4M6dO2jSpInM41paWsLe3h729vYoKipC9+7dcevWLaipqYnUy83NRUREBObOnav4SQBITk6Grq4ujIyMoKysLNc5fSkkJARBQUEiZekNevFqFyGEEFJlKNGiLXxUjY8M/0GGhobw9vbGunXrkJsrvpJY6YOF7du3h7GxMZYsWSLxOF8+gPi5Xr16QSAQ4LfffhPbt3fvXuTn52PgwIEKtR8AXrx4gV27dqFbt25QUlKS+5y+pKamBl1dXZGNhngQQggh5GugHse/2Lp161BcXIyGDRti//79SElJQXJyMn799VfhXWgtLS1s3rwZR44cQZcuXXDixAmkpaXh6tWrCA4OxqhRo8o8PsdxGDduHBYtWoS8vDyRfVu2bEG3bt1gZGQkV1sZY8jMzERGRgaSk5OxdetWNG3aFHp6eli0aFG5zokQQgghFYiGefBSNc7yP8rOzg7Xrl1DmzZtMGnSJLi5ueGHH35AbGws1q9fL6zXtWtXnD9/HioqKujfvz+cnJzQr18/5OTkYN68eVJzDB48GIWFhVi7dq2w7O7duzh79iyGDh0qd1vfvn0Lc3NzVK9eHU2aNMHvv/+OwYMH4/r16zA3Ny/3ORFCCCGEfA9ozPS/nLm5OdauXSvS2ZWkfv362L9/f5n7bWxsJD4AqKmpiaysLJEyR0fHcj0s6O/vD39/f7nry3tOhBBCCKkANDSSF7p6hBBCCCGEKIjuTBNCCCGEVGFcFRnbXFmoM03+k0zcPvI7AJ8/LHz/KL14pnCokqM9v9w8vupTqmnNL3dhIb94HjgtfYVjWUmW7ErScquoya5UBlVLTV65UcDj9yT3Ha/Uujo8cquq88rNcl4qHqypzS/3m2yFY3sU6/PKXUfvtcKxKtn8ugucrnwPq0uiZMDzmhcr/rcld6z8zwZJorVG8UXNyL8HdaYJIYQQQqoyGjPNC109QgghhBBCFESdaVKpWrduDY7jwHEc1NTUUL16dfj6+iIyMlJi/VOnTqFjx44wMjKCpqYmXFxcMGnSJDx9+vQrt5wQQgipImieaV6qxlmSb2r48OHIyMhAamoq9u/fDxcXF/Tt2xcjRowQqff777/Dy8sLZmZm2L9/P5KSkrBhwwbk5ORg+fLl36j1hBBCyH+cknLlbVUAjZkmvLRu3Rpubm4AgB07dkBFRQU//fQT5s6dC47jAHyaq9rMzAwAUKNGDTRu3BhOTk4ICAiAn58fvLy88OTJE4wbNw7jxo3DypUrhce3sbFBy5YtpS57TgghhBDyrdCdacLbtm3bIBAIcPnyZaxevRorVqzA5s2bpcYMHjwYBgYGwuEee/fuRUFBAYKDgyXW19fXr+hmE0IIIQSgYR480Z1pwpulpSVWrlwJjuPg6OiIxMRErFy5EsOHDy8zRklJCQ4ODkhLSwMApKSkQFdXV2RpcUIIIYSQ713V+MhAKlXjxo2FQzoAoEmTJkhJSUFxcbHUOMaYMO7zf5dXfn4+3r59K7LlF5codCxCCCGkylFSqrytCqgaZ0m+O8XFxUhJSYGtrS0AwMHBATk5OcjIyCj3sRYuXAg9PT2RbeWd9IpuMiGEEEKIGOpME94uXbok8vPFixdhb28PZeWyn+Ldtm0b3rx5g549ewIAevXqBVVVVSxZskRifWkPIIaEhCAnJ0dkm+hkVf4TIYQQQqogjlOqtK0qoDHThLf09HQEBQVh5MiRuHbtGtasWSMylV1eXh4yMzNRVFSEJ0+e4MCBA1i5ciV++ukntGnTBsD/xl2PGTMGb9++xaBBg2BjY4MnT55g+/bt0NbWLnN6PDU1NaipiS7JXKxcNX6BCSGEEPJtUWea8DZo0CB8+PABDRs2hLKyMsaPHy8yh/SmTZuwadMmqKqqwsjICPXq1cPu3bvRvXt3keOMHj0aDg4OWLZsGbp3744PHz7AxsYGnTt3RlBQ0Nc+LUIIIaRqqCJjmysLdaYJbyoqKli1ahXWr18vti8uLq5cx/Ly8oKXl1cFtYwQQgghMn1nwzHWrVuHpUuXIjMzE7Vr18aaNWvQsGHDb92sMn1fV48QQgghhFRZu3fvRlBQEGbPno1r166hdu3a8Pb2xosXL75108pEnWlCCCGEkKrsO1pOfMWKFRg+fDiGDBkCFxcXbNiwAZqamti6dWslnHjFoGEehJfyDuMghBBCSNWRn5+P/Px8kTJJEwcAQEFBAeLj4xESEiIsU1JSgpeXFy5cuFDpbVUYI6SK+fjxI5s9ezb7+PHjV42l3JSbclNuyk25KyL3v8ns2bMZAJFt9uzZEus+ffqUAWDnz58XKZ8yZQpr2LDhV2itYqgzTaqcnJwcBoDl5OR81VjKTbkpN+Wm3JS7InL/m3z8+JHl5OSIbGV9iPi3dqZpmAchhBBCCKkUZQ3pkMTY2BjKysp4/vy5SPnz589hZmZWGc2rEPQAIiGEEEII+eZUVVVRr149xMbGCstKSkoQGxuLJk2afMOWSUd3pgkhhBBCyHchKCgIgwcPRv369dGwYUOsWrUKubm5GDJkyLduWpmoM02qHDU1NcyePVvur50qKpZyU27KTbkpN+WuiNz/ZX369MHLly8xa9YsZGZmok6dOoiOjka1atW+ddPKxDHG2LduBCGEEEIIIf9GNGaaEEIIIYQQBVFnmhBCCCGEEAVRZ5oQQgghhBAFUWeaEEIIIYQQBdFsHoSQSvf27VucPHkSjo6OcHZ2/ur5s7Ozoa+v/9Xzfs3z/vDhAxhj0NTUBAA8evQIBw4cgIuLC9q3b1+uYxUXFyMxMRHW1tYwMDBQqD3f6pp/C/Hx8UhOTgYAuLi4oG7duuWKL50HgOO4Cm+bNHzbzTf+5cuXuHv3LgDA0dERJiYm5Yon5LvxbRdgJOT7Fh4ezg4fPiz8ecqUKUxPT481adKEpaWlfcOWyefNmzds2bJlbOjQoWzo0KFsxYoVLDs7u9Lz9u7dm61Zs4YxxlheXh6zt7dnKioqTCAQsH379kmNPXr0KDtz5ozw57Vr17LatWuzfv36saysLJm5Fy1axCIiIkTaoqSkxCwsLFhCQkKl5uZz3nzfaz/88ANbv349Y+zT616tWjVWo0YNpq6uzn777TepsePHj2ebN29mjDFWVFTEmjVrxjiOY1paWuzUqVMyc/O55nzP+8iRIyw6OlqsPDo6mv39999SY/m+3s+fP2dt2rRhHMcxAwMDZmBgwDiOY23btmUvXryQGb9t2zbm5ubG1NTUmJqaGnN3d2fbt2+XGVcqLi6Ode7cmdWsWZPVrFmT+fr6stOnT1d6u/nGv3//ng0ZMoQJBALGcRzjOI4JBAIWEBDAcnNz5Tr3ryk2NpY5OztLXPo7Ozububi4yHXdyX8XdaZJlXH//n02ffp01rdvX/b8+XPGGGN///03u3XrVpkxDg4OLDY2ljHG2Pnz55mmpib7/fffma+vL+vevbtC7SgqKmLXr1+X6z/rUm/evGGbNm1i06ZNY69fv2aMMRYfH8+ePHlSZsyVK1eYoaEhq169OuvevTvr3r07q1GjBjMyMmLx8fEKtV1e1apVE3aidu7cyWrVqsVyc3PZb7/9xurUqSM11s3NjR05coQxxtjNmzeZmpoaCwkJYY0bN2b+/v4yc9vY2LBz584xxhg7fvw409fXZ8eOHWNDhw5lP/zwQ6Xm5nPefN9rRkZGwvfypk2bmIeHBysuLmZ79uxhTk5OUmOrV6/Orly5whhj7MCBA8zCwoLdvXuXzZgxgzVt2lRmbj7XnO95u7u7C1+zzx09epR5eHhIjeX7evv5+bH69euzpKQkYdnt27dZ/fr1Wd++faXGLl++nGlqarLg4GB26NAhdujQITZlyhSmqanJVqxYITP3jh07mEAgYH5+fmz16tVs9erVzM/Pj6moqLCdO3dWWrsrIn7EiBHMzs6O/f333ywnJ4fl5OSwI0eOsJo1a7JRo0bJjC/L/fv3WZs2bRSOL4uvr6/U12T16tWsW7duFZ6X/HtQZ5pUCXFxcUxDQ4N5eXkxVVVVlpqayhhjbOHChaxnz55lxmloaLBHjx4xxhgLDg5mP/74I2OMsVu3bjFjY2O5cvO963fjxg1mYmLCatWqxQQCgbDt06dPF7ZHkubNmzN/f39WWFgoLCssLGSDBw9mLVq0KDNu4sSJcm9lUVdXZ+np6Ywxxn788Uc2depUxhhjjx49YlpaWlLPV0tLiz18+JAxxtjs2bOFr098fDyrVq2a1Ngvc48bN46NGDGCMcbY3bt3mb6+/lfLXd7z5vte+zy+d+/eLDQ0lDHGWHp6OtPQ0JAaq6amxh4/fswYY2z48OFs/PjxjDHGHjx4wHR0dGTm5nPN+Z63urq68DX73MOHD5mmpqbUWL6vt66uLrt8+bJY+aVLl5ienp7UWBsbG7Zt2zax8vDwcGZjYyMzt5OTk8QO3vLly2V+eOLT7oqINzIykvi37+TJk3L/XZUkISGBKSkpSa3z6tUrdvLkSeFNiZcvX7JFixaxOXPmiHw4+JyVlVWZ+xhjLDk5mVlaWkrN+/TpUzZp0qQy725PnjyZZWZmSj0G+X7RmGlSJUybNg3z5s1DUFAQdHR0hOVt27bF2rVry4zT1tbG69evYWVlhePHjyMoKAgAoK6ujg8fPsiVe9++fRg4cCAA4K+//sLDhw9x584d7NixA9OnT8e5c+ekxgcFBcHf3x9LliwRaXvHjh3Rv3//MuOuXr2KTZs2QSD436+5QCBAcHAw6tevX2bc9evX5TovaeM7LS0tceHCBRgaGiI6OhoREREAgDdv3kBdXV3qcVVVVZGXlwcAOHHiBAYNGgQAMDQ0xNu3b2W2y8DAAI8fP4alpSWio6Mxb948AJ/GpRYXF1dqbj7nzfe9VqtWLRw8eBDdu3fHsWPHMHHiRADAixcvoKurKzW2WrVqSEpKgrm5OaKjo7F+/XoAQF5eHpSVlWXm5nPN+Z63np4eHjx4ABsbG5Hy+/fvQ0tLS2os39e7pKQEKioqYuUqKiooKSmRGpuRkYGmTZuKlTdt2hQZGRkycz948AC+vr5i5V26dMHPP/8sNZZPuysiPi8vT+JqdqampsLXQ5Jff/1V6nGfPn0qdf/ly5fRvn17vH37Fvr6+oiJiUHv3r0hEAhQUlKCRYsW4ezZs2Jjv58/fy7xfEsJBAK8fPlSau4VK1bg7du3En8X9fT08O7dO6xYsQKLFy+WehzynfrWvXlCvgYtLS324MEDxhhj2trawru7Dx8+ZGpqamXG9e/fn9WtW5cNHTqUaWpqslevXjHGGDt06BBzdXWVKzffu366urrs/v37Ym1PS0uT2nZTU1N27NgxsfLo6GhmamoqV9sVtW7dOiYQCJi+vj6rXbs2Ky4uZowx9uuvv7LWrVtLjfX19WXe3t5s7ty5TEVFRTiU5dixY8ze3l5m7sDAQGZtbc28vLyYkZERe/fuHWOMsT///JN5enpWam4+5833vbZ3716moqLClJSURIZWLFiwgPn4+EiNnT17NtPT02NOTk7MysqKffz4kTHG2JYtW1jjxo1l5uZzzfme94gRI5i7u7vwd4QxxlJSUpiHhwcbOnSo1Fi+r3eXLl1Yy5Yt2dOnT4VlT548Ya1atZL5tb+rqyubP3++WPkvv/zC3NzcZOauWbMm27Bhg1j5+vXrWa1atSqt3RUR37ZtW9a7d2/24cMHYVleXh7r3bs3a9euXZlxHMcxCwsLZmNjI3GzsLCQemfay8uLDRs2jL19+5YtXbqU1ahRgw0bNky4f8iQIRLbb2dnxw4cOFDmcffv389sbW2lnrOrq6vI+PwvnTt3jrm4uEg9Bvl+UWeaVAnVq1cXjun8vEMaGRnJ7Ozsyox78+YNCwwMZF26dGFHjx4Vls+aNYvNmzdPrtxWVlbs2LFjrKioiFlaWgoftrp165bMr8AZY8zExIRdu3ZNrO3Hjx9nNWrUKDNu7NixrEaNGiwiIoKlp6ez9PR09ueff7IaNWoIO/SV6cqVKywyMlLYsWKMscOHD7OzZ89KjXv06BHr1KkT8/DwEA6PYYyxCRMmsLFjx8rMW1BQwJYuXcrGjRsnvG6MMbZixQq2adOmSs3NmOLnXRHvtYyMDHbt2jVhJ56xT1+9Jycny4zdu3cvW7FihfCDH2OfhhwcPHhQZiyfa873vLOzs1njxo2ZQCAQdqoEAgFr06YNe/PmjdRYvq93eno6q1OnDlNRUWF2dnbMzs6OqaioME9PT5HrKMm+ffuYsrKysDM/d+5c5u3tzQQCAYuMjJSZ+7fffmOqqqps1KhRbPv27Wz79u1s5MiRTE1NTWInu6LaXRHxN2/eZBYWFszIyIi1bduWtW3blhkZGbHq1atLfYbFxsaG7d69u8z9169fl9qZNjAwEA7XKCgoYEpKSuzSpUvC/fHx8ax69epicWPGjGFubm4inf9SeXl5zM3NTeb7RVNTUzicSZJHjx7JHJZEvl8cY/8/Jw8h/2GTJ0/GpUuXsHfvXjg4OODatWt4/vw5Bg0ahEGDBmH27NmVljs0NBSrVq2Cubk58vLycO/ePaipqWHr1q3YtGkTLly4IDV+2LBheP36Nfbs2QNDQ0PcvHkTysrK6NatG1q2bIlVq1ZJjCsoKMCUKVOwYcMGFBUVAfj0NexPP/2ERYsWQU1NTa72X716FXv27EF6ejoKCgpE9kVGRsp1DEIqE2MMMTExuHHjBjQ0NODh4YGWLVt+tdwnTpzAnTt3AADOzs7w8vKSK/batWtYsWKFcHo5Z2dnTJo0CZ6ennLFHzhwAMuXLxeJnzJlCrp27Vqp7a6I+Ly8POzcuVMkfsCAAdDQ0CgzplevXqhZs2aZQyFu3LgBT0/PMoeaaGtr49atW8IhQTo6Orhx4wbs7OwAAOnp6XB0dBQbXvT8+XPUrVsXysrKGDNmDBwdHQEAd+7cwbp161BcXIxr165JHLpSytjYGJGRkWW+L0+fPo0ePXrg1atXZR6DfL+oM02qhIKCAgQGBiI8PBzFxcUQCAQoLi5G//79ER4eLjIu9ObNm3If18PDQ656+/btw+PHj9G7d2/UqFEDALBt2zbo6+vL/I8vJycHvXr1wtWrV/Hu3TtYWFggMzMTTZo0wd9//y1zXGheXh5SU1MBADVr1hTOQyyPiIgIDBo0CN7e3jh+/Djat2+Pe/fu4fnz5+jevTvCwsKEdUvHuspjxYoVIj/LMz61lKQxh1FRUXLHd+nSpUJz8zlvvu+1Hj16yB3/5QcfWeNPPzdu3DixMj7XvDJ+x+TF9/UuVVhYCA0NDSQkJMDNza1cbSgsLMTIkSMxc+ZM2NralisWAIqKirBgwQIEBAQI/56UJ7ei7a6oeCcnJxw+fLjcc68nJSUhLy+vzGc+CgsL8ezZM1hbW0vc7+zsjHXr1qFt27YAgCNHjqBt27bCDvylS5fQq1cvPH78WCz20aNH+Omnn3Ds2DGRecG9vb2xbt06ma9jp06dYGFhgU2bNkncP2zYMDx79gx///231OOQ7xN1pkmV8vjxYyQmJuL9+/fw9PSEvb29WB0lJSVwHIeyfjVK93EcJ/PhKgDYvn07+vTpI3YnuKCgQNhZlce5c+dw48YNvH//HnXr1i3XXSBFeXh4YOTIkQgMDBTexbG1tcXIkSNhbm6OOXPmCOu2adNGrmNyHIeTJ0+KlJVec2mkXXMlJfkWc5UUzzd3RZy3ou+1IUOGyJUbgMgHHwByd+I4jsODBw/EyivimlfU71hubi7++ecfid+efPlBgO/r/Tk7OzscOHAAtWvXltnGL+np6SEhIUGhzjQgfpe1PPi0uyLiq1evjhMnTnz1BZzmzJkDR0dH9O3bV+L+6dOn486dO9i/f3+Zx3jz5g3u378Pxhjs7e3lXtTo1KlT+OGHHzBhwgRMmTJFeBf7+fPnWLJkCVavXo3jx48LO/rk34U606RKmDt3LiZPnix2V/bDhw9YunQpZs2aJSx79OiR3Mct6w7I55SVlZGRkQFTU1OR8tevX8PU1FTmf9jl6YzzuVMpiZaWFm7fvg0bGxsYGRkhLi4O7u7uSE5ORtu2beWadUAe//zzj9x1W7VqVSE5v4fcFf1e+7eoyPO+fv06OnbsiLy8POTm5sLQ0BCvXr2CpqYmTE1NxT4IVOTrvWXLFkRGRmLHjh0wNDSU+7gAMHjwYNSpU0c460p5de3aFT169MDgwYPLHcun3RURv2DBAty7dw+bN28WmW1Ilg8fPiAmJgZt2rQRmdkI+PSNQ1xcHLy9veUewval0tlrpMUzxvD69WtwHAcjI6NyHf/333/H+PHjUVhYCF1dXXAch5ycHKioqGDlypX46aefFGo3+faoM02qBL4dWj6UlJTw/PlzsaVyb9y4gTZt2iArK0tqfHna/vmdSsYYDhw4AD09PeHXovHx8cjOzkaPHj3E7lRKUqNGDRw9ehTu7u7w8PBASEgI+vXrhwsXLsDHxwc5OTkyj0FIZWrdujUcHBywYcMG6Onp4caNG1BRUcHAgQMxfvz4cn3ALC9PT0/cv38fhYWFsLa2Fhtyde3atTJj582bh+XLl6Ndu3aoV6+eWKykoTWf27BhA+bMmYMBAwZIjP9yaE1Ftbsi4rt3747Y2Fhoa2vD3d1dLL6sD/qrV69GVFQUYmNjJe738vJC9+7dERgYKHF/y5Yt0bVrV/j6+sLBwUFqG7+UmZmJ4OBgREVF4d27dwA+DQPq3r07Fi5cKHW89OeePn2KPXv2CO9uOzg4oFevXuUerkO+LzTPNKkSSr+2/dKNGzfE7qzwGQv6OU9PT3AcB47j0K5dO5E7MMXFxXj48CF8fHwUbvuTJ0+gp6cnUvZ5B3nq1Knw8/PDhg0bhGPCi4uLMXr0aJnzDpdq2bIlYmJi4O7ujt69e2P8+PE4efIkYmJi0K5dO5G6fO6K8x1Dy2f877cct8z3vVb6HpPHlx0cPmO9AX7XvKJ+xwAgISEBv//+O5SUlKCsrIz8/HzY2dlhyZIlGDx4sNjrU5Hjtbt16yb3sb60ZcsW6OvrIz4+HvHx8SL7OI6T2ZkePXo0AMmvjawhKnzaXRHx+vr66NmzZ7njdu7ciZkzZ5a5f8KECZg7d26Znelhw4bh0KFDCA0NRY0aNdClSxd06dIFTZs2lfp79PbtWzRt2hTv37/HkCFD4OTkBMYYkpKS8Oeff+Ls2bO4du0atLW1ZZ5D9erVFf42gny/6M40+U8zMDAQfpVW+rVaqeLiYrx//x6jRo3CunXrhOV8xoJ+rnQ88Zw5czBp0iSRP7SqqqqwsbFBz549oaqqKjG+tKN048YNuLq6ltkZ37Nnj8R4ExMTnD17Vvjkeam7d++iadOmeP36tcxzzMrKwsePH2FhYYGSkhIsWbIE58+fh729PWbMmCEyXpDP+F1ZY2hLlXXN+Yz/5Zub73nLo6zcn49Zl+XLGWv4jPUG+F9zeWNlfWtkYmIifE86ODhgzZo18Pb2xp07d1CvXj3k5uaK5ebzepNvx8DAADdu3ICVlZXE/enp6ahduzbevHkj9Tj5+fmIjY3FoUOH8Ndff6G4uBidOnVCly5d4O3tLTajyC+//ILt27fj/PnzYt8wvnjxAs2aNcOQIUNkLpYDACdPnkRkZCTS0tLAcRxsbW3Rq1evrzb7DKkc1Jkm/2nbtm0DYwwBAQFYtWqVyJ3c0g5tkyZNKr0Nffv2Lfc4Pr6dcQMDA4SHh4vNFnLo0CH4+/vL/A/na/qWY4er6rjl/4r27dvD398f/fv3x/Dhw3Hz5k2MGzcOO3bswJs3b3Dp0iWR+hX5el+5cgUlJSVo1KiRSPmlS5egrKwsdaXRb4lvu/nGP3z4EEVFRWIPgKekpEBFRaXMhyp1dHQQFxeHevXqSdwfHx+P1q1bC4dhyOvSpUuIiopCVFQUUlNT0bZtW4SEhKBZs2YAgMaNG2PkyJFlfnCWd5rTUaNGYePGjTAwMICDgwMYY0hJSUF2djZGjx6NNWvWlKvd5DtSeVNYE/L9iIuLY4WFhbyOIWnCfnmkp6eLLGRw6dIlNn78ePb777/LFR8eHi5cka48Jk6cyIyMjNjy5cvZmTNn2JkzZ9iyZcuYsbExmzhxYplxOTk5Iv+WtklTWFjIYmJi2IYNG9jbt28ZY4w9ffpUZDGTypSfn8/u3LnD+3Uvr4o4b0Xfa2/evGGbNm1i06ZNY69fv2aMfVqIonRlP1lSUlJYdHQ0y8vLY4wxVlJSUq78fK+5Iud95coVdvLkScYYY8+fP2fe3t5MR0eH1a1blyUkJCjUDnk1aNCA7d27V6x8//79rGHDhlJje/TowRYtWiRWvnjxYtarVy+ZuceOHctWr14tVr5mzRqZizLxaXdFxLds2ZKFh4eLle/YsYO1atWqzLhGjRpJvGalFixYwBo1aiQzvzT3799nK1asEDk/AwMDdufOnTJjkpOTmYGBgdTjRkZGMlVVVRYWFibye1VcXMy2bNnCVFVV2aFDh3i1nXw71JkmVULLli3Ztm3bhJ0EeRUVFbG5c+cyCwsLpqysLFx9cMaMGSIrpknTvHlztn37dsbYpxXqdHR0WJMmTZixsTGbM2eOzPhBgwaxf/75p1ztZuzTH+nFixczCwsLxnGccCnexYsXs6KiojLjlJSU2PPnzxljn5bvVVJSEttKy8uSlpbGnJycmKampsh1GzduHBs5cqTMtm/fvp01bdqUmZubs7S0NMYYYytXrpRrNb7c3FwWEBDAlJWVRXKPGTOGLVy4sFJz8zlvvu+1GzduMBMTE1arVi0mEAiE8dOnT2c//vij1NhXr16xtm3bCl/X0tghQ4awoKAgmbn5XPOK+B3jg8/rraWlJWzv5x48eMC0tbWlxhobG7ObN2+Kld+8eZOZmprKzG1hYcGuXr0qVl7WKn6f49PuiojX0dFhKSkpYuUpKSlMT0+vzLjff/+daWlpsb/++ktsX1RUFNPS0pL7JkV5KCsrs8zMzDL3Z2RkMGVlZanH8PX1ZdOmTStzf3BwMOvSpYvCbSTflnwD1wj5l/P09MTkyZNhZmaG4cOH4+LFi3LFzZ8/H+Hh4ViyZInIcAo3Nzds3rxZrmPcunULDRs2BADs2bMH7u7uOH/+PHbu3Inw8HCZ8Tk5OfDy8oK9vT0WLFiAp0+fypVXSUkJwcHBePr0KbKzs5GdnY2nT58iODhYZJGaL508eVL4UOapU6dw8uRJsa20vCzjx49H/fr18ebNG5Hxh6VP8Uuzfv16BAUFoWPHjsjOzhaOW9XX1y9ztcfPhYSE4MaNG4iLi4O6urqw3MvLC7t3767U3HzOm+97LSgoCP7+/khJSRE5744dO+L06dNSYydOnAgVFRWkp6eLTB/Zp08fREdHy8zN55pXxO+Yovi+3mpqanj+/LlYeUZGhswp396/fy9xiJaKiopcC8u8fv1a7AFk4NMME7JW0ePT7oqI5zhO4lCMnJwcqePUR4wYgW7duqFLly5wcXFB9+7d0b17dzg7O6Nbt27w9fXFiBEjpOb+7bff4OXlBT8/P7HfyVevXglXQ/wcY0zqOH95xuBfu3YN3bt3L3N/jx49xB5EJf8i37o3T8jXUlhYyPbv38+6dOnCVFRUmLOzM1u6dKnUOw41a9ZkJ06cYIwxpq2tLbwbk5yczPT19eXKq6WlxR4+fMgY+3R3ovRrykePHjF1dXW5jvHixQu2fPly5uHhwQQCAfPx8WF79+5lBQUFcsV/bYaGhsKvRT+/bg8fPmQaGhpSY52dndmBAwfEYhMTE5mRkZHM3FZWVuzChQti8SkpKUxHR6dSc/M5b77vNV1dXXb//n2x+LS0NKampiY1tlq1asIhEZ/HpqamMi0tLZm5+VxzRc+7TZs2cm3S8H29+/bty1q1asWys7OFZW/evGGtWrVivXv3lhrboEEDid9MzZ49m9WtW1dmbldXV7ZmzRqx8l9//ZU5OztXWrsrIr5z586sd+/eIt+QFRUVsZ49ezIfHx+Z8bt372Zdu3ZlLi4uzNnZmXXt2pXt3r1bZtzq1auZpqYmCwwMZAMHDmSqqqpswYIFwv2ZmZkSv3HjOI7p6+szAwMDiZu+vr7Ub+oYY0xNTY09ffq0zP1PnjyR+/8D8v2hqfFIlSEQCNCjRw/06NEDL168wMaNGzFz5kz8/PPP6NixI8aNGye2+tTTp09Rq1YtsWOVlJSgsLBQrryurq7YsGEDOnXqhJiYGPzyyy8AgGfPnsk96b+JiQmCgoIQFBSEa9euISwsDD/++CO0tbUxcOBAjB49WuxhnufPn2Py5MmIjY3FixcvxO6clHUHqCKmDispKZF4/CdPnogttvClhw8fwtPTU6xcTU1NbGYGSV6+fCk2JzfwaZU8WdPI8c3N57z5vtfU1NQk3tG8d++e2AwEX8rNzZW4zHxWVpZcD87yueaKnndcXBysra3RqVMnqKioyGyj5YNF+wAAZoZJREFUJHxf72XLlqFly5awtrYWHichIQHVqlXDjh07pMbOnDkTPXr0ED7wBgCxsbH4888/sXfvXpm5g4KCMGbMGLx8+VIkfvny5TLvqvNpd0XEL168GC1btoSjoyNatGgBADhz5gzevn0r9RuvUn5+fvDz85NZ70u///47Nm3ahP79+wMAfvrpJ3Tr1g0fPnzA3Llzy4yTZ05+WQoKCqS+TwUCgdjqneTfgzrTpMq5fPkywsLCEBERAVNTU/j7++Pp06fo3LkzRo8ejWXLlgnruri44MyZM2JP9e/bt0/if8KSLF68GN27d8fSpUsxePBg4RK8UVFRwuEf8srIyEBMTAxiYmKgrKyMjh07IjExES4uLliyZInI/KX+/v5IT0/HzJkzYW5uLvd8xHXq1OE9dVj79u2xatUqbNy4UVj3/fv3mD17Njp27Cj1uLa2tkhISBC75tHR0XItP1y/fn0cOXIEY8eOFeYGgM2bN8ucuYVvbj7nzfe91qVLF8ydO1c4VSLHcUhPT8fUqVNlzunbokULbN++XfhBj+M44VSI8kyhx+eaK3reixcvRlhYGPbu3YsBAwYgICAAbm5uMtv6Ob6vd/Xq1XHz5k3s3LkTN27cgIaGBoYMGYJ+/frJ7OD7+vri4MGDWLBgAfbt2wcNDQ14eHjgxIkTcq20GRAQgPz8fMyfP1/4utnY2GD9+vUiq6JWdLsrIt7FxQU3b97E2rVrhfGDBg3CmDFj5FpRMScnBzExMcLp5ezs7NCuXTuZ8+c/fPgQTZs2Ff7ctGlTnDx5El5eXigsLMSECRMkximyyqQkM2fOlPihFfi0+iL5F/vWt8YJ+RqeP3/Oli1bxlxdXZmqqirr2bMnO3r0qMhT1WfOnBH7SvvgwYNMT0+PLVq0iGlqarKlS5eyYcOGMVVVVXb8+HG58xcVFbGsrCyRsocPHwof9JOmoKCA7du3j3Xq1ImpqKiwevXqsfXr14vMphEZGSn2lbi2tja7fv263G0slZaWJvdWlsePHwu/ghUIBKxx48bMyMiIOTo6yjznTZs2serVq7OIiAimpaXF/vzzTzZv3jzhv2U5c+YM09bWZqNGjWLq6ups/Pjx7IcffmBaWloSH9iqyNx8zpvvey07O5t5eXkxfX19pqyszCwtLZmKigpr2bIle//+vdTYxMREZmpqynx8fJiqqirr1asXc3Z2ZtWqVRMOHZGGzzXne97nz59nw4YNY7q6uqxBgwZivxvS8H29vxcvXrz4arPkfGs7duxgenp6woeqSzd9fX0WEREhNdbS0pKdPn1arPz27dusWrVqbNCgQTKHayiqVatWrHXr1jI38u9EnWlSJaioqDAnJye2ZMkS9uLFC4l1cnJyJP4xO336NPPy8mImJiZMQ0ODNWvWjB07dqyymyxkZGTEDAwM2OjRo8vsHL9584bZ2NiIlDk7O7Nr1659hRZKVlhYyP744w82ZcoU9tNPP7FNmzbJPZvKH3/8wWrVqiX8j7J69erlmtnh/v37bNiwYaxBgwbM2dmZDRgwQOLMCZWRm895V8R77ezZs2zdunVs8eLFLCYmRu647OxsNm/ePNa7d2/WoUMHNn36dPbs2TO54/lc84o479zcXBYeHs4aNGjAtLS05O5Q8329GfvUGTt69Cg7dOiQyPa949tuvvG5ubksOTmZ3bhxQ2QrS3x8PBMIBGzw4MEsISGBffz4kX348IHFx8ezH3/8kamoqEidDrFfv35swoQJEvfdunWLmZiYVFpnWpKSkpJyTz9Jvk/UmSZVgqS7EV/T3r17We/evVmjRo2Yp6enyCbL9u3bFZp/99ixY6x9+/bChx8VxWfqML5yc3Plunv/X8tNyu/MmTNsyJAhTFtbmzVq1Kjc02Aq8nqnpqYyDw8P4ZSCpR3y0ikkpSkqKmJLly5lDRo0YNWqVRN7qE0eiv5d4dPuioh/8eIF69Spk8RpN6XF+/v7S52Du2fPnmzIkCFl7r9x4wbbunVrmfsTExNZaGiozPbztXnzZuG3pKqqqszV1ZVt2rSp0vOSykNT45EqoUaNGkhJSRErT0lJQVpaWplxV65cEVtBDfi0YtbVq1flyv3rr79iyJAhqFatGq5fv46GDRvCyMgIDx48QIcOHWTGd+nSReJ4uqysLKlTaPXp0wdxcXGoWbMmdHR0YGhoKLLJQ9GpwxYuXIitW7eKlW/duhWLFy+WmvPhw4fC10pTU1P4YJus16rU33//jWPHjomVHzt2DEePHq3U3HzOm+97bdy4cfj111/FyteuXVvmWNBSpWOPv7R3715s27ZNZm4+15zPeT979gwLFiyAg4MDevXqBUNDQ1y6dAkXL14UWxJaEr6v9/jx42Fra4sXL15AU1MTt2/fxunTp1G/fn3ExcVJjZ0zZw5WrFiBPn36ICcnB0FBQejRoweUlJQQGhoqMzefvyt82l0R8RMmTEB2djYuXboEDQ0NREdHY9u2bbC3t0dUVFSZcefOncPIkSPL3D9q1CicPXu2zP0eHh5lrmIIfJqOcfbs2TLbz8esWbMwfvx4+Pr6Yu/evdi7dy98fX0xceJEzJo1q1Jzk0r0rXvzhHwNiq64xXelL8YYc3R0ZLt27WKMiU6/NXPmTBYYGCgz3sfHh61bt06sfP369axDhw5lxoWHh0vd5KHo1GHW1tbs3LlzYuUXL14UG47yJUVfq1Lu7u7syJEjYuVHjx5lHh4elZqbz3nzfa/xWcTD3t5euIrg5+Li4piDg4PM3HyuuaLn3aFDB6aurs66dOnCDh48qNCqi3xfbyMjI+GwBF1dXeG0iLGxsaxOnTpSY+3s7Njhw4cZY59+t0rHpq9evZr169dPZm4+f1f4tLsi4s3MzNilS5cYY58WcLl79y5jjLFDhw6xZs2alRmnpaXFHj16VOb+R48eMU1NzTL337t3j/Xt21fiEKDs7GzWr18/iYvRVCRjY2Ph6/a5Xbt2yTUdI/k+UWeaVAmKrrjFd6UvxhjT0NAQDo8wMTERjum7d+8eMzQ0lBlvYGDAkpKSxMqTk5PliudDXV1d2PbP/8O+d++e1DlR1dTU2IMHD8TKU1NTZc55rOhr9XmbJQ1tefjwodT/aCsiN5/z5vteU1NTK7PtsnKrqamVec3kmfuWzzVX9LxLV/SsU6eO2BAHeYc78H299fX1ha+3nZ2d8APJ/fv3Zc4rrqmpKewYmpmZsfj4eMbYp/eKrq6uzNx8/q7waXdFxOvo6AjfL1ZWVuzs2bOMsU+vubR4juOkDsUpa57oUsOHD2dTpkwpc39wcDAbNWqUWHnnzp3Z9u3byz10SBI9PT127949sfK7d+/K9Z4j3yeaGo9UCYquuFW60teXq2LJu9IXAJiZmSErKwvW1tawsrLCxYsXUbt2bTx8+FDm9HMAkJ+fj6KiIrHywsJCfPjwQWpsamoqwsLCkJqaitWrV8PU1BRHjx6FlZUVXF1dZeZWdOowS0tLnDt3Dra2tiLl586dg4WFhdScir5WpfT09PDgwQPY2NiIlN+/fx9aWlqVmpvPefN9r9WqVQvR0dEYM2aMSPnRo0clrur2OVNTU9y8eVPsmt24cUOuudD5XHNFz7sivo7n+3q7ubnhxo0bsLW1RaNGjYSrOG7cuFHmNa9RowYyMjJgZWWFmjVr4vjx46hbty6uXLki19zefP6u8Gl3RcQ7Ojri7t27sLGxQe3atfH777/DxsYGGzZsgLm5udTYY8eOSVz5EQCys7Olxv7zzz/4448/ytzv5+cnnIP6c0eOHEF0dDTGjh2Lfv36YdiwYahXr57UXGX58ccfsX79eqxYsUKkfOPGjRgwYIBCxyTfgW/dmyfka1B0xS2+K30xxtjQoUOFD7WsXbuWaWhoCKcwCwgIkBnfunVrNmbMGLHy0aNHs+bNm5cZFxcXJ8ylqqoqvPu3cOFC1rNnT7narujUYYsXL2ZGRkZs69atwmn0tmzZwoyMjERWHJOE7+poI0aMYO7u7iJTuqWkpDAPDw82dOjQSs3N57z5vte2bNnCNDQ02KxZs1hcXByLi4tjM2fOZJqammzjxo1SY4ODg5m1tTU7efIkKyoqYkVFRSw2NpZZW1uzSZMmyczN55pXxO+Yovi+3tHR0Wz//v2MsU/n6+joyDiOY8bGxiw2NlZq7NSpU9n8+fMZY4xFREQwgUDAatWqxVRVVdnUqVNl5ubzd4VPuysifseOHSwsLIwxxtjVq1eZsbExU1JSYurq6lKnt/tyOryytrJ8/k2bJGlpaRLvjHMcx27fvs1WrlzJ3N3dmZKSEqtduzZbs2aN2JSnsowZM4bp6uoyV1dXNnToUDZ06FDm5ubGdHV12ZgxY9jEiROFG/n3oM40qRJu377NjIyMWM2aNZm/vz/z9/dnNWvWZCYmJiwxMbHMuCdPnjA7Ozump6cnnAdUX1+fOTo6svT0dLlyFxcXi4zn/PPPP9nYsWPZr7/+yvLz82XGnz17lqmrq7MWLVqw0NBQFhoaylq0aMHU1dWlzlLSuHFjtnz5csaY6BCNS5cuyRxD+zlFpg4rKSlhwcHBTF1dXfiEvqampsTlk7+k6GtVKjs7mzVu3JgJBAJmY2PDbGxsmEAgYG3atGFv3ryp1Nx8zrsi3mu//fYbq169uvC1srW1Zdu2bZMZl5+fz/z8/BjHcUxFRYWpqKgwZWVlNmTIELneo3yueUWct6L4vt6SvH79WqHpzs6fP8+WL1/OoqKi5KrP9+/KlxRtd0XE5+bmsvj4ePby5UuF88ujWrVqUjv7J06cYNWqVRMr/3J4yaVLl9iIESOYnp4e09DQYP369ZPrQwRjTK65plu3bs3atGlT/hMk3wzHmBzfMxPyH/Ds2TORFbc8PDzkWnErNzdXZKUvDw8PuVf6qigJCQlYsmSJSBtCQkLElhD/nLa2NhITE2FrawsdHR3cuHEDdnZ2SEtLg5OTEz5+/FiuNuTl5eH9+/cSl40uy/v375GcnAwNDQ3Y29vL9fU1oPhrVYoxhpiYGJH4li1bfpXcgOLnXVHvtZcvX0JDQwPa2trliktJSUFCQgI0NDTg7u4uNrxHGj7X/Fv+jlXE602+roULF6JatWoICAgQKd+6dStevXqF4OBgiXF+fn4oLCzEgQMHJO7v2rUrVFVVxWa2UVJSQmZmptjfvry8POzZswdbtmzB+fPn5RoaRP6bqDNNSCW4efOm3HU9PDwqpQ01atTAnj170LRpU5HO9IEDBzB58mSkpqZWSl5C/uu+7MSVRdI0iadPn5YrtqwPIunp6XLFW1lZiZXxaXdFxM+dO1eueFlTxNnY2GDXrl0iS4MDn6ZT7Nu3Lx4+fCgx7vr162jSpAk6d+6M4OBgODo6AgDu3LmDJUuW4MiRIzh//jzq1q0rEldWZ/pz9+7dg4ODgzynR/6DqDNNqozs7Gxs2bIFycnJAABXV1cEBASU+TALH0pKSuA4TuaDQBzHyXU3o7i4GAcPHhRpe5cuXaCsrFxmzOTJk3Hp0iXs3bsXDg4OuHbtGp4/f45BgwZh0KBBcj3A9fz5c0yePBmxsbF48eKF2PnQnRhSFSkpKcHa2hqenp5Sf8cl3QEt/dsAoMxYaX8XPv+dL40vPV5pWVnxfNpdUfEWFhYwNTWVeu7Xrl0r89gAoK6ujuTkZLEHfR88eAAXFxep37odPnwYAQEBeP36tbCMMQZjY2Ns3rwZXbp0EYtp06YNDhw4AH19fantIlUXdaZJlXD16lV4e3tDQ0MDDRs2BPBpsYgPHz4In6KvSI8ePZK7rqyv0u/fv49OnTrhyZMnwjspd+/ehaWlJY4cOYKaNWtKjCsoKEBgYCDCw8NRXFwMgUCA4uJi9O/fH+Hh4VI74qU6dOiA9PR0jBkzBubm5iL/aQOfvhYlpKoJDAzEn3/+CWtrawwZMgQDBw6Ue1iIkZERdHR04O/vjx9//BHGxsYS65X1IV8gEKBGjRrw9/eHr69vmTOe1K5du0LbXRHxnTp1wsmTJ+Ht7Y2AgAB07twZSkrlXzvO3t4es2fPxsCBA0XKd+zYgdmzZ+PBgwdS4z98+IBjx44hJSUFjDE4ODigffv20NTULHdbCAFAs3mQqqF58+bM399f5IGdwsJCNnjwYNaiRYtv2DLZOnTowHx8fNjr16+FZa9evWI+Pj6sY8eOMuPT09PZkSNH2O7duyXObyqNtrY2u379enmbTMhXFRcXxzp37sxq1qzJatasyXx9faU+nFsRPn78yHbt2sW8vLyYpqYm6927N4uOjpb5EF5+fj6LiIhg7du3ZxoaGqxnz57s77//lvvhvYyMDLZo0SLm6OjIqlWrxiZNmiRxHvqKbndFxT99+pQtWLCAOTg4MDMzMxYcHCxc9EVefGbNKS4uZlu2bGGdOnVirq6uzM3Njfn6+rJt27Yp/ADlhw8f2NKlSxWKJf8N1JkmVYK6ujpLTk4WK799+7ZciwzwdefOHRYYGMjatm3L2rZtywIDA+X+D0RTU5PdvHlTrDwhIYFpaWlVdFNFODs7s2vXrlVqjory9u1bmXXi4uIklj969IjXTAZDhgyRK78k//zzj0Kr95WSZ8aMssyZM4fl5uYqnHvbtm3s48ePCsdXhB07djCBQMD8/PzY6tWr2erVq5mfnx9TUVFhO3fuLDOupKSEPXr0iH348IF3G9LS0lhoaCizs7NjVlZW7N27d3LFPXr0iM2ZM4fZ2dmx6tWrs59//rlc74UzZ86wgIAApqOjwxo1asQ2btzIiouLK73dFRX/zz//MH9/f6ajo8OaNm0q96Iois6aU1JSwjp16sQ4jmN16tRhffv2ZX369GEeHh6M4zjWtWvXMmNfvHjB/vrrL3bs2DHhVIoFBQVs1apVrFq1arR6YRVHnWlSJZiamrJjx46JlUdHRzNTU1OpsW/evGGbNm1i06ZNE94djo+PZ0+ePJEr9759+5hAIGCNGzcWzh/apEkTJhAI2L59+2TGGxgYSFyi+uzZs8zAwECuNijq2LFjrH379hJXt5Pm1atXwn+np6ezmTNnssmTJyt0tzA/P1+u/6RbtWoltWMXFxdX5op6SkpKUldWk4VPPN/cslaFq8zcfOMZY8zW1lbk/VLqzZs3zNbWVma8k5MTW7FihVj58uXLmZOTU5lxxf/X3p3H1Zz9fwB/3duiXWULoZSIsgvFKJmSJQlDjCXZyTJEzBdj39eRLFHJvpRtbGOL7EmFJDWUNUtFaaPO7w+PPj+3ez/33rql0vv5ePQYfc4995ya6r7v+ZzzfuflMRUVlSLfrZEkKSmJLViwgBkbG7O6desWOaj877//mJ2dHRMKhSJ3oOT15s2bYvVXdN6K9s/MzGSBgYHMysqKqaurSyzzLU16ejq7ffs2u3//vlxv6nbu3Mm0tbW5io3fu3DhAtPW1paYSvLq1ausatWqTCAQMKFQyKysrNjDhw9Zo0aNmLm5OfP19S2R6oik4qJgmlQKnp6ezNDQkO3fv58lJSWxpKQktm/fPmZoaMimTJnC2y8qKorVqFGDmZqaMmVlZS5X859//smGDh0q19gNGzZkc+fOFbs+b9481rBhQ5n9hw4dypo1a8Zu3rzJ8vPzWX5+Prtx4wazsLBgw4cPl2sORaGrq8v09PS4D1VVVSYUCpmWlpbIdUmBfHR0NGvQoAETCoWscePG7N69e6xWrVpMS0uL6ejoMCUlJRYSEsI79s6dO9mkSZPY7t27GWOMeXt7c+N369ZNYtBVwMLCgjk7O0tcmQsNDWWampoSi98wplhAqmj/yjq2rOd48+YNU1VVldlfVVW12GXUmzZtym7cuCH/ZL/z/XYHNTU11r9/f/bPP//IvTKcnZ3N9uzZw+zt7bntEqdPny7SHK5du8Y8PDyYjo4Oa9euHfP19ZU5fknMW5H+jH3LqT1q1Cimo6PD2rZty3x8fIp9d6Uofv31V7Zs2TLe9iVLljAHBwex6126dGFubm7s/v37bMaMGUwgEDAzMzN26NCh0pwuqUAomCaVQk5ODps8eTIXmAmFQlalShU2depUqSsa9vb2zMvLizEmWvjk2rVrrEGDBnKNra6uLvHFPi4uTq4tJqmpqczZ2ZkJBAKmqqrKfQ0uLi6l8gIUEBAg90dh3bt3Z7169WJhYWFs7NixrG7dumzkyJEsLy+P5eXlsQkTJrD27dtLHHfx4sVcFTd9fX02btw4ZmBgwJYvX85WrlzJDA0N2bhx43jn/fLlS9awYUOxNzlXrlxh2trabMKECbx9BQIBe/v2rZzfIcn94+Pj2cePH6V+lNbYly5dYlFRUVI/Smvs4vY/duwYO3bsGBMIBGzXrl3c58eOHWPBwcFs4sSJzMzMTObzmJiYsC1btohd9/X1ZaamplL7Hj9+nHXq1KnIBVrGjx/P9PT0WPPmzdn69euLVGzk1q1bbNy4cUxXV5e1bNmSbdiwoUirya9eveL2TNesWZNNmzZN7vkrMu+S6L9ixQpmbm7OatSowaZOncr7c1laatWqJfUMSEREhMSiLfr6+uzhw4eMsW+r6UKhkB09erS0pkkqIMrmQSqVzMxMLr+yiYmJzNPbVatWRUREBExMTERyNScmJqJx48ZyFT7p0aMHBgwYAHd3d5Hr/v7+2L9/P86ePSvX3OPj47nUeObm5jA1NZWr349UvXp1XLx4Ec2bN0dGRgZ0dHRw584dtGnTBsC3fK4dOnRAWlqaWN9GjRph4cKFcHNzQ3h4ONq3b4+DBw+iX79+AIDTp09j3LhxUjOlJCQkoHPnzhgwYAA2bNiAsLAwODk5YciQIdiyZQtvP6FQiDFjxsj8eVi7di1v/8KZTr7HZKQrc3JyklnYJTg4WOrYkv6UF1yXNnbVqlWlzh0AUlJSeMe2sLDgzShRQFKqs4IsDpLmrqKiAiMjI6xZswa9evWS+ty+vr6YOnUqRo4cyeUdvnbtGgICArBhwwaMHTuWt6+enh4yMzPx9etXqKqqQl1dXaRd2tddv359tGrVSur3TtL/s4K+w4cP534vJJGUog349r2pW7cuhg8fDmdnZ97CNpLy1ysy75Ls36tXL6iqqvL25/s9U5SqqioSExNRu3Ztie2vXr2CsbExcnJyRK4XzjOtra2NyMhI3kxKpPKR/heQkJ+MhoYGLC0t5X58lSpV8OnTJ7HrcXFxqFGjBm+/48ePc/92dnbGrFmzcPfuXXTo0AEAcPPmTRw6dAgLFiyQOYeFCxdixowZMDU1FQmgs7KysGrVKt4CB/7+/tDS0sKAAQNErh86dAiZmZkYPny4zLGVlJTw+vVrsWIFHz58QM2aNcUCtJSUFBgYGAD4VoFRU1MTenp6XLuenh7S09MljpWUlIROnToBANq2bQtlZWVYWFhw7c2bN8fr16+lztfExARnzpyBra0tPn78iJCQELi5uUkNpAvcv39f6gu8rIDz8OHDxa6ap62tLRbIFcWtW7ek/jxKs2DBAoVyrTs6Oha50iIA5OfnAwCMjY1x584d3hRxsowfPx4GBgZYs2YNDh48CODbm80DBw7ITN24fv36Yo05bNgwmT8P0iQlJWHRokW87dLyTOfl5XH9Fy9eDEA8XzVff0XnrWj/X375BQKBAA8fPuR9jCLPL0tBilA+SkpK+Pr1q8S2mJgYvHnzBsC37/fjx4/x+fNnkceUVgEuUv7RyjT5abm6uiIgIAA6OjpwdXWV+li+lZRRo0bhw4cPOHjwIPT19REdHQ0lJSW4uLjgl19+4X0xljd3qjxFW4oa0BYwMzPD1q1bYWdnJ3I9NDQUY8aMwePHj2XOj6/y16tXr2BiYoKsrCyxxycnJ3OBnba2NqKjo7niCsnJyahTpw7vKmnh1Z+COwGy+gIQedNz7do19O3bFy4uLti6davIC7SOjo7cX6e8FOlfWceWJi0tjQpk8JA3h31RSsFXFrLuAuXk5ODMmTNif2MUuftDKgdamSY/re9vXxd35W3NmjXo378/atasiaysLHTp0gVv3rxBx44dsWTJEt5+BatuJaHgD3VhUVFRUldCk5KSxCqEAd9eZGWVJN64cSOAby8Ufn5+IiuPeXl5uHLlCpo0aSKx74gRI7gXq+zsbIwbNw6ampoAIHb7tLDCqz+xsbHIyMgAALx//15qX11dXbFKcAcPHsShQ4e4z/le8EpzNUyWijx2Scx9xYoVMDIywsCBAwEAAwYMwJEjR1C7dm2cOnVKYvERSXJzc/H27Vux3z1JZbW/l5CQAH9/fyQkJGDDhg2oWbMmTp8+jfr166NZs2bF+6JKEQXJxSfP3bhhw4aJXeMrT05IAVqZJkQOYWFhiI6ORkZGBlq3bo1u3bqV+ph6enoQCAT4+PEjdHR0RAKXvLw8ZGRkYNy4cfDx8ZHYv379+ti0aZPY3stjx45h4sSJePHiBe/YBUF4YmIiDA0NRaolqqqqwsjICAsXLkT79u1F+hXeF87H399f7Jqiqz+hoaFyjd2lSxeJYyuywmpsbIzw8HBUq1atyH0VHVuRUsflYWXa2NgYe/bsgbW1Nf7991/89ttvOHDgAA4ePIikpCScO3dOav8nT55g5MiRuH79ush1eVYLQ0ND4eTkBBsbG1y5cgWPHj1Cw4YNsXz5coSHh+Pw4cPF/roIIZUHBdOE/AChoaFYvXo1d4CwadOm8PLyQufOnXn7BAYGgjGGkSNHYv369SKr6wUBbceOHXn7z5o1CwcOHIC/vz9++eUXbh4jR45E//79sXr1apnztrOzQ3BwsMi+59JSlrevAwMDMWjQIJmHAEtDaGgobGxsZB7iK48SExNRv359hVao1dXVERcXh3r16mHKlCnIzs7G1q1bERcXh/bt2yM1NVVq/4Lvnbe3t8SS99JWtjt27IgBAwbgjz/+ENlWdPv2bbi6ukp9w0kqjydPnmDevHnYunWr2Daxjx8/Yvz48Vi8eDG3JY1UPhRMk0qB7/S5QCCAmpoaTE1NMWLECNjZ2XFbHOQxefJkmY/ZvXs33N3d4erqChsbGwDf9vSGhIQgICAAgwcPlto/NDQU1tbWvKf2+eTm5mLo0KE4dOgQF6jl5+dj2LBh2LJli9TDdpIU/Kkoy20J5OdTp04dHD58GNbW1mjcuDEWL16MAQMG4PHjx2jXrp3EA8Df09TUxN27d3m3HUmjpaWF+/fvw9jYWCSYfvbsGZo0aSJXth7y8xszZgx0dXWxcuVKie2zZs3Cp0+f4Ovr+4NnRsqLircUQkgxdO/eHb6+vrC0tISVlRUA4M6dO4iOjsaIESMQExODbt26ITg4GOvWrZPrOQUCgVzB9JIlS7By5UpMmzaNuzZ58mSsXbsWixYtkhlMf78tITs7G7m5uSLtkg7UAd9Wrw8cOIBFixYhKioK6urqsLS0LPLK7q5du7Bq1So8efIEwLeDjV5eXhg6dGiRnqe0yUpPB3z7f8Z3Wp+UDVdXVwwePBiNGjXChw8f4OTkBAC4d++eXOkfmzZtKnM/PR9dXV28fv1a7GzBvXv3ULdu3WI9J/n5hIaGYvfu3bztv/32m8y/4+TnRsE0qRTev3+P6dOnY+7cuSLXFy9ejMTERJw7dw7z58/HokWLSvywyX///YfevXuLXXd2dsacOXNk9s/MzMTMmTNx8OBBfPjwQaxd1glyMzMzmJmZyT/h76xduxZz587FpEmTuFX1sLAwjBs3Du/fvxd5g1DWQkJCeNtu3LiBjRs3lujBUFIy1q1bByMjIzx//hwrV67kDru+fv0aEyZMkNl/xYoVmDlzJpYuXQpLS0uxOzh8bzYBYNCgQZg1axYOHToEgUCA/Px8XLt2DTNmzJB4EE1eqampOHHihELPUVS5ubnIzc0tVprCAvLO+8WLF9DV1RUb68uXL7hx4wa3rYzPnTt3sG/fPsTFxUFVVRWNGzfG0KFD0bRp02LPvTQlJSVJPRdQvXp1PH/+/AfOiJQ7P6g4DCFlSkdHh7fksI6ODmOMsUePHjEtLa0SH1uRCm2MMTZhwgRmbm7ODh8+zNTV1dnOnTvZokWLmKGhIVd2u8C0adNYRkYG929pH/IwMjJigYGBYtcDAgKYkZGRXM9RlmJjY5mLiwtTUlJiw4YNY8+ePSvrKZESJhAImEAg4CqbFnwUXJMmJyeHjRo1iikrKzOBQMBUVFSYUChkv//+O/v69Wux5xQZGSlzbEX67ty5k02aNIn7/ff29uYqo3br1o29f/++VMZ+9eoVa9euHRMKhUxJSYkNHTqUpaenc+1v3ryROXcvLy8mEAiYtrY2a9GiBWvRogXT0tJiSkpKbPny5YwxxrKystjFixeL9TWUhlq1arELFy7wtp8/f15i5URSedDKNKkU1NTUcP36dbHbxtevX4eamhqAb/uJC/5doF+/frCyssKsWbNErq9cuRJ37tzh0q5JM336dEyePBmRkZESK7TJcuLECezatQu2trZwd3dH586dYWpqigYNGmDPnj0YMmQI99h79+7hy5cv3L8V9fr1a27O37O2tpZZQKUsvXr1CvPnz0dgYCAcHR0RGRkpUgBGXgsWLMDEiRPlKihy8uRJ3L59G46OjrCxscHFixexevVq5Ofnw9XVFWPGjOHtm5eXh8TERBgZGUEoFCInJwfHjh1Dfn4+7OzsUKtWrSLPvcDz588xf/587Ny5U2L7hw8fEB0djRYtWkBfXx/v37/Hjh07kJOTgwEDBsDc3Jz3uY8cOQInJyeZlSPlERMTg6SkJLFtTHyVAAtcunSpSON8+vSJW61WVVXF9u3bMW/ePNy/fx8ZGRlo1aoVGjVqJPM5pOErTCQvJuUo05IlS7BkyRLY2Nhg7969CAsLw9GjR7Fw4UIIhUJs3LgR//vf/yTu31V03t7e3hAKhbh16xbS0tLg7e0NOzs7nDt3jjukLG3ugYGB+Pvvv7Fx40aMHTuWu4vw5csX+Pr6wtvbG8bGxvD19YW9vb1Yjvyy8ssvv+Dvv/9G165dJbZv3LhR6mFyUgmUdTRPyI+waNEipq6uziZPnsyCgoJYUFAQmzx5MtPQ0GCLFy9mjDG2du1a1q1bN5F+1atXZ9HR0WLPFx0dzWrWrCn3+MHBwczGxobp6+szfX19ZmNjw44ePSpXX01NTZaYmMgYY6xu3brs1q1bjDHG/vvvP6apqSn3HIqjWbNmbMmSJWLXFy1axCwsLEp0rAsXLrAvX74o9BxpaWls5syZTF1dnXXs2JFduXJFrn4fP34U+0hLS2MqKirs1q1b3DU+W7ZsYcrKyqxNmzZMR0eHBQUFMW1tbTZq1Cg2duxYpq6uztavXy+xb1RUFKtduzYTCoXMwsKCJSUlMQsLC6apqcm0tLSYnp4eu337drG+H4xJX228desWq1q1KhMIBExPT4+Fh4czY2Nj1qhRI2ZiYsLU1dXZ3bt3eZ9bIBAwHR0dNnr0aHbz5s1izS8hIYE1b96cW0kuvNJc0oRCIUtOTmaMMWZnZ8dSU1OL/BySVsLlXRXv27ev1I+uXbtK/bpNTU3Z3r17GWOM3blzhwmFQnb48GGu/dSpU6x+/folPm/GGKtTpw7394cxxrKzs1nv3r1Zy5Yt2YcPH2SuTLdr146tXbuWt33NmjVMKBSy1q1bs5SUFN7H/WgRERGsSpUqrF+/fuzWrVssLS2NpaWlsZs3bzJXV1dWpUoVqb8n5OdHwTSpNHbv3s06dOjA9PT0mJ6eHuvQoQPbs2cP156ZmcmysrJE+qipqbHY2Fix53r06BFTU1OTOeaXL1/YggUL2PPnz4s9b0tLS3b58mXGGGP29vZs+vTpjDHGNmzYwOrWrcvbz93dnX369EnsekZGBnN3d5dr7MOHDzMlJSXm6OjIFi5cyBYuXMgcHR2ZsrIyCw4OLsZXw+/7IIcxxtq3b89evHghd/8VK1YwfX191rRpU7nfqHw/trTgQlaQ0bRpU7Zt2zbGGGMXL15kampqzMfHh2v39/dn5ubmEvs6Ojqy/v37s/v377MpU6Ywc3NzNmDAAJabm8u+fPnCfv/9d7E3ed87duyY1I9169bxzr1bt25s1KhR7NOnT2zVqlXM0NCQjRo1imt3d3dnLi4uvGMLBAK2cOFC1qpVKyYQCFizZs3YunXrirTNoFevXqxPnz7s3bt3TEtLi8XExLCrV68yKysrud8MpaamstWrVzMPDw/m4eHB1q5dy9LS0iQ+VkdHh8XExHDzf/v2rdxz/f45VqxYwS5fvizxY/v27bzfc2VlZebk5MRGjBgh8cPZ2Vnqz5qqqipLSkoS+fz7v1EvXrxgKioqJT5vxr69sY+LixO59uXLF+bi4sKaN2/OoqOjpfbX0NBgCQkJvO0JCQlMIBAU6w1OaTtx4gSrUaOG2N+IGjVqsGPHjpX19EgZo2CaECnatWvHFixYIHZ9/vz5rHXr1nI9h6amJnv69Gmx57B27Vq2YcMGxhhj//77L1NTU2NVqlRhQqGQd7WTMfHgtMC7d++YkpKS3OOHh4ezIUOGsNatW7PWrVuzIUOGsIiIiKJ/ITIIBAKR+WppaUl94ZXUX0NDgzk7O0td+ZOkbt26rGfPnuzixYtcYHHp0iWmpKTE/P39uWt81NXVubsHjDGmoqLC7t+/z33+9OlTpqGhIbGvnp4eF9xlZmYyJSUlkdW/Bw8esGrVqkn9ur9f0ZX0wRfgfD92bm4uEwqFImPfvXtX6hu27/+fhYeHs/HjxzNdXV1WpUoVNmDAAHbu3DnevgWqVavGoqKiGGPfgr2CwPDChQusZcuWMvvfuXOH6evrs7p163L/jw0NDVm1atUkrha6urqyWrVqMVtbWyYQCJiNjQ2zs7OT+MHH1taWrVixgrc9MjKSCQQCiW2WlpbMz8+Pt++9e/ekBqSyfk+krQ4rMu+CuX+/Cl6gIKCuX7++1Llra2uzR48e8bbHxsYybW1t3vaylpmZyYKDg9nKlSvZihUrWEhICPv8+XNZT4uUA7RnmlQqRS05PHfuXLi6uiIhIYHbL3fhwgXs27dPrv3SAGBvb4/Q0FAYGRkVa87fZ8zo1q0bHj16hIiICJiamqJ58+Zij//06RPYtzfKSE9PF9kHnpeXh1OnThWpYl2bNm2kpoUqL4YNG1bsHNjR0dHw8PDAokWLEBQUxKVFEwgEsLKykplloFq1alwBk1evXuHr169ISkri9mknJibyln5njHF5wAv/FwCUlJSkZiGpXbs2Nm/ejD59+khsj4yMRJs2bSS25ebmQl1dHQCgoqICDQ0Nkf3h1atXl5hBRpI2bdqgTZs2WLt2LQ4dOoSdO3eie/fuqF+/vtQMOXl5edDW1ubGe/XqFRo3bowGDRrg8ePHMsedNm0anJ2dsX37du779vXrV4waNQpTp07FlStXRB6/e/duBAYGIiEhAaGhoWjWrFmR93wPHjwYWVlZvO0GBgaYP3++xLY2bdogIiICHh4eEturVKkiswR6TEwM3rx5A+Dbz09sbCwyMjIAQGqaQEXmDQBOTk7Ytm0b+vXrJ3JdWVkZhw4dQr9+/aQWumndujX27NmDRYsWSWwPCgpC69atefuXNXV1dfTt27esp0HKo7KN5Qn5MeLi4linTp2KdeL/5MmTzNrammloaLBq1aoxOzs7qauUhfn6+jIDAwM2ffp0tnfvXrHb8CVN1r5IJSUlbp+4JJL2D/N9lCShUChyy11bW5v9999/JTqGLJs3b2Z16tTh9qQqKyuzhw8fyuw3ceJE1qhRI7Z48WJmZWXFhg8fzpo0acJOnz7Nzpw5wywtLdnIkSMl9rW3t2ceHh7sxYsXbMGCBczU1FRkG86ECRNY586decfu3bs3mzt3Lm+7tNXGJk2aiGQpOHnyJMvMzOQ+v3nzJjM0NOR9br67HwWePHnC5syZw9vOGGOdOnViISEhjDHG3NzcWPfu3VlYWBgbNmwYa9asmdS+jH3biiVptfPhw4dMXV1d7Pr3P7e2trY/fEtBdna2QquZ0u5EyPs3rbi+fPki9ff+y5cvUjPmnDhxgikpKTEvLy/25s0b7vrr16/ZjBkzmLKyMjt+/HiJzrkkXLhwgZmbm0v82tPS0ljTpk3l3pJEfk4UTJNKwdramv3yyy/s1KlT7N69eywyMlLkozQV5/Z7YefPn2c9e/ZkDRs2ZA0bNmQ9e/Zk//77r8THFmxREAgELDg4WGRP5PXr19nLly9lzldaMP79R0kSCATM0tKStWrVirVq1YopKSmxZs2acZ8XfJS2hw8fshYtWjA3Nze5g+mMjAw2evRoZmFhwcaMGcNycnLYqlWrmKqqKhMIBMzW1pY36Lx9+zarVq0at//ywYMHrH379szAwIDVqVOHqaurs/Pnz/OOfeXKFXb69Gmpc+N78/fXX3+xffv28fadM2cOc3V15W0vvOWgOM6cOcOOHDnCGPsWfDdu3JgJBAJWvXp1qenICtSsWZOdPXtW4vNKOiRcEgcQZUlNTWV///13sft/+PCBt+3Zs2dyffDJz89ncXFx7MGDBwof+C2OjRs3cmn8Cs6vCIVCpqKiwtatW/fD5yOP3r17Sz04uWHDBqlnC8jPj8qJk0qhuCWHnz9/DoFAAENDQwDA7du3sXfvXjRt2lRqqrOStHnzZkyZMgX9+/dHx44dAQA3b97E4cOHsW7dOkycOFFiv8TERNSrVw9CobBI44WGhnL/fvbsGby9vTFixAhu7Bs3biAwMBDLli3D8OHDi/lViVuwYIFcj5N2G7qk5ObmwtvbG5cuXUJwcLBYhTx5ZWdn48uXL9w2Bj6fP39GbGwsGjduDC0tLWRnZ2PPnj3IysrCr7/+isaNGxdrfEVlZmZCSUkJVapUkdhesLWlpEvMp6SkQE9PT67nnTx5MkJCQrB69WqR1JNeXl7o168f1q9fL/L4qlWr4ubNmzA3N4eSkhLevHmDGjVqlMi8L1y4gB07diAkJAQaGhpyb5EpcO7cOfj5+eHEiRNSt2MU19OnT+Hs7IyYmBgAgKGhIY4cOYK2bdvK1X/hwoVyPW7evHlS21+8eIFDhw5xVVUbNWqE/v37o169enI9/4/WoEEDnDlzhjdNZGxsLBwcHJCUlPSDZ0bKCwqmSaXQrl07rFu3Dp06dSpSv86dO2PMmDEYOnQo3rx5AzMzM1hYWODJkyfw9PSU+aJREgwNDeHt7Y1JkyaJXPfx8cHSpUvx8uVLqf0zMzMl5u+VtN+6MHt7e4waNQpubm4i1/fu3Ytt27bh8uXL8n0RP7nOnTvDxcUFzs7OMnMUl4Znz57h33//RW5uLrp06VKknNqfPn3CrVu3kJubCysrqxILLH+U3NxceHl5YcuWLVypeBUVFYwfPx7Lly8XeyPQr18/XLt2Debm5ggNDYW1tTVUVVUlPvfFixdljv/8+XP4+/vD398fSUlJGDRoEIYOHQp7e3uxaoySJCYmYufOnQgMDERqaiqcnJzQr18/DBgwQOLjP3/+jBkzZuD48ePIzc2Fvb09/v77b7n+v/Xv3x8PHz7EvHnzoKamhtWrVyM7Oxt3796V2RcAhEIh6tSpg5o1a/LmkxYIBIiIiJDr+SoKNTU1PHjwgLe8fXx8PCwtLUvlDRCpGCiYJpXCxYsX8b///a/IJYf19PRw8+ZNNG7cGBs3bsSBAwdw7do1nDt3DuPGjcN///0n1/gXLlzAunXr8OjRIwCAubk5pk6dim7dusnsq6WlhcjISLE/5E+ePEGrVq24g0eFvXv3Du7u7jh9+rTEdlllyAFAQ0MDUVFRYgFiXFwcWrZsiczMTJnPIa+LFy/il19+ETl896M9efIEx44dw7NnzyAQCNCwYUP06dMHDRs2lNpv165dOHbsGM6dOwdDQ0M4OzvD2dkZ1tbWcq/aFnfsS5cuoVevXtwLubKyMnbu3Inff/9d5piRkZHo0aMHkpOTwRiDtrY2Dh48CEdHR7nmLEtycjK2bt0q8U3nyJEj5XoOvmIzhWVmZiIhIQEAYGJiwnuoMCsrizuAuGbNGowePZr3sevWrZN4/cuXLzh69Cj8/Pxw9epVdO/eHYMHD4abmxuioqJkHljNzc1FcHAw/Pz8cO3aNXTr1g2nT5/GvXv3YGlpKbXvH3/8gW3btmHIkCFQU1PDvn37YGNjg5CQEKn9gG8HDA8fPswtKrx+/RqGhob49OkTNDU1Zfbv2bMnLl68CEdHR4wcORK9evUq8p0vacqiDLs8TExMsGbNGri4uEhsDw4OxowZM+R+PSA/obLbYULIj1PcksPfp7Xr3bs3V+42MTFRrjzTjDHm4+PDlJWV2aBBg9iGDRvYhg0bmJubG1NRUWGbNm2S2d/NzY2tXLlS7PqqVavYwIEDefsNHjyY2djYsDt37jBNTU127tw5FhQUxBo3bsxOnjwp19zNzMyYl5eX2HUvLy9mZmYm13PIS9E804paunQpU1ZWZkKhkBkYGLBatWpxezlXrVol13NkZ2ezf/75h40ZM4bVrl2b1axZk7m7u7OQkBCRg30lObaNjQ3r06cPe/XqFUtJSWETJkxgtWvXlmu+Dg4OzNraml2/fp1FRESwvn37ylXiXl7SCsYIBAJmZGTE+vbty1xcXHg/SlNxDyDWqFGDde7cmW3dulWkuIg8e+wnTZrEqlWrxjp06MA2bdrE5eSWd3++kZERO3jwIPd5eHg4U1ZWlmv/s0AgEDn4x9i3v3FFOej78uVLtnTpUmZmZsYMDAzYzJkzJebiLw5FyrCXpkmTJjELCwuxOgSMfUuXZ2FhwTw9PctgZqS8oJVpUil8vw9Yki5duki83r59e9jZ2aFnz55wcHDAzZs30aJFC9y8eRP9+/eXmgaqgKLbNBYvXozVq1fDxsZGZM/0tWvXMH36dJFV9cmTJ3P/rl27No4dOwYrKyvo6OggPDwcZmZmOH78OFauXImwsDCZcz916hT69esHU1NTtG/fHsC3feNPnjzBkSNH0KNHD5nPIS+hUIg3b95wafu0tbURFRUlc2W2JFy6dAndunXD3LlzMWXKFK40ckpKCtavX4+lS5dyK+dFcevWLRw/fhzHjx/n0ivOnj0bNjY2JTa2rq4url+/zq2GZmZmQkdHB8nJyahWrZrU+VWvXh3nzp3j0pGlpaVBX18faWlpvHdrvhcdHS21PTY2Fm5ubhLvgkycOBH79u1DgwYN4O7ujt9//503faAkJb2yXfBSKM+dBH19fVhaWuL333/HwIEDue+VioqKzJVpZWVlzJo1C97e3iJ76eXpW/C4xMRE1KlTh7umoaGB2NhYmSn1lJSUEBcXJ7IlxNDQEGFhYSKpO+X5fw8AV65cgb+/P44cOQJLS0ucP3+eS7Uoiaxy5tHR0ejSpYtcd81+pOTkZLRu3RpKSkqYNGkSd4YhNjYWPj4+yMvLQ0REBGrVqlXGMyVlpoyDeULKtUuXLjFdXV0mFApF0pXNnj2btwBIYZqamuzJkydi1+Pi4uQqB25kZCTXh7GxsUg/bW1tblW9fv36LCwsjDH2rQy5pJRhfJ4/f859vX379mVz5swRqcBWUhQt2qKI3377jY0ZM4a3ffTo0WzQoEEKjREfH8/Wrl3LDh06VKJjS8qoIe/3jq+vvCuViqZpy87OZnv37mXdunVjGhoabMCAAezMmTMsPz9frrFLYmXbz8+PNWvWjKmqqjJVVVXWrFkztn37dql9srKy2O7du5mdnR1TV1dnrq6uLDg4mKmoqMhcXS74ejU1Ndlvv/3GTpw4wb5+/Sr3ynThFJKMyZ9GUtrdueKk1cvMzGSBgYHMysqKqaury0yXqWg587L07Nkz5uTkJFby3snJ6Yen8CTlD61Mk0qlOIfx8vLy8OnTJ27FEPh24EtDQ0Ou4ieDBw9Gq1at4OXlJXJ99erVCA8Px/79+4v4VcinXbt2WLx4MRwdHeHs7AxdXV0sW7YMGzduxOHDh7n9peVF4cwKOjo6iIqKKnYmjaIwNjZGUFAQ7wHVq1evYtiwYVKLj0iyYMECTJw4UaQQSkmPLRQKERgYiKpVq3LX3NzcsH79epGVMmdnZ4l9L168KLIibG1tjYMHD3IZbAD+34/q1atj5cqVsLe3l9j+8OFD9O7dW66VxsTERAQEBGDXrl34+vUrHj58CC0tLd7HK7qyDXzLOrF27Vp4enqKZKvZtGkTpk2bJlf2ioSEBPj7+yMwMBAvX76Em5sbRowYga5du0JJSYm339OnTxEQEICAgABkZmYiJSUFBw4cQP/+/aWOJxQKYWFhIXK2IDo6Gk2aNBE5SCnpEKCsO3QF+O7UFbhx4wZ27tyJgwcPwszMDO7u7hg8eDB0dXWl9qtatSr+/PNP7i5XYU+ePMHYsWPL3cr091JTUxEfHw/GGBo1aiTyukAqLwqmSaVQEofximLjxo3cvz99+iR1m8b//vc/uZ4zNzcXT58+hYmJiVyH9Hbv3o2vX79ixIgRuHv3Lrp3746UlBSoqqoiICAAAwcOlGvctLQ03L59W2LlyJI8KFQ4SJAUIACSgwRFaWhoIC4uTiSA/N6LFy/QqFEj3tP6km5fM8ZQo0YNhIWFcSkZJd0+V3RseQ6ACQQCiT/jQqEQAoFAYmaGgut8fQHA0dERnTt35v0ZjoqKQqtWraRWcCxQkBUjICAAubm5iI2NlRpMA0BOTg6Cg4Oxc+dOXL9+HT179oSHhwccHBzk2q5Ro0YNbNy4USxbzb59++Dp6Sm1mmBh+fn5OHv2LHbs2IETJ05AW1tbrv6MMZw7dw47duzA8ePHUb16dbi6uor8DfleWaaQXLlyJQICAvD+/XsMGTIE7u7ucmUFKmBnZwcnJyfMnDlTYntRfl4IKU8omCaVwpAhQ5CYmIj169fD1tYWISEhSE5OxuLFi7FmzRr07NlTYj9jY2OpL8p8p7flXU0VCAQyT4BnZmbC09MTgYGBAL5l0mjYsCE8PT1Rt25deHt7yzVWZmYmt69S2krp906cOIEhQ4YgIyMDOjo6It8LgUCAlJQUuZ5HHmUZJBTer11YcnIy6tSpwxtU8q1AFgSj0oJSRcdWRGJiolyPa9CggcTrISEh+Pz5M2/mkNTUVBw/fpw3H/n3wXBYWBh69eoFd3d3dO/evchZIoq6sg18229+584didlqrKyskJaWVqQ5FHj37h2CgoLwxx9/FKlfSkoKdu3aBX9/f0RFRRVrbEVERERg3rx5OHnypMR2oVCI+vXro1evXrzpBAFg7dq1Eq9v374dWVlZImc7vpecnIwtW7b8kFzyhJQkCqZJpVDcw3gbNmwQ+fzLly+4d+8ezpw5Ay8vL7kDWUVMmTIF165dw/r169G9e3dER0ejYcOGOHbsGP766y/cu3ev1MY2MzNDjx49sHTpUt70YT8DoVCIxYsX8wZf6enpmDdvHm9Aa2hoiJYtW2L69OlcEMgYQ7du3eDn58e9uZJ0+1zRsSuqCRMmYP/+/ahXrx5GjhyJIUOGyP0mT5LirGx7enpCRUVFLPibMWMGsrKy4OPjU+z5/Gi5ubnIzc2V+TWfPXsW//77L1RVVTFq1Cg0bNgQsbGx8Pb2xokTJ+Do6IhTp05J7GtraytzxV8gEMiVn5uQnwkF06RS0NHRQXR0NIyMjNCgQQPs3bsXNjY2ePr0KZo1a1bkfMk+Pj4IDw+Hv79/Kc34/zVo0AAHDhxAhw4dRDJcxMfHo3Xr1rwn5PPy8hAQEIALFy5I3KIhzwuepqYm7t+//0Myakjz6dMn7NmzBzt27EB4eHiJP7+RkZFc2wL49i2npKTAw8MDHz9+RFBQEOrWrQtAvgwNio4dFxeHtLQ0WFlZcdcuXLiAxYsX4/Pnz3BxccGcOXMk9p07dy7mz5/Pu20oKSkJHh4e+Pfff2XOr6gKVjlbtWol9esPDg7mbVN0ZdvT0xO7du1CvXr10KFDBwDfMrAkJSVh2LBhIvno+VZbJYmKikLr1q0lvgGSZx+2QCDA3Llzedv9/f0RERGBDh06YMiQIZg9ezbWrl2Lr1+/omvXrti/f7/ETC47duzA6NGjoa+vj9TUVFSrVo3bMz5w4EBMmTKFt8ofIYRf2VVHIOQHaty4MR4/fgwjIyO0aNECW7duhZGREbZs2YLatWsX+fmcnJwwe/Zs3mD6jz/+wKJFi6CpqSnzVq+sF+l3795J3ALw+fNnqUHIlClTEBAQgJ49e8LCwqJYJZ8dHR0RHh5eZsH0pUuXsHPnTgQHB6Nq1aro27dvqYzz7Nkzhfrr6+sjJCQEvr6+sLKywurVq8X24ZbW2LNmzYKlpSUXTD99+hS9e/dG586d0bx5cyxbtgwaGhqYOnWqWN/AwECcPHkSQUFBYlUTt27dCi8vL5E0foXJu41B0s/4sGHDFCpDXnhle9++fUVe2X7w4AGXFrDgQG716tVRvXp1PHjwgHtccebJt04lrbiKQCDA48ePkZ2dzRtML1myBEuWLIGNjQ327t2LsLAwHD16FAsXLoRQKMTGjRvxv//9D76+vmJ9N2zYgBUrVsDLywtHjhzBgAEDsHnzZty/f593z35JunjxIiZNmoSbN2+KnR/4+PEjrK2tsWXLFnTu3LnU50JISaJgmlQKU6ZMwevXrwF823PbvXt37NmzhzuMV1SHDx+Wmjng3r17iI2NRatWraRuw5DnRbpt27b4559/4OnpKdLHz8+PO9Aoyf79+3Hw4EGFckH37NkTXl5eiImJkVg5UlKGCEW9fPkSAQEB8Pf3R1paGlJTU7F371789ttvCgVfP8L48ePRpUsXDB48GCdOnPghY4aHh4sc6NqzZw/MzMxw9uxZAN8ycfz9998Sg+kHDx5g0qRJaNu2LebPn49Zs2bhxYsXGDlyJO7cuYPVq1djzJgxvGMX/tkOCwtDmzZtRHIN8/0/K87v3fe2bNmC+vXro2HDhggNDeXNVCFtZfvSpUvFGtvV1VVq+8ePH3m/br6/B5GRkfD29saDBw8wevRo3ucOCAjAjh074ObmhvDwcLRv3x4HDx5Ev379AAAWFhYYN26cxL4JCQlcmXJXV1coKytj1apVcgfSTZs2RVhYGPe3b8KECVi4cCH3Jubt27cwMjLivdO3fv16jB49WuJB3KpVq2Ls2LFYu3YtBdOkwqFtHqRSkvcwXuFb0IwxvHnzBu/evcPmzZulBhpKSkp4/fo1t6o8cOBAbNy4sciJ/cPCwuDk5ITff/8dAQEBGDt2LGJiYnD9+nWEhoaiTZs2EvvVqVMHly9fhpmZWZHG+560W+XSsjwUx5EjR7Bjxw5cuXKF+3qdnJygqakpVzELRcizYubr6yt30Zbc3Fx4e3vj0qVLCA4OlnogVdGx1dXVERcXh3r16gEA7O3tYW1tjUWLFgH4FkC1adNG6mG6Y8eOYezYsTAwMMDTp09hZWUFPz8/3oOHfH5koZ0RI0bI9eaqNLZiqaio4Ndff+X9XU5JScHJkyfl+v14+vQp5s6diwMHDsDV1RWLFy8WOxD5vSpVqiA+Pp77/12lShVER0dzhURevnwJY2NjsfSfgOKFkQr319HRQWRkJNc/OTkZtWvX5s3G0aBBA5w5c4Z3K0lsbCwcHByQlJQk13wIKS9oZZpUShoaGtztXWlcXFxEPhcKhahRowZsbW25dGd8Cr9PPX36ND5//lzkuXbq1AmRkZFYvnw5LC0tuYp1N27cgKWlJW+/6dOnY8OGDdi0aVOxV3R/ZIqqgQMHYtasWThw4IBIZbgfQZ4Vs3Xr1skdTKuqqsq9x1bRsfX19fH69WvUq1cP+fn5CA8PF9l+kZuby7vloECHDh1gaWmJCxcuQFNTE//73/+KHEj/aIqubAPfUrVJ+93gO1dgbm6Ofv36wcPDQ2J7ZGQkb0aMAu/fv8eCBQuwbds2dOrUCdevX0e7du1kzvnLly+oUqUK97mqqqrIHSNlZWWpQbyfnx93SPHr168ICAgQW1Dgy7ZRGF9KRT7Jyclid7e+p6ysjHfv3sk1NiHlCQXT5KdVlLRUfIFPSaZoKupNoO8PFtaoUQNr1qyR+Jjvg7DCt58vXryI06dPo1mzZmIvYtJuf/fo0QP79u3jCoEsX74c48aN44oyfPjwAZ07d0ZMTEyRviZpPDw84OPjg8uXL2Po0KEYOHDgDyuIEBUVhRUrVvC2Ozg4YPXq1TKf58mTJzh27BiePXsGgUCAhg0bok+fPlJX/hQd29bWFosWLcLmzZtx6NAh5Ofnw9bWlmuPiYkRKRVd2L59+zBp0iS0bNkSjx49wo4dO+Dg4IAJEyZg2bJlUFNTk/o1V2QtW7YU+fzLly+IjIzEgwcPeNP5AUCbNm0QERHBG0xXqVKFt7T358+fsXr1aqxduxampqY4ceIEHBwcijTvmJgYvHnzBsC3vyuxsbHIyMgAAKm5revXr4/t27dznxsYGCAoKEjkMQKBQO5guqjq1q2LBw8ewNTUVGJ7dHR0sc6wEFLWaJsH+WnZ2dnJ9Th5Ujm9fftWYkYMaQULClf009bWRnR0tNw5qAsKavCRlLvY3d1drucGpN/+LrxFRdLt3NLIfZyVlYWDBw9i586duHXrFhwdHfHPP/8gMjJS7IBcSVJTU5P6Ih8fHw9LS0vewikAsGzZMsybNw/5+fmoWbMmGGN49+4dlJSUsHTpUsyYMaNUxn727Bl+/fVXJCQkQElJCRs3bsT48eO5dhcXFxgbG2PdunViffv164ezZ89i2bJl3J58ALh+/Tr3sxQQECB1b/73fuQ2j9L0119/ISMjg/dNTE5ODvLy8oqVLtLAwADp6enw9PSEm5sb7+84398WRQvtKELW3zRZfxc8PT1x+fJl3LlzR+xNWlZWFqysrGBnZ8dbsIaQ8oqCaUKkuHv3LoYPH45Hjx6JvXjJesESCoVwcnLibsmeOHECXbt2haampsjj+FaIvz9QxRhDjx494Ofnx6VdKyCr9G9xyNpbWZqFRAo8efKEK9OckZGBnj17on///jIPfxWHiYkJ1qxZI7atp0BwcDBmzJjBW2Dn0qVL6NatG+bOnYspU6ZwK+opKSlYv349li5diosXL0rcqqHo2AC4IiU1atRAnTp1RNqioqJgaGgoMVWajY0NAgICJO7RzcrKgre3N3x9fSXuvwW+rSR+T1IpckD6m87yKD4+HlZWVsUuSpSZmYnIyEhYW1uLtX1/DqFwUCxPMKxooR1pXrx4gYULF2Lbtm0S22VVKS34OeSbe3JyMlq3bg0lJSVMmjSJ2+cdGxsLHx8f5OXlISIiosjnSggpaxRMk0rnxYsXACDXCfYWLVrAxMQEs2bNQq1atcRWkaS9YMm7SizvAanirvq9ffsWjx8/BvAtRSBfpb3vlYdgukB+fj7++ecf7NixA6dPn0ZOTk6Jj6HoitnAgQOhq6uLrVu3SmwfM2YM0tPTsW/fvhIfWxH5+fkiwV3BFoHv99BeuXKFd792Wa6SlqagoCDMmjULr169KlZ/aXmmSzMYVpS0eQMlU6U0MTER48ePx9mzZ7mfG4FAAEdHR/j4+Mh9546Q8oSCaVIp5Ofnc6XDC/YWamtrY/r06fjzzz95s1Zoa2vj3r17vLfgf6SiBtOfPn3CxIkTsX//fu7FUUlJCQMHDoSPjw+3H1oSRW/nlpa3b9/K9WagqBRdMTM2NkZQUBA6deoksf3q1asYNmyYxMIrio7Nt1JftWpVmJmZYdSoUdz/R0nS0tLw559/4sCBA0hNTQUA6OnpYdCgQVi8eDG3T16S8hwYyqPw944xhtevXyM8PJwraFMcsoJSRaxcuRKenp5c+sFr166hbdu23B2w9PR0zJo1C5s3by7yc5fmvAtLTU1FfHw8GGNo1KjRDzsfQUhpoGCaVAqzZ8/Gjh07sGDBAq4IRVhYGP766y+MHj0aS5YskdjPxcUFQ4cO5XK4lqWiBtMDBw7EvXv38Pfff3N7Xm/cuIEpU6agZcuW2L9/P29fWVtUcnJycObMmVJ50f3w4QO3JeH58+fYvn07srKy4OzsXKr5ZxVZMdPQ0EBcXBzv3Y4XL16gUaNGvPueFRmb7w5IWloaoqKikJaWhitXrkjcc56SkoKOHTvi5cuXGDJkCJeyLCYmBnv37kW9evVw/fp13kBn4cKFmDFjRoUtNV/4e1eQradr166wtraWWZqbj7SgtPDWGD58W2NK8zyDosF0dnY2Nm3axHs+gJCfFQXTpFKoU6cOtmzZIlZk5NixY5gwYQJevnwpsd/79+8xfPhwWFlZwcLC4ocULeFT1AOMmpqaOHv2rNhq6dWrV9G9e3epafpKeouKPO7fv4/evXvj+fPnaNSoEfbv38/NUygU4vPnzzh8+DDv3uKSUpwVs8LbYgqTN8Ap6dW6/Px8jB49Gm/fvpVYRGbq1Km4cOECzp8/L7by/ebNGzg4OMDe3l7i4UVAPLCrKNatW4dp06bxtqenp6N79+64du1asZ5fWlAqbWtMAWlbY0pzC5Y8wfS7d+9w69YtqKqqwt7eHkpKSvjy5Qs2b96MZcuW4evXr1IzihDyM6LUeKRSSElJkZgXukmTJlIPGd24cQPXrl3D6dOnxdpKey9o4VvQ2dnZGDdunNwHGKtVqyZxK0fVqlVlBmmlUehClpkzZ8LS0hJ79uxBUFAQevXqhZ49e3KpvDw9PbF8+fJSD6b19PTkyvdb2Pf5ewtLT08v1bH5CIVCTJ48GU5OThLbjx49iq1bt0rcQmJgYICVK1di3LhxvMF0RV2LmTNnDqpVq4Zhw4aJtX3+/Bndu3fHhw8fePsfP35c6vNL2s4jT1tpk3V4V1phH+Db3bxevXrh06dPEAgEaNu2Lfz9/eHi4gJlZWX89ddfUlMKEvKzopVpUim0b98e7du3FzvE5enpiTt37uDmzZsS+xkZGaFXr16YO3fuDz9hrujq8LZt23Do0CEEBQXBwMAAwLfVxuHDh8PV1RVjx44tsbmWhOrVq+PixYto3rw5MjIyoKOjgzt37nAVHmNjY9GhQweZL/hlwcjISK7COGURSMXHx6Nt27YSv29VqlRBQkKC1O0ppqamyM7OltguFAqRnJwsdU92eXT48GEMHToUBw4cELm7lJGRge7du+Pt27cIDQ3lzXksrTJogdJ6s63IyrSif1NsbW1Rp04dzJkzB4GBgVizZg0aNWqEJUuWoH///sX8igip+CiYJpVCaGgoevbsifr164vsH37+/DlOnTrFuxdXW1sbkZGRMDEx+ZHTLRGtWrVCfHw8cnJyuAISSUlJqFKlilgqtIiIiLKYoojylEHkZ+Lr6wt/f3/cvn1brK1u3bo4cOCA1IOTAwcO5M1qIRQKUbVqVZlvJIqbYq40+fn5YcqUKfjnn39ga2vLrUi/efMGoaGhYikGS8rnz58xY8YMHD9+HLm5ubC3t8fff/8t9xsSoVCIxYsXc3dBZs2aBS8vLy4DS3p6OubNm1cqvyfVqlXD1atX0bRpU2RlZUFLSwvBwcHo06dPiY9FSEVC2zxIpdClSxfExcXBx8cHsbGxAL7d8pwwYYLUF01XV1dcunSpQgbTpb0dojQUDsqKWwa9MuHbcvDx40fcvXsXfn5+8PPzk/gYR0dH/Pnnn/j333+5XMEFcnJyMHfuXHTv3l3q+AsWLJCaGaa8GjVqFFJSUtCnTx8cO3YM8+bNw6tXr0o1kAaAuXPnIigoCEOGDIGamhr27duHMWPGICQkRK7+8lQx5Ku+qKjU1FQuaFdXV4eGhkapFlMipKKglWlCpFiyZAnWr1+Pnj17wtLSUuwAYmmV3a2MyjKDiKIuXryISZMm4ebNmyLl3YFvQa21tTV8fX158zUrQlpax8aNG+OPP/7AoEGDJD7mxYsXXFq1iRMnokmTJmCM4dGjR9i8eTNycnIQHh6OevXq8Y4t7eBlReDt7Y1Vq1bByMgIly9f5v1aJTl06BD27duHuLg4AICZmRkGDx4sdcuDsbExVq5ciQEDBgD4VhiqQ4cOyMrK4oqhlFdCoRAXL16Evr4+gJ+nSA8hiqJgmlQaaWlpuH37tsSy4JIOIgGQmjlDIBBIrUpXnmRkZIh9zYWDvrJWFhlESoqzszPs7Ox4M0Rs3LgRly5dknv18Ud6+vQpJkyYgHPnzomk5fv111+xadMmqTnWK2o2j8IH8U6dOoUWLVqIVRflO9ybn58PNzc3HDp0CGZmZtzh5kePHiE+Ph4DBgzAvn37JN5ZUVFRQWJiosjqt4aGBmJjY0ttRbmk/KxFeghRVPl+G0xICTlx4gSGDBnCHWz7/kVOIBDwBtNlefJeUU+fPsWkSZNw+fJlkQNk5fUFrzwGyfKKiorCihUreNsdHBywevXqHzgj+RkbG+P06dNITU3FkydPAACmpqbc6qM0FXUtpvC2FDc3tyL137BhA86fP4/jx4+jV69eIm3Hjx+Hu7s7NmzYgKlTp4r1zc/PF7vDpaysLPfvY1neBanIfw8JKU20Mk0qBTMzM/To0QNLly6tsAUmisrGxgaMMUyZMkViKfQuXbqU0cx+Pmpqanjw4AHvKm58fDwsLS15i7YoKj8/HwEBAQgODsazZ88gEAhgbGyM/v37Y+jQobx7z//77z8YGxvT3vQiat68OaZOnYqRI0dKbN+xYwc2bNggsUCLUCiEhYWFyJaO6OhoNGnSRGTfOt+h4LK8C1LRi/QQUloomCaVgqamJu7fvy939cCfgZaWFu7evcuVpyalx8TEBGvWrOE99BkcHIwZM2aUyrYgxhh69+7NbVX4ft/z/fv34ezsjKNHj0rsW3ibxsCBA7Fx48YfngayolFXV8fjx495t2UkJiaiSZMmEt88LViwQK4x+EqZN2jQAGfOnOGqVRYWGxsLBwcHJCUlyTVOUVTUbT2ElDba5kEqBUdHR4SHh1eqYLpdu3Z4/vw5BdM/QI8ePbjMF2pqaiJtWVlZmD9/vth2gJISEBCAK1eu4MKFC7CzsxNpu3jxIlxcXLBr1y6JW5kKr6WcOnUKy5YtK5V5/kzU1dWRlpbGG0x/+vRJ7OegAF+QLK/k5GSxbSLfU1ZWxrt37xQagw+tvREiGQXT5Kf1fcqwnj17wsvLCzExMRKzcvzIsuA/ip+fH8aNG4eXL19KLIVOJ+5Lzv/+9z8EBwfDzMwMkyZN4t7AxMbGwsfHB3l5efjzzz9LZex9+/Zhzpw5YoE0AHTt2hXe3t7Ys2cP77kAUnQdO3aEr68vfH19Jbb7+Phw+eyLKjs7G5s2bcKMGTMkttetW1fqlqLo6GjeYjMlgbYEESKOtnmQn5Y8VcqA0i8LXlZu3ryJwYMH49mzZ9w1OnFfehITEzF+/HicPXtWJCuGo6MjfHx8pGaGUYSBgQHOnDmDli1bSmy/d+8enJyc8ObNG7E2JSUlvHnzhisYoq2tjejo6FKb68/i+vXrsLW1hYuLC2bMmCGytWbNmjU4duwYLl26BBsbG4n93717h1u3bkFVVRX29vZQUlLCly9fsHnzZixbtgxfv37F+/fvJfb19PTE5cuXcefOHYl3QaysrGBnZydW7bUkVOQiPYSUJgqmCZGhOCn1yoOmTZvC3NwcM2fOlHgAsUGDBmU0s59bamoq4uPjwRhDo0aNoKenV6rjqaqqIjExkXc18tWrVzA2NkZOTo5Ym6zc3gX4UsRVZiEhIRgzZoxY4Kinp4etW7eiX79+EvuFhYWhV69e+PTpEwQCAdq2bQt/f3+4uLhAWVkZkydPxvDhw6Guri6xf3JyMlq3bg0lJSXeuyARERGlsu9dKBRi/fr1Mov0DB8+vMTHJqQ8o2Ca/NTkSSO1ZcsW3nLislLqlecVGE1NTURFRUnNE0wqvsKry4VJK8NekXN7lweZmZk4e/Ysl1LQzMwMDg4OUrNd2Nraok6dOpgzZw4CAwOxZs0aNGrUCEuWLJFa7OV7ZXUX5Gco0kNIaaBgmvzUFE0jVZFT6vXu3RsjRozgXSEjP4fCq8uFlefKkZVRtWrVcPXqVTRt2hRZWVnQ0tJCcHAw+vTpU+Tn+tF3QSibByGSUTBNfmqKppGqyCn1tm3bhsWLF2PkyJGV5tBlZUSryz+eIne8Cq/uamtrIzIyEiYmJj9k7oqglWlCJKNsHuSnpmgaqYqcUm/cuHEAvhVaKIwOIP48KEj+8davX4/Ro0eLBdLAt+qKY8eOxdq1a3m3j8XExHAHQhljePz4MT5//izymPKYbafwmRFCyDcUTJOfWnHSSP0sKfXohY+Q0qFo+Xh7e3uRnM0FOcgp2w4hFRNt8yA/teKkkfpZUur9999/FXJFnZDyTpHy8YmJiXKNQdl2CKk4aGWa/NSKU0zjZ1nRNTU1RZcuXeDh4YH+/fvzVmQjhBSNIoVTKEgm5Ocj3xIcIRVUrVq1cP36dVhYWGD27Nno27cv+vbtizlz5sDCwgJhYWFS87Hu2rVLYn7e3Nxc7Nq1qzSnrrCIiAg0b94cf/zxBwwMDDB27Fjcvn27rKdFSIVXUD4+OztbrE1W+fiVK1eKrFhfu3ZN5G9Meno6JkyYUPKTJoSUGtrmQSqN4qSR4ksF9eHDB9SsWbNcb/Mo8PXrVxw/fhwBAQE4c+YMzMzMMHLkSAwdOpQ3NzEhhJ8ihVMK/03R0dFBZGQktyVLWl5wQkj5RME0IVIIhUIkJyeLBZ1RUVGws7Mr10VbCsvJycHmzZsxe/Zs5ObmQlVVFb/99htWrFjBe0uaECJZcQunSEqNFxUVRcE0IRUY7ZkmRIJWrVpBIBBAIBDA3t4eysr//6uSl5eHp0+fonv37mU4Q/mFh4dj586d2L9/PzQ1NTFjxgx4eHjgxYsXWLBgAfr06UPbPwgpogYNGuDUqVM/vHAKIaT8oWCaEAlcXFwAAJGRkXB0dISWlhbXpqqqCiMjo3JfWXDt2rXw9/fH48eP0aNHD+zatQs9evTgspUYGxsjICAARkZGZTtRQiowPT09tGvXrqynQQgpQxRMEyLB/PnzAQBGRkYYOHBghcyE4evri5EjR2LEiBEi2zhevHiBhQsXYtu2bahZsyZ27NhRhrMkpPLx8/Pj3qB//foVAQEBqF69OoBvBxAJIRUL7ZkmRA53797Fo0ePAADNmjVDq1atynhGxRcVFYXWrVvTnkxCyoCRkREEAoHMxz19+vQHzIYQUhJoZZoQKd6+fYtBgwbh8uXL0NXVBQCkpaXBzs4O+/fvp2wYhJAiefbsWVlPgRBSwijPNCFSeHp6Ij09HQ8fPkRKSgpSUlLw4MEDfPr0CZMnTy7r6RFCCCGkjFEwTYgUZ86cwebNm2Fubs5da9q0KXx8fHD69OkynBkhpCK6ceMGTp48KXJt165dMDY2Rs2aNTFmzBiJhaIIIeUXbfMgRIr8/HyoqKiIXVdRUSm3ZcddXV2ltqelpf2YiRBCxCxcuBC2trZchcT79+/Dw8MDI0aMgLm5OVatWoU6dergr7/+KtuJEkLkRgcQCZGiT58+SEtLw759+1CnTh0AwMuXLzFkyBDo6ekhJCSkjGcozt3dXa7H+fv7l/JMCCGF1a5dGydOnEDbtm0BAH/++SdCQ0MRFhYGADh06BDmz5+PmJiYspwmIaQIaGWaECk2bdoEZ2dnGBkZoV69egCA58+fw8LCArt37y7j2UlGQTIh5VdqaqpImfHQ0FA4OTlxn7dr1w7Pnz8vi6kRQoqJgmlCpKhXrx4iIiJw/vx5xMbGAgDMzc3RrVu3Mp4ZIaQiqlWrFp4+fYp69eohNzcXERERWLBgAdeenp4ucWsZIaT8omCaEBkEAgF+/fVX/Prrr2U9FUJIBdejRw94e3tjxYoVOHr0KDQ0NNC5c2euPTo6GiYmJmU4Q0JIUVE2D0JkCA0NRe/evWFqagpTU1M4Ozvj6tWrZT0tQkgFtGjRIigrK6NLly7Yvn07tm/fDlVVVa59586dcHBwKMMZEkKKig4gEiLF7t274e7uDldXV9jY2AAAwsLCcPToUQQEBGDw4MFlPENCSEX08eNHaGlpQUlJSeR6SkoKtLS0RAJsQkj5RsE0IVKYm5tjzJgxmDZtmsj1tWvXYvv27VyJcUIIIYRUThRMEyJFlSpV8PDhQ5iamopcj4+Ph4WFBbKzs8toZoQQQggpD2jPNCFS1KtXDxcuXBC7fv78eS5VHiGEEEIqL8rmQYgU06dPx+TJkxEZGQlra2sAwLVr1xAQEIANGzaU8ewIIYQQUtZomwchMoSEhGDNmjXc/mhzc3N4eXmhT58+ZTwzQgghhJQ1CqYJIYQQQggpJtrmQYicMjIykJ+fL3JNR0enjGZDCCGEkPKADiASIsXTp0/Rs2dPaGpqomrVqtDT04Oenh50dXWhp6dX1tMjhBBCSBmjlWlCpPj999/BGMPOnTtRq1YtCASCsp4SIYQQQsoR2jNNiBRaWlq4e/cuGjduXNZTIYQQQkg5RNs8CJGiXbt2eP78eVlPgxBCCCHlFG3zIEQKPz8/jBs3Di9fvoSFhQVUVFRE2ps3b15GMyOEEEJIeUDBNCFSvHv3DgkJCXB3d+euCQQCMMYgEAiQl5dXhrMjhBBCSFmjPdOESNG0aVOYm5tj5syZEg8gNmjQoIxmRgghhJDygIJpQqTQ1NREVFQUTE1Ny3oqhBBCCCmH6AAiIVJ07doVUVFRZT0NQgghhJRTtGeaECl69+6NadOm4f79+7C0tBQ7gOjs7FxGMyOEEEJIeUDbPAiRQijkv3lDBxAJIYQQQsE0IYQQQgghxUR7pgkhhBBCCCkmCqYJkeDGjRs4efKkyLVdu3bB2NgYNWvWxJgxY5CTk1NGsyOEEEJIeUHBNCESLFy4EA8fPuQ+v3//Pjw8PNCtWzd4e3vjxIkTWLZsWRnOkBBCCCHlAe2ZJkSC2rVr48SJE2jbti0A4M8//0RoaCjCwsIAAIcOHcL8+fMRExNTltMkhBBCSBmjlWlCJEhNTUWtWrW4z0NDQ+Hk5MR93q5dOzx//rwspkYIIYSQcoSCaUIkqFWrFp4+fQoAyM3NRUREBDp06MC1p6eni+WcJoQQQkjlQ8E0IRL06NED3t7euHr1KmbPng0NDQ107tyZa4+OjoaJiUkZzpAQQggh5QFVQCREgkWLFsHV1RVdunSBlpYWAgMDoaqqyrXv3LkTDg4OZThDQgghhJQHdACRECk+fvwILS0tKCkpiVxPSUmBlpaWSIBNCCGEkMqHgmlCCCGEEEKKifZME0IIIYQQUkwUTBNCCCGEEFJMFEwTQgghhBBSTBRME0IIIYQQUkwUTBNCSCU2YsQIuLi4cJ/b2tpi6tSpZTYfQgipaCiYJoQQUixGRkZYv359WU+DEELKFAXThBBCCCGEFBMF04QQUsHl5+dj5cqVMDU1RZUqVVC/fn0sWbIEAPD8+XP89ttv0NXVhb6+Pvr06YNnz54pPKatrS0SExMxbdo0CAQCCAQCfP78GTo6Ojh8+LDIY48ePQpNTU2kp6fj2bNnEAgE2L9/P6ytraGmpgYLCwuEhoaK9Hnw4AGcnJygpaWFWrVqYejQoXj//r3C8yaEkJJGwTQhhFRws2fPxvLlyzF37lzExMRg7969qFWrFr58+QJHR0doa2vj6tWruHbtGrS0tNC9e3fk5uYqNGZwcDAMDQ2xcOFCvH79Gq9fv4ampiYGDRoEf39/kcf6+/ujf//+0NbW5q55eXlh+vTpuHfvHjp27IjevXvjw4cPAIC0tDR07doVrVq1Qnh4OM6cOYPk5GT89ttvCs2ZEEJKg3JZT4AQQkjxpaenY8OGDdi0aROGDx8OADAxMUGnTp2we/du5Ofnw8/PDwKBAMC3wFZXVxeXL1+Gg4NDscfV19eHkpIStLW1YWBgwF0fNWoUrK2t8fr1a9SuXRtv377FqVOncP78eZH+kyZNQr9+/QAAvr6+OHPmDHbs2IGZM2di06ZNaNWqFZYuXco9fufOnahXrx7i4uJgZmZW7HkTQkhJo5VpQgipwB49eoScnBzY29uLtUVFRSE+Ph7a2trQ0tKClpYW9PX1kZ2djYSEhFKZj5WVFZo1a4bAwEAAwO7du9GgQQP88ssvIo/r2LEj929lZWW0bdsWjx494uZ96dIlbs5aWlpo0qQJAJTavAkhpLhoZZoQQiowdXV13raMjAy0adMGe/bsEWurUaNGqc1p1KhR8PHxgbe3N/z9/eHu7s6tjMsjIyMDvXv3xooVK8TaateuXZJTJYQQhdHKNCGEVGCNGjWCuro6Lly4INbWunVrPHnyBDVr1oSpqanIR9WqVRUeW1VVFXl5eWLXf//9dyQmJmLjxo2IiYnhtp987+bNm9y/v379irt378Lc3Jyb98OHD2FkZCQ2b01NTYXnTQghJYmCaUIIqcDU1NQwa9YszJw5E7t27UJCQgJu3ryJHTt2YMiQIahevTr69OmDq1ev4unTp7h8+TImT56MFy9eKDy2kZERrly5gpcvX4pk2tDT04Orqyu8vLzg4OAAQ0NDsb4+Pj4ICQlBbGwsJk6ciNTUVIwcORIAMHHiRKSkpMDNzQ137txBQkICzp49C3d3d4nBOyGElCUKpgkhpIKbO3cupk+fjnnz5sHc3BwDBw7E27dvoaGhgStXrqB+/fpwdXWFubk5PDw8kJ2dDR0dHYXHXbhwIZ49ewYTExOxbSMeHh7Izc3lAuTCli9fjuXLl6NFixYICwvD8ePHUb16dQBAnTp1cO3aNeTl5cHBwQGWlpaYOnUqdHV1IRTSyxYhpHwRMMZYWU+CEELIzyUoKAjTpk3Dq1evoKqqyl1/9uwZjI2Nce/ePbRs2bLsJkgIISWEDiASQggpMZmZmXj9+jWWL1+OsWPHigTShBDyM6L7ZYQQQsRcvXpVJDVd4Q8+K1euRJMmTWBgYIDZs2f/wBkTQkjZoG0ehBBCxGRlZeHly5e87aampj9wNoQQUn5RME0IIYQQQkgx0TYPQgghhBBCiomCaUIIIYQQQoqJgmlCCCGEEEKKiYJpQgghhBBCiomCaUIIIYQQQoqJgmlCCCGEEEKKiYJpQgghhBBCiun/AC0/86XlAyiyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(7, 6))\n", + "sns.heatmap(cell_type_to_cell_type, **heatmap_kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similary, you can compute the mean hop-distance between all pairs of cell-types and niches:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 8/8 [00:02<00:00, 3.28it/s]\n" + ] + } + ], + "source": [ + "cell_type_to_niche = sopa.spatial.mean_distance(adata, \"cell_type\", \"niches\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAKLCAYAAACZsqO2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvbklEQVR4nOzdd1gUV9vA4d8C0psgCiqIBRQRFSwJGhEr2KIGgxob9oKisZPEgg019oYdNLbEXmIv2I0lghqwERS7RkUFFWnfH3zs67oLLCsjKOd+r7lemTn7zNmNcnbOnHkeWXp6ejqCIAiCIGRJK787IAiCIAgFnRgsBUEQBCEHYrAUBEEQhByIwVIQBEEQciAGS0EQBEHIgRgsBUEQBCEHYrAUBEEQhByIwVIQBEEQciAGS0EQBEHIgRgsBUEQBCEHYrAUBEEQ8s3UqVORyWQMGTJEvu/t27f4+/tjaWmJsbExPj4+PHr0KP86iRgsBUEQhHxy7tw5lixZQtWqVRX2//jjj+zcuZONGzdy9OhR7t+/z3fffZdPvcwgBktBEAThk0tISKBTp04sW7aMokWLyve/ePGCFStWMGvWLBo2bEiNGjUIDQ3l1KlTnDlzJt/6KwZLQRAE4aMlJSXx8uVLhS0pKSnL9v7+/rRo0YLGjRsr7L9w4QLJyckK+ytVqoSdnR2nT5+WrP850cm3MwuChG5W9pIstqVz1r8A8sLl41aSxS5umihZ7PIn5koWO+3VU8liA8T3GiVZbNPOtSSLbdBzRq7a6+iWkqgn8MtPvQkKClLYN27cOMaPH6/UdsOGDfz999+cO3dO6djDhw/R1dXF3NxcYX+JEiV4+PBhXnY5V8RgKQiCIHy0wMBAhg4dqrBPT09Pqd2dO3cYPHgwBw4cQF9f/1N176OJadg8JpPJ2LZt20fF8PT0VFgZ9qn4+fnRpk2bT35eQRA+DZmEm56eHqampgqbqsHywoULPH78GDc3N3R0dNDR0eHo0aPMmzcPHR0dSpQowbt374iPj1d43aNHj7C2ts7rj0RtYrDMpYcPHzJo0CDKlSuHnp4etra2tGrVikOHDuV31z7a3LlzCQsL+2TnCwsLU5pqEQThy9aoUSMuX75MRESEfKtZsyadOnWS/7lIkSIKv1OvXbtGXFwc7u7u+dZvMQ2bC7du3aJu3bqYm5vz66+/4uLiQnJyMvv27cPf35+rV6/mdxc/ipmZWX53QRAECclksvzuAiYmJlSpUkVhn5GREZaWlvL9PXv2ZOjQoVhYWGBqasqgQYNwd3fn66+/zo8uA+LKMlcGDBiATCbj7Nmz+Pj44OjoiLOzM0OHDlVY0vzff//Rtm1bDA0NcXBwYMeOHQpxjh49Su3atdHT08PGxobRo0eTkpKS5Xl/++03atasiYmJCdbW1vzwww88fvxYfjw8PByZTMahQ4eoWbMmhoaG1KlTh2vXrinEmTRpEsWLF8fExIRevXoxevRoqlevLj/+4TRsUlISAQEBFC9eHH19fb755hulG/L//PMPLVu2xNTUFBMTE+rVq0dMTAzHjh2jSJEiSjfkhwwZQr169QgPD6d79+68ePECmUyGTCaTLwRISkpi+PDhlCpVCiMjI7766ivCw8Oz+08jCMIXZPbs2bRs2RIfHx88PDywtrZmy5Yt+donMViq6dmzZ+zduxd/f3+MjIyUjr8/nRgUFISvry+XLl2iefPmdOrUiWfPngFw7949mjdvTq1atYiMjCQkJIQVK1YwadKkLM+dnJzMxIkTiYyMZNu2bdy6dQs/Pz+ldj///DMzZ87k/Pnz6Ojo0KNHD/mxtWvXMnnyZKZNm8aFCxews7MjJCQk2/c8cuRINm/ezKpVq/j777+pUKECXl5eCu/Fw8MDPT09Dh8+zIULF+jRowcpKSl4eHhQrlw5fvvtN4X3sXbtWnr06EGdOnWYM2cOpqamPHjwgAcPHjB8+HAABg4cyOnTp9mwYQOXLl3i+++/x9vbmxs3bmTbX0EQspf5xVSK7WOEh4czZ84c+c/6+vosXLiQZ8+ekZiYyJYtW/L1fiWIaVi13bx5k/T0dCpVqpRjWz8/Pzp27AjAlClTmDdvHmfPnsXb25tFixZha2vLggULkMlkVKpUifv37zNq1CjGjh2Llpby95f3B71y5coxb948atWqRUJCAsbGxvJjkydPpn79+gCMHj2aFi1a8PbtW/T19Zk/fz49e/ake/fuAIwdO5b9+/eTkJCg8j0kJiYSEhJCWFgYzZo1A2DZsmUcOHCAFStWMGLECBYuXIiZmRkbNmygSJEiADg6Ospj9OzZk9DQUEaMGAHAzp07efv2Lb6+vujq6mJmZoZMJlP4RxAXF0doaChxcXGULFkSgOHDh7N3715CQ0OZMmWKUl+TkpKUnudKSktDT8VnKQiFmYz8n4b9XInfJmpKT09Xu+37qZuMjIwwNTWVT5tGR0fj7u6u8E2sbt26JCQkcPfuXZXxLly4QKtWrbCzs8PExEQ+IMbFxWV5XhsbGwD5ea9du0bt2rUV2n/48/tiYmJITk6mbt268n1FihShdu3aREdHAxAREUG9evXkA+WH/Pz8uHnzpnyKOiwsDF9fX5VX5pkuX75Mamoqjo6OGBsby7ejR48SExOj8jXBwcGYmZkpbEue/pvlOQRBEHJLXFmqycHBAZlMptYing8HD5lMRlpamkbnTUxMxMvLCy8vL9auXYuVlRVxcXF4eXnx7t27LM+bORhrel51GBgYZHu8ePHitGrVitDQUMqWLcuePXtyvPeYkJCAtrY2Fy5cQFtbW+HY+1fR71P1fNed2j45vwFBKGQKwgKfz5W4slSThYUFXl5eLFy4kMRE5SwoHz4TlBUnJydOnz6tcKV68uRJTExMKF26tFL7q1ev8vTpU6ZOnUq9evWoVKmSwuIedVWsWFFpcY6q7BmZypcvj66uLidPnpTvS05O5ty5c1SuXBnIuJI9fvw4ycnJWcbp1asXv//+O0uXLqV8+fIKV6q6urqkpqYqtHd1dSU1NZXHjx9ToUIFhS2rexYqn+8SU7CCIOQh8RslFxYuXEhqaiq1a9dm8+bN3Lhxg+joaObNm6f28z8DBgzgzp07DBo0iKtXr7J9+3bGjRvH0KFDVd6vtLOzQ1dXl/nz5/Pvv/+yY8cOJk6cmOu+Dxo0iBUrVrBq1Spu3LjBpEmTuHTpUpbfNI2MjOjfvz8jRoxg7969REVF0bt3b16/fk3Pnj2BjIU4L1++pEOHDpw/f54bN27w22+/KazC9fLywtTUlEmTJsnvl2ayt7cnISGBQ4cO8d9///H69WscHR3p1KkTXbt2ZcuWLcTGxnL27FmCg4P5888/c/2+BUH4Hy2ZTLLtSycGy1woV64cf//9Nw0aNGDYsGFUqVKFJk2acOjQoRxXlmYqVaoUu3fv5uzZs1SrVo1+/frRs2dPfvnlF5XtraysCAsLY+PGjVSuXJmpU6cyY0bu8kECdOrUicDAQIYPH46bmxuxsbH4+fllm25q6tSp+Pj40KVLF9zc3Lh58yb79u2TVwiwtLTk8OHDJCQkUL9+fWrUqMGyZcsUpoO1tLTw8/MjNTWVrl27KsSvU6cO/fr1o3379lhZWTF9+nQAQkND6dq1K8OGDaNixYq0adOGc+fOYWdnl+v3LQiCkBdk6blZuSJ8UZo0aYK1tbXC4x1S6NmzJ0+ePFF63lRKIpG6aiKRumqFJZG6sWFZiXoCCa9jJYtdEIgFPoXE69evWbx4MV5eXmhra7N+/XoOHjzIgQMHJDvnixcvuHz5MuvWrfukA6UgCEJeE4NlISGTydi9ezeTJ0/m7du3VKxYkc2bNyvVkstLrVu35uzZs/Tr148mTZpIdh5BENRTGO4tSkUMloWEgYEBBw8e/KTnFCnqBKFgEY+OaE4MlsIXqWRf6e7NIPFt/rBz0t2fW30rUrLYv1UfL1nsNiu+kiw2gEn76tIFt8rfNG1C3hCrYXMpL+pVFgT29vYKuRjzw/uf5a1bt5DJZERERORrnwThS6aFTLLtS5evg+WTJ0/o378/dnZ26OnpYW1tjZeXl8KD8Pll/PjxChU5BEEQhMIrX6dhfXx8ePfuHatWraJcuXI8evSIQ4cO8fSptMvEBUEQCiNxz1Jz+XZlGR8fz/Hjx5k2bRoNGjSgTJky1K5dm8DAQL799lt5O5lMxpIlS2jZsiWGhobydHE3b97E09MTIyMj6tSpo5RkOyQkRJ6yrWLFikrPEsbFxdG6dWuMjY0xNTXF19eXR48eARkJv4OCgoiMjJSXnwkLC5O/Nqd6lR+yt7dn0qRJdO3aFWNjY8qUKcOOHTt48uSJvA9Vq1bl/Pnz8teourKdM2cO9vb28p/Dw8OpXbs2RkZGmJubU7duXW7fvi0/vnPnTmrVqoW+vj7FihWjbdu22f736NWrF1ZWVpiamtKwYUMiI7O/v3X37l06duyIhYUFRkZG1KxZk7/++kt+fPv27bi5uaGvr0+5cuUICgrKtm7n+54/f06nTp2wsrLCwMAABwcHQkND1XqtIAhCXsu3wTKzmsS2bduUyit9aOLEiXTt2pWIiAgqVarEDz/8QN++fQkMDOT8+fOkp6czcOBAefutW7cyePBghg0bxpUrV+jbty/du3fnyJEjQEZy8datW/Ps2TOOHj3KgQMH+Pfff2nfvj0A7du3Z9iwYTg7O8trLWYeg+zrVWZl9uzZ1K1bl4sXL9KiRQu6dOlC165d6dy5M3///Tfly5ena9eualc3SUlJoU2bNtSvX59Lly5x+vRp+vTpI//m+Oeff9K2bVuaN2/OxYsXOXToULZVRr7//nseP37Mnj17uHDhAm5ubjRq1CjL95WZtefevXvs2LGDyMhIRo4cKU/cfvz4cbp27crgwYOJiopiyZIlhIWFMXnyZLXe35gxY4iKimLPnj1ER0cTEhJCsWLF1HqtIAiqiXR3msu3aVgdHR3CwsLo3bs3ixcvxs3Njfr169OhQweFUlMA3bt3x9fXF4BRo0bh7u7OmDFj8PLKyNIyePBghbyjM2bMwM/PjwEDBgAwdOhQzpw5w4wZM2jQoAGHDh3i8uXLxMbGYmtrC8Dq1atxdnbm3Llz1KpVC2NjY3R0dFQm786uXmVWmjdvTt++fYGMWpIhISHUqlWL77//XuF9PXr0SK0ipy9fvuTFixe0bNmS8uXLAxlJ2jNNnjyZDh06EBQUJN9XrVo1lbFOnDjB2bNnefz4MXp6evLPcNu2bWzatIk+ffoovWbdunU8efKEc+fOYWFhAUCFChXkx4OCghg9ejTdunUDMlIFTpw4kZEjRzJu3Lgc319cXByurq7UrFkTQOGKWhAE4VPL1wU+Pj4+3L9/nx07duDt7U14eDhubm4KU56gWKexRIkSALi4uCjse/v2LS9fvgQyaka+X90CMmpGZtZhjI6OxtbWVj5QAlSuXBlzc3N5m+xkV69Snddk9R4AtSuKWFhY4Ofnh5eXF61atWLu3Lk8ePBAfjwiIoJGjRqpFSsyMpKEhAQsLS0VakjGxsZmWUMyIiICV1dX+UCpKuaECRMU4vXu3ZsHDx7w+vXrHPvUv39/NmzYQPXq1Rk5ciSnTp3Ksm1SUhIvX75U2JJSUrNsLwiFVeZtJSm2L12+Pzqir69PkyZNGDNmDKdOncLPz0/pykNVncZPXbsxq/5knj+nc+f2PWhpaSlNyX5YCis0NJTTp09Tp04dfv/9dxwdHeWFlnOqNfm+hIQEbGxsiIiIUNiuXbvGiBEjVL4mp/gJCQkEBQUpxLt8+TI3btzINnl7pmbNmnH79m1+/PFH7t+/T6NGjRg+fLjKtqqKP884cDHnNy4IhYx4dERz+T5Yfqhy5coq60XmhpOTk9LjJydPnpTXYXRycuLOnTvcuXNHfjwqKor4+Hh5G1W1Fj8lKysrHj58qDBgqnoG0dXVlcDAQE6dOkWVKlVYt24dkHEle+jQIbXO5ebmxsOHD9HR0VGqIZnVfcKqVasSERGR5T1NNzc3rl27phSvQoUKKkuRqWJlZUW3bt1Ys2YNc+bMYenSpSrbBQYG8uLFC4VteBNXtc4hCIKgjny7Z/n06VO+//57evToQdWqVTExMeH8+fNMnz6d1q1bf1TsESNG4Ovri6urK40bN2bnzp1s2bJFnu6tcePGuLi40KlTJ+bMmUNKSgoDBgygfv36CvfIYmNjiYiIoHTp0piYmMjv530Knp6ePHnyhOnTp9OuXTv27t3Lnj17MDU1BSA2NpalS5fy7bffUrJkSa5du8aNGzfkZbDGjRtHo0aNKF++PB06dCAlJYXdu3czapRydYXGjRvj7u5OmzZtmD59Oo6Ojty/f1++SCjzM3lfx44dmTJlCm3atCE4OBgbGxsuXrxIyZIlcXd3Z+zYsbRs2RI7OzvatWuHlpYWkZGRXLlyhUmTJuX4/seOHUuNGjVwdnYmKSmJXbt2KdyTfZ+enp7Sf5vXOto5nkMQCpvCMF0qlXxdDfvVV18xe/ZsPDw8qFKlCmPGjKF3794sWLDgo2K3adOGuXPnMmPGDJydnVmyZAmhoaF4enoCGX9htm/fTtGiRfHw8KBx48aUK1eO33//XR7Dx8cHb29vGjRogJWVFevXr/+oPuWWk5MTixYtYuHChVSrVo2zZ88qTEMaGhpy9epVfHx8cHR0pE+fPvj7+8sXEXl6erJx40Z27NhB9erVadiwIWfPnlV5rswk6x4eHnTv3h1HR0c6dOjA7du35fdSP6Srq8v+/fspXrw4zZs3x8XFhalTp6KtnTFIeXl5sWvXLvbv30+tWrX4+uuvmT17NmXKlFHr/evq6hIYGEjVqlXx8PBAW1ubDRs25OYjFARByDOinqXwRXo9t590wSX+JzNwjoS5Ye+fliz2b8U8JYstdW7Y9NuqF7LlBVlJ25wbacjgW9X38bNiY15Zop7Ag/goyWIXBAXunqUgCIIgFDSi6oggCEIhURiSB0hFXFkKgiAIQg7ElaXwRUq9ESdZbG2ncpLFBmieJN2q69ji0t2z8rB9kHMjDWnZu+Tc6COkRl+WLHbaezmf89y3OTd5n1gNqzlxZSkIgiAIORCD5WfA09OTIUOGyH+WsnBzTsWtRZFmQfh8iQw+mhODZQHi5+enMufi9OnTmThxYn53TxKiyLYgfDoiN6zmxD3LAsbb21upbqOVlZX8YX9NJScnK+W0FQRBENQjriwLGD09PaytrRW2Ro0aKUzDArx69YqOHTtiZGREqVKlWLhwocJxmUxGSEgI3377LUZGRvI6kjkVxQZ48OABzZo1w8DAgHLlyrFp06Ys+5uamkrPnj0pW7YsBgYGVKxYkblz5yq0yapIdVZFttPT0xk/fjx2dnbo6elRsmRJAgICNPxEBUHIJKZhNScGy8/Ur7/+SrVq1bh48SKjR49m8ODBHDhwQKHN+PHjadu2LZcvX6ZHjx45FsXONGbMGHx8fIiMjKRTp0506NAhy9JlaWlplC5dmo0bNxIVFcXYsWP56aef+OOPP4Dsi1RnVWR78+bNzJ49myVLlnDjxg22bdumUM5MEAThUxPTsAXMrl27MDY2lv/crFkzle3q1q3L6NGjAXB0dOTkyZPMnj2bJk2ayNv88MMPCkWxO3bsmG1R7Ezff/89vXr1AmDixIkcOHCA+fPns2jRIqV+FClSRKHAdNmyZTl9+jR//PEHvr6+ORapVlVkOy4uDmtraxo3bkyRIkWws7Ojdu3aWX5mSUlJJCUlKex7l5qK3kdOXQvCl0YmE9dHmhKfXAHToEEDhRqQ8+bNU9nO3d1d6ecPr/4+rBaSU1Hs3MR+38KFC6lRowZWVlYYGxuzdOlS4uIynnPMqUi1Kt9//z1v3ryhXLly9O7dm61bt5KSkpJle1X1LGde+DfbcwiCIOSGGCwLGCMjI4XajzY2Nh8VS2obNmxg+PDh9OzZk/379xMREUH37t159+6dvE12RapVsbW15dq1ayxatAgDAwMGDBiAh4eHUvHrTKrqWQ6rIW3iAEH4HMkk/N+XTgyWn6kPB5szZ85kWe8xU05FsTWJffLkSerUqcOAAQNwdXWlQoUKxMQoV3DIqkh1VkW2DQwMaNWqFfPmzSM8PJzTp09z+bLqLCt6enqYmpoqbGIKVhCEvCTuWX6mTp48yfTp02nTpg0HDhxg48aN/Pnnn9m+Jqei2Jk2btxIzZo1+eabb1i7di1nz55lxYoVKmM6ODiwevVq9u3bR9myZfntt984d+4cZcuWBXIuUq2qyPb69etJTU3lq6++wtDQkDVr1mBgYKB2LUxBEFQTidQ1JwbLz9SwYcM4f/48QUFBmJqaMmvWLLy8vLJ9zftFsQcPHkzZsmUVimJnCgoKYsOGDQwYMAAbGxvWr1+vdPWZqW/fvly8eJH27dsjk8no2LEjAwYMYM+ePcD/ilSvWrWKp0+fYmNjo1Ck2sfHhy1bttCgQQPi4+MJDQ3F3NycqVOnMnToUFJTU3FxcWHnzp1YWlp+/AcnCIVYYZgulYoo/ix8kV4NbC5ZbKkTqe+e9Fyy2Au1H0sWe42t8nR6Xim2coxksQFS96yTLHZ6/CvJYhtN2JCr9o5WNXNupKHrTyRMGF8AiCtLQRCEQkJMw2pOLPARBEEQhByIK0tBEIRCQtyz1JwYLIUvkt5Pv0oWO3XfKsliA3R4ulXS+FJxeWEoWezbC6X77wlQpFtPyWK/nbFAstjCpyMGS0EQhEJC3LPUnLhnmQ/8/Pxo06aN0v7w8HBkMhnx8fGfrC9hYWGYm5t/svNlEnUsBUH4nIgrS0EQhEJC3LPUnLiyLMBOnDhBvXr1MDAwwNbWloCAABITE+XH7e3tmThxYrZ1LWfNmoWLiwtGRkbY2toyYMAAEhISgIwr2e7du/PixQt5Pcnx48cD8Pz5c7p27UrRokUxNDSkWbNm3LhxQyH2yZMn8fT0xNDQkKJFi+Ll5cXz589ZvXo1lpaWSpVA2rRpQ5cuXbKsYwkQHx9Pr169sLKywtTUlIYNGxIZGZnHn6wgFE5aMplkW26EhIRQtWpVeXpKd3d3eSITAE9PT/nvhsytX79+ef1x5IoYLAuomJgYvL298fHx4dKlS/z++++cOHGCgQMHKrTLqa6llpYW8+bN459//mHVqlUcPnyYkSNHAlCnTh3mzJmDqampvJ7k8OHDgYyp4vPnz7Njxw5Onz5Neno6zZs3lyczj4iIoFGjRlSuXJnTp09z4sQJWrVqRWpqKt9//z2pqans2LFD3o/Hjx/z559/0qNHjyzrWEJGxZHHjx+zZ88eLly4gJubG40aNeLZs2eSft6CIHw6pUuXZurUqVy4cIHz58/TsGFDWrduzT///CNv07t3b/nvhwcPHjB9+vR87LGYhs03H9atBBQSigcHB9OpUyeGDBkCZORgnTdvHvXr1yckJAR9fX0g57qWma+HjCvRSZMm0a9fPxYtWoSuri5mZmbIZDKFepI3btxgx44d8iTpAGvXrsXW1pZt27bx/fffM336dGrWrKlQ49LZ2Vn+5x9++IHQ0FC+//57ANasWYOdnZ38G6OqOpYnTpzg7NmzPH78GD09PQBmzJjBtm3b2LRpE3369NHswxYEASg407CtWrVS+Hny5MmEhIRw5swZ+e8RQ0NDhd8P+U0MlvmkQYMGhISEKOz766+/6Ny5MwCRkZFcunSJtWvXyo+np6eTlpZGbGysvAqIqtqTc+bMkf988OBBgoODuXr1Ki9fviQlJYW3b9/y+vVrDA1VL/WPjo5GR0eHr776Sr7P0tKSihUryutaRkREyAdCVXr37k2tWrW4d+8epUqVIiwsDD8/P2TZTNdERkaSkJCglAP2zZs3KiuZZFJV/FmW9A49Pd0sXyMIQt5S9e9QT09P/sU3K6mpqWzcuJHExESF32dr165lzZo1WFtb06pVK8aMGZPl76xPQQyW+SSzbuX77t69K/9zQkICffv2JSAgQOm1dnZ2ap3j1q1btGzZkv79+zN58mQsLCw4ceIEPXv25N27dx/1F8/AwCDb466urlSrVo3Vq1fTtGlT/vnnnxyroiQkJGBjY0N4eLjSsexW7AYHBxMUFKSw75eh/RkzzD/b8wlCYaMl4ZWlqn+H48aNk6+D+NDly5dxd3fn7du3GBsbs3XrVnnBhh9++IEyZcpQsmRJLl26xKhRo7h27RpbtmyRrP85EYNlAeXm5kZUVJTSgPqh7GpPXrhwgbS0NGbOnImWVsbt6T/++EOhvap6kk5OTqSkpPDXX3/Jp2GfPn3KtWvX5H+Zq1atyqFDh5T+cbyvV69ezJkzh3v37tG4cWNsbW2zPa+bmxsPHz5ER0cHe3v7bN/3+wIDAxk6dKjCPtnTrK9EBUHIe6r+HWZ3VVmxYkUiIiJ48eIFmzZtolu3bhw9epTKlSsr3HJxcXHBxsaGRo0aERMTQ/ny5SV7D9kRC3wKqFGjRnHq1CkGDhxIREQEN27cYPv27UoLfDLrWl6/fp2FCxeyceNGBg8eDECFChVITk5m/vz5/Pvvv/z2228sXrxY4fX29vYkJCRw6NAh/vvvP16/fo2DgwOtW7emd+/enDhxgsjISDp37kypUqVo3bo1kPEP49y5cwwYMIBLly5x9epVQkJC+O+//+Sxf/jhB+7evcuyZcvo0aOH0nkz61j+999/JCUl0bhxY9zd3WnTpg379+/n1q1bnDp1ip9//pnz57OuaKCy+LOYghUEJR+uMM3LTfW/w6wHS11dXSpUqECNGjUIDg6mWrVqzJ07V2XbzFtCN2/elORzUYcYLAuoqlWrcvToUa5fv069evVwdXVl7NixlCxZUqFdZl1LV1dXJk2apFDXslq1asyaNYtp06ZRpUoV1q5dS3BwsMLr69SpQ79+/Wjfvj1WVlbyFWehoaHUqFGDli1b4u7uTnp6Ort376ZIkSJAxmKi/fv3ExkZSe3atXF3d2f79u3o6PxvssLMzAwfHx+MjY2VkjD4+Pjg7e1NgwYNsLKyYv369chkMnbv3o2Hhwfdu3fH0dGRDh06cPv2bUqUKJHXH7EgCAVIWlqa0j3PTBEREQDY2Nh8wh4pEvUsP2P29vYMGTJEYcVrQdOoUSOcnZ2ZN2/eJz3vu/v/5NxIQ1LnhjXpuzbnRgWQqZ6EuWG7OUgWGz7f3LDmvx/JVfuaNvUk6gmcf3Bc7baBgYE0a9YMOzs7Xr16xbp165g2bRr79u2jXLlyrFu3jubNm2NpacmlS5f48ccfKV26NEePHpWs/zkR9ywFSTx//pzw8HDCw8MVHi8RBCH/ZLca/VN6/PgxXbt25cGDB5iZmVG1alX27dtHkyZNuHPnDgcPHmTOnDkkJiZia2uLj48Pv/zyS772WQyWgiRcXV15/vw506ZNo2LFivndHUEQCpAVK1ZkeczW1jZfryCzIgbLz9itW7fyuwtZKsh9E4TCqqAkJfgcicFS+CK96j1Astj6NaRdZHCmeC3JYl9NM865kYZat3kqWWwp65MCvJsRKFnsIi6lJIstfDpisBQEQSgkpExK8KUTj44UMFnVuswLnp6eBXLlrJTvWRAEIS8U6itLPz8/4uPj2bZtW353JU+Fh4fToEEDnj9/rpAmbsuWLfLnJAVBKHwKymrYz1GhHiwLGwsLi/zugiAIwmdJTMN+ID09nQoVKjBjxgyF/REREchkMnm6JZlMxpIlS2jZsiWGhoY4OTlx+vRpbt68iaenJ0ZGRtSpU0ehWsb48eOpXr06S5YswdbWFkNDQ3x9fXnx4oVSP2bMmIGNjQ2Wlpb4+/vL60gC/Pbbb9SsWRMTExOsra354YcfePz4MZCxCrVBgwYAFC1aFJlMhp+fH6A8DZuUlMSoUaOwtbVFT0+PChUqZLukOykpieHDh1OqVCmMjIz46quvFJKeh4WFYW5uzr59+3BycsLY2Bhvb28ePHggb5OamsrQoUMxNzfH0tKSkSNH8mFejKSkJAICAihevDj6+vp88803nDt3Lst+CYKgHi1kkm1fOjFYfkAmk9GjRw9CQ0MV9oeGhuLh4aGQ2HzixIl07dqViIgIKlWqxA8//EDfvn0JDAzk/PnzpKenK+VyvXnzJn/88Qc7d+5k7969XLx4kQEDFFduHjlyhJiYGI4cOcKqVasICwsjLCxMfjw5OZmJEycSGRnJtm3buHXrlnxAtLW1ZfPmzQBcu3aNBw8eZJlvsWvXrqxfv5558+YRHR3NkiVLlGpsvm/gwIGcPn2aDRs2cOnSJb7//nu8vb25ceOGvM3r16+ZMWMGv/32G8eOHSMuLk5eUBpg5syZhIWFsXLlSk6cOMGzZ8/YunWrwnlGjhzJ5s2bWbVqFX///TcVKlTAy8tLFIAWhI8kBkvNiWlYFfz8/Bg7dixnz56ldu3aJCcns27dOqWrze7du+Pr6wtkJD53d3dnzJgx8tysgwcPpnv37gqvefv2LatXr6ZUqYzl5PPnz6dFixbMnDlTXui0aNGiLFiwAG1tbSpVqkSLFi04dOgQvXv3BlBISl6uXDnmzZtHrVq1SEhIwNjYWD7dWrx48SxLW12/fp0//viDAwcO0LhxY3msrMTFxREaGkpcXJw8P+3w4cPZu3cvoaGhTJkyBcgYyBcvXiyvDDBw4EAmTJggjzNnzhwCAwP57rvvAFi8eDH79u2TH09MTCQkJISwsDCaNWsGwLJlyzhw4AArVqxgxIgRSn1TVUcvKTUNPW3xXVAQhLwhfpuoULJkSVq0aMHKlSsB2LlzJ0lJSUrFjqtWrSr/c2aibxcXF4V9b9++5eXLl/J9dnZ28oESMoo1p6Wlce3aNfk+Z2dntLW15T/b2NjIp1kho/RWq1atsLOzw8TEhPr16wMZA5q6IiIi0NbWlr82J5cvXyY1NRVHR0eMjY3l29GjRxWmmg0NDRVK6Lzf9xcvXvDgwQOFotI6OjrUrFlT/nNMTAzJycnUrVtXvq9IkSLUrl1bXnj6Q8HBwZiZmSlsc2LU/ywEobCQSbh96cSVZRZ69epFly5dmD17NqGhobRv316pWPL7K0szV5mp2peWlparc3+4YlUmk8ljJCYm4uXlhZeXF2vXrsXKyoq4uDi8vLx49+6d2ufIqXjzhxISEtDW1ubChQsKAzmgMHWrqu9S5+pXVUcvwbeFpOcUBKFwEVeWWWjevDlGRkaEhISwd+9epXqMmoqLi+P+/fvyn8+cOYOWlpba+VOvXr3K06dPmTp1KvXq1aNSpUoKV52QUScOUCqu/D4XFxfS0tLUzsHo6upKamoqjx8/pkKFCgpb5vRxTszMzLCxseGvv/6S70tJSeHChQvyn8uXL4+uri4nT56U70tOTubcuXPywtMfUllHT0zBCoISLZlMsu1LV+ivLF+8eCGvlZbJ0tISW1tb/Pz8CAwMxMHBAXd39zw5n76+Pt26dWPGjBm8fPmSgIAAfH191R5w7Ozs0NXVZf78+fTr148rV64wceJEhTZlypRBJpOxa9cumjdvjoGBgdLCHXt7e7p160aPHj2YN28e1apV4/bt2zx+/Fh+H/Z9jo6OdOrUia5duzJz5kxcXV158uQJhw4domrVqrRood6V3ODBg5k6dSoODg5UqlSJWbNmER8fLz9uZGRE//79GTFiBBYWFtjZ2TF9+nRev35Nz57SlVESBEHITqH/+h0eHo6rq6vCFhQUBEDPnj159+6d0iKdj1GhQgW+++47mjdvTtOmTalatWquSlhZWVkRFhbGxo0bqVy5MlOnTlVaeFSqVCmCgoIYPXo0JUqUUFqRmykkJIR27doxYMAAKlWqRO/evUlMTMzy3KGhoXTt2pVhw4ZRsWJF2rRpw7lz57Czs1O7/8OGDaNLly5069YNd3d3TExMaNu2rUKbqVOn4uPjQ5cuXXBzc+PmzZvs27ePokWLqn0eQRCUyST835dOFH/OxvHjx2nUqBF37tyRL+D5GOPHj2fbtm1KV7JC3nvaQr2FS5qQOpF69Mq3ksX+bBOp/zIj50YfQcpE6jILU8liG/2yJlftG5RuIlFP4MjdA5LFLggK/TSsKklJSTx58oTx48fz/fff58lAKQiCkN8Kw/OQUin007CqrF+/njJlyhAfH8/06dPzuzuCIAh5QiaTSbZ96cRgqYKfnx+pqalcuHBB4ZnIjzV+/HgxBSsIgvAZEtOwwhfJsH0d6YJn80hOXhirdUWy2PsfH5Es9uydDSSL3avJTsliA2jXk+7vS9r5Czk3+kTENKzmxJXlFyg8PByZTKbwSIYmMhOjf4xbt24hk8nkV9Sa9K2g1uEUBKHwEINlPvPz81M5/+/t7f1J+2Fvb8+cOXMkP0+dOnV48OABZmZmkp9LEARF4tERzYlp2ALA29tbqcqJnp5ePvVGWrq6umonYBAEQSgoxJVlAaCnp4e1tbXClvkAvkwmY/ny5bRt2xZDQ0McHBzYsWOHwut3796No6MjBgYGNGjQgFu3bimdY/PmzTg7O6Onp4e9vT0zZ86UH/P09OT27dv8+OOPKle2ZVefEmD58uU4OTmhr69PpUqVsk2y8OE07NOnT+nYsSOlSpXC0NAQFxcX1q9fn5uPTxAENWlJuH3pCsN7/OwFBQXh6+vLpUuXaN68OZ06dZLXdrxz5w7fffcdrVq1IiIigl69ejF69GiF11+4cAFfX186dOjA5cuXGT9+PGPGjJHXyNyyZQulS5dmwoQJPHjwQGEwzKk+5dq1axk7diyTJ08mOjqaKVOmMGbMGFatWqXWe3v79i01atTgzz//5MqVK/Tp04cuXbpw9uzZj/zUBEEQ8o6Yhi0Adu3apZS79aeffuKnn34CMu5rduzYEYApU6Ywb948zp49i7e3NyEhIZQvX15+pVixYkUuX77MtGnT5LFmzZpFo0aNGDNmDJCR5zUqKopff/0VPz8/LCws0NbWxsTERGmKNKf6lOPGjWPmzJny+pRly5YlKiqKJUuW0K1btxzfe6lSpRQG30GDBrFv3z7++OMPateurd4HKAiCWgrD85BSEYNlAdCgQQNCQkIU9mUWcAbFuplGRkaYmprKK41ER0cr1IcElJK+R0dH07p1a4V9devWZc6cOaSmpiqV3HpfdvUpExMTiYmJoWfPnvLC1JBRSUTdBTypqalMmTKFP/74g3v37vHu3TuSkpKUyqFlR1Xx57TkFPSKiL/egvA+8eiI5sRvkwLAyMiIChUqZHk8u/qWUsuuPmVCQgIAy5YtUxqwsxuA3/frr78yd+5c5syZg4uLC0ZGRgwZMiRXtTmDg4Plye8z/dSmLr+0rad2DEEQhOyIwfIz5+TkpLTg58yZM0pt3q8PCXDy5EkcHR3lg5qurm629S9VKVGiBCVLluTff/+lU6dOGvQ+ox+tW7emc+fOQEah7OvXr2dZu1IVVcWf0zZOzKK1IBReheERD6mIwbIASEpK4uHDhwr7dHR0KFasWI6v7devHzNnzmTEiBH06tWLCxcuyBfuZBo2bBi1atVi4sSJtG/fntOnT7NgwQKFVav29vYcO3aMDh06oKenp9a5IWPxUUBAAGZmZnh7e5OUlMT58+d5/vy50gCmioODA5s2beLUqVMULVqUWbNm8ejRo1wNlnp6ekqP2rwRU7CCIOQhsRq2ANi7dy82NjYK2zfffKPWa+3s7Ni8eTPbtm2jWrVqLF68mClTpii0cXNz448//mDDhg1UqVKFsWPHMmHCBPz8/ORtJkyYwK1btyhfvjxWVlZq971Xr14sX76c0NBQXFxcqF+/PmFhYZQtW1at1//yyy+4ubnh5eWFp6cn1tbWtGnTRu3zC4KgPvHoiOZEPUvhi/RmtXT1CaXODeszTsLcsA8jJYs9u4SEuWHnVZEsttSkzA1rNHljrtq3tmspUU9ge9wuyWIXBGKuShAEoZAQq2E1VxiungVBEATho4grS0EQhEJCJCXQnBgshS/Si+WnJYtt6CRtkvs+7ywliz21pJtksR0mlZEstk5dH8liA7we1k+y2EVqOkgWO7fEVKLmxGcnCIIgCDkQg6WQL/z8/BQeEREFngVBeqKepebEYFnIfVh82tLSEm9vby5dupTfXRMEQSgwxGApyGtUPnjwgEOHDqGjo0PLltI9jyUIQv7QQibZ9qUTg6WgUHy6evXqjB49mjt37vDkyZMsX5OWlsb06dOpUKECenp62NnZMXnyZPnxO3fu4Ovri7m5ORYWFrRu3VplUeqsLFq0CAcHB/T19SlRogTt2rX7mLcoCILwUcRgKShISEhgzZo1VKhQAUvLrFdlBgYGMnXqVMaMGUNUVBTr1q2jRIkSQEYNTC8vL0xMTDh+/DgnT57E2NgYb29vtaqJnD9/noCAACZMmMC1a9fYu3cvHh4eefYeBaGwEunuNCceHREUik8nJiZiY2PDrl270NJS/U/g1atXzJ07lwULFsgLPJcvX16ez/b3338nLS2N5cuXy5/rCg0NxdzcnPDwcJo2bZptf+Li4jAyMqJly5aYmJhQpkwZXF1ds2yvqp5lUloaeln0XxAEIbfEbxOBBg0aEBERQUREBGfPnsXLy4tmzZpx+/Ztle2jo6NJSkqiUaNGKo9HRkZy8+ZNTExMMDY2xtjYGAsLC96+fUtMTEyO/WnSpAllypShXLlydOnShbVr1/L69ess2wcHB2NmZqawzb8Tp96bF4RCRKyG1ZwYLAV58ekKFSpQq1Ytli9fTmJiIsuWLVPZ3sDAINt4CQkJ1KhRQz4AZ27Xr1/nhx9+yLE/JiYm/P3336xfvx4bGxvGjh1LtWrViI+PV9k+MDCQFy9eKGyDbO1yPI8gCIK6xGApKJHJZGhpafHmzRuVxx0cHDAwMODQoUMqj7u5uXHjxg2KFy8uH4QzNzMzM7X6oKOjQ+PGjZk+fTqXLl3i1q1bHD58WGVbPT09TE1NFTYxBSsIysRqWM2J3yiCvPj0w4cPiY6OZtCgQSQkJNCqVSuV7fX19Rk1ahQjR45k9erVxMTEcObMGVasWAFAp06dKFasGK1bt+b48ePExsYSHh5OQEAAd+/ezbE/u3btYt68eURERHD79m1Wr15NWloaFStWzNP3LQiFjUzC7UsnFvgI8uLTkDEFWqlSJTZu3Iinp2eWrxkzZgw6OjqMHTuW+/fvY2NjQ79+Gfk1DQ0NOXbsGKNGjeK7777j1atXlCpVikaNGmFqappjf8zNzdmyZQvjx4/n7du3ODg4sH79epydnfPk/QqCIOSWKP4sfJEeenhKFlvqROqHt0uXSL2c/ivJYjtMqipZbJ2mfpLFhs83kbrh4MW5at/NXrqE9KtubVa7bUhICCEhIfJnr52dnRk7dizNmjUD4O3btwwbNowNGzaQlJSEl5cXixYtkj+elh/ENKwgCILwSZUuXZqpU6dy4cIFzp8/T8OGDWndujX//PMPAD/++CM7d+5k48aNHD16lPv37/Pdd9/la5/FNKwgCEIhUVCujj5cDzF58mRCQkI4c+YMpUuXZsWKFaxbt46GDRsCGc9pOzk5cebMGb7++uv86HKB+ewEQRCEz1hSUhIvX75U2D5MFqJKamoqGzZsIDExEXd3dy5cuEBycjKNGzeWt6lUqRJ2dnacPi1dndqciCtL4YuUnibd+jyZga5ksQFu6kr3HVb7rbFkscscOCNZbO06rSWLDaBlVESy2ClRsZLFzi0pkwcEBwcTFBSksG/cuHGMHz9eZfvLly/j7u7O27dvMTY2ZuvWrVSuXJmIiAh0dXUxNzdXaF+iRAkePnwoUe9zJq4shXxx69YtZDIZERERAISHhyOTybJMPCAIQsGmKjlIYGBglu0rVqxIREQEf/31F/3796dbt25ERUV9wh7njhgsP4Hc1ozs27cv2trabNy4UenY+PHjFWJlbgcPHlTr+IcyB63MTVdXlwoVKjBp0iTEQmlB+LJImUhdZXIQvaxXjmf+rqlRowbBwcFUq1aNuXPnYm1tzbt375S+OD969Ahra+u8+ihyTQyWn4i6NSNfv37Nhg0bGDlyJCtXrlQZy9nZWR4rc3u/KkdOx1U5ePAgDx484MaNGwQFBTF58uQszy8IwuepIOeGTUtLIykpiRo1alCkSBGFDGHXrl0jLi4Od3f3jz6PpsRg+YmoWzNy48aNVK5cmdGjR3Ps2DHu3LmjFEtHR0ceK3PT1dVV+7gqlpaWWFtbU6ZMGTp16kTdunX5+++/s33NP//8Q8uWLTE1NcXExIR69eopJEpfvnw5Tk5O6OvrU6lSJRYtWqTORwXA7du3adWqFUWLFsXIyAhnZ2d2796t9usFQSi4AgMDOXbsGLdu3eLy5csEBgYSHh5Op06dMDMzo2fPngwdOpQjR45w4cIFunfvjru7e76thAWxwCdfZFczcsWKFXTu3BkzMzOaNWtGWFgYY8aM+aT9O3/+PBcuXKBr165Ztrl37x4eHh54enpy+PBhTE1NOXnyJCkpKQCsXbuWsWPHsmDBAlxdXbl48SK9e/fGyMhIXtYrO/7+/rx7945jx45hZGREVFSUvIyYIAiaKShXR48fP6Zr1648ePAAMzMzqlatyr59+2jSpAkAs2fPRktLCx8fH4WkBPlJDJafiDo1I2/cuMGZM2fYsmULAJ07d2bo0KH88ssv8rqQkLGK7P2Bo3Llypw9e1bt46rUqVMHLS0t3r17R3JyMn369Ml2sFy4cCFmZmZs2LCBIkUyVhI6OjrKj48bN46ZM2fKHyQuW7YsUVFRLFmyRK3BMi4uDh8fH1xcXAAoV65cjq8RBOHzkJlHOiv6+vosXLiQhQsXfqIe5UwMlp9IgwYNCAkJAeD58+csWrSIZs2acfbsWcqUKQPAypUr8fLyolixYgA0b96cnj17cvjwYYXakRUrVmTHjh3ynz+8iZ7TcVV+//13nJycSE5O5sqVKwwaNIiiRYsydepUle0jIiKoV6+efKB8X2JiIjExMfTs2ZPevXvL96ekpKhddSQgIID+/fuzf/9+GjdujI+PD1Wrqk6nJoo/C4J6CkN1EKmIwfITyawZmWn58uWYmZmxbNkyJk2aRGpqKqtWreLhw4fo6PzvP0tqaiorV65UGCwzV5FlJafjqtja2spf4+TkRExMDGPGjGH8+PHo6+srtc+upmVCQgIAy5Yt46uvvlI4pq2trVZ/evXqhZeXF3/++Sf79+8nODiYmTNnMmjQIKW2qp7vGmpbhuF2ZdU6lyAIQk7EYJlPPqwZuXv3bl69esXFixcVBpQrV67QvXt34uPjlR7SlZK2tjYpKSm8e/dO5WBZtWpVVq1aRXJystLVZYkSJShZsiT//vsvnTp10rgPtra29OvXj379+hEYGMiyZctUDpaBgYEMHTpUYd8zb9XlxQShMBPXlZoTg+UnklkzEjKmYRcsWKBQM3LFihW0aNGCatWqKbyucuXK/Pjjj6xduxZ/f3/J+vf06VMePnxISkoKly9fZu7cuTRo0CDLkloDBw5k/vz5dOjQgcDAQMzMzDhz5gy1a9emYsWKBAUFERAQgJmZGd7e3iQlJXH+/HmeP3+uNLCpMmTIEJo1a4ajoyPPnz/nyJEjODk5qWyrp6enNNWcKKZgBUHIQ2Kw/ESyqxn56NEj/vzzT9atW6f0Oi0tLdq2bcuKFSskHSwz8zBqa2tjY2ND8+bNmTx5cpbtLS0tOXz4MCNGjKB+/fpoa2tTvXp16tatC2RMoxoaGvLrr78yYsQIjIyMcHFxYciQIWr1JzU1FX9/f+7evYupqSne3t7Mnj37o9+nIBRm4p6l5kQ9S+GL9OCbBpLFNq4p7SMsS7aotwhKExXfpUoW28PrsWSxDcYFSxYbIGn6WMliS/kr1nTJvly1D7BvL1FPYN6t3yWLXRCIuSpBEARByIGYhhUEQSgkpKw68qUTV5aCIAiCkANxZSl8kUy+Vr2KNy/IzE0kiw0QIXstWezlacq5hvPKsn1lJItds2uEZLEBtGyLSxY7OequZLFzS1wdaU58doIgCIKQAzFYCvnG3t6eOXPmyH+WyWRs27Yt3/ojCF86mYTbl04Mll+wzKLTH+Z33bZtm0Ji9vDwcGQymUKx1fv37+Pi4oKHhwcvXrz4VF0WBEEokMRg+YXT19dn2rRpPH/+XO3XxMTE8M0331CmTBn27dundvJzQRAKNi1kkm1fOjFYfuEaN26MtbU1wcHqPdR96dIlvvnmG9zd3dm2bVu2CdPj4+Pp27cvJUqUQF9fnypVqrBr1y758RMnTlCvXj0MDAywtbUlICCAxMREtfrx7t07Bg4ciI2NDfr6+pQpU0bt9yAIgmpaEm5fusLwHgs1bW1tpkyZwvz587l7N/tVeadOnaJ+/fr4+PiwZs0aheonH0pLS6NZs2acPHmSNWvWEBUVxdSpU+VJ4GNiYvD29sbHx4dLly7x+++/c+LECQYOHKhWv+fNm8eOHTv4448/uHbtGmvXrsXe3l7t9y0IgpCXxKMjhUDbtm2pXr0648aNy7boatu2bWnfvj0LFizIMebBgwc5e/Ys0dHR8qLP7xdoDg4OplOnTvJcsA4ODsybN4/69esTEhKispLJ++Li4nBwcOCbb75BJpPJa36qoqqeZXJKKno66pUDE4TC4sufLJWOuLIsJKZNm8aqVauIjo7Osk3r1q3ZunUrx48fzzFeREQEpUuXlg+UH4qMjCQsLAxjY2P55uXlRVpaGrGxsTnG9/PzIyIigooVKxIQEMD+/fuzbBscHIyZmZnCNvPsjRzPIQiCoC4xWBYSHh4eeHl5ERgYmGWbJUuW0KFDB5o1a8axY8eyjZfdvUzIKADdt29fIiIi5FtkZCQ3btygfPnyOfbXzc2N2NhYJk6cyJs3b/D19aVdu3Yq2wYGBvLixQuFbVhthxzPIQiFjVjgozkxDVuITJ06lerVq1OxYkWVx2UyGUuXLkVLS4vmzZvz559/Ur9+fZVtq1atyt27d7l+/brKq0s3NzeioqKoUKGCxv01NTWlffv2tG/fnnbt2uHt7c2zZ8+wsLBQaKeqnmWCmIIVBCEPicGyEHFxcaFTp07MmzcvyzYymYzFixejra0tHzA9PT2V2tWvXx8PDw98fHyYNWsWFSpU4OrVq8hkMry9vRk1ahRff/01AwcOpFevXhgZGREVFcWBAwfUuic6a9YsbGxscHV1RUtLi40bN2JtbY25uflHfAKCULiJqUTNic+ukJkwYQJpaWnZtpHJZCxcuJDu3bvTokULjhw5orLd5s2bqVWrFh07dqRy5cqMHDmS1NSMeolVq1bl6NGjXL9+nXr16uHq6srYsWMpWbKkWv00MTFh+vTp1KxZk1q1anHr1i12796Nlpb4KysIwqcnij8LX6SE4a0liy11IvW+y6RLpH7+jYSJ1LUkTKS+tqlksQHSzpyQLLaUidTN1x7OVftf7H+QqCcw6dY6yWIXBGIaVhAEoZAoDAtxpCLmtARBEAQhB+LKUhAEoZDQEjfdNCYGS+GLdP/PpJwbaci6jnT3FAFav5OuEPEQ3VKSxa7k+06y2NoV3SWLDfB2sXT327RNi0gWW/h0xDSskC9u3bqFTCYjIiICUF0mTBCEvCUSqWuuMLzHAu/hw4cMGjSIcuXKoaenh62tLa1ateLQoUPyNvb29shkMmQyGQYGBtjb2+Pr68vhw1mvhnv69CmlS5fOdhAKCwuTx81qu3XrVh6/Y0EQhM+LGCzz2a1bt6hRowaHDx/m119/5fLly+zdu5cGDRrg7++v0HbChAk8ePCAa9eusXr1aszNzWncuDGTJ09WGbtnz55UrVo12/O3b9+eBw8eyDd3d3d69+6tsM/W1jbP3q8gCPlHJuH2pRODZT4bMGAAMpmMs2fP4uPjg6OjI87OzgwdOpQzZ84otDUxMcHa2ho7Ozs8PDxYunQpY8aMYezYsVy7dk2hbUhICPHx8QwfPjzb8xsYGGBtbS3fdHV1MTQ0VNiXWXbrQ//88w8tW7bE1NQUExMT6tWrR0xMjPz48uXLcXJyQl9fn0qVKrFo0SK1P5fbt2/TqlUrihYtipGREc7OzuzevVvt1wuCIOQlMVjmo2fPnrF37178/f0xMjJSOq5OarfBgweTnp7O9u3b5fuioqKYMGECq1evlizjzb179/Dw8EBPT4/Dhw9z4cIFevToQUpKCgBr165l7NixTJ48mejoaKZMmcKYMWNYtWqVWvH9/f1JSkri2LFjXL58mWnTpmFsbCzJexGEwkLcs9ScWA2bj27evEl6ejqVKlXSOIaFhQXFixeX31dMSkqiY8eO/Prrr9jZ2fHvv//mUW8VLVy4EDMzMzZs2ECRIhmr/d5PqD5u3DhmzpzJd999B0DZsmWJiopiyZIldOvWLcf4cXFx+Pj44OLiAijWyhQEQTMiKYHmxGCZj/Iq02B6ejoyWcY/gsDAQJycnOjcuXOexM5KREQE9erVkw+U70tMTCQmJoaePXvSu3dv+f6UlBTMzMzUih8QEED//v3Zv38/jRs3xsfHJ8v7r6qKP79LS0NX5JEVBCGPiN8m+cjBwQGZTMbVq1c1jvH06VOePHlC2bJlATh8+DAbN25ER0cHHR0dGjVqBECxYsUYN25cnvQbsq9nmZCQAMCyZcsU6lleuXJF6T5sVnr16sW///5Lly5duHz5MjVr1mT+/Pkq26oq/rzkqTRX1ILwORMLfDQnBst8ZGFhgZeXFwsXLiQxMVHpuDrPHM6dOxctLS3atGkDZFQCiYyMlA9Qy5cvB+D48eNKq2s/RtWqVTl+/DjJyclKx0qUKEHJkiX5999/qVChgsKWOairw9bWln79+rFlyxaGDRvGsmXLVLZTVfy5r6WYthUEIe+Iadh8tnDhQurWrUvt2rWZMGECVatWJSUlhQMHDhASEkJ0dLS87atXr3j48CHJycnExsayZs0ali9fTnBwsLzIcvny5RXi//fffwA4OTnlaS3IgQMHMn/+fDp06EBgYCBmZmacOXOG2rVrU7FiRYKCgggICMDMzAxvb2+SkpI4f/48z58/Z+jQoTnGHzJkCM2aNcPR0ZHnz59z5MgRnJycVLZVVfxZTMEKgjLxr0JzYrDMZ+XKlePvv/9m8uTJDBs2jAcPHmBlZUWNGjUICQlRaDt27FjGjh2Lrq4u1tbWfP311xw6dIgGDRp88n5bWlpy+PBhRowYQf369dHW1qZ69erUrVsXyJhGNTQ05Ndff2XEiBEYGRnh4uLCkCFD1IqfmpqKv78/d+/exdTUFG9vb2bPni3hOxIEQciaqGcpfJGuO3lLFtu6TqpksQH27ZYuN2xZbeXp/rxSyTf7ouIfQ3eo6sQbeSXxx0GSxZYyN6zpigO5aj/DTrqFf8Pj1kgWuyAQV+WCIAiCkAMxDSsIglBIFIZVq1IRg6UgCEIhIaYSNScGS+GLZNNEur/a2pUrShYbIG33f5LFXq2jl3MjDQWefSxZbIvXLySLDaBXU/1HmnIr5eY9yWILn44YLAVBEAoJcWWpOfHZCfnCz89PnkgBwNPTU+3HSgRBEHLy22+/UbduXUqWLMnt27cBmDNnjkLRidwQg2Ueyq8izqtWreKbb74BMlLNDRw4kNKlS2NgYEDlypVZvHhxlrHf74+qzc/PT+PPQxCEgkUrXbqtIAkJCWHo0KE0b96c+Ph4UlMzHvcyNzdnzpw5GsUUg2Ueyc8iztu3b+fbb78FYOjQoezdu5c1a9YQHR3NkCFDGDhwIDt27FD52nPnzsmLPG/evBmAa9euyffNnTtXk49DEAQh38yfP59ly5bx888/K9TjrVmzJpcvX9Yophgs80h+FXF++/Yt+/fvlw+Wp06dolu3bnh6emJvb0+fPn2oVq0aZ8+eVfl6KysreZFnCwsLAIoXLy7fl1WVkLS0NKZPn06FChXQ09PDzs5OYbC/c+cOvr6+mJubY2FhQevWreVlxNSxaNEiHBwc0NfXp0SJErRr107t1wqCoFpBSKQeHBxMrVq1MDExoXjx4rRp00bp956np6fSLFe/fv3UPkdsbCyurq5K+/X09FTm4VaHGCzzQH4WcT506BClSpWS18SsU6cOO3bs4N69e6Snp3PkyBGuX79O06ZNNXtzWQgMDGTq1KmMGTOGqKgo1q1bR4kSJQBITk7Gy8sLExMTjh8/zsmTJzE2Nsbb25t3797lGPv8+fMEBAQwYcIErl27xt69e/Hw8MjT/guCkD+OHj2Kv78/Z86c4cCBAyQnJ9O0aVOlQax3797yGa4HDx4wffp0tc9RtmxZIiIilPbv3bs3yxzTORGrYfNAfhZxfn8KFjKmH/r06UPp0qXR0dFBS0uLZcuW5elg8+rVK+bOncuCBQvkhZzLly8vv2/6+++/k5aWxvLly+V1NkNDQzE3Nyc8PDzHgTsuLg4jIyNatmyJiYkJZcqUUfktMZPKepapqei9N/0iCELBuDrau3evws9hYWEUL16cCxcuKPyeMjQ0xNraWqNzDB06FH9/f96+fUt6ejpnz55l/fr1BAcHyysx5ZYYLPNAfhVxTk9PZ+fOnfzxxx/yffPnz+fMmTPs2LGDMmXKcOzYMfz9/SlZsiSNGzfOk35GR0eTlJQkr5X5ocjISG7evImJiYnC/rdv3xITE5Nj/CZNmlCmTBnKlSuHt7c33t7etG3bFkNDQ5Xtg4ODCQoKUtg3urYDP33lqOY7EoTCQcrBUtWXVlUVgT704kXGM7SZt4EyrV27ljVr1mBtbU2rVq0YM2ZMlr8DPtSrVy8MDAz45ZdfeP36NT/88AMlS5Zk7ty5dOjQIRfv6n/EYJkHpCrifPnyZTZt2gT8b0AuVqwYP//8M0FBQZw9e5aUlBTq1KkDwJs3b/jpp5/YunUrLVq0ADLqTkZERDBjxow8GyyzK/wMGStya9Sowdq1a5WOWVlZ5RjfxMSEv//+m/DwcPbv38/YsWMZP348586dUzmlHRgYqFT2611g+xzPIwhC3lH1pXXcuHGMHz8+y9ekpaUxZMgQ6tatS5UqVeT7f/jhB8qUKUPJkiW5dOkSo0aN4tq1a2zZskXt/nTq1IlOnTrx+vVrEhISKF784woUiMEyD7xfxDkgIEDpvmV8fHyO9y1VFXF+8+aN/Pi5c+fo0aMHx48fl9es3L59Oy1atJCv9kpOTiY5OVnp/qa2tjZpaXlXEcLBwQEDAwMOHTpEr169lI67ubnx+++/U7x4cUxNTTU6h46ODo0bN6Zx48aMGzcOc3NzDh8+zHfffafUVtW311diClYQlMgkfMRD1ZfWnK4q/f39uXLlCidOnFDY36dPH/mfXVxcsLGxoVGjRsTExCjV7FUlNjaWlJQUHBwcMDQ0lF+R3rhxgyJFimBvb6/mu/qfgjCF/UVYuHAhqamp1K5dm82bN3Pjxg2io6OZN28e7u7uCm0zizjfuXOHY8eO0adPHyZNmsTkyZMVijhXqVJFvmVecTo5Ocm/Ie3YsUPhfqWpqSn169dnxIgRhIeHExsbS1hYGKtXr6Zt27Z59l719fUZNWoUI0eOZPXq1cTExHDmzBlWrFgBZHyjK1asGK1bt+b48ePExsYSHh5OQEAAd+/ezTH+rl27mDdvHhEREdy+fZvVq1eTlpZGxYrSppkTBEFzenp6mJqaKmzZDZYDBw5k165dHDlyhNKlS2cb+6uvvgIy1oeow8/Pj1OnTint/+uvvzR+dlxcWeaRT13EOSYmhps3b+Ll5aWwf8OGDQQGBtKpUyeePXtGmTJlmDx5cq6WXatjzJgx6OjoMHbsWO7fv4+NjY38HIaGhhw7doxRo0bx3Xff8erVK0qVKkWjRo3UutI0Nzdny5YtjB8/nrdv3+Lg4MD69etxdnbO0/cgCIVNQbg6Sk9PZ9CgQWzdupXw8HD5hUB2Mle22tjYqHWOixcvygvRv+/rr79m4MCBuepvJlH8+TM1a9YsDh48yO7du/O7KwXSq4CWksXWrpzzNNDH2BkkXSL1k3opksUOLC1hIvWVEyWLDZC6dYVksaVMpG66bH+u2i8rLV3x59531Sv+PGDAANatW8f27dsVZovMzMwwMDAgJiaGdevW0bx5cywtLbl06RI//vgjpUuX5ujRo2qdw8zMjPDwcKVV9BcuXMDT05NXr16p/8b+X0H4oiFooHTp0gQGBuZ3NwRB+IxoSbipKyQkhBcvXuDp6YmNjY18+/333wHQ1dXl4MGDNG3alEqVKjFs2DB8fHzYuXOn2ufw8PAgODhYnuYOIDU1leDgYPkjbrklpmE/U76+vvndBUEQhFzLaTLT1tZW7SvIrEybNg0PDw8qVqxIvXr1ADh+/DgvX77MNg93dsSVpSAIQiFRWBKpV65cmUuXLuHr68vjx4959eoVXbt25erVqwqPqOSGuLIUvkhRm3Qli23vGClZbIC/9DTLWqKOn+weSRbbqLqxZLFleuo9jK6pl3/GShZbq4h0I0luH8zKTQ7Xz13JkiWZMmVKnsUTg6WQb2QyGVu3bqVNmzbcunWLsmXLcvHiRapXr57fXRME4TMXHx/P2bNnefz4sdJz5l27ds11PDENWwDkdR3Mc+fO0ahRI8zNzSlatCheXl5ERqq+GgoPD8+2nqVMJiM8PFyqty4IwidUEBb4fAo7d+7Ezs4Ob29vBg4cyODBg+WbpkXmC9p7LHTyug5mQkIC3t7e2NnZ8ddff3HixAlMTEzw8vIiOTlZ6fx16tRRyOzv6+uLt7e3wr7MdHqCIAifg2HDhtGjRw8SEhKIj4/n+fPn8u3Zs2caxRSDZT7L6zqYV69e5dmzZ0yYMIGKFSvi7OzMuHHjePToEbdv31Y6f2ZihMzNwMAAPT09hX26uqrv/929e5eOHTtiYWGBkZERNWvW5K+//pIf3759O25ubujr61OuXDmCgoJISVHvOb/nz5/TqVMnrKysMDAwwMHBgdDQUHU/VkEQVCgsC3zu3btHQECA2onX1SEGy3wkRR3MihUrYmlpyYoVK3j37h1v3rxhxYoVODk5aZQPMSsJCQnUr1+fe/fusWPHDiIjIxk5cqT83sDx48fp2rUrgwcPJioqiiVLlhAWFqZwFZydzDqZe/bsITo6mpCQEIoVK5Zn/RcE4cvl5eXF+fPn8zSmWOCTj6Sog2liYkJ4eDht2rRh4sSMrCcODg7s27cPHZ28+8+9bt06njx5wrlz5+SldTLz2gIEBQUxevRoeb3LcuXKMXHiREaOHMm4ceNyjB8XF4erqys1a9YEyNOBXhAKq8KyGrZFixaMGDGCqKgoXFxcKFKkiMLx93Nqq0sMlvlIijqYb968oWfPntStW5f169eTmprKjBkzaNGiBefOncuxvJa6IiIicHV1VapBlykyMpKTJ08qXEmmpqby9u1bXr9+neP0SP/+/fHx8eHvv/+madOmtGnTJst7pyqLP6enoisTlUcEoTDq3bs3kLHO40MymUwhs4+6xGCZj6Sog7lu3Tpu3brF6dOn5aW61q1bR9GiRdm+fbvGhU8/pE5Ny6CgIJUltfT19XOM36xZM27fvs3u3bs5cOAAjRo1wt/fnxkzZii1VVVHr6dxJXqbOOV4HkEoTLQoYDcXJZKXJQkziXuW+ej9OpiJiYlKx+Pj43OM8WEdzNevX6OlpSW/0gTkP+flX6DMotJZrSxzc3Pj2rVrVKhQQWn7sN5mVqysrOjWrRtr1qxhzpw5LF26VGW7wMBAXrx4obB1M3bU+L0JgiB8SFxZ5rOFCxdSt25dateuzYQJE6hatSopKSkcOHCAkJAQoqOj5W0z62AmJycTGxvLmjVrWL58OcHBwfL7hU2aNGHEiBH4+/szaNAg0tLSmDp1Kjo6OrkqAZaTjh07MmXKFNq0aUNwcDA2NjZcvHiRkiVL4u7uztixY2nZsiV2dna0a9cOLS0tIiMjuXLlCpMmTcox/tixY6lRowbOzs4kJSWxa9cunJxUXymqKv4spmAFQVlBW7UqpcTERI4ePUpcXBzv3r1TOBYQEJDreGKwzGd5XQezUqVK7Ny5k6CgINzd3dHS0sLV1ZW9e/eqXQtOHbq6uuzfv59hw4bRvHlzUlJSqFy5MgsXLgQyVqPt2rWLCRMmMG3aNIoUKUKlSpXo1auX2vEDAwO5desWBgYG1KtXjw0bNuRZ/wWhMCosU4kXL16kefPmvH79msTERCwsLPjvv/8wNDSkePHiGg2Wop6l8EX6q6TyvdK8Yu+o2UPN6pp2S7rcsCPtHkoWW8rcsHrDlBdq5KVnXYZKFlvK3LDFD+WuOsdGm04S9QS+f7BWsti55enpiaOjI4sXL8bMzIzIyEiKFClC586dGTx4sMq1FDkpLF80BEEQCj2ZhFtBEhERwbBhw9DS0kJbW5ukpCRsbW2ZPn06P/30k0YxxWApCIIgfFGKFCkiX0hYvHhx4uLiADAzM+POnTsaxRT3LAVBEAoJrUJy183V1ZVz587h4OBA/fr1GTt2LP/99x+//fabqGcpCO+T8r6iYXUTyWID1Lgu3T/LG9elSxnoVk/Cybgiejm3+QiGFaWrf6plljeJQAT1TZkyhVevXgEwefJkunbtSv/+/XFwcGDFihUaxRSDpSAIQiFRWO67ZabJhIxp2L179350zMLy2QkFzPjx4xWKPPv5+ckTKwiCIHyMhg0bqkzq8vLlSxo2bKhRTDFYasjPz09eHLlIkSKUKFGCJk2asHLlSqVMOTKZjG3btqmM8f4AERsbyw8//EDJkiXR19endOnStG7dWiEd3vtFmc3MzKhbt65CAehjx47RqlUrSpYsmeV53+fp6Zlt4WdPT09NPh5BEAqgwrIaNjw8XCkRAcDbt285fvy4RjHFNOxH8Pb2JjQ0lNTUVB49esTevXsZPHgwmzZtYseOHbmq8pGcnEyTJk2oWLEiW7ZswcbGhrt377Jnzx6lb0ihoaF4e3vz33//8fPPP9OyZUuuXLlCuXLlSExMpFq1avTo0UOtZ4m2bNki/0t1584dateuzcGDB3F2dgbIspalIAifny89N+ylS5fkf46KiuLhw/89V5yamsrevXspVaqURrE/arC8efMmMTExeHh4YGBgoFD9ojDILJIMUKpUKdzc3Pj6669p1KgRYWFhamerAfjnn3+IiYnh0KFDlClTBoAyZcpQt25dpbbm5ubywswhISGUKlWKAwcO0LdvX5o1a0azZs3UPu/7VUPevn0LgKWlpfx9ZWflypXMnDmTmzdvYmFhgY+PDwsWLAAy8toOHz6c7du3k5SURM2aNZk9ezbVqlVTq1+bNm0iKCiImzdvYmhoiKurK9u3b1dZ91MQBAGgevXq8lkxVdOtBgYGzJ8/X6PYGk3DPn36lMaNG+Po6Ejz5s158OABAD179mTYsGEadeRL0bBhQ6pVq8aWLVty9TorKyu0tLTYtGlTrsrHZFb/UDXlIKWQkBD8/f3p06cPly9fZseOHQr1LL///nseP37Mnj17uHDhAm5ubjRq1CjLxOvve/DgAR07dqRHjx5ER0cTHh7Od999l2clzQShsNJKl24rCGJjY4mJiSE9PZ2zZ88SGxsr3+7du8fLly/p0aOHRrE1urL88ccf0dHRIS4uTiG5dfv27Rk6dCgzZ87UqDNfikqVKilMB6ijVKlSzJs3j5EjRxIUFETNmjVp0KABnTp1oly5cipf8/r1a3755Re0tbWpX79+XnRdbZMmTWLYsGEMHjxYvq9WrVoAnDhxgrNnz/L48WN5gvMZM2awbds2Nm3aRJ8+fbKN/eDBA1JSUvjuu+/kV9kuLi5ZtldVzzIpLQ09NaubCILwZcj8fVFgSnTt37+fadOmUbp0aYX9Dg4O3L59O0869jnTdDra39+fhw8fsnbtWtzd3dm4cSPOzs4cOHBAoV3Hjh0xNjbGxMSEzZs3s2LFCqpWrZpX3c/R48ePuX//Po0aNVJ5PDIykoSEBCwtLTE2NpZvmd/6clKtWjUaNWqEi4sL33//PcuWLeP58+dZtg8ODsbMzExhm/f/GTsEQfgfGemSbQXJqlWr+PPPP+U/jxw5EnNzc+rUqaPxGKXRYJmYmKiy0v2zZ8+USiUVRtHR0fJizAAmJia8ePFCqV18fDxmZmYK+0xMTGjVqhWTJ08mMjKSevXqKZW0mj17NhERETx8+JCHDx/SrVs3ad5IFtQp/GxjY0NERITCdu3aNUaMGJFjfG1tbQ4cOMCePXuoXLky8+fPp2LFisTGxqpsr6qeZYCdnUbvTRCEz9+UKVPkv6dOnz7NggULmD59OsWKFePHH3/UKKZGg2W9evVYvXq1/OfMwsLTp0/P05qJn6PDhw9z+fJlfHx85PsqVqzIhQsXFNqlpqYSGRmJo2PWRYplMhmVKlVSKgxtbW1NhQoVsLKyytvOq8nExAR7e3sOHTqk8ribmxsPHz5ER0dHqfBzsWLqZZCRyWTUrVuXoKAgLl68iK6uLlu3blXZVk9PD1NTU4VNTMEKgjItCbeC5M6dO/I1FNu2baNdu3b06dOH4ODgT/voyPTp02nUqBHnz5/n3bt3jBw5kn/++Ydnz55x8uRJjTryOUpKSuLhw4cKj44EBwfTsmVLunbtKm83dOhQevbsSaVKlWjSpAmJiYnMnz+f58+fy1fMRkREMG7cOLp06ULlypXR1dXl6NGjrFy5klGjRqndp4SEBG7evCn/OTY2loiICCwsLLDLw6ut8ePH069fP4oXL06zZs149eoVJ0+eZNCgQTRu3Bh3d3fatGnD9OnTcXR05P79+/z555+0bdtWIbuGKn/99ReHDh2iadOmFC9enL/++osnT55kWfxZEAThfcbGxjx9+hQ7Ozv279/P0KEZJdj09fV58+aNRjE1GiyrVKnC9evXWbBgASYmJiQkJPDdd9/h7++fpwWGC7rMgso6OjoULVqUatWqMW/ePLp16ybPeA8Z9xjT09OZNWsWo0ePxtDQkBo1anDs2DFKlCgBQOnSpbG3tycoKIhbt24hk8nkP+dm2uD8+fMKV/eZf0m6detGWFhY3rzx/4/39u1bZs+ezfDhwylWrBjt2rUDMq4Kd+/ezc8//0z37t158uQJ1tbWeHh4yN9vdkxNTTl27Bhz5szh5cuXlClThpkzZ+bqkRhBEJQVtCtAqTRp0oRevXrh6urK9evXad68OZDxiJ69vb1GMUXxZ+GL9EjCzENSJ1Lf8YdZzo00ZJf2VrLYbj2le8a6iP94yWIDvB2n2X0sdUiZSN14xvZctT9Qor1EPYEmj36XLHZuxcfH88svv3Dnzh369++Pt7c3AOPGjUNXV5eff/451zE1Tkrw/PlzVqxYQXR0NACVK1eme/fuCg+5C4IgCMKnZm5uLk+Q8r6goCCNY2o0WGbmHzUzM5Pff5o3bx4TJkxg586deHh4aNwhQRAEQRpf8jTspUuXqFKlClpaWjk+567Jo3YaDZb+/v60b9+ekJAQtLW1gYzVnQMGDMDf35/Lly9rElYQBEEQNFK9enUePnxI8eLF5Wnv3r/LmPmzTCbLVZa0TBoNljdv3mTTpk3ygRIyno0bOnSowiMlgpBfTFpWyLmRhmQaJmJWV/H1V3NupKE+6dIla1ix0lay2G4tc5cRK7d0ajlLFjv10jXJYudWQUsekJdiY2Plj9Nl9Uz2x9BosHRzcyM6OpqKFSsq7I+OjlY7UbZQuHl6elK9enXmzJkDgL29PUOGDGHIkCH52i9BED5PmanuPvxzXtFosAwICGDw4MHcvHmTr7/+GoAzZ86wcOFCpk6dqjBf/CnTsOUHPz8/Vq1apbT/xo0b8odi79y5w7hx49i7dy///fcfNjY2tGnThrFjx2JpaUlqair16tXD2tpaIQH7ixcvqFKlCl27dmXy5MncunVLITOQhYUFNWrUYNq0abi6ugIZzz9u2LCBO3fuoKurS40aNZg8eTJfffWVyv7nlJZv3LhxjB8/PrcfiyAIBdCXXKJrx44darf99ttvcx1fo8GyY8eOQEa+PVXHPnZu+HOTWdfyfZnTAf/++y/u7u44Ojqyfv16ypYtyz///MOIESPYs2cPZ86cwcLCgrCwMKpXr87atWvp1KkTAIMGDcLCwoJx48YpxM6sN3n37l0CAgJo1qwZV69exdzcHEdHRxYsWEC5cuV48+YNs2fPpmnTpty8eVNlxp/MijEAv//+O2PHjuXatf9NGxkbG+fZ5yQIgiCVNm3aKPys6p5lJk3GJY0WR71f9kTV9u+//8r/vzDIrGv5/pZ5P9ff3x9dXV32799P/fr1sbOzo1mzZhw8eJB79+7Jn/dxdHRk6tSpDBo0iAcPHrB9+3Y2bNjA6tWrlQowZ9abrFmzJjNmzODRo0f89ddfAPzwww80btyYcuXK4ezszKxZs3j58mWWq8Pe77OZmRkymUxhX1aDZVJSEqNGjcLW1hY9PT0qVKjAihUr5MevXLlCs2bNMDY2pkSJEnTp0oX//vtPrc8zPT2d8ePHY2dnh56eHiVLliQgIECt1wqCkDUtmXRbfktLS5Nv+/fvp3r16uzZs4f4+Hji4+PZvXs3bm5u7N27V6P4Gl1ZFitWTBThVcOzZ8/Yt28fkydPVko+bm1tTadOnfj9999ZtGgRMpmMQYMGsXXrVrp06cLly5cZO3ZsjveAs6tn+e7dO5YuXYqZmVme30vu2rUrp0+fZt68eVSrVo3Y2Fj5YBgfH0/Dhg3p1asXs2fP5s2bN4waNQpfX18OHz6cY+zNmzcze/ZsNmzYgLOzMw8fPiQyMjJP+y8IhdGXvMDnfUOGDGHx4sV888038n1eXl4YGhrSp08feX6A3NBosCxRogS+vr706NFDoTOF1a5duxSuwJo1a8bGjRu5ceMG6enpWeY0dXJy4vnz5zx58oTixYsjk8kICQnByckJFxcXRo8ene154+PjmThxIsbGxtSuXVuhPx06dOD169fY2Nhw4MABtROYq+P69ev88ccfHDhwgMaNGwMo1NxcsGABrq6uTJkyRb5v5cqV2Nracv369WyTxwPExcVhbW1N48aNKVKkCHZ2dgrvTxAEITsxMTGYm5sr7TczM+PWrVsaxdRoGnbNmjU8e/aMhg0byqcP79+/r1EHvgQNGjRQKEU1b948heO5ySi4cuVKDA0NiY2N5e7duyrb1KlTB2NjY4oWLUpkZCS///67Qs7VzP6cOnUKb29vfH19efz4sWZvToWIiIhsC05HRkZy5MgRhVqWlSpVAlCrnuX333/PmzdvKFeuHL1792br1q2kpKRk2T4pKYmXL18qbEkpX/69ckHIrcJSdaRWrVoMHTqUR48eyfc9evSIESNGaPzFW6P32KZNG7Zt28a9e/fo168f69ato0yZMrRs2ZItW7Zk+4vtS2RkZKRQhiozmXyFChWQyWRZXvJHR0dTtGhR+cKbU6dOMXv2bHbt2kXt2rXp2bOnyoH2999/JzIykufPnxMTEyNPEvxhf77++mtWrFiBjo6Owv3Ej6VOPctWrVop1bO8ceOGWtmdbG1tuXbtGosWLcLAwIABAwbg4eFBcnKyyvaqij/POCymbQWhsFq5ciUPHjzAzs5O/nvZzs6Oe/fuafy78KO+EFhZWTF06FAuXbrErFmzOHjwIO3ataNkyZKMHTuW169ff0z4z56lpSVNmjRh0aJFSmVhHj58yNq1a2nfvj0ymYzXr1/j5+dH//79adCgAStWrODs2bMsXrxYKa6trS3ly5dXOc2gSlpaGklJSXnxlgBwcXEhLS2No0ePqjzu5uYmz+7/YT1Lde91GxgY0KpVK+bNm0d4eDinT5/OMjOUquLPwxuK530F4UMyWbpkW0FSoUIFLl26xM6dOwkICCAgIIBdu3Zx+fJl+SN9ufVRg+WjR4+YPn06lStXZvTo0bRr145Dhw4xc+ZMtmzZorSUtzBasGABSUlJeHl5cezYMe7cucPevXtp0qQJpUqVYvLkyUDGL/z09HSmTp0KZDykP2PGDEaOHKn2HHtiYiI//fQTZ86c4fbt21y4cIEePXpw7949vv/++zx7T/b29nTr1o0ePXqwbds2YmNjCQ8P548//gAyVgA/e/aMjh07cu7cOWJiYti3bx/du3dXa8l2WFgYK1as4MqVK/z777+sWbMGAwODLB80Vln8WUdbZVtBEAoHmUxG06ZN5YNlkyZNcnyuPDsaDZZbtmyhVatW2Nrasm7dOgYMGMC9e/dYs2YNDRo0oEuXLmzfvp3w8HCNO/alcHBw4Pz585QrVw5fX1/Kly9Pnz59aNCgAadPn8bCwoKjR4+ycOFCQkNDMTQ0lL+2b9++1KlTJ8vp2A9pa2tz9epVfHx8cHR0pFWrVjx9+pTjx4/j7Jy36bxCQkJo164dAwYMoFKlSvTu3ZvExEQASpYsycmTJ0lNTaVp06a4uLgwZMgQzM3NFep8ZsXc3Jxly5ZRt25dqlatysGDB9m5cyeWlpZ5+h4EobDRkqVLtn3pNKpnaWZmRocOHejVqxe1atVS2ebNmzdMnz5d6YF6QfgUXs/oJVlsqXPDnhgiXW7YgPS8z5mZaYW2hLlht7STLDZA2uWzksWWMjesyYLduWp/puR3EvUEvr6/JedGnzGNriwfPHjAkiVLshwoIeOekxgoBUEQCg6ZhJu6goODqVWrFiYmJhQvXpw2bdooZA0DePv2Lf7+/lhaWmJsbIyPj4/Cytb8oNFgaWJiovJRhKdPnypUIhEEQRAKjoIwDXv06FH8/f05c+YMBw4cIDk5maZNm8pv4wD8+OOP7Ny5k40bN3L06FHu37/Pd99Jd1WsDo2SEmQ1c5uUlKSUmk0QBEEQMn2Ybi4sLIzixYtz4cIFPDw8ePHiBStWrGDdunU0bNgQgNDQUJycnDhz5oy8eEdOUlNT2bp1q/zRPScnJ9q0aYOOjkbDXu4Gy8yH7WUyGcuXL1fIWpOamsqxY8fkD58LQn6S/f+zrpIwl3ah0Qzdl5LFvvHonmSxr1lln5npY7hJ/Oy2rFTel3SSi7opXexckvIRj6SkJKVH1PT09NDT08v2dS9evAAyqigBXLhwgeTkZHl2MIBKlSphZ2fH6dOn1Ros//nnH7799lsePnwoLyU5bdo0rKys2LlzJ1WqVMnVe4NcDpazZ88GMq4sFy9erDDlqquri729vcrnAgVBEIQvW3BwMEFBQQr7cirxl5aWxpAhQ6hbt658AHv48CG6urpKz5GXKFGChw8fqtWXXr164ezszPnz5ylatCgAz58/x8/Pjz59+nDq1Cn139j/y9VgmVl9ukGDBmzZskXeCUHQxIcFn2UyGVu3bhXP5wqCRKR8xCMwMJChQ4cq7MvpqtLf358rV65w4sSJPO1LRESEwkAJULRoUSZPnpztwtTsaLTA58iRI2oNlKampoWmTFdWZDJZttv48eO5desWMpmMiIgIpdd7enrKBxPIeMa1adOmWFpaqnxNZixV28aNG5XiZ9c+cwsLC8vbD0UQhC+OyuQg2QyWAwcOZNeuXRw5coTSpUvL91tbW/Pu3Tvi4+MV2j969Ahra2u1+uLo6Khy9ezjx481zuCj2Z1ONWnwCOcXR53iyurWeYSMLD3ffPMNvr6+9O7dW+m4ra2twjkBli5dyq+//kqzZs1ybD9jxgz27t3LwYMH5fvMzMzU7p8gCAXXRySwyTPp6enycoTh4eGULVtW4XiNGjUoUqQIhw4dwsfHB4Br164RFxeHu7u7WucIDg4mICCA8ePHy+9xnjlzhgkTJjBt2jRevvzfugBTU1O1Yko6WAoofBN6v7jy+3IzWHbp0gUgyxR42traSvG3bt2Kr6+vykLOH7Y3NjZGR0dHrW9w8fHxjBo1im3btvHixQsqVKjA1KlTadmyJQAnTpwgMDCQ8+fPU6xYMdq2bUtwcLBa+WHfvXvH0KFD2bx5M8+fP6dEiRL069ePwMDAHF8rCELB5e/vz7p169i+fTsmJiby+5BmZmYYGBhgZmZGz549GTp0KBYWFpiamjJo0CDc3d3VXgmb+TvI19dXnuIu8+KtVatW8p9lMplaKThBDJZfvAsXLhAREcHChQvzNG5aWhrNmjXj1atXrFmzhvLlyxMVFSVf9BUTE4O3tzeTJk1i5cqVPHnyhIEDBzJw4EBCQ0NzjD9v3jx27NjBH3/8gZ2dHXfu3OHOnTt5+h4EobApCAnPQ0JCgIxbTO8LDQ3Fz88PyFhMqqWlhY+Pjzy39qJFi9Q+x5EjR/Kqu3JisCxA6tSpo5Q79c2bN1SvXl3jmCtWrMDJyYk6dep8ZO8UHTx4kLNnzxIdHS0v5vx+Aejg4GA6deokv9/q4ODAvHnzqF+/PiEhIejr62cbPy4uDgcHB7755htkMlmWSdRB9ZL1tOQU9IqIv96C8L6CkMNVndtz+vr6LFy4UOMv+VnV2v0Ykv42+ZgM74XR77//jpOTk8K+Tp06aRzvzZs3rFu3jjFjxnxs15RERERQunRp+UD5ocjISC5dusTatWvl+9LT00lLSyM2NlbpfX7Iz8+PJk2aULFiRby9vWnZsiVNmzZV2VbVkvWf2tbjF5+8/wcjCMLnIT4+nhUrVsiTEjg7O9OjRw+N12CIBT4FiK2trdJKrZwKLWdn06ZNvH79mq5du35s15SoUwC6b9++BAQEKB2zs7PLMb6bmxuxsbHs2bOHgwcP4uvrS+PGjdm0aZNSW1VL1tO2BOd4DkEobArL9cv58+fx8vLCwMCA2rVrAzBr1iwmT57M/v37cXNzy3VMSQfLPXv2UEriCg1C1lasWMG3336LlZVVnseuWrUqd+/e5fr16yqvLt3c3IiKitJ4mTZkrFJr37497du3p127dnh7e/Ps2TN5po9MqrKEvBFTsIJQaP344498++23LFu2TJ7eLiUlhV69ejFkyBCOHTuW65hq/0b58Jt7dmbNmgXAN998k+sOCdl79uwZcXFx3L9/H0D+GIq1tbXCCtabN29y7Ngxdu/OXQkfddWvXx8PDw98fHyYNWsWFSpU4OrVq8hkMry9vRk1ahRff/01AwcOpFevXhgZGREVFcWBAwdYsGBBjvFnzZqFjY0Nrq6uaGlpsXHjRqytrZWyegiCoL6CsMDnUzh//rzCQAmgo6PDyJEjqVmzpkYx1R4sL168qFY7cZ9SWjt27KB79+7ynzt06AAop5VauXIlpUuXzvI+X17YvHkzw4cPp2PHjiQmJsofHYGMK8+jR4/y888/U69ePdLT0ylfvjzt27dXK7aJiQnTp0/nxo0baGtrU6tWLXbv3q1W8WhBEAo3U1NT4uLilHKV37lzBxMTE41ialT8WRAKujdr835Rk5xF3k9rv69Nnz2SxT706JJksZdZNZAsdscNXpLFBkh/+VSy2CkHDkkW22TOzly1jyrfQqKeQOWYPyWLnVsBAQFs3bqVGTNmyJ8EOHnyJCNGjMDHx4c5c+bkOqa4sSMIgiB8UWbMmIFMJqNr166k/H/FmiJFitC/f3/57FduqT1Y5qbw5pYtWzTqjCAIgiAdmVbhmEjU1dVl7ty5BAcHExMTA0D58uUxNDTUOKbag6XIDyoIgvB5K2xLSgwNDXFxccmTWGoPluqkKBOEgiLl5HnJYmtZW+Tc6COMS9H8229O9K1dJYv9fftEyWLLiqpXbUJTScvDJIutZaQrWWxBtcTERKZOncqhQ4d4/PgxaWlpCsc1qYal8T3LlJQUwsPDiYmJ4YcffsDExIT79+9jamqqMmG3IHzo/fqVt27domzZsly8ePGj0vsJgpC1wjIN26tXL44ePUqXLl2wsbHJk6c0NBosb9++jbe3N3FxcSQlJdGkSRNMTEyYNm0aSUlJLF68+KM7JvyPn58fq1atom/fvkqfrb+/P4sWLaJbt255VndSFGEWBOFztmfPHv7880/q1q2bZzE1emht8ODB1KxZk+fPnyukPWvbti2HDkm3TLows7W1ZcOGDbx580a+7+3bt6xbt06t9HGCIAgyWbpkW0FStGhRpUxfH0ujwfL48eP88ssv6OoqzsXb29tz7969POmYoMjNzQ1bW1uFlcZbtmzBzs4OV1fF+1B79+7lm2++wdzcHEtLS1q2bClfEQYZtSIHDhyIjY0N+vr6lClThuDgjFyq9vb2QMYXH5lMJv9Zlbt379KxY0csLCwwMjKiZs2a/PXXX/Lj27dvx83NDX19fcqVK0dQUJB8GXdOnj9/TqdOnbCyssLAwAAHBwdx31wQBLVMnDiRsWPH8vr16zyLqdE0bFpamsqCmXfv3tU4O4KQsx49ehAaGiqvRLJy5Uq6d+9OeHi4QrvExESGDh1K1apVSUhIYOzYsbRt25aIiAi0tLSyrRV57tw5ihcvTmhoKN7e3vL6lB9KSEigfv36lCpVih07dmBtbc3ff/8tv5F+/Phxunbtyrx586hXrx4xMTH06dMHyMg2lJMxY8YQFRXFnj17KFasGDdv3lS4qhYEIfcKQokuqbi6uircm7x58yYlSpTA3t6eIkWKKLT9+++/cx1fo8GyadOmzJkzh6VLlwIZ97gSEhIYN24czZs31ySkoIbOnTsTGBjI7du3gYyMFBs2bFAaLH18fBR+XrlyJVZWVkRFRVGlSpVsa0VmJl03NzdXyDX7oXXr1vHkyRPOnTsnn+54P2l6UFAQo0ePplu3bkBGrcuJEycycuRItQbLuLg4XF1d5Xkcs7vCFQRBkHqNhUaD5cyZM/Hy8qJy5cq8ffuWH374gRs3bmBpacn69evzuo/C/7OysqJFixaEhYWRnp5OixYtKFasmFK7GzduMHbsWP766y/+++8/+dVeXFwcVapUyVWtyKxERETg6uqa5X2ByMhITp48yeTJk+X7UlNTefv2La9fv87x4eD+/fvj4+PD33//TdOmTWnTpk2WBaxVFX9+l5qGnrbIIysI75N9wf8k1PkS/jE0GixLly5NZGQkv//+O5GRkSQkJNCzZ086der0UfUXhZz16NGDgQMHAmRZRbxVq1aUKVOGZcuWUbJkSdLS0qhSpQrv3r0DclcrMivq1LMMCgpSmflJX18/x/jNmjXj9u3b7N69mwMHDtCoUSP8/f2ZMWOGUltVxZ9H1yzPT7UccjyPIBQmBW0hzudEo8EyODiYEiVK0KNHD/n9M8iY7nvy5AmjRo3Ksw4Kiry9vXn37h0ymQwvL+Xk0k+fPuXatWssW7aMevXqAXDixAmldtnViixSpIjKe9Lvq1q1KsuXL1dZXxIyBuRr1659VD1LKysrunXrRrdu3ahXrx4jRoxQOViqKv78bsT3Gp9XEAThQxoNlkuWLGHdunVK+52dnenQoYMYLCWkra1NdHS0/M8fKlq0KJaWlixduhQbGxvi4uIYPXq0QpucakXa29tz6NAh6tati56eHkWLFlU6T8eOHZkyZQpt2rQhODgYGxsbLl68SMmSJXF3d2fs2LG0bNkSOzs72rVrh5aWFpGRkVy5coVJkybl+D7Hjh1LjRo1cHZ2JikpiV27duHk5KSyrariz6/EFKwgKCksSQmkoNFvlIcPH2JjY6O038rKigcPHnx0p4TsmZqaYmpqqvKYlpYWGzZs4MKFC1SpUoUff/yRX3/9VaFNZq3ImjVrUqtWLW7duqVQK3LmzJkcOHAAW1tbpcdSMunq6rJ//36KFy9O8+bNcXFxYerUqfIB3MvLi127drF//35q1arF119/zezZsxUWE2VHV1eXwMBAqlatioeHB9ra2mzYsEHdj0gQBCFPaVTP0sHBgXHjxtG5c2eF/b/99hvjxo3TKO+eIOSlVwOaSRZb6tywkSFvJYs9rUhSzo00tLZ9kZwbaahItwGSxQZ4+6tmZZvUIWVuWJNFuat9eqt6E4l6AvYRBySLXRBoNA3bu3dvhgwZQnJyMg0bNgTg0KFDjBw5kmHDhuVpBwVBEAQhN1JTUwkLC8sykfrhw4dzHVOjwXLEiBE8ffqUAQMGyFdY6uvrM2rUKAIDAzUJKQiCIEissNyzHDx4MGFhYbRo0YIqVarkXyJ1mUzGtGnTGDNmDNHR0fJ0ZB8ushAEQRCET23Dhg388ccfeZokR+MSXQDGxsbUqlUrr/oiCHknTbpv0DIDab8UJqaplz9XE+4y6Z6DTk9+IVlsmaG0xed1ylhJGFx1ysj8UFiuLHV1dT/qsTVVxPp6QRAE4YsybNgw5s6diwbrV7P0UVeWgiAIwucjD27dfRZOnDjBkSNH2LNnD87OzkqJ1N+v3qQucWVZgPn5+SGTyejXr5/SMX9/f2QyGX5+fp++Yx8YP348MpkMb29vpWO//vorMpkMT0/PT98xQRAUyLTSJdsKEnNzc9q2bUv9+vUpVqwYZmZmCpsmxJVlAZdZ9Hn27NnyfKwFseizjY0NR44c4e7du5QuXVq+f+XKlQWqn4IgfPmkqH0rriwLuNwUfU5KSiIgIIDixYujr6/PN998w7lz5+THw8PDkclkHDp0iJo1a2JoaEidOnW4du2aQpyQkBDKly+Prq4uFStW5Lfffsuxn8WLF6dp06asWrVKvu/UqVP8999/tGjRQqHtuXPnaNKkifwbX/369ZXqy8XHx9O3b19KlCiBvr4+VapUYdeuXTl/YIIgZEmmJd32pSsEb/Hzl1n0OVNm0ecPjRw5ks2bN7Nq1Sr+/vtvKlSogJeXF8+ePVNo9/PPPzNz5kzOnz+Pjo4OPXr0kB/bunUrgwcPZtiwYVy5coW+ffvSvXt3jhw5olY/w8LCFPrZqVMndHUVM5i8evWKbt26ceLECc6cOYODgwPNmzfn1atXQEZx8WbNmnHy5EnWrFlDVFSUQio9QRCEnGzatAlfX1++/vpr3NzcFDZNiMHyM9C5c2dOnDjB7du3uX37NidPnlRKNZiYmEhISAi//vorzZo1o3LlyixbtgwDAwNWrFih0Hby5MnUr1+fypUrM3r0aE6dOsXbtxkp1mbMmIGfnx8DBgzA0dGRoUOH8t1336ms9vGhli1b8vLlS44dO0ZiYiJ//PGHwkCcqWHDhnTu3JlKlSrh5OTE0qVLef36NUePHgXg4MGDnD17li1bttCkSRPKlStHy5YtadZMdQq7pKQkXr58qbAlpaapbCsIhZlMli7ZVpDMmzeP7t27U6JECS5evEjt2rWxtLTk33//zfL3SE7EYPkZeL/oc2hoqMqizzExMSQnJ1O3bl35viJFilC7dm15lZJMVatWlf85MyH+48ePAYiOjlaIAVC3bl2lGKoUKVKEzp07ExoaysaNG3F0dFQ4V6ZHjx7Ru3dvHBwcMDMzw9TUlISEBOLi4oCMwtKlS5fG0dExx3NCRsm4D2/gz7wo8hMLQmG1aNEili5dyvz589HV1WXkyJEcOHCAgIAAXrzQ7HlgscDnM6FO0Wd1vb+MOjMN1Ie5EzXVo0cPvvrqK65cuaLyqhKgW7duPH36lLlz51KmTBn09PRwd3eXp07MbQFxlfUsh7XT7A0IwhesMNxbBIiLi6NOnTpAxu+TzFs8Xbp04euvv2bBggW5jllIPrrPX2bR5+TkZJVFnzMX5Jw8eVK+Lzk5mXPnzlG5cmW1z+Pk5KQQA+DkyZNqx3B2dsbZ2ZkrV67www8/qGxz8uRJAgICaN68Oc7Ozujp6fHff//Jj1etWpW7d+9y/fp1tc6pp6cnL1uWuemJepaCUGhZW1vL12rY2dlx5swZAGJjYzVOVCCuLD8TORV9NjIyon///owYMQILCwvs7OyYPn06r1+/pmfPnmqfZ8SIEfj6+uLq6krjxo3ZuXMnW7Zs4eDBg2rHOHz4MMnJyfJi0h9ycHDgt99+o2bNmrx8+ZIRI0YoXE3Wr18fDw8PfHx8mDVrFhUqVODq1atZPsspCIJ6CtrzkFJp2LAhO3bswNXVle7du/Pjjz+yadMmzp8/z3fffadRTDFYfkayKvicaerUqaSlpdGlSxdevXpFzZo12bdvH0WLFlX7HG3atGHu3LnMmDGDwYMHU7ZsWUJDQ3OVVMDIyCjb4ytWrKBPnz7yx2KmTJnC8OHDFdps3ryZ4cOH07FjRxITE6lQoQJTp0pXc1AQCoPCMg27dOlS+a0lf39/LC0tOXXqFN9++y19+/bVKKZGxZ8FoaB71U+6K1Dt8iUliw1wckaiZLEv6EtXoNm/rXSJ1PUCxkgWGyA5bJZ0wSVMpG40dm2u2j+SMJNWifBwyWIXBIXke4YgCIKALF26rYA5fvw4nTt3xt3dnXv37gHw22+/ceLECY3iicFSEARB+KJs3rwZLy8vDAwMuHjxIklJSQC8ePGCKVOmaBRTDJaCIAiFRGFJdzdp0iQWL17MsmXLFB6Vq1u3rlJqTXWJBT7CF0mng690wVPeSRcbmKu3U7LYex9ESBY7YVt9yWL/XEu6zwRAq0FjyWKnbN0mWWxBtWvXruHh4aG038zMjPj4eI1iFrDvA4KmXr9+jY+PD6ampshkMuLj41XuKyhu3bqFTCYjIiIC+F+S94LUR0H40hSWK0tra2tu3ryptP/EiROUK1dOo5gF7C1+efz8/GjTpo3Cvk2bNqGvr8/MmTPz7DyrVq3i+PHjnDp1igcPHmBmZqZynyAIwpeud+/eDB48mL/++guZTMb9+/dZu3Ytw4cPp3///hrFFNOwn9jy5cvx9/dn8eLFKiuHaComJgYnJyeqVKmS7b7cSk1NRSaToaUlvlcJwueuoF0BSmX06NGkpaXRqFEjXr9+jYeHB3p6egwfPpxBgwZpFLOQfHQFw/Tp0xk0aBAbNmyQD5SqrjyHDBmikATA09OTgQMHMnDgQMzMzChWrBhjxoyRp23y9PRk5syZHDt2DJlMhqenp8p9kFGhY/jw4ZQqVQojIyO++uorwt97PiosLAxzc3N27NhB5cqV0dPTkyc4/9A///xDy5YtMTU1xcTEhHr16hETEyM/vnz5cpycnNDX16dSpUosWrRI7c/q9u3btGrViqJFi2JkZISzszO7d+9W+/WCIKigJeGWC8eOHaNVq1aULFkSmUzGtm3bFI77+fkhk8kUttxk75LJZPz88888e/aMK1eucObMGZ48ecLEiRNz19H3iCvLT2TUqFEsWrSIXbt20ahRo1y/ftWqVfTs2ZOzZ89y/vx5+vTpg52dHb1792bLli2MHj2aK1eusGXLFnn9SFX7Bg4cSFRUFBs2bKBkyZJs3boVb29vLl++jIODA5Bx/3PatGksX74cS0tLihcvrtSfe/fu4eHhgaenJ4cPH8bU1JSTJ0+SkpICwNq1axk7diwLFizA1dWVixcv0rt3b4yMjOjWrVuO79ff3593795x7NgxjIyMiIqKwtjYONefmyAIBU9iYiLVqlWjR48eWaaf8/b2Vqjjq6enl+vz6Orq5io3dnbEYPkJ7Nmzh+3bt3Po0CEaNmyoUQxbW1tmz56NTCajYsWKXL58mdmzZ9O7d28sLCwwNDREV1cXa2tr+Ws+3BcXF0doaChxcXGULJmRhWb48OHs3buX0NBQ+fNHycnJLFq0iGrVqmXZn4ULF2JmZsaGDRvkS7PfL6k1btw4Zs6cKf+HULZsWaKioliyZIlag2VcXBw+Pj64uLgAaHxTXhCE/yko07DNmjXLsa6knp6ewu8zdWRV6ehDK1euzFVcEIPlJ1G1alX+++8/xo0bR+3atTW6Qvr666/l5bQA3N3dmTlzJqmpqSoTq6ty+fJlUlNTlepEJiUlYWlpKf9ZV1dXZR3K90VERFCvXj2FZ5gyJSYmEhMTQ8+ePendu7d8f0pKitqLjAICAujfvz/79++ncePG+Pj4ZNmnpKQk+UPHmdLeJaOnK11qN0EQpBUeHk7x4sUpWrQoDRs2ZNKkSQq/p1QJCwujTJkyuLq6alxdJCtisPwESpUqxaZNm2jQoAHe3t7s2bMHExMTALS0tJT+oyYnJ0vSj4SEBLS1tblw4YLSAPv+AG5gYKAwMKuSXc3JhIQEAJYtW8ZXX32lcEzdgb1Xr154eXnx559/sn//foKDg5k5c6bKm/PBwcEEBQUp7Pup27f84tdarXMJQqEh4ZWlqi+tenp6Gk2fent7891331G2bFliYmL46aefaNasGadPn872d0j//v1Zv349sbGxdO/enc6dO2NhYZHr86tSQC7Kv3xlypTh6NGjPHz4EG9vb3kxUisrKx48eKDQNvPZw/f99ddfCj+fOXMGBwcHtQcfAFdXV1JTU3n8+DEVKlRQ2HI73VG1alWOHz+ucmAvUaIEJUuW5N9//1U6T9myZdU+h62tLf369WPLli0MGzaMZcuWqWwXGBjIixcvFLYRPzTP1fsRBOHjBAcHY2ZmprAFBwdrFKtDhw58++23uLi40KZNG3bt2sW5c+cUFiOqsnDhQh48eMDIkSPZuXMntra2+Pr6sm/fvo++0hSD5Sdka2tLeHg4jx8/xsvLi5cvX9KwYUPOnz/P6tWruXHjBuPGjePKlStKr42Li2Po0KFcu3aN9evXM3/+fAYPHpyr8zs6OtKpUye6du3Kli1biI2N5ezZswQHB/Pnn3/mKtbAgQN5+fIlHTp04Pz589y4cYPffvuNa9euARAUFERwcDDz5s3j+vXrXL58mdDQUGbNUq+6w5AhQ9i3bx+xsbH8/fffHDlyBCcnJ5VtVRZ/FlOwgqBEyqQEqr60BgYG5km/y5UrR7FixVQmGviQnp4eHTt25MCBA0RFReHs7MyAAQOwt7eXz3ppQkzDfmKlS5cmPDycBg0a4OXlxb59+xgzZgwjR47k7du39OjRg65du3L58mWF13Xt2pU3b95Qu3ZttLW1GTx4MH369Mn1+UNDQ5k0aRLDhg3j3r17FCtWjK+//pqWLVvmKo6lpSWHDx9mxIgR1K9fH21tbapXr07dunWBjGlUQ0NDfv31V0aMGIGRkREuLi4MGTJErfipqan4+/tz9+5dTE1N8fb2Zvbs2bl9u4IgfCKaTrmq4+7duzx9+hQbG5tcvU5LSwuZTEZ6ejqpqakf1QdRz/Iz4OnpSfXq1ZkzZ05+d+Wz8SY896vd1CZxbtjve0iYG/ZhhGSxR5eUMDfs5PKSxQagZBnJQkuZG9Zk3q5ctX/WVrr/RhZbj6rdNiEhQX6V6OrqyqxZs2jQoAEWFhZYWFgQFBSEj48P1tbWxMTEMHLkSF69esXly5dzHJCTkpLYsmULK1eu5MSJE7Rs2ZLu3bvj7e39UclVxJWlIAhCISHTyn7h3qdy/vx5GjRoIP956NChAHTr1o2QkBAuXbrEqlWriI+Pp2TJkjRt2pSJEyfmOFAOGDCADRs2YGtrS48ePVi/fj3FihXLkz6LwVIQBEH4pDw9PbNdcLNv3z6N4i5evBg7OzvKlSvH0aNHOXpU9dXuli1bch1bDJafgZxWgAmCIKjlC1/S2bVr1xwfe9OUGCyFL1LagT2SxdaqWUOy2ABLS7+WLLb9I+mm4aolSRdb5lRLstgAaeePSBg8TbrYgoKwsDDJYovBUhAEoZAoKPcsP0df+EW5IAiCIHw8MVjm4OHDhwwaNIhy5cqhp6eHra0trVq14tChQwrtTp06RfPmzSlatCj6+vq4uLgwa9YspWd7VJWjyfT27Vv8/PxwcXFBR0dHqXTX+968eYOFhQXFihVTSjEFsHTpUjw9PTE1NUUmkxEfH5/je80si9OvXz+lY/7+/shkMvz8/HKMIwhCAVVASnR9jgrBW9TcrVu3qFGjBocPH+bXX3/l8uXL7N27lwYNGuDv7y9vt3XrVurXr0/p0qU5cuQIV69eZfDgwUyaNIkOHTqonWYpNTUVAwMDAgICaNy4cbZtN2/ejLOzM5UqVVI5+L5+/Rpvb29++umnXL1nW1tbNmzYwJs3b+T73r59y7p167Czs8tVrNx6907a5xcFQRA0JQbLbAwYMACZTMbZs2fx8fHB0dERZ2dnhg4dypkzZ4CMChu9e/fm22+/ZenSpVSvXh17e3t69erFqlWr2LRpE3/88Yda5zMyMiIkJITevXvnmKt1xYoVdO7cmc6dO7NixQql40OGDGH06NF8/fXXuXrPbm5u2NraKiyt3rJlC3Z2dri6uiq03bt3L9988w3m5uZYWlrSsmVLheLPkJF5o2PHjlhYWGBkZETNmjXleW7Hjx9P9erVWb58OWXLlkVfXx/ISO3XunVrjI2NMTU1xdfXl0ePHuXqfQiCoIKWTLrtCycGyyw8e/aMvXv34u/vj5GRkdJxc3NzAPbv38/Tp08ZPny4UptWrVrh6OjI+vXr87RvMTExnD59Gl9fX3x9fTl+/Di3b9/Os/g9evRQKLq6cuVKunfvrtQuMTGRoUOHcv78eQ4dOoSWlhZt27Yl7f9X/yUkJFC/fn3u3bvHjh07iIyMZOTIkfLjADdv3mTz5s1s2bKFiIgI0tLSaN26Nc+ePePo0aMcOHCAf//9l/bt2+fZ+xOEwkqmJZNs+9KJ1bBZuHnzJunp6VSqVCnbdtevXwfIMsl3pUqV5G3yysqVK2nWrBlFixYFwMvLi9DQUMaPH58n8Tt37kxgYKB8AD558iQbNmxQet7Tx8dHqV9WVlZERUVRpUoV1q1bx5MnTzh37py8TE6FChUUXvPu3TtWr16NlZUVAAcOHODy5cvExsZia2sLwOrVq3F2dubcuXPUqqX8CIGq0kApKano6ahfkUUQBCE74soyC7lNmfupUuympqayatUqOnfuLN/XuXNnwsLCFK7YPoaVlRUtWrQgLCyM0NBQWrRooTJl1I0bN+jYsSPlypXD1NQUe3t7IGMaFTJKjbm6umZbT65MmTLygRIgOjoaW1tb+UAJULlyZczNzYmOjlYZQ1VpoBmnrmry1gXhyyYW+GhMXFlmwcHBAZlMxtWr2f/SdXR0BDJ+ydepU0fpeHR0NJUrV86zfu3bt4979+4pTUumpqZy6NAhmjRpkifn6dGjBwMHDgQyasSp0qpVK8qUKcOyZcsoWbIkaWlpVKlSRb5QJ7sC0ZlUTXHnVmBgoDy3ZKaUyX4fHVcQBCFTIfg+oBkLCwu8vLxYuHAhiYmJSsczH8Vo2rQpFhYWzJw5U6nNjh075FdfeWXFihV06NCBiIgIha1Dhw4qF/poytvbm3fv3pGcnIyXl5fS8adPn3Lt2jV++eUXGjVqhJOTE8+fP1doU7VqVSIiInj27Jna53VycuLOnTvcuXNHvi8qKor4+Pgsv3SorGcppmAFQZlY4KMxcWWZjYULF1K3bl1q167NhAkTqFq1KikpKRw4cICQkBCio6MxMjJiyZIldOjQgT59+jBw4EBMTU05dOgQI0aMoF27dvj6+irEjY2NJSIiQmGfg4MDRkZGREVF8e7dO549e8arV6/k7apXr86TJ0/YuXMnO3bsoEqVKgqv79q1K23btuXZs2dYWFjw8OFDHj58KC+Dc/nyZUxMTLCzs8t2WjSTtra2fNpTW1t54ClatCiWlpYsXboUGxsb4uLiGD16tEKbjh07MmXKFNq0aUNwcDA2NjZcvHiRkiVL4u7urvK8jRs3xsXFhU6dOjFnzhxSUlIYMGAA9evXp2bNmjn2WxAEQQpisMxGuXLl+Pvvv5k8eTLDhg3jwYMHWFlZUaNGDUJCQuTt2rVrx5EjR5g8eTL16tXj7du3ODg48PPPPzNkyBClxL4fThkCHD9+nG+++YbmzZsrrGzNfFwjPT2d1atXY2RkRKNGjZRe36hRIwwMDFizZg0BAQEsXryYoKAg+XEPDw8go/izuokFTE1NszympaXFhg0bCAgIoEqVKlSsWJF58+bh6ekpb6Orq8v+/fsZNmwYzZs3JyUlhcqVK2c5rQsZSRu2b9/OoEGD8PDwQEtLC29vb+bPn69WnwVByFphWLUqFVH8WfgiJf78vWSxpU6k/vxXzcoTqcP+wg3JYq+1kK6wcKs/pX10SMpE6qmXrkkW22TB7ly1f9kzb9Y0qGK64oBksQsCcWUpCIJQWIgrS42JwVIQBKGwEIOlxsRqWEEQBEHIgbiyFL5IOh37SBY7/flDyWL/X3v3GRXV9bUB/Bl6r9I0dBBpKvYuigoqthgRggHEXsCOXYgVe8UuIEbFggU1sWAXsQOCWBAlFiAWBBSkz/uBl/kzDnVmLoPM/q01a2Xuvex7ZpJwOOeeszcAjH1X8/5UfpUyuEThqmwRY7EHxlxkLDYAsGwZXGkd13ASZPy42JDUHo0sCSGEkBqITWf58eNHTJo0CQYGBpCVlYWuri4cHR0RHR3NucbIyAgsFovnFRgYCKCsZFfF4xoaGujZsydu3rzJda+AgADONVJSUjAyMsKMGTPw7ds3rjjleyjL32tra+Pr169csVq3bl1pztfDhw9DUlKSq1RYubrUxayovM3lFVXKFRQUQFNTEywWiyc/LCHkJ0JJCfgmNp3l8OHDERsbi/379+PFixeIjIyEvb09Pn/+zHXd0qVLkZ6ezvXy8fHhuiYqKgrp6em4ceMGmjZtCmdnZ54SUtbW1khPT0dqaipWr16N3bt3Y9asWdW28evXr1i3bl2tPs++ffvg5+eHw4cPIz8/n+tcXepi/khfX5+r4ghQVq9TSUmpTnH4QfUsCSENlVh0lllZWbh58yZWr16NXr16wdDQEB06dMD8+fMxePBgrmuVlZWhq6vL9foxf6mmpiZ0dXVhY2ODBQsWICcnh1OjsZyUlBR0dXXxyy+/YOTIkXB3d0dkZGS17fTx8cGGDRvw4cOHaq97/fo1bt++jXnz5qF58+ZctSeButXF/JGnpydP8efg4GB4enryXDt37lw0b94cCgoKMDExweLFi1FUxP3c6syZM2jfvj3k5OTQpEkTDBs2jHPOyMgIy5Ytg4eHB1RUVDB+fNlzxvLC1rKysjAyMqo0lSAhhA80suSbWHSWSkpKUFJSwqlTp3hKOQni+/fvCAsLA1CWraY68vLyNY6c3NzcYGZmhqVLl1Z7XXklEFVV1SqLP/Orbdu2MDIyQkREBICyCiI3btzAH3/8wXOtsrIyQkNDkZSUhM2bN2PPnj3YuHEj5/y5c+cwbNgwDBgwALGxsbh8+TI6dOjAFWPdunVo1aoVYmNjsXjxYjx8+BAuLi5wdXVFQkICAgICsHjxYoSGhgrtMxJCSF2JRWcpJSWF0NBQ7N+/H2pqaujatSsWLFiAx48f81w7d+5cTuda/vrxmWSXLl2gpKQERUVFrFu3Dm3btq00BV25hw8f4tChQ+jdu3e17Sx/Prp7926kpKRUek1paSlCQ0M5JbpcXV1x69YtvH79uqavoda8vb0RHBwMAAgNDcWAAQO4ymiVW7RoEbp06QIjIyMMGjQIs2fPxtGjRznnV6xYAVdXV/z555+wtLREq1atMH/+fK4YvXv3xqxZs2BqagpTU1Ns2LABDg4OWLx4MZo3bw4vLy9MnToVa9euFdrnI0RsSUgw92rkGv8n/H/Dhw9HWloaIiMj4eTkhGvXrqFNmzY8I5Y5c+bwVPT4MYH3kSNHEBsbi4iICJiZmSE0NBTS0tJc1yQkJEBJSQny8vLo0KEDOnfujG3bttXYTkdHR3Tr1g2LFy+u9PylS5eQm5uLAQMGAACaNGmCvn37cjo3YRg1ahRiYmLw6tUrhIaGwtvbu9Lrjhw5gq5du0JXVxdKSkpYtGgRp5YlUFbPsro/IgDwfLdPnz5F165duY517doVycnJKCkpqTRGQUEBcnJyuF4F9PyTEF40Dcs3seksAUBOTg59+/bF4sWLcfv2bXh5ecHf35/rmiZNmsDMzIzr9WNdRn19fZibm2PYsGFYuXIlhg0bxjO9a2Fhgbi4ODx9+hTfv39HZGQkdHR0atXOwMBATof8o3379iEzMxPy8vKQkpKClJQU/v77b+zfv19oxZ81NTXh7OyMMWPGID8/H/379+e5JiYmBu7u7hgwYADOnj2L2NhYLFy4kGuqub7qWVZW/HnN3nCB4xJCSDmx6ix/ZGVlVWmtyrr47bffICUlhe3bt3Mdl5GRgZmZGYyMjGp8nvmjDh064Ndff+UpefX582ecPn0a4eHhXCPf2NhYfPnyBRcvCm/jtre3N65duwYPD49KS3Tdvn0bhoaGWLhwIdq1awdzc3OuailAWT3Ly5cv1+m+lpaWXNt5ACA6OhrNmzevtB1AWfHn7OxsrpffWNc63ZcQccCSYDH2auzEIoPP58+fMWLECHh7e6Nly5ZQVlbGgwcPsGbNGgwZMoTr2q9fvyIjgztDi4KCQpXlqlgsFnx9fREQEIAJEyZAQUFBKG1esWIFrK2tISX1v39FBw4cgKamJlxcXHgycQwYMAD79u2Dk5MTAFRbF7M2nJyc8PHjxyo/t7m5Od68eYPw8HC0b98e586dw8mTJ7mu8ff3h4ODA0xNTeHq6ori4mL8/fffmDt3bpX3nTVrFtq3b49ly5Zh5MiRiImJwbZt23j+GKlIVlYWsrKyXMcK6vgHCiGEVEcsRpZKSkro2LEjNm7ciB49esDGxgaLFy/GuHHjeJ4jLlmyBHp6elwvPz+/auN7enqiqKioVs8ka6t58+bw9vbm2kMZHByMYcOGVZqyavjw4YiMjMSnT58AlHWednZ2OHPmDK5duwY7OztObczaYLFYaNKkSZWj4sGDB2PGjBmYOnUqWrdujdu3b/M8Z7W3t8exY8cQGRmJ1q1bo3fv3rh37161923Tpg2OHj2K8PBw2NjYYMmSJVi6dGmta3ASQqpBzyz5RvUsSaNUkMhcbT2mc8P+6n6YsdgXM+IZiz2+adeaL+LTujnajMUGmM0NWxx+hLHYytv/qdP132YPqfkiPimtO81Y7IZALKZhCSGEAGCJxWQiI+ibI4QQQmpAI0tCCBEXYvBskSnUWZJGSbGNF2Ox33c1Yyw2AJy+v5ux2PL61WeREkQTSNd8EZ9YDCfyX+XB3DNui0JNxmK7V71IvHLUWfKNpmEJIYSQGtDIkhBCxARLDHK4MoW+OSHJyMiAj48PTExMICsrC319fQwaNIgrg01di0uXZwFavnw5Ku7wqW1x6Zri/Kj85yQlJfH+/Xuuc+np6ZCSkgKLxUJqaqoQvzlCCGn4aGQpBKmpqejatSvU1NSwdu1a2NraoqioCBcuXMCUKVPw7NkzzrVLly7FuHHjuH5eWVmZ631UVBSsra1RUFCAW7duYezYsdDT08OYMWM411hbWyMqKgrFxcWIjo6Gt7c38vLysGvXrjrFqUyzZs0QFhbGVSFk//79aNasGVeidCYUFRXxJKUnhAgJPbPkG40shWDy5MlgsVi4d+8ehg8fjubNm8Pa2hozZ87EnTt3uK6tS3FpQ0NDuLu7o2vXrnj06BHXNbUpLl2bOJXx9PRESEgI17GQkBCeAtAlJSUYM2YMjI2NIS8vDwsLC2zevJknXnBwMKeYs56eHqZOnco5x2KxsGPHDgwePBiKiopYsWIFAGDHjh0wNTWFjIwMLCwscODAgRrbTQghTKHOUkCZmZk4f/48pkyZUmkFDTU1NYHiP3jwAA8fPkTHjh2rva6m4tK1jQOUpbL78uULbt26BQC4desWvnz5gkGDBnFdV1pail9++QXHjh1DUlISlixZggULFnDVtNyxYwemTJmC8ePHIyEhAZGRkTAz415NGhAQgGHDhiEhIQHe3t44efIkpk2bhlmzZiExMRETJkzA6NGjcfXq1RrbTgipBkuCuVcjR9OwAnr58iXYbDZatGhRq+vnzp2LRYsWcR37559/0L17d877Ll26QEJCAoWFhSgqKsL48ePh4eFRZcyqikvXNU45aWlpjBo1CsHBwejWrRuCg4MxatQonulRaWlp/Pnnn5z3xsbGiImJwdGjR+Hi4gIAWL58OWbNmoVp06Zxrmvfvj1XnN9//x2jR4/mvHdzc4OXlxcmT54MAJwR+rp169CrVy+e9hYUFPCUSGOz2ZXm0CWEEH5QZymguqbWnTNnDk9S8GbNmnG9P3LkCCwtLVFUVITExET4+PhAXV2dsxAI+F9x6ZKSEhQWFmLgwIE8idxrE6cq3t7e6NKlC1auXIljx44hJiYGxcXFPNcFBQUhODgYb968wffv31FYWMipbPLhwwekpaXxVQB6/PjxXMe6du1a6RQvUFbPsmKnDQAsCSWwJCuvmEKI2KJnlnyjzlJA5ubmYLFYXIt4qlNeXLo6+vr6nGssLS2RkpKCxYsXIyAgAHJycgDKiktHRkZCSkoKTZs2rbQ6SG3iVMXW1hYtWrSAm5sbLC0tYWNjwynzVS48PByzZ8/G+vXr0blzZygrK2Pt2rW4e/cugNoVfwYELwA9f/58zJw5k+uYumbtRvqEEFIbjX+imWEaGhpwdHREUFBQpYWks7KyBL6HpKQkiouLuZ5J8lNcurI41SkvAO3t7V3p+ejoaHTp0gWTJ0+GnZ0dzMzMkJKSwjmvrKwMIyMjoRWAtrKyqvR6WVlZqKiocL1oCpaQSkhIMPdq5GhkKQRBQUHo2rUrOnTogKVLl6Jly5YoLi7GpUuXsGPHDjx9+pRzbW2KS3/+/BkZGRkoLi5GQkICNm/ejF69elVZiLkqgsYZN24cRowYUeUiJXNzc4SFheHChQswNjbGgQMHcP/+fRgbG3OuCQgIwMSJE6GtrY3+/fvj69eviI6Oho+PT5X3nTNnDlxcXGBnZ4c+ffrgzJkzOHHiBKKiour0+QkhP6BpWL5RZykEJiYmePToEVasWIFZs2YhPT0dWlpaaNu2LXbs2MF17ZIlS7BkyRKuYxMmTMDOnTs57/v06QOgbCSop6eHAQMGcLZU1IWgcaSkpNCkSZMqz0+YMAGxsbEYOXIkWCwW3NzcMHnyZPzzz/9q7Hl6eiI/Px8bN27E7Nmz0aRJE/z222/V3nfo0KHYvHkz1q1bh2nTpsHY2BghISGwt7evddsJIUSYqPgzaZSkZJrVfBGfmE6krhH+cyZSX9DUnrHY8//UZyw2AKzyf8tYbItC5kZz7ml/1en63BU1r4bnl+LCsFpfe+PGDaxduxYPHz5Eeno6Tp48iaFDh3LOs9ls+Pv7Y8+ePcjKykLXrl2xY8cOmJubM9Dy2mn8E82EEEIalNzcXLRq1QpBQUGVnl+zZg22bNmCnTt34u7du1BUVISjoyPy8/PruaX/Q9OwhBAiLhrIM8v+/fujf//+lZ5js9nYtGkTFi1ahCFDhgAAwsLCoKOjg1OnTsHV1bU+m8pBI0tCCCECKygoQE5ODtfrx2QhtfH69WtkZGRw1lwAgKqqKjp27IiYmBhhNrlOaGRJGqX1uryZfoRFqZ8kY7F/ZkpsBkctiswWf/ZS/shYbCnZEsZi1xWTJboqSw7i7++PgICAOsUp3y2go6PDdVxHR4dnJ0F9os6SEEKIwCpLDiIrKyui1ggfTcPWMy8vL65VXz+qWPNSQUEBtra22Lt3L9c1165d46pXqaOjg+HDh+PVq1eca3bv3g17e3vOBv3aJEfw8vICi8XCxIkTec5NmTIFLBaLJ1UfIeQnIsFi7FVZchB+OktdXV0AwH///cd1/L///uOcEwXqLBugpUuXIj09HYmJiRg1ahTGjRvHtXex3PPnz5GWloZjx47hyZMnGDRoEEpKyqZ88vLy4OTkhAULFtTp3vr6+ggPD8f37985x/Lz83Ho0CEYGBgI9sFqUNvMQoQQPv0EVUeMjY2hq6vLlfkrJycHd+/eRefOnYV2n7qizrIBKq95aWJigrlz50JDQwOXLl3iuU5bWxt6enro0aMHlixZgqSkJLx8+RIAMH36dMybNw+dOnWq073btGkDfX19nDhxgnPsxIkTMDAwgJ2dHde158+fR7du3aCmpgZNTU04OztzpbsDgHfv3sHNzQ0aGhpQVFREu3btOLljAwIC0Lp1a+zduxfGxsacfLVv3rzBkCFDoKSkBBUVFbi4uPD8lUkI+Xl9+/YNcXFxnHzTr1+/RlxcHN68eQMWi4Xp06dj+fLliIyMREJCAjw8PNC0adNqZ+WYRp1lA1ZaWoqIiAh8+fKlxvyv5UnLhTE68/b25ir+HBwczFVCq1xubi5mzpyJBw8e4PLly5CQkMCwYcNQWloKoOx/iJ49e+L9+/eIjIxEfHw8/Pz8OOeBshJnEREROHHiBOLi4lBaWoohQ4YgMzMT169fx6VLl/Dq1SuMHDlS4M9FiNhjcBq2Lh48eAA7OzvOH+AzZ86EnZ0dJ7uZn58ffHx8MH78eLRv3x7fvn3D+fPnaywAwSRa4NMAlde8LCgoQHFxMTQ0NDB27Ngqr09PT8e6devQrFkzWFhYCHz/UaNGYf78+fj3338BlCUxDw8Px7Vr17iuGz58ONf74OBgaGlpISkpCTY2Njh06BA+fvyI+/fvQ0NDAwB4Kq4UFhYiLCwMWlpaAIBLly4hISEBr1+/hr5+WdaWsLAwWFtb4/79+zy1MAkhPx97e/tqyxuyWCwsXboUS5curcdWVY9Glg3QnDlzEBcXhytXrqBjx47YuHFjpWW9fvnlFygqKqJp06bIzc1FRERErSuQVEdLSwsDBw5EaGgoQkJCMHDgwEpzxCYnJ8PNzQ0mJiZQUVGBkZERgLJpVACIi4uDnZ0dp6OsjKGhIaejBMpqWerr63M6SgCwsrKCmpoaV0L6iirb31XMbjjL9QlpMKjqCN9oZNkAlde8NDMzw7Fjx2Bra4t27drxlKi6efMmVFRUoK2tDWVlZaG2wdvbG1OnTgWAKlNSDRo0CIaGhtizZw+aNm2K0tJS2NjYcKaCa1PPUtBalkDl+7scVWzRX7WlwLEJIQSgkWWDp6+vj5EjR2L+/Pk854yNjWFqair0jhIAnJycUFhYiKKiIjg6OvKc//z5M54/f45FixbBwcEBlpaW+PLlC9c1LVu2RFxcHDIzM2t9X0tLS7x9+xZv3/4vsXVSUhKysrKqrGc5f/58ZGdnc736qljX+p6EiA0Wi7lXI0cjSxHIzs7mrAIrp6mpyTX1WNG0adNgY2ODBw8eoF27drW6R0ZGBjIyMjirYxMSEqCsrAwDA4Nqp0XLSUpKcqY9JSV5M9aoq6tDU1MTu3fvhp6eHt68eYN58+ZxXePm5oaVK1di6NChWLVqFfT09BAbG4umTZtWuQS8T58+sLW1hbu7OzZt2oTi4mJMnjwZPXv2rPKzy8rK8uznkmJRlh1CiPDQyFIErl27xlkJVv76cRqxIisrK/Tr14+nDmZ1du7cCTs7O4wbNw4A0KNHD9jZ2SEyMrLWMco3FldGQkIC4eHhePjwIWxsbDBjxgysXbuW6xoZGRlcvHgR2traGDBgAGxtbREYGFhp51uOxWLh9OnTUFdXR48ePdCnTx+YmJjgyJEjtW43IaQK9MySb1TPkjRKmw1GMRZ77CRmR60y3nVLJFEXTNazXKnHXD5en/UtGIsNAOl/3mAsNpO5YQ0eXK75ogrygqYy1BJAYco2xmI3BI3/zwFCCCFEQPTMkhBCxEUDqWf5M6KRJSGEEFIDGlmSRsm8oJix2KX/ZTMWGwAgKc1sfIY8Y+UzFpv9Q85hYfv4mbl6mdklgicKqUqdSxsIMeG5uKFvjhBCCKkBjSwJIURciMEWD6bQN8enisWXK3sFBAQgNTWV65iGhgZ69uyJmzdvcsUKCAioNEaLFv9bLm9vbw8Wi4XAwECetgwcOJBzTwAoKirC3LlzYWtry8kd6+HhgbS0tGo/ExV/JoSQylFnyaf09HTOa9OmTVBRUeE6Nnv2bM61UVFRSE9Px40bN9C0aVM4Ozvz1Ge0trbm+vn09HTcunWL6xp9fX2EhoZyHXv//j0uX74MPT09zrG8vDw8evQIixcvxqNHj3DixAk8f/4cgwcPrvFzUfFnQhovlgSLsVdjR50ln3R1dTkvVVVVsFgsrmNKSv9bMKCpqQldXV3Y2NhgwYIFnKrfFUlJSXH9vK6uLk+lD2dnZ3z69AnR0dGcY/v370e/fv2gra3NOaaqqopLly7BxcUFFhYW6NSpE7Zt24aHDx9yKoJUhYo/E9KIsSSYezVyjf8TNiDfv39HWFgYAPBVSktGRgbu7u5chZlDQ0Ph7e1d489mZ2eDxWJBTU2txmup+DMhhHCjBT71oEuXLpCQkEBeXh7YbDbatm0LBwcHrmsSEhK4RqNAWRHmnTt3ch3z9vZG9+7dsXnzZjx8+BDZ2dlwdnbmPK+sTH5+PubOnQs3N7cqc73+eN+fqfhzQUEBCgoKuI4VsUsgTcnUCeFGC3z4Rp1lPThy5AhatGiBxMRE+Pn5ITQ0FNLS3HvpLCwseJKcV9axtWrVCubm5jh+/DiuXr2KP/74A1JSVf9rLCoqgouLC9hsNnbs2FGr9lYs/sxms6st/rxkyRLcvXsXnz594owY37x5AxsbG0aKP1fWWVZWz/J3BWu4K9nU6vMSQkhNqLOsB/r6+jA3N4e5uTmKi4sxbNgwJCYmcpWVkpGR4Rl1VcXb2xtBQUFISkrCvXv3qryuvKP8999/ceXKlVqNKive42cp/jx//nzMnDmT69hVszECxyWk0aGRJd/om6tnv/32G6SkpLB9+3a+Y/z+++9ISEiAjY1NlQWRyzvK5ORkREVFQVNTs073+JmKP8vKynLKiZW/aAqWECJM1FnWMxaLBV9fXwQGBiIvL49zvLi4mFOwufxV1QpQdXV1pKen4/LlysvzFBUV4bfffsODBw9w8OBBlJSUcGLWdntGefHnpKSkGos/v3z5EleuXOEZ3bm5uUFXVxdDhw5FdHQ0Xr16hYiICMTExFR534rFnx89eoR79+7Bw8Oj2uLPhJBaYrGYezVy1FmKgKenJ4qKirBt2//qvz158gR6enpcL0NDwypjqKmpVTmFWb769N27d2jdujVXzNu3b9e6nVT8mRBCylDxZ9Io/a3jyljs7m65jMUGALlFmxmLLd+0O2OxPZp2Ziz2tknKjMUGgITNzCXHZzKRer//wut0/fe/FjLUEkB+1ArGYjcEtMCHEELEhRgkD2AKfXOEEEJIDWhkSQgh4oK2jvCNOkvSKHXqlM5YbAlF7ZovEsCz9tMYi51g2Iqx2Pq/Mbf8Qcp9Zs0XCcDq9RzGYkto0a/ZxoD+LRJCiLigkSXf6JsjhBBCakCdZQORkZEBHx8fmJiYQFZWFvr6+hg0aBBX4oHdu3fD3t4eKioqYLFYyMrKqjTW2bNn0bNnTygrK0NBQQHt27fnqYNZmboUmCaE/IQoKQHfqLNsAFJTU9G2bVtcuXIFa9euRUJCAs6fP49evXphypQpnOvy8vLg5OSEBQsWVBlr69atGDJkCLp27Yq7d+/i8ePHcHV1xcSJE7kKUleltgWmmUDFnwkhDRV1lg3A5MmTwWKxcO/ePQwfPhzNmzeHtbU1Zs6ciTt37nCumz59OubNm4dOnTpVGuft27eYNWsWpk+fjpUrV8LKygpmZmaYNWsW1q5di/Xr1/MUnf5RbQtMA8CBAwfQrl07KCsrQ1dXF7///js+fPjAdc2TJ0/g7OwMFRUVKCsro3v37pwC0V5eXhg6dChWrFiBpk2bwsLCAkBZubLevXtDXl4empqaGD9+PL59+1b7L5QQUjkJCeZejVzj/4QNXGZmJs6fP48pU6ZUmr6uNsWayx0/fhxFRUWVjiAnTJgAJSUlHD58uNoYdSkwXVRUhGXLliE+Ph6nTp1CamoqvLy8OOffv3+PHj16QFZWFleuXMHDhw/h7e2N4uJizjWXL1/G8+fPcenSJZw9exa5ublwdHSEuro67t+/j2PHjiEqKopTAYUQIgDqLPlGq2FF7OXLl2Cz2WjRooXAsV68eAFVVdVKp0tlZGRgYmKCFy9e1BintgWmK3agJiYm2LJlC9q3b49v375BSUkJQUFBUFVVRXh4OKd+Z/PmzbliKCoqYu/evZCRKUsJtmfPHuTn5yMsLIzzx8O2bdswaNAgrF69Gjo6Ojztraz4c0FJKWQlG///wISQ+kG/TUSsvlPzlndK1alYYDo4OLjKAtMPHz7EoEGDYGBgAGVlZfTs2RNAWfFnAIiLi0P37t15Cl1XZGtry9Wmp0+folWrVlyj7K5du6K0tBTPnz+vNMaqVaugqqrK9dqU/KbGz0mI2GFJMPdq5Br/J2zgzM3NwWKx8OzZM6HEys7ORlpaGs+5wsJCpKSk8IzsqlJeYPr48eOVTsGWT5eqqKjg4MGDuH//Pk6ePMm5F1C/xZ+zs7O5XtPNDQSOSwgh5aizFDENDQ04OjoiKCgIubm81Syq2h5SmfLC0uvXr+c5t3PnTuTl5cHDw6NWsWoqMP3s2TN8/vwZgYGB6N69O1q0aMGzuKdly5a4efMmioqKav0ZLC0tER8fz/VdREdHQ0JCgrMA6EeVFX+mKVhCKkHPLPnW+D/hTyAoKAglJSXo0KEDIiIikJycjKdPn2LLli3o3Pl/ZY8yMjIQFxeHly9fAihbNRoXF4fMzEwAgIGBAdasWYNNmzZh4cKFePbsGVJSUrBhwwb4+flh+fLlsLGxqVWbaiowbWBgABkZGWzduhWvXr1CZGQkli1bxnXN1KlTkZOTA1dXVzx48ADJyck4cOBAldOpAODu7g45OTl4enoiMTERV69ehY+PD/74449Kn1cSQkh9oM6yATAxMcGjR4/Qq1cvzJo1CzY2Nujbty8uX76MHTt2cK7buXMn7OzsMG7cOABAjx49YGdnh8jISM41M2bMwIkTJ3Dz5k20a9eOs3UkNDS02v2ZlamuwLSWlhZCQ0Nx7NgxWFlZITAwEOvWreO6RlNTE1euXMG3b9/Qs2dPtG3bFnv27Kn2GaaCggIuXLiAzMxMtG/fHr/99hscHBy4CmUTQvhEzyz5RsWfG7nMzEw4ODhARUUF//zzDxQUFETdpHqROaQnY7FlbZhNpP7qUD5jsaWkShiLrf9bzc+o+SUzJYCx2ABQsJzJROoqjMVWXHa0Ttd/j1xX80V8kh9cc9KTn1nj/3NAzGloaCAqKgoODg6IiYkRdXMIIaJEzyz5RvssxYCmpiaWLFki6mYQQkRNDKZLmUKdJWmUZExVGYvN+kWXsdgA8Cw/k7HYf8syN8W7/NoXxmI3GZ3NWGwAkDT7hbHYJam8W7nIz4c6S0IIERdiMF3KFPrmCCGEkBpQZ0kEwmKxOC9FRUWYm5vDy8sLDx8+5LmWzWZj9+7d6NixI5SUlKCmpoZ27dph06ZNyMvLA1BWpWT48OEwMjICi8XCpk2b6vkTEdKI0QIfvjX+T0gYFxISgvT0dDx58gRBQUH49u0bOnbsiLCwMK7r/vjjD0yfPh1DhgzB1atXERcXh8WLF+P06dO4ePEigLKanSYmJggMDISuLrPPBgkhpLaosyQ1Ki0txZo1a2BmZgZZWVkYGBhgxYoVnPNqamrQ1dWFkZER+vXrh+PHj8Pd3R1Tp07Fly9liz6OHj2KgwcP4vDhw1iwYAHat28PIyMjDBkyBFeuXEGvXr0AAO3bt8fatWvh6uoKWVlZkXxeQhqtBpKUICAggGtWisViCaXyEpOosyQ1mj9/PgIDA7F48WIkJSXh0KFDNaaemzFjBr5+/YpLly4BAA4ePAgLCwsMGTKE51oWiwVVVeZWrxJCGh5ra2ukp6dzXrdu3RJ1k6pFq2FJtb5+/YrNmzdj27Zt8PT0BACYmpqiW7du1f5c+V+JqampAIDk5OQqE6ELqrJ6lkXFJZCVkmTkfoT8tBrQs0UpKamf6lFLw/nmSIP09OlTFBQUwMHBoU4/V55FkcVicb1nQmX1LNfff8nY/Qj5aTE4DVtQUICcnByu149/xFaUnJyMpk2bwsTEBO7u7pw6uA0VdZakWrWpSVmZp0+fAgCMjY0BAM2bNxdKzc7KVFbPclZ7M0buRQipXGV/tK5atarSazt27IjQ0FCcP38eO3bswOvXr9G9e3d8/fq1nltde9RZkmqZm5tDXl6+ylJdVdm0aRNUVFTQp08fAGX1MV+8eIHTp0/zXMtms5GdzX+GlkrrWdIULCG8GNw6UtkfrfPnz6+0Gf3798eIESPQsmVLODo64u+//0ZWVhaOHq1bYvj6RM8sSbXk5OQwd+5c+Pn5QUZGBl27dsXHjx/x5MkTjBkzBkBZgeqMjAwUFBTgxYsX2LVrF06dOoWwsDCoqakBAFxcXHDy5Em4ublh0aJF6NevH7S0tJCQkICNGzfCx8cHQ4cORWFhIZKSkgAAhYWFeP/+PeLi4qCkpAQzMxotEtJQycrK8r2CXU1NDc2bN+fU6m2IqLMkNVq8eDGkpKSwZMkSpKWlQU9PDxMnTuScHz16NICyjrVZs2bo1q0b7t27hzZt2nCuYbFYOHToEHbv3o3g4GCsWLECUlJSMDc3h4eHBxwdHQEAaWlpsLOz4/zcunXrsG7dOvTs2RPXrl2rnw9MSGPVQBOpf/v2DSkpKfjjjz9E3ZQqUWdJaiQhIYGFCxdi4cKFPOfqsnBHQkICEydO5Opof2RkZMToYiBCiOjNnj0bgwYNgqGhIdLS0uDv7w9JSUm4ubmJumlVos6SEELERQPZOvLu3Tu4ubnh8+fP0NLSQrdu3XDnzh1oaWmJumlVos6SEEJIvQoPDxd1E+qMOktCCBETLBatEucXdZakUWLJM5dXlqWswlhsAHgiw1zx52dFzMX+//wTzCiqenO7MLDUmPt3ypL5wFjsOmsg07A/I/rmCCGEkBrQyJIQQsQFjSz5Rt8c4fDy8uKUy5GWloaOjg769u2L4OBglJaWcl0bGxuLESNGQEdHB3JycjA3N8e4cePw4sULAEB8fDzc3Nygr68PeXl5WFpaYvPmzZXed//+/ZzE7AEBAWjRogUUFRWhrq6OPn364O7du8x+cEIIqQF1loSLk5MT0tPTkZqain/++Qe9evXCtGnT4OzsjOLiYgDA2bNn0alTJxQUFODgwYN4+vQp/vrrL6iqqmLx4sUAgIcPH0JbWxt//fUXnjx5goULF2L+/PnYtm0bzz1Pnz6NwYMHAyjLIbtt2zYkJCTg1q1bnBqZHz9+rL8vgZDGqoHUs/wZ0TQs4SIrK8spm9OsWTO0adMGnTp1goODA0JDQ/H7779j9OjRGDBgAE6ePMn5OWNjY3Ts2BFZWVkAAG9vb664JiYmiImJwYkTJzB16lTO8fz8fFy8eBErV64EUJZDtqINGzZg3759ePz4cZ0rnxBCiLBQZ0lq1Lt3b7Rq1QonTpyApqYmPn36BD8/v0qvLc8FW5ns7GxoaGhwHbt8+TKaNWtWaZX0wsJC7N69G6qqqmjVqpVAn4EQAnpmKQDqLEmttGjRAo8fP0ZycjLnfV3cvn0bR44cwblz57iOV5yCLXf27Fm4uroiLy8Penp6uHTpEpo0aVJl7MqKPxdT8WdCiBDRnxmkVthsNlgsFl95WxMTEzFkyBD4+/ujX79+XDHPnDnD01n26tULcXFxuH37NpycnODi4oIPH6req1ZZHb11t5mpnUnIT42eWfKt8X9CIhRPnz6FsbExmjdvDgC1LuSclJQEBwcHjB8/HosWLeI6d+/ePRQXF6NLly5cxxUVFWFmZoZOnTph3759kJKSwr59+6q8R2V19GZ3qdvIlxBCqkOdJanRlStXkJCQgOHDh6Nfv35o0qQJ1qxZU+m15Qt8AODJkyfo1asXPD09sWLFCp5rT58+jYEDB0JSsvrp0tLSUp5p1oqo+DMhtSQhydyrkaNnloRLQUEBMjIyUFJSgv/++w/nz5/HqlWr4OzsDA8PD0hKSmLv3r0YMWIEBg8eDF9fX5iZmeHTp084evQo3rx5g/DwcCQmJqJ3795wdHTEzJkzkZGRAQCQlJTkVBaIjIzE0qVLOffOzc3FihUrMHjwYOjp6eHTp08ICgrC+/fvMWLECJF8H4Q0KmIwXcoU6iwJl/Pnz0NPTw9SUlJQV1dHq1atsGXLFnh6ekLi/1fSDRkyBLdv38aqVavw+++/IycnB/r6+ujduzeWL18OADh+/Dg+fvyIv/76C3/99RcnvqGhIVJTU5GSkoKXL19yij4DZR3ps2fPsH//fnz69Amamppo3749bt68CWtr6/r9IgghpAIWmyrtEhHYsGEDoqKi8PfffzMSP3chcyNRCcvmjMUGgNULUxmLfaE4jbHYEYaMhYbmnkU1XySA0phzNV/Ep5Kkl4zFVtoQWafr8+POMtQSQK61M2OxGwIakxOR+OWXXzB//nxRN4MQQmqFpmGJSLi4uIi6CYSIH3pmyTfqLEmjVPIph7HYrIz/GIsNAJqlzBWGdJRqylhsgLkpXkgy+6uq9N93jMUueJ7NWGwlxiKTH1FnSQghYoLFavxbPJhCY3JCCCGkBtRZ/uQyMjLg4+MDExMTyMrKQl9fH4MGDcLly5e5rqup/mRqaiqnliWLxYKGhgZ69uyJmzdvcsWxt7fnuq78NXDgwCrbGBoayrlOUlIS6urq6NixI5YuXYrsbN4pqtp+JkJIHUlIMPdq5Br/J2zEUlNT0bZtW1y5cgVr165FQkICzp8/j169emHKlCmc62pTf7JcVFQU0tPTcePGDTRt2hTOzs7477//PaM7ceIE0tPTOa/ExERISkrWmDRARUUF6enpePfuHW7fvo3x48cjLCwMrVu3Rlra/5511fYzEUL4QLlh+UbPLH9ikydPBovFwr1796CoqMg5bm1tzaknmZeXV6v6k+U0NTWhq6sLXV1dLFiwAOHh4bh79y4n2fmPJbbCw8OhoKBQY2fJYrE4dTL19PRgaWmJQYMGwdraGn5+fpzEBbX5TIQQUt8a/58DjVRmZibOnz+PKVOmcHUq5crrSl64cIGv+pPfv39HWFgYAEBGRqbKduzbtw+urq6VtqEm2tracHd3R2RkJEpKSmr9mQghfKJpWL7RyPIn9fLlS7DZ7BrrSta1/mSXLl0gISGBvLw8sNlstG3bFg4ODpVee+/ePSQmJlZbEaQmLVq0wNevX/H582ekpqbW6jP9qLJ6lgUlpZCVbPz/AxNC6gf9NvlJ1TZLYV2zGR45cgSxsbGIiIiAmZkZQkNDIS0tXem1+/btg62tLTp06FCne1TWPn5rZQKV17PcEPuK7zYR0mjRM0u+0cjyJ2Vubg4Wi1VjXcmK9Sc7d+5cY1x9fX2Ym5vD3NwcxcXFGDZsGBITEyErK8t1XW5uLsLDw7mqhvDj6dOnUFFRgaamJiQlJWv1mX40f/58zJw5k+tYwczhArWLEEIqavx/DjRSGhoacHR0RFBQEHJzc3nOly/cqUv9yR/99ttvkJKSwvbt23nOHTt2DAUFBRg1ahRf7QeADx8+4NChQxg6dCgkJCRq/Zl+VGk9S5qCJYQX1bPkG/1G+YkFBQWhpKQEHTp0QEREBJKTk/H06VNs2bKFM4pUVFTE3r17ce7cOQwePBhRUVFITU3FgwcP4Ofnh4kTJ1YZn8ViwdfXF4GBgcjLy+M6t2/fPgwdOhSampq1aiubzUZGRgbS09Px9OlTBAcHo0uXLlBVVUVgYGCdPhMhhNQ36ix/YiYmJnj06BF69eqFWbNmwcbGBn379sXly5exY8cOznXl9SelpaXx+++/o0WLFnBzc0N2djan/mRVPD09UVRUhG3btnGOPX/+HLdu3cKYMWNq3dacnBzo6emhWbNm6Ny5M3bt2gVPT0/ExsZCT0+vzp+JEMIHembJN6pnSRqlnAmONV/EJylzfcZiA8C+zfmMxf4swdz/7uObMZdIXTM4gLHYAFB8MIix2PmPmEu8r3nuep2uL0i5w1BLAFnTTozFbgga/58DhBBCiIBoNSwhhIgJlhhMlzKFvjlCCCGkBjSyJI3S87MKjMVuMYLZ4s89GVyF/ypfmbHYStaVJ68QBpZc3dMp1kVJ2hfGYsvoyzMWu87EIC0dU+ibI4QQQmpAnSVhVMX6l7KysmjWrBkGDRqEEydOVHr91atXMWDAAGhqakJBQQFWVlaYNWsW3r9/X88tJ6QRoq0jfGv8n5CI3Lhx45Ceno6UlBRERETAysoKrq6uGD9+PNd1u3btQp8+faCrq4uIiAgkJSVh586dyM7Oxvr160XUekIIoWeWRED29vawsbEBABw4cADS0tKYNGkSli5dChaLBQBQUFDg1LL85Zdf0KlTJ7Ro0QLe3t5wcXFBnz598O7dO/j6+sLX1xcbN27kxDcyMkKPHj2qTctHCKklMUhLxxQaWRKB7d+/H1JSUrh37x42b96MDRs2YO/evdX+jKenJ9TV1TnTsceOHUNhYWGd624SQuqApmH5RiNLIjB9fX1s3LgRLBYLFhYWSEhIwMaNGzFu3Lgqf0ZCQgLNmzdHamoqgLK6myoqKlyp7wghpKFo/H8OEMZ16tSJM+UKAJ07d0ZycjJKSkqq/Tk2m835uYr/XFcFBQXIycnhehWyq783IWJJQoK5VyPX+D8haZBKSkqQnJwMY2NjAGV1N7Ozs5Genl7nWJUVfw79+kLYTSaEiDHqLInA7t69y/X+zp07MDc3h6Rk1YsJ9u/fjy9fvmD48LIizb/99htkZGT4qrs5f/58ZGdnc728lJvX/YMQ0sixWBKMvRo7emZJBPbmzRvMnDkTEyZMwKNHj7B161aurR55eXnIyMhAcXEx3r17h5MnT2Ljxo2YNGkSevXqBeB/zz2nTp2KnJwceHh4wMjICO/evUNYWBiUlJSq3D4iKysLWVlZrmMyLFr1RwgRHuosicA8PDzw/ft3dOjQAZKSkpg2bRrXHso9e/Zgz549kJGRgaamJtq2bYsjR45g2LBhXHEmT56M5s2bY926dRg2bBi+f/8OIyMjODs7Y+bMmfX9sQhpfMTg2SJTqLMkApOWlsamTZsqLc587dq1OsXq06cP+vTpI6SWEUKIcFBnSQgh4kIMni0yhTpLQggRF5TBh2/UWRKB1HWalRBCfkpsQsRcfn4+29/fn52fn0+x6yE20/EpNmECi81ms0XdYRMiSjk5OVBVVUV2djZUVFQoNsOxmY5PsQkT6GkvIYQQUgPqLAkhhJAaUGdJCCGE1IA6SyL2ZGVl4e/vz5Myj2IzE5vp+BSbMIEW+BBCCCE1oJElIYQQUgPqLAkhhJAaUGdJCCGE1IA6S0IIIaQG1FkSsVJUVARvb2+8fv1a1E0RK97e3vj69SvP8dzcXHh7e4ugRTWj/1ZIRbQalogdVVVVxMXFwdjYWCjxfv3111pfe+LECaHckwk3b97Erl27kJKSguPHj6NZs2Y4cOAAjI2N0a1bN4FiS0pKIj09Hdra2lzHP336BF1dXRQXFwsUnynC/m+loqKiIjg5OWHnzp0wNzcXenwiXDSyJGJn6NChOHXqlNDiqaqqcl4qKiq4fPkyHjx4wDn/8OFDXL58GaqqqkK7p7BFRETA0dER8vLyiI2NRUFBAQAgOzsbK1eu5DtuTk4OsrOzwWaz8fXrV+Tk5HBeX758wd9//83TgQoqPz+f6z45OTl8xxL2fysVSUtL4/Hjx4zEJsJHJbqI2DE3N8fSpUsRHR2Ntm3bQlFRkeu8r69vneKFhIRw/nnu3LlwcXHBzp07ISlZVjuwpKQEkydPFlpy7P3796NJkyYYOHAgAMDPzw+7d++GlZUVDh8+DENDwzrHXL58OXbu3AkPDw+Eh4dzjnft2hXLly/nu61qampgsVhgsVho3rw5z3kWi4U///yT7/jl8vLy4Ofnh6NHj+Lz588850tKSviKK+z/Vn40atQo7Nu3D4GBgQLFIcyjaVgidqqbUmOxWHj16hXfsbW0tHDr1i1YWFhwHX/+/Dm6dOlS6S/yurKwsMCOHTvQu3dvxMTEoE+fPti4cSPOnj0LKSkpvqZ6FRQUkJSUBCMjIygrKyM+Ph4mJiZ49eoVrKyskJ+fz1dbr1+/Djabjd69eyMiIgIaGhqcczIyMjA0NETTpk35il3RlClTcPXqVSxbtgx//PEHgoKC8P79e+zatQuBgYFwd3fnKy6T/60AgI+PD8LCwmBubl5pZ7xhwwaB4hPhoZElETtMLtgoLi7Gs2fPeDrLZ8+eobS0VCj3ePv2LczMzAAAp06dwvDhwzF+/Hh07doV9vb2fMXU1dXFy5cvYWRkxHX81q1bMDEx4butPXv2BFD2nRsYGIDFYvEdqzpnzpxBWFgY7O3tMXr0aHTv3h1mZmYwNDTEwYMH+e4smV7ck5iYiDZt2gAAXrx4wXWOqe+K8Ic6S0KEaPTo0RgzZgxSUlLQoUMHAMDdu3cRGBiI0aNHC+UeSkpK+Pz5MwwMDHDx4kXMnDkTACAnJ4fv37/zFXPcuHGYNm0agoODwWKxkJaWhpiYGMyePRuLFy8WuM1XrlyBkpISRowYwXX82LFjyMvLg6enp0DxMzMzOZ26iooKMjMzAQDdunXDpEmTBIoNAIWFhXj9+jVMTU0hJSW8X5tXr14VWizCLOosidipaatCcHAw37HXrVsHXV1drF+/Hunp6QAAPT09zJkzB7NmzeI7bkV9+/bF2LFjYWdnhxcvXmDAgAEAgCdPnvCMDGtr3rx5KC0thYODA/Ly8tCjRw/Iyspi9uzZ8PHxEbjNq1atwq5du3iOa2trY/z48QJ3liYmJpzRa4sWLXD06FF06NABZ86cgZqaGt9x8/Ly4OPjg/379wMoG/2ZmJjAx8cHzZo1w7x58wRqN/l50DNLInaGDRvG9b6oqAiJiYnIyspC7969hba9o3wVprCr3mdlZWHRokV4+/YtJk2aBCcnJwCAv78/ZGRksHDhwjrFKykpQXR0NFq2bAkFBQW8fPkS3759g5WVFZSUlITSZjk5OTx79oynM09NTYWlpSXfI+JyGzduhKSkJHx9fREVFYVBgwaBzWajqKgIGzZswLRp0/iKO23aNERHR2PTpk1wcnLC48ePYWJigtOnTyMgIACxsbECtRsAHjx4gKNHj+LNmzcoLCzkOteQtxqJHTYhhF1SUsIeP348e/Xq1aJuikjIysqyX716xVh8fX199unTp3mOnzp1it2sWTOh3y81NZUdERHBjo+PFyiOgYEBOyYmhs1ms9lKSkrslJQUNpvNZicnJ7OVlZUFbufhw4fZ0tLSbGdnZ7aMjAzb2dmZ3bx5c7aqqirby8tL4PhEeGgalhAAEhISmDlzJuzt7eHn51enn23Tpg0uX74MdXV12NnZVbsw49GjR3y17/Hjx7CxsYGEhESNe/NatmxZ5/g2NjZ49eoVI5vvAcDNzQ2+vr5QVlZGjx49AJStlJ02bRpcXV2Ffj9DQ0O+ttD86OPHj5XuA83NzRXKApyVK1di48aNmDJlCpSVlbF582YYGxtjwoQJ0NPTEzg+ER7qLAn5fykpKXxlkhkyZAinYO/QoUOF3KoyrVu3RkZGBrS1tdG6dWuwWCywKzxBKX/PYrH42lO4fPlyzJ49G8uWLat0C4OgU8nLli1DamoqHBwcOAtkSktL4eHhIVDSg4ru37+Pq1ev4sOHDzwrj/ndgtGuXTucO3eO89y2vIPcu3cvOnfuLFiDUfbfXPl+WRkZGU4nPGPGDPTu3Vsoe1CJcFBnScRO+erRcmw2G+np6Th37hxfC038/f0r/Wdhev36NbS0tDj/LGzli4QGDx7MNWISpAOuSEZGBkeOHMGyZcsQHx8PeXl52NraCmX0B5SN0BYtWgQLCwvo6OhwfQZBRoArV65E//79kZSUhOLiYmzevBlJSUm4ffs2rl+/LnC71dXVOTlzmzVrhsTERNja2iIrKwt5eXkCxyfCQwt8iNjp1asX13sJCQloaWmhd+/e8Pb2FsrWgIcPH+Lp06cAAGtra9jZ2Qkck0k1/eIv3y/ZUOno6GD16tXw8vISeuyUlBQEBgYiPj4e3759Q5s2bTB37lzY2toKHPv3339Hu3btMHPmTCxbtgxbt27FkCFDcOnSJbRp04YW+DQg1FkSIkQfPnyAq6srrl27xtmykJWVhV69eiE8PJwzOhQEE+numMbkdh2gbHvOjRs3frqE5JmZmcjPz0fTpk1RWlqKNWvW4Pbt2zA3N8eiRYugrq4u6iaS/0edJRFbHz9+xPPnzwGUpZATRkc2cuRIvHr1CmFhYbC0tAQAJCUlwdPTE2ZmZjh8+LDA9/gx3Z2DgwM2bdokULq7GzduVHu+fFEOv5jerrNmzRqkpaVh06ZNAsUBUKfE68LeFkQaLuosidjJzc3l5OQsXwgiKSkJDw8PbN26FQoKCnzHVlVVRVRUFNq3b891/N69e+jXrx+ysrIEaTqAsjyuz549g4GBAebOnYv09HSEhYXhyZMnsLe3x8ePH+scU0KCtwBRxWd9gj6zrExpaSkmTZoEU1PTOq9ArizWwIED8eLFC1hZWUFaWprrfF06YwkJiVo/5+Tne6HO+OdEC3yI2Jk5cyauX7+OM2fOoGvXrgDKcqD6+vpi1qxZ2LFjB9+xS0tLeX5RA2XlmISVG5aJdHdfvnzhel9UVITY2FgsXrwYK1asELjNlRFku86PfH19cfXqVfTq1QuampoCLeqpmIIuNTUV8+bNg5eXF2f1a0xMDPbv349Vq1bxFb+8Ekt1hLWwiggPjSyJ2GnSpAmOHz/Ok3T86tWrcHFx4WtkVm7IkCHIysrC4cOHOdU03r9/D3d3d6irq+PkyZOCNB0A4O7ujmfPnsHOzg6HDx/GmzdvoKmpicjISCxYsACJiYkC36Pc9evXMXPmTDx8+FBoMSv6+++/4enpKdB3DgDKysoIDw/nPMcVFgcHB4wdOxZubm5cxw8dOoTdu3fj2rVrdY5Zl1W0DX1hlTihkSURO3l5edDR0eE5rq2tLfBy/W3btmHw4MEwMjKCvr4+gLIqITY2Nvjrr78Eil0uKCiIk+4uIiICmpqaAMpW4P74S11QOjo6nOe6ghD2dp0faWhowNTUVOA4P4qJicHOnTt5jrdr1w5jx47lKyZ1gD8nGlkSsePg4ABNTU2EhYVBTk4OAPD9+3d4enoiMzMTUVFRAsVns9mIiorCs2fPAACWlpbo06ePwO1m0o9Zgco7s8DAQBQXF+PWrVsCxWd6u05ISAjOnz+PkJAQgZ45/8jCwgJDhgzBmjVruI77+fnh9OnTAv8hwfTCKiI81FkSsZOYmAhHR0cUFBSgVatWAID4+HjIycnhwoULsLa2FnELa5aVlYV9+/Zx7eX09vaGqqoqX/HKF7X8+OugU6dOCA4ORosWLQRuM5Ps7OyQkpICNpsNIyMjnufG/KYZ/PvvvzF8+HCYmZmhY8eOAMoWayUnJyMiIoKTzIFfolhYRfhDnSURS3l5eTh48CDX6M/d3R3y8vJ1jrVly5ZaX+vr61vn+D968OABHB0dIS8vz6mZef/+fXz//h0XL17kFBOui3///ZfrffnIr3zk3dDVlBZOkMxK7969w44dOzh/mFhaWmLixImcaXZBZGdnc73/cWGVg4ODwPcgwkGdJSECqm3ycRaLhVevXgl8v+7du8PMzAx79uzhTF8WFxdj7NixePXqVY1Te5UJCwvDyJEjOTluyxUWFiI8PBweHh51jllTUvmK+B35MamoqAhOTk7YuXNnvSc7YHphFak76iyJWEpLS8OtW7cqTbotjNEfk+Tl5REbG8szNZqUlIR27drxtUhJUlIS6enpPBU2Pn/+DG1tbb6mAyuO9vLz87F9+3ZYWVlxtmDcuXMHT548weTJk/nehvEjYacZ1NLS4mTUqU/Pnj1Du3bt8O3bt3q9L6karYYlYic0NBQTJkyAjIwMz548FosllM6ysLAQr1+/hqmpqVByzVakoqKCN2/e8HSWb9++hbKyMl8xy/f1/ejdu3d8PwetOPU5duxY+Pr6YtmyZTzXvH37lq/4FTGVZnDUqFHYt28fAgMDBW5jZapbWNW6dWtG7kn4QyNLInb09fUxceJEzJ8/v9IFFoLIy8uDj48P9u/fDwB48eIFTExM4OPjg2bNmmHevHkC38PX1xcnT57EunXr0KVLFwBAdHQ05syZg+HDh9cp5Vv5VGl8fDysra25OvaSkhK8fv0aTk5OOHr0qEBtVlVVxYMHD3hGaMnJyWjXrh3Ps7u6YirNYHmmJ3Nz80pLl/Fb+qvcz76wSpzQyJKInby8PLi6ugq9owSA+fPnIz4+HteuXYOTkxPneJ8+fRAQECCUznLdunVgsVjw8PDg1N+UlpbGpEmT6jwCKq+/GRcXB0dHRygpKXHOycjIwMjICMOHDxe4zfLy8oiOjubpLKOjo4WyiOj8+fOIioridJQAYGVlhaCgIPTr14/vuImJiZwFUy9evOA6J4zizz+WW/vZFlaJE+osidgZM2YMjh07JpSO60enTp3CkSNH0KlTJ65fptbW1khJSRE4fklJCe7cuYOAgACsWrWKE9PU1JSv/YXlU6VGRkZwdXXlWeAjLNOnT8ekSZPw6NEjzgreu3fvIjg4GIsXLxY4PlNpBiumvmNCQ6wQQypH07BE7JSUlMDZ2Rnfv3+Hra0tzy9ZQabWFBQUkJiYCBMTEygrKyM+Ph4mJiaIj49Hjx49BJ5uBMpywD59+rTWq3Br4/79+ygtLeXsJSx39+5dSEpKol27dgLf4+jRo9i8eTPXFoxp06bBxcVF4Nj1kWbw3bt3AIBffvlF4FjlfH19YWZmxvOcfNu2bXj58qVQqqgQ4RD+PBQhDdyqVatw4cIF/Pfff0hISEBsbCznFRcXJ1Dsdu3a4dy5c5z35aPLvXv3claBCsrGxkYoW1AqmjJlSqULbd6/f48pU6YI5R4uLi6Ijo5GZmYmMjMzER0dLZSOEijrXHJycmBkZARTU1OYmprC2NgYOTk52Lp1K99xS0tLsXTpUqiqqsLQ0BCGhoZQU1PDsmXLhJIYPyIigpPMv6IuXbrg+PHjAscnQsQmRMyoqamxQ0JCGIl98+ZNtpKSEnvixIlsOTk59rRp09h9+/ZlKyoqsh88eCCUe/zzzz/s1q1bs8+cOcNOS0tjZ2dnc734oaioyE5JSeE5/urVK7aSkpKgTa4XpaWl7IsXL7K3bNnC3rJlC/vSpUsCx5w3bx5bS0uLvX37dnZ8fDw7Pj6eHRQUxNbS0mIvWLBA4PiysrLs5ORknuPJyclsWVlZgeMT4aHOkogdHR0d9osXLxiL//LlS/bYsWPZ7du3Z1taWrLd3d3Zjx8/Flp8FovFeUlISHBe5e/5oaGhwb59+zbP8ejoaLaampqgTWZUYWEhW1JSkp2QkCD02Hp6euzTp0/zHD916hS7adOmAse3trZmb926lef4li1b2JaWlgLHJ8JDC3yI2Jk2bRq2bt1apzR1dWFqaoo9e/YwEhtgZtFJv379MH/+fJw+fZqzrzIrKwsLFixA3759hX4/YZKWloaBgQEjeVQzMzMr3b7RokULZGZmChx/5syZmDp1Kj5+/IjevXsDAC5fvoz169fT88oGhhb4ELEzbNgwXLlyBZqamrC2tuZZ4HPixAm+Y/fs2RNjxozBiBEj+MozKyrv379Hjx498PnzZ07Wm7i4OOjo6ODSpUtCyYPKpH379uHEiRM4cOAANDQ0hBa3Y8eO6NixI88fVj4+Prh//z7u3Lkj8D127NiBFStWIC0tDUDZyuSAgAC+UgwS5lBnScTO6NGjqz0fEhLCd+zp06fj0KFDKCgogIuLC8aMGYNOnTrxHa8yISEhUFJSwogRI7iOHzt2DHl5eXzXh8zNzcXBgwcRHx8PeXl5tGzZEm5ubpVuyeAXU5mN7Ozs8PLlSxQVFcHQ0JAneQC/uWevX7+OgQMHwsDAgLNAKyYmBm/fvsXff/+N7t27C9z2ch8/foS8vDzXXlfScFBnSYiQFRcXIzIyEvv378c///wDMzMzeHt7448//qi06HRdNW/eHLt27eKpEXn9+nWMHz9eKMWahY3pzEYBAQHVJgkQpOpIWloagoKCuCrUTJ48mbNFRRDfv38Hm83m7JH9999/cfLkSVhZWQmUTIEIH3WWhDDow4cP2L17N1asWIGSkhIMGDAAvr6+nOdT/JCTk8OzZ89gZGTEdTw1NRWWlpb4/v17nWOGhYVVe17QKcFp06YhOjoamzZtgpOTEx4/fgwTExOcPn0aAQEBiI2NFSj+z6pfv3749ddfMXHiRGRlZcHCwgIyMjL49OkTNmzYgEmTJom6ieT/0QIfInaMjY2rHYUIaw/jvXv3EBISgvDwcGhra8PLywvv37+Hs7MzJk+ejHXr1vEVV1tbG48fP+bpLOPj46GpqclXzGnTpnG9LyoqQl5eHmRkZKCgoCBwZ8l0ZiMTExPcv3+f5/NnZWWhTZs2Av07/fLlC1ehbSsrK4wePVooz0YfPXqEjRs3AgCOHz8OXV1dxMbGIiIiAkuWLKHOsgGhzpKInenTp3O9Ly+4e/78ecyZM0eg2B8+fMCBAwcQEhKC5ORkDBo0CIcPH4ajoyOnk/Dy8oKTkxPfnaWbmxt8fX2hrKyMHj16ACibgp02bRpcXV35ivnlyxeeY8nJyZg0aZLA3wlQ9jzux/JfQNlzUmHkWE1NTa10NWxBQQEn8w4/bty4gUGDBkFVVZWTxWjLli1YunQpzpw5w/n++ZWXl8epFHPx4kX8+uuvkJCQQKdOnXgKchPRos6SiJ0fR1HlgoKC8ODBA4Fi//LLLzA1NYW3tze8vLwqLQ3VsmVLtG/fnu97LFu2DKmpqXBwcOAskiktLYWHhwdWrlzJd9wfmZubIzAwEKNGjeI8r+NXeWYjHx8fAMLLbBQZGcn55wsXLnCVEyspKcHly5cFSgs4ZcoUjBw5Ejt27ICkpCQn7uTJkzFlyhQkJCTwHRsAzMzMcOrUKQwbNgwXLlzAjBkzAJT90aWioiJQbCJkItvhSUgDk5KSwlZWVhYoxo0bN4TUmpo9f/6cffToUfaZM2fYqampjNwjNjZW4O+EzWYus1HF5AwVkzWwWCy2jIwMu3nz5uwzZ87wHV9OTo797NkznuPPnj1jy8nJ8R233LFjx9jS0tJsCQkJdt++fTnHV65cyXZychI4PhEeGlkS8v+OHz8u8HMoYW4lqImRkRHYbLZQtmFUHKEB/ytCvG3btkpzl9ZVt27dEBcXh8DAQNja2uLixYto06YNYmJiYGtry3fc8vysxsbGuH//Ppo0aSJwWytq06YNnj59CgsLC67jT58+RatWrQSO/9tvv6Fbt25IT0/niufg4IBhw4YJHJ8ID62GJWJj6dKlmDVrFrp168b1nIzNZiMjIwMfP37E9u3bMX78eL7v8fnzZyxZsgRXr17Fhw8feJJtCyPrCxPbMH6s7clisaClpYXevXtj/fr10NPTE7jdTIiJicHnz5/h7OzMORYWFgZ/f3/k5uZi6NCh2Lp1a51Kjz1+/Jjzz0+fPoWfnx98fHw4+2Xv3LmDoKAgBAYGYuTIkcL7MKRBo86SiA1JSUmkp6dj+/btXJ1lecFde3t7gSvTDxgwAC9fvsSYMWOgo6PDs3iF34QBFf0s2zBycnJqfS2/z+ecnJzQq1cvzJ07FwCQkJCANm3awMvLC5aWlli7di0mTJiAgICAWseUkJAAi8VCTb8aWSyWUFLsPXjwAEePHsWbN29QWFjIdU6QbFJEuGgaloiN8l9+dfnFWVc3b97ErVu3hDJFVxVhb8MoKipCixYtcPbsWVhaWgqtnWpqajWudGWz2QJ1OvHx8Vi+fDnnfXh4ODp27MjJzauvrw9/f/86/Tt//fo1X23hR3h4ODw8PODo6IiLFy+iX79+ePHiBf777z+ahm1gqLMkYkUY2xSq06JFC76SAtSFsLdhSEtLIz8/XxhN48JEwvcfffnyhSsr0vXr19G/f3/O+/bt21dap7M6hoaGQmtfTVauXImNGzdiypQpUFZWxubNm2FsbIwJEyY02KlvcUWdJRErzZs3r7FDEeS54vbt2zFv3jwsWbIENjY2PHlVhbEdgIltGFOmTMHq1auxd+9eoeVs7dmzp1DiVEdHRwevX7+Gvr4+CgsL8ejRI/z555+c81+/fhVqblthS0lJwcCBAwEAMjIynD94ZsyYgd69e3N9FiJa1FkSsfLnn39y7cUTNjU1NeTk5PCksxN0urGilStXon///khKSkJxcTE2b96MpKQk3L59G9evX+cr5v3793H58mVcvHgRtra2PInI+Xl29vjxY9jY2EBCQoJr0UxlWrZsWef4QNkz4nnz5mH16tU4deoUFBQUuFYkP378GKampnzFrg/q6ur4+vUrAKBZs2ZITEyEra0tsrKykJeXJ+LWkYqosyRixdXVtdIpTGFxd3eHtLQ0Dh06VOkCH2FgYhuGmpoahg8fLtR2tm7dGhkZGdDW1kbr1q2rXDQjyB8Ry5Ytw6+//oqePXtCSUkJ+/fvh4yMDOd8cHBwg0xInpiYCBsbG/To0QOXLl2Cra0tRowYgWnTpuHKlSu4dOkSHBwcRN1MUgGthiVio3w1LJOdpYKCAmJjY3n25Ymjf//9FwYGBmCxWDWmbhP0OWF2djaUlJQ4WXbKZWZmQklJiasDbQgkJCTQvn17DB06FKNGjYK+vj5KS0uxZs0a3L59G+bm5li0aBHU1dVF3VTy/6izJGJDQkKCM9JhSo8ePbBkyRL06dNH6LHLtzRUh8Viobi4uM6xe/fujRMnTkBNTY3reE5ODoYOHYorV67UOSap2s2bNxESEoLjx4+jtLQUw4cPx9ixY+s1qQWpG+osCRGiY8eOISAgAHPmzIGtrS3P4hJ+n80BwOnTp6s8FxMTgy1btqC0tJSvla1V/SHx4cMHNGvWDEVFRXWOWdHnz585FUHevn2LPXv24Pv37xg8eHCD6yDU1dVrPX0uaJKJ3NxcHD16FKGhobh58ybMzMwwZswYeHp6QldXV6DYRLiosyREiH7MhAOA86xOWAt8Knr+/DnmzZuHM2fOwN3dHUuXLq3TlGb5wpvWrVvjypUrXOn+SkpKcP78eezatQupqal8tS8hIQGDBg3C27dvYW5ujvDwcDg5OSE3NxcSEhLIzc3F8ePHMXToUL7iM6E8M1JtCCPJRLmXL18iJCQEBw4cQEZGBpycnHjSEBLRoc6SECFi+tlcubS0NPj7+2P//v1wdHTEqlWrYGNjU+c4Fad2K/tVIC8vj61bt8Lb25uvdvbv3x9SUlKYN28eDhw4gLNnz8LR0ZGTNMDHxwcPHz7EnTt3+Irf2OTm5uLgwYOYP38+srKyhP7HFeEfdZaE/ESys7OxcuVKbN26Fa1bt8bq1asFmsb8999/wWazYWJignv37nGVFJORkYG2tjbPopm6aNKkCa5cuYKWLVvi27dvUFFRwf3799G2bVsAwLNnz9CpUydkZWXxfY/6kp+fz5OOTlhltG7cuIHg4GBERERAQkICLi4uGDNmDCcfLRE92jpCCENUVFQQFxcHExMTocRbs2YNVq9eDV1dXRw+fBhDhgwROGb5SPfHhO/CkpmZyXn2pqSkBEVFRa4VnhX3GTZEubm5mDt3Lo4ePYrPnz/znBdk5JeWlobQ0FCEhobi5cuX6NKlC7Zs2QIXFxeefa5E9KizJIQhwp60mTdvHuTl5WFmZob9+/dX+WyNnwQC+/fvR5MmTTjZZPz8/LB7925YWVnh8OHDAk0f/7hYhumUg8Lk5+eHq1evYseOHfjjjz8QFBSE9+/fY9euXQgMDOQ7bv/+/REVFYUmTZrAw8MD3t7etN2ogaPOkpCfhIeHB2MdzcqVK7Fjxw4AZStrt23bhk2bNuHs2bOYMWOGQNUvvLy8OCWy8vPzMXHiRM7IqaCgQPDGM+jMmTMICwuDvb09Ro8eje7du8PMzAyGhoY4ePAg3N3d+YorLS2N48ePw9nZWaBpblJ/6JklIUJSVFSECRMmYPHixTA2NsakSZOwbNkyoRckZoKCggKePXsGAwMDzJ07F+np6QgLC8OTJ09gb2+Pjx8/8hV39OjRtbouJCSEr/hMU1JSQlJSEgwMDPDLL7/gxIkT6NChA16/fg1bW1t8+/ZN1E0k9YRGloQIibS0NCIiIrB48WIA4IzUfgZKSkr4/PkzDAwMcPHiRcycORMAICcnJ1AVlYbaCdaWiYkJXr9+DQMDA7Ro0QJHjx5Fhw4dcObMGZ4EDqRx490URgjh29ChQ3Hq1ClRN6PO+vbti7Fjx2Ls2LF48eIFBgwYAAB48uQJjIyMRNs4ERo9ejTi4+MBlD0zDgoKgpycHGbMmIE5c+aIuHWkPtE0LCFCtHz5cqxfvx4ODg5o27Ytz6pGX19fEbWsellZWVi0aBHevn2LSZMmwcnJCQDg7+8PGRkZLFy4UMQtbBj+/fdfPHz4EGZmZgJlYyI/H+osCREiY2PjKs+xWCy8evWqHltDCBEW6iwJIaQa9+/fx9WrV/Hhwwee/agbNmwQUatIfaMFPoQQUoWVK1di0aJFsLCw4KlP+jPtFyWCo5ElIUJUUw7V4ODgemoJEQYdHR2sXr0aXl5eom4KETEaWRIiRF++fOF6X1RUhMTERGRlZaF3794iahXhl4SEBLp27SrqZpAGgEaWhDCstLQUkyZNgqmpKfz8/ETdHFIHa9asQVpaGjZt2iTqphARo86SkHrw/Plz2NvbIz09XdRN4bCzs6v1c7dHjx4x3JqGqbS0FAMHDsSLFy9gZWXFU8xbkDSA5OdC07CE1IOUlBQUFxeLuhlcKhZczs/Px/bt22FlZYXOnTsDAO7cuYMnT55g8uTJImqh6Pn6+uLq1avo1asXNDU1aVGPGKORJSFCVJ4mrhybzUZ6ejrOnTsHT09PbNu2TUQtq97YsWOhp6eHZcuWcR339/fH27dvxXZhkrKyMsLDwznVWIj4os6SECHq1asX13sJCQloaWmhd+/e8Pb2hpRUw5zMUVVVxYMHD2Bubs51PDk5Ge3atUN2draIWiZahoaGuHDhAlq0aCHqphARa5j/5xLyk7p69aqom8AXeXl5REdH83SW0dHRkJOTE1GrRC8gIAD+/v4ICQmBgoKCqJtDRIg6S0IY8PHjRzx//hwAYGFhAS0tLRG3qHrTp0/HpEmT8OjRI3To0AEAcPfuXQQHB3OqqIijLVu2ICUlBTo6OjAyMuJZ4COuC5/EEXWWhAhRbm4ufHx8EBYWxkmNJikpCQ8PD2zdurXBjk7mzZsHExMTbN68GX/99RcAwNLSEiEhIXBxcRFx60Sn4iIoIt7omSUhQjRhwgRERUVh27ZtnM3st27dgq+vL/r27ftT1bgkhPwPdZaECFGTJk1w/Phx2Nvbcx2/evUqXFxc8PHjR9E0jAjk4cOHePr0KQDA2toadnZ2Im4RqW80DUuIEOXl5UFHR4fnuLa2NvLy8kTQoqppaGjgxYsXaNKkCdTV1avdQ5iZmVmPLWs4Pnz4AFdXV1y7dg1qamoAymp/9urVC+Hh4Q3+WTQRHuosCRGizp07w9/fH2FhYZxVpN+/f8eff/7J2ezfUGzcuBHKysoAQOncquDj44OvX7/iyZMnsLS0BAAkJSXB09MTvr6+OHz4sIhbSOoLTcMSIkSJiYlwdHREQUEBWrVqBQCIj4+HnJwcLly4AGtraxG3kNSFqqoqoqKi0L59e67j9+7dQ79+/ZCVlSWahpF6RyNLQoTIxsYGycnJOHjwIJ49ewYAcHNzg7u7O+Tl5UXcuuqVlJTg1KlTXM/mBg8eDElJSRG3THRKS0t5tosAgLS0NE8haNK40ciSEIKXL19iwIABeP/+PSwsLACUJX/X19fHuXPnYGpqKuIWisaQIUOQlZWFw4cPo2nTpgCA9+/fw93dHerq6jh58qSIW0jqC3WWhAhZWloabt26hQ8fPvCMPnx9fUXUquoNGDAAbDYbBw8ehIaGBgDg8+fPGDVqFCQkJHDu3DkRt1A03r59i8GDB+PJkyfQ19fnHLOxsUFkZCR++eUXEbeQ1BfqLAkRotDQUEyYMAEyMjI8VSpYLBZevXolwtZVTVFREXfu3IGtrS3X8fj4eHTt2hXfvn0TUctEj81mIyoqijOtbmlpiT59+oi4VaS+0TNLQoRo8eLFWLJkCebPnw8JCQlRN6fWZGVl8fXrV57j3759g4yMjAhaJHpFRUWQl5dHXFwc+vbti759+4q6SUSEfp7/mwn5CeTl5cHV1fWn6igBwNnZGePHj8fdu3fBZrPBZrNx584dTJw4EYMHDxZ180RCWloaBgYGKCkpEXVTSAPwc/0fTUgDN2bMGBw7dkzUzaizLVu2wNTUFJ07d4acnBzk5OTQtWtXmJmZYfPmzaJunsgsXLgQCxYsENukDOR/6JklIUJUUlICZ2dnfP/+Hba2tjzbDjZs2CCiltVOcnIy17M5MzMzEbdItOzs7PDy5UsUFRXB0NAQioqKXOep6oj4oGeWhAjRqlWrcOHCBc72ix8X+DR05ubmPDUtxdmQIUN+in9vhHk0siREiNTV1bFx40Z4eXmJuil1UlJSgtDQUFy+fLnSLS9XrlwRUcsIaRhoZEmIEMnKynJKc/1Mpk2bhtDQUAwcOBA2NjY0mvp/JiYmuH//PjQ1NbmOZ2VloU2bNg12KxARPhpZEiJEq1atQnp6OrZs2SLqptRJkyZNEBYWhgEDBoi6KQ2KhIQEMjIyoK2tzXX8v//+g76+PgoLC0XUMlLfaGRJiBDdu3cPV65cwdmzZ2Ftbc2zwOfEiRMialn1ZGRkxH4xT0WRkZGcf75w4QJUVVU570tKSnD58mUYGxuLomlERGhkSYgQjR49utrzISEh9dSSulm/fj1evXqFbdu20RQswNkny2Kx8OOvSGlpaRgZGWH9+vVwdnYWRfOICFBnSYiY+vXXX7neX7lyBRoaGj/ViJhpxsbGuH//Ppo0aSLqphARo2lYQsRUxalFABg2bJiIWtJwvX79WtRNIA0EjSwJESJjY+NqpzFp9eTPISYmBp8/f+aaZg0LC4O/vz9yc3MxdOhQbN26FbKysiJsJalPNLIkRIimT5/O9b6oqAixsbE4f/485syZI5pG1cGHDx/w/PlzAICFhQXPKlBxsXTpUtjb23M6y4SEBIwZMwZeXl6wtLTE2rVr0bRpUwQEBIi2oaTe0MiSkHoQFBSEBw8eNNgFPjk5OZgyZQrCw8M5icMlJSUxcuRIBAUF8UzZNnZ6eno4c+YM2rVrB6AsR+z169dx69YtAMCxY8fg7++PpKQkUTaT1CNKpE5IPejfvz8iIiJE3YwqjRs3Dnfv3sXZs2eRlZWFrKwsnD17Fg8ePMCECRNE3bx69+XLF+jo6HDeX79+Hf379+e8b9++Pd6+fSuKphERoc6SkHpw/PhxaGhoiLoZVTp79iyCg4Ph6OgIFRUVqKiowNHREXv27MGZM2dE3bx6p6Ojw1ncU1hYiEePHqFTp06c81+/fuVZMUwaN3pmSYgQLF26FLNmzUK3bt24Fviw2WxkZGTg48eP2L59uwhbWD1NTc1Kp1pVVVWhrq4ughaJ1oABAzBv3jysXr0ap06dgoKCArp37845//jxY5iamoqwhaS+0TNLQoRAUlIS6enp2L59O1dnKSEhAS0tLdjb26NFixYibGH1du/ejWPHjuHAgQPQ1dUFAGRkZMDT0xO//vqr2E3Ffvr0Cb/++itu3boFJSUl7N+/n2trjYODAzp16oQVK1aIsJWkPlFnSYgQVJVD9GdRXrexoKAABgYGAIA3b95AVlaWp2SXONVwzM7OhpKSEiQlJbmOZ2ZmQklJCTIyMiJqGalvNA1LiJD8zGnihg4dKuomNEhVrQJuyM+fCTNoZEmIEEhISEBVVbXGDjMzM7OeWkQIESYaWRIiJH/++Wej2I/47ds3nuLPKioqImoNIQ0DjSwJEYKf/Znl69evMXXqVFy7dg35+fmc42w2GywWi5OogBBxRSNLQoTgZ35eCQCjRo0Cm81GcHAwdHR0fvrPQ4iwUWdJiBD87BM08fHxePjwISwsLETdFEIaJMrgQ4gQlJaW/rRTsAClbyOkJjSyJIRg7969mDhxIt6/fw8bGxueVG4tW7YUUcsIaRiosySE4OPHj0hJScHo0aM5x1gsFi3wIeT/0WpYQgisrKxgaWkJPz+/Shf4GBoaiqhlhDQM1FkSQqCoqIj4+HiYmZmJuimENEi0wIcQgt69eyM+Pl7UzSCkwaJnloQQDBo0CDNmzEBCQgJsbW15FvgMHjxYRC0jpGGgaVhCCCQkqp5kogU+hFBnSQghhNSInlkSQvDq1StRN4GQBo06S0IIzMzM0KtXL/z1119cidQJIWWosySE4NGjR2jZsiVmzpwJXV1dTJgwAffu3RN1swhpMOiZJSGEo7i4GJGRkQgNDcX58+fRvHlzeHt7448//oCWlpaom0eIyFBnSQjhUVBQgO3bt2P+/PkoLCyEjIwMXFxcsHr1aujp6Ym6eYTUO5qGJYRwPHjwAJMnT4aenh42bNiA2bNnIyUlBZcuXUJaWhqGDBki6iYSIhI0siSEYMOGDQgJCcHz588xYMAAjB07FgMGDODaf/nu3TsYGRmhuLhYhC0lRDRoZEkIwY4dO/D777/j33//xalTp+Ds7AwJCQm8e/cO48ePBwBoa2tj3759Im4pIaJBI0tCSJXi4+PRpk0byuBDxB6NLAkhhJAaUGdJCCGE1IA6S0IIIaQGVKKLEDH266+/Vns+KyurfhpCSANHnSUhYkxVVbXG8x4eHvXUGkIaLloNSwghhNSAnlkSQgghNaDOkhBCCKkBdZaEEEJIDaizJIQQQmpAnSUhhAeLxcKpU6dqdW1AQABat27NaHsIETXaOkII4ZGeng51dXVRN4OQBoM6S0IID11dXVE3gZAGhaZhCRFD9vb28PX1hZ+fHzQ0NKCrq4uAgADO+R+nYd+9ewc3NzdoaGhAUVER7dq1w927d7liHjhwAEZGRlBVVYWrqyu+fv3KOVdaWopVq1bB2NgY8vLyaNWqFY4fP845/+XLF7i7u0NLSwvy8vIwNzdHSEgIY5+fkLqikSUhYmr//v2YOXMm7t69i5iYGHh5eaFr167o27cv13Xfvn1Dz5490axZM0RGRkJXVxePHj1CaWkp55qUlBScOnUKZ8+exZcvX+Di4oLAwECsWLECALBq1Sr89ddf2LlzJ8zNzXHjxg2MGjUKWlpa6NmzJxYvXoykpCT8888/aNKkCV6+fInv37/X6/dBSHWosyRETLVs2RL+/v4AAHNzc2zbtg2XL1/m6SwPHTqEjx8/4v79+9DQ0AAAmJmZcV1TWlqK0NBQKCsrAwD++OMPXL58GStWrEBBQQFWrlyJqKgodO7cGQBgYmKCW7duYdeuXejZsyfevHkDOzs7tGvXDgBgZGTE5EcnpM6osyRETLVs2ZLrvZ6eHj58+MBzXVxcHOzs7DgdZWWMjIw4HeWPsV6+fIm8vDyeTriwsBB2dnYAgEmTJmH48OF49OgR+vXrh6FDh6JLly58fzZChI06S0LElLS0NNd7FovFNbVaTl5eXqBY3759AwCcO3cOzZo147pOVlYWANC/f3/8+++/+Pvvv3Hp0iU4ODhgypQpWLduXe0/ECEMogU+hJBqtWzZEnFxccjMzOTr562srCArK4s3b97AzMyM66Wvr8+5TktLC56envjrr7+wadMm7N69W1gfgRCB0ciSEFItNzc3rFy5EkOHDsWqVaugp6eH2NhYNG3alPMMsjrKysqYPXs2ZsyYgdLSUnTr1g3Z2dmIjo6GiooKPD09sWTJErRt2xbW1tYoKCjA2bNnYWlpWQ+fjpDaoc6SEFItGRkZXLx4EbNmzcKAAQNQXFwMKysrBAUF1TrGsmXLoKWlhVWrVuHVq1dQU1NDmzZtsGDBAs495s+fj9TUVMjLy6N79+4IDw9n6iMRUmdUz5IQQgipAT2zJIQQQmpAnSUhhBBSA+osCSGEkBpQZ0kIIYTUgDpLQgghpAbUWRJCCCE1oM6SEEIIqQF1loQQQkgNqLMkhBBCakCdJSGEEFID6iwJIYSQGlBnSQghhNTg/wBf2R0fqgZ6tgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(3, 6))\n", + "sns.heatmap(cell_type_to_niche, **heatmap_kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Same between niches and niches:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 8/8 [00:02<00:00, 3.25it/s]\n" + ] + } + ], + "source": [ + "niche_to_niche = sopa.spatial.mean_distance(adata, \"niches\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAGkCAYAAACy1WveAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB5ElEQVR4nO3deVyNaf8H8M85adMubShpmRSV7FmSQtmNnrEMKmWP7EsGZS0eayRmhoqxjH0dTEJkzVKhLCVEUSNFNS065/dHv+7HcVrO6tTp+35e9+vVuc99vuc65zF9u677ur4Xi8vlckEIIYTIEbasG0AIIYRIGiU3QgghcoeSGyGEELlDyY0QQojcoeRGCCFE7lByI4QQIncouRFCCJE7lNwIIYTIHUpuhBBC5A4lN0IIIXKHkhshhBCBhYSEgMViYdasWcy54uJi+Pn5QVdXF+rq6vDw8MD79+9l10hQciOEECKg+Ph47Ny5E3Z2djznZ8+ejdOnT+Pw4cOIjY1FZmYmhg8fLqNWVqDkRgghpFYFBQUYM2YMfvvtN+jo6DDn8/PzsWvXLmzcuBEuLi7o0KEDIiIicOPGDdy6dUtm7aXkRgghDVBJSQk+ffrEc5SUlFR7vZ+fHwYOHIg+ffrwnL937x7Kysp4zrdu3RomJia4efOm1Npfm0Yye2dCxFD2zwvpxT6wXmqxNeeelFrs+ixnsKXUYqvM9JZabAAoWhshtdi6Z2MFvraRUnOhYi9ZPBHLly/nORcYGIigoCC+aw8ePIj79+8jPj6e77l3795BSUkJ2traPOcNDAzw7t07odokSZTcCCFEDrCEvD4gIABz5szhOaesrMx3XUZGBmbOnIno6GioqKiI0cLvi5IbIYTIARZLuPSmrKxcZTL71r1795CdnY327dsz58rLy3H16lVs27YNFy5cQGlpKfLy8nh6b+/fv4ehoaFQbZIkSm6EECIHhE1ugnJ1dcXDhw95zo0fPx6tW7fGwoULYWxsDEVFRcTExMDDwwMA8PTpU7x+/RqOjo5SaZMgKLkRQogcYAk9MCkYDQ0NtG3bluecmpoadHV1mfO+vr6YM2cOmjRpAk1NTcyYMQOOjo7o2rWrVNokCEpuhBAiB6TVcxPEpk2bwGaz4eHhgZKSEri5uWH79u0yaw9AyY0QQuQC+zsmtytXrvA8VlFRQVhYGMLCwr5bG2pDyY0QQuSAAouWLX+NkhshhMgBWQ5L1kWU6us5FotV41HVgkxCiPxhgyXUIe+o51bPZWVlMT//+eefWLZsGZ4+fcqcU1dXl0WzRFJaWgolJSVZN4OQeol6bryo51bPGRoaMoeWlhZYLBbzeMeOHejRowfP9Zs3b4apqSnz2NvbG8OGDcOaNWtgYGAAbW1trFixAl++fMH8+fPRpEkTtGjRAhERvCWGHj58CBcXF6iqqkJXVxeTJk1CQUEB87yzszPPlhgAMGzYMHh7ezOPTU1NsXLlSnh6ekJTUxOTJk2S2PdCSEPDZrGEOuQdJTeCS5cuITMzE1evXsXGjRsRGBiIQYMGQUdHB7dv38aUKVMwefJkvHnzBgBQWFgINzc36OjoID4+HocPH8bFixcxffp0od97/fr1sLe3x4MHD7B06VJJfzRCGozablF8e8g7Sm4ETZo0QWhoKKysrODj4wMrKysUFRVh8eLFsLS0REBAAJSUlBAXFwcA2L9/P4qLi7Fnzx60bdsWLi4u2LZtG/bu3Sv0BoUuLi6YO3cuzM3NYW5uLo2PR0iDQPfceNE9N4I2bdqAzf7f3zkGBgY8FQkUFBSgq6uL7OxsAEBKSgrs7e2hpqbGXNO9e3dwOBw8ffoUBgYGAr93x44da72mpKSEbysOdkmJQHXxCGkoGkJvTBjUc5NjbDYbXC6X51xZWRnfdYqKijyPWSxWlec4HI7E3/vrBFmd4OBgaGlp8Rxrt+wQuC2ENAQsIf8n7yi5yTE9PT28e/eOJ8kkJCSIHdfa2hqJiYkoLCxkzl2/fh1sNhtWVlbMe389k7O8vByPHj0S6f0CAgKQn5/PcyycOUW8D0GInFFgs4U65J38f8IGzNnZGTk5OVi3bh3S0tIQFhaGc+fOiR13zJgxUFFRgZeXFx49eoTLly9jxowZGDduHDMk6eLigrNnz+Ls2bN48uQJpk6diry8PJHeT1lZGZqamjwHDUkSwovuufGi5CbHrK2tsX37doSFhcHe3h537tzBvHnzxI7buHFjXLhwAbm5uejUqRP+85//wNXVFdu2bWOu8fHxgZeXFzw9PdGrVy+YmZmhd+/eYr83IaRqNFuSF4v77Y0RQuqBsn9eSC/2gfVSi60596TUYtdnOYMtpRZbZaa31GIDQNHaiNovEpHu2ViBr22lay9U7PQPicI2p16h2ZKEECIHWFQ4mQclN0IIkQMNYQakMCi5EUKIHGgIJbWEQcmNEELkAPXceFFyI4QQOUA9N150B5IQQuSAAost1CGM8PBw2NnZMetMHR0dedbMOjs78y01mDJFtoUWqOdGCCFyQJrDki1atEBISAgsLS3B5XIRFRWFoUOH4sGDB2jTpg0AYOLEiVixYgXzmsaNG0utPYKg5EYIIXJAmsOSgwcP5nm8evVqhIeH49atW0xya9y4MQwNDaXWBmHRsCQhhMgBYQsnl5SU4NOnTzzHt7tvVKW8vBwHDx5EYWEhHB0dmfP79u1D06ZN0bZtWwQEBKCoqEiaH7dW1HMj9VL589tSi604WvwSZdW5tTZTarEBoGt2vNRiX27iWPtFIlKdNVRqsaGoJL3YAFTa6Us1vqCErRcZHByM5cuX85wLDAxEUFBQldc/fPgQjo6OKC4uhrq6Oo4fPw4bGxsAwM8//4yWLVuiWbNmSEpKwsKFC/H06VMcO3ZMpM8iCZTcCCFEDghbLzIgIABz5szhOVdTQXIrKyskJCQgPz8fR44cgZeXF2JjY2FjY4NJkyYx19na2sLIyAiurq5IS0uT2SbElNwIIUQOCNtzU1ZWFmp3DSUlJVhYWAAAOnTogPj4eGzZsgU7d+7ku7ZLly4AgNTUVEpuhBBCRPe9K/1zOJxq79FV7htpZGT0HVvEi5IbIYTIAWkuBQgICED//v1hYmKCz58/Y//+/bhy5QouXLiAtLQ07N+/HwMGDICuri6SkpIwe/ZsODk5wc7OTmptqg0lN0IIkQPS3IA0Ozsbnp6eyMrKgpaWFuzs7HDhwgX07dsXGRkZuHjxIjZv3ozCwkIYGxvDw8MDS5YskVp7BEHJjRBC5ICwVUeEsWvXrmqfMzY2Rmys4PvOfS+U3AghRA5Is+dWH9EibiIUU1NTbN68WeDrg4KC0K5duxqv8fb2xrBhw8RqFyENHUvIQ97JZXL7toDnt0d1ixSJ5M2bNw8xMTGybgYhco/NYgl1yDu5HJbMyspifv7zzz+xbNkyPH36lDmnrq4ui2aJpLS0FEpK0q2wIE3q6ur16vsmpL6i/dx4yWXPzdDQkDm0tLTAYrGYxzt27ECPHj14rt+8eTNMTU2Zx5XDZGvWrIGBgQG0tbWxYsUKfPnyBfPnz0eTJk3QokULRERE8MR5+PAhXFxcoKqqCl1dXUyaNAkFBQXM887Ozpg1axbPa4YNGwZvb2/msampKVauXAlPT09oamryrPyv9PLlS7BYLBw6dAg9e/aEqqoqOnXqhGfPniE+Ph4dO3aEuro6+vfvj5ycHADA1atXoaioiHfv3vHEmjVrFnr27Mk8jouLY2IaGxvD398fhYWF1X7Xr1+/xtChQ6Gurg5NTU2MGDEC79+/Z57/dliyvLwcc+bMgba2NnR1dbFgwQJwudxq4xNCBMMGS6hD3sllcpOES5cuITMzE1evXsXGjRsRGBiIQYMGQUdHB7dv38aUKVMwefJkvHnzBgBQWFgINzc36OjoID4+HocPH8bFixcxffp0od97/fr1sLe3x4MHD7B06dJqrwsMDMSSJUtw//59NGrUCD///DMWLFiALVu24Nq1a0hNTcWyZcsAAE5OTjAzM8PevXuZ15eVlWHfvn3w8fEBAKSlpcHd3R0eHh5ISkrCn3/+ibi4uGo/A4fDwdChQ5Gbm4vY2FhER0fjxYsXGDlyZLVt3rBhAyIjI7F7927ExcUhNzcXx48fF/o7IoTwqu12zLeHvKPkVo0mTZogNDQUVlZW8PHxgZWVFYqKirB48WJYWloiICAASkpKiIuLAwDs378fxcXF2LNnD9q2bQsXFxds27YNe/fu5enJCMLFxQVz586Fubl5jaVr5s2bBzc3N1hbW2PmzJm4d+8eli5diu7du8PBwQG+vr64fPkyc72vry9Pb/P06dMoLi7GiBEjAFQUUh0zZgxmzZoFS0tLdOvWDaGhodizZw+Ki4v53j8mJgYPHz7E/v370aFDB3Tp0gV79uxBbGws4uOrLuC7efNmBAQEYPjw4bC2tsaOHTugpaUl1PdDCOFHPTdelNyq0aZNG7DZ//t6DAwMYGtryzxWUFCArq4usrOzAQApKSmwt7eHmpoac0337t3B4XB47vcJomPHjszPU6ZMYe5bfXvv6uvV/wYGBgDA00YDAwOmfUDFcGtqaipu3boFAIiMjMSIESOYNicmJiIyMpLn/dzc3MDhcJCens7XzpSUFBgbG8PY2Jg5Z2NjA21tbaSkpPBdn5+fj6ysLKbuHAA0atSI5/NWpcqtOUrLanwNIQ2NsFveyDu5nFBSEzabzXePp6yM/xeloqIiz2MWi1XlOQ6HI/H3/jpBrlixAvPmVb0Fy9ftqRxm+Pbc1+3T19fH4MGDERERgVatWuHcuXO4cuUK83xBQQEmT54Mf39/vvcyMTGp5dNJT1Vbc/ziMxxLJvxHRi0ipO5RaABDjcJocMlNT08P7969A5fLZRJCZZFPcVhbWyMyMhKFhYVMcrp+/TrYbDasrKyY9/56Jmd5eTkePXqE3r17VxtXX18f+vqS2y9qwoQJGD16NFq0aAFzc3N0796dea59+/ZITk5mKn/XxtraGhkZGcjIyGB6b8nJycjLy2P2efqalpYWjIyMcPv2bTg5OQEAvnz5gnv37qF9+/bVvk9VW3NwH5wQqI2ENBQNYahRGA1uWNLZ2Rk5OTlYt24d0tLSEBYWhnPnzokdd8yYMVBRUYGXlxcePXqEy5cvY8aMGRg3bhwzZOji4oKzZ8/i7NmzePLkCaZOnYq8vDyx31sYbm5u0NTUxKpVqzB+/Hie5xYuXIgbN25g+vTpSEhIwPPnz3Hy5MlqJ5T06dMHtra2GDNmDO7fv487d+7A09MTvXr1qnaocebMmQgJCcGJEyfw5MkTTJs2rdbvQFlZGZqamjyHspJija8hpKGhYUleDS65WVtbY/v27QgLC4O9vT3u3LlT7bCfMBo3bowLFy4gNzcXnTp1wn/+8x+4urpi27ZtzDU+Pj7w8vJiEoCZmVmNvTZpYLPZ8Pb2Rnl5OTw9PXmes7OzQ2xsLJ49e4aePXvCwcEBy5YtQ7NmzaqMxWKxcPLkSejo6MDJyQl9+vSBmZkZ/vzzz2rff+7cuRg3bhy8vLzg6OgIDQ0N/PjjjxL9jIQ0RGwhD3nH4tIiowbH19cXOTk5OHXqlKybIrLimwekFlvBskvtF4kosd2c2i8SQ9fsqmepSsLlJo5Si93p8FCpxYaidIsglJ8+IrXYaqsPC3ztjyaDhYp9/PVpYZtTrzS4e24NWX5+PjN1vz4nNkIIv4awdk0YlNwakKFDh+LOnTuYMmUK+vbtK+vmEEIkqCEMNQqDklsD8vW0f0KIfGkIk0SEQcmeEELkQH2vULJ37150794dzZo1w6tXrwBUVDQ6efKkSPEouRFCiBxQAEuooy4JDw/HnDlzMGDAAOTl5aG8vBwAoK2tLdT+kV+j5EYIIXJAmj238PBw2NnZMetMHR0dedYHFxcXw8/PD7q6ulBXV4eHh4dQNXW3bt2K3377Db/88gsUFBSY8x07dsTDhw+FamslSm6EECIHpLkTd4sWLRASEoJ79+7h7t27cHFxwdChQ/H48WMAwOzZs3H69GkcPnwYsbGxyMzMxPDhwwWOn56eDgcHB77zysrKNW65VROaUEIIIXJAmrtrDx7Mu4Zu9erVCA8Px61bt9CiRQvs2rUL+/fvh4uLCwAgIiIC1tbWuHXrFrp27Vpr/FatWiEhIQEtW7bkOX/+/HlYW1uL1GZKboQQIgeEHYYrKSlBSUkJzzllZWUoKyvX+Lry8nIcPnwYhYWFcHR0xL1791BWVoY+ffow17Ru3RomJia4efOmQMltzpw58PPzQ3FxMbhcLu7cuYMDBw4gODgYv//+u5CfrAIlN1IvRY44K7XYY8dKr+KEfcJGqcUGADTrWfs1IjquIr1fFx3fv5Ja7PSFN6UWW9psVgt+rbBLAarabSMwMBBBQUFVXv/w4UM4OjqiuLgY6urqOH78OGxsbJCQkAAlJSVoa2vzXG9gYIB3794J1JYJEyZAVVUVS5YsQVFREX7++Wc0a9YMW7ZswahRo4T6XJUouRFCiBwQtudW1W4bNfXarKyskJCQgPz8fBw5cgReXl6IjY0VoaVVGzNmDMaMGYOioiIUFBSIvRsKJTdCCJEDwvbcBBmC/JqSkhKzHVaHDh0QHx+PLVu2YOTIkSgtLUVeXh5P7+39+/cwNDQUKHZ6ejq+fPkCS0tLNG7cGI0bNwYAPH/+HIqKijA1NRW4nZVotiQhhMiB770rAIfDQUlJCTp06ABFRUXExMQwzz19+hSvX7+Go6Ngxba9vb1x48YNvvO3b9+Gt7e3SO2jnhshhMgBaS7MDggIQP/+/WFiYoLPnz9j//79uHLlCi5cuAAtLS34+vpizpw5aNKkCTQ1NTFjxgw4OjoKNJkEAB48eMCzcXKlrl27VrufZG0ouRFCiByQZkmt7OxseHp6IisrC1paWrCzs8OFCxeYAuybNm0Cm82Gh4cHSkpK4Obmhu3btwscn8Vi4fPnz3zn8/PzmWolwqLkRgghckCa95h27dpV4/MqKioICwtDWFiYSPGdnJwQHByMAwcOMBVKysvLERwcjB49eogUk5IbIYTIgfq8K8DatWvh5OQEKysr9OxZsZzl2rVr+PTpEy5duiRSTJpQQqTu5cuXYLFYSEhIkHVTCJFb33tCiSTZ2NggKSkJI0aMQHZ2Nj5//gxPT088efIEbdu2FSkm9dzqEW9vb0RFRSE4OBiLFi1izp84cQI//vgjuFyuDFtXPWNjY2RlZaFp06aybgohcqv+9tsqNGvWDGvWrJFYPEpu9YyKigrWrl2LyZMnQ0dHR+rvx+VyUV5ejkaNRP+noqCgIPB6F0KIaOriHm3CyMvLw507d5CdnQ0Oh8PznKenp9Dx6lrvlNSiT58+MDQ0RHBwcLXXxMXFoWfPnlBVVYWxsTH8/f15KmuXlJRg4cKFMDY2hrKyMiwsLJgbxleuXAGLxcK5c+fQoUMHKCsrIy4uDiUlJfD394e+vj5UVFTQo0cPxMfHMzE/fvyIMWPGQE9PD6qqqrC0tERERAQA/mHJmq4lhIimPg9Lnj59GiYmJnB3d8f06dMxc+ZM5pg1a5ZIMevaZyS1UFBQwJo1a7B161a8efOG7/m0tDS4u7vDw8MDSUlJ+PPPPxEXF8ezVsTT0xMHDhxAaGgoUlJSsHPnTqirq/PEWbRoEUJCQpCSkgI7OzssWLAAR48eRVRUFO7fvw8LCwu4ubkhNzcXALB06VIkJyfj3LlzSElJQXh4eLXDkMJcSwgRjDS3vJG2uXPnwsfHBwUFBcjLy8PHjx+Zo/J3jLBoWLIe+vHHH9GuXTsEBgbyTdENDg7GmDFjmL92LC0tERoail69eiE8PByvX7/GoUOHEB0dzVTxNjMz43uPFStWMGtYCgsLER4ejsjISPTv3x8A8NtvvyE6Ohq7du3C/Pnz8fr1azg4OKBjx44AUGO5HGGuBaquXl7GLYciS6GaVxDS8NTnYcm3b9/C39+fKbslCdRzq6fWrl2LqKgopKSk8JxPTExEZGQk1NXVmcPNzQ0cDgfp6elISEiAgoICevXqVWP8ysQDVPQGy8rKeCoIKCoqonPnzsz7T506FQcPHkS7du2wYMGCKkvpVBLmWqAiYWtpafEcFz49rvE1hDQ0CkIedYmbmxvu3r0r0ZjUc6unnJyc4ObmhoCAAJ7aawUFBZg8eTL8/f35XmNiYoLU1FSB4qupqQnVnv79++PVq1f466+/EB0dDVdXV/j5+WH9+vViXQtUXb08ymayUO0jRN7V557bwIEDMX/+fCQnJ8PW1haKioo8zw8ZMkTomJTc6rGQkBC0a9cOVlZWzLn27dsjOTmZqd79LVtbW3A4HMTGxvJsLlgTc3NzKCkp4fr168xOuWVlZYiPj+e52aunpwcvLy94eXmhZ8+emD9/frUJS5hrq6peTkOShPBi182VQAKZOHEigIrbId9isVgileCi5FaP2draYsyYMQgNDWXOLVy4kCk2OmHCBKipqSE5ORnR0dHYtm0bTE1N4eXlBR8fH4SGhsLe3h6vXr1CdnY2RowYUeX7qKmpYerUqZg/fz6aNGkCExMTrFu3DkVFRfD19QUALFu2DB06dECbNm1QUlKCM2fOVLs9vDDXEkIEU5/vMX079V8S6vP3QVDxl87X/zDs7OwQGxuLZ8+eoWfPnnBwcMCyZcvQrFkz5prw8HD85z//wbRp09C6dWtMnDiRZ6lAVUJCQuDh4YFx48ahffv2SE1NxYULF5i1dkpKSggICICdnR2cnJygoKCAgwcPVhlLmGsJIYKpz7MlpYHFratlLQipwQ7jsVKLPXbsv1KLrTz3v1KLDQCqzXpKLba/FGOvXi9aiSVBpC+8KbXY0maTdlbga1e3HCNU7F9e7RO2OVJVWFiI2NhYvH79GqWlpTzPVTWHoDY0LEkIIXKgPk8oefDgAQYMGICioiIUFhaiSZMm+Oeff9C4cWPo6+uLlNxoWJIQQuRAfR6WnD17NgYPHoyPHz9CVVUVt27dwqtXr9ChQ4dqJ5rVhpIbIYTIgfpcfishIQFz584Fm82GgoICSkpKYGxsjHXr1mHx4sUixaxrn5EQQogIFLjCHXWJoqIi2OyKdKSvr4/Xr18DALS0tJCRkSFSTLrnRgghcqA+91QcHBwQHx8PS0tL9OrVC8uWLcM///yDvXv3iryfW33+PgghhPw/aQ5LBgcHo1OnTtDQ0IC+vj6GDRuGp0+f8lzj7OwMFovFc0yZMkWg+GvWrIGRkREAYPXq1dDR0cHUqVORk5ODnTt3CtnaCtRzI4QQOSDNCiWxsbHw8/NDp06d8OXLFyxevBj9+vVDcnIyT6m+iRMn8lQZEbQQ8te1bPX19XH+/Hmx20zJjRBC5IA0Z0B+m2wiIyOhr6+Pe/fuwcnJiTnfuHFjkTYmdnFxwbFjx6Ctrc1z/tOnTxg2bBguXbokdEwaliSEEDkg7LBkSUkJPn36xHN8u7VUdfLz8wEATZo04Tm/b98+NG3aFG3btkVAQACKiooEinflyhW+hdsAUFxcjGvXrgkU41vUcyP10sqCB1KLfXhvc6nFjt0gvSofAPBvpmi/CATxceR4qcVmmf0stdgBZbekFhsAXKAttdg2Qlwryn205cuX85wLDAxEUFBQja/jcDiYNWsWunfvzjPZ4+eff0bLli3RrFkzJCUlYeHChXj69CmOHTtWbaykpCTm5+TkZLx79455XF5ejvPnz6N5c9H+e6TkRgghcoAl5D23qraS+nb3jar4+fnh0aNHiIuL4zk/adIk5mdbW1sYGRnB1dUVaWlpMDc3rzJWu3btmMknLi4ufM+rqqpi69atgnwcPpTcCCFEDgjbc6tqK6naTJ8+HWfOnMHVq1fRokWLGq/t0qULACA1NbXa5Jaeng4ulwszMzPcuXMHenp6zHNKSkrQ19eHgoJo21tRciOEEDnQSIqzJblcLmbMmIHjx4/jypUraNWqVa2vSUhIAABmin9VKveHpC1vCCGEVEmatSX9/Pzwxx9/YP/+/dDQ0MC7d+/w7t07/PtvxQ4aaWlpWLlyJe7du4eXL1/i1KlT8PT0hJOTE+zs7GqNHxUVhbNn/7cDwoIFC6CtrY1u3brh1atXQra2AiU3QgiRA9JcxB0eHo78/Hw4OzvDyMiIOf78808AFUOIFy9eRL9+/dC6dWvMnTsXHh4eOH36tEDx16xZA1VVVQDAzZs3sW3bNqxbtw5NmzbF7NmzhWxtBRqWJIQQOSDNRdy1bftpbGyM2NhYkeNnZGTAwsICAHDixAn85z//waRJk9C9e3c4OzuLFJN6boQQIgfq85Y36urq+PDhAwDg77//Rt++fQEAKioqzNCnsCi5fcPb2xvDhg0TK0ZkZCTfSvtvBQUFoV27dmK9DyGEVGKDK9RRl/Tt2xcTJkzAhAkT8OzZMwwYMAAA8PjxY5iamooUU6bJTRKJpC4aOXIknj17JrX4L1++BIvFYmYjSRslYkLqPjZXuKMuCQsLg6OjI3JycnD06FHo6uoCAO7du4fRo0eLFFOke25RUVFo2rQpBg4cCKBiZsuvv/4KGxsbHDhwgJne2VCpqqoyN0dlqbS0FEpKSrJuBoPL5aK8vByNGtGtXkIkrT4Pw2lra2Pbtm1857+toCIMkb6Pb2e2hIWFiT2zpRKXy4WFhQXf1uIJCQlgsVhITU0FALBYLOzcuRODBg1C48aNYW1tjZs3byI1NRXOzs5QU1NDt27dkJaWxsSo7IHs3LkTxsbGaNy4MUaMGMHUSfva+vXrYWRkBF1dXfj5+aGsrIx57uPHj/D09ISOjg4aN26M/v374/nz58zzVQ1LhoSEwMDAABoaGvD19UVxcXGN38PHjx8xZswY6OnpQVVVFZaWloiIiAAAZo2Jg4MDWCwWc8O1sie8evVqNGvWDFZWVsx3deLECZ742traiIyMZB6/efMGo0ePRpMmTaCmpoaOHTvi9u3biIyMxPLly5GYmMhUEoiMjKyy95iXlwcWi4UrV64AqKgXx2KxcO7cOXTo0AHKysqIi4sDh8NBcHAwWrVqBVVVVdjb2+PIkSM1fh+EkJrVt3tuSUlJzPq2pKSkGg9RiPQn9LczWzw8PMSe2VKJxWLBx8cHERERmDdvHnM+IiICTk5OzPsCwMqVK7Fx40Zs3LgRCxcuxM8//wwzMzMEBATAxMQEPj4+mD59Os6dO8e8JjU1FYcOHcLp06fx6dMn+Pr6Ytq0adi3bx9zzeXLl2FkZITLly8jNTUVI0eORLt27TBx4kQAFUnk+fPnOHXqFDQ1NbFw4UIMGDAAycnJUFRU5PtMhw4dQlBQEMLCwtCjRw/s3bsXoaGhMDMzq/Z7WLp0KZKTk3Hu3Dk0bdoUqampzI3VO3fuoHPnzrh48SLatGnD0zuLiYmBpqYmoqOjBf7OCwoK0KtXLzRv3hynTp2CoaEh7t+/Dw6Hg5EjR+LRo0c4f/48Ll68CKBid9z3798LHH/RokVYv349zMzMoKOjg+DgYPzxxx/YsWMHLC0tcfXqVYwdOxZ6enro1auXwHEJIf/TqJYZjXVNu3bt8O7dO+jr6zNluL6elVn5mMVioby8XOj4IiW3ypktJiYm+Pvvv5n6ZOLMbPmat7c3li1bxvwSLysrw/79+/l6c+PHj8eIESMAAAsXLoSjoyOWLl0KNzc3AMDMmTMxfjxvsdfi4mLs2bOHKca5detWDBw4EBs2bGC2atDR0cG2bdugoKCA1q1bY+DAgYiJicHEiROZpHb9+nV069YNQEUlbGNjY5w4cQI//fQT3+fZvHkzfH194evrCwBYtWoVLl68WGPv7fXr13BwcGD2Ofr6pmpliRpdXV2+7SXU1NTw+++/CzUcuX//fuTk5CA+Pp6p8v31HxHq6upo1KiRSFtZAMCKFSuY2U8lJSVYs2YNLl68CEdHRwCAmZkZ4uLisHPnziqTW0lJCV+1ci6XAxarPg/EECJZdaE3Joz09HTmd1l6errE44uU3Cpntjg4OEhsZsvXmjVrhoEDB2L37t3o3LkzTp8+jZKSEr7E8fXKdwMDAwAVBTu/PldcXIxPnz5BU1MTAGBiYsJTZdrR0REcDgdPnz5lfnm3adOGp56ZkZERHj58CABISUlBo0aNmLppQEWSsbKyQkpKSpWfJyUlhW9HWkdHR1y+fLna72Dq1Knw8PDA/fv30a9fPwwbNoxJpjWxtbUV+j5bQkICHBwc+LavkJSvNyJMTU1FUVERk+wqlZaWwsHBocrXV1W9XF25KTRV9SXfWELqqbo2A7I2X8/NkMY8DZGSW1hYGJYsWYKMjAyJzWz51oQJEzBu3Dhs2rQJERERGDlyJN+url8PAbJYrGrPCVu37NuhRRaLJZXaZzXp378/Xr16hb/++gvR0dFwdXWFn58fX+/1W1/vilvp2+4+AJ57iKJMfmGzK3pNX8f9OmZ1bSooKAAAnD17lm8ri+qKuFZVvby1SZcqryWkoaprMyBrc+rUKYGvHTJkiNDxRUpu0pjZ8q0BAwZATU0N4eHhOH/+PK5evSqRuK9fv0ZmZiaaNWsGALh16xbYbDYz+aI21tbW+PLlC27fvs30pD58+ICnT5/Cxqbq3Zesra1x+/ZteHp6Mudu3ap9jyk9PT14eXnBy8sLPXv2xPz587F+/XqmZyboOLSenh6ysrKYx8+fP+fZRNDOzg6///47cnNzq+y9KSkp8b1X5XBCVlYW0+MSZGmCjY0NlJWV8fr1a4Hvr1VVvZyGJAnhxapnPbdvl4FVdc+tkij33ET+DXHt2jWMHTsW3bp1w9u3bwEAe/fu5dvjpzb5+flISEjgOTIyMqCgoABvb28EBATA0tKSuT8jLhUVFXh5eSExMRHXrl2Dv78/RowYIfD9JEtLSwwdOhQTJ05EXFwcEhMTMXbsWDRv3hxDhw6t8jUzZ87E7t27ERERgWfPniEwMBCPHz+u8X2WLVuGkydPIjU1FY8fP8aZM2dgbW0NANDX14eqqirOnz+P9+/fVznb82suLi7Ytm0bHjx4gLt372LKlCk8vdPRo0fD0NAQw4YNw/Xr1/HixQscPXoUN2/eBFBxvy89PR0JCQn4559/UFJSAlVVVXTt2hUhISFISUlBbGwslixZUuv3p6GhgXnz5mH27NmIiopCWloa7t+/j61btyIqKqrW1xNCqibN2pLSwOFwmOPvv/9Gu3btcO7cOeTl5SEvLw9//fUX2rdvj/Pnz4sUX6TPePToUbi5uUFVVRX3799nbvbn5+djzZo1QsW6cuUKHBwceI7KHqCvry9KS0v5JoWIw8LCAsOHD8eAAQPQr18/2NnZYfv27ULFiIiIQIcOHTBo0CA4OjqCy+Xir7/+qnKmJFCxqHvp0qVYsGABOnTogFevXmHq1Kk1voeSkhICAgJgZ2cHJycnKCgo4ODBgwCARo0aITQ0FDt37kSzZs2qTaqVNmzYAGNjY/Ts2RM///wz5s2bxzPEq6SkhL///hv6+voYMGAAbG1tERISwtx39PDwgLu7O3r37g09PT0cOHAAALB79258+fIFHTp0wKxZs7Bq1SqBvr+VK1di6dKlCA4OhrW1Ndzd3XH27FmBttEghFStviW3r82aNQtbtmyBm5sbNDU1oampCTc3N2zcuBH+/v4ixWRxa6uIWQUHBwfMnj0bnp6e0NDQQGJiIszMzPDgwQP079+fZ6twcVy7dg2urq7IyMhgJoyIIygoCCdOnPhulT2I9DTXaSO12K3VRNvWXhCx2TX32MX1b+Y1qcX+OFJyf2R+S/O/c6UWe+SwX6UWGwBcoC212DNf/yHwtdEGI4WK3ff9n8I2R2pUVVURHx+Ptm3b8pxPSkpCly5dRJqFL1ICf/r0KZycnPjOa2lpIS8vT5SQPEpKSvDmzRsEBQXhp59+kkhiI4QQeVafe26dOnXCnDlzeNbPvn//HvPnz0fnzp1FiinSZzQ0NGQqhXwtLi6uxoXJgqos4ZWXl4d169aJHY8QQuQdC1yhjrpk9+7dyMrKgomJCSwsLGBhYQETExO8ffsWu3btEimmSLMlJ06cyEySYLFYyMzMxM2bNzFv3jwsXbpUpIZ8zdvbG97e3mLH+VZQUBCCgoIkHpcQQmStEatuJSxhWFhYICkpCdHR0Xjy5AmAilnmffr04Zk1KQyRktuiRYvA4XDg6uqKoqIiODk5QVlZGfPmzcOMGTNEagghhBDR1bXemLBYLBb69euHfv36SSSeSMOSLBYLv/zyC3Jzc/Ho0SPcunULOTk5WLlypUQaRQghRDjSvOcWHByMTp06QUNDA/r6+hg2bBiePn3Kc01xcTH8/Pygq6sLdXV1eHh4CFWDVtLEuq+opKQEGxsbdO7cGerq6pJqEyGEECGxWFyhDmHExsbCz88Pt27dQnR0NMrKytCvXz8UFhYy18yePRunT5/G4cOHERsbi8zMTAwfPlzSH1NgIg1LFhYWIiQkBDExMcjOzuYrTfXixQuJNI4QQohg2FK85/btQurIyEjo6+vj3r17cHJyQn5+Pnbt2oX9+/fDxcUFQMV6YGtra9y6dQtdu3aVWtuqI1JymzBhAmJjYzFu3DgYGRmJfMOPEEKIZHzP38KVVZEqy/Xdu3cPZWVl6NOnD3NN69atYWJigps3b9af5Hbu3DmcPXsW3bt3l3R7CCGEiEDYnltVW0lVVcf1WxwOB7NmzUL37t2ZRdfv3r2DkpIS3ybNBgYGAhf1KC8vx/Hjx5ndVaytrTFs2DA0aiRSmhItueno6EhtexRCBHHJwERqsfXbiL8nYXWe3pTubgZvXCdLLXaLmAipxeZ++kdqsX81K5BabADQHPuDVOMLStj7aFVtJRUYGFjrcik/Pz88evRI6DrCNXn8+DGGDBmCd+/eMUXs165dCz09PZw+fZqvcokgRJpQsnLlSixbtoynsjwhhBDZYbO4Qh0BAQHIz8/nOQICAmp8j+nTp+PMmTO4fPkyWrRowZw3NDREaWkpX4Wq9+/fC1SUfsKECWjTpg3evHmD+/fv4/79+8jIyICdnR0mTZok0vchcM/NwcGB595aamoqDAwMYGpqylcw+P79+yI1hhBCiGjYQm7oJsgQZCUul4sZM2bg+PHjuHLlCl+R8w4dOkBRURExMTHw8PAAUFGm8fXr1wLt6JKQkIC7d+9CR0eHOaejo4PVq1ejU6dOQnyq/xE4uX279w4hhJC6Q5qzJf38/LB//36cPHkSGhoazH00LS0tqKqqQktLC76+vpgzZw6aNGkCTU1NzJgxA46OjgJNJvnhhx/w/v17tGnDWxA9OzsbFhYWIrVZ4OQWGBgo0hsQQgiRPmlOWg8PDwcAODs785yPiIhgSiVu2rQJbDYbHh4eKCkpgZubm8DbiQUHB8Pf3x9BQUFMMrx16xZWrFiBtWvX4tOnT8y1mpqaAsUUaUJJfHw8OBwOunThvTl++/ZtKCgooGPHjqKEJYQQIiJhJ5QIQ5Cd0VRUVBAWFoawsDCh4w8aNAgAMGLECOb2V+V7Dh48mHnMYrEE3pVbpOTm5+eHBQsW8CW3t2/fYu3atbh9+7YoYQkhhIhImsOS0nb58mWJxxQpuSUnJ6N9+/Z85x0cHJCcnCx2o4hwXr58iVatWuHBgwdo164drly5gt69e+Pjx498607EQZu9ElJ3sYScUFKX9OrVS+IxRVoKoKysXGVBzKysLJEX3JGqeXt7g8ViMYeuri7c3d2RlJTEXGNsbIysrCyR1oLI0pUrV8BisSSywS0hDR2LJdxR1+Tl5WHDhg2YMGECJkyYgE2bNjGVUEQhUnLr168fs0bi64YtXrwYffv2FbkxpGru7u7IyspCVlYWYmJi0KhRI2aMGgAUFBRgaGhIf1gQ0oCx2Fyhjrrk7t27MDc3x6ZNm5Cbm4vc3Fxs3LgR5ubmIi8tEym5rV+/HhkZGWjZsiV69+6N3r17o1WrVnj37h02bNggUkNI9ZSVlWFoaAhDQ0O0a9cOixYtQkZGBnJycgBUDEuyWKwahwvj4uLQs2dPqKqqwtjYGP7+/jwVvasSEhICAwMDaGhowNfXF8XFxTzPOzs7Y9asWTznhg0bxrPRbElJCRYuXAhjY2MoKyvDwsICu3btwsuXL9G7d28AFetZWCyWVDaoJaShkOauANI2e/ZsDBkyBC9fvsSxY8dw7NgxpKenY9CgQXy/YwQlUnJr3rw5kpKSsG7dOtjY2KBDhw7YsmULHj58CGNjY5EaQgRTUFCAP/74AxYWFtDV1RXoNWlpaXB3d4eHhweSkpLw559/Ii4uDtOnT6/2NYcOHUJQUBDWrFmDu3fvwsjISOBpvV/z9PTEgQMHEBoaipSUFOzcuRPq6uowNjbG0aNHAVQs9szKysKWLVuEjk8IqaCgwBXqqEvu3r2LhQsX8ow+NWrUCAsWLMDdu3dFiinyOJaamprIZVGIcM6cOcPsl1dYWAgjIyOcOXMGbLZgf5sEBwdjzJgxzF9AlpaWCA0NRa9evRAeHg4VFRW+12zevBm+vr7w9fUFAKxatQoXL17k673V5NmzZzh06BCio6OZauFmZmbM85X1SfX19SU68YWQhqiu9caEoampidevX6N169Y85zMyMqChoSFSTIGT26lTp9C/f38oKiri1KlTNV47ZMgQkRpDqta7d29mEeXHjx+xfft29O/fH3fu3EHLli1rfX1iYiKSkpKwb98+5hyXywWHw0F6ejqsra35XpOSkoIpU6bwnHN0dBRqym5CQgIUFBTEnglVVfXyUg4HSgImd0Iagrp2H00YI0eOhK+vL9avX49u3boBAK5fv4758+dj9OjRIsUUqvzWu3fvmC3GqyPMIjsiGDU1NZ4SNL///ju0tLTw22+/YdWqVbW+vqCgAJMnT4a/vz/fcyYmolfXZ7PZfIs7y8rKmJ9VVVVFjv21qqqX++maY0ZTS4nEJ0Qe1MUZkIJav349WCwWPD098eXLFwCAoqIipk6dipCQEJFiCvynL4fDgb6+PvNzdQclNuljsVhgs9n491/BtmZp3749kpOTYWFhwXcoKSlV+Rpra2u+xfi3bt3ieaynp4esrCzmcXl5OR49esQ8trW1BYfDQWxsbJXvUfnetf2bqap6+eQm5jW+hpCGpj7PllRSUsKWLVvw8eNHJCQkICEhAbm5udi0aZPAxZ2/JfI9t5iYGMTExCA7OxscDoc5z2KxsGvXLlHDkiqUlJQwhUo/fvyIbdu2oaCggClLU5uFCxeia9eumD59OiZMmAA1NTUkJycjOjoa27Ztq/I1M2fOhLe3Nzp27Iju3btj3759ePz4Mc89MxcXF8yZMwdnz56Fubk5Nm7cyLNmzdTUFF5eXvDx8UFoaCjs7e3x6tUrZGdnY8SIEWjZsiVYLBbOnDmDAQMGQFVVlbm3+LWqqpfTkCQhvOpawhJF48aNYWtrK5FYIiW35cuXY8WKFejYsSOMjIx4tsIhknf+/HkYGRkBADQ0NNC6dWscPnyYr4hpdezs7BAbG4tffvkFPXv2BJfLhbm5OUaOHFnta0aOHIm0tDQsWLAAxcXF8PDwwNSpU3HhwgXmGh8fHyQmJsLT0xONGjXC7Nmzmen9lcLDw7F48WJMmzYNHz58gImJCRYvXgygYtbt8uXLsWjRIowfPx6enp6IjIwU7sshhACo38OShYWFCAkJqbLDBAAvXrwQOiaLK0hFzG8YGRlh3bp1GDdunNBvSIgkPG3dX2qxpbsTt3R3sDfQ+yy12C1idkottjR34v7os0BqsQFAcyx/KUJJUZ2wUeBr33RxESp2i9uXhG2O1IwePRqxsbEYN25clR2mmTNnCh1TpJ5baWkpM6OFEEKI7LHq8Uj9uXPncPbsWXTv3l1iMUX6OiZMmID9+/dLrBGEEELEw1bgCnXUJTo6Osy6V0kRqedWXFyMX3/9FRcvXoSdnR0UFRV5nt+4UfCuNCGEEPHV5wklK1euxLJlyxAVFYXGjRtLJKZIyS0pKQnt2rUDAJ6p3wBocgkhhMhAfRuWdHBw4MkXqampMDAwgKmpKV+HSZTiySIlN2lsLEcIIUQM9az8Vk3FQCSB9kghhBA5IM2e29WrV/Hf//4X9+7dQ1ZWFo4fP86TnLy9vREVFcXzGjc3N5w/f77amIGBgdJqLgARJ5QQQgipW1hs4Q5hFBYWwt7eHmFhYdVe8/W+k1lZWThw4ICYn0g81HMjhBA5IM2eW//+/dG/f81rSyv3nawrqOdGCCHygC3kIWFXrlyBvr4+rKysMHXqVHz48EHybyIE6rkRQogcELbnVtVWUlXVcRWEu7s7hg8fjlatWiEtLQ2LFy9G//79cfPmTSgoKAgdTxIouZF6ycBe8E1ThaXUyaL2i0RUdj1ParEB4FaOvtRiD9mxTGqxlaaskFpsdWcjqcUGAE7me6nGFxRLyN/mVW0lFRgYiKCgIKHfe9SoUczPtra2sLOzg7m5Oa5cuQJXV1eh40kCJTdCCJEHQvbcAgICMGfOHJ5zom4v8y0zMzM0bdoUqampAiW38vJyREZGVls4+dIl4etgUnIjhBA5wGILV0BD1CFIQbx58wYfPnxgdjOpzcyZMxEZGYmBAweibdu2EikGQsmNEELkgRSnBxYUFCA1NZV5nJ6ejoSEBDRp0gRNmjTB8uXL4eHhAUNDQ2arLAsLC7i5uQkU/+DBgzh06BAGDBggsTZTciOEEDkgbM9NGHfv3uXZq7FyONPLywvh4eFISkpCVFQU8vLy0KxZM/Tr1w8rV64UuGeopKQECwvJ3uum5EYIIfJAij03Z2dn1LT159ebGIti7ty52LJlC7Zt2yax+sSU3AghRB5IsecmbXFxcbh8+TLOnTuHNm3a8BVOPnbsmNAxKbkRQogckOawpLRpa2vjxx9/lGhMSm5yJicnB8uWLcPZs2fx/v176OjowN7eHsuWLUP37t3BYrH4ip4SQuRAPa43FRERIfGYlNzkjIeHB0pLSxEVFQUzMzO8f/8eMTExQpXCKS0thZKSkhRbSQiRuHrcc5OGepzrybfy8vJw7do1rF27Fr1790bLli3RuXNnBAQEYMiQITA1NQUA/Pjjj2CxWMzjoKAgtGvXDr///jtatWoFFRUVAMDr168xdOhQqKurQ1NTEyNGjMD79/+rxlD5ut27d8PExATq6uqYNm0aysvLsW7dOhgaGkJfXx+rV6/maefGjRtha2sLNTU1GBsbY9q0aSgoKPgu3xEh8orViC3UUdccOXIEI0aMQNeuXdG+fXueQxR17xMSkamrq0NdXR0nTpzgqxkHAPHx8QAqhgCysrKYx0DFLrhHjx7FsWPHkJCQAA6Hg6FDhyI3NxexsbGIjo7GixcvMHLkSJ6YaWlpOHfuHM6fP48DBw5g165dGDhwIN68eYPY2FisXbsWS5Yswe3bt5nXsNlshIaG4vHjx4iKisKlS5ewYMECKX0rhDQQbJZwRx0SGhqK8ePHw8DAAA8ePEDnzp2hq6uLFy9e1LobQXVoWFKONGrUCJGRkZg4cSJ27NiB9u3bo1evXhg1ahTs7Oygp6cHoOLm7bdbU5SWlmLPnj3MNdHR0Xj48CHS09NhbGwMANizZw/atGmD+Ph4dOrUCQDA4XCwe/duaGhowMbGBr1798bTp0/x119/gc1mw8rKCmvXrsXly5fRpUsXAMCsWbOY9zU1NcWqVaswZcoUbN++XdpfESFyS1JT6GVh+/bt+PXXXzF69GhERkZiwYIFMDMzw7Jly5CbmytSTOq5yRkPDw9kZmbi1KlTcHd3x5UrV9C+fXtERkbW+LqWLVsyiQ0AUlJSYGxszCQ2ALCxsYG2tjZSUlKYc6amptDQ0GAeGxgYwMbGBmw2m+dcdnY28/jixYtwdXVF8+bNoaGhgXHjxuHDhw8oKiqqsm0lJSX49OkTz1FSzqnyWkIarHrcc3v9+jW6desGAFBVVcXnz58BAOPGjRN501NKbnJIRUUFffv2xdKlS3Hjxg14e3vXuqW7mpqaSO/17XoUFotV5bnKQqgvX77EoEGDYGdnh6NHj+LevXvM7r6lpaVVvkdwcDC0tLR4jk0pr0RqLyFyqx4nN0NDQ6aHZmJiglu3bgGoKPNV0+LxmlByawBsbGxQWFgIoCIZlZeX1/oaa2trZGRkICMjgzmXnJyMvLw82NjYiNyWe/fugcPhYMOGDejatSt++OEHZGZm1viagIAA5Ofn8xyzrVuK3AZC5BKbLdxRh7i4uODUqVMAgPHjx2P27Nno27cvRo4cKfL6N7rnJkc+fPiAn376CT4+PrCzs4OGhgbu3r2LdevWYejQoQAqhhFjYmLQvXt3KCsrQ0dHp8pYffr0ga2tLcaMGYPNmzfjy5cvmDZtGnr16oWOHTuK3EYLCwuUlZVh69atGDx4MK5fv44dO3bU+JqqqpdzFOrWf5yEyFwd640J49dff2VGd/z8/KCrq4sbN25gyJAhmDx5skgx6TeEHFFXV0eXLl2wadMmODk5oW3btli6dCkmTpyIbdu2AQA2bNiA6OhoGBsbw8HBodpYLBYLJ0+ehI6ODpycnNCnTx+YmZnhzz//FKuN9vb22LhxI9auXYu2bdti3759CA4OFismIaSiQokwR13CZrPRqNH/+lqjRo1CaGgoZsyYIfKaWxZX1AFNQmQob2Tv2i8SkVInc6nFvrc+T2qxAeANWzr7cwHAkGnS+4UozZ24S7f9IrXYAKQ6xKe2bJ/A1xbMGypUbPX1J4VtjlRdu3YNO3fuRFpaGo4cOYLmzZtj7969aNWqFXr06CF0POq5EUKIPFBQEO6oQ44ePQo3NzeoqqriwYMHzDrd/Px8rFmzRqSYlNwIIUQe1OPZkqtWrcKOHTvw22+/8cy27t69O+7fvy9STJpQQgghcoBVx2ZACuPp06dwcnLiO6+lpYW8vDyRYtbfb4MQQsj/1OOem6GhIVJTU/nOx8XFwczMTKSYlNwIIUQesNjCHXXIxIkTMXPmTNy+fRssFguZmZnYt28f5s2bh6lTp4oUs259QkIIIaKRYs/t6tWrGDx4MJo1awYWi4UTJ07wPM/lcrFs2TIYGRlBVVUVffr0wfPnzwWOv2jRIvz8889wdXVFQUEBnJycMGHCBEyePBkzZswQqq2VKLkRQog8kGKFksLCQtjb2zOl8r61bt06hIaGYseOHbh9+zbU1NTg5uaG4uJigeKzWCz88ssvyM3NxaNHj3Dr1i3k5ORg5cqVQrXzazShhBBC5IEU76P179+/2q1nuFwuNm/ejCVLljCVkPbs2QMDAwOcOHECo0aNEvh9lJSUxCrv9zVKboQQIg+EvI9WUlLCt+9jVaXuapOeno53796hT58+zDktLS106dIFN2/erDG5+fj4CPQeu3fvFqpNACU3Uk81Dl4rtdjl9/+WWuzeueFSiy1tLTcbSC32Q+VVUoutNH117ReJoXiFv1TjC4rVSLiF2cHBwVi+fDnPucDAQAQFBQkV5927dwAqtrb6moGBAfNcdSIjI9GyZUs4ODiIXP2/OpTcCCFEHgg5LBkQEIA5c+bwnBO21yauqVOn4sCBA0hPT8f48eMxduxYNGnSRCKxaUIJIYTIAyGXAigrK0NTU5PnECW5GRoaAgDev3/Pc/79+/fMc9UJCwtDVlYWFixYgNOnT8PY2BgjRozAhQsXxO7JUXIjhBB5IKNF3K1atYKhoSFiYmKYc58+fcLt27fh6OhY6+uVlZUxevRoREdHIzk5GW3atMG0adNgamqKgoICkdtFw5KEECIPpFh+q6CggKeCSHp6OhISEtCkSROYmJhg1qxZWLVqFSwtLdGqVSssXboUzZo1w7Bhw4R6HzabDRaLBS6XK9CmyjWh5EYIIfKAJb2lAHfv3kXv3v/bZqryXp2XlxciIyOxYMECFBYWYtKkScjLy0OPHj1w/vx5qKio1Bq7pKQEx44dw+7duxEXF4dBgwZh27ZtcHd3B1uMhE3JjRBC5IEUe27Ozs413gNjsVhYsWIFVqwQbl++adOm4eDBgzA2NoaPjw8OHDiApk2bittcAJTcCCFEPtTDXQF27NgBExMTmJmZITY2FrGxsVVed+zYMaFj179vgwCoWB+ira1d7fMvX74Ei8VCQkLCd2nPlStXwGKxRN6eghAipnq4K4Cnpyd69+4NbW1taGlpVXuIosH13HJycrBs2TKcPXsW79+/h46ODuzt7bFs2TJ0794dQEUX+/jx40LfDCWEEJlRqH+/ziMjI6UWu/59G2Ly8PBAaWkpoqKiYGZmhvfv3yMmJgYfPnwQKk5paSmUlJSk1Mq6S5qfu6F+p4RIAquO9MbqigY1LJmXl4dr165h7dq16N27N1q2bInOnTsjICAAQ4YMAQCYmpoCAH788UewWCzmcVBQENq1a4fff/8drVq1YmYBvX79GkOHDoW6ujo0NTUxYsQInsWMla/bvXs3TExMoK6ujmnTpqG8vBzr1q2DoaEh9PX1sXo1b4mgjRs3wtbWFmpqajA2Nsa0adNEWvPx5MkTdOvWDSoqKmjbti3fmHZsbCw6d+4MZWVlGBkZYdGiRfjy5QvzvLOzM6ZPn45Zs2ahadOmcHNzAwD89ddf+OGHH6CqqorevXvj5cuXfO8dFxeHnj17QlVVFcbGxvD390dhYSHzvKmpKVauXAlPT09oampi0qRJQn8+Qsj/q8f7uUmD/H/Cr6irq0NdXR0nTpzgKxhaKT4+HgAQERGBrKws5jEApKam4ujRozh27BgSEhLA4XAwdOhQ5ObmIjY2FtHR0Xjx4gVGjhzJEzMtLQ3nzp3D+fPnceDAAezatQsDBw7EmzdvEBsbi7Vr12LJkiW4ffs28xo2m43Q0FA8fvwYUVFRuHTpEhYsWCD0Z54/fz7mzp2LBw8ewNHREYMHD2Z6qW/fvsWAAQPQqVMnJCYmIjw8HLt27cKqVbx1/qKioqCkpITr169jx44dyMjIwPDhwzF48GAkJCRgwoQJWLRoEd9ndnd3h4eHB5KSkvDnn38iLi4O06dP57lu/fr1sLe3x4MHD7B06VKhPx8h5P9Jccub+qhBDUs2atQIkZGRmDhxInbs2IH27dujV69eGDVqFOzs7AAAenp6AABtbW2+0jGlpaXYs2cPc010dDQePnyI9PR0GBsbA6jY6qFNmzaIj49Hp06dAAAcDge7d++GhoYGbGxs0Lt3bzx9+hR//fUX2Gw2rKyssHbtWly+fBldunQBAMyaNYt5X1NTU6xatQpTpkzB9u3bhfrM06dPh4eHBwAgPDwc58+fx65du7BgwQJs374dxsbG2LZtG1gsFlq3bo3MzEwsXLgQy5YtY9aYWFpaYt26dUzMxYsXw9zcHBs2bAAAWFlZ4eHDh1i79n/FjIODgzFmzBjmc1haWiI0NBS9evVCeHg40/N1cXHB3LlzhfpMhJAqNICEJYwG9214eHggMzMTp06dgru7O65cuYL27dsLdGOzZcuWTGIDgJSUFBgbGzOJDQBsbGygra2NlJQU5pypqSk0NDSYxwYGBrCxseFZoGhgYIDs7Gzm8cWLF+Hq6ormzZtDQ0MD48aNw4cPH1BUVCTU5/26/E2jRo3QsWNHpm0pKSlwdHQE66vFn927d0dBQQHevHnDnOvQoQNPzJSUFCYJV/U+AJCYmIjIyEimt6yurg43NzdwOBykp6cz13Xs2LHWz1BSUoJPnz7xHCUlpQJ8ekIaEBZLuEPONbjkBgAqKiro27cvli5dihs3bsDb2xuBgYG1vk5NTU2k91NUVOR5zGKxqjzH4XAAVEzjHzRoEOzs7HD06FHcu3eP2QG3tPT7/1IX5XMXFBRg8uTJSEhIYI7ExEQ8f/4c5ubmQsUODg7mmxq8bkeU0G0iRK7RsCQP+f+EArCxseGZ6KCoqChQXTNra2tkZGQgIyODOZecnIy8vDyxdpO9d+8eOBwONmzYgK5du+KHH35AZmamSLFu3brF/Pzlyxfcu3cP1tbWTPtv3rzJU3ng+vXr0NDQQIsWLaqNaW1tjTt37lT7PgDQvn17JCcnw8LCgu8QdkZkQEAA8vPzeY4FU7yEikGI3KMJJTzk/xN+5cOHD3BxccEff/yBpKQkpKen4/Dhw1i3bh2zPTpQMYwYExODd+/e4ePHj9XG69OnD2xtbTFmzBjcv38fd+7cgaenJ3r16iXQcFt1LCwsUFZWhq1bt+LFixfYu3cvduzYIVKssLAwHD9+HE+ePIGfnx8+fvzI7H47bdo0ZGRkYMaMGXjy5AlOnjyJwMBAzJkzp8aablOmTMHz588xf/58PH36FPv37+cb1l24cCFu3LiB6dOnIyEhAc+fP8fJkyf5JpQIouqtOWjJACE8qOfGQ/4/4VfU1dXRpUsXbNq0CU5OTmjbti2WLl2KiRMnYtu2bcx1GzZsQHR0NIyNjeHg4FBtPBaLhZMnT0JHRwdOTk7o06cPzMzM8Oeff4rVTnt7e2zcuBFr165F27ZtsW/fPgQHB4sUKyQkBCEhIbC3t0dcXBxOnTrF1G5r3rw5/vrrL9y5cwf29vaYMmUKfH19sWTJkhpjmpiY4OjRozhx4gTs7e2xY8cOrFmzhucaOzs7xMbG4tmzZ+jZsyccHBywbNkyNGvWTKTPQQipBSU3HiyupPf2JuQ7KH1xp/aLRFR+/2+pxdb4OVxqsaWtpaaB1GI/XNhOarEVx9f8x5q4ilf4Sy22RugZga/998iq2i/6iup/pPu9yFqDWgpACCFyqwH0xoRByY0QQuRBA5gkIgxKboQQIg+o58aDkhshhMgD6rnxoORGCCHygHpuPOjbIIQQeSDFRdxBQUFgsVg8R+vWraX0QSSDem6EECIPpNxza9OmDS5evMg8btSobqePut06QgghgpFycmvUqBHfTil1GSU3QgiRBwrC/TovKSnh29dSWVkZysrKVV7//PlzNGvWDCoqKnB0dERwcDBMTExEbq60UYUSUi8V/TpbesGr2chWEvqGPJFabAC4nfNUarH/a9hbarGn7OwstdjIFq3ouKAaDZTeDvKKTc0EvvbfmF+Fir32WiaWL1/Ocy4wMBBBQUF81547dw4FBQWwsrJCVlYWli9fjrdv3+LRo0c823nVJdRzI4QQeSDksGRAQADmzJnDc666Xlv//v2Zn+3s7NClSxe0bNkShw4dgq+vr/Bt/Q4ouRFCiDwQcgZkTUOQtdHW1sYPP/yA1NRUkV7/PdBSAEIIkQffcVeAgoICpKWlwcjISEKNlzxKboQQIgdYLAWhDmHMmzcPsbGxePnyJW7cuIEff/wRCgoKGD16tJQ+jfhoWJIQQuSBFJcCvHnzBqNHj8aHDx+gp6eHHj164NatW9DT05Pae4qLkhshhMgDKSa3gwcPSi22tFByI4QQeUCFk3nQt0HEduXKFbBYLOTl5cm6KYQ0XAqNhDvkHCW3emDw4MFwd3ev8rlr166BxWIhKSnpO7eKEFKnsBWEO+QcJbd6wNfXF9HR0Xjz5g3fcxEREejYsSPs7Oxk0DLJKS0tlXUTCKnfpLgrQH0k/59QDgwaNAh6enqIjIzkOV9QUIDDhw9j2LBhGD16NJo3b47GjRvD1tYWBw4c4Ln2yJEjsLW1haqqKnR1ddGnTx8UFhYyz+/evRtt2rSBsrIyjIyMMH36dADAy5cvwWKxkJCQwFybl5cHFouFK1euVNneDx8+1NoeZ2dnTJ8+HbNmzULTpk3h5uYm+hdECPmu69zqA/n/hHKgUaNG8PT0RGRkJL4uBXr48GGUl5dj7Nix6NChA86ePYtHjx5h0qRJGDduHO7cuQMAyMrKwujRo+Hj44OUlBRcuXIFw4cPZ2KFh4fDz88PkyZNwsOHD3Hq1ClYWFiI3N7i4uIa21MpKioKSkpKuH79Onbs2CHy+xFCQD23b8j/XUU54ePjg//+97+IjY2Fs7MzgIohSQ8PD7Rs2RLz5s1jrp0xYwYuXLiAQ4cOoXPnzsjKysKXL18wfPhwtGzZEgBga2vLXL9q1SrMnTsXM2fOZM516tRJ5LY2b968xvZUsrS0xLp160R+H0LI/wi7MFveUXKrJ1q3bo1u3bph9+7dcHZ2RmpqKq5du4YVK1agvLwca9aswaFDh/D27VuUlpaipKQEjRs3BgDY29vD1dUVtra2cHNzQ79+/fCf//wHOjo6yM7ORmZmJlxdXSXW1traU6lDhw4Cxatqa47ysi9QVqR/voQwGsBQozDo26hHfH19cfToUXz+/BkREREwNzdHr1698N///hdbtmzBwoULcfnyZSQkJMDNzY2ZpKGgoIDo6GicO3cONjY22Lp1K6ysrJCeng5VVdUa35P9///BfD0cWlZWVuNramtPJTU1NYE+d3BwMLS0tHiO9efjBXotIQ0GDUvykP9PKEdGjBgBNpuN/fv3Y8+ePfDx8QGLxcL169cxdOhQjB07Fvb29jAzM8OzZ894XstisdC9e3csX74cDx48gJKSEo4fPw4NDQ2YmpoiJiamyvesLK+TlZXFnPt6cklVBGmPMAICApCfn89zzHMXfdiUELlEE0p40LhOPaKuro6RI0ciICAAnz59gre3N4CKe1dHjhzBjRs3oKOjg40bN+L9+/ewsbEBANy+fRsxMTHo168f9PX1cfv2beTk5MDa2hoAEBQUhClTpkBfXx/9+/fH58+fcf36dcyYMQOqqqro2rUrQkJC0KpVK2RnZ2PJkiU1trO29girqq05imhIkhBeCoqybkGdIv/pW874+vri48ePcHNzQ7NmzQAAS5YsQfv27eHm5gZnZ2cYGhpi2LBhzGs0NTVx9epVDBgwAD/88AOWLFmCDRs2MBsQenl5YfPmzdi+fTvatGmDQYMG4fnz58zrd+/ejS9fvqBDhw6YNWsWVq1aVWMba2sPIUQKaFiSB4v79c0UQuqJol9nSy/4N5NXJKlvyBOpxQaA2zlPpRb7v4a9pRZ7ys7OtV8kquxM6cUG0GjgJKnFVmxqJvC1JWm3hIqtbN5V2ObUKzS2QwghcoDVAHpjwqDkRggh8qABTBIRBiU3QgiRB9Rz40HJjRBC5EEDqPQvDEpuhBAiD6jnxoO+DUIIkQffYRF3WFgYTE1NoaKigi5duvAVQ69LKLkRQogcYLHYQh3C+vPPPzFnzhwEBgbi/v37sLe3h5ubG7Kzs6XwacRHyY0QQuSBQiPhDiFt3LgREydOxPjx42FjY4MdO3agcePG2L17txQ+jPjonhshhMgDISeUVLXbRlWl7gCgtLQU9+7dQ0BAwP/ejs1Gnz59cPPmTdHaK21cQuRYcXExNzAwkFtcXFzv4lPs7x+/vsYWRWBgIBcAzxEYGFjltW/fvuUC4N64cYPn/Pz587mdO3f+Dq0VHpXfInLt06dP0NLSQn5+PjQ1NetVfIr9/ePX19iiEKbnlpmZiebNm+PGjRtwdHRkzi9YsACxsbG4ffu21NsrLBqWJISQBqi6RFaVpk2bQkFBAe/fv+c5//79exgaGkqjeWKjCSWEEEJqpKSkhA4dOvDs+8jhcBATE8PTk6tLqOdGCCGkVnPmzIGXlxc6duyIzp07Y/PmzSgsLMT48eNl3bQqUXIjck1ZWRmBgYECD7/UpfgU+/vHr6+xv4eRI0ciJycHy5Ytw7t379CuXTucP38eBgYGsm5alWhCCSGEELlD99wIIYTIHUpuhBBC5A4lN0IIIXKHkhshhBC5Q8mNyI2ysjL4+PggPT1d1k1pUHx8fPD582e+84WFhfDx8ZFBiwRD/17kG82WJHJFS0sLCQkJaNWqlcRiDh8+XOBrjx07JrH3lbRr165h586dSEtLw5EjR9C8eXPs3bsXrVq1Qo8ePUSOq6CggKysLOjr6/Oc/+eff2BoaIgvX76I23Spkca/F6Aicbq7u2PHjh2wtLSUaGwiGOq5EbkybNgwnDhxQqIxtbS0mENTUxMxMTG4e/cu8/y9e/cQExMDLS0tib6vJB09ehRubm5QVVXFgwcPmJqC+fn5WLNmjUgxP336hPz8fHC5XHz+/BmfPn1ijo8fP+Kvv/7iS3iSUFxczPNenz59EjmWNP69AICioiKSkpIkHpcIjhZxE7liaWmJFStW4Pr16+jQoQPU1NR4nvf39xc6ZkREBPPzwoULMWLECOzYsQMKChVbjJSXl2PatGkSKYYbFRWFpk2bYuDAgQAqCtP++uuvsLGxwYEDB9CyZUuR4q5atQo7duyAp6cnDh48yJzv3r07Vq1aJVJMbW1tsFgssFgs/PDDD3zPs1gsLF++XKTY3yoqKsKCBQtw6NAhfPjwge/58vJykeJK499LpbFjx2LXrl0ICQkROQYRHQ1LErlS0/ASi8XCixcvxIqvp6eHuLg4WFlZ8Zx/+vQpunXrVuUvXmFYWVkhPDwcLi4uuHnzJvr06YNNmzbhzJkzaNSokcjDno0bN0ZycjJMTU2hoaGBxMREmJmZ4cWLF7CxsUFxcbHQMWNjY8HlcuHi4oKjR4+iSZMmzHNKSkpo2bIlmjVrJlJ7v+Xn54fLly9j5cqVGDduHMLCwvD27Vvs3LkTISEhGDNmjEhxpfnvZcaMGdizZw8sLS2rTJwbN24UOTapHfXciFyR9uSAL1++4MmTJ3zJ7cmTJ+BwOGLHz8jIgIWFBQDgxIkT8PDwwKRJk9C9e3c4OzuLHNfQ0BCpqakwNTXlOR8XFwczMzORYvbq1QtAxXduYmICFoslcvtqc/r0aezZswfOzs4YP348evbsCQsLC7Rs2RL79u0TOblJ89/Lo0eP0L59ewDAs2fPeJ6T5ndFKlByI0QI48ePh6+vL9LS0tC5c2cAwO3btxESEiKRArLq6ur48OEDTExM8Pfff2POnDkAABUVFfz7778ix504cSJmzpyJ3bt3g8ViITMzEzdv3sS8efOwdOlSsdp86dIlqKur46effuI5f/jwYRQVFcHLy0us+ACQm5vLJGFNTU3k5uYCAHr06IGpU6eKHb+0tBTp6ekwNzdHo0aS+bV4+fJlicQhoqHkRuRKbVPPd+/eLVb89evXw9DQEBs2bEBWVhYAwMjICPPnz8fcuXPFig0Affv2xYQJE+Dg4IBnz55hwIABAIDHjx/z9bqEsWjRInA4HLi6uqKoqAhOTk5QVlbGvHnzMGPGDLHaHBwcjJ07d/Kd19fXx6RJkySS3MzMzJgeYuvWrXHo0CF07twZp0+fhra2tshxi4qKMGPGDERFRQGo6GGZmZlhxowZaN68ORYtWiR224ls0D03Ild+/PFHnsdlZWV49OgR8vLy4OLiItGp+pWz9CS5q3JeXh6WLFmCjIwMTJ06Fe7u7gCAwMBAKCkp4ZdffhE6Znl5Oa5fvw47Ozs0btwYqampKCgogI2NDdTV1cVus4qKCp48ecKXfF++fAlra2uxepyVNm3aBAUFBfj7++PixYsYPHgwuFwuysrKsHHjRsycOVOkuDNnzsT169exefNmuLu7IykpCWZmZjh58iSCgoLw4MEDsdp99+5dHDp0CK9fv0ZpaSnPc3V52Yhc4BIi58rLy7mTJk3irl27VtZNkRllZWXuixcvpBLb2NiYe/LkSb7zJ06c4DZv3lwq7/ny5Uvu0aNHuYmJiWLFMTEx4d68eZPL5XK56urq3LS0NC6Xy+U+f/6cq6GhIVbsAwcOcBUVFbmDBg3iKikpcQcNGsT94YcfuFpaWlxvb2+xYpPa0bAkkXtsNhtz5syBs7MzFixYIPTr27dvj5iYGOjo6MDBwaHGyQD3798XOn5SUhLatm0LNptd69ooOzs7oeMDQNu2bfHixQuJL1YGgNGjR8Pf3x8aGhpwcnICUDGTcubMmRg1apTE3w8AWrZsKfKyiK/l5ORUuRavsLBQ7Ekfa9aswaZNm+Dn5wcNDQ1s2bIFrVq1wuTJk2FkZCRWbFI7Sm6kQUhLSxO5UsbQoUOZDSaHDRsmwVZVaNeuHd69ewd9fX20a9cOLBYL3K/uFlQ+ZrFYIq/nWrVqFebNm4eVK1dWOS1dnKHVlStX4uXLl3B1dWUmY3A4HHh6eoq8QLwq8fHxuHz5MrKzs/lmpoo6rb5jx444e/Ysc9+xMqH9/vvvcHR0FKu9aWlpzHpFJSUlJmHOnj0bLi4uElsDSKpGyY3IlcrZhZW4XC6ysrJw9uxZkSc2BAYGVvmzpKSnp0NPT4/5WRoqJ6YMGTKEp0cibtIEKn5x//nnn1i5ciUSExOhqqoKW1tbifSsKq1ZswZLliyBlZUVDAwMeD6DOD2sNWvWoH///khOTsaXL1+wZcsWJCcn48aNG4iNjRWrzTo6OkzNzebNm+PRo0ewtbVFXl4eioqKxIpNakcTSohc6d27N89jNpsNPT09uLi4wMfHR2LTvO/du4eUlBQAQJs2beDg4CCRuNJS2y/qyjVrdZWBgQHWrl0Lb29vicdOS0tDSEgIEhMTUVBQgPbt22PhwoWwtbUVK+7PP/+Mjh07Ys6cOVi5ciW2bt2KoUOHIjo6Gu3bt6cJJVJGyY0QIWRnZ2PUqFG4cuUKMwU9Ly8PvXv3xsGDB5kemKikVX5LmqS9/AKoWG5x9erVelWEODc3F8XFxWjWrBk4HA7WrVuHGzduwNLSEkuWLIGOjo6smyjXKLkRuZSTk4OnT58CqChpJW7SqTRy5Ei8ePECe/bsgbW1NQAgOTkZXl5esLCwwIEDB8SK/235LVdXV2zevFns8ltXr16t8fnKiSCi+B7LL9atW4fMzExs3rxZ7FjCFFqW5DIP8n1RciNypbCwkKnpVznpQEFBAZ6enti6dSsaN24sVnwtLS1cvHgRnTp14jl/584d9OvXD3l5eWLFb9y4MZ48eQITExMsXLgQWVlZ2LNnDx4/fgxnZ2fk5OSIFJfN5t8A5Ot7VeLcc6sKh8PB1KlTYW5uLtIM1ariDRw4EM+ePYONjQ0UFRV5nhcmgbLZbIHv0wn7vVDirDtoQgmRK3PmzEFsbCxOnz6N7t27A6ion+jv74+5c+ciPDxcrPgcDofvFytQscWJJGpLSqv81sePH3kel5WV4cGDB1i6dClWr14tVpurIu7yi2/5+/vj8uXL6N27N3R1dcWaRPJ1WayXL19i0aJF8Pb2ZmZH3rx5E1FRUQgODhY6duVOCTWRxCQeUjvquRG50rRpUxw5coSvyPDly5cxYsQIkXs+lYYOHYq8vDwcOHCAqXj/9u1bjBkzBjo6Ojh+/LhY8ceMGYMnT57AwcEBBw4cwOvXr6Grq4tTp05h8eLFePTokVjxvxUbG4s5c+bg3r17Eo0LAH/99Re8vLzE/s4BQENDAwcPHmTuRUqKq6srJkyYgNGjR/Oc379/P3799VdcuXJFqHjCzLCs65N46jvquRG5UlRUBAMDA77z+vr6Epl+vW3bNgwZMgSmpqYwNjYGUFHJv23btvjjjz/Ejh8WFsaU3zp69Ch0dXUBVMzO/PYXsCQYGBgw9yZFJY3lF99q0qQJzM3NJRLrazdv3sSOHTv4znfs2BETJkwQOh4lrLqDem5Erri6ukJXVxd79uyBiooKAODff/+Fl5cXcnNzcfHiRbHfg8vl4uLFi3jy5AkAwNraGn369BE7rjR9W/mkMgGFhITgy5cviIuLEzn291h+ERERgfPnzyMiIkLs+6Zfs7KywtChQ7Fu3Tqe8wsWLMDJkyfFSvzSnMRDakfJjciVR48ewc3NDSUlJbC3twcAJCYmQkVFBRcuXECbNm1k3MLa5eXlYdeuXTzr6Hx8fKClpSVyzMpJFN/+5961a1fs3r0brVu3FqvN0ubg4IC0tDRwuVyYmpry3fcUpewZUDF06uHhAQsLC3Tp0gVAxeSg58+f4+jRo8zid1F870k8hBclNyJ3ioqKsG/fPp6e1ZgxY6CqqipSvNDQUIGv9ff3F+k9Kt29exdubm5QVVVl9ouLj4/Hv//+i7///pvZ/FJYr1694nlc2buq7N3WdbWVqhKncsybN28QHh7O/DFhbW2NKVOmMMPOosrPz+d5/O0kHldXV7Hik5pRciOkFoIWG2axWHjx4oVY71W5w/Rvv/3GDOd9+fIFEyZMwIsXL2od6qrOnj17MHLkSKZGZqXS0lIcPHgQnp6eQsWrrYD010TtVUlbWVkZ3N3dsWPHju+6OFyak3jI/1ByI3InMzMTcXFxVRbYFbdnJW2qqqp48OAB3zBhcnIyOnbsKPKkGAUFBWRlZfFVwP/w4QP09fWFHiL7uidVXFyM7du3w8bGhplOf+vWLTx+/BjTpk0TaUp9dSRd9kxPT4+pGvK9PHnyBB07dkRBQcF3e8+GiGZLErkSGRmJyZMnQ0lJiW89FIvFklhyKy0tRXp6OszNzSVWrxKoWNj7+vVrvuSWkZEBDQ0NkeNWrq361ps3b0S6l/f1MOCECRPg7++PlStX8l2TkZEhfGOrIK2yZ2PHjsWuXbsQEhIikXZ+raZJPO3atZP4+xFe1HMjcsXY2BhTpkxBQEBAlTf0xVVUVIQZM2YgKioKAPDs2TOYmZlhxowZaN68ORYtWiRWfH9/fxw/fhzr169Ht27dAADXr1/H/Pnz4eHhIXT5qcrhw8TERLRp04YnEZeXlyM9PR3u7u44dOiQyG3W0tLC3bt3+Xo/z58/R8eOHfnuPYlCWmXPKqvZWFpaVrkVkKhb6QD1fxJPfUc9NyJXioqKMGrUKKkkNgAICAhAYmIirly5And3d+Z8nz59EBQUJHZyW79+PVgsFjw9PZn95xQVFTF16lSReheV+88lJCTAzc0N6urqzHNKSkowNTWFh4eHWG1WVVXF9evX+ZLb9evXJTZh5fz587h48SKT2ADAxsYGYWFh6Nevn8hxHz16xEzSefbsGc9z4m5W+u32RfVtEk99R8mNyBVfX18cPnxY7CRTnRMnTuDPP/9E165deX75tWnTBmlpaWLFLi8vx61btxAUFITg4GAmnrm5uchruyqHD01NTTFq1Ci+CSWSMGvWLEydOhX3799nZnjevn0bu3fvxtKlSyXyHtIqe/Z1KS5Jq4s7ODQkNCxJ5Ep5eTkGDRqEf//9F7a2tny/EMUZZgIqChs/evQIZmZm0NDQQGJiIszMzJCYmAgnJyexh+BUVFSQkpIi8AxNQcXHx4PD4TBruSrdvn0bCgoK6Nixo1jxDx06hC1btvBMp585cyZGjBghVtxK0i57BlTcfwSAFi1aiB0LqBhitrCw4LvPu23bNqSmpkpkhwNSPemM3RAiI8HBwbhw4QLev3+Phw8f4sGDB8yRkJAgdvyOHTvi7NmzzOPK3tvvv//OzBQUR9u2bcVeTlAVPz+/Kid3vH37Fn5+fmLHHzFiBK5fv47c3Fzk5ubi+vXrEktsQEVC+PTpE0xNTWFubg5zc3O0atUKnz59wtatW0WOy+FwsGLFCmhpaaFly5Zo2bIltLW1sXLlSrELYR89epQp3v21bt264ciRI2LFJgLgEiJHtLW1uREREVKLf+3aNa66ujp3ypQpXBUVFe7MmTO5ffv25aqpqXHv3r0rdvxz585x27Vrxz19+jQ3MzOTm5+fz3OISk1NjZuWlsZ3/sWLF1x1dXVxmvzdcDgc7t9//80NDQ3lhoaGcqOjo8WOuWjRIq6enh53+/bt3MTERG5iYiI3LCyMq6enx128eLFYsZWVlbnPnz/nO//8+XOusrKyWLFJ7Si5EbliYGDAffbsmVTfIzU1lTthwgRup06duNbW1twxY8Zwk5KSJBKbxWIxB5vNZo7Kx6Jq0qQJ98aNG3znr1+/ztXW1hanyVJXWlrKVVBQ4D58+FDisY2MjLgnT57kO3/ixAlus2bNxIrdpk0b7tatW/nOh4aGcq2trcWKTWpHE0qIXJk5cya2bt0qVMksYZmbm+O3336TSmxpTXDo168fAgICcPLkSWZdW15eHhYvXoy+fftK5T0lRVFRESYmJlKpxZibm1vllPzWrVsjNzdXrNhz5szB9OnTkZOTAxcXFwBATEwMNmzYQPfbvgOaUELkyo8//ohLly5BV1cXbdq0EWvH5qr06tULvr6++Omnn0SuVSkLb9++hZOTEz58+MBU9UhISICBgQGio6PFrqMobbt27cKxY8ewd+9eNGnSRGJxu3Tpgi5duvD9MTRjxgzEx8fj1q1bYsUPDw/H6tWrkZmZCaBi1mpQUJDQ5c6I8Ci5Ebkyfvz4Gp+PiIgQK/6sWbOwf/9+lJSUYMSIEfD19UXXrl3Fivm1iIgIqKur46effuI5f/jwYRQVFYm1P1phYSH27duHxMREqKqqws7ODqNHj65yir0opFW1BahYjJ6amoqysjK0bNmSb7G1qPUrY2NjMXDgQJiYmPDsxJ2RkYG//voLPXv2FLvtAJCTkwNVVVWedYZEuii5ESKkL1++4NSpU4iKisK5c+dgYWEBHx8fjBs3rsqNUoXxww8/YOfOnXx7pMXGxmLSpElibywqDdKu2gIAQUFBNS6qFmdXgMzMTISFhfHsIjFt2jRmyYGo/v33X3C5XGaN4qtXr3D8+HHY2NiItfCcCIaSGyFiyM7Oxq+//orVq1ejvLwcAwYMgL+/P3OPRVgqKip48uQJTE1Nec6/fPkS1tbW+Pfff0WKu2fPnhqfF2eYbObMmbh+/To2b94Md3d3JCUlwczMDCdPnkRQUBAePHggcuz6rF+/fhg+fDimTJmCvLw8WFlZQUlJCf/88w82btyIqVOnyrqJco0mlBC50qpVqxr/wpfkGrI7d+4gIiICBw8ehL6+Pry9vfH27VsMGjQI06ZNw/r164WOqa+vj6SkJL7klpiYCF1dXZHbOnPmTJ7HZWVlKCoqgpKSEho3bixWcpNm1ZZKZmZmiI+P5/sO8vLy0L59e7H+f/348SPP5rA2NjYYP3682Pf27t+/j02bNgEAjhw5AkNDQzx48ABHjx7FsmXLKLlJGSU3IldmzZrF87hyg8jz589j/vz5YsfPzs7G3r17ERERgefPn2Pw4ME4cOAA3NzcmF/s3t7ecHd3Fym5jR49Gv7+/tDQ0ICTkxOAiiHJmTNnYtSoUSK3++PHj3znnj9/jqlTp4r9veTk5PBtpQNU3OMTtz5jpZcvX1Y5W7KkpISpLCKKq1evYvDgwdDS0mKqtISGhmLFihU4ffo08/+BKIqKipidHP7++28MHz4cbDYbXbt25ds8lkgeJTciV77toVQKCwvD3bt3xY7fokULmJubw8fHB97e3lVutWJnZ4dOnTqJFH/lypV4+fIlXF1dmUkZHA4Hnp6eWLNmjVht/5alpSVCQkIwduxY5n6TKCqrtsyYMQOAZKu2nDp1ivn5woULPNvzlJeXIyYmRqxSZX5+fhg5ciTCw8OhoKDAxJ02bRr8/Pzw8OFDkWNbWFjgxIkT+PHHH3HhwgXMnj0bQMUfSJqamiLHJQKS2Qo7Qr6jtLQ0roaGhthxrl69KoHW1O7p06fcQ4cOcU+fPs19+fKl1N7nwYMHYn8v0qza8vWC9q8XuLNYLK6SkhL3hx9+4J4+fVrk+CoqKtwnT57wnX/y5AlXRUVFnKZzDx8+zFVUVOSy2Wxu3759mfNr1qzhuru7ixWb1I56bqRBOHLkiETWR0lqanhtTE1NweVyJTat/useEPC/jTO3bdtWZf1DYfTo0QMJCQkICQmBra0t/v77b7Rv3x43b96Era2tWLEr6zu2atUK8fHxaNq0qVjxvtW+fXukpKTAysqK53xKSgrs7e3Fiv2f//wHPXr0QFZWFk8sV1dX/Pjjj2LFJrWj2ZJELqxYsQJz585Fjx49eO7zcLlcvHv3Djk5Odi+fTsmTZok1vt8+PABy5Ytw+XLl5Gdnc1XXFfcqhbSmlb/7f52LBYLenp6cHFxwYYNG2BkZCRWu6Xl5s2b+PDhAwYNGsSc27NnDwIDA1FYWIhhw4Zh69atQm3l8/UO2SkpKViwYAFmzJjBrFe8desWwsLCEBISgpEjR0ruw5DvipIbkQsKCgrIysrC9u3beZJb5QaRzs7OEtn5eMCAAUhNTYWvry8MDAz4JkyIs8gaqD/T6j99+iTwteLcX3J3d0fv3r2xcOFCAMDDhw/Rvn17eHt7w9raGv/9738xefJkBAUFCRyzuh2yv8ViscQu+XX37l0cOnQIr1+/RmlpKc9z4lbLIbWQ3YgoIZLDYrG479+/l/r7qKurcxMSEqQW38TEhHvz5k3mvSor+T9//lzke2OlpaVcMzMzbnJyssTa+W1h56oOcYs9c7lcrqGhITc+Pp55vHjxYm737t2Zx4cOHRK6CPHLly8FPsRx4MABrqKiInfQoEFcJSUl7qBBg7g//PADV0tLi+vt7S1WbFI7uudG5Iakpp3XpHXr1iIvpBaENKbVKyoqori4WNym8ZDmDtZf+/jxI0/Vl9jYWPTv35953KlTpyr3qavJ99ohe82aNdi0aRP8/PygoaGBLVu2oFWrVpg8eXKdHQaWJ5TciNz44Ycfak0A4t4T2759OxYtWoRly5ahbdu2fHUZxZ3iLa1p9X5+fli7di1+//13iUxQ6dWrl9gxBGFgYID09HQYGxujtLQU9+/fx/Lly5nnP3/+LLHamJKWlpaGgQMHAgCUlJSYP1Bmz54NFxcXns9BJI+SG5Eby5cv51kHJQ3a2tr49OkTX3ktLpcrkXs0a9asQf/+/ZGcnIwvX75gy5YtSE5Oxo0bNxAbGyty3Pj4eMTExODvv/+Gra0tX+FhYe//JCUloW3btmCz2TwTNKpiZ2cndHsrDRgwAIsWLcLatWtx4sQJNG7cmGfGalJSEszNzUWOL006Ojr4/PkzAKB58+Z49OgRbG1tkZeXh6KiIhm3Tv5RciNyY9SoUVUO6UnSmDFjoKioiP3791c5oURc0ppWr62tDQ8PD4m1s127dnj37h309fXRrl27aidoiJvwV65cieHDh6NXr15QV1dHVFQUlJSUmOd3795d54oQP3r0CG3btoWTkxOio6Nha2uLn376CTNnzsSlS5cQHR0NV1dXWTdT7tFsSSIXKmdLSju5NW7cGA8ePOBbF9XQvHr1CiYmJmCxWLWWkpLEPa78/Hyoq6szVUQq5ebmQl1dnSfhyRqbzUanTp0wbNgwjB07FsbGxuBwOFi3bh1u3LgBS0tLLFmyBDo6OrJuqlyj5EbkApvNZnoS0uTk5IRly5ahT58+Eo1bOT29JiwWC1++fBEpvouLC44dOwZtbW2e858+fcKwYcNw6dIlkeISfteuXUNERASOHDkCDocDDw8PTJgw4bsVACAVKLkRIoTDhw8jKCgI8+fPh62tLd9kBlHvL508ebLa527evInQ0FBwOByRZz1Wl/yzs7PRvHlzlJWViRQXqFjYXlmtPyMjA7/99hv+/fdfDBkypE7+QtfR0RF4OFmcCUiFhYU4dOgQIiMjce3aNVhYWMDX1xdeXl4wNDQUOS4RDCU3QoTwbaUPAMz9JklMKPna06dPsWjRIpw+fRpjxozBihUrhB7iq5zs0a5dO1y6dImnBFl5eTnOnz+PnTt34uXLl0K37+HDhxg8eDAyMjJgaWmJgwcPwt3dHYWFhWCz2SgsLMSRI0cwbNgwoWNLU2X1F0GIuyi/UmpqKiIiIrB37168e/cO7u7ufCXRiGRRciNECN/j/lJmZiYCAwMRFRUFNzc3BAcHo23btiLF+nq4s6r/1FVVVbF161b4+PgIHbt///5o1KgRFi1ahL179+LMmTNwc3PDb7/9BgCYMWMG7t27h1u3bonUdnlTWFiIffv2ISAgAHl5eRL9Q4jwo+RGSB2Rn5+PNWvWYOvWrWjXrh3Wrl0r9rDeq1evwOVyYWZmhjt37vBs0aOkpAR9fX2+SRqCatq0KS5dugQ7OzsUFBRAU1MT8fHx6NChAwDgyZMn6Nq1K/Ly8sT6DN9LcXExX4ksSWxNc/XqVezevRtHjx4Fm83GiBEj4Ovry9SyJNJBSwEIEZGmpiYSEhJgZmYmdqx169Zh7dq1MDQ0xIEDBzB06FAJtPB/PclvCzxLQm5uLnPvSF1dHWpqajwzAL9e51VXFRYWYuHChTh06BA+fPjA97yovavMzExERkYiMjISqamp6NatG0JDQzFixAi+NYZEOii5ESIiSQ56LFq0CKqqqrCwsEBUVFS194VELbYbFRWFpk2bMhUzFixYgF9//RU2NjY4cOCAyMOp307M+B4l0CRpwYIFuHz5MsLDwzFu3DiEhYXh7du32LlzJ0JCQkSK2b9/f1y8eBFNmzaFp6cnfHx8GvzSEVmg5EZIHeDp6SnVxLBmzRqEh4cDqJh9uW3bNmzevBlnzpzB7NmzRU6a3t7ezHYzxcXFmDJlCtMzKSkpkUzjpej06dPYs2cPnJ2dMX78ePTs2RMWFhZo2bIl9u3bhzFjxggdU1FREUeOHMGgQYNEHvIl4qN7boQIqKysDJMnT8bSpUvRqlUrTJ06FStXrpT4BprS0LhxYzx58gQmJiZYuHAhsrKysGfPHjx+/BjOzs7IyckROub48eMFui4iIkLo2N+Luro6kpOTYWJighYtWuDYsWPo3Lkz0tPTYWtri4KCAlk3kYiIem6ECEhRURFHjx7F0qVLAYDpCdUH6urq+PDhA0xMTPD3339jzpw5AAAVFRWRdzmoy0lLUGZmZkhPT4eJiQlat26NQ4cOoXPnzjh9+jTfgndSv/Av2iGEVGvYsGE4ceKErJshtL59+2LChAmYMGECnj17hgEDBgAAHj9+DFNTU9k2TobGjx+PxMREABX3PcPCwqCiooLZs2dj/vz5Mm4dEQcNSxIihFWrVmHDhg1wdXVFhw4d+Ga++fv7y6hlNcvLy8OSJUuQkZGBqVOnwt3dHQAQGBgIJSUl/PLLLzJuYd3w6tUr3Lt3DxYWFmLtZkBkj5IbIUJo1apVtc+xWCy8ePHiO7aGEFIdSm6EkAYtPj4ely9fRnZ2Nt96wI0bN8qoVURcNKGEENJgrVmzBkuWLIGVlRXf/nz1bc0e4UU9N0KEUFsNxt27d3+nlhBJMDAwwNq1a+Ht7S3rphAJo54bIUL4+PEjz+OysjI8evQIeXl5cHFxkVGriKjYbDa6d+8u62YQKaCeGyFi4nA4mDp1KszNzbFgwQJZN4cIYd26dcjMzMTmzZtl3RQiYZTcCJGAp0+fwtnZGVlZWbJuCsPBwUHg+0b379+XcmvqJg6Hg4EDB+LZs2ewsbHh23xW1LJkRPZoWJIQCUhLS8OXL19k3QweX28SWlxcjO3bt8PGxgaOjo4AgFu3buHx48eYNm2ajFooe/7+/rh8+TJ69+4NXV1dmkQiR6jnRogQKstWVeJyucjKysLZs2fh5eWFbdu2yahlNZswYQKMjIywcuVKnvOBgYHIyMhosBNhNDQ0cPDgQWa3BCI/KLkRIoTevXvzPGaz2dDT04OLiwt8fHzQqFHdHAzR0tLC3bt3YWlpyXP++fPn6NixI/Lz82XUMtlq2bIlLly4gNatW8u6KUTC6uZ/iYTUUZcvX5Z1E0SiqqqK69ev8yW369evQ0VFRUatkr2goCAEBgYiIiICjRs3lnVziARRciNEBDk5OXj69CkAwMrKCnp6ejJuUc1mzZqFqVOn4v79++jcuTMA4Pbt29i9ezezy0FDFBoairS0NBgYGMDU1JRvQklDnWgjDyi5ESKEwsJCzJgxA3v27GFKNSkoKMDT0xNbt26ts3/9L1q0CGZmZtiyZQv++OMPAIC1tTUiIiIwYsQIGbdOdr6edEPkC91zI0QIkydPxsWLF7Ft2zZm8W9cXBz8/f3Rt2/ferXHGyHyjJIbIUJo2rQpjhw5AmdnZ57zly9fxogRI0Ta0ZrI3r1795CSkgIAaNOmDRwcHGTcIiIuGpYkRAhFRUUwMDDgO6+vr4+ioiIZtKh6TZo0wbNnz9C0aVPo6OjUuIYrNzf3O7as7sjOzsaoUaNw5coVZuftvLw89O7dGwcPHqzz91JJ9Si5ESIER0dHBAYGYs+ePcwsw3///RfLly9nFkfXFZs2bYKGhgYAUHmpasyYMQOfP3/G48ePYW1tDQBITk6Gl5cX/P39ceDAARm3kIiKhiUJEcKjR4/g5uaGkpIS2NvbAwASExOhoqKCCxcuoE2bNjJuIRGGlpYWLl68iE6dOvGcv3PnDvr164e8vDzZNIyIjXpuhAihbdu2eP78Ofbt24cnT54AAEaPHo0xY8ZAVVVVxq2rWXl5OU6cOMFzb2nIkCFQUFCQcctkh8Ph8E3/BwBFRUW+jUtJ/UI9N0IagNTUVAwYMABv376FlZUVgIpiz8bGxjh79izMzc1l3ELZGDp0KPLy8nDgwAE0a9YMAPD27VuMGTMGOjo6OH78uIxbSERFyY0QIWVmZiIuLg7Z2dl8f937+/vLqFU1GzBgALhcLvbt24cmTZoAAD58+ICxY8eCzWbj7NmzMm6hbGRkZGDIkCF4/PgxjI2NmXNt27bFqVOn0KJFCxm3kIiKkhshQoiMjMTkyZOhpKTEV0WexWLhxYsXMmxd9dTU1HDr1i3Y2trynE9MTET37t1RUFAgo5bJHpfLxcWLF5lhZmtra/Tp00fGrSLiontuhAhh6dKlWLZsGQICAsBms2XdHIEpKyvj8+fPfOcLCgqgpKQkgxbJXllZGVRVVZGQkIC+ffuib9++sm4SkaD6818nIXVAUVERRo0aVa8SGwAMGjQIkyZNwu3bt8HlcsHlcnHr1i1MmTIFQ4YMkXXzZEJRUREmJiYoLy+XdVOIFNSv/0IJkTFfX18cPnxY1s0QWmhoKMzNzeHo6AgVFRWoqKige/fusLCwwJYtW2TdPJn55ZdfsHjx4ga7iF2e0T03QoRQXl6OQYMG4d9//4WtrS3fNPKNGzfKqGWCef78Oc+9JQsLCxm3SLYcHByQmpqKsrIytGzZEmpqajzP064A9RfdcyNECMHBwbhw4QIznf7bCSV1naWlJd+ebg3Z0KFD68X/b0R41HMjRAg6OjrYtGkTvL29Zd0UoZSXlyMyMhIxMTFVLmG4dOmSjFpGiHRQz40QISgrKzNb3dQnM2fORGRkJAYOHIi2bdtSb+X/mZmZIT4+Hrq6ujzn8/Ly0L59+zq7tIPUjnpuhAghODgYWVlZCA0NlXVThNK0aVPs2bMHAwYMkHVT6hQ2m413795BX1+f5/z79+9hbGyM0tJSGbWMiIt6boQI4c6dO7h06RLOnDmDNm3a8E0oOXbsmIxaVjMlJaUGP3nka6dOnWJ+vnDhArS0tJjH5eXliImJQatWrWTRNCIh1HMjRAjjx4+v8fmIiIjv1BLhbNiwAS9evMC2bdtoSBJg1imyWCx8+ytQUVERpqam2LBhAwYNGiSL5hEJoORGiJwaPnw4z+NLly6hSZMm9arHKW2tWrVCfHw8mjZtKuumEAmjYUlC5NTXQ20A8OOPP8qoJXVXenq6rJtApIR6boQIoVWrVjUO69Hsuvrh5s2b+PDhA8+w4549exAYGIjCwkIMGzYMW7duhbKysgxbScRBPTdChDBr1iyex2VlZXjw4AHOnz+P+fPny6ZRQsjOzsbTp08BAFZWVnyzBBuKFStWwNnZmUluDx8+hK+vL7y9vWFtbY3//ve/aNasGYKCgmTbUCIy6rkRIgFhYWG4e/dunZ1Q8unTJ/j5+eHgwYNMoWAFBQWMHDkSYWFhfEOY8s7IyAinT59Gx44dAVTUmIyNjUVcXBwA4PDhwwgMDERycrIsm0nEQIWTCZGA/v374+jRo7JuRrUmTpyI27dv48yZM8jLy0NeXh7OnDmDu3fvYvLkybJu3nf38eNHGBgYMI9jY2PRv39/5nGnTp2QkZEhi6YRCaHkRogEHDlyhNnhui46c+YMdu/eDTc3N2hqakJTUxNubm747bffcPr0aVk377szMDBgJpOUlpbi/v376Nq1K/P858+f+WaUkvqF7rkRIoAVK1Zg7ty56NGjB8+EEi6Xi3fv3iEnJwfbt2+XYQtrpqurW+XQo5aWFnR0dGTQItkaMGAAFi1ahLVr1+LEiRNo3LgxevbsyTyflJQEc3NzGbaQiIvuuREiAAUFBWRlZWH79u08yY3NZkNPTw/Ozs5o3bq1DFtYs19//RWHDx/G3r17YWhoCAB49+4dvLy8MHz48AY3NPnPP/9g+PDhiIuLg7q6OqKioniWSri6uqJr165YvXq1DFtJxEHJjRABVFeDsL6o3LespKQEJiYmAIDXr19DWVmZbwuchrSHWX5+PtTV1aGgoMBzPjc3F+rq6lBSUpJRy4i4aFiSEAHV57JVw4YNk3UT6qTqZonW5funRDDUcyNEAGw2G1paWrUmuNzc3O/UIkJITajnRoiAli9fLhfrwQoKCvg2K9XU1JRRawiRDuq5ESKA+n7PLT09HdOnT8eVK1dQXFzMnOdyuWCxWMzCbkLkBfXcCBFAfb7fBgBjx44Fl8vF7t27YWBgUO8/DyG1oeRGiADq+wBHYmIi7t27BysrK1k3hZDvgiqUECIADodTb4ckASonRRoe6rkR0gD8/vvvmDJlCt6+fYu2bdvylZays7OTUcsIkQ5KboQ0ADk5OUhLS8P48eOZcywWiyaUELlFsyUJaQBsbGxgbW2NBQsWVDmhpGXLljJqGSHSQcmNkAZATU0NiYmJsLCwkHVTCPkuaEIJIQ2Ai4sLEhMTZd0MQr4buudGSAMwePBgzJ49Gw8fPoStrS3fhJIhQ4bIqGWESAcNSxLSALDZ1Q/S0IQSIo8ouRFCCJE7dM+NkAbgxYsXsm4CId8VJTdCGgALCwv07t0bf/zxB0/hZELkFSU3QhqA+/fvw87ODnPmzIGhoSEmT56MO3fuyLpZhEgN3XMjpAH58uULTp06hcjISJw/fx4//PADfHx8MG7cOOjp6cm6eYRIDCU3QhqgkpISbN++HQEBASgtLYWSkhJGjBiBtWvXwsjISNbNI0RsNCxJSANy9+5dTJs2DUZGRti4cSPmzZuHtLQ0REdHIzMzE0OHDpV1EwmRCOq5EdIAbNy4EREREXj69CkGDBiACRMmYMCAATzr3968eQNTU1N8+fJFhi0lRDKo50ZIAxAeHo6ff/4Zr169wokTJzBo0CCw2Wy8efMGkyZNAgDo6+tj165dMm4pIZJBPTdCGrDExES0b9+eKpQQuUM9N0IIIXKHkhshhBC5Q8mNEEKI3KEtbwiRY8OHD6/x+by8vO/TEEK+M0puhMgxLS2tWp/39PT8Tq0h5Puh2ZKEEELkDt1zI4QQIncouRFCCJE7lNwIIYTIHUpuhBBC5A4lN0IaIBaLhRMnTgh0bVBQENq1ayfV9hAiabQUgJAGKCsrCzo6OrJuBiFSQ8mNkAbI0NBQ1k0gRKpoWJIQOeTs7Ax/f38sWLAATZo0gaGhIYKCgpjnvx2WfPPmDUaPHo0mTZpATU0NHTt2xO3bt3li7t27F6amptDS0sKoUaPw+fNn5jkOh4Pg4GC0atUKqqqqsLe3x5EjR5jnP378iDFjxkBPTw+qqqqwtLRERESE1D4/IdRzI0RORUVFYc6cObh9+zZu3rwJb29vdO/eHX379uW5rqCgAL169ULz5s1x6tQpGBoa4v79++BwOMw1aWlpOHHiBM6cOYOPHz9ixIgRCAkJwerVqwEAwcHB+OOPP7Bjxw5YWlri6tWrGDt2LPT09NCrVy8sXboUycnJOHfuHJo2bYrU1FT8+++/3/X7IA0LJTdC5JSdnR0CAwMBAJaWlti2bRtiYmL4ktv+/fuRk5OD+Ph4NGnSBABgYWHBcw2Hw0FkZCQ0NDQAAOPGjUNMTAxWr16NkpISrFmzBhcvXoSjoyMAwMzMDHFxcdi5cyd69eqF169fw8HBAR07dgQAmJqaSvOjE0LJjRB5ZWdnx/PYyMgI2dnZfNclJCTAwcGBSWxVMTU1ZRLbt7FSU1NRVFTElzRLS0vh4OAAAJg6dSo8PDxw//599OvXD8OGDUO3bt1E/myE1IaSGyFySlFRkecxi8XiGWqspKqqKlasgoICAMDZs2fRvHlznuuUlZUBAP3798erV6/w119/ITo6Gq6urvDz88P69esF/0CECIEmlBDSwNnZ2SEhIQG5ubkivd7GxgbKysp4/fo1LCwseA5jY2PmOj09PXh5eeGPP/7A5s2b8euvv0rqIxDCh3puhDRwo0ePxpo1azBs2DAEBwfDyMgIDx48QLNmzZh7aDXR0NDAvHnzMHv2bHA4HPTo0QP5+fm4fv06NDU14eXlhWXLlqFDhw5o06YNSkpKcObMGVhbW3+HT0caKkpuhDRwSkpK+PvvvzF37lwMGDAAX758gY2NDcLCwgSOsXLlSujp6SE4OBgvXryAtrY22rdvj8WLFzPvERAQgJcvX0JVVRU9e/bEwYMHpfWRCKH93AghhMgfuudGCCFE7lByI4QQIncouRFCCJE7lNwIIYTIHUpuhBBC5A4lN0IIIXKHkhshhBC5Q8mNEEKI3KHkRgghRO5QciOEECJ3KLkRQgiRO5TcCCGEyJ3/A2TK3hnGZMYdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(3, 3))\n", + "sns.heatmap(niche_to_niche, **heatmap_kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Transform niches into shapes\n", + "If desired, niches can be transformed into [Shapely](https://shapely.readthedocs.io/en/stable/index.html) geometries. Each occurence of a specific niche will correspond to one Polygon. This makes efficient further operations on niches, such as the one in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geometrynicheslengtharearoundness
0POLYGON ((11256.961 7834.639, 11257.304 7835.6...Bile duct371.1364696941.1041250.633244
3POLYGON ((11122.354 8163.108, 11123.162 8163.7...Bile duct393.6385855539.2879220.449230
6POLYGON ((10936.163 381.622, 10936.478 381.898...Bile duct1595.71023724099.7936330.118936
8POLYGON ((11021.489 747.492, 11019.723 748.834...Bile duct561.5160745763.3418600.229699
17POLYGON ((11042.181 3981.166, 11043.124 3980.8...Bile duct584.1732166296.0074220.231842
..................
2292POLYGON ((2805.196 4508.688, 2805.687 4509.714...Vascular589.84942513760.6735000.497012
2370POLYGON ((459.355 560.935, 460.631 562.344, 46...Vascular727.3729867949.5036670.188815
2378POLYGON ((192.733 4605.956, 193.558 4606.628, ...Vascular601.6314398236.9730940.285967
2388POLYGON ((78.743 2939.361, 79.118 2940.362, 80...Vascular390.7539898232.2636350.677520
2390POLYGON ((10.051 4012.561, 10.497 4013.717, 18...Vascular395.4258379050.5347160.727368
\n", + "

118 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " geometry niches \\\n", + "0 POLYGON ((11256.961 7834.639, 11257.304 7835.6... Bile duct \n", + "3 POLYGON ((11122.354 8163.108, 11123.162 8163.7... Bile duct \n", + "6 POLYGON ((10936.163 381.622, 10936.478 381.898... Bile duct \n", + "8 POLYGON ((11021.489 747.492, 11019.723 748.834... Bile duct \n", + "17 POLYGON ((11042.181 3981.166, 11043.124 3980.8... Bile duct \n", + "... ... ... \n", + "2292 POLYGON ((2805.196 4508.688, 2805.687 4509.714... Vascular \n", + "2370 POLYGON ((459.355 560.935, 460.631 562.344, 46... Vascular \n", + "2378 POLYGON ((192.733 4605.956, 193.558 4606.628, ... Vascular \n", + "2388 POLYGON ((78.743 2939.361, 79.118 2940.362, 80... Vascular \n", + "2390 POLYGON ((10.051 4012.561, 10.497 4013.717, 18... Vascular \n", + "\n", + " length area roundness \n", + "0 371.136469 6941.104125 0.633244 \n", + "3 393.638585 5539.287922 0.449230 \n", + "6 1595.710237 24099.793633 0.118936 \n", + "8 561.516074 5763.341860 0.229699 \n", + "17 584.173216 6296.007422 0.231842 \n", + "... ... ... ... \n", + "2292 589.849425 13760.673500 0.497012 \n", + "2370 727.372986 7949.503667 0.188815 \n", + "2378 601.631439 8236.973094 0.285967 \n", + "2388 390.753989 8232.263635 0.677520 \n", + "2390 395.425837 9050.534716 0.727368 \n", + "\n", + "[118 rows x 5 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf = sopa.spatial.geometrize_niches(adata, \"niches\")\n", + "gdf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, each occurence (or connected component) of each niche category is a Polygon. On this example, the Necrosis niche has 3 components, as shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAGdCAYAAACb5ixdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gV5fnw8e/MnN63987Slw6CooCg2GtiVGKiJtGY4i9vukmM6Ynp0RhNNLZYYic2RKRJ77DAwrJs772dXmbePw4srLvL9obzua5E9pwpz9lyzj3P3M99C4qiKKhUKpVKpVKpVKpxQxztAahUKpVKpVKpVKr+UYN4lUqlUqlUKpVqnFGDeJVKpVKpVCqVapxRg3iVSqVSqVQqlWqcUYN4lUqlUqlUKpVqnFGDeJVKpVKpVCqVapxRg3iVSqVSqVQqlWqcUYN4lUqlUqlUKpVqnNGM9gCGiyzLVFVVYbVaEQRhtIejUqlUKtWnlqIotLe3k5iYiCiq84cq1VA4b4P4qqoqUlJSRnsYKpVKpVKpTikvLyc5OXm0h6FSnRfO2yDearUC4TcMm802yqNRqVQqlerTq62tjZSUlI7PZpVKNXjnbRB/OoXGZrOpQbxKpVKpVGOAmt6qUg0dNTFNpVKpVCqVSqUaZ9QgXqVSqVQqlUqlGmfUIF6lUqlUKpVKpRpn1CBepVKpVCqVSqUaZ9QgXqVSqVQqlUqlGmfUIF6lUqlUKpVKpRpn1CBepVKpVCqVSqUaZ9QgXqVSqVQqlUqlGmfUIF6lUqlUKpVKpRpn1CBepVKpVCqVSqUaZ9QgXqVSqVQqlUqlGmfUIF6lUqlUKpVKpRpn1CBepVKpVCqVSqUaZzSjPQDV0AsFZHI3VqA1SCiygqKAVi8ihxQ87QEEEWJTbbjafAS8IbR6CZ1Rg6vFhxxSMFi0iJKAVi8R8IWwxxiJTbN1OkdLnRtXiw9JKyKKAma7HlES8LoCSBoRa5SBUFBGo5VQFIW64kLMjggskVEdx1BkGQQBQRBG+lukUqlUKpVKNa6pQfx5yNniY/ubJ4f0mJMvTODSz09GEAWqTraw+s8HUGSlx+21egmtQeLGb8/BEWdi7RN/w9nUyM0//iVxGVkA7F/zDvveX838625GEEQmLVqM0Wrr8ZgtNdW8/uufMPWS5fi9HvK3f4w1Kprpyy5Ho9VycO17uNtaMNrsWBOSqdWaUVDQ6fTotRqsWg2C2Uq0UUfD0UNIGg0X3rIKW3QsFaWl7NyzB4fFgqe6nJAjmpAsM3v2bPz1Nbg1etqdTnKmT+fwmv/h87gR0ydiMJpQFIW0pEREvxdnYwPGuESq6huQJAmNRsOkzAwKdu/AbHdgTUqhsrYOrVaLcOoCRhRFZFlGq9WSmpqK0WgEwOVy0draSkxMDFqttk8/J7/fj9vtRhRFtFotOp0Ov9+PTqdDkiTcba0osozRZkcUO9+ICwaDSJKkXlSpVCqVSjUOCIqi9ByJjWNtbW3Y7XZaW1ux2XoODM9HPk+Qp/7fx0N+3LgMG/YYI0UH6wn65T7tc/P35xKdbOSpb34JV0szBouVuVddj4JCfUkx1SfzMTsi8bra8TrbWXLHl8hZdnnH/vVlJex79y0MFitel5OkyVNpq69n9+pXkUMhABTAH5MIgKw3Ino9BGyRKHpDt2MyFR3FgEJsRiaNFeUYzBaaWlpxZU7t9fVYLBYy09M5efwY7mDozBPBINrWBoRQkEBkHIomHHQLgsCSCense/u18Fij4rGmZ5IyaSo6k4mDh3JxOp1nvsdxcVx99dWEQiHefvttmpubmTVrFtdeey3BYJCWlhbi4uI6jen09+Hk3p14vT4+3LUXp9vdaRtRFJk5eSKt+3dgjo6lsNVNhKTgLsrHaLVx0X3f5rXX30Cj0WCxWDCbzbjdbvx+PxqNhgsXLiT/rZdwt7Uy7+obmHftTZ2OX1tcyPqnH+eK+76FJSKSyuN5ZMyeB8D27dspLS0lLS0Nm81Ga2srGo2G2MgIbEYDWpuDzZs3IwgCOp0OWZYRRRGr1UpzczN6vZ5ZkyZijY5GZzBSV1JEa0M9bq2B9vZ2ZFkm2qinrbyE5JlzaXZ7CAQCOJ1OjEYjwWCQjNRUjDotbV4f9fX1xMfH4/F4aG9vx+Fw4PP5MJlMBINBIiIicDgcvf4uqFSqvvs0fyarVMNFDeLPQ4qi8Mz3t+JpD4z2ULjoMxOoOfEmRzd/1PGYKEl8/nd/IyY1HUWWEUQRRVHY9PxTHN30EVd987tEJqWw7723OLzhQ1AUrv32A2TNvaDjGEc2fcTax/8KgDc2mUBEDIhSn8ZkdDZz3w9/jC06luaaKv7z/fvxBYN4UiciG0xD+vqTjFpaD+wCRSZojUCQQ2hcbQAYLFbmf2YVB8urqKqqOudxDAYDs2fP5uKLL8ZkOjPGgNfLE1+9g6Df3xHMe5IyCdoiuz2O0WjE7/cTCoUgGERfXwmKQigxjSA9z8BbBAXy9oW3EASmLF6KzmiipaYKR1wC+Tu24HW2d9on59LLicucgD8kc6S6ntLS0k8cVcGi1+MNyQSDwXO+/kUTMyndupGYtHSKCk7gi03GrzOe2UCWkTxOMNsIdXcARUGn1eLv4TxLliwhMTGRmpoapk+fTlRUVLfbjUftTV72vFuMxxnAEWciJsVC9rw4Av4QO94spLHKSWSiBWukHjmk4Gr14/cEkTQCBrMWo1WHq9WHs9mHyapDZ5RQZAj6Qwhi+G5SKChjjzWSOi2KxkonEfEmopOtbC1oYHF2NBXHm6g80YLOqMFk0xEKyiiygkYnIWlEQkEZSSMSkWAiKtHC7uImJFEg3m7A7QuSYjXQWOFEEAVQQNKE7yIpioKkFTFZdZjsuk53kUIBGVES8DgDCAIYrToAvK4AOqMGURSQQzLOFh86gwa9SaPehRpGn+bPZJVquKhB/Hnqv7/aTWOFs/cNh5kgQHqOkaaK3TRUVBHyHcUancQ9j/2zy7YN5aU8992vd3l88kVLuPr+73V6TFEUPnryMXLXf4ACIIh4UiYQMvf+sxaAB370I3S68If6a7/8MWVHDqEAjoVLqWgdmu+bvqYUXXN9x9e+mEQ0bU1IPi+RSSk4mxrwezzo7RG02GORRRFJpyMgdU2due6665gzZ06Xx4v27+Gth38OgDkiElNcIsWyBkUa+kw5ydWG5HGia6xFkLsNlVEEgYA9CsnrRvKeuRuQdcFiDjt9hM6RgnVOioy2qQ4hFCIQGdtxp2Og0tLSSE9PJzU1Fb1eT3Jy8qCON1aFAjIf/OswJYcbOz1usukI+EMEvN3/HAfLZNMx54o0NufVYqsP4Kr19Hnfy+6eys8OlbC9sBGtAskmPQ8kJ1Cwp/ac+yVMsHPVV2dgsGhpa/Cw+s8Hwut8ZAUEsEUZkDQizTVuzA490ckWqk+24D/1PdAaJGLTbLQ3egj4ZZKyHfi9IS6+JRtH3NBe3H8afdo/k1Wq4aDmxJ+HPO3+MRHAAygKFOd6gBy0phwQzDib9lFfWkxMWkanbcuOHOr2GO621i6PCYJA5twF5K7/gOlLVpA1/wJqS4rZeOgooV4CPLvF0hHAA8RnZVN25BACMHvuPCo2bOrvy+yW5Oo8M61tqiMQGcfNd91N1twL8Lqc1BTks/G5J/GV5WOPjeP2H/+Z2sYm1q1bR0RERMese3cBPED6rDlMvOAiGuvrUSbmUFZZidLLrPZAhcw2QmYbQWsE2pYGZJ0B0etG13LmQiWQPhmfwYwgy5jzDyCEL7Eo3LUVJX0KGM0DO7kgEoiKH4qXwWWXLiPJbiV9Zvh7WuH186UjxUw0GSj3+nloQiIxusFdJIyW8mNNHN9Zjd8Twtnsxd3qx93m77RNfKYNRQFLhIGmKifNNe4ejjZw7jY/W18tQAJc/dx386sFNCsuJigiS7xaIltFCqrPHcADVJ9s5Znvb8USqae9ydd5zY4CbQ3eji9dLT5cLb5O+we8ISrzmzu+Prmv7tR/7cy7Kr2fr0KlUqmGnxrEn4cCvuGZXRsKGsNC4rK1vPST73LZPd9g6sXLACjYvZ1Nzz3V7T5Vx/PY995q5l59Q6fH64oLmXnZVaz48tcAyJ6/iIrgyxzPzz/nGNrcbpqbm4mIiADA1dLS8ZzP6+1hr/4LRMQg1pZ3JKnIBhNmnaYjLchgtpA+ay6XGQy88tAPWPHlr2Oy2cmw2bnnnns40OYmz+nBJIm0BoLYtV3/XEVR4qr/+z5vv/Umh44cHbKxn4usN+KLSzn1RQjR50HjcSI6ogmabRAKoYgi4tTZhAqOIAb8hAxmZIPx3AceAXa7nVBFMcXFgY4gfm1DK+/Vt/Ie4YvF9Y1tLHCYuSspmhyLiSjd2H6bPH0ztbXew4b/HMPZ5Ot2O0uknsvumkpidkTHY6GgzBu/30d9WXu3+4wGvzPANeh637Absqx0CtYHSxDOfH9VKpVqrBnbn06fcsFACK8ziBySkUMKiqIgCOE8VYNF27GNKInIIZmAN4TXFWDb60NbmWYoCYKGaUs/R0SCg/is7I7HU3NmI2q0hAKdA5CLPncHC274TJdKOIqiUJmfx4LrP9vp8abmZnojyzL5+fksXLgQr8tJ/vaPUQBFo+XAseMDf3GfEIiMI2hxIHmcCHKIkNGCpvQ4TVWVRCYmdWx3Og9X0nT+c3y2soFXapoAsGskNi2YRIL+THDTHAgSodWwZs2aEQvguxAlPOmTEQJ+FK0OQmcuINsUEbKmI/p9yDpDOCIaZUkx0ex79w0u+tznOx6bZjHy5eRo9rW6OdTupjkYYm1DG2sb2tCLAp+Lj2RFlI2LI6wYpbHTWkNRFBoqnBz6qJzyY02dZtz1Jg2X3DYRk9VD6eE8HHEpTFo4DY1O6thXEATcbU0kZFrHVBA/liy8IYs5K9NGexgqlUrVLTWIH6Oaql28/ru9Pc6qWyL0WCL0NFQ4wwvDAjLBQN8qxoy2hAlxTF18X6fHTl+InC0mLYMFN3wGUZQ6tSVrratl63+fpzT3ADmXrux4PBgM4nL17eb9hg0bMJlMxMbGYr/wUkqqa0DS4GpuGfDr6o6i0xPU6QEQ/F4UWebln3yHnBVXkHPp5VSVlPDm+2swihIbnvknK7/6f8RPmAjAXyenkG7U8ceSGlqDIT57sJBb4yOp9AXId3mJ0Eo8NS2dlrPuJAwrOYTo9YQX/36iPKWi7WHmVBCR9aM/A3/aicO5GEJBqk4c63hsocPCQocFgDpfgL+W1rK5qZ1Eg5ZskwGPLFPo9pFl0pNlMnQsxh5NsiyzYcMGsrKyWH7nFBRZYeurBRzeXAnABddlMmFODP+874u4W1sAyN8+j4TsSRTt34McDBGVkkrh3p0kT1sFjG6OsiyAOAYnvJMnR/S+kUqlUo0SdWHrGFVxvIn//fXgaA9jWMxcnsLiz2Z3eqxgzw62vbKN1kaJkC8PSaPjtl/9gtjUKFpq3dhijIjimZnc5upKXvzRtxE1Gi7/6v20hmDHlo9paO9vBu7I0leXoGtp6PjaHxmHLy4Fwe9D21yPvrmWpElTCfi83PD9B7FGRnPM6eHWQ4XU+4OcvsyxSiIHLpyGRSPx7rvvsnfv3mEdd1xcHJqCw7RVlhHSGXCnT4ZhWDw7VDQtDWjbmkmbu4DIxGSOHjtGqz+8VkBytaGrryJ12gxSs7KIik/AERvfcfHUHWdzE3qjiZJD+9m/5m2W3XkPsemZw/46Tr891xUXsnX3XuYsWEBySgrbt29n48aNANxzzz0kJibicfp5+rtbyZoTy9LbM9j99mtUHD1MS10Nnm7WlZxmjojEFncljVVaBMGEIHZfmnU4vXahhcV5HhJaxkYqYMIEO1fck4PJNrC0HlVX4/0zWaUai9Qgfow6ua+OtU8eGe1hDJsVd01l0gVnFioWH6rn/ccPd9pGFAVMdh3OZh9RyRZu/M4c9MYzgeMHj/+Vwn17aE5IJ9hNRZexSAgGMFQVIwQD+CPjCNqjOqWZ6Oor0bjaEH1eUiZN4ZaHfosgCMiKgldWOO7y8FhZHfNtZr6aGourpZkPXnmRBrTExsYSEx3NkaNHqampGdJxX7XkErY88eeOr/2OaHwJ6UN6jqEgBPzo6yvRtDZ2KpipCALO7JldLjwEvw9tawOxmdnc9a3vIEldy5RueOafHPzwvXCH4VM0ej0Lb7qVzDnzKTm0n9a6Wi698x5ESSLg91GwaztTFi/ttmRhXUkRWr0eV0ghKiqK3W/+l5KD+wgF/Ciygi0mhkkXXkJLTTVHN69HURTcznZcGdNQTt3VOS0iIoJ7770Xg8GALCsU7K1Gq63lg8f+wMr7vkXW3AX4PW5e/PF3aKos7/H7ZrTZmXn5rRzaZEAJ9a1U61D64w0OZpT4ufzg0C+y7S+jVcvN35+HPWbs3EE6H4z3z2SVaiwau1Npn3KhwNiYkRou6587hsmuI2VyJK4WHzv/V9RlG1lWcDaHc+QbK5ys/vN+sufF0VzrZvaKVLIvXk6jNZr6k2N3DcAnKRotnpQJCH5/OCD7RJDnj0nCH5OEEPBTWniCba++QNYlK4iNjcUkScyxmfn39AxCwSBv/f4XlBzcTygUwhEXh5kZ5H30Npmz5+OyWmlvH7o854///VinoFgIDU8FnMEQ/D5MJccQuxuboiAoMp+csVB0evwxSVS0u9n+8cdcvGxZl10PbN2CNy4FfV0FCgKy0Yxfq2Pdps0YXn6u4/tSV3yS1OmzKNi9nabKco5uWsfK+76FLTq241jO5ibef/SPNAZl2iPCF7GalgamZKShNxqpdPmwT55CQFbYuWkD3ugkBL8POTatI2VJI4pMiHYQFxWJp6Ge/C0bmHnZVYiigK89l3effAx7bByZc+YDoDOamLniCjY+92SP37tL77yHyRctob7iQKcKLSNFF1Qojuvfx1GNJPOh0U+MRc/tgoXm6qG5CzdpYYIawKtUqnFBDeLHKK3h/P7RKLLC2389iNGqxesM0Jf7QQ3lTlpq3Nz20AUcKzjI2g8/RB5vN5JCIUwlx5D8XoJGC56UbOhm9lfR6nBnTmP9kXw+OlbIDTfcgDngwRGXgKTR8N6/HqO8rp5QchbG8pO01tZwuDY8+3543fto0ieCcehmu3yRcehry0EAWWfAH5PU+04jTNPe0n0AT/jiSNGcOzVi/ebN1NVUc+XVV2Oy2YFwedMgCgFHDAFHTJd93HojkteN6HVTXZBPdcGZykhlR3JZ/ftfsvjWL+Bua+X4ts1UHs/DJ4jhn/spQUc0h5td0BwOQqt37Q4/kZQV/u8n1hSINWVUHt1NJeEAfekdd3c8N2P5FbQ3NuJzOTvdBegthz8qJQ1ZVmitG/mZ8JAAfo1ASn3/Lgw3GQLUahRaQ35mXZ/OxqcGv7g7Nt3G5EVDU8p0OPg8QVrr3MSmqTPZKpVKDeLHLFEapkoekoASUs7Rm3Nk9ber7MQL4jn04Sts3bsfuYeupAMlet3o6ysRPS5ME6dRT88pOrGREbQcP4xsNBO09n3xm+RuR/KHS+BpPE4MtWV4EzO631gQwk2b5BDr/vALxGC4+ogCuNMmI8eGGxQFzVa07S2ddnW3NA1pEB+IjCXgOJX6I4zCok5ZRtdQhcbVjqw34ItNRpE0SK42EERCZiuyvvtcbgUBf3RCn05z9OAB6jet4fJ778dgsfDxi8+gnKMTsGw0o2h1mGvKun2+vrS4oxlXSGfAk5KNohtkzvlZwXlEQmLHBcdpsekZ7HzjFULBAJJGS31ZCTve+G+Ph7NGx+CIi6e5xtVx52uktBpFNs4wEumUuexQ/y4g9Keu370BmY3Heq8j3xeX3TV1TDd20hkk6krbqSttJ3teLHrT+EgjVKlUw0MN4seo2uK2IT/mjGXJGOZHc9cTO1jlMWLrX/w8JiRNaOedv7wOjmgY4iDeWH4SMeinxRrB8kuWcKi0ktLS0i7bxcfEwJHd6JsaUTiVAuOIAU3vf07CJxI6hGDvPwTR6+kI4MPHAGNlIa4JM0AQ8CZmEmxvRvR70TbXo2h1+KMTez1uv50jmB1uuoYq9I3hOw2S14UQDKKIQsfFizc2hYAjCkWUunSTDdr6fpElG820V7g6Am8AxR7dhz17vyPkS0gbfAAPhExWoBoAv9dLMBBAow0Hc16Xk/3vv01dSSHPf++bRKdlUHJwL35Pzx1TU6fNQKs3ULiva0rbcPtolpG8VD23bW7H4u3fXbVrZSPv+sOvy7+3cYCV5TsTNWNleqN7giAw7eJEnv/RdkIBmZnLU0Z7SCqVahSpQfwwKjvayP4PS7FGGkhblsjP1+WTFWMh1qZnmc6MRieSPS+uY/uig/XUFrfRWu+mcH/9OY7cfzGpVhbcmMnXXz6IU4QPdT4WyRqSRmER20AZzEF2vvk8ChAc4gBe21SLGPRTlJLNW1esIrY0l/lTpnYbxLfu2YLGE+6IKwD6+kq0LfW4Mqd3Kb14NpMgozTVdX6wD+lAssFESGfomMGHcPAvKAqKIIAohhfIQr/SXGQ6Ve4c0xJT02hsPLNYV+PqXG1F424jEBWHK30KGmcLgqIghIIELfZTQW8fhYIIwc4dTnMuWMTe8upz7NN1/Uq474Cu08WXtrm+f2PpgSKKKIR/9278wU/RaLW4XC7aGut58+cP4HWG10I0VVXQVFXR6/GsMdNY+9QRDCYtl9w6kfJjTRTnNvTlumRQvFqBwngtke0hMmv7P6Og8crcwOmFvkMz2LHcKO80QRCG706tSqUaV9Qgfhg5W3xU5rcAUHG8mduWJ/KN9XlYFAG9YsNo1JCeE41WL9He5GXD88fwuYdnwWDa9CiaPUE+OnXbuVgrU6z180BqAsHclmE551Dw65rxGqsRQ0YmLZ2EO7Schsg8Ql5/7zufJSk+jvkLF1FdXc2uXbu6PC95nAhXfoYP02eR7XPh++BNdtd1f4te6aa0ohjwhxse9ZDSodPpWJiVwp68/Z3P624HOXTuWW5RxJuchbHsBOKpmfspN61iz7Fzd6Y9Fxl4Z+ZiluYfwO4d22U5AaTI2HM+r0tKwwMoegMB/SBymiUNilaHEDjz++WYOBW6C+IVBUN1CZq25k7paSGjGXfqRCSvG1PpwH9GPZGNFnxxqWhcrZwsK8fY0EReXh6XLF7cEcD3R+76QpbcMZ2pF4Xv3uQsTebY9io2PD90jc+6ow2FL0Kv3e0cMzXiPW1+GIabWENN0oiY7Gr5S5Xq004N4keIs9mH8/Vi/s9sQXEF8eLH2+rnpZ/tJDLRTNXJVoLDOAvU1uih1dN1tut4hMCEYTvr4Gn9DgD8+iYioxxI3gAGm4N2Tw1KH3OzNcBtt92Gxe5g1qxZeL1eDh061Gmb1Gtv4Y/RmbT7AlyQloJ23iU0ubrP0fUlpCGW+ZB8Z1IUgiZrjwE8QFRUFEW7d3R5PGS29SlNRdYbcWXloG2uw2i1caCgsMs2yVpoObyPoDUinGd/jg6pJdEJVDuiqbVFjIsgvrCqGk1yFvqaso4LmdNEs41W8UxAY7PZ8LhcBLqZIe8Lefp85melc3D1KyRPm8nRvLxut9O0N6NtbezyuOh1IwSDhExWfNGJaNqbkXXhPP6hEoiMJRAZy3vvrwHghhtuoGTnlgEdy92yHp8znaA/mvbGeuxx8aTP6EsK0eAowJ3r24hrHTuz3/vXlpI8eWjv8g21srxGmmvcBP3jo7mfSqUaPmoQP4wC3q4fThpXCM6at3M2+0ZkMVl5XhPSzDO5wSmRRn530wymmI28vLnrzPRoS8x2EJdho/RII01VAjp/BCXbfCy5bT6L5l/Iiz+5H+20ORRVniPN4RTZ58HvcoHdAYDFYun0vAI81xagyhpAK8Dk/EOU9RDAQ7hMpDt9MpLbiej3IuuN4WD8HGoqKzHV1HSkrwRskQQcMYRMlnPu14koEoiKJwAQ7HzHJj09ncDejxEUBW1bE7JWh/8cQaP7VG723rTJRLraiHYN/RqMoRa0RnD151ax/4UnaakN/9wVUcQXk4jRaOSSSy4hMzOTuLg4qk4c59m//Rl/TP+nVT1eHzsLS0lafi3VTheN1Wd+x3Q6HWJlMfh94UW13RAUBWNlIe6MqfhjEvFHxaFpa8ZQWYRsMOGLSeq2IlFPdF4XtLcQsEf1mFP/0bNPIlR3Tf3qE8XLhqcfY8PTjwHw+d/9jZqi4Z/l1ciMqQAeoKHCiSwrnRrLjTX1ZeG7LUH/2PreqVSqkacG8cPI6x47K0c97QH2PXOcbIPE5xemMSvGis0N614ZfFm2oRabbuOG/zcbQRRYeH0mb/1pPzVFbVSfbOW/v9yNJBWRMfMiLrjxGl5f/SYVFefO+5X1Rv7797+w8jO30NDQxL79Bzqes2lEaq76LIdafcS3NTGzrICyxt4vDBAlQhY7Iey9b0s42HRlTkXjbkfWGZD1Q1uHWu9z01h/Jt9e11TbYxDfajCxJ30KAG0mC2/OWcoXdqzB0IdFtqNtx969TFm8jL1vv443Pi188SQIfGbFcqbPndexXW3xSXSNNQMK4gG8Xi+FZeHmSNHR0bS0tCBJElcuXcL6v27vdX/R60ZytmCoKUMIBhGUU7OmnvCFnye15+6wZ9PVV6FrqEIAtC0NHYuZP8lpi0QXCKBtruuxzGbH2CQN8jm2qS7Ix+Oa1KfxnW887QG2vHKCnKXhv53IBPMojwhcLT4251YTm2ol1gUHPgxXQlr79km2+9x8ZcUEKk+0EPCGCPhDpM+I7tQUT6VSnb/Uv/RhFJXYj1nWEWAKwA0BHc511WylD4HqKIlMNCOcmgkTJZHEbAc1RWdmPUOhTE7uh1CogguXXEjekcOcOH4cv9xzYm2dzsJL77xPSAFkGW1LA9qWeopnXMDrrT7m2kzc66thf18C+IGSNP0qR9kfitmGNSaW9lOBvGzouUxelSMGk99LfGsj5ZGxyKKEPBplIwegrq6Ouro6mDAjvChYDoGkYcu/H4O229Ho9ZQc3M+xrRtReqmN3hdXLL2EhUsvxeVyUXzsKFuffLTXfRTAHxWPvrYCMdB17Ybo7WMpRVlG11jTcd9ODAaIioygsbml67aihD8mkZDZiqGyuNOC2jObSFyy6ktUl6QS9NVQdujfBLxdq9a01dcy95rl7F87wJn9ce7I5kqObK4kY2Y0V903Y9TGEfCFOPhRGQc/KsfvCXJSBOmsDBqjWyawuoIn36vqlFqz6hcL1SBepfqUUP/Sh1HWnBi0emlcVDwYS4oO1LPohixMNh3BQIiigw3dbld8qIGopHTsbX6iGiqpdcQjnyNwC52K8Y0VJ9G42vAlpvHa3BUALCw4gNzWNb95vDhx8iRJ0+bhzcsNp92co3pPcnMdk2rKEFEoj4jhvRkX4dYZMAVGtkb4YFgtFuSD2xECfgKOaJp0BtY+8TfgTJ2Sc6UT9YWdENue+Av1B8LNl07s2talmpCC0FE2VBElvHEpBK0OEEV0Z1XT6bSPVt/t458kyCFQzgRniiDicvdcKhJOlZ+cNINrLluB1mCksaKM3I/eZ941N5Exex771zbiaWvn5h+sZMPThRxat6bLMRorymirH/mmT580c0UKWbNiKNhXx+GNvVfZGWqTF/att8Bw2fp6AXlbqjq+lrpJgRcUuuTGd5fGqVKpzk9qED+MGsqdagA/AH5PkNd+t4eMnGiqTrbQUttzQLH3/RIgieVfeIj8+r0cOHCgx20BRFFAcrVhi4kl4//9CArrcWgk4vdvI7+hAfqY5jAWVdbWQVTvlVmsZy3ITW6uR1Bk3Do9jP31rR1yJk/i8J5NAOhaGnBOyMGtNyD6fQRtkeHSm91UEeqP4Mk8REXhxM6tnR6XJQ2yzoCi0+OPjENfU4agyHjjU5GNZ+6+Be1RaFsbCbdWC/9/bGY22ulzOV5wstfzKxotgcg4tC31hIwWfDFJyL5zX2g5XC3c98vfIYla1j51lPrSGOZe92OsUWb2rmmg+FADN313DqIokDR5Wpcg3mRzkD77Dj78d/eLeXui1UtYIvV42gN4nYNPy8pZksTiz4S72sZn2Wkob6f6ZGsvew2dWZelkjpt9Ba4KoqCu7V/FbhO+/DfR7noMxNIzxn+xckqlWp0qUH8MDqyeeRnj84XziYfhzdX9nn73e+Vcs03ljNhwgQObf0Yb0Mt+vRsCgoKOraxWCy4nU4UnZ6cZZez7VSN/Dk2E5kLL6Zq7/6eDj/yZBnR60bR6VE0w9uV0eT3ERhkwDvSKj5e1/FvRZRQJC0hi56hvGSW9QbEbu5OhMw2vEmZHV970id3u783MQN/VDyyRougKCTGRBGwOijsQwAP4QZX2qZaFEkTDuCN587PFvxe0mOjkSQtm18+QUlu+A7WttfONHGafXkqEfHh40xadDHr//04PveZq7e0WVex/c2SPo0PQNKKpEyN5HCyhn8cqGDeVAdXN5upKmjp8zG6kzEz5szrEgTSpkeNWBCfNTuGi24e3ZpdgiAwcX5cx8+wP1pq3Xz0bB5f/tMlwzAylUo1loyvT+5xxuTo221z1eC1N3p5+ee7SZrkIDPzIqQkFxPmzcCztJUjRw7jLs7HWVZMdUkx/tSJ+CLjSDVosUoiX9OH2HDkGIpujPy85BCm4mNIfi+KKOJOm4JsGNqFsKcJgCHgx3WO8phjicNmo6WtjfqGxo43r6DZes4mWwMVtNjRODsHjoog4I84d836s51ewKwAlc1t0NzHKkChILqGagRACAUx1JbhPrUYuSe2iEg8bfXsfvskx7dXkzTJgSPOTH1pG3Wl4YomzqYzDcP8Hg/Bs3L2LZFRZM5dRvHhY30aojXJzLpomWONtTSUho+zpaiRryybOugg/sTeWpKnRCAIAnJIpvxY06CO1x+2mOH5W+uvwXTtFvXjp4mfSqUaODWIH0ae9rFf7eN8U5nfQuWp/jq7391F9vw43E37KNwbrigiAjEaiIqJQW/Q8dWUWCYaZLYHvLilsdE8RfK4OrqzCrKMtrkWX0L6sJ2v1WjG0M0CzDFFljGV5hPyujDpDHjSJoabLMky/oiY3vcfgMCpdBjJc2amOmS0IPenLOgACaEgwln59xHJafSWpW6LjOKKO77Ee//I5ZpvzCRtehRt9XXsfW8z7laR9uYMTu6v56IWH66WStY9+XdCgTPvUd72dpqr+z7zG5kTwZadBZ0eWzIxhqbi/jec+qTj26upPtlCRJyJ1gYvzdUjl+sVlTj6FWkAqosGfudBaxveu3cqlWpsUIP4YTQUuaGqwSnYU0tskrfTY+0nj2H0ufCJApdqQ2z7z78RCvNg4qzRGeQnKJIGhTPdBBTN8F1chASRoKTB7hnbCfERkkLwVFMqye9F9LgJRMYN6zm1rU0In6jHL/q9PWw9tBSdAb8jGl1LAwoCjfQ8s2oymbj99tuJtMfw9l8PEhEfRdr0KABKcvdzYM3b6Ix2BF0i0xZnYXbo8bRLNFd3TlcLBvzsfusRJMN1CGLvgazUEkASBUKnqkJ9PieRRa0SRbl1vezZN611Hlrrzr2QdzjEZfStbOxwaaxycmx7NXUlA5+Jb6pw4Xb6MVnGxsSESqUaHv0K4kOhED/72c944YUXqKmpITExkTvvvJOf/OQnCKdqFyuKwkMPPcSTTz5JS0sLF110EY8//jjZ2dkdx2lqauKb3/wm77zzDqIocvPNN/O3v/2tUxOe3Nxcvv71r7Nnzx5iYmL45je/yfe///0hetkjQ2tQb2mOBUvu+DIVxw5SuHcnWoOJ8qOHWP37X6LVGwj4TgVlwxgo95dsMOFNzEDjbCVkMBGI7Hv6Rn+1Gs3MLTlO5Bhv9mRPTuO6r9xLU2UF2994mVKpa8qDrqEayd0OioIvLuWcZTbPSVEwVBSicbbwyYrsst4YrlBzjm64Q8WXkE4gIjZ8UXeO388FCxaQnJzM//56gMbK8IWOoigIgkBrXS0AcdlXUV9uwGgLHyc6JY2cS1ey9503Ox0r6KsGMR+NYU6v4yvaVcujy7LYrw0QZdIRfaiNkqLmgb7cMeP4zmoWXp81oudsrnHx1p/Ca3KG4g6uJqjw8q92k5kTTVu9B71JQ+asGCYu6H3hu0qlGj/6FcQ//PDDPP744zz33HNMmzaNvXv3ctddd2G327n//vsB+P3vf88jjzzCc889R0ZGBg8++CArV64kLy8PgyGcd7tq1Sqqq6tZt24dgUCAu+66i3vuuYeXXnoJgLa2Ni6//HJWrFjBE088weHDh7n77rtxOBzcc889Q/wtGD5a7fiovX2+O7zZycWfu4o5V17H7t27ccxaQNF7b3TMRAbNdnwDbAo0XIL2KIL2qGE/T6S7ncjS48N+nsEqKa9g274DJCcnI0ybR6iwsNPzmrYm9PVnZpaFyiLcmdMGFGyLXjdaZ0u3z0keJ5bj+5ENRtwpE0EzvDcz+3Ih0nQqUL/4cxN555GDNFa62P1OMTMvTUF3ai1FbbEHUQOHN1WQlO0gcaIDd2vLJ46kRWO4AEk/u2+DU6B4QyURAsgKDHT+feriRC68KYuQrOBs9LLxheM0lDsHeLTBG+k7qF5XgNcf3offc+4mXf0+bou/U4nKpioXWXNjkST1c0mlOl8IiqL03CHnE6655hri4uL497//3fHYzTffjNFo5IUXXkBRFBITE/nOd77Dd7/7XQBaW1uJi4vj2Wef5dZbb+XYsWNMnTqVPXv2MG9euMPiBx98wFVXXUVFRQWJiYk8/vjj/PjHP6ampgadLjxz9MMf/pDVq1dz/HjfAo62tjbsdjutra3YbLY+f0OG0ob/HOPYtrHbVOnTJCLexIJrMwmam9i4cSM506aR+8YLtAQV/DFJoz081SBpWhowVpd0esydOjHc0bWfJEXBeOIAgnxWjXYEglYH2vYzM83euJRhT+npC1EU+cpXvkJCQgIFe2v58KlwF+b5V6fTUv0eh9evJX7CRbQ0XgCAooSw2PNJnpxDbEYq+9d8TGPpm2gt1yNp0/t1brNDjy3KQE1R6ydL6Pdx7AK3/P5CHqlu4JnKBh7ITODzFhuv/XbPqKwp0hk13PrgAqyRI7fQu3B/HR/860i/91s308iSIx50/SjJFJ9pI3FiBDlLkrBEjOxi9rHwmaxSnW/6NY104YUX8q9//YsTJ04wceJEDh06xNatW/nzn/8MQHFxMTU1NaxYsaJjH7vdzgUXXMCOHTu49dZb2bFjBw6HoyOAB1ixYgWiKLJr1y5uvPFGduzYwSWXXNIRwAOsXLmShx9+mObmZiIiuna99Pl8+M6qodzWNvzpAc5mH7v+V4jWoEEOybTUeYhKNJM+M5r60naO7+i+2Ytq5DXXuPnwqSMsu2Myd93xZTw+N0V7d9JYVYWhohAx4McXk0jIMrr5sKqBCdojCbY2onGfWVQp+jwDCuJDgoA7fQqGyiKkUzX1BRQCETFo2pvPrFXQjo0UrPTUFPSnBnU6rXHaxdGgHOLwhg8BqDm5jcRJTqxREVQcy8PVsoj83SHydxcDKYi6bERN3+9GZcyMZsalKTgT9dQFQsyp9PH+P3L7FchHxJuYdFUaK3JPUu0LB+y/KKxizmwTc1amse31vpXiHEqTFsQNewAf9Ic4sK6MUFDG4wxwYmf/PydOxms5lKFn2eH+rRmoKWqjpqiNSQviYXiaR6tUqhHUryD+hz/8IW1tbUyePBlJkgiFQvz6179m1apVANTUhN+M4uI6z07FxcV1PFdTU0NsbOccX41GQ2RkZKdtMjIyuhzj9HPdBfG//e1v+fnPf96flzNoWoNEyZHGTrdfK/ObyR2F7oKq3ikKbHj+OHAcnUFi9uWLmTWznfbGek7u3kFdVTGe1IkDz6UeSoqM6PWgaHUIwQCyTg+iusaiR4KILy4FqTQfQQ6hALJ+4D9HWW8k4IhGqi0/cwo5hCdlIpr2ZkJGM0Hr6EdBkyZNwlRbzrb/Ps+yL/4fe98vJjqpgX1v/7nLtlX5hwDQ6PVMvmQ+J/eeKduoNS5FEPp2UaI3abjkrql89UQZH+9rx6GVeGPWBC68eUKfAu+0K1NIWhxPitXITwoqqK478/6pAD89WcnjMaPTaCkUGsDthH46urWK3e8UD+oYG3OMJDcE0XTTxbUvBDWjRqU6L/QriH/11Vd58cUXeemll5g2bRoHDx7kW9/6FomJiXzxi18crjH2yQMPPMC3v/3tjq/b2tpISUkZ1nPqjRoSsx0UHagf1vOohp7fG2L3uzJJE2PJWTqHBdd9hm2vvkDqzDnsPXqcY/n54a6fAIqMEAggudvRRsbgkYfng16LQrwYJOT10VpejOj3oQDxmdm0NjTREBk37I2fxjPZYMKVMRVNezOywUTIbB3U8YIWB0p9VfiiQJIIGS0oGi0hy/ClAggBP/q6CkS/l8gFF1NR39jjtlOmTCFNCydrq4ifeCcvPLiTYCAAgbd73Cdz7gJyLl1J6ZHOAbsg9v2Cx+zQ4xYUPmoM3+2s8wfZ3NzOtRMcve6rN2nIXJbEpftOdPv8QruZF2dmUrqzts/jGUo1Ra3IsoIoDs/C5VBA5ujHfW9i90miJDD50mSaI1xkDDTdSAg36VKpVONfv/6Sv/e97/HDH/6QW2+9lZycHO644w7+3//7f/z2t78FID4+vPK9trbzG3BtbW3Hc/Hx8dTVdV4CFQwGaWpq6rRNd8c4+xyfpNfrsdlsnf43EjztY7y+tqpHiqxQcbyZD/51hDX/Ok51SQ473/Jz8YKruOeuu7DKAYxaLTMjzFgKD2OsLkE6ugd9dekwDAZihLloPFdhM32WxPQbEEQdKdO/CtpbmLHku0w1aTCWHEenUWfku6NtrsNcdAR9QzWCPPjerYpOjzMrB3fyBFyZ00fkAkpfW4a2rQnJ68Z3cCexMdE9bpsdG4XRauWmB35Lwd5mQkEZQZAwWJK73X7+dTdz4/d/SkL2LEqP9nxx0BuzQ8/b9S1nxmHSc3tCVJ8aPKXlRDHFasShkdAJAj/LSuTQhdP446QUBOArKTEYENjxZmGvxxoOTVUutrxyAmezj34sF+uzo1sraa7preJ/zxZcm8H0a9PxCWCcPLDUP1u0EVvU2GhopVKpBqdfM/FutxvxE50RJUlCPrUALCMjg/j4eNavX8+sWbOA8Iz4rl27uO+++wBYtGgRLS0t7Nu3j7lz5wKwYcMGZFnmggsu6Njmxz/+MYFAAK02/MG5bt06Jk2a1G0qzWhpb/KOWCvwyCQzsRkWtAaJkxUlVJe00GZoICUwASNm7LFG3G1+cq6MRwiJ7H+3XG021UeKrFCedya14M0/7sds1/GZO/8PrT1IYmIiR2bN5eTuHVQVHCfodRL0e5EFAV1THbJWRyAiduBlB0MhIprnEwhaCODD2ewDkpB082moNAEeykWBeVeupOzQPig6DqnZvR31U0dXXxVukKSE0NVXDU26i0ZDyOoY/HH6SAidqVDibWvFKvecLxGZnEZsXBrrn81DPisNxGCdRmtt54WSoiQxbckKinMb2PTi8UG9N7TWuVnusPIg4fSXJZFWTJLYqRtsT7LnxXHY6cEny/xvTjazbeE7AJ9PjGJNfSuzrCZEUWDmihTSc6IpO9rIjrdGNqA/srmSI5srueNXi7BFDz7YlUMyeVurwrXfSwfXCMseY8IqhS/iTYaBVUZyNnppb/KO6OJdlUo1PPr1LnDttdfy61//mtTUVKZNm8aBAwf485//zN133w2EF1V961vf4le/+hXZ2dkdJSYTExO54YYbgPAt4CuuuIKvfOUrPPHEEwQCAb7xjW9w6623kpgYXlh1++238/Of/5wvfelL/OAHP+DIkSP87W9/4y9/+cvQvvpBCvoHP9t3LhPmxpIv57K7cRe12Xm0+lvxuDzhBUmn4hNRlpgcMRmjwYBBMPLX4l0kWZL46T2/pPi1APVlg++e+GnkavXz7iNHyJwZwyGhkcp8HQbLCuZcczuTFyVQ1VBM+c4taLJSqTpxnIaQj1bNwD4UNc4WMrK1lH+y2/1ZKQ7NNW6SJs8Pb+9qRWpvGdHgcjxQJA2cCoJFnwfB70XRja9AxRebjFBVguj3ErQ4qGlu6XFbjUHP+mfzKDvrAjRjZjTRiU3UfiI1PXvBhdjjEtnwwgHcrYO7e9jW4KVxSw2Jdi2VvgAzLEbytlVx9KxyhueysbGde1JiOwJ4AFlRmGDSk2TQEQrKzL0iDUEQiE62EDs7ip8/uZ9ZlUEYYA74QDibfYMK4hsqnKx98gjOZi9B/9AMfP/aUqIybQhA6wC72MZn2THbx8aibJVKNTj9CuIfffRRHnzwQb72ta9RV1dHYmIi9957Lz/96U87tvn+97+Py+XinnvuoaWlhcWLF/PBBx901IgHePHFF/nGN77B8uXLO5o9PfLIIx3P2+12PvzwQ77+9a8zd+5coqOj+elPfzrmasT7PUMTxEcmmpmxLBlFAbfHQ+G+elKnRXEwbR1PHnoCkqCnnuuyGCKv9SicdUOgpK2Eu7ffwbWZnyNJysE7p4yFkRfhyTWQv0utmNNnChQdPLPewecOsm9NKYc3VZI8OQKTdRkxqVYik68mItlASc1hSkpKKSkrA8BqNtPe1grSuf/MFEmD0VQOTOj0uEaf0+nrPe8UY7TZcbe1qrnx3QhExiHVhFOdBOhY4NrF6dnuXn4uQ0oO9Wlhsmy04M6aftYDPQd/B7Zvw2Sf2fG1qBHImu1nzaMvdNk2efqlvPDgTlwtvi7PDcT7H5dRfbkNhySRvKeFje/3nmJmMGuJnujg3dxC7kvtXNzgH2V1HS2KJU3nu70PvX+MjJnRpMWEKN0/cuuPCvfXkZjtGNC+u94pYu97JUM6HoD6snZe+vEODNfbydo6sApsadOjENVa8SrVeaFfdeLHk5GoSdtU7eLln+/q8XlJIzJ9SRKCKFB0oA6fO4jP3bmhh6QVWfmTTP569E80eBvIb8rHF/QjigKyMrjZG21QT0gMIIsy8eZ4nl/5PEffaKbwQD1B3/DeRfi0ESWBaRcnkjhBpMpdTcjr4fCLT+H3eYlcehVlNT0v1DPUVfCFb/2Kt/6c1+t5UqbA0RMv41Nr23elKOhry9E4WwnYIvHHdv0eaRtr0NeFFxb64lKGrRuu6HEhKDKyzoCx7ASiz4NsMBM0W/FHxQ/JBYRGo2HRlCs4vi4czJlsMlrpXWqLOk/Dx2dlkzHv6xz4sGzQ5zxt03QjhfFart3tIratb+8lRpsOzf2T+X5BBfNtZl6YkYFJknisrJamQIifZiWi+cSC0t3FTfx3Txl/+uxMdv6viP0fDMN6lHOYcWkymTNjSJzo6Cjf2ROfJ8ih9eU0lLdTfKhh2MakAH+8wcEdm9qJb+n/+3hsuo0bvj0brW5k19aodeJVqqE3glNR55/IBDPpM6Ipye3+DXvpqklMXpQAwIQrrNS4azhRVELBa26i5HhmLU3DmAgPH/4N2yq3ndlRCN9eHqyA5sysW42rhqtXX83cxLncuvDzpPqmUE05a17fTXL9VESNgMmqO5WPreovOaRweFMlhzdB1pwYIhOT+eyDf+DQutUIBg2nwyeDwQA+D16Zjhx6SZGJzYhi5vIUDq0v7+EMYUZrHHq9AfWn1A1BwBef2uP3RmpvwVB3pvyrvracgCMaxF5mJeUQksdNyGDsMfgWAHNjFTTUIOuMiF4XAqAIQjhPH5C8LiSvC9HvxZs8odvj9EqRMVQWc/PX7idx4nTe/3u4sZMcqKCp9A0gHNRlzVtE4qSl1JUUU19ynIPrhi6AB1hwwsuCE15M/r6/T3n9ITadWhC7p81FzrajaESBKWYDT0fHU3GkkfQZ0YQCMoIkIIoCj6wv4AuL0nC3+inYM/IVa3I3VJC7oYLYNCvJkyOYdEECkYnmjuflkEzpkUYq81soOlhPex/WBQxWs1nEqxOwegY2yVNX0kZ5XhOZs2KGeGQqlWqkqUH8IC26MatLED/1ogRsUwQa4gs5WFfL00eeZmP5xo7nhekimpAWi9tEe147QWVo2233JCAH2Fm9k53VOzseEzNFVibcyq1XXIPf6CJYFEnZOi+KAm2NHuTgeXmjZlgV7q+ncH89hzdpmXvFTUxfkkhGcREhv4/y3dvwtwlkXHolr735JgBiXDIHPniHmNQLez22HFKYOX0au2ubOzU3U/VODHZezKloNL0vRpZlTMXHkPxeZEnTYx+B2XPmEO2byI7XX0LynslVFrq5GBf9A/+5aZytaNubaSotpqE0grqS8Cx80Lub0wE8gpaKk/OoLPQBiYT8HqQhToHuT/B+WqsgM0Orp9jgp9zrJ16v5coYO0tMZj76Zx6t9R4SJ9hpbfBgsumZf8sElkyMYU6Kg3VPHaW9cfgD5J7UlbZTV9pO7sYK0qZHkzotEp1Bw973S2isdI7oWPZN0IMg4NcImH3q+7NK9WmmBvGDZIs2kDEzGnebn/qydrLmR3NgyhpePfEqrqPdLzxSBJmAxkfzGAjCZFFmjfkl1mx5CQABgeip0SSYE8gxzMG+Pge5Sf01GQivM8C2109SV9pO1uwYak6UE5OynNi0aPK2VmFyphI/TUdSagLpEyey9dXeFwYWHarntge/wIk3n+tShlV1bkGzDUUQERQZhfAi0t6CeMnjQvKHg0cxFETbXIcvIb3LdlOnTsVb3nsDH0UQw+cdIHt0LNff9SVMdjv5u84sUNWYliMHyxA1SShyK4JwZs2EpMsa8PmGks2jYHmxjP9+eSqWWCPuonaOvF9JUUlhR5ph5YkWAJxNPj585BBZs2LYuO3woKu6DJWgX6Zwfx2F++t633iYVEeE348PZuhZdqR/HVtPi00bXA8FlUo1NqjR2SBptBKXfmUirb5W8mqP88zxP3Dg6IHRHtaAKSjUe+qp99STSy62tChub3qQjlVnqn4r2FN7VipAKxBOmTGTjueAiNvp4L0PS3H1oWqIHFSoLW7ttFBc1TPR60bW6kDSoOj0uDKnInlchExWFG3P09PalnqEQICQsfOsu9JDOk1GRgZFzededKkAnpQJhMwDzwfOyJlJ6vQZAORuPFPOSJTsiNKphdDS6HQ77Qtns48P/tC398eAN8TxnepC/E9KaAlSEa1hfsHA70x4nAEsEep7iEo13qlB/CAdqj/Er3f+mmNNn6wPeH5oMzTidzjRtagzN8Mh6JcpO9rU+4Znyd1Ywc1fu5mnn3malpaW4RnYecBYdgKNqw1FlHCnZiMbLSg6A8Feyk5qm+ow1HbNIVeAYA9lPRtrqtm9+rVzHlc4deyBBPHapjpuufse0qeFK9eU5TWqAe6n1AX5XqaW+bH0I5VGZ9SQMSuamIkSJTUnKKw8Cko8uR+tIe2CxdS2tBEMBgmFQmRkZJCRkTGMr0ClUg0VNYgfpJePv3zeBvCnPT/xF3zd/QtCBRa1qs0YUFfajrtR4brrruP5558f7eGMSaLPg8YVzhcX5BCmkuP4M6bgN5h72RNEf88pCoqm6+y95HXxwne+htKHalJn5+ULwQDIoV5r2UvudvS15ax5dBf2WBe2aCPVha0o8qc3HzqEgqAVEQPj83tgtGrJmh1L8pQI6kraObiuDLmPP0+bR8HWh/LGWoPE4s9mk5jtIKB4eHP162xdWx1+8hAkJydjM9nY+db/CATPrMsqLy9Xg3iVapxQi8UOQm59Lu8VvTfawxh2QcnPY/afMPP/GZl3VfpoD0cFvP/EYRJik1mwYMFoD2XMEAJ+dPVVaFqbUESpU414AZg5Z07fjtNDbXYB0LQ3d3lcQeg2gP9kSKYAvphwQztNSwPmglzMhUcwVBV3rQcvy+gaqjBUFmEsL0BAIejeSHtjI1UFLZ/qAL5KknnC5uWZmCBzr04f7eH0m96sIfKmNPZEQZVFoCHTyILbsgfc8Lknc69Iw5EBT7/wBI89/ijV1dWdnq+oqCDvREGnAB5Ar9cP7UBUKtWwUWfiB+Fo49HRHsKICcpBfrjr+7x949u4Wnzk76rp1OpdNbI8bX7WPnmUBddcSFZWFq+88gryORoDfRoYy08g+cJ5woogdFrFIUoSosnSp+PI3cy2QzgID3Uzk681mVhw/Wc4uXcPTZVn6pgHLQ78MYlo2pvROFsJWiMIWewA6JrrEE6F+drWRkIGc7hmfSgEkoSuoQp945l0GXtsEl7fdQjiwDuIng/aBJlXLD6CArjdfp5qbGBllo26woE1PhpJjnQrUy5MoMbt4wdrj9HuDfL3U0XL4mx6vj0xkob8liE5V0yqFVNCiP/85z94PP1b/Nrf7VUq1ehRg/hBCIQCvW90Hmn0NnLru7dy4cQLmZF1AZbKePzR7bxa+F/mllwJjeoMzkiqzG/mrfxm7v7jYiZMmMCJEydGe0ijR1EQz6r2dHZpRwUQMyazZ3/fFlT6oxMABW1bM2LgzDFDRkv35SUXLCTGPpOKgokINf9CCYVLzmo87QRCIfwxSfg/0ZxL1uiQzmrDLHmcaMpbkZytyAYToq/zokWdeSq+wOgF8I2izGqzH51Jw21RkWjyRidobpQUgmddnX10vJ4kjZXhadk1dBzxJv7sb6Hx/e6r2nj8IQTD4CdFrJEGMmfHYJvo5e0PXh9QQB4MjkzJY5VKNXhqOs0gDLaj6ifFmmLRCOe+rjJqjCxNXkq8OX5Iz91X5e3lvJL/Cj8++W3+z3M73yu/lz26jQhLq3vdVzU8trxSQGZmFmJvTYvOZ4LQ46LTgCOaZq2x73cqRBF/bDLutEko4pmulhqPE31d12ZcGSnZrH/uGE3VXrTma4HwTL4QCqHvZoFseGa+pdNj2rYmNM5WBEDyuhE+8d4S9FX2bezD5JBZpklSqPEF+EtVLbrE0bmgSAmKJAbP/J4nBkUcDWN/MkW0aml0d199ymrQ8K8rc6g/0TqocxjMWm758Xyk5AbefOuNAQXwkrudK1dcOqhxqFSqkfMp/tQfPK2k7X2jPvrDkj+w/rPrefuGt4k0dF8iTiNqePGqF3l0+aOsvn41i5MW9xr0j5SA0Ht5RNXwOLm3lgULFnD3XXfBEHT6Ha+8CekEzfYuj3c3e94Xiqbr37fkcXf6OjrooWDjmVlpUYpAa7nqzNc+L6LnTL8I0ePEUFHY74KtzVV5hPwn+7nX0Llm0ifmukcpc0uDwOecOpZ6NFzs0fBZpw7dOCh/21LUxkUxXasSWfUa3v3mYpJsgy/3GJloRmsQ2bFjx4CPoa+toGzvzt43VKlUY4IaxA9Chn1oVvAnmhO5Iv0KAFJsKay+fjV/XfpX0m3pTImc0rHdBMcEsiOyATBrzTy+4nFevPpFvjD1CyxJXjIkYxmoCfbsUT3/p5miwPHt1bgqShC97t53OF9JEorYOaBTRJHggOuyK50uihRBxB8Vd+bpUIhgZQk1hZ2bPEnaTBKmfI9JFy5FQEHT3nLmOa9nwCFnwPU2vtanUJSRv2D2HWphoVdDWkBkqUeDv2b08qY1CMz3aVno045qAG+waJG0ffsIVWSFOEvndEOdRuSBq6aQFmWmqbr7xoD9UV/WTkNNM+3tg2iMpYTwuka2A61KpRq4sTGNO041e7tWqugrjajhe/O+x8VJF1Pj7lzvOcIQwfK05VyaeimCIPBmwZv8bPvPKGwppKi1iEx7Zse2U6OmMjVqKgBFrUWUtZXx2MHHON50fMBj6y9BEVCO2IGxv7jsfKMoCkHvFtY//Q5BbxE6k42AI7pjASWARSPidjrDM9KKDELnwCMjIwONRkNBQcFID3/IhYwWtKeCZgVwp07stYRjjwQRb1IGuoYaFEnCF5vcMasvelwYKwqJzbqc5jpHl12ba0LYYxejsJng6Z9FMIiufuBpMYIUh6hJRhB6blI1XEIBmYsDQ3fncTwTJYGZX5xEY5oRmyzQ/N8iKntZkOqIN3PCf2Z9hVYSeGL5VDIMRo7vrGbPe713++1N0B+icGcLMTEx1NUNrKOsLy4VY3Rc7xuqVKoxQQ3iB6HdP/AZj+/M/Q63T7kdCM++d0c4VXPspuybWJqylPL2cmpdteglPUmWpC7bZ9ozybRnkmZL47rV1w14bP1l8UXS0DQ22qJ/miiKj5DnXUK+Uk5Xjda2N6Npbw53BrU4MDbVItSWYyIc4EoeJ7LBTCA7h0AwyLJly1iyJHwXZ/3atWwZxK34sSAQFY+sM4S7spptyMa+VaTpSdAaQdAa0ekxydmKoboEMRigoVJDT1l1nrZGEAR0zXUE/V4UrQ4xdO5FgwarDY0+HmdjMSincr0FMzrrzYhS9KBei2rwYtOs5Fybzqq2OirzwoHyTSsimSbKcKznSYyAN4hFd2Z9xc1zkpk7PZYXHhyavze9WcPN35uL21vH+ucbBnyckNlGcX0ji4ZkVCqVarip6TSDIAzwVu7N2Tfz+amf79c+kYZIZsbMZFHiom4D+LNl2DM60m5GQruhkaczHmLhlxMRpbGfn3r+0JE4cQ46Y+dFhuHFkeF0B6G5vuMxjcd56jkX+tZGkuJiOwL4UDBA095t4Zn6cS5kdeCPTSJkHnyXYdHjQl9bjqGqGG1jDcgyxsrCM02b5K5pJYriI+jdT3X+ywiKjLatCUN1CZLH1aV2/Nm0BiuS8Q6CoWvQWb+ApJ8LiGhNS9UAfgywROq58btzeFbno9J3ZjHtmw0t/HamhohJjm73m74sCfHqRHYWd75zW1M0uIWsZ8tZmkxZ7UmefvZZQoMsNSu1NA7RqFQq1XBTZ+IHodk3sHSa0+kvw0kZ4QWOzb5m3gu8yuxJ11GW1zSi5x7LDBYtXufwVM8QBAGdZQ6X3ZPNe3/7fcfjskZLwB4FQNAWidRQ1XXn8kLq/T7W/P1POBISKT64j8riIpgwY1jGOtaJXjeS20nQakfRnspdDgUxleV3NH/SAohipy5OAc9WQETQxIPsJOD5GEHQozFeRExKJq6mNbTUVCMA+l5SaWQ5lVAgfG5RsiOaloCgRZDU9IbRJmlEFn82G41WYntz15zx6RYTM+ab2dxdWk2Ogwef39vxpVWv4dLkSLa+NjTpa7Ovj6GgcTsn3zoJQ7BGQLA5Bn0MlUo1MtQgfhBCSu+tr882MWIiN2ffzM3ZNw/TiM6IMkZxsmVkq1m8fuJ1Zl45i8svvIANzx0jGBj/s7p9JWlEJsyLxRZtJD0nCmuUAVES0Rs1lOU18u6jh4alcExVQQszliWdHgRps+dT7PahKOGbbP6YRMSAD23rJ2bXBAhYI8jdvw+NayOKIOJJnTj0AxxBotuJsbIQIRTCF5dCICKmT/tpm+vQ15QjoCA3aHBl5YAgYKgt79K9VV9X0fluheIi4F7T+XjWVYiaOBqrISZ5KS01L5/z/Kk5c6gpnY4gdC3bKGriUeRWkBx9ei2q4TFzeTK2aRH8vbSWE25vl+fTjDrSMqM6PRabZgVB4D/bSjo9fv+UZEpeLiTg7d/nR3dSp0aiifBwctfQvdf79QOr5qRSqUaeGsQPQl/SaXSijh9d8CMuTLyQBEvCCIwq7IEFD/Dw7ofZUR3Oubxhwg3835z/w+l38oMtPyCvMW/Iz6mg8JPtP+bGCTey4uJVHN4wurWtR0rGzGiW3zkVvVHDxx9/THNNFTUF7UxfdhkAqVOjWHTTBHa/U4TRosPV4kOWhyail0MKW16tZ+619xI7PZ131r6P53QutRzCWH4Syd11vYI3LhVFo8WTOhHR50GRNCgaLUIwAIp8ZjZ6DBCCAfR1FWjaWwhaHXgTu68KpW+s7khz0deUonG24EnO6rKQV/S40DXVoggigYgY9PWVHd1TxVAQbVsTusZqxEDXKjCng3pBtKMxLkbUpBLyHyXo+fjMRsqZOy+1pUZ0ls+CIBFwb0QJ1SKIdiKS5pOeY8dgtlFZmIQo9VRVSEDNehx9Gr3IhTuP0R7qfmLiw4ZWDtjs4R+XApd+YTIHpCAPf3Cc1sLOd+LMjX6ahyCAn7MyGWNMNR9uHtqSkIHA2K+7r1KpwtQgfhDs+q41qT/pxuwbuXni8M+8f1KWI4vHVzzOFz/4Irn1uTyw4AFMWhPRxmh+tuhnPHrgUWx6G83eZmw6G5srNuMJDk3ZuLdOvoU/KUiqsOK8L1uekGVn5T3TkSSRgqOH2bBhA5q2JrStjWx4+T/EJSbymQd/xezLUslZkoRGJ9FS56Y8r4na4jbyd9X0fpJetDf6OLrVjM8j8NV77+No3hEayoo5vuZtJG/3pevODtJlfXgGODwjXYYABM02vAnpKNqRr4TSiaJgKjnWEVBrWxvD1XdMXfPd5bNekwBonK1IzjZCZzWBEj0uTCXHOi6/da1dFwEaakrPPSbBhM66CkEMV73RGOYR8h1FkcN3OwLutWiMSwAZUZuNcGoWXWtaTsC9Hp31FtxOLXkdaxp7LgsqaYemjK1q4KZenEjlFCvtJT0vXPXICj+uquHhazM48HYxUrqZHz2ytdM2UWYdX78wA8/7g2+M54gzMeXiBJ547CW8Q/weK0lS7xupVKoxQQ3iByEQ6n3Gor8pN0NJEiUeW/4YZW1lmLRnbpFOiZrCP1b8o9O2Ra1F/H7379lWtW1Izr22bC1fFlZwzpV845SkFYlOtmCNNJCzLBlJCs+Ubn36cTBFEbRFErRF4lEUWoMB/vLb3zA1ZwbWqGiioqKYPHkyOUuTyVkKHqefsqNDs4bg5L46So404og1Epti7jGAD+v6g9E213cEtxpXG8byE7gzpw/J2AZKCAa6zoj3cGUYcESfeg3h5xVA0XW+oyD53APIGhZAtCCgA4IIUlRHAB8eThBFCV8Ai5oUJMNclGA9Qe8O9PZ74VSajKiJR2e9FUFQg6TxwmDWsuS2Sfy7sveKLxXeAKHpcfA2FB3unL5mkET+OCODik31tLkGN9Mdn2nn4s9nsPrdN4Y8gAe4+OKLh/6gKpVqWKhB/CC4g7031rkg/oIRGEnP7Ho7OTE5vW6Xac/kicue4B8H/8Hjhx4f9HmDop8tk19macHthALnRySfNNFB2vRopi9NQquTcLe2oDOaCHi95K5fS31DA2Sc1dlSEFC0OtwK7M093PFwQkICkydP5pJLLiF1ahTN1W7am7rm2Q5E0Beivqyd6uM9l65TCJeS6/pE55+T5PMiej3Ihq652sMuFETjakMRJRRR7JSbrq+rxJ3RdfyywYQ7YwqGmlJEjxtffAryJ2rEB802FPqx/E/Qo7PeiiiF850VRUYJ1Xc8rcjt+F3vg+IGwYDWch2CoAdtJoriQlG8CJz5/qkB/PgjigL723pvxnR/WizZQYlcwNPQ+e85I9ZCbW4jbfWDvNspwNwrjLz06vO0tLQM7ljdkBQFT2UpZKh3gFSq8UAN4gfBou2+BvVXcr7C7VNup7y9nNmxs0d4VINzaeqlQxLEI8BR+04uvehy5I+jUYYoB3y0ZM2OYekXs6moqMDnbOH9px+n5NABQsEAiiyjiBKejL5VHaqurqa6uhpn8QlmLFjIzd+fAphY++QRqgsHX3ZODpwk5D/a4/MCoKurwB+b3OlxRacH/5ngQxElZO0oNPgJBTEXH0MM+Lp9WvR5IBSCbm77ywYTIaMlXBqypgx9bXm4SZPOgLGyCBS5HzPxWnSWGzoCeABBEBE0Z6rFBD27UIKVCKIDreX6cAB/iqSbjih1rjGvGl+8rgA+d4CD7b1P2KRqtRx4twwA1/FWpsZayKtzkhFt5pGbZrD5L4cGPR5REKg4kTssATyE1zU1VZQNy7FVKtXQU4P4QfDLXRe+xRhj+ObsbyIIAtHG8VfbOcOewa8X/xqL1sK7Re+yrnTdoI73r+DDPPilX5JYM5nd7wy+K+FoSJ0Wyeyrknnqqadobm4mLeCkPj8cJCuANyGdkMWOoulfwHuwooZDu/5GamoKn3/gIeZckcZ7j+UOeryidgIa41KCnk0dY/xk4KprrCEQGddpzN6EdHSNNWib61FEEU/yBJBG/i1C42rvMYAHEBQZy8lD+CPi8Mee1TNBDgEC2qa6M69XUdDXVRIymBDk/qW2ibpsRM25ezJozSuQDPNBbu8U7CtKkKDnY7SWmzuatqnGp8ID9UQZNBR7ur7fn/ZQViKz6kJ8cCB8l6a13sNNDitJyTq+MiuFPf8+hs997kZfvbHFGJmxNJniY/sHdZxz0RmM+L1Dc1dQpVINPzWIH4SLky7mb/v/1vG1UWPk+wu+P64/tPWSnuuywt1elyQv4Vsbv8Wmik0DPp4v5OMnR77PY8sfY3prEkc+Hl8Va2YuT2HifInyuiIaGsJ5sTWWSOIuvYaaQ3vxGy2dFk72RyAYgrhkTroDHFj7HqI2XKM9e34ckxfGU3a0iUMbyvt9XEEQkPSzMEWVUiNqkVzt6Bs/sZhOklDEzjPZikaLLy4FX2wSIEAPv8eCIAxrH4KQ0YQiiAhnl3IUdKROX0DG7Lm4mmUKdq+hpfYkiiZcVUf0edE1VIfruH8i31/W6sJ3GTxd63ufiyD07aJMlOwgdV7kLggaNIaF4/q9QBW25dUCvvDtqext6342Plan4d6UGHbtK+r0uK+gnVnAniMnhmQc135jJoIhwHubm0Ecno9ur89H9Kz5w3JslUo19NQgfhAmRU5CK2oJyOGFSrdMvIUr0q8Y5VENHUmUeOTSR3js4GP8M/efgzrWL3b8gvsvuJ/4TBFpfxyVuV3LHo5F0Sk63v7zr9DPW9zxmNvtodjtgU+kowyYpCEuZzai18ytP11ARLwZURRInRZFQ2U7ld01kOmFIIhMv/hbzLMXs/7FZwnpjQihEAigSBq8CemnAt7udu65pGF6QhxiyQlqy0vxpGR3VLYZSopWjzt9MsbyAsRggISJ02hpXEpdhZ66CgAJRbkGre4lhNpPXOT0NNve54sOAUk/A41hAQjdp8v1lagdot8P1agK+kJY3q/m2WtTWet08nJ154Xoc21mBODkvtphG4OkEdHqfLzw2N/xD1MAf1pwnKc+qlSfJoIy0q09R0hbWxt2u53W1lZstm4W8Q2BRk8jS19dCoBG0PDTRT/lxuwbh+Vco8kX8jHvhXlDdjyr1spvdE+Rt6F2zObKi6KALCtMuTABW0Yd767fOKzni46OZtmyZXg8HlwuF0uWLAHA7w3y9t8OUlvcc3m7nggCLFk1iYnz49i44UO279o9qDEKQT/mwqMdaSl+RzS+hPRBHbM7oteNotEiudpwtNTxhd8/ylt/LsDZ3DnFJjZpG2VHdnV7jKjkNAI+P2311ejSs5k+PYeg182RjeuQQyFEbQT2aCvN1eH8X5PdQeKUWyg/bgREdQZd1YUoCmTOjuHwpVFsbGnnulgHM60mFjosFOc28P4/Bp8K1xNbtBabYwu5NfWELL2XNh6MJUuWsGzZsiE/7kh8JqtUnzbqTPwgrC9b3/HvPy79I8tTl4/iaIbPscZjQ3q89kA7j1kf4rc//T2HX2ymqqBlSI8/EJI5QMJkM5Lfyrwr04lLt1FX1k5rfTtbdn447OdvaGjgtdde6/g6MzOTlJQUdAYNky6IH1AQryiw6YV8Tuyq5eJVi8iYkM3Ro0c5ePDggMZoqCzunFcuDnGlFUXBUFWMtq0JBUiZu5Drf/lbSo+0dwngLZFa6kq7/71MmnI9MjnIYoBLVvmYsmQ+ZpuNxkon1YVGmqrK0BgvwesTmHWFk5bqg0SnzuH4LguC8OnpMqzqH1lWOLmvjqlBme/eN6Pj8a2vFQwo7a2vJK1AfPoxTrbrhz2Ah3CwrVKpxgd1Jn4QvEEvd31wF3lNeez7/D40w3ybc6QdazzGO0Xv8L+T/6PNP/Rv7EmWJH464xccf9KPp63nRWMj4Yr7s9m6ZwNf/OIXOx47euQwa956C2cPXRqHk16v57rrrmPq1Kms/dcRCg/U977TuQgwdXEi0y5OpKalhH379tFWUUaLx4PyiTKMPVkxO4fMKdPQGY0cO3iA9bv3dVSIEQJ+NM4WdJExGEUBT/5hQkYzAXskIbO9x/z6s2kba0gx6RAQcCQkEZG0kuYaKDva2HVjIYQjch01J/OISU0nbdZi9q/ZgRwoRO/4v06lHDNmRqPVS5zcX4ccPC/f7lQjSYAr780hY2Y0VQUtvP3IwWH9vbLHGpl4jcT7778/bOc42+zZs7n++uuH/LjqTLxKNfTOr6hzhBk0Bq6bcB0Xey8+7wL4ivYKvvzhl4cleD+t0lnJQ4d+zKO3P8P6J4Zm8ddAZM2Jod3fSFLSmUok2159gUOFpaMSwAP4fD42b97M1KlTqT1Hp0hLhB45pODu7SJIgbwtVeRtqSJ9RjQ3f+5WdIYQT93/FZpiUhD9XmSdAdlg6vEQNQGFCzKyCAQC5Nc2nCnxKIfCXVWDAZSaMryACIgBH9q2JoImC760yfT2nZx/2RVcdu317PuglAMfllF2vJvgveP1SDidVzHxohVYIpI4eaAJrfk65MDJU2c/o/hQ7416VKo+U2DNE4fRGiQC3uFv5tda56G1qQ/pXYqMEPD3+aJcpVKNf+dX5DkK2v3tTI8e3a6WwyHWFItFaxnWIB6gxlXDy+4nSTWvwDvIToYDlT7fyuvvvkBkZCQJBg0NJUWU5+fhj0gE3+iMCcIpNrW1tVx13wyczV5yN1bg9wRZ/NlskGREQUNsmhVFgY0vHOf49r61cy/JbaCqoIUF12aw/O6fkr/9TQr35qEAnpQJhCyObvc7cuQIx44dQ1EU5LOaL4kBP2Iw/H3qLtTQuJ2E6io7l4M8i6G1gaWXXc68y69i3b+PUrC3rk+vI+iTKcvTAOEFhYIgIOmy+7SvSjVYIxHAAyz/4hRONu475zZC0I+p5DhiwE/QYseTMvC/A71e3/tGKpVqTOi5DIWqT+6ZcQ+LEheN9jCGnE7SkWwdmeoa2yq3Mfea1BE5V3cEv4HLLruMuro63t+xhzJFS60jgZZRzg2VZZmnnnoKvUMhY2YM13xzJilLFd7f/Ab/ev5RVq99mT179gAKc1em9evYfk+Qra8WsOE/1QSCl3PJ57+FABgriyHUcz3rUCjUKYBHkVEEEbnXevJKp/+cZrPZuOb6G5i7/HKaKt0U7OtbAK9SfRoIAjjSBfbu3XvO7aJMRsRA+G6cxtmK2Tjw2XiDQZ3JV6nGC3UmfghoxVHoajnMdlXvYl/tuWd/hkqtu5Z9tg3oTVmDbogyENZIPRMy57Fp0yZcLheFhYUjPoaeBINBnnnmGWbMmEFVVRUFBQUdz53u/FpTU8O1115L8uQIKo439/scdaXtIDiYc9UN7H9/NaLfh2zUQCiEEAr0eHte09qEoboEQZEJ6Y2ENFokX/dt5RWtHkNlETpvPKLjQnz6RmJMqSxenIMsK+x9v5LDmyu6BPkq1aeZwaIlEOj9bqAUEU3ylBwqjh1GMRjx+Aa+xsjn67nRmkqlGlvUIF7VrTXFawgpI3O7GKA6UMmtq65m7ZNHRuycp7nbAkiSRGxsLKWlpSN+/t40NzezefPmHp/Pz8/nuuuuG3AQD1BX0kYokMOCG8xs2baRIGAqO4EghwgaLXjSJoIgYjObkBVwut3oGqs7GjJJPg/ZCy7EH0iiofQIE+ZloNHqaGuoI3nqJWx9NY+QPx9JNwEpYEMbsOFxwrqn8wY0XpXq02Dpqslopd6D6traWtwGG974NIJWB4o88LU8ahCvUo0fahCv6tYPFvyAndU7mRU7C0/AQ0AOsKVyy7Cd782CN7l22fWY7DrcrcNTqUZrkJh0QTyuFl+nxY6bX8onIt7E3LlzqaioICkpiYaGBtzu7js0DpeMjH2Ulc0gFOrfnR2dTgfAnMvTiIg3s/bJI8ih/k9pN1a6MNkmc8MtCUQmJlJ14hibnv83dr0Wwesi1NqM0lyHABhskQh6AwaNhNflJGvehcROuIX9a8tRlBQCwRgcCRYCITd71jSEg3fdhH6PSaX6tLJGGkiZaudPP/wO2KJ63b7d64OImEGf9zwtWKdSnZfUEpOqHrX527Dpznzv3il8h1/s+AXekHdYzhehj+AH2T9F2hdH4f5BllTsxjXfmEna9PCHYV1pGxXHm9m5uhBFgZSpkVx93wz8QR9NZV5qy5vZdPBN2pzOIR/H2WJFhVX/920KCz+muORhjh5Zgiz3Pz3rlltuYerUqQC8+9ghSg+fo7JLL3QGCUe8mckL49Fom0manIkoihTt34ooCfjdLhorq5l95c1ExEdQmlvA/nVOaovHRxfeoaQ1SEiSSNAfQtKKhAIywUB4FjQ2zYrepKGt0YunzU9cph0UBZ87iLvdj7NJnfFU9Wzm8hSaDcfZt29k0hpPmzdvHtdcc82QH1f9TFaphp46E6/q0dkBPMC1WdeSE53Dj7b+iMMNh4f8fM2+Zh4p/gOvrnqN8rwm/ENc/SEu3UZlZSWbNm3CarVy3XXXYY0ysOG5YxjMWvZ/WEpJbgN1pe3c9N05LIlYxjvvvDOkYzibvqaM2TfFUln1GwSxFpT/Q5aPDuhYq1evRlEUJk6cSFJ2xKCCeL83RF1JG3UdpS3DF1RGq4FFN2Zhs2rI21nIK786jCAKY7brbk80WhFFgVCw/ykHMalWopLMIAikTHXQEqpAp9diMBior68nJSUdnCYaK9zYoqopObiLCbOnIpsdKDoJZ2sLRqMJq9aMVprMumfy8DoDmGw6YtNtVBe24HON/LqQT6tau4QsQEJL5/eaI6k6ctN1zC/wkV09/BWqimM1ZNR1/rknZjuwiWns27u3T30WhkpERMSInUulUg2OGsSr+iXdns6zVzzLDf+7gfL2oe9SWOWq4usbvs6F8p10X7BwYBxxJly+Np5++mlCofAHdjAYZOXKlXz5L5cgacKFmpImRvDWn/ZTcriRC66fzdYtW2huaRmycZxm1usQm+sIaKqprj5BauqXcbsHfofD7/fz5ptvctFFF7Fw4WK2v3lyCEcb5mkPsOH5450eGw8BvCVSj6vVhxjRzvIbJmO0hIjNzGbze7s5/n4tgmhH6CZIMjv0ZM+PQw7JtNZ5mHJRFAF3ISGLlqJjR3lvUxWtTleX/QwGA1FRUTTvr8fXWAcFxYRM1k7bCHKIGbNm85kfXoEoilgjw4uHnc1eXvr5LkQdyAEIeEZuXUp/WMQGMg07iNUWctyzlAr/rNEeUr+FBNiYYySgEbh5uxOT/8zv8uE0HQlNISaMQADvl+DD2SbuWdvW6R2vrrSN7HkRaNpbCNpGJrAWggEihbH5O6dSqbpSg3hVv+kkHZn2zGEJ4gGcJwScShtmhq7FuNGqxWaz4XA4aGwMz1Ln5uaiKApXX301CFokSSJhgp3512RwcF0ZPneAiclJ7BqGID4kiGTMnofPuQXRAj6vf9BVcW699Vays7Mpyf10NzcSRAF7jJGs2TFkzIqkqPo4uYcKqK6p5sNtxbTlH4HIWAKSFqP3KJFRaVx0yxfQGRPxOKtoq6/DHjuJpIl68vbu4nhVHRcuvwijTaBwbxM7PtyAco6ZUa/XS2VlZfgLq6PbbRRR4lBuLgUFJ5g+aRKZsVE4YuNprCzn1p8soqjiBNHRsRx4s46yvKZh+C4NnEWs47bob6ETw5WIsg1bqPTnICCzw3cPde6RKU07WJICN+508ufrI3jycht3f9SG1atQ7ZAoidVy3W7XEE4j9Cw/SYdPK3Q6lz3WyKwVqbz4o6+BpucGbENNq9Mh96EajkqlGhvUnHhVv7kCLpa8sgRfaPhyegVFYOnJ25nUsGBIjheRYOa2ny5AlmVeeOEFiouLOz2v1+u5+uqrmThxIoIg4GkJkb+rhrySdyltagJFQavT9ancW18lJUWSZG/E06yjsl2myTnwGTBBEHjwwQdBgae/t3VUSnWOBYJQQERMCXOvvobW2hp2vPUqrgk5+AI9fD8UGcntRNvSgMZqI9TUgMbjRNDq8NqjCDiiUbTD2/xGCPoxFR/raJg19eqb2F9ezYplS4k1R7LumbpzNhaKTTWzyPwsgcSL2HownbbG4VkYDpCgPcYK+1+wabpfs9IUTOblhkf7dKwSTQhJgZSQNJRD7LcPZpsoSNTiMog4nCHq7RIIArd+3D7sqTQBCZ5ZbqM2QsOXP2wloTn8c56zMo20aX5e+OWDuLNGtpngbbfdxqRJk4b8uOpnsko19NSZeFW/SYI0rAE8gCIo5MfuGrIgvrnaxfrnjrHgmgwmT57cJYj3+Xy8+eabAFgsFubMmYNbdFPW3EyEXkvg0E40Gg3GmQupdnVfC70vJEliwYIMNNp/cvzYXHbnOYDBBwqKopCbm8usWbPImBXT5+6t5xuTuZiq/COUlxYRtNgJxqUh9xTAAwgiIbONkPlUUGGNQvS4UHR6FM3I9H9QNDrc6VPQ11eCLLP7+AkUnYE1H3zA3FmzmHzRdA6vr+xx/0snbSTq8EvQ/BJi3Jd4t3HoFyWedqH12R4DeACHVMUNET/hQMwfKT3Rc3pYbgSsVcIXG3ca7cRUD9+FR2+uOOBmeS6svsDC8RRdx+OlMZphD+IbrRIBjXDqfNqOID4qycyONW/hS+hfE7ehEAx+OicAVKrxSO3Yquq310+8PiLnSWwb2pKE+TtrcLf5yc/PP+d2TqeTjz/+mL1796IoCpnxMcy9YRZLvh3L1Z9bNqgxXHPtBRiNfwOqWLHi6kEd65NWr15NfX09Gu2n7M9agKhkC3OvTKGxPNxnwB8Ziz8mEdnQz1QEQUA2WUYsgD9N0erwJmbgTc4601xLlNiXe5iK2nOvb3CcePLMcaoPDecw8cjnnkEVBZkk/VFWRv8dk13X43aa5DM/lwsWJw3Z+ADSpkfx2QfmsfIr09EZ+zZPpQ3BovzOFx0HMvWUxgzvPFd8S4iV+8OlbI+k6fBrYOrFiVS15HK42dllLcVI8PtH74JKNXKeffZZHA5Hn7dPT0/nr3/967CNRzUwn7JPe9VQOLsyjUbUoBN7/rAejGprEUHd0M74G21aqqv7N0ttS8siaY6eppaPKCi6F+hfVZOpU6awatUqvvCFLzB16hwCgfCHdjC4kYsvvogVSy7h4gvamDdvPRrNwBe32u12FJ/mvJyFt8UYmXxBM5fdPZm4DBuiJBCVbMa+sI7Ma30kL/UjmcJrCmSN9szM+nmgpDEPWdvz3Z/9jctQFAFnKJJtbV8c1rHscd5KQO49vUhb9B4zpnVd9HuauyRcjjQ1woipbuiCRmuUgSu/mkNsmo0Jc2OZe0XfZ7KrIySEsxZqe/Ui/1lqpc4+vOk+Zl/4/aQ6UkPu1XHMWm5j+3urh/Wc53J64b9q/LrzzjsRBIHf/e53nR5fvXp1xyL+z33uc5w4cWI0hqcaQmo6jarfvj7r6xxtPMqflvyJSZGTUBSFPTV7+Ffuv9hbu3fIOr1WOk5wMP1D5p24dkiOB+Dz+LqtRHIum7ZsZcGCWej0FmS5jenTC3DYVpH70QbcgQCKRkfIYAKp64e9XiMxIyOHA6+1EJ9h4+i7FRCbiin2BDW1r2AwbkMUDaCcxAhERlVSV5vV79cVHx/PXXfdxdp/HuuoUz4emR165l+djiPWRNXJFpqqXaTNs2KKFHjjhw9TV7STSRdeQkxSI7qoKD7cnc/JknDgJYkipEwkZDSBdP68tfkVF9OutpH/dhC5m2pAu523c8h1HQHFgDzMb+l+xchRz0o0go/pprXn3Haa5zF28q1un5vXLhEv6YgMiBwp7jlVqL8sEfqOSlMAJpuOlCkRpE6LoqnaxfHt1XS3CkwWQBbhgdebabaIrJ9h4kSyjhklfgz+4f17arKE3ze0AYXbkqMw2azEpGdS2Tq8PSp6Iorq3N75wGAw8PDDD3Pvvfd2WzbUaDRiNBpHYWSqoaT+tar6LdWWyh8u+QOTIsOLnwRBYEHCAp5a+RSbbtnEQ4seIic6Z0jOdTBqE4vvTu/0wTwYZpuJlStX9msfRVHYtesAJSVZeL0OIiJ3Y7T8ngsutmCsKsZUlo+5+CiSqw0+MYuVnjUBn9NKfVk7hzdXhiuNCGeCAq+3Arf7TLpEY0PKgF7XpctjKS75DT7X+K0skT0/jhu+O4NGpZDWUDVthiKazId59e3neOWF/xAEAgE/npCMEh3Lxj37O3WXDMkyIYvtvArgT4tKsJExM7rH532KZdgDeK3g5jNRP2SW+e1eA3gAGk+es0psckjC5BraALm6sJX8XTUE/SHqy9opPdLINd+cxawVqVx6xxQuua37BZuiAhec8CEpEN0u87ltTu5d08q1e1zYPMNT+8GngT0T9KyZG04tWpLnYX6MlYKiYmpdw9NQry/UwO78sGLFCuLj4/ntb3/b7fPdpdO88847zJ8/H4PBQHR0NDfeeGOn591uN3fffTdWq5XU1FT+9a9/dXq+vLycW265BYfDQWRkJNdffz0lJSUdz2/atIkFCxZgNptxOBxcdNFFlJaWDsnr/bRSg3hVv/lDfurcdd0+5zA4+MzEz/DCVS9wZcaVgz5XkCC7DB+RPS920McCKM9rYsKECWRmZvZ/37IZNDZ8A6t1Ol5vJQHbahKm2QGFqIw6EnV7MBcdQddQjSEUDqYVRcHkcHccQ9K3Y3D0XJpz6tS+rQOYM2cO999/P3fddQ3Z2QL19Y9AIJW6svHZNXXyQivTLjXxr6cfZ8OGDbz66qts2bKF/Px8ZFnG5Q/gzp5JTWQS6/YeYNPO3fjHQY36AVMUUMIBriAIJCQk4PeNbppDhKYSg9j775diS6PNMpcN2kdgpH9ECnz0TB7/vH8zr/5mD8GAjCieuZJImdL3euuxbaFhLTGpD8K8kz6+8mEb8wq83B0TgSVKx1tvvTWqi0vT09NH7dyqoSNJEr/5zW949NFHqaio6HX79957jxtvvJGrrrqKAwcOsH79ehYs6FxY4k9/+hPz5s3jwIEDfO1rX+O+++7rWGMWCARYuXIlVquVLVu2sG3bNiwWC1dccQV+v59gMMgNN9zAkiVLyM3NZceOHdxzzz39vjOu6uz8m7JSDbugHOSS5EvOuY0oiNww4QbWFK8Z9PmeOPQEXzNFYkyIxFUbQpQHnqO64fljpE6LIlY3h4SLEti2bVu/9i8pKWPJkm/hdn+LUMhJ3OKdxC/WopyqMJPucmD0z8MWlYHbZCM7O479+z5DwgXZBFzR2FJ3IWp7zvNPSoLDvTTDXb48QELCMWTFhj+wg5mzmrFZv8GBt5JBcZ975zEoKslA6YmX2VlsISD0PK+gCAJu9/h7ff0luduJaKnFERNHtSIxfdo0motlyke5XnxbMJaAokMrdJ/D7rdPYb/jlxSWWGmpHRs/p7KjjdQUtRKfGe45UXRwdHooWKMMeF2BLqVCBcDulrlyv5tFf5xD8b5d6CUR9yjmpavVac4fN954I7NmzeKhhx7i3//+9zm3/fWvf82tt97Kz3/+847HZs6c2Wmbq666iq997WsA/OAHP+Avf/kLGzduZNKkSbzyyivIssxTTz3VEZg/88wzOBwONm3axLx582htbeWaa64hKyucMjplypShfLmfSmoQr+o3k7ZvFT92Ve8akvMF5AB/8/wc0iEyJoFVJ358zrrZ56IoUHqkEQRYuSyz30G8LCsU5PuZt+B5jh94Gkd0Fm3e9bS3h6uiYM7DYz5GQLRhYgr79h5FkNqxp/XteyEr/2HevG+xb99BRFHEYDDgcoUXCKakpDBz5kyMpleJjLqEyIhFNBdPoS6viS27a5CDYyNw6i9blIeiPCeB6PNnMepgJJoMTF7wY6YvSccWbeDEzoPsertotIeFV7HzdtPPuMzxF2xSPe1J17K68EvExQWxU0Je1UTc+SFgbPweOuJM+NwB3nsslwXXZpA40cHJvbUjPo6lqyYxdXEi9z+/n+knvAQbu17ER6dYqC08yvv/+AvutCmjmhJ24sQJ5s6dO2rnVw2thx9+mEsvvZTvfve759zu4MGDfOUrXznnNjNmzOj4tyAIxMfHU1cXvit/6NAhTp48idXauaKS1+ulsLCQyy+/nDvvvJOVK1dy2WWXsWLFCm655RYSEhIG+MpUoAbxqmFQ3l7Oz7b/jN01u4f82E3makJZzXB0kAGfAp4qPYsWLWLHjh392nXbli0cWl3DxJmz0TsWMXnSZ9m3/zJk+XQFEYVgsJU2506Eft408HjKyMzcxsqVP0eWRdrq/IS0jbS0bCUubiJNTZuJiroFh2MezTUuPvz30ZFPWRhioVAEaQ4rJwN+FO3wVDoaNxSZ6fMWs+/9ag6tr0Zn1Iypxl01gSm80vAXYmMD1OVF4feEaGuRgCxgbFQ10ehELvpMNtMvSSLoD/HuY4eIz7QTlWjhpu/P5c3f76OudPjTzhxxJiYvimfaxUkU1LazqaiBZXPSqV7XdSHvlAsTEPTt6KbOAe/ormuJjIwc1fOrhtYll1zCypUreeCBB7jzzjt73K4vayG02s6ldwVBQJbDaX9Op5O5c+fy4osvdtkvJiYGCM/M33///XzwwQe88sor/OQnP2HdunUsXLiwH69IdTY1J1415Gw6G+Xt4bzvBfEL+N8N/2PX7bv46aKfDsnx/6P7K1sW/IeJX9Rjjxn4Iqwt/z3BlOR53HDDDeHKJn2kSBraY5PZV13P//73NqtXryM+/vputxWUKAKu/n0oVte8wdZt8zh46Ga2rvseR3b9gZbKVgLuGDIzv4XdPgevM8D//npw3AfwAFq9jkkLL+bssiFSewvRBi1SNxV/zm8CGr2WGctS0BrGVgB/ml8xU1HrwO8ZG0H7J13//2Yz/ZJw7XmNTuKab8wkJjU8OyhJIpfdPY3hTMMVJYElqyaRdFsmr7vbeeh/R7jhsW20+4JsbXOi0XV9r4lKMfH8a29QN8oBPIDZ1M/eCqox73e/+x3vvPPOOSesZsyYwfr16wd8jjlz5lBQUEBsbCwTJkzo9D+73d6x3ezZs3nggQfYvn0706dP56WXXhrwOVVqEK8aBna9nW/M/gYA35v/PTLtmZi0Jj478bPMiJnRy969azc0clTay5+qfsmF9yQjDbC5kaLA4c2VJNisRAYHXg0iJSWFKZN/TVbW9zs9Hht7FXLZvyl877fUH+4+yO+JLHtxOo9hsLeQv+Ym9r02hdd/XcK6fx9j04sneOXXu3G1DG/X3MESBNCbNb0GTIqsUF1wHF1z+LasvroEU2UhyvGDxLXUYLNaRmC0Y4QgsG7LBpLnCtz58EUkTer7QkwV6Iwa4jPsnR7TaDtfCNpjjRgsw9fMa9LCePIMMnc+u4eXd5fx3I5SXP7wBc+b+TW0XBTVpdqWxW7smK0cTZIgIPrH9vuKqv9ycnJYtWoVjzzySI/bPPTQQ7z88ss89NBDHDt2jMOHD/Pwww/3+RyrVq0iOjqa66+/ni1btlBcXMymTZu4//77qaiooLi4mAceeIAdO3ZQWlrKhx9+SEFBgZoXP0hqEK8aFgviF/CfK//DpIjOJd0eWfYIb173JrNiZg36HJXOSm7edB1Ba89NZXpTktvAyQM+rvji3QOe9RVPRamJCZ/p9HjziWvI31UPiDQXXI0ohoNRSbJgke4gOenX2ISfowlc0fPBXZdyuk6fIisU7K0jb2sVzuax+0GrKDKZs0Os+uVCvvynS/jyny/psTyiRiuiKAqzLr8KXVMtpqKjROskvvLov/nms69x16//xKycwV/4jSdeScezzz/P47/4EQs+m0B0yqfoImaQ/J4g7U09X5ArikL+rho87cM34+2INVHe3PO6AGucscvPtPhQA0lJQ9u5diBCioJoVn/fzke/+MUvOlJfurN06VJee+013n77bWbNmsWll17K7t19T4k1mUx8/PHHpKamctNNNzFlyhS+9KUv4fV6sdlsmEwmjh8/zs0338zEiRO55557+PrXv8699947FC/vU0tQlO5aX4x/bW1t2O12WltbsdmGf8GcoihqqaR+yGvM43Pvfm7wB1IEvrLrj0jK4JZ3zFqRQsoCPf/73/9obGzs175CKEiSEOSiay6iyvltQIaQnRNv/wI5EL41nZqjJ3ruz4mOWkZz/QI+WLsZRZT40pe+REO+TEi7Dbf4CH7/mdKdkmTm+Ot/JTT6d9j7xRZRQI3/KJMuvpQrr74av8vJsa3bqSxMpOJYc8d2epOGW348H1uUEVkO8ddVN6LIMhd+dhWLPnNbx3Zr167t97qF84UgCFy1/EZyV7fidY6zX4RRsvIr05kwt2tJ2vxdNex6u4j2xuGtwR6VZObab89mzm/X4wt2DZruv3QCNydG8/4/cpFlBbNDz20PLeDv/3iE9vbRLxF7xx13dFQPGUoj/ZmsUn0aqDPxQyC/KZ/vffy90R7GuDIlcgqPXvoojyx7hFRr6sAPJCjkxW0f9HiKDzWQmprK1772NSZM6Fut9tMUSUOFaODNN7dgcn2HhPjbyUz+K+lTW7jsS1OJz7RhstrQ1N3Lhld8vP/hFmQhPAP90osv4rNUExe/Er3zT+h1iQBotVEIoRSQWgb92kZKXLqJlIkHqa7dhMsSwf6DB3n4N7/h0d/8kjWb1qHEHSdrTixRSWbmXpHGrMtSsUWF1zQcXv8hMWkZTF92Oe0tzaxbt478/Hx27NjRr9mg842iKBzL28HC6zNGeyjjxsb/HGPfByWc2F3T0eG2sdLJ+ueODXsAD+Bs9uFXFAKhMwG8IyRgC4UneZ7dXoIxzUxaThQIsOzzk1i/cd2YCOABQqNY3lKlUvWPWp1mkJ458gx/2fcXFBS+PuvrZNjVD9u+EASBpSlLAdBJOr760VcHfKyjcVtJcU7C4Ywb8DFa6z3sX1vKrBUpLFu2jJMnT/a+0ycEDCbWbS9G85ETjfdppJYGkOuYfMFMjm7ewK66BvzRnctpuT0e1qxZwy3XiribrDjrF2NJPID7+C8o3OdkvKxctUYaUILvceLAAfxJWZxOhA8qCkFTeNbt4PF8Zkw3EDfBwd68NSxZsgRZlvnwn4/QUFHGql//GVGSqCgq5PU33uh3+c/zVV1bO4mTHKM9jHHD7w2xc3UROUuSmLggHoDIBDMmqxZXa/c17oeSqBEpb/ZwuhdZcoSRyLoAxhDskoK0eYP8fcNJvnXTBHKWJBMytY2pC9VzpVyoVKqxRQ3iBynBnIByKtC676P7uHXSrYSUELdNvq3P9dQ/7RwGx6D2bzHV8kbOH3jY+AwnNvQvFeZsO94qxB5jJHFKJEajEY/H0/tOnyDrjfj1RvzEoNUbObJ9CycLC3HaoroE8Gd784X/kJMcz/xbL+bwVg2F+5yIksDyL04mdWoMJ/bUsOWVggG/tuGk0YpMmC+xaV0NoeQJhKyOHrfNPXKo499vvPEGb7/9NgGfF43ezuEjR5g5cybJmVmsuGAe727bidc3/EHXWBcZGYmnVU2l+SRBFFj2+Umk50RTfKiBjS8e77jmvezuqR0BPICsKB2z8sPN0+anakMVFyQ7+PrFWVhr/ex5v5iAP4RBL7FZ8PH8jlI+yqvlvfvms3vbkREZV1+dpxm2KtV5SU2nGaS8xryOf1c6K/nTvj/x1/1/5Utrv8Tqk6t548QbNHmbqHXVqm+OPTBKAy8TeVqAAI9ofoLJMbg64x89m0fhniYuv/zyQa9xCETG4cqeSaMtBl8vf2pBeyS57X4OH6klOruQ5XdO4ppvTmX7K7+i6sRBZixLISbVSlDjwmk9SUDbNqixDQVJI3L112Zw1x8v5MiW5/DHJp0zgO9OIBAAUSIoKzTU1nQ8Pv2SS0lIHP2FfmNBVlYWxYdGp9PoWJY2PYopFyZitOqYujiRpIkOAAxmbacAHsKLz9Nyul9cPRwKd9RwyREfhx/PY/ubJ8PN6WS4LutMrn5Vq5ejB3NRztGleDSI/Si3q1KpRpf61zoIf973Z545+ky3zx1pPMKD2x7kZzt+xpJXlrDi9RV8Y8M3cAc6Vy3Ib8onMN5WLg6xCmcFS5KXDLpiTUl7CYEpg+vIGPTLbH4pn6odElddehO6EUxnCQG5h/fT1HSMKs9/+GjH+8y+6Tbef/SPlB05hDVOSyDlJB5zFWnTo08XrRk1sy5LIX1GNDq9joBj8AHSzs2bOLh+bcfXq1at4pprrhn0cce7iRMnEpFgHu1hjDlep79jYkRRFIL+cBqI1x2gscrZaVtBFFhwzeinOl50WRpa6cwfbiBhInPmzRtTRRE+fb0ZVKrxSw3iB2FLxZZ+bd/ibUEjds5gKm4t5mc7fjaEoxp/FiUu4u/L/87zVz7PH5b8gShD1ICP9Sg/o3zmHmTt4JrklOQ24C7Xcecdd6DXjlzWmcsZxb69y9i2tY3S0lLe3rAJaeYFPP/cc+wrX43T0wpAi66A6//fTCITRy+4m7wwAZ/Px1tvvUW9PPi3koBWz5rd+9m0aRMAGo2GefPmMWEYKmWMF3q9noSEBJQRSgUZT2qK2vjo2TyKDtaz+eUT1BafujulwEfP5BEKdc7tHgtlWev9AQKh8M/yyunxLJ0YQ2xsLLfeeusoj+wMNYhXqcYPNYgfhFhT1zJm53Jh0oXopM7pHrkNuZS3l3+qU220YrjxiiAIXJF+BU9f8fSgjvee6QXaLzuKzjC4D6OjW6uoLdKx6KLFgzpOf3m9NkKh8O9JKBSitqWNoNnG2ZclpaWl6BwhPveTBaROG/k26TOW6qgqPcTvfvc7Dh061PsOfeTz+SgpKen0mKT5dC7dsVvMfPGLXyQYCHF0S9VoD2dMOrGrljVPHObox5WdHm8od7Lu33l42s+sqag43jTSw+viuTeOA/Djqybz5ego6kqqeeO3D1G6+UMEeWxUhVGr06hU44caxA9CgrnnhYrd2Vi2sVM6zZO5T/KfvP9woO4AP9vxM9r8o5/nPBZk2jOZEjm4Lm4fB9Yy87KUQR1DkRW2v3GSJOtkpk2bNqhjDYejubmIokDGjJHL9QXInBVNxuxIjldUD8vFZ0lJCRs3bqStrY1Dhw5RUDA2F/QOt1Wf/zxVh/y89LNd1JeNjfKDY5lGJxKdYsESoQegcH8dLz60k13vFLH11QL2vlcyugMEMsr83CdYidzZzLFt1bTVl6HR6igrKUERx8YMuKwG8SrVuPHpnOIaIo3e/lVCyW/O584P7uTzUz/PyeaTPHv02Y7n3ix4k22V27gu6zqKW4s51nSMN657A7P205kL+/MLf87n3v1cR+Wf/vIEPegNfWutbrBomTAnFq8rQOGB+i6pC9tePcmyey5kxowZBH0yGzZ/1O+GUENNCAZo3r8d/+KLKD/e3PsOQ0TShpADWymsmUZubu6wnWfz5s1s3rx52I4/1omCgCRb2fPeceTgp/cuXV8ZrVpuemAejkgjiqKw591i9rxXgs8dHBPB+9kszUFqmttYdGMW2QvSSM6ZyV/+8hfwj34lJsHvIypq5O/sjaaaVi9bCupx+oJY9Bouzo4h3m4Y7WGpVH3y/9k77/ioqrSPf+/0THqvkx5CgISE3nsXFURFRQRk7WVd17Xt6qrrWva14iq69t4V6QpI7y0J6b33NpPJJNPfP0YSQnqjaL7vx3eZe88598xk5t7nPOd5fs+gEd8Hyht6nkSZWpPK3w/8vf3xdOW8e+ZdALyV3n9YAx4gyj2KLUu38GvhrxRri/km/RvM1u57iAwmIxknyrpuCCx5MA53P1up8TN7itj3VUar8w1qA1tfzkDhIEUQCSxcs5jN237C19eX2Jhokn/ZQp3cgYKyviXVdonFDIIIBAHBbMLRxY9NbyRTln3hdnBCYuxJ3rUdP7fBiosDyYjhwyjLVnfLgDc7iDlt1BNsFOHRD7kJlxvu/vZMXj6EOwtKuNXiwTwPZ0ZMD6AsR41ILCI/6eIuuDuiukRLU1MTX3zxBYZLwIAHkFeVgH7gC2JdCiQW1fHm7ix2pVZgOsdxIxEJzI7y4p6Z4cQEuFyUueXl5RESEsLp06eJjY1lz549zJw5k9raWlxc+m9OTz31FBs2bCA+Pr7fxhzkwvLHu+P3Iw3Ghn4db3HoYt6b9x5vzHoDsSDmm/RvsFj/uIU3VE4qVg1fxePjH2dt9Noe9dWa6jmp2o6HyqHTdnJ7SbMBD+Ab7tJuO4vFik5joKFOz5HPypgWtZRI94mgcSMw4lpmTFnSo/n1FGl1OQ7p8dhnJSLWqhFr1YSOnX9BDXgAT5WA1WrB0qDtuvEgvcJdV8fE2JGU53X9t3XyUJAZ48BuOyOhN4Y1h5L8UZjyp2FIb4tgraaCPbX1rDqTy4NpBfyvpoaf57oRs3YoE5aEXrD5NAhWciRmmoSuF18ZR8tJ3lOKn5/fBZhZ95BIZSidXS72NAac7UllXPv2YX5OLm9lwAOYLFZ+Ti7/7Xz3HEE9YfXq1QiC0Pyfu7s7CxYsaLWzqVKpKC0tZcSIEf1+/YFkz549CIJAXV3dxZ7KH4ZBT3wfWBu9lk+SP6GgvgCjpUUmUiJIMFk7VkfxUnpx64hbMZqNfJPxDYX1hQQ7BfPvKf9G9JtmsKPMkcMlh8mszWSI65BLSoLsYnDLsFv4X+L/etRni/Eb3KbaE7h/MnXlOsyGtg9Wg85Eg1qPvbPN+Ek50HUCobqykcM/Zrc6phrmhlgsJjIigpx9OzE4uWFR9FOxL4sFeWURYrGI4JFxjLvqWioLyjm+uf8fMF2hU1dikUjJH+hdhz8oTk5OhLgq0WlM5MR3rQ2v8VewObWU6UM8WTk1hEw7Jb+8l3wBZnrxcXRT8KOLmbdTC5qPWYEvSlsSWBd5OjN6iOsFmY9asPCxox69CBwssEajQNGFDuyRDblMu2EEOZ45VFZWXpB5dojVgsrXBzsHx4s7jwEmsaiO+786jcHUuYPMYLJw35en+e7Oif3ukV+wYAEffmiTpy4rK+Mf//gHixcvpqDA9l0Wi8X4+Ph0NsQggwC98MQXFxdz88034+7ujp2dHdHR0Zw4caL5vNVq5cknn8TX1xc7OzvmzJnTJjGtpqaGFStW4OTkhIuLC2vXrkWrbe3ZS0xMZOrUqSgUClQqFf/5z396+RYHjmsirmHDkg38cNUPxHjE4GnnyYarN3Ds5mPcEXNHh/1enfEqK6JWsHrEar5e/DVuCjckIgnCOTf80d6juTfuXiLdIv/wBjyAydI7ychPcz/kef87eHPU/YQtaxvnaLXCxtfjSdxdyK+fpHJmT1GvrlOYUkOM51wi3MYyZ9EKRri7IlHXYFeQQUBDDeOHDcHf+beHo9mEYOpmbQCLGXlFIZ4Bgdyx/mOWPvwkfpFRFKa7Ul184bfgHdwjaAwZhn5Q8nBA0Ov1xC24kuT9OvQNXX/n3RBx+7RQXr5+JGAzbP8o+Ee6IOni3ri3ph5DY9/kZrtLgdSC/rcnqlYEGmX37tvl2TupLswfwJl1D7FYQmV+Dubu3psuU97cndWlAX8Wg8nCW7uzu27YQ+RyOT4+Pvj4+BAbG8ujjz5KYWFh80IuLy8PQRA6DXM5cOAAU6dOxc7ODpVKxf33309DQ+fRAS+88ALe3t44Ojqydu1amppah07NmDGDBx54oNWxJUuWsHr16ubXer2eRx55BJVKhVwuJzw8nPfff5+8vDxmzpwJgKurK4IgtOo3yMDQIyO+traWyZMnI5VK2bZtGykpKbz88su4urZ4Ov7zn/+wbt063n77bY4ePYq9vT3z589v9WVZsWIFycnJ7Nixg82bN7Nv3z5uv/325vMajYZ58+YRFBTEyZMn+b//+z+eeuop/ve/nnliLxTBzsF8uuhT1s9ZT5hLGFKRlHti7yHcJbzd9gGOAc3/dpQ5EuocSlZdFu+dea9Z7UOtV1+QuV8uKKVKXpz6Yq/yBCyCGQTQBBbh6tPWO15T0sD+rzNJPVTapzkWxes49EM+Rzdb0VRPI8prJK5KLyJib4XaaJavvJsZEUEE6WoINtQTZi/D36rHvrYcwWpBUV2KMicJu7w0HEpyCfP35YZlyxg7dhqjF9/BkY2l7Po4hR9fOkVB8sWRy0vcXXtBC2D90VCpVOjq3ShM7V6YVF1SLfeMDcbDQY7VaiXh18IBnqENifziKqnMWTMMp6sC+aK083j3IDs5qmFuzdVcB5IgowjFb7bhSA8HAqzd+4zsnS+N/BKzxYLjxFn8ntfnZeomdqZW9KjPztRyytQDlyeg1Wr57LPPCA8Px929ezVSsrOzWbBgAcuWLSMxMZGvv/6aAwcOcO+993bY55tvvuGpp57iueee48SJE/j6+vLWW2/1eL633HILX375JevWrSM1NZV33nkHBwcHVCoV33//PQDp6emUlpby+uuv93j8QXpGj8JpXnzxRVQqVfM2EEBISEsVPKvVymuvvcY//vEPrr76agA++eQTvL292bBhAzfccAOpqals376d48ePM2bMGADeeOMNFi1axEsvvYSfnx+ff/45BoOBDz74AJlMxvDhw4mPj+eVV15pZexfSogEEZFukd1q+1XaV9wdezcApytOE18ZD8C60+v4IfMHnOROFNUX8fGCjwl3bX8h8EfDTmLHotBFZNVlNSf/9pQfMn/g7qinqS3Tdd24jzTU6amvsgNhMkn7bQZ3TnwlTh5DsYrCadCa8HJ3xNldwtBhdlgwk36oBGWQmIDIKuQKE0GxCznwTSaVBUGkH+86tGKgcfVR4j+kjtyk3/FT/gLjJJchq6vEd+RoGi1wzdJr2PRaUvuNBTh//WQxW/nuxRMEDXenqlhLVWH/5yqEjPQgYow3RoOZujIdsXMDMQt61CVGqgq1ZJ2sQF3ZiKObAicPO+RKCaVZdQP2O/NQORA53ofbkvKoMXae7O4mFSMIAq4+9hRn1PX7XCRSESajzXJ3soq4U6dEbS/gVQSGpq4T8YNjPKgsOo5VfGlEtuYWFKLX65FKu6fsdbmxP7MScw9XKSaLlQNZVVw7OqDrxt1k8+bNODjYcrEaGhrw9fVl8+bNiETd86s+//zzrFixotlrHhERwbp165g+fTrr169HoWi7I/faa6+xdu1a1q615Zc9++yz7Ny5s403vjMyMjL45ptv2LFjB3PmzAEgNLQl58TNzaZs5OXl1a8JuIN0TI/uHBs3bmT+/Plcd9117N27F39/f+6++25uu+02AHJzcykrK2v+4wI4Ozszfvx4Dh8+zA033MDhw4dxcXFpNuAB5syZg0gk4ujRoyxdupTDhw8zbdo0ZLKWwkjz58/nxRdfpLa2tpXn/yx6vR69vqUin0Zz4TXXP0j6gGURy1BKlfz39H/Jqstqt936hPWk1aShkCjYkb+jVahIkbYIfnsOP7r/UT5c8CGOMkfiK+L556F/cn/c/cwMnNkcO/9Hw1nu3Ou+ydXJ/M/9X8SsicGS64DT3qEMZI0tQWQPgl3LAStoKhubX56tMFmYcvaICHWlFXWlOyKJwKmdpwZucr3ALzyP/ccPYnXufUXdQWwIFgu3rFpFSFgYBr0BY6OZqmIdh77Na2OIj7syhMgZ/jyWV0JTRRNx35cinKNa01hvJO3IwORHTF0+hJiZAZjNZrKzszGaSjlwJIcTJ04QEBCASqVi9u2xODs5IxKL0Gq1ODg4YDKayU2oQlPVSNLeYqQOUg6X1THEJEHUx9+cvYtt16FY33U42fdltVzv40bMrADSDpc2G9x9xc5RythbhrLudD6nzlSwXCvH3iogNVnxUFvp6iqNUoEMfykLJ3uxfY8cq1TWRY8Lh9H4+w2n0ep7F1qlberfz2TmzJmsX78esEU4vPXWWyxcuJBjx44RFBTUZf+EhAQSExP5/PPPm49ZrVYsFgu5ublERbWts5Kamsqdd97Z6tjEiRPZvXt3t+cdHx+PWCxm+vTp3e4zyMDSIyM+JyeH9evX8+CDD/L4449z/Phx7r//fmQyGatWraKszPYg8fb2btXP29u7+VxZWRleXq0rnUokEtzc3Fq1OdfDf+6YZWVl7Rrxzz//PE8//XRP3k6/YbQY2ZG3g9dPvc5/T/8XmVjWpXLN7sKufzjpteks/nExIc4hJFQmYLKYeGDPA0zwncBM1UyOlR3j9pjbGeY+jPKGclJrUpmhmtFP7+rSZNXwVQxzH8btO27vVZx8QnUCCdW2CqP/mfwxuQfrBsyQF0S9TxC71LTBfUKdKK8+hWnQgO8XRo8bR0Oxgh83nKKmtIEmbftGgp2jFPcZvtySns8Rte2eIl3iQ/R3fQv96g5Rk3yJmuxNQkICu3btauMYycnJIScnh0OHDuHt7Y3BYKC+vp4rrrgClUpFxBhvLBYLI2b6IZVKiC3TYlepZ+v6M72ek1wpYcZNQ8lrNHBK09bTP93VkWEOCn4or6XcYOJAnZbr47P5NCaU2HmB/aYZP2ScD/ENOnaklIMYCFRCfmOX/QBMjhLenONAiA5Uw9yp+LGuX+Y0SNc4yHu34+HQzZoj3cXe3p7w8JZd9vfeew9nZ2feffddnn322S77a7Va7rjjDu6///425wIDA3s9L5FI1KaA37mLOjs7u/O7DHKR6dE32mKxMGbMGJ577jkA4uLiSEpK4u2332bVqlUDMsHu8thjj/Hggw82v9ZoNKhUfavY2R0MZgO3/nwrCZU2w9BitbRSqukrNU011DS1jn8+UnqEI6VHANhbuJchbkNYM3wNC0IW9Nt1L2XG+owlziuO42XH+zTOJy7/x5O3/R+//i+j68Z/cEYs9ODb7+uhC7WNQbrGzc0NTyGSvV+kd9nW0GRmV7m62YC3F4u4ycmFMwycES+RiZi1agjVxgJee/21LpPljEYjRUUtCeHfffcdIpGIgIAAqqurCQ8PZ8mSJQzzc8LqY0XhIEVqJyGrToe3sWffJ78IFxxc5ewsb1vgbJqrA1+NDEUQBG72c2fGsXSMVisH67S8klfG368IQSwRcfSnnB5dsz20tU2sWBbOsdwapg/xRHG4mnxsRrxYIkIQgcnQ1h8fsjiQl7xMNDY04WcQIxZLkMlkl4xOPNBqB/z3xtQITyQioY2sZGdIRAJTwge2KrYgCIhEIhobu7cQHDVqFCkpKa0WAl0RFRXF0aNHueWWW5qPHTlypFUbT09PSktb7i1ms5mkpKTmhNXo6GgsFgt79+5tFXFxlrPfHfNg1d8LRo9iMnx9fRk2bFirY1FRUc2ySGclkcrLW8vPlZeXN5/z8fGhoqJ1YonJZKKmpqZVm/bGOPca5yOXy3Fycmr130Dzn+P/4bpN1zUb8BcDk9VESnUKY3zGdN34d4LRbCRPndfncZKqk/hn0YOIh9dTOPoYilm1fyh1j57QWJqOpDAb/sB1C/qKVCrlqquuYuUNt5JxuHtygmajhShTS4LkUi9XavcPrLTo8Kn+ZFcmsn379i4N+I6wWCwUFBTQ0NBAQkICn3zyCYmJiVixsvLZiax8egJz74+hILBnBmNZroZGrYGvy9omdt8f5N2s5BWmVBDn1JLEHmmvQBAJjFkYTPTMvsc258RXkXqwhH/NjiSsxtJcUMp/iAsrnp+I96pw1AGt7yWCWEA0zoOUBlsMcqCbHSe25iEb/E1dMHycFcyO8uq64TnMifLu9wquer2esrIyysrKSE1N5b777kOr1XLllVd2q/8jjzzCoUOHuPfee4mPjyczM5Offvqp08TWP//5z3zwwQd8+OGHZGRk8M9//pPk5NZytLNmzWLLli1s2bKFtLQ07rrrrlaa78HBwaxatYpbb72VDRs2kJuby549e/jmm28ACAoKQhAENm/eTGVlZRvVwUH6nx4Z8ZMnTyY9vbX3KCMjozmGKyQkBB8fH3bt2tV8XqPRcPToUSZOnAjYYrDq6uo4efJkc5tff/0Vi8XC+PHjm9vs27ev1TbOjh07iIyMbDeU5mKxOXszOeq+e3X6gw1ZGy72FC4Y2epsKhv7R1M5tTaVN53+wRbZ57zW+BQj73MgZJQE1yG/9Mv4vxc01Y7IGjQoSi++FN7lyrhx44iLi2PfF5loqrqfTKaoaOLNqEDC7OQUNOnxjeh9XkhXjLkimODxdq1kg/uD3NxcfvjhB77//nt0TVoEkcDUCE/+cWfPnA+NGgMpB0pwk7bdRI5zbK08dfbhJhMElnm3PDc8AjovANcdrBYrez5P5/Mnj3Do+5bcp+iZATz8UxIPfJvA55rWuwVWs5UhEil3BHgCoLKIcfAW0JkujARmd/k9x8QD3DMzHJmke6aPXCLi7plh/T6H7du34+vri6+vL+PHj+f48eN8++23zJgxo1v9Y2Ji2Lt3LxkZGUydOpW4uDiefPLJTguHLV++nCeeeIKHH36Y0aNHk5+fz1133dWqza233sqqVau45ZZbmD59OqGhoc1e+LOsX7+ea6+9lrvvvpuhQ4dy2223NS/2/f39efrpp3n00Ufx9vbudFExSP8gWM8PgOqE48ePM2nSJJ5++mmuv/56jh07xm233cb//vc/VqxYAdgUbF544QU+/vhjQkJCeOKJJ0hMTCQlJaU5Y3rhwoWUl5fz9ttvYzQaWbNmDWPGjOGLL74AQK1WExkZybx583jkkUdISkri1ltv5dVXX+22Oo1Go8HZ2Rm1Wj1gXvnZ386mQtczuaqB5LWZrzE7cPbFnsaA02RqYvKXkzFY+n8LeqTnSB7w/DsV+U/j6XQ3dcXu5CdVd0uz+/eMVCEmZEQFZ379HM2Q2Is9ncuSZcuW0VTgwLFNuT3qF7UkBCHYnioJJFmNXJln5Oj3/e88cHCVs/SxaF577TUsloHzDguCgIeHBytXrsTR0ZHDP2RzekdB1x1/44q7Y3hJ0sB354TUKMUikiePwE7cYpwtPpnBid/i5o9OiCLIzlbQ7djmXI5v7tnfoCs8Ax2ZuCyYpOwTWMVSarU6FI5DKPuhdfG4T71NRIe5kTnUgReHBOBaUdL83LtUePjhh1Eq+6lQ3TlciGdyd/k5uYz7vuy84JNMIuKNG+OYP3yw6NIgly49iokfO3YsP/74I4899hjPPPMMISEhvPbaa80GPNhuAA0NDdx+++3U1dUxZcoUtm/f3kry6PPPP+fee+9l9uzZiEQili1bxrp165rPOzs788svv3DPPfcwevRoPDw8ePLJJy85eckm08Bpx/aGV068gpedF0PdhrI5ZzMZtRlcGXYlVqsVpVRJiHNI14NcBsjFcuRi+YAY8QmVCbyasJ475jpRX38bDlFBXDn/Oba82khj/e/bQ9UZxiYzWac98J8wF03NRa4seZkRGBjI2LFjcZb4sX9zz0Pvdm3K5jt7PSYRLPBwYW+unn4P+hJg8g2hfPbZZwNqwINNRaOyspJPP/2UxYsXM2FpKI0NRtK6WaehILWGadM9Whnxq/zcWxnwAI6SljCkWqOZoN9y8vzCnRGJBCz9KIg+bmkgX2/6uFX4wNChOnxCwynLaUkIfmHOUO7ZkYLcT8o7OzK5JtyNUaNGcerUpaNE1Z484e+N+cN9+O7Oiby1O5udqeWtYuQlIoE5Ud7cPTOs3yu1DjJIf9MjT/zlxECv+vVmPWM+a38rWCJIeHry04zxHsP+ov3sLtrNweKD/T6H9ojxjOHFqS9iJ7Hj5RMvsyN/B01m22Lj9+KpN1lMPHf0OXbk76BOX9evY48onUqMaQJzF25GrbaFfPn6LMNJ/Cg/vRrfr9e63Bgx3Z9C7V6yiku6bvwHRxAEZDIZ06ZNY/LkyaQcLGHP5+lYe2k4mrFiBmT9mFgskgiMX+qA2OkY9vZBNJqDmou1XEhWrFiBs8ybb5/vXgiPvbOMgL9Gc3Nyizf9p7hwxru0DpP5tqyG+1IL8JBKODVpGLJzNLg11Y1sePk09TX944iZcqs/P279ss3x2bPnULRbSk2JLdzA2dOOCdeG0SATUbC7mKBYT4aP9+Hrr78iI+PSSLB/4IEHBkTj+1LyxJ9LmbqJA1lVaJuMOCikTAn36PcY+EEGGSgujQoTlyGNxo6zyOcEzeGqsKsAWD50OddHXs+9v97LvqJ9AzqnYKdg3p37LkqpbSv0uanP8dzU50ioTOCOHXewp3DP78KIl4gkPDnxSR4e+zAvn3iZr9K/6p+BrRBUOxw7iyu+3jc2G/GlZd+jDA1FJIm85KQfLySqKDcsmU6DRnwXeHt7c/PNN+Po6EjS3iJ2fJBM5omKXhvwAGIE+rNGqquPkmm3SMgr/TP6+jLqGl3Iy7048avbtm1jwfyFjL86mGOb8rv8nNz8HQh3bG1ktbd3YPhtHFepuJUBD+DkbkfkBB9ObM3r1ZxHzlYxZlEwmqpGBEFg58Et7bbbtWsnM0dc22zEqysb+Xl9SzGvgsRqzvxcgN/wEWRwaRjxYvHFrcZ7ofFxVvRrIadBBrmQ/DErBvUDnVVWG+ExotVrQRAY4W47JhJELItYxuszX2dhyMI2fQUEQp1DCXUObXOuK8b5jGs24M9lpOdInp38LHaS35fGq0Ki4KGxD/Vf4SsBknwOIK23pzixdeiRtmzIH9qAByhIriYw7o+jgtRdBLMJL6lArLc7C8aPYdnVV1JXVEDSviL2fplBxrHyXhvw9q5yms5ztUjkYlx97Xut9ilXSlhwRwRlNS+g19uUbhwcIikruzj5PTU1NXzx5ec0OhQTMaZr5ZCSzDrcGiyMPkd9Zl9NfZt2jb+FBWXq9HxVWt3mfGicZ6/mK5IIxC0O5ur/HWZXaRVHE/eSnp7WblupVIpc2vl9V13ZSMS43s1lIPidbs4PMsjvkkFPfC8Rfvs/62910CWChJmBM3GVuzI1YGqrtpW6SvLr89m0ZBPe9t7NxvRM1UyuDL2SJnMTQU5B5KpzUTmqGOZuk/H8PuN7njr8VLfndLDkIHVNdbgoXNqcmxM0h7E+Y/k4+WNWDb+4mv594fz3V6mrxNKPEm06mZoDYd8yN3IG9ecIsdiMnT92gpNIamXHzp0XexqXHENcHKhOOo3D5OkIej2nt9aSc6oKi6W8687tYO8iRyITETTcnUnLwjmSU42/XsAz0BGrxYpFZMDJ2Yn6miZyEyo5/GN2u5rkHTF0gi81ug9Ra043HzMaNRddq7y8vJxxE4aRcbwcOrEjzUYLv7yfzF2rw/hTiu1H+lVZDXeqPHE+R7WmytCSjJ7RoG8zjkjcu1WQxWzlo905hHko0KXsJb2gY8Umo9FI6FgXTm3P77CoXMQYL46fPtL+yYtAZw6qQQYZ5NJi0IjvJY4yR5zkTqj1aqb4T+Ffk/+Fh137BSFc5C48N+W5Nh5jQRBaGfxDXIe0Or9syDJ+yv6J0xWn6Q7F2mKeOPgEr818DbHItiVaoavAS2nzbjnLnXGStY1FtFgtbMzeiKPUkXDXcH7K+on7R7WtBHcp8GHyh9wRc0fzjsO23G39Or4q1JO57gqKC1tX/zXIP0Isvx+zvv9VGy4XvIIdOJw2sBrlfUUhk0JeBlZBhMk3EPMAF6eSSCSMmTYdh6uXkhMv4tTOIiym3if+Bsd4sPCOEQgi27wFQcBLqKPWpMVHHkVubi7fffcdnp6eiMViVq5ciW+4C9//5yRmY/cMeW2dHrmstefXaLRc9AItaWlpTJ8+Hf8IF4oz6jptW56r4XqTlBgHOxK1jZTqjbxXVMVfQ1oW2mpTy/vxlbeuuFlf08TuT9v3nneJFfyL9Cy/NpL/rtvaZfPDxw/gG66iJLOu+ZhIJDDhJn90QiXV1dkknLp4tUbOZ7Aq5yCDXD4MGvF9YEnYEoKcg5gXNA9necfazVJx70s2j/UZ220jHmBP0R6u2XgN43zGoTPp+LXgV96Y9QZxXnEcLDnI7KC2MfGP7HuE7Xnbm18LCFwRegVhLv2vj9sXtAYtX6Z9yaGSQ8xSzaK0oZSN2Rv7bfy/j/87i1WjOXbsKizW1l5JP9cXOaVvWyXyj0RefDXRI6I5lnjmYk+lQ/wsekxKOWOvupZKvZF9R/tW1bcrxGIxoaPGkbirmPidWV136ILYOSpEYhE6nQ6pVEpqaiqbNm3CaDTy008/NbcrK7MtpnJychg2bBhLHozj10/SqC3tujhTTnwlI2aNb3XMYMhCqYxAp7t4dThMJhNlZYdw9BgCXRjxAHnxlbwwNYClp7PQW6z8r6iSq71dCFcqaDCZ+bW6RRXmu/IaVvm7N8fGV+bXU56r6WjoLmksa0RT1zZEpz3OnDlDjEvrmOt5tw1nx9Efmv+OlxJ/tJj4QQa5nBk04vvAQ2MfGvBr3Bt7Lxq9pjl5003hxmjv0SRUJnSoUZ+jzmlVhGrNz2sQC2JmBc5iWsC0Vm0PlxxuZcADtqqK21ayPHI5V4ZdSUZtBt+mf8t43/HcHtNW5tNoMSIV9X6h0l3SatJoNDWSVpNGWk0vvWgd4KZwY2n4VaQm34/1PANeJFJw7Ic/tk48QGWBDifvS/uWoSnKZ+1L/8XOwdFWmG6AjfiYmBjSj5Vx6Ie+G/CR433wDXfm66+/Jj09vVtSj5s3b8bd3R2fEG+mLY/gp9fiu+xjtVjZ+W4lkVdORWfY/9tRMyEhp0lJmYHVenHCKXx8fJBKT7DXJRlvJnTZPv1oGTfOC+JmX3feL65CbTKz8EQG09wcidfoKNa3SMIm1DeypVLN0t+KPjm69019JGauL5s2/dittlarFUc3JaAGIGCoK76RDpT9dAka8CIRFotlMKRmkEEuEwZ/qZc4giBwb9y9uMhdmBYwje+u/I5XZrzC1mu2EucV1+1xzFYzJ8tPUtPUUq7carXyRWr7hUbqDfW8d+Y9rt5wNX/b+zeOlR1jS86WVklPZw3qVdtWUdYw8A8kmVjGOJ9xA5KgOzNgKqdOXEV19e425yyWJpwvceP1QlBXrSXlTP8unvobk38oVpGY+vp6Dhw4MGDXCQ8PZ+XKlQQ6jGT3x+ldd+gEB1c5S/86ijlrhlFUVERqamq3tdp1Oh0lJTa1IL8Il25f0z3AkaioF1odc3MvZtjw3djb1xEREdFp9ceBwMfHB7XmFD5iEwWuyYSN8ew0bl1d0cjpHfmEKOXNx+rNFrZUqlsZ8Gc5UNuS/FqQ0j0vekcYRPU0NXVPnjIoKAizoeW+GTXJl4MHL4zkcE+x11RjtVzcsKoLjqYETn8OR962/a9mUH1rkMuHQcvkMsBZ7sxrM19jtPfo5mNysZy5QXN7FGpT01TD0p+WEuMZg5edF/n1+RwtPdrt/jnqHJ4+/DQ3DL2BxMpEnj/6PCarzUP9l91/4f3576OUKinQFOCicGk3/r676Iw65GJ5c2w/2DTw35//PvmafK7deG2z/n1fCXIK4ib/IApz2uo8n0XpPOiJr3dOw2DqWFr1UqDObOU///lPv44pMhpw9fbB3sEBPz8/RCIRE0ZPZePr8agrev95OHkomHnzUNz8lCCpZNeuk5w8ebLH4xw+fJgRI0ZQmFzXZVtB0oTVpGD4Ajfe/eBVRo1ufd7NrQQPDwuj4lYhEtlx6NBODh+u6vGcekNxcTGhocMIU3xDxQQjfhHFRM+4k59ezmk3KXTq8iEMm+JLnETE+oKKdg33c/m6rIb5Hs6Mt8o4vjmvT3N1knly66238tZbb3Wp5hIXF0faFlvlWHd/e4JjPDj544X5THuKQV2LsUmP2GHgd1YvOsWnYP/LkLEdLOfc30USGLIApv4V/EddvPldQFavXk1dXR0bNmzo9RgfffQRDzzwAHV1dR22eeqpp9iwYQPx8fG9vs4grRk04i8T3BRubY4pJD3fEq5pqmFP4Z5ez+P7zO/5PrNtQZik6iQWfL8AH3sfUmtSWRaxjKcmPdWjsa1WK4IgUKIt4c6dd6IQK3hz9pt4Klsn4QU5BTHBdwJ7inr/PgBuHrqC0ea9SAUjhTkvdNhOLHZApnAG2srY/ZFw1UbjFykisWjfRU+CvBCI9I1I66oYOSyKRffdj6HRBALkZ9Ty7gvHUNT37TOYs3oYvuEuaBuyOXpkAdU1vuh0s3o8jpubG2KxmOT9nXsQBZGR8CuewMX+OqrVqQyJ3AWA0SAHwYpUagsjs1jKOHHyWtxcJzNixNMcPvxxz99cD5FKpYwfPx6z5SQSoZGpjlBZ9i0W9ypmrnySxN1lVBW2VEN1D3AgZmZLnPkkVwe+Les8Z8VkBTexmC2vJ2A29U3RSlujJyxOhZ+fH8XFxZ22rayspL5ayuRrw4mZpUIkEpDL5Z32uViYfFSIZLKLPY2BJ3UTfLcWzG1Vi7CYIG0zZO6Aaz+AqMX9eun+MJgvRZYvX86iRYsGbPy8vDxCQkI4ffo0sbGxA3ads1wuC45BI/4ywGA28G3Gtzw89uFWx5Orki/SjNqnVl9L7W/Jn8fLjjcb5d2lsL6Qe3bdQ4m2BIPFgESQNEt4no+jzLFPc70q7Cqu93YkJyeDrnzsbk5LOLG5d3KBvycW3B5NSIwHjV+VkpZ2aYfV9BVPT09uXbWK/Z9/QE1JEflJVez5Ih1tje2h39d6jk4eCnzDXTCZTCQmlFNV5Y+bWzEikRGLpWde0LCwMEQiESZD54sKq0WCk0sY2sYPUBcNpa42gJzsMajVXgiClQBVMu7uhTg61iCRuDB8+CuUlGg7HbN9LNjZ1WMw2KEKPENZ6RCamjr+vYaHBzFjhgua+m8pLd3b6lx19W7s7Yu4+sHPOfxDJaWZddSW6WisN2AympFIbTt1s92cujTiAWQWqC3T9eI9tSb7dAXhE9yoqurao56VlY1PwBhi5wQ2HxuIiqj9gRnh95/YWnyqYwP+XMx6+O5WuHX7H8Yj3xfs7OwuCWUjg8GA7BJaiFqtVsxmMxLJwJjbgzHxA4Cpj3rLmvqkVq9/yf+FT1M+5ZUTrzRv3eap89ia27W82cWioL6AX/J/6fC8uZ24S5WjCq1Ri8Fi+/zspHbtynYeLD7Iz3k/92l+UfZKcnJe7VZbQaLDYh4sgOI/xAX4Y6hXBAQEoLFICFx0E6roBWx6I77ZgO8Lbn72jJofyNV/iSMxMZF///vf/PLLL1itIkQiC5GRhxCEjo1xV9fWXl+RSIRMZqGmVEtpVl2n1xZJRDg7D8XK7STEjyI/Pxa12gcQYbWKKSyIIf70QkwmPxwdRwBO7N+/v9Mx232PbsWMGbuRSZO/RqVKYdToTQyJPICPbwYikQmw/va/NkaOrCC/4FWqqn5tM5aX1yLGjf0JhZ07M1cM5cZ/jmfmyqHo1AY2v5FATnwlmqpGlni7crWXS6fzEguQe6C0x+/nfERigcnXRtDQ0NCptn5YWBhXXnklsybPRzgvUTQ5uRcOmAsRq/5HKPS0/+WuDfizmPVw4JWBnQ82Qy88PJyXXnqp1fH4+HgEQSAry5Y4LwgC77zzDosXL0apVBIVFcXhw4fJyspixowZ2NvbM2nSJLKzs5vHeOqpp4iNjeWdd95BpVKhVCq5/vrrUavVbebx0ksv4evri7u7O/fccw9GY0uIWm1tLbfccguurq4olUoWLlxIZmZm8/mPPvqozeL0hRdewNvbG0dHR9auXdtlHkltbS0rVqzA09MTOzs7IiIi+PDDDwEICbEVYIyLi0MQBGbMmAHYdjaWLFnCv//9b/z8/IiMjGz+rM7f7XBxceGjjz5qfl1UVMSNN96Im5sb9vb2jBkzhqNHj/LRRx/x9NNPk5CQgCAICILARx99RF5eHoIgtPLO19XVIQgCe/bsAWDPnj0IgsC2bdsYPXo0crmcAwcOYLFYeP755wkJCcHOzo6RI0fy3Xffdfp5dIdBT3wfMJuMVOTl4BseiclkQiQSkZGRwYlfdzBz3nz8w2267yaDgfwz8ZgMBvwih+LoZjNMLRYDgiBt5a1ubCzixIlriIl+Bw+PmQB42XkxSzWLD5M/JLk6mTCXMLblbqPxEo9P/vuBvxNfEc+swFnEeMYgF9u2kLUGLTvyd7A0Ymmr9mq9mnpDS8hKvaGedxLf4Y6YOxAJIqoaq/i/4//H9rztfS7wZBSUCIIIq7XrB6NEIsHJw47Kgj92OE1Rai2hcZ5otb3xzl4+ODo6EhM7ike/T2RvRiUj3RyY0w9y864+SpY9PBqRxMInn3xGQUEBAD6+GXh42P7t4VlAnHIrGrUXRUVRNDU5IRKJmDx5Mvb29mRmraO21goISCQSVq5cToNmAzs/7Nr+cvO1R27nxf59nXmPRVRWKhGEo7zxxj/w9o7hoYceQiQSUVVVxb59+5oNivYQBDN+fq0TfcViM97euXh75xIcfBqLxfbYEYtmEqBywNExiBEj9tJorOdo6tMUVOxCJTVgtegJVK1BJJKfM75A1CRfDn2fRXFGHcUZdcgUYqbdMIRXR/ix1MuV25PzMLTzYXjLpHhZRBR1/jF1iX+kK97BToATKpWq+e94Lk5OTtx0002IxWK+/88JynI0JO8vZvhUf7S1NTQ2dC0FehbBZERRnI1Yp8XRPxCtfxj19QNzL7JKpJhMpt/vQl1TAuk9rC2Svs3Wz2ngEr0FQeDWW2/lww8/5KGHWlTvPvzwQ6ZNm0Z4eHjzsX/961+88sorvPLKKzzyyCPcdNNNhIaG8thjjxEYGMitt97Kvffey7ZtLe8zKyuLb775hk2bNqHRaFi7di133303n3/+eXOb3bt34+vry+7du8nKymL58uXExsZy2223ATZjOTMzk40bN+Lk5MQjjzzCokWLSElJQSptu3v4zTff8NRTT/Hmm28yZcoUPv30U9atW0doaMfV6J944glSUlLYtm0bHh4eZGVl0dhos3OOHTvGuHHj2LlzJ8OHD2/lbd+1axdOTk7s2LGj25+5Vqu11aXw92fjxo34+Phw6tQpLBYLy5cvJykpie3bt7PztwKHzs7OlJd3f0f+0Ucf5aWXXiI0NBRXV1eef/55PvvsM95++20iIiLYt28fN998M56enkyfPr3b457PoBHfB1IP7CV8jE0K7fTp02zZsqX5XPYnn+FkryTa3Ykzv/6CxWzzPAXHjibu+ltQ2NlRUnI/RlM9nrLHMTRYiJoyg7S0v2O1mtFoEpuN+HG+4xjtPZqrf7qaY2XHOFZ27MK/2V6gN+v5LPUzPkv9jHtj7+WOkXcAsLtwN/89/V98HXwJdgpGIpIgFsT868i/0J/nIXkr/i125O8g2CmYo6VH0Rh6r+18LjkNNYx0HkttXdeVEt3dZ2Cx/AE8VF1wZm8RIbEeBAUFkZ/fcZXKyxkHBweuXXYtdSJHdqcnAiCu1NObW+XQCT74hDmjqW6iLFvNzJVDycj+lsqKXIqKbPcDpX0t4eFHOTfqzN6+DrlcS1bWOBwdHVmzZg1ubracGDvlD8BJqipVxMUNp7bueaqTllFZ0LVRqK5oxMF+EfBJh22k0kbc3IoRi41Ex2zAwSELvSEYd7cpqFQqli9fzhdffEFubm67/RWKBgyGjrfUbXH3ofj6jqVBm4CL2608m7SF4pM/Ulxf3LwLd0PITCZad6GpT8LZuXUogyAIhI/2as4BMDSZ2flRKu7+9lz/93HM9XBiS2VbL6NUEIieEcCpn3v/3RVJBGLnqADQ6/XU1NS0aSOVShk9ejRisRhDk4mqItuit6pQi8lkYteOX9B1U9kGYHjkEGpqS6jXadEWF2A2msHdt9fvoTO8pKJLNl6/X8jeDd1w3LTCYoKcPRB704BM6SyrV6/mySefbDZWjUYjX3zxRRvv/Jo1a7j++usBeOSRR5g4cSJPPPEE8+fPB+DPf/4za9asadWnqamJTz75BH9/fwDeeOMNrrjiCl5++WV8fGwF0lxdXfnvf/+LWCxm6NChXHHFFezatYvbbrut2Xg/ePAgkyZNAuDzzz9HpVKxYcMGrrvuujbv57XXXmPt2rWsXbsWgGeffZadO3d26o0vKCggLi6OMWPGABAcHNx8ztPTlhvn7u7ePOez2Nvb89577/UojOaLL76gsrKS48ePN99fz10sOTg4IJFI2lyruzzzzDPMnTsXsN0rnnvuOXbu3MnEiRMBCA0N5cCBA7zzzjuDRvzFQF1RztEfv2bEjDmA7Q9+LlaRCHVjEycPJiAxt2wd5ybGk1avx01kwUMejtyznHLlfahzndE2XoHczZ8A37spr9iKp+dcHB2HASAWiZnqP5VGYyO3x9xOk7mJ98+83xyDfqmzPmE95bpy5GI532d+T6Opkdt+ua1bfTNrM8mszUQpURLlFkVmbWazKk5vcZO70NjUeULaWcx6R6qL+uZ9dvFWIghg7yLHyV1BXlI1OvXFLXPfU4rSalFXNnYaQnA5IhKJGDNiOG5ODqgiozn+XTlS30b+PCYIR4uA/nAV0P0HvyASmHRNWKsYaI0mkZzcr6mvfx8rVVx3/SoKCzRYOUB7aSMSiQmZrJGYmCnNDxi9oYra2p/x89Pi4ZGLWKJDKvVg/JWjqa8opTi983tB+GgvrNaOPbgennlERBxBIrFtoYvFZhobE4iPX4VSGYJE4sLYMd9x5ZVXsm7dunbHaGx0IiNjEnKFDheXFtlZJ5dJKJzHkd+ox8FpDCe1hWQaLBw7+CbF2ra/w69y9xE14io02gwaGwuwswtsdX76TZFUFtRTkd/yfqqLGyjLriPGQdlGJx7ASyZFp+lbSFRYnBeBw9wpLS3lxx9/bLMrJZVKufPOO3F3dwfg9C8FmAwWBAGGz/bm448/prCwsEfXVLi6s+RvT/DpI7Yq2qYBDHmxa/p977Kh7+UORm/79QA/Pz+uuOIKPvjgA8aNG8emTZvQ6/VtDOSYmJjmf3t7ewMQHR3d6lhTUxMajQYnJ5tCXGBgYLMBDzBx4kQsFgvp6enNRurw4cNb7cD4+vpy5oytsF9qaioSiYTx41uKxLm7uxMZGUlqamq77yc1NZU777yz1bGJEyeye3dbGeez3HXXXSxbtoxTp04xb948lixZ0rxo6Izo6Ogex8HHx8cTFxfXfH/tb84uRMC2E6LT6ZqN+rMYDAbi4rovFd4eg0Z8L7F3cUVdXk5BUgIBw6JJSkpqt12jKgJpbQWShnpMji4Ynd1AJKaySUdDZhIC4DVSicVsZf/7Nl1r37hxTF/5L5KS/8KY0V8hldoKlDw89mHuir2rWbpxhMcI1mxf02Hy56WE2Wrm24xve91/jPcY/jv7v9hL7TlTeYaV21Zi7qlH5Ry8FC40abp+mNrZBeLiNgI40etrxS4MZGuUguPqBq7ycuGeQC8a6vR89uQRzMa+hQVdaJJPZXHs2OWxE9QdFFIpUQG+RAapCIiK47sXT1JXroP0WmRAb0y+kbNVrQz44uJiklPuRyxu+b6VlLyHuIu7r0qVRGnpcEymRsrLf6K07Adk0kiyC+vJy43Dw0PFmjVrUCgULLjdnQ8fOYDF1PpeEDbKk+AYDzRVTQRHu5OTm9Lh9Rzsa6goD6Wx0RFfvwyUypZdL53O5nkvKPgAJ6erO523TCYnwD8KbUMZCkUAUvereTRxCxW6//3WontqN/9M2oa91J73PW5k+HnOfUEQCI3zbGXEA2x7O4nl98Tw50nDKWjUsyIxh0yd7a8YrJQRv7NnBvT5WH/bkdu7dy8VFW2L7fn4+DQb8AA6jQFBgPm3jcDBWYHJ1HPnw4kTJ7C3t0fp6YO6SY/BrXeewe7gGD50wMa+JJD3UhCht/16yJ/+9CdWrlzJq6++yocffsjy5ctRKpWt2pwbunI2FLe9Y92tNdHeuGfH6ekYfWXhwoXk5+ezdetWduzYwezZs7nnnnva7Eacj729fZtjgiC0kX89N8a/N0m4Z4ugnTvuuWN2NKezi/0tW7a0WkwBfd75GjTie4lEJiNk1Fi++t/bWLz8aDJ1YFCKRBjdfTC6n3fjtVo464AzNkjRlrX8UHOLS6l+4mWm3z2Fk6duZOyYnxCL5QiC0Ep7fbT3aN6a8xZvxb/Fmaoz/fwOLy2uj7wee6ntRxHtGU24Szjptb0vspNQlUaU60Rqaw932s7NbQrVhX3z+vtN9uH9M7Y44kRtI8V6I88PCcDRTWEzGC8jCk80MmXSVPYd2Nt140sdiwVxygkCx6zFOzSGX95P6Ze/h5O7gtrao4CAnV0MW7a8R2hYx8ajRBzKqdOhSMRGwsOPIZPbYkD9/NMxGP7D7j3/QSoZSW7ubPLzWxIzy8vLef3115k1axajR41GIhFhMJkRS0UEj3DH3lVOxLQMjMaTDJ2wGoDD8R3HdObltYStVFerGDe+bUXSzKx/4+DwIzJZNAaDlLFjxxESYkd1dRUVFWKUSgUqVR0VlZ/i7j6bdaUGjmd+2MNPsIUGYwNGS+uHpNVqxWw1Ez0jgJQDJWiqWrbnmxqMbH4zgQlXhaJwkPH3YF921tYTrpQzW27Hr4l5vZ4LQGm2GovF2mFMemlpKdXV1c2GvCCAb7gDpRk/k/BzFvVlleDq1ePr7t27FzwCum7YRzJLfucqXGEzbTrwlh7c00USCJ0xYFM6l0WLFmFvb8/69evZvn07+/bt65dxCwoKKCkpaS7gduTIEUQiUXMSaFdERUVhMpk4evRos2e8urqa9PR0hg0b1mGfo0ePcssttzQfO3Kk6/BVT09PVq1axapVq5g6dSp/+9vfeOmll5o97d2VN/b09KS0tOV+mZmZiU7Xcn+PiYnhvffeo6ampl1vvEwma3OtsyE9paWlzR707khQDhs2DLlcTkFBQZ9CZ9pj0IjvJXV1dZQ5uKNzM0NHBnwnWOR2WKQyREYDtVnOrc6ZHJzRVxVz4rNcxq4eQ1Ly/Xh7LcLTcx5isR0WiwGRyPaFnuI/hSGuQ5jz7ZzLwiPfW2I8Y1q9XjNiDY/uf7TX4+0p3stq1UroxIgXi5WEBN9LTaEIVx9lr6TpnDzt2HReEtuXpdXc4+Z62RnwANVFDQRqVLi5ubUbD3w5IZhN2MlleKii+eTxQ/0mzGE266ivb+LEiUqysvag01lRKiPw9ctst71WewPqOpuRL5U1ERHRUoBNIjFQVDic/PwIoK2yilgsJiJ8CAe/y8LQZLsPLbo7GsFxC3m5W0hOOYFc7oOX92LkMo9uJyzq9Q5ota44OLQN0dFqUxg7Lh2rVYFU+g2lZbbwKlc3GVargfIKkNuPYFuDC8fLe5hE2A4nyk8Q6xUL2JLf34x/E4AHRz9IzEwVB75t/bkGDnNHU9XEkY05iMUixrspsHOUsjdbjUnf+907sVTEkgfjKCsrba6Sez7Dhg1rjvkty1GTfrSMkJHuHP3xa6xAk3/HSX2XAl0VrrrscfKzFXJK29z9PpEL+z2pVa1WtzH+3N3dUalUrF69mscee4yIiIjm+Om+olAoWLVqFS+99BIajYb777+f66+/vtvx3hEREVx99dXcdtttvPPOOzg6OvLoo4/i7+/P1Ve3vzP35z//mdWrVzNmzBgmT57M559/TnJycqeJrU8++SSjR49m+PDh6PV6Nm/eTFRUFABeXl7Y2dmxfft2AgICUCgUODs7dzjWrFmz+O9//8vEiRMxm8088sgjrXYbbrzxRp577jmWLFnC888/j6+vL6dPn8bPz4+JEycSHBxMbm4u8fHxBAQE4OjoiJ2dHRMmTOCFF14gJCSEiooK/vGPf3T5+Tk6OvLQQw/xl7/8BYvFwpQpU1Cr1Rw8eBAnJydWrVrV5RgdMSgx2UsaGxspb2c7tduIxDSEDMNs17LlYgWMTm5Y5QqMTm7Ullbw6yupOAsryMx6gSNHF5J45i727R/L6fjVVFb+QkHhhygttWxYsoGZqpl9f2OXIAICLnKXVseGuA7p05hLA66lLiOm0zZKZRhyuTe+4S5ccU/nbTuiQWtgpoM99wR6IRME3KUSmixWEjMvXwNYpzHi5+ZysafRZ6xSGVc//RIIjv1mwA+f4YrI8zVycyExMQmdTodIJEJvcGm3vUIRgEjk3fy6tsaf7OwxFBUO49SpRRw8cCP5+SOB9uVxpkyZgrOzE8UZdbYDAviESSkpqeLgoSDy85dhNus5fHg2OTlvUljYVkmlI6oqgzo8JxKZEYsbsFha8iOs1pZ/P5NTwBeZfTfgAdadWscDux/gvl/vY8Y3M1gYspDHxz+OQqLA3qX1VvSwqX7MWzucScvCuer+WHQaAxV5GvLPVKPX9TGPxtceJw8FGzZsaNfY9fT0ZOnSpfj7+2MymNn/dQYmgwUXbzsEkQiDhy8mp4GJv+0vehPuc9kx9a8g7mYIg0QBUx7s9yns2bOHuLi4Vv89/fTTAKxduxaDwdAmObUvhIeHc80117Bo0SLmzZtHTEwMb731Vo/G+PDDDxk9ejSLFy9m4sSJWK1Wtm7d2q4yDdiKPz3xxBM8/PDDjB49mvz8fO66665OryGTyXjssceIiYlh2rRpiMVivvrqK8CmErdu3Treeecd/Pz8Olw8nOXll19GpVIxdepUbrrpJh566KFWoUkymYxffvkFLy8vFi1aRHR0NC+88EKzo2PZsmUsWLCAmTNn4unpyZdf2iq6f/DBB5hMJkaPHs0DDzzAs88+263P71//+hdPPPEEzz//PFFRUSxYsIAtW7Y0S2f2FsH6O116azQanJ2dUavVzckd/UllZSVvvvlm3weyWhGMBqxiiU0j7reCANKachTlhYSOGsu0m2+lXPMmpaXtx5SLxUqihj6Pt/diirXF3PfrfWTWtu/1u1xZFLKIZyY/0yxT+a/D/+KbjG96NdYItxHMP3APTY1awq++F0Fo/yegUKiYNHE3giBgNlv43/17e6UX76FyIGKMN3U6I0qxQKPRQvq+Esx98ApeTBQOUlzGlZOamoxZ34hV1tfSRxePq666CmOxCye25PV5rKBYKWOXgIfnODZt2kZ8fDyBgYHccMMNpKXfRW3tgTZ9PDyu48B+FZWVlT2+npeXF3fddReCILDpjQQKkquxc5Qy804VH3/6UXM7T08HgoMdMVu+IC01Fp3OtRujWxk2bA/uHj0XZJTLvXmqWE55Y9eFkHpKkFMQm5e2eFEPfJdJwjlx7rNXRzF0gk25xWyy8PZ9e+ivDcrYuYGo7TI6zAmJCo2FQj/EEhH1NU3o1AY8Ax2ZskrFR2++huEy+J2IxWKeeOKJARl7oJ/JPSJ1s62QU2d68WL5gFRs7Yr9+/cze/ZsCgsLmxNX+8LlUnl0kN4xGE7TS1xcXJCIRJj6mvghCFhlbb0CRhdPgocMZcGtt2GnVNJELBW5mSDRIHcCsCKXeaNrzEevLyUp+c/Y2w/B32EI/5r8L27eejOmnsT9XeJszd1KYX0hNw69kbSatF4b8AAKqQKRWMTY5cnU6Tt+wjc1FWKxmMAi5tjmXMxmK2qlCBddz/7mVYXaViXjLxZypYSw0V5YjBYyjpf3uoBVk9aINtmTRZNWEzZKwZdvvEa5yXp5GvMWgawTfdhRAxzdFERNcUHwehY397c4eTKh+YF57bXXolQqUcjbfxjrdKe5++7nKCgo5JNPPul2vCe0JETlnamiKM22szNmUQhFJa3lHysrtVRWalEq4xgatZ/EhHmYTB17It3dC/DzS8fFtazDNp1RKhtDeWPHChR9obi+mFx1LiHOITSo9dQUawkf40VeQhUmo4Wc05UMGeeDSCRwZk9RvxnwAM6edpw43bFzxNM+iNTC1uFH0TP82btz+2VhwEPfk+wuG6IW2yqxHnjFpgN/7rNSJLGF0Ex58IJWatXr9VRWVvLUU09x3XXX9YsBP8jvn0Ejvpc0atSYTSYQDVBEkkhEZlUt27ZvZ9GiRXh7X4thyGg2Pv0o0Vcswc7egUadlpFz55CafQf19cloG9JxcBjCcPfhvDnrTe7ceefvKk7+TNUZzhzoWwKvg9SBhU5LkXqIabB82WlbV5cJ1JXp+epfNs9bYrCMXTFK/rRDjVPj5fe5XvXnWLyCbB6w4BgPkg+UoLCXonSUYdCbKEiqpqGbspfacjOHf8ymIs+TeUuv5YcX/kmTXwgmZ/euO18ijBkzhsID1j7lJji6K5h6awEFxffiLJnKd99tIz3dlnAtEolQKpWYTFrq6o6321+ny6Ko+HOCglYSGRlJSkrH6jHnIxKJyD9TzZa3bHr2zl52DJ/mx8cfd1wp2d6+jtCw42RljsdiaX8b3M29qFcGfKXZju9rLGQU/kpH4T99xWQ1cdOWmxjnM46bw27hyvtGIYgESrPqOL2jgLzEKr745xHkSkkb5Zq+onCztFvl8ixyt9YJuKFxnpgNKWSdSQCHjmN3LyXaU/n43eI/CpZ/ZivklLPHJiMpd7QlsQ5gYaeO+PLLL1m7di2xsbF88knHtRwGGeRcBo34XtJoMmMdKAP+HBITEzlz5gwikQiz2YwQGMmB+DPYFWUhMho48sPXLPrHVOrrk9FoEvDxvhKASf6TuDLsSo6XHafB2NBvRZIuR5QSJW4KN6Lco1gacC2c8sBnTiUFVZ3ragcG/gldRYtRqzBYabATsXGcAzfv7Z6B4BXkSECUG9Zgexriq8k4cnHUH0QSAQ9Vi0xa2Cgvwka1Vskw6s1seiOe0qyODZXzyT5diXdoCEEjRpKbkW6L+W1P+PwSwcOgY2T0cOTOLrj5jeLnzWm9HkuulHDlX7w5feY2rNYmCgoPkZ7uwlkDdvKU0aSmPoBacxq9vmOjODPzWeyVoYSFhfXIiI+OjqY8r+V37eZrj0ajbreCKIBEagsd8PbOxcsrl6NHrsVobC2zJghmPD3zuj2Hszg6jmBdfi05TQNft0Jr1JJUncTQKUMQRLbP2jfcBd9wF+J3FnDwu44ryvYWZy87jiXu71Ryr0nTehfFf4grFXmHsSiUHfS49DhfzvAPgZPfgBdy6g6rV69m9erV/T7uU089xVNPPdXv4w5yaTCY2NpL3N3dm+WaBhqr1dq8zW4Vi1HmpyMy2oxLJ09vjEbbg7yw8CMaG1sKp/x7yr/ZsOh/bL3qcx4d+wjTvGcwzX0mNyj/RJAovO2FfodMD5jO7mv38C+7t5iVtIqJgeOZev0QjNKNXfY1GKvJT6lufm3/W+hNZHHX3mo7Fzk+qyP4YK4zf/bWc01tGfeGWVCHXxxPl8VkJftk52EjUrmYq+6PxdFNQXCMB/6Rrt1yqB76PpeA4TcSEBiErKqtgsqlgmDQo89OoTApEaPOi18/6lveyJDxPkgVzpiMNo+2vX0Nw0doEYlEeHm54+qyl4rKbZ0a8ABDI5/F1XUS2dnZ3b52TEwMY8aMwc6xpcBJ1CRfams7NqI1ai8sFtstPydndDsGvIXQ0JOIxT3L1XCwjyRROpechgtXeO7xcY/jKGur3e0/pHW8v1+ECzNWRDJkXO9DExw8FEQvcSAjI6PTdk5ecpw9Wz5TTXUjJempCMbLpzja2RL3gwwyyOXBoBHfSyQSCWFhYRf8uoLZBBYzYEXh1kTMDRGUV3//21krdXUtSVeNjUUcOTqfE0dnE9HwHX8JGcmc9Ftw2RXNypJHcFdcPqEPvcFd4sFy8e38/N9Ujm7MJTTOE4lMTGXlDsrLuzbilYqRpB1qMUoLPSQo9BaGFXb9UJ61MpJ3JY2crtdR0GRr7ymT4NO3gpF9wmjo2jiTyMQsvm8kV9wdw5K/xLH0wbhuOdbjf61k2My7CfH1hh7EdV9IrBIJVrGYWWvvJPWQEWNT3+YpU4jZu/coNbUthqOb2wbmzjtGdMxn1NZ930lvGw4OUXh6XsGmTZt65IUPCAjAaDCTtM+2aA8b5UnISE8OHjzYSS+B8vIwLBaB0pK2+tCqwDP4+fes9oKr6yS+14XxesI7PerXF8JdwpkdNLvdc27+9ky/KZLgaHfsHKVcef9Ihk/1Z86aYfhFuPToOkZHCU4TPZl/63Aysrvesdl78Fdirmi5p0oktZTn9v+uwEDiaHd5xO4PMsggNgaN+F5iMBiaY18vJFapHKOrF+7Daxl6XS5aw7uIxC2xmKmpj5Ga+hiZmc9x8tRyrFZbwk59/Rnyi59nyNydAFTl6viT6u4LNm+F0R6RpXsa1f1BsFMwzwa8TuJXVTTU6YlbEIBrSAInT91E4pk7W0njnY+9MpxAlw3s/qAevc5EobuEA1EK5EYr925VN3vkO8In1Ing4R4E2rV4SUc62vE6zjQWNnTSc2CpKe362hX5GkTiFqvdL8IVN3+HLvtZTFYOfpePveM13Lx0JVEBvn2a64AgEmOW2SGVu/ZZbhBApzYwaVIULi6tQ6R0ulQMhq6UWWRIJU/g4vwyP/64mVOnTvXo2sXFxQhAk9b2PXZwsxlfXenAZ2VOIC93FM7OrXdlxGIDDvY15OWNRKvtjnoNiEQK/COeZU7Ilbw1+y3G+47vulM/UNWJ6o1YLGLENH8W3R3D0Im+SKS2z0MQBBzdu2+gWhwkuC0OYOWqaAqq0klOTu6yj1arpU7XsnPn4NyE74Tpl1U4Ta36jxt2OcgglyODRnwvsVgsvZKF6w/0PoFUy6MpKwmlqCgKo7HFWLRipKT0GwoK3293G79avan5366Jkdwf+2fsJD0vP9xT5uSuZJ72hgG5lld9IFJzi6rCDNUM/hO5AqnwBRNvqiT62i8wuF5HStq91NUd7WQkGwWHrueX/1VSklkHQHyojEw/KaNy9NgZup/QWq63La4WeTjzmKMbxz/tfDu+PxBLRLj52TfHCp/Lmd1FVBZ0HsvvHuCAi1dro8M7qPslxwtTa9n5QQlBXnParYJ3sZlyw0pObC/uumFXCOAf6UpF5WdIpT3bXrG3H0L0iFexWIL58ssve+SBP4vZbEYiE+MTakuYtHOQYjQaKS7u+r2VlYXj75/KudItZrOU1NTpFBbEkBC/AI3as8txxGI7vOxVzAuex9SAqbw649V2Q1z6mzp9HcnVnRvVgiAQNNydrJMVGJpMFKbUkH2q+ypELqPcWT7Bn5MnT7Jz585u99MbbOEonoGOjJg5Da3S6ZLOETkfXVNT140GGWSQS4ZBI76X1FeWYzVfPAnH+kZfMrMmk5szhuTkmd0uVmNoVINgS87Ki69G8sVQ7tM8x2rHe1nqfT3CAKhKeCu9CTdEE54xgTddv+bbOT8Q7BTcfN6xyR0/de9j9AVERJdOBytM8ZrGoqy11Fb/iNb0LbWmx6mq3orZ3A2JR4sdJUfXUJkR3OpwuYsESzsPYolcjJNHW+9eWY6Gwz9m8VelC4/rlVyxrYbU15Mwm/ooR9oJdo5SJi93ZuKftjB+5VEWPljD+CUqXLxbDHKL2cqm/yZw6ud89Dpju+OIxW1vCZOvjcA3vPvqGmaTheS9Jdx8wyqCg4N7/F4GiujoaDyiJlGU03e5z1HzAokc74OuYShJZ2ZhNHYv5loQpIyK+xQvrwUdlivvDnZ2tsWwg6vt+xca60l9fT0NDV3vtpjNMnJzR9E64UHAarX97S0WCfkFXRU3E2E01pGd84pNhhVwlDlesIJzd+24i/87/n/UGzpelPpHuqKKcuWzJ4+wcV08JkP7v7+gEe5MWBKKENjyW5kwzI13332XTZs2YTB0P6a9uqIOsCXCFhUVtSr7fjlw0fXbBxlkkB4xqE7TS5oQgejChYd0Rr3Gi9OnFzFy5C+IxZ0vLARJI2Ezt2GqWk5hcgOGRhNNZ8T4lI0kQCZi+ogrOeN2gPdz+i/GdYn9jTTV2+Z1bGMuyj0yls/4E59oPiSsKpZh5ZMxivXkxx3BMUzEocoDVDZWMtRtKCpHFXsL96KQKBjvPYGMunTy6/Obx57uNZPogkWYimVMVC9AekaGw+IXaTSe6PE8Zabr0ORPanWsxkFEmYsYb3Xr+GnfcGdm3T4CZ0cZyftL2PtF69CqUz8XwM8gBnqntt19pAoxU1ZnUVr9OqaaerQ6Fc5OIwkbH0Dc7HE0ag1UFmrZ92U62lo9h3/MJvt0JTNvjsQjoGvPqcxOwqI7Y9j2zpnm3YmuaGowsvO9DJbedj2F5Tns2rWr06TLC0HkyDFc++ExhjRYmYWs6w4dIFOIGTLeh1OnTrFlSzpmsz/xpx1xdS1FIjGgCjzTnBwqCFLs7cPQ6fKwWJoQixVIpbYdiszM3ifWnl0cObjadqDqynXIPdtfmLX7HmSNNDU5YLG0/wiQyzteDPj5Xk9ExONYLAYyMp4hO/s/hIc/BnDBiszV6mv5JOUTYr1imRs0t8N2cqUUD397CjXtG+Jho7zY625hx4ksqrR6FkulxEZ64B1qT9WGnhWr8vDwwEsUSTXlaGv0HDhwoN3KrpcyoZfQovtCUd5QzuHSwzQYG7CX2jPRdyLe9oMa7YNcHgwa8b2kM6mxi0GD1p3EhLmItWocTYV4x1Rg5+SAIKtu01bqsQE7n1+ZOm0mYosKi7iEBl0GCoWKxqJr8NgxmrGTxnG8vP3KhD1hWNlkxMdDsZyzda/TGGCjI1dzf/MxuVnJkBOzcCuxZ8nMlZzMTmCkNQ6ZQcLt4+7HUiPl5JZ87r42jGL3NL5O/5obpXeQvlGNvsGESCwQFOaOW+RetJaez9vFZTI5u8a1OX44UoFVJDA7oUVL3GeIC65Lg7gqNZcqo5FPYkLwP+lCcXpdj6/bHYaM88Ap4lOaSueTfUJB43kGSdhoJUUVz2O1mlEqQxk3diNicUvYkoOrAgdXBQqlhFO/2LS0K/I0bH3rDLc8N+n8y7WLwkHKkgfj2PF+MpndLI5UWVDPZ08cYdnDo7nrrrt4++23qamp6f4b72fSyhqobzLh2YE+ercQYOlDoykoz2Tjxpbk6KYmJ0pLbV5Mq1VESOgpnBxjGDr0eRSKMGprq6it/YCy8m8BAYvFwpEjR3o9jYCAAMBWaApsi6Zac3eXi1aGDU9BqfTBaplNRYWc1NRiTKYWB4DSTkNlRRByhRVPTxNisQKdLgdXlwkMHfocwm87UyNGvA6AwVBDTs4rTPaNJbUmtdfvq6ckVyV3asRbLFYatR0vbryDnSgvKadKawuJqpcL2Ac7dCjT2Rnz5y3kl1dtDoaa0gaGjPclLa33EqYXmrCwMOSV/RBqdpmQXJXMu2feZW/hXkzWlu++RJAwXTWd26JvY7jH8Is4w0uLvLw8QkJCOH36NLGxsRd7OoP8xqAR30uESzDOUav1ADxQi4IpPd6AxM2TK6+Mxt3DRE7OKzQ1tdygK3LcSN9nwlK5mailTZgsZdTXJyFW7sV3yDoWm2/kOH034qUWGRZT971RNSUNHP28AXDjJPltzu98P5WwUZ4s1N5OYrJtgaJ0kjFjjZSi6nvQGnpefdPP9VWOfeOOtrZ1bHOZi5jEYDnKJgsh5babfHCMB6VX+nBPVkup9zSdntlXhvJDes+SE7vD/NtGoPDZSXr6DwieG5l334sUxQdiEarQlvuTdaIc59BdqPU2z6+nx9xWBvy5+Ia7cEW4C79+kkrqoVLqa5vQ1uqbvbldIQgC02+KpKpIS21Z9wsk5Z2pwic0DJVKdVGMeAcHBxYvXkyRzonpBhnRht7voAWNcMcjwIF9x3I7bNPUZE9mxniUyvmcPLmHsrKvAPD392P4CG80miSOHy+nvr7nxYjkcjnXX389zs7OaGubOPVLPnHzAgmKdWHduq4LxAwbLsHLMwmzpQS9vgQ4hYsrLFv2L378Ma85dCQ3d3RzHwcHB3x9fRkZW4UgFLR775PJ3GhsKmK+YxD5QXPZkb+jx++tN3yQ9AExnjHMCpzV7nmRSGD538dRlqOmPFdD2pHSVtWT046WUqFsYtmoAGoqGphWbGWcvws//fJZj+cik0gRiQQsZitiiUBT0+Ul12iqqaRK07Pdh8uVXfm7eHjfwxjaETgwWU3sKtjF/qL9/Gf6f5gd2L4SUm9ZvXo1H3/8Mc8//zyPPvpo8/ENGzawdOnSS3b3RqVSUVpaioeHx8WeyiDnMBgT30vO9VpdcojEmO2d0Ov1bNyYSGlJIEF+j2HWiyg+7EX+r36kpURTVdpEQ5kdWb+0fA1cnMfiGxKK9qiCofZ990Ike3cmeddzzEYLGUfLKUi2GYNDxjsy+w4D5Zp/YuiFAa9QqEjfo2pjwNfYi/hymiMmiUCTTKBBLuAT6sTMmyM5pmkxYFUKGSt83Wy7C50wYro/Nz01nhkrIttNOm0PuVJCUIwdBQXvAWC1mkjP/CsN9tfRqLwLt5H/JO7mt1Dr3wUgIvxxQkMf7HLcideE4RvmDFb45f0kLJbuPzTkSmmPNbcTfi1CXam7KNUg3dzcuOXm1aRsbiD7owzG6foWAnfW8200duzdlSsaKCsbQk5OLmVlLd7x4uISKsrVHD12HVVVz+Ho2LPEeIlEwu23305YWBiJu4v47IkjVBVqCRrhzoEDB2jqIikxNnYEfn7bMFvaVo8tKX2CCRPaVyHSarVkZmaSdMaTpqYSTKa2OQUWi4HGxnxKS7/nodi1iIQL82ixYuXthLe7NHx8Qp0ZOVvFkr/EIZG3fAdqihu4shBGpzQyJqkJXa0ekViEj49Pj+dy8MgBVFEtydwXO3yspxSWlNDYi4Xl5UZyVXKHBvy5GCwGHt77MMlVXSsT9RSFQsGLL754wb4jVqu1zzaLWCzGx8cHiWTQ93spMWjE95KBMOJlFcUoc5L7tWCOwWBg48aN7Px0N1mbA6lMdKc20xmrWI7R1ROzTIFYbvPi6mqVnPnGiar83SgUcuYduIu/lr6O3NiS8BVVPhH3Bv9uX98imDjlPzBeueAYZ1yiXyAz/zYaGnoXi2tvH0FdWdv4390xdmjtRIjNVsZnNFE5zJH6G4L4S2EpG39LXgMIsZMhCAJFaR3fjO2cZExbPgRXH3uGT/UnNLZ7noyIcd4kJt5GY2PbHQkAteY0Ov1pAGQyb1SqWxGJur7B2jnImLlyKI5uCkqz1Gx+I77DRNf2cPLomcKQSW/m2xdOMCZm0gWvrTB37lwayq2UZqk7TGzsCRnHytHrjBQWFnbYxmxqP95eJDLi6FSJIJiws6tHFZjEuQoxXeHl5YW7u02H3MXbrjlRuiKvvkuvflCQirCwfZ0WnrJaO/98iopKGDLknwhCy3fMarWQl/c2J0/dSGNjARZLI1JjKUNch3T3bfWZ1JpU1p1e162q1HKlFO/g1nkgpiZzy86SAFaLFS8vr3Z6d05GRgb2frbPUK8zMW5s2/C8SxmLwh7VpOkXexoDzrtn3u3SgD+LwWLgvTPv9fsc5syZg4+PD88//3yHbQ4cOMDUqVOxs7NDpVJx//33t0pc1+v1PPLII6hUKuRyOeHh4bz//vsA7NmzB0EQ2LZtG6NHj0Yul3PgwAH0ej33338/Xl5eKBQKpkyZwvHjLYv62tpaVqxYgaenJ3Z2dkRERPDhhx8CtnAaQRCIj4/vsu0gF45BI76X9LdXUdygQV5diljfiLyyGFFj3xU0zqU8p5DGKpvxZf3t/1nFEhoDh6Dwt3mGm9QKKnKyGbXgSkbOVmFoMtOQB9fk3kdg7TBGFs/CVxNOjbKk29e1iCwcC9xMjltCv74fRzcFvhPeQKOJ7+UIAm5OV1F+Yi0N6tY39FJXMSmBcrxrTazYW8+chEau83VDIRXx0zkGPICdWERJZh1phzteeFlMFszmFgPJ0Nj1AtDd354JS32pU7f1mraH2SjuUYiXq4891z46BpmdhMLUWr7+93HSj5Z1ayt3yDgfVjwzAVef7utf6xtMbFufxOJFVxEbG3tByrtHRETg76cicXdRv40pCLZEX7m84xAksdiIILQ1iC0WMWazhPj4hZw+fQVZWePabdcR5eXlzbK256pI1ZY1MHHixA77SSQS4kaVUFG5pdPxCwoOd3peq9VSXaWgpmYfWm06mvok0tOfJDvn/1r9DnPz3mBWwIyu31A/8t6Z97h+0/Xd+v7Gzg7s8NyQcd4EDHPuli78+bi6utJUa7u+Z6Aj/gHdd3ZcEggC5U2X8A5zP1DeUM6ewj096rOncA/lDeVdtusJYrGY5557jjfeeIOiorb3p+zsbBYsWMCyZctITEzk66+/5sCBA9x7773NbW655Ra+/PJL1q1bR2pqKu+88w4ODq130x599FFeeOEFUlNTiYmJ4eGHH+b777/n448/5tSpU4SHhzN//vzmMMcnnniClJQUtm3bRmpqKuvXr+8wfKYnbQcZOAb3RXqJXt+/pTddHB0415QUGQxY+lFSXe8VgKgkB8Fgm7cyNxlBLMZ3hDdugXUAuAbVE3r7auxd3bBzaIlddq72Y1H1HVix8NPwN7AKPY/Zy/A8hp8mHLFFitTSe2WQs7j6Kmlqat9D3R4iQYmDQzTqqgrKkyahLRmJqdEVaB3bbRTDjlglzg1m1uzSIP1NlKYorZaZ81Vtxt1fq6UUGSZjx8aYXmdi29tJDJviS0lGHYWpHXvtnTwUmE1WYmaqaGzsvq682VpGQ0MO9vah3e6jdJLhGehIcXot9dVN7PwwhcqCekZM828lTdkeLl5Kxi4O4Zf3k7vtTK4r17HrvUyGThzL3Lvm8cvOn0lI6N/F3Vn8/f258cYb2ftFRqe7JD1FrzOhbzAxefJkEhMTycvLa3VeEMwIgrVZrrE1Io4dXYrJZAvJMeh75ggwm8188sknLFiwALGmJWwj7XApI6bb3q/RaEStVlNZWYlOp0OhUDBxgj+paXd0Ob4q8CRxcf54eIynpiaHEyf0nJ/f+emnnzB9+mGMpo6/m/X1ScyOWMFXCjdqmi5cDoRUJO3WQlZX374XVukkY/T8YLZv396rMIe5s+dz6ANbSN/Qib4kJib2eIxBBpbDpYcxW3tWqdlkNXGk9AhXh1/dr3NZunQpsbGx/POf/2z2oJ/l+eefZ8WKFTzwwAOAzSGxbt06pk+fzvr16ykoKOCbb75hx44dzJkzB4DQ0Lb3/meeeYa5c22J3w0NDaxfv56PPvqIhQsXAvDuu++yY8cO3n//ff72t79RUFBAXFwcY8aMAehUIrgnbQcZOAaN+F7SE+3g7qC3c8QqkSIyGTHZOWBy7L4ud6eYTMhqy7GKJDSEDEewmLHPTEAilbL8ny9Q2fgqlVW2WFpBMFLHK+TkmjmxYUKboU777aLMKadX08hzS+JTlycxCyZUdUNZmHY7Inofn1ycXseIOf9Hcc2fOw0RAMCiJHPrExh1XXsJdo5UUu0oZmSuvtmAB4ic4ENqQ9tEtet93LBmd+29KkiupiC5rVLQucTMN2If/CF2iiCkUncSz3zZ5bgKhQpfn6XU1yeReOZOxo75EYmk+8bh3DXDOPRDFhnHbJ6mhF2FaGubWHB7dJd9I8Z44z/Ela3rEynP7V6lx/JcDeW5GgQhkquvvpqioiKqqzv/XHrDlClTOPpTDikHur9r1F0yjpczauYoRo4cSU1NDQcPHmzeYpbLG9DpWrS2o6OjCQ4OJi0tjYqKCtTqvl27vr6e3bt3c+0VK5uPWa1w+pcC5v1peLtG7NGNORScWoNq2rpOxxYEK9U1P1Fd8xMAQcHg46uksGAE5eVhODjUEBx8GqOp69wTqamCpeFLeT/p/S7b9hfF2mLqDfWdFpwqy1Vz8Nu2oXfu/g7MvTOC/Yd2cvr06V5dvz5P0lwJuElrxNFr4Atf9Te/93jnBmPvKmZrjf27M36WF198kVmzZvHQQw+1Op6QkEBiYiKff/558zGr1YrFYiE3N5czZ84gFouZPr3z8KezBjbYvPtGo5HJkyc3H5NKpYwbN47UVJui1F133cWyZcs4deoU8+bNY8mSJUya1L6CWU/aDjJw/L5/sQNIV+XNe4q2oQHCohHMRqzS7qmFdAe70lwkWpvlIG7S0uRnW62Hj5mAb0QkJafaGl+VFTuoLhkC52lpZ3h2L7SjI8wi2wOu0DWNMqcc/DQRvR/LZOGXt7SMWHwDSF/rtK2jY2y3DHiAUdl65iToWhnwAO6j3LnmdFvv4xVODpzcFt/NWXeMe6AFheo9amtPUcuhVucUCtu2/LnqQgCCIGb0qC9QKPywWq1kZj1HesY/GT7spW5f195FzqxboqjIr6eu3LYrkZdYTW1ZA64+XS8GlE4yZt0Sxeb/JlBf3f1qj3u/SMeoNzN37jy++qrrxUp3cHd3Z8SIEfj5+REUEMJHbx7qulMv2P9NBhazhdg5gXh6enL11VdjNps5c+YMTU1ONDXZjPjAwECuueYaBEFg9Gib2svJkyfZtGlTZ8N3iru7O9cuu55TG1rvQmWdrKCuQoedgxRtrZ7ICT44eyrJPlVB1skKpErfXl1PLtcRHnGM8IgWpSqTSYpMNhYvT1+qa3ZjNLb1tlfX7KdMF9Kta0S4RjDOZxx7CvdQrO29xKHRYuTxA49zf9z9RLi2f28RiQQMTa1/3H4RLsy6ZSgJqSd6bcCDTYb1LKd+yefGJ8cjlUo7TYK+1LhUlVH6C3tp78JgHaTtJ333lWnTpjF//nwee+wxVq9e3Xxcq9Vyxx13cP/997fpExgYSFZWVrfG72nY78KFC8nPz2fr1q3s2LGD2bNnc8899/DSS22fKT1pO8jAMRgT30t6o17QJSJRvxrwAKJzZM7EDfVIaysQgMZ6DVarhcbGtnrIDboUwq94At9x7yOIWh5Aj6qexl3h3i/zsvQgFrgjTEYL5XldJwEbTflIpN37qnurzW0MeACFCTTnVVyd4mhP9Td5fU6YdHAzEzJ7PRpNW4nKyMh/MWniHiZN3ENAwC2t56QIQKHwA2zyj+FhD6NSre7x9cUSEbFzWkKFzCYLW9efQVvbPaPczdeeOWt6Vn3UaoWD32VhqrDHz8+vR33bQywWs2bNGmbOnElocDi7Pk4japIvV9wTQ/TMAMSSfrzVWeHQD9loqmy/LUEQiIhoazQ6Ojq28YyPGjUKFxeXXl96woQJpO6qITehrRRgVaGW4sw6pHIxZpOVUz/nk3XS5jWXOnZfuUksdsDR4X6Sziwh/vQC6mpb3+uSzsxm754wvvvOnorye1EoAtqMIZE4crC4a2WqGI8YvrriKx4d9yhfXfEVXnY9Tyg9lz2Fe7hm4zV8n/F9u+fd/OwJi/Nsfi2SCCy6OwZnT2Wfd4SskpbdWWOTmZKsy0udBmwhW79nJvpORCL0zHcpESRM8G27M91fvPDCC2zatInDh1tyUkaNGkVKSgrh4eFt/pPJZERHR2OxWNi7d2+3rxMWFoZMJuPgwZbfpdFo5Pjx462qR3t6erJq1So+++wzXnvtNf73v/91OGZP2g4yMAwa8b3kctl2NDnYwnKsgNHVC7HOti0okcvJzHoOvb7FCG5s9MTD/VlULq8SFn43TqrTBM/9Fwi2G3vpbjOrolb3ei7D3YdzX9x9jHWZgHtD3w03O48MLEIFzg4LkUg6Cj8SEOvu6DRmvSsEAfLrWofSCMB0vYTilN7H/I6YDVPv3kjIwifQNsS3OW9vH0GA/00IgghBEOHvd0PzOXe3aYwY/nqr9iKRFCfHEb2ay/Cp/sTMbDHG6sp1fP9/J7tdodUv3IWJ14Qh7uZi6Sz7v8lk0fTrWLVqFc7OPQ8hmzhxIrfddhuLFy9GKpJz6pd8vnvxBI31Br621LN6+xnWq2v4Sdm/OSxWi5Vt75whN6ESo96MTCZDoVC0alNYWNiuF7YvNSZcXFwoSGnf2JyzZhh3vjGDqx8cic4hH2V0OSueG83469X4j/+iW+ObzTJyc5aydWsttbWO1Nd7kpo6Da3WFQCLRUR9vW1Xy2q1kpSUS11d2++c2aTFU+nZ5vj5TFdNRya27fi5KFwY4zOmix7dI8Cx7cICQCIVEzc/qPm1SCQgFgts3bq1z/kZlTWtF0oiQcTQoUP7NOaFRiT6fZsE3vbeTFf1TIFnhmrGgFZwjY6OZsWKFaxb1xLu9sgjj3Do0CHuvfde4uPjyczM5KeffmpObA0ODmbVqlXceuutbNiwgdzcXPbs2cM333zT4XXs7e256667+Nvf/sb27dtJSUnhtttuQ6fTsXbtWgCefPJJfvrpJ7KyskhOTmbz5s1ERUW1O15P2g4ycFweluglSEpKysWeQrfQ+wRicnTBKpZgsbNHWluJtL4Wq9lESckGACQSF2AOp05KOHk8HVfBzJUr1yDWp2G1HkEk0WMxKsEKEe7hvZrHX0f/lRVRK1CXNiH/ajhaU9+NqsaqcBqrhlB1RkToyNvwn/ANZRVftWrj6jqZI+/60RMpv/ORBTrwcFXLA9pXLuX5MH8MX+XSsdBg50gVYvxij1FQ2HFohcFQhcnU0BzjrtGcAWDE8Nfx9l7cyyt3jIeqdQyvtlaP0dB9z9yoeUE4uiqoLtbi6qMkfldhq8I67WExWdn0ejzzbhvOggUL2L59O1KplKqqrovOREZGMm/ePLS1etQNAhvXJVCRZwsPG70wiBNJuVTU6ylVN/HvpcMo/zi72++lO1QVatm6/gweKgcW3zOSvzzwF/QGPWlpaWzduhWNRsN7771HeHg4Hh4euLm5kZiY2Gtt6DFjxiBuckZb0/pbJ7OTEDTcjcjxPhw8eJD9+/c3a8anZ6Qzc6YLzqYY9PpTGI2de5srK1Xkn5cvbjLJKSoaxtChBxGJLEQO1ZKe1vJdqa7Oxf88IZYGXRYj3ReRWdu59Ovewr2sGb4GqVhKTVMNJ8pOdPEpdA+dseNiZOeqQ5kMFnZ/nkaDva29k8yTiVPG0mRu4PDhw93OfRKJRBhK7YCW+1pRei1XLb+KvPiT1Iv7nsx/Ifi9e+IBbou+jf1F+7slMykXy/lT9J8GfE7PPPMMX3/9dfPrmJgY9u7dy9///nemTp2K1WolLCyM5cuXN7dZv349jz/+OHfffTfV1dUEBgby+OOPd3qdF154AYvFwsqVK6mvr2fMmDH8/PPPuLraFukymYzHHnuMvLw87OzsmDp1Kl999VW7Y/Wk7SADh2D9nQbBaTQanJ2dUavVODk5dd2hhyQkJPDjjz/2+7gDjtWKoiQXf1UpflNyUCgCkIif4OftB7Gc81WIiYkhyC+Z1D1i1HktW4nOd5XxYnzH2rbtoXJUsfWarTRpjWz6b4uh1d8Mn+6KMvxp6uvPNB8L8fmQbev6JpuWFiLn23H2iICRjkrWRwWS/kVWc6hCTxGJBK64J4Za06NUVf/aaVtHxxF4e1+J2aSloPADlMpgxo3d2KvrdkVOfCXb3m757MJGeXYrwfVcrFZrs6e5sd7AR48exGLu+hYjkYkYPtUfqUKMT6gTanMJVVVVJCQkoNFomD59Ot7e3litVqxWKxKxlNCwUEQiEbs+SiXzeGsJuFHzg3Cf5MX81/Zx+7RQlnm4suP9gV14CyKBhXeMIGSkJwcOHGD37t0dGkWxsbEMGzaMtLQ0Tp3quNKvVCpl5MiRREYOpTZNRPyuQoznxHR7hzhxxT0xlJQXkpeXx/79+zscKzY2FF/fr9E2pHXYRq32JDFhPtB6tyAoyEBgkM3IcHIaRWbGVWRkZOPoVMHIkb8gnKdYFRR4B1s08m5pbEe4RjDCfQR7i/b2m5rN05Oe5pqIa9o9t/OjFNKPtCTD+4Y7g6qYjJwUopRzcfV2ZNoNQ3p0jxeLxQyzn4+20thSOE6ANS9M4puXniBPfOELnfWGoX4+3HD7nQMy9kA/k3vCroJdPLy384JPMpFsQCq2DjJIfzLoie8lWu3AZKsPOIKA3jeARlMpFs1QlA7XsHn7oVYGvEKAyZMnUV1zFBe3iajzWrpnJvdc7aNOX8eOj5PIOlrZo+qgPSVlfx3LJr1Lhd2/sFj0SK3RHPm277H3equViEoTdzcpCFDA8R1nqMjvXWVDd397Ft83ktLKV6gq79yAB5tcX319UvNrZ+dRrc5rtRkoFL5IJI6tDOjeEBzjwZDx3mQctRnE9s49z8849/p2jjK8Q5wozepaksVksJCwq/C3MSBgqCtKJx9uvC4adUMNkZGRWMwWTmzLR1PZSH5yOfstZSDYNOjP58yeImaqHHh8wVDmhXpw+KP0Hr+XnmK1WPn10zQW2ksZHTsObZmVI0m72rTz8PDg6quvRhAEfH3NDBniz1dftb8jc83V1yFudCJpY0mb0KYR0/2ZdsMQjh49yvbt27ucX3x8DpWVVzIiOgid7ud22zg7VzIieicZ6ZMwGGyGp6OjAyNjyzm7gaDRnCI0rAFHJwlyeVorA14k8iI87E48Pecyqqp7Ox+ZtZldeux7Sp4mr8NzZxVkAOT2Eq68P5a33zmEi6sL81fG8P5D+zGbLMQuCEUQhG4le5rNZox+Ocy8dhKFxxuJ31EMVkg7Us6COx/gnXfexirqXzGEgUBup+i60e+A2YGz+WThJ7x35j32FO7BZG35TkgECTNUM/hT9J8Y7tH3quWDDDKQDBrxvaQvxtJZnJ2dsdbXoRMkmC7gNqZVJKOEyZSeMGCVtN6at5PVYldaQl7C++hkm/AMHkv+OY7CoDPjmDa+iH3qtsZJR9Qb6skpKcBiGdgHhNViZcNLyfhG3EpjveG3UI6+G/HDCwzE5BmoQUNf/YRxcwMpLH2aktKOYxc7Q6ttbYzm5L6OWn0CpTIMX99r8PO9ttdzE4kERkwLaDbiu1OUqjPMRguayraynF1htdKspZ95vBzfcGfSf45HXaFDU9W9ZFuj3swv7yUjiAQ2W7pfT6CvNGmN/PjSKRQOUqbfEsKRpLZtJBJJ8/0jO+dlGrTpxIx0RaCC8vJQzGYpvn4ZqNVeCI3XcuiHFBpqIWSkB34RLraqsY0mJl0TjiAInDx5stvzKy4uo7bWndFjJED7f19X1zJCw05QXa3C2ysHDw8ptbVnE+AFFAp/GhoyUCrPN25FjB79bnNeRp2++/Pqb7bmbOW+2PuQiqVtzikcpMiVEvwjXVE6yhBEVmpqahg+fDhWixWsoNcZEUutPVJrSUtLIy0tjcVXXIl3iBPluRoO/5jNRMKIUojILK/A6Nq3xN2BRi/9YxjxAMM9hvPqzFcpbyjnSOkRtEYtDlIHJvhOGNAY+EEG6U8Gjfhecn4SW0+R+PpTP3MBjvmZyD5djzlsxAWX97JKWsdpSiR6oiL3YD9Bi5ZTYAGx23f4hN1PWbbNeGqsNTE5cTmeQYFY3ZvYpt6AyWJCIpLQaOrYYPvQ+1muGHclfoYQ7E4GUVvUc+OuO5iMFgr7kGzaHpK+rwOaMRqMVFe27wXtDnV1J6io+BlPz7lUVe2iqmoXVqsRg6EKOztVn4x4AJ9QW3jG/q8z0PRAMrI9zGYLMjtJm4q4PcFisVKcUdfr/tYB3PnpjLi5gYgd25cWbGpqQtuQTXn5Rqqrd+PiMpWsTBU6nYCzcyVRw/bS2OhATXUAFY0HWfK3+WD0ai7AFTXZj6Mbc5DKxRQWFnYrf+BcdDoxVZUrCAjYQZO+7c6aSDSTtFRbYqjRqMDVbddvxxWMHv01To4jyM8/SFr6s0gkLbKroSF/bpVY/W3Gtz2aV39SrivnyUNP8vzU1qF/VosVY6OJ6/8+Fid3u+Z77vXXX09oaCiHvrXVwYgY68k33/Zuob1z1w5uuukm3J2i+fWTVA7/mM3cW1dQ+MpDmF09sdB3B9BAIZW2XfT83vG29+73Qk6DDHKhGDTiLwAmQYTGzh57fRP1dkoyvFWk+YchKq3hrbBwUvWNiIx6zJKLk/zk7FKKu3shTY1OmBqdELmbsFhsBpxac5ygmesxG++lssBWKKO2pBHPklgkUhHPTr4CJzclqgg33il/nR+z2o8hbRDX802RTSFj+vA5jKxe2mdP7+VIVUkpFu+Ok+66xsKZpLuxCUu1Xl2YjGosFj0iUe9lSgVBIDjaA0EQ2PxmAg11euxdejeeTCHhintiUFc0YjJaOLY5l+qiyzQMDVvoxdTrh+CpciTlQAkRY71x8paRfbyKpH3FVBe3LiRz6FD7OvXBwQEkJKxp1v0PVP0Zf/8UMjMzUau9KS2NoLoqEK3WnT17yhkzxgulm82Az83N5cCBA7gpfdn5cxFHTxzu1eI/PR3Gjr2L3Lwn2pxzsJ8Iv6Vs12sCADmgx9f3GpwcR7B37152796Nr+8ihkaVYTLZclw8PGY1j1FvqCertnta1hcSQSSw4I6WPA9BEDjwbSbaWjOnvjrdXCtBa6qhqKioV9doamris88+Y+bMmYy7ahgFKTWoK6WMX3ItBXoLGbl5/fFWBgSZ7PJIwB1kkEFsDBrxvUSvqev0vJNCTr1aTYmXPyeChlLi4o7YYsEiiFAY9YyqKuLxmVPwKS8gSW6HuZ1t3wHFarX9JxKha3BFXWcrBlNuCGbVtGVUVr1CXZ2twItac4iw+SYidXdz8EtTs3fTZLSQuacaqCbFsYw1993BhqwNWLtQgjmmO8jaKx/gyPc53Up6/D1RWyzFP3QI9drkPo7UdnsgcuizfTLgz8VD5QBWMBn7Fubl7KnE2dNmgLp4K/ny6aP9Mb0LhpOHgolLwxEE8Ap2wtHNtgM35foIWxnzt99i8uTJXP3XWDavO0NlvgarFVx9lPjL/cnMbB3r7eTkREjoQaqqzi1qVMWNN97I+vXrqaysRC7XYbHY4qctFgtffPEF48ePp66ujj179mA2m8mmb0o7FouFkyfTcWun7IOu8QAKxRBuuOFGlMocziR9DAgEBz/I4cOH2b17NwDu7t6tvm81NQf4uTQFK1Z+zPyRemPv8kb6i+WRy7tuBFQW1LfKN/ANc6agrG+fr8Fg4Oeff2blzV6Exnpyans+s28ZQ33JwOdm9AiTCblcht5su58olcqLPKFBBhmkJwwa8b1E2oHHQqFQsGDWTI589A4Hp1zBGe8gpiYdY9GZQwhWKyaxBJnZ5oHek5eKt5cXhiEjwXThvNIinRa7oiwEixm9dyBG1xY9Z7NMwQcfbGHGjBVAS5XGOvUxFIpihk56ndQDbSXyGuuNHP6gkAVjF7OtqvOKlI2mRrbZf841q1ez6/2OlTL6k1wvCQ0h9syusNLUYGTMwmCaGowc3ZjT52JNPaEsV03Mlcv6wYhvi9nUALLuVabtCrm9CSdvMbWan7FznoqsH8Y9awD3BzI7CdNvikTuLqfwZCVJe4sxm3r/d3T3d8A72BHVMHckMhEisYDcTorSWUZlXQmZmZnUmN0oP1ROWVkZ3t7eZGVlodFo2LZtG+np6Yy9eizu9kPY+Fo85XkamuStw5FcXFwYPcaZqqo3AVAqw7FYGklJfYTAwLXMnevDqdMnsLOrRaHQotO5AFBUVNRrr3BnpKRYmTBRgkRiAsQoFH40NRViMu1jzJh0ampTyMk9ew+wUltTwc8/t4SCKRSpGAyVza+zsl+kxiAHixFlo4SL/Xgp05V12SbzeHmbhGGjwYxLDytddsTOXTuZO+MKchOriP9VR+DMADjdNz36/mLE0KHkbfgcB1c3Iq9dyb4DB/u9EvkggwwysAwa8b3Eztm13eOiwhx2vXwAgLHHdvL3W+9kY22LFOFZAx5Ap9ORm5c3oPNsD3llEaLf5iGrKm1lxJ+lqcmCVCZwrr56U1MxXsN3knV8HEZ9Ww9tbZkOz7Qo8DjPiLdyvmIdX6Z9SWOAAR+m9fXtdImThwLrAi8SRUZevSUSuSAgiGwTMpssHNmQM+BzOIvFZCXhpxEMv3oNRUUf9uvYZeUbCQ25r81xq9WCIPSsiItafRL/iW8gMf+3Xwx4gAZ1/xRcktlJCFgewr0H0sgo1zI22BVFoIgJOb0z4kfOUTHpmnBEovZjlR3dQgkNDQVs9SHkcjlyubxVIaecnBxycnIICwsj5rooclKTSC+MB8DezoFVq1YhleVxOuFmnB1m4K58HFdPX5y95JQU7kCjjQdRMRPG/5WPPvquV++jp1ittsJN9vZ1xMcvQCb1QxAqiBy6DYWinNraFtlOR8fhFBbasnRlMh3uHgUo7dM5P5InTKan1CjiWMPFNwa/TP2SBcELOm1TWdh2t6CqUItqWCARERFtdlJ6SmlpKT9t+5aAwCmU52oIjQ0jMjKSgow0Gk0WuEhGs4+PD+4GLQUINNRUk/L5e4yavQjTBXQmDTLIIH3n912ebQBRtvPJCUY9oqqWRDFpaSG7Pv/kAs6qm5zz4LUo7NqcFgQzRt1ntFcgqbLuA6Lntu1zluPsa3MsqmIiE/OWEFI9ErGlZd2Ye/TClCWPu2UoX+i1ZDfqueJUBi/nl7O+oIK7U/Kpc73wiVyl2Wo0hf1fydFgaF+3PjPruTaqNl1jxdP9Kg5/X9hvsqD2znLkyr77DTyCHHlwSzIZ5bb4+uN5teyvqUcr6tk83QMcmLg0jMnLOjbgzydiaARl/mVMmDyBNWvW4OTk1Kp6c3V1NTn5WeSUJTfHqkvUnmx5NZ19X6dgtZpI/3kuW/+bz+dPHeGLp46z8QU5e94aj7XqXnx8wpkxY8YFC2uwWMTUVAegb3Kkvr4ejcaO8rKwc1oIODn9iabGB9i5s+U75OZagtXafr2HUiEIay+SN5USJWJBTIBDAKIeLjrbY07QnC7biMTtz7MotRZf375XlQZbdU3PQJsu+tGfcpgxbiFOxdnY5yQhmNpPfh5o/Pz8mHnLn1j292cAaGrQ4oDl8pVOHmSQPyiDnvhe4ubj2/bgeTaEycGZRjvHtu0uMnrfICgvxCoSo/dWtTrn5ZVNeMRRxOL2Y6GtVgNuIemAf5tzjW41pHocaXM81fswfupwrkq5jxLHLLI8ThGgjiS0ZmSXcxVERsSyBkxNLt16b+fjGeiIyVOG9bcQ5GRtE8naMvzlUj4aHkzeJxcn+S71Vzeu+usv6I1paNRZlBWkYBDt7NOYpaXf4+IyDm+vxc0ShtU1Bygq+gSN5gyjR32BILR4/ozGOqRSlzbjWK1WMrNewMN9PlVFWja8fIpJ14bjE+Lcp/lJ5WJmrYxi2ztnum7cCdUF9dw6XcWbh/MA8HNWMMHRHoek7icMK51lXPPQKGSKjm+BFquFz1I+QxAEIl0j0Zv1/C/xf8RXxvN1+tdMC5iG93xvbgq6CalVirpSTUhICCaridLyUr785EsaGxtxC5ewZGkwGVkvo6mHeXd6QONYjm7KIf/MbxVULbD7szSS9jkC9tyw4gY++PCDLt5FO1tcPUCprMPNrZjKipDzjrfo+ldX+bN/nx7OWZwbDEpSUmYye85e9PoWiVqRSI7cLoikos6rwp7LULehLAxZSJBjEDMDZ2KymJCJZaRWp7Jy20r05t7v3gx163qhbGhs/z43dJoHu0+2n5jcU2prawnwsYVfWixW8pOqmXPbPWx742XMxiaaJBfekaDT2X4rQdGx2Lu60VBbQ2FaMiHzrrrgc7nYaGv1FKbWYGgyIVNIUEW54eDaP7lFgwwy0Awa8b0kObVtLLdVJkfvE4RUXYVFLEXvo2qn58XHIrejMXBIq2OCYMbBoYbQsBMdGvDN/a11tGfE+zq0s7D5jRrXIqxY8asPx68+vNtzldjVEjz3WXJ/fgpTo1u3+50lbl4gX9e09hhOdnHgXrE9yeuSqS6+OJ6n+mrY9Eo5AUPDKEpzxVM1i4i5keTlvdnrMS0WPRkZz+DlOQ9BsD2Eaqr3YbWaUatPoNeXo1DYvIsNDdmcOHkt06edbjOOIAjI5d4Ul3zC8GlfcmZ3MUl7ivtsxINN69zV157a0oauG3eAXmfCeW81//DxpAgzY50dyE+o6iKdujUeYdnk5P/C0Mhnmo+ZLbbvfVZdFum16fyY+SMnyk+02z9fk8+nKZ8C8NKJlwBbZWK7JDuKtcWEuYRx5w13ggYMlUdJSLoeo9EWnpKW/g+GDXuJK+6eTEW+mj2fp1JVaJNcrSywhXdUJHvwl788iNls4sSJE3h6eiISVZOdXUpGRjxhYcdp0DmTlzu6R5/duQSokhAE8PDMp7o6AI3GEz//NDy9WnT1BVH7IUphYRE4OVVSWWkz4rXSEIodFrMxZzvF2u7JxzrLnflowUfYS1viz2Vim7Eb5R5FnFccR0rbOgW6S1eqPVarlYr89ncTyusKqK3tn53CgoICosMbEEQCVouV5P0lLPlLHNc983988f0PNNVf+ATgtLQ0tm/fTlhYGBaLBasgUKjR4VbRdR7B74WKfA0nt+WTl1jVardRJBIIjvFg9MIgvIIubmXZQQbpikEjvpd0FDtodPVsjjEXNekQ6esw2ztBP2wP9y8WzkZTSWU6xo//oU3p9I4QjCHtHlcX6fF096dSUdzquKedJ/9weYlU6no8S6POC6tFit+Edyk9divGhrbx+52hrmjE1csWmuArl/LhiBBinZR8/s8jzXJyFwtNVRMpB2zhV7p6I2OuuJ3YkaOpqzuBk3wl6acPUVnxC6GjPGgynEDbkI5IJMdiMdBeqBOAXO7VSjEkNPQBiku+xmzWkpPzKkOHPosgSCks+hg3tykdzs1orMVkUhMSZeDMbihMraFBre9VFddzEUQCcXNV/PpJ3xKajToT5GjxBPLofs0BmZ2EkfOhXvYMxcXg73cjerWKE5XHeDPv1U4rfXZFYX2LVzqxMpG799yNWBBzdch8RjpfjY/hNI2a4xgMlcTHr0IsdgCsDF24mJTNV2K1COg0BvQ6E0c35pK4u4joGQEoG0NorBew+NyLs0sZY8fZruHkXI5a7U1drS9Wq4ieeuUFwR3IRSSyEDVsf7ttZLL2P9vIyEj0+g3Nrz8uLiFT/36Pru+l9GplwJ+PWOhbvPhX6V8x1mdsh4X5BEFg+uoovvlna8WksDhPBHl5u316S3FNFmMWxnB8Sx5NWiMbXj3NNQ/HoVQqqb8IRjzAkSNHOHLkCIJXEFZvAcQSlK7tyBX9Dsk5Xckv7ye3mwxvsVjJia8kP6maeX8aTmhsz5453aGyspInn3ySLVu2UF5ejqurKyNHjuTJJ59k8uTJCILAjz/+yJIlS/r92oP8vhg04nuJxdJ5Ep1Yq8auMBMBMDm60BjQfe9zfyAIZqzWloegu3sB1dWBza9dXMrw9MqjQeuGj29Gtw14kUhGQ7UX0NaDbbXA9SmPkG2fQJL3AYqc07nH/69EaceSvKH9eO3OCIp2J3ZxGenZGiQKDaELnyBzw6tYTB3H5J/P8c25+Nb78FKwGyOGuhPrpESvM6LrpyTL/sKkN/PNv48RMc4bR/cl7D2QQaPGCbgWdYaM+Xc8iGOkmPwzGpr0atJOHiBiTCj2/tsoK9/IWclJudyn1bhisRJVwEry8tdTWvYDlVW/IhJJMRgqiRr6fNuJnJ3Pb9rfVdr1uPmtpKakka+eOcaEJaHI7CSIxSJC43r3cPNQXbwQs7lrhiHz3ENqqu316V+TyK7L4nWewEz/V002W838kLOVH4Awp0DuC14EUi/srPXIDPmo1SeoqvuagNkHUNoF4O+7liaNEyajnoqKzST8HIde7YlX1BncXFt7SSUSEyNG2OQeMzPHU1Y6pJ0ZtI9MJiMy0pWunM16fdvY/NDQUEJVkWTl2e4v9s7jySpM7Pa1z5KnzkNn1KGUth//f0/sPcR6xfJt+rdUNPb8/uEkc+q0srbeZGbiK3v4MwpE5yyA3GPckCj6N8EzPj4ezzmeTF0ewf6vM2nSGtn5QRrLbrmBr7//jOrqaiQSyUVJLLWeE87j6/P7r1Raka/p0IA/F7PJwi/vJXPN30b1u0d+2bJlGAwGPv74Y0JDQykvL2fXrl1UV3c/FM1gMAzq+g8yaMT3lq4qtkoaNM2PhaCAANIF4QJUZLXi45uJvX0tFrOE3HO22sUSI0plHTqdC5K6Kqz1dfjEZEMP9abdXOZx5P2OPdhmvZVgfQzBNTGIpGA+Akn03Ks16XolTsG/kp793+ZjIuaMSwAA1ptJREFUgsiM3LWAxsrINu2lcjH+Q1xQVzW1CtWwWKyU7i4FIH9oNaZIV7JOlGNo6n+Dra9YrZBxtO1n1aA28MN/Tp13NJxiuQtL571MVNQLFBZ+QFb2f7BXhrXpHxb2EHXqU9TVHcVkqms+bm8f0cE8rAiC7cFe3/QzQ6/S4SL7C/s+1bLn87PJjVZWPDMaFy+XHr5HK0l7i7tu2J8IMP6qULyjUmk0rCc3/avmU4qQA7xy+tcLMo1sTQEPJBY0v45yG8pw+yn8XJpMtKOCFa5ZJKfe3qpPyLwfMOmdkSg6rkJssQjU1vQsCTPu/9k77/ioqvT/v+/UlMmk955AQgIh9Cq9iYiguHax4K6sorLq6urPtquuynexoLLs2hDXigVQmvReA6EnQHrvyWSS6XN/f4xMGNJDQoLM+/Xi9WLuPfeccyczc5/znOf5PAN7UVV1qec8mJTDQzCbFYRHnCA4+Byi6GgER0VFceONMzix63vMHrbP5HExHpH25zmYrCae3vE0jw96vMn49ST/JJL8kxgTNoY7frmjXX2PDhnNc8Ofa7HNyYIahhpkDgY8wKFDRcy5vfNDITdt3sS4ceMIjfeiIL2a0mwNqxcdZ+wDY6kuK+X82h9IuvEWtqek2mPWuxqJQYeyOAepQYfZXU1N2klI7HtFxu4uUtbntFmO1mK2krIhh+kXFQi7XKqrq9m1axfbt29n3LhxAERGRjJsmG2LLSoqCoCbb77Zfi47O5tXXnmFVatWsWDBAl5//XVycnKwWq3k5uby2GOPsWXLFiQSCddffz3vv/8+gYG2BdmF6x5//HFeeeUVKisrmTt3Lu+//z6LFy/m7bffxmq18sQTT/D//t//s8/z7bff5rPPPiMzMxMfHx9mzpzJokWLUKlUnfZeOLl8elqMx1VDdXV1i+dFvyAkctsqubi6pksNeEGwACIhIWn07n2AkJCzBIekI5GYL2pjJTomBYW+HPfyDCISzzbfYQvI5PJmFR0uxdoB4YXe15WQfPsKqoS5ZGd/0Oi8m7cGqdzxYytIBOY8O5gZjyZz50vDSJ7Y9AM4P62KA6szG1XWvFopPFdNyoZsqouN+Hjch4/3dWhqT2JpIhlQKm28e1FUvMr+uRRFEbO5Dp0uj6zs96mvb1jcVVbuwqrczKg5DbtJrn7n2LVqLSZj04shi6nph6Qowuk9hU2e6yoSRwUzZHoUOQWvkZe/3F6NWKkI5KTx8uP8O8qZyjS+zztCrdnA3qoillf7keF6PWr/2cTFvUZ8wtuoVL1aNOABzGYlBkP7dM1NJn2jY3LZjdTXe2E0upFxfjjZ2cn4+BTi5W37ew0dGsTAQfvJyPwTmhI59ef/QUL8YjYVnWzX2Bezq2AX/zr0rxbbhKnC2tVnrGcsi8cvRiltOfQro6yO8b0ay6eKpzXoy6UtevE7yo4dOxBCS0gcE4y7lxKj3oJSF0Cknw/VhfnsW/4fgjyvXBy2sjQfWb0WwWJBrqlCHdh8XtPvAW2Vgazj5e26JvtYOdqqztu5ValUqFQqVq1ahcHQuN9Dhw4B8Nlnn1FUVGR/DXD+/Hl++OEHfvzxR1JTU7FarcyaNYvKykp27NjBpk2byMzM5PbbHQudZWRksH79ejZs2MDXX3/NJ598wowZM8jPz2fHjh289dZbvPDCCxw40BBaJpFIWLJkCadOneLzzz9n69atPPPMM532PjjpHJye+A5isbTsyTVK5ciShmOsrsSs6LwiNxcjlRqJjj5KYNB5LBYZcrnxonMWEhJ2UV01BA9XHZ7+R1EoDAydXIQginQ03LS8YhsS5VDQX36coFSpQe5ehr4yBhDoPboOacgLGFpY7wQP+ZZJd09h2ycWexKgh68LviE274AgCAy5IYpjW/Oa7+R3xP5VmexflYnVTcrQcS/hHeTO4XUF9B4SiE+wzbArKV1HRcWORtcWFPyPysqdCIIUvb4QUbQgik1v5xcUfktS30kMnOZH5rkf8Y7dRvaml0mPL6LfOEcjS1Ou46e3j3DPP0YilTkuuCQSgYGTIzi+Pb9ZQ78zcfdUMOj6SPSGYgwG2y6Hq+8MlO6JbC/NYPmpn7p8Dm3lUGUehyptn1uJsBlRFHl16J9R1bUsD6pQ6Ln1DxHs3WOhsLD1BVJkZCTePqcxGh2PX2qz1tb6IZFYSUraglSqxmLRUFPjS4DLRxw8UoHcRUrhdDVplZeX36AxNp1ceoGVZ1e2ua8wVRgrbljRYqz9BWb1DeaHXwpoKqLIotB2mePl6OkDqFSnmDhnCke+sbDl8zNMfqAPw2bdSlluNueLCrlS/jXxklwtqU/nx3/3JPLOVNorjrcVq1UkP62SPiM7Z4Ejk8lYvnw5f/zjH1m2bBmDBg1i3Lhx3HHHHfTv3x9/f9vfwMvLi6Agx/BIo9HIihUr7G02bdrEiRMnyMrKIjzc5rxasWIFffv25dChQwwdOvS3e7Dy6aef4uHhQWJiIhMmTCA9PZ1169YhkUiIj4/nrbfeYtu2bQwfPhyAhQsX2seNioritddeY/78+SxdurRT3gcnnYPTiO8gbalsV6/TgbLt8dvtxWKR4e1TgERiRSIxNjrv45uPj69jpUdJO7W0L8VsriZq6guUH5tP+dmBHerDRW0huE8VHrGfYbScRS4OoqbID0XYASyt2HVmcw012q0kjb+brStsgc2ach2F56oJ6e0FQOVlKJ80R7+xoYQkglzqy5ENOfhFyNFrpZw7XNJcjmn7ESwgtm91ZREgLUzBmmHu9M8uY/KmHHr39WXQ9b4cO/4wZlMN1TWHaW6SOl1uk8cvxWSq4EjqHPCE4CG2Y0qvXHZ+AyofF6KSbB7NyqI6tq44g7bSwKZPTjHlwb6Ndk5GzelFYIyaDf/puAe3rdz0xECkrnmkpj4BiHj53cADR7cjsq3Lx74crKLti/C/jC28HPcAmoot6PTN/61KSt5k5Kjr0dUbOHjIQnlZ490od3d37rprFiUlf6equrHqy/ET5YBtMezr68OQoRlciOqwWDQoFH6E+XzK+g9KkUgEhs+O5v8dfuSy7zWzJpNCbSEhqoaQoFpjLZk1mezI28Fnp9peFO21615DrWjZky2KImcPlnB0Uy5VxU2HrVj0XVuESavVkplzjrD4eDKOlJG2t4SZj8/lp59+ov7E5UmwtgdDUAQSo94WTuOqoiQrg/iEhCs2/pXGqO9YzkFHr2uOOXPmMGPGDHbt2sX+/ftZv349ixYt4uOPP+b+++9v9rrIyEi7AQ9w5swZwsPD7QY8QGJiIl5eXpw5c8ZuxEdFReHh0ZCLFBgYiFQqRSKROBwrLW3IPdm8eTNvvPEGaWlpaDQazGYzer2e+vr6K1bHwknrOI34DnLxh7/7kKDXq3BxucLhIYKVpCmwrZ0RORKZjoiBpXj1+Ry9IY8LkRgm4QhuIbRqwF8gL285yUnX4eohR1drAhFWvXOUuKGBuHkqOLOnqH0Ta3HOApPm9kHq9w3Z2R/gqR5I+ASQSpSM6LeEITdEcXRjDmn7L1OaTWImbPSH5O96ol2XrRnmzskoW9jAkV4uHOnlghSR9yutTIz4I8eOP0znrTIc6TX9PUzZH7DhvyeJHeRPfY2R/PQq+3AZR8vI/9tuxt/Vh16DAxyuDYrpqjAWK169tmPSBqCv6I+Hv4UjR5+mrs5WebNWdEHsovejK0irTGfuwUzCVCE8EzYYQ21KMy2tlJauAyAsdCjlZY1b9O/fj+rq/zRpwAPUaW15EBKJhFtvvYXTZ95zOO8mPsLmjyrwCnDl+scSWZL+NjmanKa6ahcGi4E7frmDkSEjsYpWsjXZHfLuywQZAwNadyyc3l14UW5H05RnGPHy8mo1bPJyGDFiBKmrbYmMpdkarBax02Qt24ook1MfnYhgMiIqlMjU3RdediVoqS5EV1zXEi4uLkyZMoUpU6bw4osv8tBDD/Hyyy+3aMS7u7cvbO4CcrljLQJBEJo8dkGwIzs7mxtvvJE///nPvP766/j4+LB7927mzZuH0Wh0GvE9CKcR30H83ZQIorXRduSVxmx2zE63WPwwlMhRR9TZFUa6AlFaiNJ9KIa6tnooRBJuXopFSEN/meGFVquO8oqtCMLYht6tIukHOlHjWIDRcwvwCTFRXvkJVdn7AKjRNOiq79o9nMjI+UyY+yRmk5XzKe1X0LiAOvwQbgFpSOR1WE1t/6G+IaWOPH8ZNe4NnkML8MjpHJJUHowPXcNUyTZcLVVgyKK89AAWsXPeJ4tFQ8LEUorOBtoTchUeRZh03ohmWwiZoc6MT0jj+8lP63xjRemZj2/COtQRthhSKeHs3VeD2axBIlGiDrydN89emiB8efTx6cP8/vNRSBUcLD5IgbaATTmbOnUMk9VEliaHLyqH8HDgeKoqt7fY3sc3m8jIweTkNCzu5XI5fv4KlC7B+Lk/S1l+JYqA7zGZGv4O028QycocSFRUNBlHN8AlUYAnd5Rg1IdhnZrD9RseR2duu7Rna1QZqliXte6y+pgTN6fF8yajhY3/PUnOydYVQM7sLeK2x2/n408/alWJrKNotVqsvyVYGvUWfv34FLffcRebt2/k+LFjV26pKQiICpsjwGjueQn/nUl4gg8SidCuKtQSiUBYn/bXKGkviYmJrFq1CrB9X1sL2QVISEggLy+PvLw8uzf+9OnTVFdXk5iY2OG5pKSkYLVaWbx4sd1h+d1333W4Pyddh9OI7yAlx48gra3BrPbu1nlknB9KcVFvLFYZgmAlKmISFKYx5Oa72X/gei5ID3Y2paXrmPjwKFLXhFN0vvWCSW4BaViEy4udvRhLfW/qNY1DiDqL0D5SKnT/oCKjpfdPJCfn31RXHyB+ykTcvCdQllVHWW4t5nbGe+urIpBIzXhF76Hy7NQ2X6c0Q3ClxcGIT8o1sFDpiZfEjc3eMDO7HwBLE+9BvvU86sRFmIXOMWYzsl4lJOGfpO9W4B50Es/o3RTum28/7+apQOXVOMFQU955BiCAi08WYde9j8ylQXPbQh6YQSpTc1A6gZUpv6C3NE7obC8SQYJVtHJ7/O08N+w5pBLbez8mbAwAr+9/nW/Sv2Fi+ERuiLmBfYX7+OHcD5c97t7iw1QbYngicga6inU0t8NiMpXRO24DvXo9RE2NB0n9kgkMCkChUHB8a28Or8vGL9yD8ZOnUFT0IxKJHLNZj6dqIuq4KE6kvIvSfyuWem/kbg1GviroFLViHz4oXXTZ99KZCAg8lPQQDyU9hKQFp4pcIcU31L1NRrxOY6TivAVfX1/KyprY1ugE1qxZw6Shs8g7Y3uP805XIlfIufnmm4kI8OPnTVu6ZNyWaE117WpH5a0kqr8fmalt/5tGJft1agXXiooK/vCHP/Dggw/Sv39/PDw8OHz4MIsWLWLWrFm2MaOi2LJlC6NHj0apVOLt3bSdMXnyZJKSkrj77rt59913MZvNPPLII4wbN44hQ4Z0eI69evXCZDLx/vvvM3PmTPbs2cOyZcs63J+TrsNpxHcQhasbguXKa/peitHojtHY4Ok8WZvOrJk34eYWg0IRgNHYNRX4rFYjWfnP0P/Gf1C8JKTJZCHfUFfiJpymXn8WnfXyvGyXknmsCOiawiT+kUrCrltKTU3bDPGamiPU1BwhdojAmFvnU1Vcx7evH2pH4qaIV/RuAAKTN6JURFKZ74pP3CYMmmBMWn9q84c2e7XC7PjeTzpaT7be5oW94aYowqICOGY0sOxUAbG1Bvquvo+4GaeRyi/foDWbaxBCFhA32wOJQoOuoqEQmEQmcPOTg1C4Nv6Zaco7fzn49V3jYMADhITcjpfXMFLL0/gi5ct29+nv6s/TQ55GJpHx5ZkvmdVrFjGeMST7J6MxalDJVXYD/mKmR0+n3lzPa6NfQxAEpkZOZUTwCN4/+j65tW3LQWiO01WZPFyVyVA3Obf5mJELjp+xupI+mMpn03ecCgsZqF1lHFsTQHleNoIg2Be+BelVlKQlkjD8dWor9ax6+wiacj2Qj1tAIuZjIzFqQnEPOkn4WFtYjWfUXtDORi6RY+qI9FQXcVPsTTw+6PE2tW3qs9gcZw8VE9ortMuM+Pr6eipMOfSfGMXxrfko3eW4uNtCHAaPHsOO/QfRdFMhqN8zg6dHknOyok0yk1K5hMHXR3bq+CqViuHDh/POO++QkZGByWQiPDycP/7xjzz//PMALF68mCeffJKPPvqI0NBQsrOzm+xLEARWr17NY489xtixYx0kJi+H5ORk3n77bd566y2ee+45xo4dyxtvvMHcuXMvq18nnY8gdr14ebeg0Wjw9PSkpqYGtbrzJbvWvf8vTpzPROcd0HrjbsDLywsPVSphEfuRybrugeviEoaP7AOqC9yordRjqDPRe5g3Cr9dVFT/hEaT2jXjyuMRy/7JsV9blt/rCGPmGinTP9qha93cogkLvYeDXydRnFnTYltBYiJ60me4+xdgMjuqioiiQP6ux6grbl2fWAQOxikRRMjxlzP1aD2eusYPKBHICZARVm4i7vrnUKjaXlikrRi1/mSuew2Q4Beu4vb/N6zJdgXpVax652iT59qLOnIvwcOWOxQs8/YeSWLSx2zK2cQ/D/wTranl3SKZIGNGzAxERKLUUQwPHo6vqy+hqlDggnZ+2yQHRVGktL6UQHfHwjm1xlpe3fcqt8TdQoh7COeqzrE6YzXb8jqWZNvL3YPH/TRYrRd2NSSc/entdoVjuXsq0GlNWC3NPwYCB/0P7142daPC/fOo8Yvh14CvyKrJ6tC8O5uH+z/MgoELWm0niiJf/+OgvY6EUQreHkqMooippuldveBenlgjszh5qmuSsN3d3Xn00QWsfe8kZbm13PPqSNR+NjGEnJxslv/3P4jyzvMCt8bc2/9ATELX6MR39TO5PWSmlvHrxy0XfJLKJF1WsdWJk87C6YnvIBazGZ/E/hQUdY2n+3Kprq6mujoKnV4gIXFnl42j1+dTqXyEoP6zUemy0WiOUVBfAJfncGx9XFM6vQYfpDRzMEXnWzaW20NwL0+sbh9CB53U9fVZBATMAJpP+JMotAQN+hJXv/PI3aoxNbGh4+7Wi979biC1uEEq0z9aj7ZCQUivICISfSjPL0a0lCBIY3BLKUVXa2LYueYTDgQgqtSMq9+5LjHgrcZAtIVJtoFEW0iC1SoikdiMX9Eqoq8zUVdjZO9P7Ssy1hwyl2oCB37TqOJwsSSS51fPpkDbtsJSL458kVt639Ls+fZohguC0MiAB/BQeLBoXEMoSoQ6gkmRk/jXoX/x+enP29z/Bc7X1aKNvRFVzS92Q95NrUZb0fa45rpmjNeLqc4Ybzfi/fqtQTjxAEtn/5Xiiq34qJP4NGMPq7N+RWZRYJZ2XYhbcxwqPoTFamlyV+QCBp2ZQ2uz7Ab8+SA5P471IMhVQY3ZwgsZULO/sce96HwNM2aO7jIjvq6ujq1btxA/IpnSnFp+evsIg6dFkjA6hIiISMaOHs2Og4e7ZOym0GtbD438PRAzwJ9b/jqIlA05ZB8rd4iRl0gEopL9GHx9ZKdXanXipLNxGvEdxDs4hHpB2WON+At4e48Eus6IB9AbCsnOufLasXn5n9N37ASqS3XoOik+PmaoiYrKxprq7cFgKGbw9CjWfth0KXr3gDTUEU0/mMPD/kR9UQAWcx5hg6GuOoBzh0sZc7c7ZaY/MTBiPi6GqVgsJehrdnNi668oXN2IHXwdVuE6fILVZJ8ob1Y6D0BX3ov68ljc/DrHkAaQy31wNfyXs6kNyb11NUa2fXGGhNEhlOXUkn6g2K7t3xkIUgORk95AqmiIrz9k8ONgTS3n8ta0er2HwoOFgxbi6+rLxPCJnTav9vLowEc5WnqU4+XHkUvkJPgmcL7qPPXm1qt2vnBiPY8n3kaM9husVgO+Ia5oKzrXEFN6NsjUKlRlBI9cRPpvNm1NEdzmM5eBNR9TX2skYE4Wa3M3sa0otVPn0BKpZal8fvpzotXRFNcXc2efOxu1Kc3RcGyzbUEsAkd6KzEIkKM3EufmwtDRAWzeX4ZJCpmBcuILbbuXMoWEyLggAgICHOT3OpPDhw8TOSeSmAH+ZKaWsePrs6RuziM41pPBN0ygUmfgxBWSnSyrv/wQu6uFgEg10x9OQltlID+tEqPejMJFRlgfn06NgXfipCtxGvEdpLa8jFJR0XrDbkY0CESGPkVOwRKg58SxdgYGQzEa5bNMfuReslPUnNjUvLc0MsmX0N7ehMZ7Yag3c/DnTIozG6v3KH1S4TJDYM+k/Y0hA3++6IgVt4B06ktt+sv6sktl8CTk5kxlUMR09v5nHRX5uwgZPoag6BPEDAvAzc+AXvkeLtIwoqMeZd3aX7GKIkNvnINXUAi7vlrOmd2/onDdzbj3P2bIDVF89cp+zCYrVouIyXCpZ1aCoTq8U414D4++6Csa10RI21dM2r7OXuiKuPhmEth/PXJ3WziV1eiNe9hUvj6yFmsbtfYXDFjAbfG3dfLc2o+rzJXnhz/P41sf54NJH5Dgm0C9qZ6iuiJe3vsyx8qONXutVbTy4ZlVLOmThKH2MH0mn6A0O84mvXoZuPtYCBlwiPr6LNxDdjfdSBQQUFFWuYKA/ql4eHlTWbSbB4MmsGDId2zJ3c7SY0uJUkeR5JfEroJdVBuqL2telxLgFsCbY95kaJAtZ8TQRLViAGWkCl2CGm2Bll8HuJMZ3CCv99foIOL8PUkJdqeyqI59fVyIKzTZNpREsFqsXSo1CbBx40bGD76RzFTb65oyHTVlOrKOlzN81nDUw1w5sHkjZg+vxlW5OpFrUTpQ5a3stEJOTpxcaZxGfAcxGQ3ERUWyr6LzwxI6k4zMbIq2niFkgJqgQT17rh1BozmGRnMMqZ8bEcnvk3uscYxjRF8fZjzS3yEkIqyPNzu/PsvJnQ3hFsNnB1Olff2y56TVppF1yqbEo/JWEta/Gq3+tN2IV4c5xhoZqvzJP+9JYep65NUVWLz8yagzMsJkIqf8PlCDQQuJCf/Hvn2HOXLUFkt++vRpBvbri8nTF5OHNy7BISxZ8j5jx47lrn+MQKGUI4oiddVGaiv17F+VQVi8kuDeSjKKj9GZanIS0Z9TO9sWunK5+PTZQED/H+2vC80u/Fofx4kj6+xFklojwiOC2b1md9EM209fv75sua1BjcRN7kasVyzPDXuOO9be0eK1otWIrj4DCSBTmohI9L0suVXvIDfGPlhG+vlPUAtK3FwSkUuDEbUPovStp7js/wFVDBuykpSfLUQPO0924dNUVFrx8EhEqzmBtOBD/pS0mDCPMKZETkEuQGFdGTetuglzM1WBO8JfBv/FbsADKKVNe1AP1tbzRT85Jf29HI7PCfRmZoAXolXEarEiAN5aK6IAgggKFymCRMBs7loRA61WS35VOq4ePg4LMEO9mV3fnKXvqFJcCzIwevlhCI7q/AmYzQQppUSGNy4S5sSJk57LZYmcv/nmmwiC4FCeV6/X8+ijj+Lr64tKpWLOnDmUlJQ4XJebm8uMGTNwc3MjICCAv/71r41+JLdv386gQYNQKpX06tWL5cuXX85UO52E68YTFRyETNaz10GiTE5drySKTB2rrtoTcHOLRqV/goQ+K/HynNRkG4ulnl4jynDzbLw70n9CeKOYZkEQ6D3UlpTsplYw5IYoVNEr0emyAVAoelFR3gup1OPS7tpEUc3TBCcfYeT9B5CFvoQqcgNx05cTNPh/+PRf7NBW4W5AXpKDSe1NfXQChuBIzBYL+/dbGTzoW0JC7kCtTqa83JstWxoMPaPRyIEjR9GHRGPx8KJMW4/JZGLLli188+3XaDQaKvJysEoNGGXV3Ph4Evmnf6DesB+zpXN12o3mDCISr4zcqot3tsNrL9+JpNaewCK2fVUyIGAAbvKe73VM9E0kyD2oxTZSAQ4ZfPD2GYvRVNnhisUhvb0YcXMMHoMrOHXGhEIxjcyMO9mxcxgnTg9hw951/PDTZk4c70tWZgKfr9hIldsZVN4j8PUZR1LSv7GYn6O4+EkKi/qzd994IuvWkpH+PIcOzybMI5SJEZ0bttRWXYapahX3pzaE3IVUmHl0bTW3purIOVnBlhVnqCnVke0v43S4gszAC4WvBI4fP95lWvEXc+xEKv1vshVbslqqEUXbfOWKLA7/8j0AiupypNoasFpRlObjUpiFYLj8EBjXwkwkxbmgbz2Ey4kTJz2HDlughw4d4j//+Q/9+/d3OP6Xv/yFtWvXsnLlSjw9PVmwYAG33HILe/bsAcBisTBjxgyCgoLYu3cvRUVFzJ07F7lczj//+U8AsrKymDFjBvPnz+fLL79ky5YtPPTQQwQHBzNt2rTLuN3Oo/ewUdTX1yNs3YG/vz8KhYKCgivjiWw/AnXGnqmi0xJyuQ8BATdA3SBW/fQDloPlDB42FbnLVprSyK7Uvc+Mp14g90gYB1bZPJHungoi+zWWohRFkcxj5QDc9MQABLcTpKZ+BYC31wgOHhxNcXEpGRkWxozdg8HQvsqURks6nvHp5F30kZB47MGriTWBoKgmJqma3P0nMHn6YPIOwKp0xdNqxEOVjFcfm97vof172zx+ZmYmS5YsQazXYlW6IooiLgoF5OUw1CcBaZUbFktbH9gSWqs3oKk9RviAas51cQ6ee9AJ1OENGveCIEXhEtauPjzkHj3KC98SVtGKxtBy0TaDKPB1URFrK+pYPPZPeAW4OuQeqP1cmPnYANy9lOz5/hyndjkqIcnkEuJHBFEqP87m1Cx0ugs5BgHYSofpHCTuNJoANJoAoJLKykpOnTpFdPRwdu5Mo+K3nUlfX1/uuOMfHD/RUDOgsmov10dfT3F9McfLms4XaS8l9SXNnjPUmxAkAqXZGjZ9ehqp1ogk2RurVGDsKR0+WiundxZyeqft/TDI4IuJjomMBp0Zby8flEolJpMJURTbvHBoL6IoklF4BpkyCJNOibl+G1ZLFWZFNKPveASZTI+bpxfeUbGkHj7E+TVnMOp0SOs01PVKgnYUHpRjRaytweLhhVwiYeyMeygrCEbu0jgh24kTJz2XDklMarVaBg0axNKlS3nttdcYMGAA7777LjU1Nfj7+/PVV19x6623ApCWlkZCQgL79u1jxIgRrF+/nhtvvJHCwkICA20/GMuWLePZZ5+lrKwMhULBs88+y9q1azl5skER4I477qC6upoNGza0aY5dLWeVn5/P3r17cRl+Hb5qD0yiSHB5ET+8+y+MAaGdPl5HkMv1mEy24h0qVTkDB63v5hm1DZ3OA6lEwNv7HxgManb+ugHLbzJrwaKOXuN+oLlCNwCenoNJjP83R9ZVcnx7Pne9PByvQEev6+H12ei1NXgH+eHb+zBnz71qr14ZE/0Bn39+AACZTMY994SQlf1/WK2dp7whWqUIEqvDfcglURRsGUR+xjnqevXHLScNL5U78SPHYDYaOX4slRrvlr2ybaFvnz5MmjqStPQH0OmaX5yYdVLKz3hReiSAuf96D5m7hpMnH0dvKGyyvY/wJXu/7UpPnpXQ0UvxCL0QIy4QEPU0zx37hRxN2xZZ/q7+fD3j6ybVY3oih4oP8eDGB9vc3s/Vj8f6P45hrT+V52yf17F3xJE03rbQEa0i279O5/RvhrxEKjDnmcGcykxhx47LS+i+lBtuuIHevWVU1xygqtKAUhlFnz4zEQSBgyUHSa9M58PUDy+r8uvrQ96kT/1g/MM98Ap0ozxPS22lHhd3GXt/zKAky3EBlOMvQ6Wz4qO1hc5czKFeSjYMtslz9ssxMOtAHRIRxt0Vj3+8DG9vbywWCytXriQzM7PDc24JQRC4bvAk6jLcyD1VhNVSglQehUwhYdJ9iQTHeuL+W/G0lLWr2L7iYwC0vZMRZfKWugbAxy2IQYmjUaugPPsoQcmj2bV/K57l/amtNHDvqyNxUbXeT0foSRKTTpz8XuiQEX/ffffh4+PDO++8w/jx4+1G/NatW5k0aRJVVVV4eXnZ20dGRrJw4UL+8pe/8NJLL7FmzRpSU1Pt57OysoiJieHIkSMMHDiQsWPHMmjQIN599117m88++4yFCxdSU9O0nKDBYMBgaEhq0mg0hIeHd9kPxsqVK5HK5TzuFcWFWjtD1W7M2/kjx8prrqi2b3Oo1aW4umowmZRERafi7l7d3VNqEaPBleycZEqKe0GjR6wNWW0lI29YD0ILnmGrAolMIDzsfo7/NIm6GgNj74ynvsaArtZE8sRwzCYLq//1MkkTpyJ6b6cmV8LhH/cw5O5g5Kq7+eUX286RIAiE11fSe0gM3olZlJdvw2JpTf2jF716zaNWU4besANEKzWaVC4Y7K6SG0j97kbG3BmC1O9/FBV9b78yMe7frHzhY6rCeiPR1+Oad+43xUaB+phErMrGyaMdwV2pZPiQSDz8ZEgk2ymv2OhwXimPJOVjd8x625xVPr4Mm/0HPENdyK14qsn3QKKdy+l1YzplfhcjVdbiE/crqpDjKD0bFhABATNYePoUpbq2qYaEuIfw8siXGRU6qtPn2FX8mv0ry08t50R5+9RJ+pSMYHymTaXlYiMeoK7awLb/peEZ4IrgUUd2xSnOnz/fqfO+gFQqRaFQ2L37Li4uyOW2qqQxMTGcrjjNvI3zWtXxb45/+n9I7hozIlbkChlmY8fDXko9pXw2SY1RbvvtuWWvlr55RgSJQMwAf/zC3EkYHUJRWR7/+9//OjxOWxgzZgxCYQhn9hQ1Ojfqll4MnBqBKIqs/2Axp3dvx+gThMXDE1Eqa/E3IqR+FCaN4wa8iIiAQFgfb2Yt7LqwS6cR78RJ59PucJpvvvmGI0eOcOjQoUbniouLUSgUDgY8QGBgIMXFxfY2FzzwF5+/cK6lNhqNBp1Oh6tr4x+pN954g7///e/tvZ0OY7VaKcnPZ0avZFaX2RYWhzT1/HnyTQRvWkehpvv1dnU6NckDNrbesBuRCLPZv1/A1U1DTXUQotjylrBHkMbRgDf5YhbGoK1Nw8s7Da12NnUHRUL7B1Ig+YaI8aeIiXkcH19frFYrRYVFpBw9zMGDBwmITWTNx8sQ5Qpk2hoEq5yKkwlUeDR42URRpCYgnL2bjnBv8t+IGbqQY8f/SH190544iUTJnt1D2LXzNADe3qORSqXMvGkuGRlPI4oWBgz9G0UHizDWqRh03T+pqNiJ0WgzRE+ffZTwQTOoLBWwqDzRh8Uiq63GpPbpNAMeoM5gYOueswAMGDCRhLhYZC4Sysu3otWeJih4Gnf94zbWL32HsuxMtJUVbP10GQpXN259+VPKaj+irHyTQ59W1QpG3CdwdOV4DPWdlwjoFbMT3wTHHThBUJAr60upruVCSQICjw18jIkRE4lQRyCXdI2XsauYGjWVyZGT+euOv/Jrzq9tumaA/wBiJX04btzGoKoJHFqbRVCsJ/7htlgudy8lNy5IRqPR8NFHH1HbhVVBLRbLReE5tpwpvV5Pamoq0dHRJPomcnPvm/ni9Bft7vv6yOvRH1Ey+tYo0kr2M2rAJKQyCSXZGsrzauk9NBBtlYGDv2Sh17au1hNQY+GGw3WsGqlCabTSp8C2kyFaRTKOlJJxBPLOVDHglq7P/UhJSeEvC8dRlltLeZ7js6Qoo5qBRGC2iijH3Yb8wF6EymKotD0/TZ6+6EMaKidL6zS4l+Zxw2Mvs/WTxgte4TeHSUmWBoPOjLIdVW1/D9RWlpNzPBWjrh6FqxuR/Qfg4ePX3dNy4qRNtOvbmpeXxxNPPMGmTZtwcXHpqjl1iOeee44nn3zS/vqCJ76rEEWR8vJy+m77hf6Tb+DVYtuD0BgQTEBMLwov2mnoLtzdO7+aaWcikYSwY7sKEDAYVG26Ji62IWzCagFd8d0cyaoChhIY6E1ZmZobJ44k5cdvmfnCGxQWfUHa2Wfwl/6dg2t+IsfNF6PR9nAuLy+HqD4ACBYzoaGhZBjqUJl/BRoqpdbUaiEwgq/+8QK9Bwxi0A2LqJB/TkXNxTKSNkRRitncIHFYVVWFABz/sQ7fuLnoXD5j5etPoSkSKDmvZtC0Zbi6htuNeLAi8dyD6lAwdRH9MHt4Y/boWqMhNfUkp7aVMmDocBJGvYtK9R8qq/bQa+izeI+eRI6oQF5ZjLy2GqOunq+f/zvqQC+iZ0oa7YhU61bQb/xtpKxrOuSmvSg8ivGO29zoeHj4fdxz4NNWr/9T/z/xx/5/7JS5dBcSQcKisYuo31rP7oJm5B5/Y0L4BN6b8B6CIJBXm4eiQs33b6bw0+IjjJgVQ8LoECRSOHbsGOvXr8dk6h7Z2ePHj1NcXExycjLzh85nZ/7ONodEAQwPHs5b495CvA7qdXWsWnyaiVPGExDgS2i84/clJM6Lb/5xsE399ss1El1ahZtBRNLEHrVXoBtRUVGo1Wo0mpZzFS4Hk8mEIIG4oUGU5znukuSnV6Ep1+HqrSSrUg8SAbV/AIHRvcg/cxJqKpDW1yJKZQhWCx7qcEIGPsCurypobt9dFC34hVkpTD9O9IBBXXZfPYnijHMc+Ok7Mo8cxGppSIqXSKXEDBrG8JtvIyi2dzfOsGezfPlyFi5c2Kz8anZ2NtHR0Rw9epQBAwZ0+Xy2b9/OhAkTGkWC/N5plzpNSkoKpaWlDBo0CJlMhkwmY8eOHSxZsgSZTEZgYCBGo7HRH7WkpISgIFssb1BQUCO1mguvW2ujVqub9MIDKJVK1Gq1w7+u5ELoTmVFBQMqS7gr2IcEdxciXBQoFN2vH+/tXUBc/L7unkaLZGf70FzYDIBcLmfWrFkM9FUzZdIkfH198AlTYdG7UnrMh6IDARQXNIRXlZT0wmoVya2pQ1NWwtYPfsVaeAty02Cysz+hQKu3G/CXIkpl5BeXIIpnsViaWNtKpdRF9eFkbj7fvfYKHtJbm+5HrCci0jH0QQTSDh9k3+f7MWpl+CQfx2yuRldTwNb/vYVG45jkpwqvpN8dacREHUCh6JjSSHsxeQdw6HwWK1Z8wbmzI3F3v4k9ezaRcuQoFjcV+pAYjD6BiIKAWeFCZUU9VoNno35UqnhM+ssSvXLAr99PyJSNd7XkMi9U8tYXfrN6zeq0uXQnUomUqZFTW203PHi4XYkp3COcgEg1ChcpJr2Fw+uyQbSFJq5Zs6bbDPgLlJaWkpqailqh5uZeN7fr2vn95yMRJBhNBr777jsA1qxZQ15eHoWFheTlNVQ69glyR6Zo22dSAFT6pg14gLCh/tTU6R12F7oKURQpPF/d6LhJb+Hb1w7y0T8PMBQXVN5hIL+b8pKxXHfPy7ioPJCYjEj19UiMBsymKeSluWCsb6zeJIoiRu1aDNXvkXX4XWpKe3bxws7i3MG9fPPyM5w/tM/BgAewWiycP7SPb15+hnOHOv8ZWlZWxp///GciIiJQKpUEBQUxbdo0u/gH2MI4V61a1eljO/n90S5P/KRJkxpVjnvggQfo06cPzz77LOHh4cjlcrZs2cKcOXMASE9PJzc3l5EjRwIwcuRIXn/9dUpLSwkIsCmmbNq0CbVaTWJior3NunXrHMbZtGmTvY+ewMWpBOfOneVfI0cgCAIlZWVsvight7uQSCxYrZ1nTHUFvXrdjLqmnHILFDURfjR06FBiw0M5npvJTQv+Qq+4MEwmH8L94vl5zftoqyqxKE9ATF+H61KPHUMeEE5OWQWl27YTN2EaZbpy6r2yWp2TSlXVbMqsKJNj8gkE/2D2HN+On78bFRVhSCVm3Nxr8PCwKXNIpY2NI1EQkCosyFysKFRmEm7Por5MgSXgY6RNuMfKjvtQqIvHJL3yO16pqcdITYXg4C14+7ij1fpgMrphCAzH6BuEsiQXWW0NpWekBF0SQisIcioLL3/hIZHX4xaQhr68L7X5g/FL/AWlZ0N8sMmixdiGRONDxYcI9/h9aF9n1rSeTDk+fLzDa0EQSBgVwrGtefiEqNAb6ykqahxn3V3odDrMZjPluvI2XzMtahqDAwcDcOLECbvBnp+fzyeffAJAWFgYDz30EABnDxY3Gysf1d+PgVPDMRrMpO0pQeEiJftkBSa9GaWbnLpqx+JR67blMGJySJcvgEwmEwUFBc3WdTLqLVCgY/c35xHF6baFm87Inu8KkSqCgAshUgIIzYeQWY1pWE3pDa8tXauH3xMozjjH2iX/h6WVv6HFZGLte4u44++LOtUjP2fOHIxGI59//jkxMTGUlJSwZcsWu7JTWzEajT3CYXil6cr7vhrf03ZZeR4eHvTr18/hn7u7O76+vvTr1w9PT0/mzZvHk08+ybZt20hJSeGBBx5g5MiRjBgxAoCpU6eSmJjIvffey7Fjx9i4cSMvvPACjz76KEqlLRl0/vz5ZGZm8swzz5CWlsbSpUv57rvv+Mtf/tL570AHuTicKDs7m48++ogff/yRTz76iPr67tfaraiI4OSJpjXVewr+vnmUnDhC3eFdyKWNP4oWi4Wtn/2X8txsjqxbTWWlHh+fWwiJGcrA6TchUypxC41osm+TbyCG4CiqVT4cPHSIrKzWDXgAjcYPmaxl41DhWoaP7/ekHp1OxvnhnD07mtSj0ykujgXAaGy8WxQ+dRQDH9QhkdmMCbmbCc/IOqRyEYNGztkfozj1ZS+qs1QUH/GlNNUP8ioR21h9tCtQKuvo128bSUkN2vSK8iLkmioE0UptrjtWk6OVUVt7iqRpl2fES+USBt92hFF/uB733oPoN+ROKk4+Yj/v6hrJ/jrXNlX//PLMl20uANWT2V2wm5VnV7bYRilVEujWWHVHX28zVkLjvNi8eTMWSydW+bpMtFotGzZsYFjQsDZf88ekP9p3Gy7dsb1AaWmp3VuurW5cxdXFXc5NTwxg1J3h/LjhS9Zu/w59wHnO6XYy5B41f3pvHPe/OZqbnx7EoOsjESS28aTHqxGKr8wiSK1W4x/Rep0KQWgwOqxWEZ2mYZdAkHgiCA2+OtFai0m3F1G0YLVUYNLtAkAij2XKw4voP3l6J95Bz+TAT9+1asBfwGIycXBVy9+79lBdXc2uXbt46623mDBhApGRkQwbNoznnnuOm266CYCoqCgAbr75ZgRBsL9+5ZVXGDBgAB9//DHR0dF2GyQ3N5dZs2ahUqlQq9XcdtttDt+LC9d9+umnREREoFKpeOSRR7BYLCxatIigoCACAgJ4/XXHQodvv/02SUlJuLu7Ex4eziOPPIJW2/5cv7S0NEaNGoWLiwv9+vVrpIK1Y8cOhg0bhlKpJDg4mL/97W8OdYPGjx/PggULWLhwIX5+fnaZ8XXr1hEXF4erqysTJkxwkMG9wO7duxkzZgyurq6Eh4fz+OOPU1fX8HyKiori1VdfZe7cuajVav70pz+1+/66m0531b7zzjvceOONzJkzh7FjxxIUFMSPPzZUV5RKpfzyyy9IpVJGjhzJPffcw9y5c/nHP/5hbxMdHc3atWvZtGkTycnJLF68mI8//rjHaMQD9gXHBYqKijhx4kS3b1FfjF6vpqQ4ptk4yO5GKpfjFx7JgKkzkCsbe5yPHj2K/jeDo7qqivXr17NkyRK+//57Smo0XPfoX9H7dm65bI0mkJqaluUHRVFCbm4SRuPFspUChQV9MJkUeKgaPCoSiZk+fXbiG7QMs5jXuDMga2MY9WWumLRyXA13EBF1N/GjxiI1dP2WfUtkZw/kxIlJVFWGNHm+rtgNsWb4JUetGFiHVNbxn5ZBUyOQuE7gux9Wc+TIEaKGeBDTdygymRcAffq8QZmpsWHWFMOChiFph352T+SL01/w581/ps7U8uLIYDGwv2i//XX2iXL2/HCe9APFSKQCsYMCmo1f7U5KSkocqq62xAN9HkAsFcnJyWHXrl2kpKQ02c5oNPLjjz8iimIjmcnogb5EzzCz59iv/Oc//6G8vJyysjJSU1MpKirixx9/5J133mHx4sVkFJ1gpV6DMcEDsxT2uZrYsX/rZd9za0RFReHj48OQG6KIHejfanvRqkMUrXgHFiNaGvJRpIoox4aCEoshFUP1Eoyaz0GsQyKPw0V9PYKXlIrKnp1HdbnUVpaTkXKgXddkpBygtrLtO0UtoVKpUKlUrFq1ykFN72IuiIZ89tlnFBUVOYiInD9/nh9++IEff/yR1NRUrFYrs2bNorKykh07drBp0yYyMzO5/fbbHe8hI4P169ezYcMGvv76az755BNmzJhBfn4+O3bs4K233uKFF17gwIGG90YikbBkyRJOnTrF559/ztatW3nmmWfafc9//etfeeqppzh69CgjR45k5syZ9l2HgoICbrjhBoYOHcqxY8f497//zSeffMJrr73m0Mfnn3+OQqFgz549LFu2jLy8PG655RZmzpxJamoqDz30EH/7298a3fP111/PnDlzOH78ON9++y27d+9mwYIFDu3+9a9/kZyczNGjR3nxxRfbfX/dzWWnoW/fvt3htYuLCx9++CEffvhhs9dERkY2Cpe5lPHjx3P0t/LyPZGe4G1vC2fPjqa0LJp+/bYhtCTLeIXx8hpOTPRCzvt+iF6maPL9NBqNpFmtSCP7cDCv2P6jd6F+QEpmbpfMzc1VQ3VV04YrQH2dN/V1jZNN6+p8SEmZicV8sWdMipt7NVKpo/dTEGQIggSFLAp9pc3b3m/CVKbNf9zepvbfH5JeUna5t3MZCFRXhaByr8RW7EmC5JKKjoHhQynX7Xc4Vlvqh8Xcsc+am6cCWUg1+w58hMUSAcgoLilm4PUq9u235T/s35fJ0P5D+ezkZ632d7ridIfm0VPI1eSy6NCiNrW9udfNjAqxyWeaDBZ+/eQUJr3tcxcQqUYv1pCb2zXfmcshPz+f0vxSItWRrSa3DvAewDdffdOmfs+dO8eJEyfsXvQLuMXUsX1ny5r4F5JWt2zZQqy/P5NmzORDpQVz9nHqtF2n5nMpgiDQZ2QwGUdb/h0QrTVYTTmUZR5GvGjnyV2tRW8U7TsXgqBAIg3Eara9zzLX8chcBhI/OogdezcxZcqURspwvydyjqcitrP6rtViIffEMfqOu/ydbZlMxvLly/njH//IsmXLGDRoEOPGjeOOO+6wF87097ct2ry8vOx5ghcwGo2sWLHC3mbTpk2cOHGCrKwsu5DHihUr6Nu3L4cOHWLoUNvi2Gq18umnn+Lh4UFiYiITJkwgPT2ddevWIZFIiI+P56233mLbtm0MH25zzCxcuNA+blRUFK+99hrz589n6dKl7brnBQsW2MOr//3vf7NhwwY++eQTnnnmGZYuXUp4eDgffPCB7bPepw+FhYU8++yzvPTSS0gkNgdM7969WbSo4Xfw+eefJzY2lsWLbdXP4+PjOXHiBG+99Za9zRtvvMHdd99tv4/evXuzZMkSxo0bx7///W/7TsbEiRN56qmn2nVPPYmr20XVjfQkj3trVFeFoNd3nf5vWwgOuoXw8McpL4/F2/tvDBr4JVKpC9GDh3Ps1JnmL5RIsLipmvVadAVFRXEdvtZkdMNqvXhtLHDyxGSH/ISa6gDycp9g6JC96DPH4xkQiLuXd6O4y/CYGBRlhTYZnm7Ezb0GH58CBKMBmc5xO7XgeBUCDSE/oiGaQ1/3v7SLNpM4wUBZxQfExe1lwMB1xMQc4uzZf3Hk6D1c0NkPCj7Fhuy2FX1TK69uPWpvF2/+EPcHZELr/pabYm9CIkgw1JtYu/SY3YAH0NUa0Wg0XVZt9HIQRZGvvvqKKElUs236+vbl59k/Eyq0r5De8ePHqavWo3CVET8iiHteHYGmHfH3YEtE/GbFp/gWridBcWWqcmdnZ9trqQT39kIibV4AAEAiC0LmOpyhN93tcLym9DwW/f5LGv8W7idIkLv2x8PHhaiRrpSXlxMa2jMKFXYVRl3HnG+GTnTazZkzh8LCQtasWcP111/P9u3bGTRoEMuXL2/12sjISLsBD3DmzBnCw8MdlPgSExPx8vLizJmG52pUVBQeHg2hWYGBgSQmJtqN5AvHSksbJEg3b97MpEmTCA0NxcPDg3vvvZeKiop2OzAvzmWUyWQMGTLEPrczZ84wcuRI+yITYPTo0Wi1WvLz8+3HBg8e7NDnmTNn7IuNpsYBmwLX8uXL7bsfKpWKadOmYbVaHcJrhwwZ0q776Wk4jfgOcvGH/2qgqurKeY8uJShwFgkJi9i21YUzp0exZXM1R44c4ciRI6zbdxBDJ+qfdwatadW3F6PRDV29mlMnx7N/362cPDmJrKxSli//ErN/f27/57s8vGwF8SMdCyUlJvXHpbIYl8KsbjXkz6aPprIyHFGuwHLJ3+rM1sOIlobQMoPWg8v5WZG7lyOT7UAiEXF3ryE0LA0P9Q4Mhgbjqa5uC4Xa/BZ6aeBQ8SHyapsOY7oa8FB48NLIl3hu+HOttt1TaFO3ULrJcfNwTM6Su0ipqqrqkjl2BmazmYBjAXw66FNGh4xudP7F5Bepy6/j59WNZV1b4vz582QbDhExVY88uoytuzdy5MiRzpp2l/Lzzz9TV1eH0lVmr9LaGhZrJAFRsQ7HrGbH74rK67d4Y9HKrGfjiZkmsGrVT8hksmbV334vKFzdWm/UBEq3jl3XHC4uLkyZMoUXX3yRvXv3cv/99/Pyyy+3ep27u3uHxpPLHZObBUFo8pj1t12K7OxsbrzxRvr3788PP/xASkqKPbqiOYW3rqQj963Vann44YdJTU21/zt27Bjnzp0jNrbhO9LR97SncHVZoj0IlaptuubdjURiJjDoHEFBXVORsTUEQYqP71R27txpV8Woq6vj559/Zs2aNe3WWvby8iI+Pr7RD1BPJyt7IJWV4ZhMrnZPfXl5OSq1Gnd3dwRBwOWSz5RPSChBveKQ11bjUpTdDbO+BEHA4uaYaBfYH5A2eGZcfE8y/k8ljUIY2oqlLrrVNm5uo7gudGyb+ov3jsdb2fXFebqaAQEDWm1zsYa8h69jjknC6CD27evZkrNWq5UDOw7w+tDXmZ88335cIkioKaxh5cqVHUqs01pL2XdgL9u2bePYsWOdOeUupU98H9zc3Mg9VUFthb5N1xzfVoPc424iBjyBTOmDIA1BkPpgNpzAai7FatyJprThWZB29gybt21Eo9FgNpsdpDl/j0T2H4BE2j6xAIlUSkRSchfNyEZiYqJDwqVcLm9TAnpCQgJ5eXkOf7fTp09TXV1tV/vrCCkpKVitVhYvXsyIESOIi4ujsLBjtT/272/YCTKbzaSkpJCQkGCf/759+xx2CPfs2YOHhwdhYWGN+rpAQkICBw861n64eByAQYMGcfr0aXr16tXo39WmQNMSTiO+g1wt4TTe3oXExe1HIumeeHilcgbLPzvKtm0tV9ZsCxERETzyyCPceeedPPDAA50wuytHVWXjH6SwsDBGjx7d7K6Oob6O6iLbD6dUd2X04ltDWt+wo+Pfv4LgkWmXtLCiZw0Bka2ralyKTCklbmhfTKYGA9RsdsGoc4wLlQj9SC1NbVOf85Pno1JcHQvulsjTtG5cze41G4C6agOndzcoqKi8lUQM6NriRJ1FeXk5S99fymTXyczpbYujtYpWfrX8SnRM6wu83wsxgX2Jch/C9q/S+fn99i08KvK1lOZIkbreiVJ9B3K3SUhkIRhrv8JYd9jeTiqXU1rhmMh6sSrI7xEPHz9iBrVdCQkgdvDwTqvgWlFRwcSJE/nf//7H8ePHycrKYuXKlSxatIhZsxpqWkRFRbFlyxaKi4tb3EGbPHkySUlJ3H333Rw5coSDBw8yd+5cxo0bd1lhIr169cJkMvH++++TmZnJF198wbJlyzrU14cffshPP/1EWloajz76KFVVVTz44IMAPPLII+Tl5fHYY4+RlpbG6tWrefnll3nyySdbjHaYP38+586d469//Svp6el89dVXjcKRnn32Wfbu3cuCBQtITU3l3LlzrF69ulFi69WO04jvIFcyRvtyqKgI51jqNEym7ll51tcrO+29GjZsmH0FHRISQu/eV3c1vdbik3NPHUdXazO8rIqesc1t9vCy/1/p2UzhLKsJq6X9sdd+oSp0psPI5Re8jqHUn1qG4ewHxMRcLH92nBPlJ5rqohFB7kGtN+qhmKwmDhQdYHPO5jYlt44MtsWEypVS9HUNTgZ9nYmcrKvHw2qxWFi1ahV3+d/FA31ti3WDxUBEeNNysr9Hho7vx9AZ0Yy/M57g2MZF1dqCIDSE4Eikvig9/4hU0VBTw2IyUXeJ6oq0nV7qq5HhN9+GtI07uTK5gmGz/9BpY6tUKoYPH84777zD2LFj6devHy+++CJ//OMf+eCDD+ztFi9ezKZNmwgPD2fgwObz2QRBYPXq1Xh7ezN27FgmT55MTEwM33777WXNMzk5mbfffpu33nqLfv368eWXX/LGG290qK8333yTN998k+TkZHbv3s2aNWvw87MtikJDQ1m3bh0HDx60VW+eP5958+bxwgsvtNhnREQEP/zwA6tWrSI5OZlly5bxz3/+06FN//792bFjB2fPnmXMmDEMHDiQl156iZCQ5kUrrkYEsSdmOnUCGo0GT09PampquqR66/Lly5vUJe2pxMQeJDQ0vcU2gQE3Ehg4k19//YiAwCN2731xcSw1NYF4e2lJSLged/dK5HJPamtPU1q2HgCpVIXVCqLouN0tkfizb+/YS+QYO8YNN9zAsGHDqK+pxs3Ti1OnTrFyZedp+HYHCxYssP+gXYrZZOK9e2yVLEVAFxGPxb39Hu7ORqEtw9d6muip+UgVjXd4fHzGcH7DAkqz2+f5TRgVjEvvF9HpbKpUsVFvsu7/fHH3VnL330ew/8DDGIzbMJl6Y+39OM/uerbVPp8e8jT39b2vXfPoKRgsBob8r+3etHcnvMukiEmU59fy7WuHHM5FDFKRUtiyIlhPw93dnQfmPcAvhb9wW8xtfPLJJ+0uiHO10r9/f2655RYAdn6dzokdnZNQK4pWDDUfgWjb2ZP3HUyltSH07c9//nOXqdN09TO5PZw7tI+17y1qUS9eKpcz44ln6D205xSZdOLkUi5bYvJapTuSOy4HUZSg17tTUJCAQlGPTGZEEET8/XORSk34+oylb993yM7O4dy5BIxGA8EhZykq6k1Ots0TUFoC6elFREREcM8996BQKCgo+BqttoTdu13Jzy9g+vRSarWbAFv1ToNBQlzcXkpKYikru7zt8JSUFPr27cva9xYR2qcvuZqeEWJyObQUliUIAnKlCyaDHgGQGOp7hBHv6VOK0mjEYpAhVTT+HijFG9ptwI+7M46Qfma2bNViMPYiKKgOlSoBkVK0lQbOHijBaLwe2IbVms9g9374uvhSoW/ZqPvX4X9xquIU0yKnUaAt4JbetyAIAq4y107Vj7eK1k7Xo1+ftb5d7b9L/45JEZNwVTnuuoUneOPf1wwdC2ntNurq6vjoPx8RGRnJh+s/dIgZ/r1zIcHUqDOTkVqGRWJAam1bcmvLCL/9A4uLO7VmK0guUpf6ffr0GtF76Eju+PsiDq5aSUbKAawXxZ9LpFJiBw9n2Ow/dGqlVidOugKnEd9Bamu7T+2lI9TXeXG6NJo6ra/D8aLCeNzd3fHxGcihQ5/Yk1cMRjdSj05Hr29sNObm5vLjjz8yevRoiot7sWHDeSyWakDCrl0+DBgIguBKddWjHD/edEXFjlBSUsK7775L/wEjOFuYT05RCc3WJb9KWLduHdOnTycgIACZzPHrKJXJ6DV0BGd2bwdAYuoZC8eq8mD0BToM1RPxitXgG5OD4NoQ3uLpHYbS3Yyhrm3xtaHxXvQbF0Za2kZOnbJVds7LlTNkcBgBkXpKszW4uMvRa/JQuoBSqSP97H30941jW0HryZrrs9bbDeJ3Ut4B4K9D/8pdCXc12d5kNSGXtC9xemnqUsxWMzfF3kSMV0y7rm2Oc1Xn2tW+3mRLMFa4ymx2mmirTDpsTij//bRj8azdjcFg4OzZs909jSuOWgxj13dnKc/TEtXfj5MZWVB4efKPPsECSpcTZB2x7Zaa1N4OBjxcO0Y8QFBsb2566nlqK8vJPXEMQ309Sjc3IpKSOy0G3omTrsYZE99BrraCGEplHUZD45AWrdaXkhIXzpw5Q0FBAaIoIpUa8fIqatKAv0BaWhqffPIJa9eudciil0hsSTjl5T6dasBfwGQykXLkCDnFpVe9AQ+Ql5fHf//7X7tyz6VMfugRfEJsSbHyqtJu14wHMKt9sLi403vQbMpPzcLVsAgPj3728+U1n9F7SNsfghc8x2fPNuROGAwm8vLyGDI9Er9wFWGJCtSeRzmbPpLSkhhMplzUHUhYNYtmzKKZ9468h87sWBF3TcYalh1bxv3r78cqOoYJfXH6i2YNHL1Zz685v/LJyU94Yc8LZFRnoDU6hpXVmepIr0xn9fnVrMlYQ2Z1psP5Q8WH+PFcQ2VrrVHLL5m/tPm+XGWuzOplS4zb9+N5EEHpJuO2/zeU0spiu3Sck6sDraUcRJh0XwLDb45g5twx+IZ2XApP6SZDqdhJ1pFN9mOirPFCVa9vmwrO7wkPHz/6jpvEoOkz6TtuktOAd3JV4fTEdxAfH5/unkK7kMsN+PjmU1Lc+vagxaIg7cyYVts1hVptKxahVF4dFW17CoWFhQ4FOy6gcHUjeuAQKgvzQZBwYSu82xEtDJvZG11tFucOljEsfgi1tbZKuuUVWxFkE4C2JZXmpVViNlocCo0AFBUV0b93BG5qJQqlJ/V1d1NSso+Kinh69/bBzdTxuNp6cz3LTy1nfv/5CIKA2WpmxakVpFel8+74dx1CY0RR5Ju0bzhWdoxE30TKdeVMj5pOliaLg0UHOVZ2jGxNNgAnyk8we/VsXKQuLB6/mLFhY0mvTGfu+rnUmxu+E/cl3sfTQ58GbAb8w5sexkXqgkSQEKYK49OTn1Kpd1QOaYlXR7/KWL8JHNuSZ4+fDo71xMPHBWVZZ4RhOLmS7D+yk/j4eEzH8zl16hR9+/YlODaUiL6+JI0Po/BcNTu+SsdkaNuiPjxRTfbhDPtrURCwuDZeBP/e1WmcOPm94TTiO0hP19P19CzGaHRFr1chV+gpKYmhrq49etkd26RRe9oMsfKyyA5df63SkgfMw9dWoc/oEwg9pciYVMHubz7l+ocf56u/H+Dc4TJUv61BlEwm7VDbVS4MdWayjpc3klLLyclhSNIotFV6Cs5WUVxs29kxmy1UVUfgor48JY2lqUvZlLOJcWHjOFJyhPSqdALdApkU6VhefcnRJeTW5pJbm8vG7I2AzTPfEnqLnke3PIqviy+V+kpEHL34n5/+nGNlx1BKlRwuOYxFtGCymnhxz4vtvo9ZsbOYGjmVA2sySVmf03BCEBBF8ZoMR7naEUWRtLQ00tJsEq47d+5k+LCRXH/9VASJQPzwIEJ6e7HhvyfblH9i0gvc9o//Y9Wbr9B77CROF5aivWTRDODp2TElHCdOnHQPPcQiuPq4uIRxT6SmJgirVcqwYT+hcq9Eq/VDFLtePiwnewAmk5Kqqt+XjFNXEhAQwNixzRcvMhttYSZWpUuzba404ZOmIwgiekMOPrGHcA3aDEB9aRzHvrsNg8a/lR4cqa3QN9rdKigoYOP2n+k1UcmmzZvIzGwIQamqOoHEfPmJjueqzvHxiY85Umqr4lmuKydXk+vQZk/Bng73X6GvaGTAXyC1LJUDxQewiJcXIjUhYgKCIDBiVixz/zkK7yBb2FxdtYFVq1aRkpJyWf076RkcOLiP3Xt2I4oiZrMZnVnDzMeSCU9og3NGbuK/ny3HEJfM9pNpFDZhwMPVV4nciZNrHacnvoP4+fldlodLEAT69bPFEZ86dapLYlYNBhUHD958RYz3C9hi7GPwUJehvSSJ1knTSKVShIvi+7WVFbiq1UhlckRRpPDsGQAk+npQ94wwrrMZmdx2ezT7D0zGO/wOjv/8Oq6+GSg98+lIyE9ptgaL0NiYTU9PR6lwpSZLIHGoBa32FK5uNfj6ZuNWo+WZqDkcM2awsTD18m8KsIgWXtjzAp9M+wS5RM7ZqrOcq25fgumVJrsm2/7/wrIcgpJlVBVDUVk+Nea26ek7uTrYsmULhw8fxmQyodfrefLJJ7nhkf6sfOMwlYXNL2oFLy26Ih06na7ZNkCbqoQ6ceKk5+A04jvI5WrET5kyhVGjRgHQr18/vv766ybbKaQS3LGiLS/FpPZFYtQTERFBnRVkFhNardYmE9YMV9KAv0BZaRQSqfNh0FaKiorYsXUr5fu3Y6ivo+hcOq5qTxLHjKeiIJ/sVJsnVVrf/pLzXYUoimzckMPAQX8nOvp6Toqn0BZ4oi1ovjBJS9TXGgnvG96otHd4eDjhLv0pqs3GtWwOitACPNS2CpauyiJcLV8Q5RrCWc8osi4yZi+Ho6VH+cOaPxDlGcWegj2YrT07Tnhw4GD7/318fPj62NcIATJEiRmc+ay/O2pqauz/r62tRaVSMf6ueNa8l4rZ1PQfXGNum8iA8DsQC3Di5FrCacR3kMvN4u+bmGj/v7EgB2l9LRY3xxCd0JAQ5BknqcjOxAVQlBchmM1UZJ+xtxEBWUg0Zs+e4/XWap3Z/W3GasVdX8uh/32MUNcQ26rT1JCydrVjU9eOq1N0BdXVFrZtPc+Av8gZemM0e384T0cTbz39XTE0of7i4uJCwqhQDq/LoeBMNbNvvo89+wuQSqbj76+nXrcco7GQpyIS+SJfR5qmhJpOWD9m1GSQUZPResNuIsYzhmD3YHRmHQMCBtiPX/hdEiU9e+HhpHP48ccfuemmmwjvFU7vYYGc2dO0ypWHum3hn9diOI1GoyEjIwODwYBSqSQ2Nrbbi1E5cdJWnEZ8B7lQjKNDWK18uuBBIvomIQBZqSko3DyQSKWEj53C+dw8kpOTmTp1Kvu++x8V2bZYYIm5cWEgAZDqtD3KiHfSRiwW3LNPIzEaWm0qAqYeEkpzMW4uLnh6ejJgspqsY2UUna9p/aImGH1rbz5c1ri4kU6nQ+WtxEUlp77GyP5vVahjnsdbEUFC3xAqNNGcO/885urN3KkCmV8MCzPKr5j3fFjQMPr49MEqWrm5980U1Baw6vwqduTvuOxY9+aYnzyfR5IfaeQ1FUWRDRs2dMmYTnomZWVlpKamEh4ejq626cJxIlZy83KaPHcxrnL5Vae6djkUFBSwa9cuzp496xDOKpFIiIuLY8yYMYSGXp42vxMnXY3TiO8g/fv3p6Cgg6WwJRLqfYLIOnYEfpP6ktXbikcVbfiJO19+k+jecQiCQHludrPdRA8cgkyh5FRZVbNtnPRcFBVFbTLgAfQh0T3OEw+gq6/DaDSiUCgYe0c83752sEP9mAzmJguo+fv7U1dtoL7GVuiqIF2LmC4SN7Qedy8lJmId2pv1mdwYcQOrsrd3aB5tRSFR8N7E97gu9DoATp48ianQxIS+E5gQMYEqfRVVhipWn1/NT+d+YlrUNMaHj+fXnF8d9ODbgkwio7dXb7QmLQ/3f5ibYm+itLQUi8VCcHAwFouF9PR0Tp065fCbVO6uxiSVEaxpu1Slk6uP6upqtFV6so+XN3le71qCtrT1cBpTeTGa0hK8goI7e4o9jjNnzvD99983mQNgtVpJS0vj3Llz3HrrrSQkJHTauK2FK7388su88sornTaek98/TiO+g1xuOI3JJwCTly8g4FKUDb/lG1ktZnb+dwlV4ydTnHGOnONHm7x+wn1/JGjAULZv345B0zZD0EnPQlbXujTcBRQVRSAImHuYN16USPnuu++47bbb8A1xJzBaTUlW2+/rAjVlOsLCwsjPz3c4npiYiKuHHFcPud3TKCBQU1qPKIrk5X/u0N7NLZra+q4JCRAQ7EozkyIm2Q34/Px8Nm7ciNlspq6uDrVajaurK1KkzPCYwcLbFyL8JveY6JbII/0fwUXuwvGy4xRoCzhcctguXSkVpMzpPQdfV19ERA4XH+bFYS8S6RmJVGrLb9m3bx+//voroiji4+OD0WhEq3XMl7AIArt7J2NSKLn14OaeUl3ASReQkZHBoaP7mPpQXzZ/ehqr1TEsTWJpW50ARXA4rl7tkSG+OikoKGjWgL8Yi8XC999/z4MPPthpHvmLi/p9++23vPTSS6Snp9uPqVTtL2DXXVxw3jjpXpxGfAc5ffr05XfyW8nruAGDKTp6AH2tzfgp0pko/+5Lu5fWKlNgCAzDKlegLC9CWqeh3k3NJ5984lQTuIoR2lF9VWrQ41KQicFixuQd0IWzaj/nz5+nuLiYiIgI/MI9OmTE56dVcccdd7Bq1SrOnz9vP24wGJBIJYQn+HD2YIM3sTSnloqCOmpqHI1Xk1nP3sKOS0I2hb+rPx9M+oDe3r3ZkLWB/x7/L0OChnDgwAGys7M5c6YhR2XdunWNro+OjkapVFJSUkJVVRUeHh7ExcUxY8YMJBIJt8ffzrNDn7UXnQp0C7R77DQaDStXrkQURWJjY8nMzHSoUVFZ6ehlr1O4sCNuALXuHlS52HZugmfdSsmaH5qtOOvk6ufgoYOMeWoMf3h+KOcOl3B8S15DkmsTqk9NUV9fT61Wi9Kl50jZdgW7du1q83PTYrGwe/dubr/99k4ZOyiooQCep6cngiDYj73yyiusWrWK1NRUe5t3332Xd9991y6kcf/991NdXc2wYcN47733MBgMPPnkkzz//PM899xzfPLJJ7i5ufHqq6/ywAMP2Ps5ceIETzzxBPv27cPNzY05c+bw9ttv2xcN48ePZ8CAAbz77rv2a2bPno2XlxfLly8HICoqinnz5nHu3DlWrVrFLbfcYj/npPtwGvEdpLq6utP6qvf05aZnX+bbF57C7OmL0T8Es4cXypI8kErRB0ciymwrXl24reLq5u07Om18J92DVa5sFE5jlcmbzH0AW/6DS3EuoiDB7NWzkodPnTpFeFgYfmEd8ySlbs5D7efKjBkzeO+99wBbbOoFwzNmgL+DEQ/gqpZRUFCJ30VvhclYxIP+3tSqJrGu4BjluqZDDFrj9vjbSfZPxtfFl1j3WA7uOogpwsTUPlOZHj2dstIylv+4HIOh9V2wrKwsh9e1tbWkpKSQl5fH4MGDCQgI4ODBg3h4eGA0GsnIyKB37964ublx/PhxNBrboujSXYqmkFvMjMg8xbCkfsQNTOaPp7JZVi/w0qjRHN+zu0PvhZOej06n47vvvmPGjBmMnB2Lh48LO76yeXjd3Nxp67La5XduwGs0GgfPd1tIT09Ho9H0mGTXrVu3EhYWxs6dO9mzZw/z5s1j7969jB07lgMHDvDtt9/y8MMPM2XKFMLCwqirq2PatGmMHDmSQ4cOUVpaykMPPcSCBQvabYT/61//4qWXXuLll1/umptz0m6cRnwHMZmaNrQ6wvnz58nIyIC4AYhS25/E6uqOLqpPp43hpOdh9AlAWqexhzoYvfwwBEbglpOGVF/f7HVSg46epj2SsmsHypI8eg+/hUHXR5BztoiKzLZ/RywmK6mb80gcPZzJkydTWFhIdHQ0SUlJAJTlNo6XL82txNf3HFarC3K5DIvF5pXvLa8Cw89M7TuHT4vK2FpwuF33clPsTdwVcBe5ubnkleSxN28vWq2WlJQU3Nzc8PPzIz8//7JrO5SWlrJ+feNkXoAjR450qE+FxYxPfS1UlDHMS8V3A3pxY8pZCsJiAKcR/3vm7NmzJCUlkZSUhNqvwRgX6lX0SuzF+YzzLVxt2zG6msI5OkJGRka7d6SsViuZmZkMGDCgaybVTnx8fFiyZAkSiYT4+HgWLVpEfX09zz//PADPPfccb775Jrt37+aOO+7gq6++Qq/Xs2LFCtzdbbtzH3zwATNnzuStt94iMDCwzWNPnDiRp556qkvuy0nHcBrxHUQikXRqgSZRFEHq/HNcS1hUXtRH9UFi0CPK5FhUnkh0dUgMzedbiIKkR6rUmBUu7Dl5msMHD+ASEkHMgMEIpgDK89qube8TbKs0et111zkczzxaRspGR3UNiVTAVV2NuSCRA/sT6NUrlqQkGbXaj9DrbR7r8pIfmBd4A338H2Fp6tKGawUJVrHp7+6tcbfyWPJjfPbvz5pMtK2vryc3N7eJK3sW5eXlWK1W4t1duDHAi2+qtVwnU+BqNnb31Jx0IVlZWSQlJTlITZoNVgIkfcgQWjZgrwVlmrbsnHXmdV1B3759HaRAAwMD7YUjwVY80NfXl9LfqvKeOXOG5ORkuwEPMHr0aKxWK+np6e0y4ocMGdIJd+CkM3FajR1AFMUuqbDq5NrD6qrC6trg/ZLVViE0Y2ACiAkDsYo9M03RovKi3t0Tg7aOc2fPMjghul1GfEF6NXU1Btw9GxLxjHozh9dnwyW2h3eQO2ZpKl6esxHF85w7l825czBkyEO4uv0TMJKb24+RI95Cqsvi4+Mf84/R/2BkyEi8ld4cLjnMv4/9m7v63IWISIgyBA+FB0KdwNof1jZpwF9NVFdXs2HDBqZPn04fdxfWlVQht/S0/Rsnnc2ZM2e44YYb8ApyczhedtaMr78v5eXNh5fV1TVf8fX3glLZtiTfzrquPVwcPniBpnb85XK5w2tBEJo81h4bpa1jX7wQcNIzcBrxHcSZJOakK7C4eSBWFDepJuLioSZqyDAOHTp0xefVFnx9fQkTTGTuSsG1towCbSjg3+br9XUmNvznJOPvjsdksHBqVwE5pyrRaRp7j6uK6zAZDNTVO8aJHz6cgVx+EwmJOwjwn42bmxsHMg8wu9dsZsTMsLcbGjSUJK8k8vPz0el0bN66maqq35dU68GDBykqKuJEUCRuZgmyFhaHTn4fXIiNv2XWrZw/XEp1iS0sT1OhwyNK3aIRfy144mNjY9u9iy6RSIiJienCWdnw9/enuLgYURTtie0XJ7l2lISEBJYvX05dXZ3dCN+zZ489HOfC2Bcr51gsFk6ePMmECRMue3wnXYvTiO8gEonEqQzjpNOxqDzRhcfhmn8O4ZKFolyhdPih7WlMmTKFqLAwvsvNoSwnA50mBYX79e3qozizhm9ebaPWvCCnvv4nlC4TMOgbKlKaTK54et7G+HF3AjA+fDyBLoFkZmaiUqnQarUcO3aMY8eOtWtuVyN5eXnk4YLJ31m05lrh7Nmz5ORnMeXBRH761xHMJitWs4ibJhrIbPa648ePM2nSJLuU6e8RtVpNXFwcaWlpbb4mPj7+iiS1jh8/nrKyMhYtWsStt97Khg0bWL9+/WWPfffdd/Pyyy9z33338corr1BWVsZjjz3Gvffeaw+lmThxIk8++SRr164lNjaWt99+u1PFO5x0HddejeVOwGg0Og14J12CorQAl+KcRgY8QKXZ2iaFku7CbDbjolKRNHEqABJp11URtlpEaisqcHXVEB+3F3dVhcN5Pz8J1TW2hNYYzxiOpRxjxYoVLF26lBUrVlwTBvwF1Lo6DDL5pRFJTn7HfPvtt2zcuZrkmTY5WqWbjJHXJ7ZYbEin010TYaJjxoxp80JFJpM1ytHpKhISEli6dCkffvghycnJHDx4kKeffvqy+3Vzc2Pjxo1UVlYydOhQbr31ViZNmsQHH3xgb/Pggw9y3333MXfuXMaNG0dMTIzTC3+VIIi/07gQjUaDp6cnNTU1nb6KNplMvP766y03spiRmIxYZQqQOTc8nLSOtL4Wt5zm5c90wVE9TlryYlQqFTfddBOZW9ZxavtmFB73IpG1PZymrciUUsbdFUCV9TkOHgynqurCYkFErS7D27uQyKhzREc/QnTUo+h0OpYtW0ZNTU2nz+VqwSCVoXTGxF9zhASFYUyNYuCUKAgqYdOmTc22jYmJYe7cuV02l658JreXliq2XkAqlXZ6xVYnTjobp3XZAWQyGTKZDLO58UNRKZNhqSzFpTALQRQRJRLqI/tgdXFroicnThoQBQkiNFtdU1an6dFGvFar5auvvkJ1JgW5wrVLDHiAfmND8Yo6Q0laIlVVF1cMFIjvsxsXlzpEEQoLf8JFOZhfN528pg14wGnAX4NIJBJcJZ5oXEs4lHGW6hOlLbaPi4u7QjPrfhISEnjwwQfZvXs36enpDjsQF2LFr7vuuk6r1OrESVfhNOI7gNlkJFhXTZ7MDQRbRJK7iwtJYUGUHk/BPzaaDIkVQ142gtWKoqIYfWjXJ8Y4ubqxurojKpQIxqblzKR1GrBaQdKzo+Asbirklq4rGuMXpsKgL0JvMAMNRrxCUYdCoQMgL68v2VkDgXV4eFTQngRbJ05+D4wZMwZThj8aXSmhvmGk1rdsxGdmZjJixIgrNLvuJzQ0lNtvvx2NRkNmZiYGgwGlUklMTEy37xQ4cdJWnEZ8B7CYTFSfT0MSlYDV1ZbtrSrOxmvoQH4Y8CTn6w34jZQwbfkiakqKbcaXEydtoYXtXYnFjFtuOvWR8fbFY09DZjUjrddikZiQigYEofOl2QKj1JzP34JCcQ5Pz2HU1AQhkZhI7LsdicTmUSvIT8C2pyFQW+s04J1ce3h7e2MIcEMQIGFIFKl5LbeX9HDnQFehVqt7TCEnJ07ay7X5rb1M5EoX1KERWBUN3sbkR55igVsYP5fVcKZOz0BPFYExvQEwe3h311SdXGWYfAJbTECU6uqQ6Jqv5trdSDRVCIiIVj1m3Z4uGaM4qxqr1YDVWkPvuHJARBBELBabVrJO54HF4vRPOLm22bNnDyaxHnWQguNnW1d8UigUrbZx4sRJz8JpxHcAs8VCVVAU/JbhLpiMFAsy8vW24gjeMilPRQdRU1IMgHhJIQYnTprD6BdMXa8kTOqmF36iRIJV2XWhKpeLRXrxZ71rDOmqIh0JCW8CoFTcAghYLAoK8hMBKCmJwWp1fuecXNuUlZWx+ej3nBc3c+rUqVbbnzlzxln/xImTqwynEd8BdDod9fUN3lD3klxOnbb9SF7n5c6q5BjO79pGSeY5AJtCjRMnbUSUKzF5BTR5zipTgLTnepktHl549unHwBkvIHcb2+n99xsbysibY5FJbbrwnp7B9nOVlWFkZyejre06aUsnTn6vWK3WFiUonThx0vPoudZAD+biHzpfXx+MaRrq1//IY75+qMuK+NlgQN6rL8q4ftRoeraiiJOeiby66SQ0iVEPVgtIemhBFquVkbfcy86PW06i6yghvb0QRZHMrHcAMBhSHc7n5/VFFHvoe+PESQ/Gzc2poObEydWG04jvAPKLwmOMRlsIjV9VKWJVKcbQaCwxIWj1BpC6gHfPDX1w0nOR1VY3edzi5tFzDXjApbaS+L69OR6gpbKwrtP7P72nkNAEkeLiVQCUl/+EIIyzG+4BAVmUl0dgsTh3vy5m+PDhREZGkpKSQkZGRndPx0kPRKns/CT0qwG9oZjKyt1YzFqkMhU+Ptfhogzq7mk5cdImnEZ8B7j4x662thZZWCyymgrMKk/Mal/QNy0R6MRJW7G4uiOr1zocEwFzM7HyPQaLBYvZjGjtmtja/LQqDq52xS02mvr6TNSeBQwZupqK8nCUynqULloUynpMJheKi64d3euWiI2NZfr06QD07t2bxYsXo9fru3lWTnoaJpOpu6dwRdFojpOd82/Ky7ciig11FARBhp/fRKIi/4xa3b8bZ+jESes4Y+I7gCAIDnJcZpUn+tAYzJ7OWFwnnYPRJ6iRSo0AuBTnIm3GS9/tiFYEUcRqEqivNXbZMDVlOlyUIfbXLi51ePsUUlDYh9SjN5CX25/KijBcXa/tAk8XuNjpIJVKkTkrSDtpApVK1d1TuGKUlm0k5cjtlJX96mDAA4iimbKyX+3nnVwdREVF8e6777a5/SuvvNKqtOj999/P7NmzL2teXY3TiO8AWq3WocKbEyedjcXDy0HC9GIUlcVXeDZtw6WyhHC1OwdWfUl0ctflgZTnadDpSxyOZWUOQlMTyIV6t0ajG76+eST1/xWJ5NquVnrmzBlSUlKoqKjg119/RavVtn6Rk2sKQRCIiIjo7mlcETSa45w6tRCrtWVHg9Vq5OSpJ9Bojnfa2IIgtPjvlVde6bSxnLTM008/zZYtW7p7GpeN0yXTAZwZ/E6uBIK16cJPEkPPDIWYcvf9DB4xEk15ORv+m9ll4/iEWrFYah2OXdCIv5jy8ggkUgvu7lXXdMEnURT5+eefu3saTnowM2bMYMiQId09jStCds6/WzXgL2C1GsnOWUb/pKWdMnZRUZH9/99++y0vvfQS6enp9mNX026I0Wi8qmsLqFSqq+r9bg6nJ74DGI1dFyrgxAmAYDZBM5rNPbV4WH6JTZHm7EEtZbld5+0tPg/hfosdjnl7F9r/L5HYYnv1ejW5OcnXtAF/geTkZJ544gnuvPPOazaB0UnTKJVKBg0a1N3TuCLoDcWUl7fP+1pevgW9oXN2P4OCguz/PD09EQTB/nrZsmVcd911Du3fffddoqKi7K8vhHf885//JDAwEC8vL/7xj39gNpv561//io+PD2FhYXz22WcO/Zw4cYKJEyfi6uqKr68vf/rTnxx25MaPH8/ChQsdrpk9ezb333+//XVUVBSvvvoqc+fORa1W86c//anR/WVnZyMIAt999x1jxozB1dWVoUOHcvbsWQ4dOsSQIUNQqVRMnz6dsrIyAHbu3IlcLqe42PE9XrhwIWPGjLG/3r17t73P8PBwHn/8cerqmhdPyM3NZdasWahUKtRqNbfddhslJQ07uJeG01gsFp588km8vLzw9fXlmWeeuSrqJjiN+A5wrSUAObnyyDSVSCxNh4FYXXqmFJyHhweVRXWkbMju0nGsVpHzBxyPhUecol/SJvolbSax7/YuHf9qQxAEZsyYgbe3N/Hx8QwePLi7p+SkB2E0GtFoNN09jStCZeVuRLHpHc7mEEUzVZVdU326I2zdupXCwkJ27tzJ22+/zcsvv8yNN96It7c3Bw4cYP78+Tz88MPk5+cDUFdXx7Rp0/D29ubQoUOsXLmSzZs3s2DBgnaP/a9//Yvk5GSOHj3Kiy++2Gy7l19+mRdeeIEjR44gk8m46667eOaZZ3jvvffYtWsX58+f56WXXgJg7NixxMTE8MUXX9ivN5lMfPnllzz44IMAZGRkcP311zNnzhyOHz/Ot99+y+7du5u9B6vVyqxZs6isrGTHjh1s2rSJzMxMbr/99mbnvHjxYpYvX86nn37K7t27qays5Keffmr3e3SlcRrxHUDurMDqpItpLh4ewCpXoCgrQFFaAM0Y+t2Bp6cnVUV1mI2dky8ikQlE9PVl9l8GMufZwfQeGmg/d/5IKQrzbQhCw3fR27sYlaoCk8kp63oxoig6qNHodLpunI2TnoYoiqxcubK7p3FFsJg7tkNo7uB1XYGPjw9LliwhPj6eBx98kPj4eOrr63n++efp3bs3zz33HAqFgt27dwPw1VdfodfrWbFiBf369WPixIl88MEHfPHFFw6e6bYwceJEnnrqKWJjY4mNjW223dNPP820adNISEjgiSeeICUlhRdffJHRo0czcOBA5s2bx7Zt2+zt582b57B78PPPP6PX67ntttsAeOONN7j77rtZuHAhvXv3ZtSoUSxZsoQVK1Y0qbS1ZcsWTpw4wVdffcXgwYMZPnw4K1asYMeOHRw6dKjJOb/77rs899xz3HLLLSQkJLBs2TI8PT3b9f50B04jvgNczXFgTq4OrErXRuo0F3DLO4eyvAhlRREuRdktdGK1/btCKCQCmallndKXVCbhlqcHM/OxZELjvQmK9mTKg4nc9vxQVD5KLAYVBQdupk/8a/ZrKitDOHxoNulpY1ro+drkq6++IjU1lc2bN3P06NHuno6THkZhYSGVlZXdPY0uRyrrWAy0rIPXdQV9+/Z1UMcLDAwkKSnJ/loqleLr60tpqS288cyZMyQnJ+Pu7m5vM3r0aKxWq0M8flu4OG9i/vz59rjyS2PL+/dvkOYMDLQ5Xy6eY2BgoH1+YAsTOn/+PPv37wdg+fLl3HbbbfY5Hzt2jOXLlzuMN23aNKxWK1lZWY3meebMGcLDwwkPD7cfS0xMxMvLizNnzjRqX1NTQ1FREcOHD7cfk8lkV0WeiDOxtQNIrRaivNVkV10bW5BOuh7BbEJRXoS0vharXInEZABBQBQkdunGppAamvaqBvt6U7tnCyBicfPAENEbK12bkL3ry+UkDW3/Fm1TjL0jjsAoNdXV1Xz//feMGjUKQRCora1lxsIEjv5SRGlOLR4e06iufhsvrxLOnx+G2eyM926K4uJiVq1a1d3TcNKFKJVKxo0bR0BAAPn5+Wzfvr3N14qiyPr167n77ru7boI9AB+f6xAEWSNZyZYQBBnePqO7cFY2JBJJoxjspkJ3L40EEAShyWPtUdBr69gXLwT+8Y9/8PTTTzfZ38XzuSAEcumxi+cXEBDAzJkz+eyzz4iOjmb9+vUOn1+tVsvDDz/M448/3misa0VVqTmcRnwHKM/LRV+YB649f6vFSc/HSy7BfOY4wm++94sNc11IJFaZAkVVKYLZhLS+1sEUN3kH0hTDBg5k6+5NAMjqNMgMOmqVXRhLb7XgH+BHXc3lJ333GRFE4nUNOvD5+fl899139teurq4MGzYMmcHIx8s+JyjcFatVwGpx/pw5uXaZNGkSw4YNA6BXr14YDAb27dvX5uurqqq6amo9BhdlEH5+E9ul/+7nN+mKVHD19/enuLgYURTthm9qaupl95uQkMDy5cupq6uzG+F79uxBIpEQHx9vH/ti5RyLxcLJkyeZMGFCs/0GBAQQEBBw2fO7wEMPPcSdd95JWFgYsbGxjB7dsHAaNGgQp0+fplevXm3qKyEhgby8PPLy8uze+NOnT1NdXU1iYmKj9p6engQHB3PgwAHGjh0LgNlsJiUlpccnfTvDaTqARCpFGZvQ3dNw8jshJjjYbsBfirI0H1EqQx8agy4yHn1wFFa5AourOwa/EIw+TSuvnNy93eG1sYtj5yVGPWG9+pJ5tLT1xq0QN8L2wKytrW0ysUin07Fjxw7OlOyjpq6cnOxkysqiMZlcL3tsJ06uRmJjYxk4cKDDsQsGfVu5VnIloiL/jETStpBYiURJVOT8Lp6RjfHjx1NWVsaiRYvIyMjgww8/ZP369Zfd7913342Liwv33XcfJ0+eZNu2bTz22GPce++99lCXiRMnsnbtWtauXUtaWhp//vOfqa6uvuyx28O0adNQq9W89tprPPDAAw7nnn32Wfbu3cuCBQtITU3l3LlzrF69utnE1smTJ5OUlMTdd9/NkSNHOHjwIHPnzmXcuHHNhsg88cQTvPnmm6xatYq0tDQeeeSRK/4edASnEd8BJJ7e5BQWtt7QiZM2kJef1+w5icmIe9YpJPp6AMxeftT16k99VAJG/xBoJkQms1aH0csPs8oTg18IBlePrpj6RQjUVZXiGXB53n6Vj5KQXl5YLBZWr15NTk5Os229vLyIVYxl3gN/JSjQ11mJ1Mk1y5gxYxqFVHh6erbrOyGVSjt7Wj0Stbo//fq+16ohL5Eo6Nf3XdTq/i226ywSEhJYunQpH374IcnJyRw8eLDZcJX24ObmxsaNG6msrGTo0KHceuutTJo0iQ8++MDe5sEHH+S+++6zG7oxMTEteuG7AolEwv3334/FYmHu3LkO5/r378+OHTs4e/YsY8aMYeDAgbz00kuEhIQ02ZcgCKxevRpvb2/Gjh3L5MmTiYmJ4dtvv212/Keeeop7772X++67j5EjR+Lh4cHNN9/cqffYFQji1SCE2QE0Gg2enp7U1NSgVqs7te+srCw+//zzTu3TybWJgIhr5ulmY9svoA8Mx+TTdOhMdyMYDbjmnWPQuIlED7qV3d+fQ1tp6FBfofHehI2xsGPHDmpra1tse9ddd+GnCmX/uh1EjNgKDOP77093aFwnTq5mZsyYwdChQx2Opaen8/XXX7e5Dz8/vw7JDraVrnwmd2w+x8nOWUZ5+RaHGHlBkOHnN4moyPlXzIB3YmPevHmUlZWxZs2a7p7KVYPTddUBDIaOGShOrm0Egx5lRRGiRIrRLxgAl6LsVg14URAwq7yuwAw7hqK8iICAAIbeNAfPgABkSim/vH+sQ325esgJDw9p1YAHWwiBVCrFWBtE1rZ7SZ4qY+CglRw9koBzk9HJtYTF4qh9XlFR0e5E5mttJ0ut7k//pKXoDcVUVe7BbNYik6nw9hl9RWLgnTRQU1Njl4R0GvDt49r61nYSzmJPTjqCa0GG3WAXzCZEmQyZtsahjQiYvP0RZQpk2mpEQYLRPwRR0XNVV6Q6LcPuvQ/PANtOgW+IO4JEQLS2b5NP4SKl35hQAgO98fX1paKiosX2x44dY9CgQYT08uLE9gLWvm9G1n8IcG3E9jpxArYEw0vj32UyWbtj3K+VcJpLcVEGERw8p7uncU0za9YsDh48yPz585kyZUp3T+eqwmnEd4DfaQSSky5GuCi5VGIyYm1G8dEQEA4Sid1b35ORamuQGvWYL9qdUnm7EBDpQUlW+yRYx9/Th9B4bwwGAzU1Na22X7NmDaWlpQwZOQTvPha2rNlPQaHTgHdybaFWqx10wwFUKhUSiaRdMoPXqhHvpPtpjxyqE0ecRnwHuNa2HZ10DoaAcFyKc8BqAURk2sZGroDN2Bf0RpQVRVjlCrtR3xNRlhUAENQrzn5MFEWMuvar4XgH2eTPFAoFgYGBFBQUtHrN/v377QVCnDi5FsnIyKCgoIDQ0FD7sbq6unYZ8NA4JMeJEyc9H6c12gHa++PoxAmAWe2NTiq1xcH/pjZzKSYPL0SpDPesUwi/PVStciUm354ZoylXqZFLBXxCwji5Ix+VjwsZR0qpKm76/lri3OES/MJUCIJAaGhom4x4J06udaKiovDwcFSfystrXvGqOS715jtx4qTn4zTiO4DTY+Gk3YgiLoVZyDWNS5tblC4YfYKwuHnYYt8tZrjoMyb04M9b2PhpjBs2jR//dYyaMh1j74gjYVQI9TVGck+3r4z7kQ059BkRhHeQO4MGDUIikXD06FFnIrkTJy1wQV/7YozG9hVdi4uLuyrk9Jw4ceKIc+ndAczmri2c4+T3g0xTiaK8EJeCjCYNeABDYARmL7+G5FWpjLg753H7q/8iefZtmLybLujUExg1ahQKVxkGnZnRt/YifngQIb29mP7nJJRu7fcRnD1UAkBQUBDXX389999/fyfP2ImT3xdNOZXa61UfO3Ysrq7OYmlOnFxtOD3xHcC57eikNQSjAbfcs0hMLXuRRQQsrqpGx4+kHkNnMOLq7oWgVLZb6eVKIAgCQUFBSKVSxt0RhyBpyNSVSiVI5e3/nhzdmEvc0EB7fHxwcDBxcXGcPXu2zX3I5XLmzJlDaGgou3fv5sCBA+2ehxMnVwtr1qzhrrvuwtPT034sKCgIQRDaLMJQXl5OWFhYV02xR1NkMLKjshatxYpKKmGcjwfByrZVdHXipLtxGvEdwJnF76Q15DXlrRrwNkSwWhslrg4ZMoQbb7wRgEhPd9au/K7HqdWIosiBAwcYOXIk3sHuHNmYQ3iCDwCn9xRSX9O+LX0Ai9nKd68fIiBKjaZCR/ywIG655Ra+/fZbsrKy2tTH4MGD6dOnD2ALNcjJyaG4uLjdc3Hi5GpAqVQ2eiYFBgYSFBREUVFRm/o4ceIEAwYM6ILZ9VxSNfUsySnh14oazBetdWQCTPX15PHIQAaoL68CtRMnXY3TiO8APuquLmHvpKcRHh7OzJkzUalUVFVVsWnTJrKzs5ttL0rb9tUSAEVlCcaAUIfj4aEh6Go16Go1pP7yE8qyAkSpFLPKC0+ZBJfgsB5hmP76668AeFmjOLmjgOqSehQuMrKOl3e4T7PJSuG5agBSNuQQ0deH4cOHt9mIj4trUMqRSCTce++9/Oc//2HixImEhISwf/9+jhw50uH5OXHSk7jllltQqRrv5vXr16/NRnx2dnYjhZvfM+vKqvnz6RwMTexwmkVYV17DlkoNyxIjme7vdeUn2E1s376dCRMmUFVVhZeXV3dPx0kbcMaFdABLnRZbWR4n1wIDBgzgnnvuISAgADc3N0JDQ5k6eVKL10hMbfdCq411uLu7Oxxbt+x9lj50F5/9ZT7ludkAyCtLccs6jSUtldtuupFJk1qew5VAoVAQFxfPsa02NYz8tCoyU8s6NfxH5eOCm1vbPWI5OTkOr11dXZk5cyYDBgwgICCAGTNmNGn0OHFyteHh4dGssdWeYk8Wi4V9+/Z10qx6Nqma+mYN+IsxWEXmn84hVdN+pa3mmDlzJtdff32T53bt2oUgCBw/frzTxnPy+8dpxHcALRJsPtS2o1QqEYT2XeOk+5FIJMyYMQOl0pZ0WpabzS/vLWLN6y8iWJtXjbHK5G0eIyw+sVHsqiEgFLO7o+KE1KhH8lvBqDWL/4mP1UhiSGCbx+lsgv0imDP1fg6uLKCysK5LxpBIBVzc5ISHh6NQtC1OdceOHRw9ehSwhfzs3LnTIflPKpU6k/ic/C6QSCTNxr1XV1e3q69r5fm0JKekVQP+AgaryPu5JZ029rx589i0aRP5+fmNzn322WcMGTKE/v37d9p43UF7lZGcXB5OI74DtKWa5MVMmTKFv/3tbzz++OMEBnaf0eWk/fj6+iKXNxjkxzevx9XDAxc3N1xzmk+2lNW1vVppflU19fWXeHukMnRhsYi/LRYH3TCL+xcvZerDj+PioaYiP5cNS98hd8va9t1QJzIwaTBeviqmzuvLuDvjWr+gA0ikAlK5hPr6+jY/HBQKBatXr+aLL77g448/Zvv27ezYsYPKykp0Oh379u1jyJAh9hLfzhwXJ1crNTU1HD58uMlz7d1tuhYWtkUGIxsr2vf83lheQ5GhcwzTG2+8EX9/f5YvX+5wXKvVsnLlSmbPns2dd95JaGgobm5uJCUl8fXXXzu0/f7770lKSsLV1RVfX18mT55MXV2DE+XTTz+lb9++KJVKgoODWbBgAWALmRIEgdTUVHvb6upqBEFotmJqRUVFq/MZP348CxYsYOHChfj5+TFt2rSOv0FO2o0zJr4DtKdiq1QqZeTIkQiCgLe3N9OmTWPFihVdODsnncmFBMkLTHrwzwBYzGZyjh9lxeqfQXBcCwtmE9JWjHiLixv6wAgE0Uqt3DGURmYyoMg7h8RkQkDEw9ef8XMfQhAEfMMi8A4KYf3Sd9CUlWC5xFt/JanTFxIYnQxAv3FhHN+W36EiTy1hNlo5tiWPQdMimTVrFqtXr262bb9+/ZgwYQI+Pj6cPn2alStX2s8VFRWxZMkSABITE7ntttsAm4qHKIps3brVWcTNyVVJbm4uQ4cObXT8YrWatnAtqK7tqKzF0s5IP7MIOyu13B7sc9njy2Qy5s6dy/Lly/l//+//2Xc/Vq5cicVi4Z577mHlypU8++yzqNVq1q5dy7333ktsbCzDhg2jqKiIO++8k0WLFnHzzTdTW1vLrl277Lsx//73v3nyySd58803mT59OjU1NezZs6fD89Xr9QwePLjZ+Vzg888/589//vNljeWkYziN+A7QHs+dxWJBp9PZY55NJlNXTctJF3BpEZULSGUy5P5BjQx4AIm+rtVgK6tcgdWtaU+ZrCQfqUFvfx07ZLjDVrd/bG/i5tzDwZ9/ROfu1eo9dAWCKHJ4xX8ZOGAgXoFBGPVm6mu7Zhs1M7WMgVMjGDBgAGVlZezdu7dRG19fX2bPnm1fYPft25ft27dTVlbWqO2ldR6uu+46Ro0axb59+9i0aVOX3IMTJ11Fc8+UESNGoNVq22xYXQtF1bSWji3Uazux4N6DDz7I//3f/7Fjxw7Gjx8P2EJp5syZQ2RkJE8//bS97WOPPcbGjRv57rvv7Ea82WzmlltuITIyEoCkpCR7+9dee42nnnqKJ554wn6sqQVeWwkNDW1xPhfo3bs3ixYt6vA4TjrO73/p3QW0N+br22+/JT09ndTUVNau7b7wByftpykj8AKFhYXNnGnZhLcoXDD6N68CEdinr8NrlY+vw2ur1YpMoSAiPBzXvHMIFxn8VwqJaGXQpKl4+PoBtoRWQ13XFEErydKw+7tzmE1WpkyZwrRp0xolAvfu3dthh6y+vh6NpundkLNnzzZSupFIJIwaNarZRZsTJz2V5p5HgiAwZMiQNvfTnkTYqxWVtGMmj0cnhtz16dOHUaNG8emnnwJw/vx5du3axbx587BYLLz66qskJSXh4+ODSqVi48aN5ObmApCcnMykSZNISkriD3/4Ax999BFVVVUAlJaWUlhY2KmCB63N5wKDBw/utDGdtI92faLfeOMNhg4dioeHBwEBAcyePZv09HSHNnq9nkcffRRfX19UKhVz5syhpMQxMSQ3N5cZM2bg5uZGQEAAf/3rXxt5x7Zv386gQYNQKpX06tWrUQxZd9LeGNrc3Fy+/vprVq1a1axh4aTnMWrUqBZ/EPMyM5o8LohNe3tEiQRtr/7Ux/bDqmw+/rTIaEW4KA4/fuQYh/Ourq6MHj2avgMHIdNpccs/h7yqFKEdijiXi5unF2PvfQjpb4Zz2r62Sdl1lOPb8vnkyV1s/uw0MUF9eeyxxxzySzIzM+3GTE1NDV9++WWLnsXPP/+cVatWOSQFCoLAdddd13U34cRJF1BQUNDsZ72tsqzXCuN8PJC1M39XJsBYn85Vs5o3bx4//PADtbW1fPbZZ8TGxjJu3Dj+7//+j/fee49nn32Wbdu2kZqayrRp0+y/bVKplE2bNrF+/XoSExN5//33iY+PJysrq9WchgvhUhf/5rUWGdDafC5wqVPFyZWjXUb8jh07ePTRR9m/fz+bNm3CZDIxdepUh6SKv/zlL/z888+sXLmSHTt2UFhYyC233GI/b7FYmDFjBkajkb179/L555+zfPlyXnrpJXubrKwsZsyYwYQJE0hNTWXhwoU89NBDbNy4sRNu+fK5FmIHr3Xc3NyYPHmyXZXmAmd2b6emtJgThw5wKi2t0XXyimJc8jOb7NOqcEGUt66wYjQa0UXEE3vjrQx9+C9s37uPtWvXNlKh6DtuEmr/QCRGAy7FubhlnYZO3PZtiZkzZ1J8rpacUxUcWJNJ1rGO68K3FYvZytmDJaxZkkpJRh13330PN910EzExMZSWlvLBBx/wxRdfsGTJEgoKClrtLzU11SHJC2xhOU6cXE2MHDmyWcfSsWPH2tzPpb91v0eClQqm+rYvV2Can2enV3C97bbbkEgkfPXVV6xYsYIHH3wQQRDYs2cPs2bN4p577iE5OZmYmJhG1aoFQWD06NH8/e9/5+jRoygUCn766Sc8PDyIiopiy5YtTY7p7+8P4FA74NLfv0tpy3ycdC/tionfsGGDw+vly5cTEBBASkoKY8eOpaamhk8++YSvvvqKiRMnArZYr4SEBPbv38+IESP49ddfOX36NJs3byYwMJABAwbw6quv8uyzz/LKK6+gUChYtmwZ0dHRLF68GICEhAR2797NO++80yMyn9sqdefk6iU+Pr7RYm3/j9+y59svADC7eSBGxje6TllWiNBMDQGJvh5FWSFG/5BWxzcpXEjNyIaMbPux6upqxowZQ3h4uK2kutWK1dzgSZFYzEiMeqyuXesVGTRoEOWnJBzdmNql4zSHUWfml/ePETcskIFT40iY05f/fPRvqqur273T9fPPPyOTyexxpU7PpZOricjISMaNG9esPGRkZGSjugnNca081x6PDGRLpaZNMpMuEoHHIjpfUU6lUnH77bfz3HPPodFouP/++wFbWOD333/P3r178fb25u2336akpITExEQADhw4wJYtW5g6dSoBAQEcOHCAsrIyEhISAHjllVeYP38+AQEBTJ8+ndraWvbs2cNjjz2Gq6srI0aM4M033yQ6OprS0lJeeOGFFufZ2nycdD+X5VK+ILXo42PL2k5JScFkMjF58mR7mz59+hAREWEvJLFv3z6SkpIctsKnTZuGRqPh1KlT9jYX93GhTUvFKAwGAxqNxuFfV9GcLq+T3w+jRo1qdCyiXzJSuZzew0cx5Q93oHZ3LEAkra+Fi0JprAolBv8QxN8WAwIgryrt8JzOnTvHp59+yrvvvktJXi5rl/wf2qpK+3mL0hWrS9fKxCUlJTF54lSObc7r0nHawtmDJXz72kGqi/V4eHSsirLVauWnn37ip59+4rvvvmP37t2dPEsnTrqOMWPGtKjv3p5k1WtFnWmA2o1liZEoJS3H1SglAv9OjGSAuu2F5trDvHnzqKqqYtq0aYSE2Bw7L7zwAoMGDWLatGmMHz+eoKAgZs+ebb9GrVazc+dObrjhBuLi4njhhRdYvHgx06dPB+C+++7j3XffZenSpfTt25cbb7yRc+fO2a//9NNPMZvNDB48mIULF/Laa6+1OMfW5uOk++mwOo3VamXhwoWMHj2afv36AVBcXIxCoWhUQS4wMNBeIr64uLiRVvqF16210Wg06HS6JmO/3njjDf7+97939HbaRW1t7RUZx0n3EBUVZd96vJiQuD7c938f4BUUgiAImHwPUJCfz/ETJ3ApzEJWU+GQ0mrwDcbs5YdEr0Nea0s+srhefmxlTU0Nx8+kkXuyYatclEjRh0Q3qZbTWVyofHrgp2ys7dVp6yIUrjJ8Q93RarUd7sNqtbYr7MCJk55Ca6Gd7THiryXltOn+XqweqOD93BI2ltdgvujnTCbYQmgeiwjsMgMebGFQlzoEfXx8WLVqVbPXJCQkNIqIuJSHH36Yhx9+uNnrL1X3ungO48ePd3jd2nyAZjXmnVwZOmzEP/roo5w8ebLHeK6ee+45nnzySftrjUZDeHh4l4x1OQaDk55PU174C3gHN6jKDB8+HIYPp/boPsprKhq1vRD/bggMB4kEiUyGGBoDnfCw3Ld/P/7R8ZhyMjB5+mFxU4Gka4oWqd1cGTZyJHGx/UhZl8fxbY2rDXYXA6eEo3CR4efnZ1dpcOLkWqFRkbhLaI93/Voy4sHmkf+kXzRFBiM7K7XUWix4SKWM9VF1egy8EyddRYeM+AULFvDLL7+wc+dOwsLC7MeDgoIwGo1UV1c7eONLSkoICgqytzl48KBDfxfUay5uc6miTUlJCWq1utkMbKVSecUSc9pbRMPJ1UV7wqVMRgOVmeebPCcx6LC4qxHlCpuXHDrFgAfbw7nECoTGdkp/zaFWqxnVKwplXT07v8ikJKtnqSt5+ts8ZddKPK8TJxdTUlJi3wlvCj8/vzb3dS0ktjZFsFLRKYWcnDjpDtq19y6KIgsWLOCnn35i69atREdHO5wfPHgwcrncITs6PT2d3NxcRo4cCdi2kE6cOEFpaUNs8KZNm1Cr1fZkiZEjRzbKsN60aZO9j+7GGRP/+8Tf3585c+YQH984YbU5SjLOYbXY5FFFwCqzSUNaZXLM6qv/wTB8+HBG3HQLJblhPc6AB0jdnIvFYm30W+TEybXA2bNnG8kzX0xbVJou4OLi0hlTcuLEyRWkXZ74Rx99lK+++orVq1fj4eFhj2H39PTE1dUVT09P5s2bx5NPPomPjw9qtZrHHnuM/9/efYfHVZyLH/+e7U2rsupdsiUXWe69YMA2tumBYCCEEhISCORCyA1JfgnJzb03gUty02lphCRcOpiAjY2xMe42rnKVJRfJRb2utH13fn8Ir722LGlXq2bP53n8PNLZc+bMGWt33zNn5p0ZM2Ywffp0AK655hpGjx7N3XffzTPPPEN1dTU/+tGPePjhh4M9AQ8++CB/+MMfeOKJJ7j//vtZs2YNb7zxxqBZKOlymQB0ObHZbHzta18LqzfK63Kx7b23gI4A3pOUjichBbXTgd9gBPXgWhBZ5XKgqz+N0GjxJKYjNNou9x85ciQjhxezY8VxjuyKfEJuX6qtsPPRn/czfclwZs+ezYEDB2hsbOz+QEm6BNTU1FBbWxucGHm+cPJ3dzVBVpKkwSmsKOP5558HCC4VfMZLL70UTJH061//GpVKxa233orb7WbhwoU899xzwX3VajUffPABDz30EDNmzMBsNnPvvffyn//5n8F98vLyWLZsGd/+9rf57W9/S2ZmJn/+858HRXpJkEH8pWjJkiVhBfABv5/nvvYlfF4PuqQ0PLmFeNo61kvwmyPLlNLXjKeOoPJ0THTTqtW0JWVedF+bzcZNN93Mqz/+DKc9umNlLQl6vC4/bkd0Vng9uquOhpNt3P7kVcyePZvf/e533Y4VlqRLxbkrFZ8vnPeBxRLdBY0kSep7YQXxPRlGYjAYePbZZ3n22Wcvuk9OTg7Lly/vspwrr7ySXbt2hVO9fiOD+EtLYWHhBdmQuqMoCopaDV6ILRrP0Zq6Pqpd56xWK/HOVuoP7sWd2JEFpzvKOTnli6fPYvORzvNHG+yN3LDki+xbUxW1AN4cpyejMI6iOemkF8QTCAjaGl00VTsIBASlW6qpPtJMe0tkq8621Dk5eaiJvLGJ2Gw2GcRLl4W4uDiSk5M7fW3t2rUc6mRBuotxuVzRqpYkSf1kcD3vHyLOX3JYGtquvfba8A9SFPRmMwGfF7Wx79KQXUx8Uw2Nh/ejAvJjzRxRq/F3s1prQGdE7ep4WpCYEE9sfXNwrQeAZFsC1Jxk0lXfYOXzdfi8vRtCkzEijiu/NBJFpWCJ16PWnJ2Co1IpWBONWBM7JqrnjU3E7w2w7o3DHFh/OqLzHdx4GmuGwsmTgyd7jiT1pYsleoCOJ9rhpP87d+V1SZKGBhnER+ByS8V1KdJoNNhsNqxWa0TZhir37aGtoZ7ixTex9UT/B431R0qDs9L1BiM6lQ6n09npvorPg7a5IwVmbMow3M5Yao8fxWqNpaWlBZ1OR3p6Ojcuvpkt7xxm+7IaLrLobI/ZMszMv68IS3zPhyiptSquWFJIa52Tukp72MNt/L4Ahw4diurE85tuuonRo0dz4MAB3nvvvaiVK0nR0NXfek5ODmazucfBeVfDciRJGpzku1a67JhMJh544AHi4+MjOt7v87Hl7dcAqFPpuu0B7wu2OdcwY/JEyjaspbKpBedF8kypFIUHvvEgsVYrZZ9toXxXIvUn2ph1x0TKjpcxefJkxo4di6IobHv/KMf29G4NhJgEA3PvGkFOkS2i49VaFTc9NgG300fJmhOUrDmJq71nN82ny1tY+I0ZrFq1KqJzny8zM5MJEyYAMGHCBHbs2CF7+aVB5YYbbrjoa83NzWH1rsvUyZI09MggPgL5+fl89tlnA10NKUKLFy+OOICvOVrOst89Q1NVx5APZxgrIkZTZU0tlctWoCgKQnXx3u7EpCTSsrIBcDkKqT5yHIDlzx3iqrtHkpBu5sjOOmorWtnz8YmI6qI3aZi4MAdjjI788YnoTV1nvelRmUYNU67LI2eMjU/+eYj6E93fXPjcfrwOweTJk9m5c2ev567Y7XZ8Ph8ajQa/34/H42HkyJG0t7dz4kRkbSVJ0ZKfn09GRsZFX4+NjQ2rJ16t7pvF4iRJ6jsyiI+A1Wod6CpIYTIajSxcuJCEhIRereQbl5qOvaFjaIoxJY2a2v6d0Hq+7oaOtDY3I4RAURTaGs9OXGs41cZbT2/vfQUUuPHR8STn9M17IjnHyu0/nEr5jlpW/WU/gUDX17vsuRKuvOsKpk+fziuvvBKyiqtarcZkMuF0OrvMrX1GS0sL//jHPxg5ciSHDx/mlltuCS5It3fvXt5+++3eXZwk9YJK1fUyL4qikJyczLFjx3pUnkwxKUlDjwziI3DuQlXS4JKeno7RaMTtdlNVVcVNN91EZmYmHo8nGID1htagR6U34M8dQYPOiH+Qz49weTzs3r2b4jFjObo7+jccmSPi+yyAP9fwSckc2VlL+Y6u33t1lXZW/nk/X/qPaVx55ZUsXboUIQRjxozhxhtvRKfrmDvw97//naqqqm7PW1FRQUVFBTExMSF/P8XFxWzZsiWsxXQkKZpOnDiB3W4nJubiKW3PXTldkqRLjwziI3D6dGTZM6ToODMZtaqqKqRHdcGCBcyaNSv4e0tLS1THebra21j/2j9oTM5GqHUwAGPhw6FpacDcXEtW2jcQAfC4ol/f9IK4qJd5MdNuyseSYGDP6hOILnrkW+uc/Os3u5l+Uz4//OEPaWhoIDk5OdjTaDQa+epXv8pHH33Etm3benTutrY2AoFASO+n1WqVQbw0YNxuNydOnAiudN6ZcDKptbX1bj6MJEn9TwbxEZDZaQZORkYG9913H1qtlvb2dv7xj38EVw4uKioK2TeaAbwQgg/+8L8cqq5HxEY2abM/ZWRkMH3uLHav/ICE5GSO7W6IWtmFU1OwxOs5sKGKhLSerwjZW3HJJmbdOhwhRLfj90+XNfPOL3dijNESl2Jiwf2xxCScXVZeo9Ewd+7cHgfxQghKS0sZNWoUgUCAw4cPc/jw4V5djyT1xrRp0y4awPv9fj799FP279/f4/JkdhpJGnrkuzYCJlP/5wWXOowbNw6ttmPipNlsZv78+fzzn/8E4MCBA8ycObNPzrvpzVc4cugQvpwRfVJ+tKWkpDBm7jyGTZpKW5OHj18+2KvytHo1hVNTSBsWy4jpaQCMX5CN3tj/HyGJmT1fWdJp9+K0t/D2/2zn2m+ODRn6YzAYUKlU3U6AtVgsFBYW4vP52LRpE9u2baO5uTnS6ktSVOTk5HS6vbm5mb/97W9h/43KMfGSNPTIID4CF8vHLfW987+4hg0bxrRp0zhy5AgfffQRTqeTefPmRf28sUkpBHSG7nccJFQqFYpKhdZgYcMbB/G5ezeU5pqvFZFbHLoqrNGi61WZkWqqCn9RmvYWDx/8YQ+LHxxL2rCOJzRNTU3dBvBjx47l5ptvDg6j8fl8Pe69l6S+1Nra2ul2rVYb0U2m2dx/T9UkSYqOrqe3S52SYwcHTnl5ecjviqKwePFiHnnkERYsWMDmzZtxRzntYyAQwBUTjy8jL6rl9qWamhoAlj9XQtn23k/E7o/Jqz3ltEc2nM1p9/Ler3fx0Z/34Wj1oChKl0MIFEVh1qxZIePgNRpNr7IbSVK0rF69utP5WZWVlRGVF81F0iRJ6h8yiI+AThdeD6TJaOSK6dPIUAfQ9HYpzMvcqlWreO+99zpNmzZz5kweeOAB9PqerxLanfb2dp555hk++OAD/L3MO96fGhsbcdo9VB9piUp5O1dWRKWcaDCYI89D7/cFKNtey4Y3y7DZbMyZM6fT/dRqNQ888AApKSkh251OZ49T9klSX/J6vRd0agCUlZVFVJ4cEy9JQ49810Yg3CAxULaPXTvXA2C0pWBPlj15vbFr1y68Xi95eaE944qiXBB09ZZerx+SE5nb29spKytDUSsQheqfOyl0oCVlXzylXk95Px9eNHXq1I6Jsnv2hOSUz8nJIT09PeQYv9/PihUr5JM4adAoKyvjiiuuCNl2sWE23Ylm54ckSf1D9sRHoLOgTgHmzZvHkiVLuPrqqzEYOoIebWMtWvvZ4GDBl+/rp1pe2o4cOdIvcxMOHy7FP8hTSV7MwbJ95I7pfSYdW6aFsVdlRqFG0VEwJYXJ1+X2qozjJfVsWXqEmvJ2xo6Ywje+8Q2KioqCQ2dmzJhBXaU9JJXlxo0b2bNnT6/OK0nRVFNTEwzavV4v69ev77R3vifOJAyQJGnokD3xEfB6vahUSsjqkYbmekZmZ5KU09E7PDw3h3f+9AKu+rN5pK1JyQwfPwk+Wt3vdb7UOJ1OTpw4QWFhYZ+d4/CWDXy8bBmoh2YPVXl5Od966AZqK+201EZ+wzN5cS6KanBlrsgpsrF92fFelbFjxedDhBS47ptjue2226ivbsTVClVlLXz0/mc8+IcrUdNx7ZGONZakvuLxeHjhhRfIy8ujsrISu90+0FWSJKkfySA+AosXL6Z1w0c029txZg5DaHWIthb+/sS3sMQnEJeaTl3lMdzt7YSGPgoGvZ7i4mL27t07QLW/dOzfv5+CgoI+S41msMTQardD3NAM4r1eL3VNVYyckcbW945GVMaEa7IZNiEpyjXrPZVaITknhtqKKAQtApY9W4LepMHj9HHu/L7K/Y3kjU2kpaVFjoWXBiWHwxFWPviLOXfhPEmShgYZxEeg9tB+7HW1qAFzeQkoCme++duaGmlrauz0uNa6Glb/5XkW3HoHer2exsZGjh6NLLiSYM+ePTQ0NHDHHXdgsfQ8d3hPeN0uNrz/Lj5rfFTL7W8VFRWImtSIjrVlWAZlLzx0ZMu57QdT2PBWWbcLP/WU23FhEBPwB9i3bx+rVq0assOqJKkn1Gr1QFdBkqQwyTHxEdi7ZmXwZwVQhKCnYU7J6hX87fGHaFy3Eufm1cwcNybqAejl5OTJkzgcjqiXu+ej5VQeOwaqof3FlpGRgauT4LQ7ao2Km749Ht0ALOYUjrzzctdHW3uzh8rKSlpaopPlR5L6mlqtZvz48ResYN0dObFVkoYeGcRHICV/ePBna1IKV3z5fsbOX9SjY81x8cz44p0UTJ0JikLpe68zOSOFZGvvM25crtrbw1/8p8vympvY9v67eGN7Pyl0oNlsNnye8HuQdUZ1r1I59pfyHb3Pgd+Vin0NFBYWEhsbi9FoxGYb+n8T0qVLpVJxzz33cPPNN3Pbbbdx44039ni4oeyJl6ShZ3B3sw1SMYnJ+C2xZI0ZR+H0OeQWFtLe3o7f52P/2o+7PHbxI98hp3g8AOMWLOYf33+UHUtfRwBGSyxuWxoBk+yZD0dVVdUF6SZ7o2T1CloD4DcPngWOIlFUVITNZsPjDH8st9Pu5dieevLHD77x8GfUHGtl37pT3e/YCycONDBnSQEPPfQQKpUKnU7H1q1b+fDDD4GONSPy8vJobGykrq6uT+sSLYqiMG3aNBISEqipqWHHjh0DXSUpSsaPHx+yqvXEiRM5fvw4JSUl3R4rU6dK0tAjg/gI2A0WHFkFlLY4KF25ElZ2DK/JtsXj1xtRuzvPBKI3mckuGhv83RQbx9h5i9j05isogKatBXVbC46ckTKQD0NDQ0NUyxt/zXWs3bApqmUOhEmTJqEoCjnFiRFNAD20uWpQB/HGmL5/UiAEvPfbXVz/yDhs6R3vyUmTJvHhhx+iKApf/epXSUlJIRAI8M9//nNIzHGZOnUqixadfXKoUqn47LPPBrBGUrRMnz79gm09fXoUGEKL2UmS1EEOp4lARUXnq1dWNjThyC/Cr+t8YRyv242jNXRs7cRrbwr5XQE0jsgW67gcaTQaFixYELXyAoEAK1evwT3Eh9IYDAby8/MBqKuMLIPLmQWRBquKfdG9ebuYtkY3b/z3Z7z6n1vZ8FYZgUAAnU6H1WoNLi6mUqkYNmxYv9Snt5KSQm/M4uOH9uRt6azOOjRiYno2VPPMGgmSJA0d8l0bAbfb3eXr3rhExHnbhFqNT6Wm/LMtIdudrRdOmNPVV6GvrgSZDaNbFosluLBWNGzcuJHdu3dHrbyBYjAY8Pv9NNc4OHmw82xJ3fH7Bm/PXFuTi03vRLaozRnJuVYyCuOISzF1u28gIGg83c6ej0/QWushLS0tJO2kx+OJSpq//lBWVob4PJtWS0sLW7duHeAaSdHy6aefhvzudDrZtm1bj46VCRYkaeiRw2ki0N2HndeWSmzBKPIz0zEpCmU7t1Hl6fjS3LduDaPnXIX288Bz39pVFxyvCIGuqRZNayNi7HQcLlf0L+ISERsbG7Wy2hob2PPRMlBH76ZgIGg0Gu6//36aqhy8/Yud+LyRBeM1x1rxuHzoDIPvY+JkaRM+T/jXlTcukdyxiSTnxJCY2dFDKYRg/7pTbFt2HGerp8vjLQl6PKKNU6c6xuL//e9/JzU1lZaWlj7JktQXSktLeemll4iLi6O0tLTbTglp6Dg/w8zmzZuprq7u0bFyxVZJGnoG37fzEOD1ervdp76xifrGpo5f1CbQBzCeOkJ1WwsvPnQvtqwcRMBPVVnpRctQ+X1kZmdx8HBZtKp+STGbzcyYMSNq5QUCfjCYwTu0n4BMnz4dq9XKsWN1+HoxJCbgF7Q3u9GlDq6PidNlTWx+90jYx42alcbcL+WjPm8FXkVRGDM3k9Rhsbz9Pzu6vOmZeE0O6zauDS6MI4Sgqqoq7LqcERsbi9fr7fcbgMrKSrkC7RCnKApz587FZrOxadMmamtrQ+Y6QHgLOHk8Xd/ASpI0+MjhNBGI5MMupqUOTVvH0Bm3o53TpQe6DOCDx6lVjB07Vo5XPI9er+fBBx9k5MiRUSvTmphM4rCCqJXX30wmE0uWLGH2zLmUba9h/eu9v/lraxpcvbSOVg9b/3UMp737G+nz5YxvwunsfD4LQGJmDPO/MrrLMvInJEWlx1Kn07F48WIee+wxHn/8cQoLC3tdpnR5uf7667nyyispLi7mjjvuoKCggLS0tJB9xo0b1+Pvjp50TkmSNLjIyDACkeTTVV0kY013St97HWPVca6bOY3k5MGbKaS/mbQaTEZj1MudOHFi1MvsLzfccAOjR49m+wfH+ejP+7E39n4YVmxy9Nu4N0xWHV/4zkRu+feJaLThfXwFvKmYTPld7pM7rmOozcU0nm7vdTYkRVH44he/yLRp0/B5AiiKijvuuIMrrrhC3qxLPVZcXBz8OTY2lttuu+2CfVJSUhgzZkyPypNBvCQNPYPrOfkQcWZSWDiSZ8/HUn+a8s3rwjou4PdxYN0aDqxbg2H4aNB2PwnvctBkt/PC49/k3p8+jSU+IWrlnj59Ompl9SdFUUhNTUUEBCdLI5vI2pm2JjdW2+AK5AFS82OZvaSAta90/zTrDLv9IHV1B0lJue6i+6jVKhZ9o5iGU23UHGtl+4fHOXeWemu9k6ysrB79nWi1Wnw+X/DzIj09ndmzZ5OVlY3FYqZ0azWb3z2CMUZLRkE8BcXjybozi/fff59Ro0ahVqtpa2ujrKyMmJgY5s2bh8vlYsWKFTidkXUKSJcOt9uNTqcL/n6xzqWeTvyP5HtNkqSBJYP4CEQynKasvBxFUTBYYoPDasLVWl8LabkRHXvJUVQ0xiaj6KK3VHhdXR3r1oV3kzUYWK1WbrvtNuLj4yndWk3DqeitYPvxXw9w139OR60ZfD3ECWnmsPYv/TQBU8rKLoN4gJgEAzEJBnKLEzHH6dnwZhn+z8fJN1U7GDVlFNu3b8ffRfao2bNnc/XVV2O323n55ZdJTEzkxhtvxF7j552f78Hr9uN2dIxXbm92U3+ijZK1J5l4TTaPPPIttBoNu1ZVMmpUDDfddBMulwuzueN6XS5XcLEprVZLQUEB9fX11Nb27eq10uBi7OGTyGhO/pckaXCRQXwEIs3mIITAmTkM89H9qDw9KyOtYASZo4tpqqlmX230elgvBfq2ZnSa6P0JHzp0aEgueHLVVVeRlZUFQPWRyG4QL8Zh96BS9WzZ9v52YEN4T00aTzvBOY3Gxk0kJMzs0TFjrsggNusAn72rouqwQsknJ9EZcnj4mw/z/gfvB1NMnistLY2rr74alUqFyWhhyQ330HjawUcvlFJ1pIUL8s9+TgQEO1ZUcGBTFbZ0M8MmJBGTYECtVgcDeICEhLNPnu677z4yMjIIBAJ88MEH7Ny5M6w2kYauqqqq4Pv+YpxOJ3v27OlReXIolyQNPTKIj0CvHjsqKpwZwzCeKEfl67pHPyEji9v/439471//osxTg1cvh9KcoQB5yYloznmc3FtDJUXguYoyUkkyG3G1edn0TjkHN0WeKaUzfm8Ar9uPzjj4PiqO7qkP+5jyTenEpzdy4OD3SE25kYSEWd0e09T2DvlXZFJ1eAYiIPhs2XGcbRncftsdVJ6sYM+ePdhsNhITE8nJycFqtaIoCq31Tlb+aV/Yq+U6Wz3M/feJxCWffb+3t7djMBjw+Xxs2dKx1kRMTAwZGRlARwA2fvx4GcRfRo4cOdJlEF9aWsrSpUt7PPQqmuttSJLUPwbfN/NlIGAw4TfHoGrpeoJcQnomxysq2Lt3rxyveJ4rJ45jeOEIFCV6vcR5eXls3rw5auX1NUN7K7oWLSm5eXz0pwMc39s3K5gGAoPzb8+WYaaqPLwnDxV7G0jKykWTeYKjx37XbRAvhMDracIsHgbODlfZ9+kp9q87hSXewMxb55I/PpGGU+1o0HG6rJnSrdUc3lYTHIZzMYoCuWMTGT8/m7YmF9uXH6e1wYXVZqC2trbj6Z3TydKlS2lra0MIERzGY7fbqaioICcnB4Dy8t4tfiUNHRkZGUyZMqXLfbKzs7sc8nU+GcRL0tAjg/gIFOTm0FBXh+hFAKlydj1u2ZWcye5mB7v+8Y+Iz3GpWrRoEVOnTkGlCj9LUFciyTo0EGZOn4auuZniOQupOe5i3WtH+yyAB1j/ZhlXfmkEbiGw6AfHR4bH5aO59uI9jGqNiilfCFA8ewZ+j4qyPdvZ8S+Bo9XD0d11jM6Jo75hJTW1y0lOWgzQ6Q1hU9MmfP42Dm288KmZEGBvdLHyT/siugZFgS98ZyJpw+OC2wqnpuL3Bfhk7SesX7++2zJefvllxowZg8fj4dChQxHVQxpaFEXhjjvuCBli1RmDwYDRaOzxHC652JMkDT2D4xt5iDm+7C1iFTWtqbkRjaHOibfS6Ok8/Z+iqNDE27DHJYL68v3vUbnaQQgCxtDVcSdNmsT06dP75JxDIcWayusmWZ3MxrV69q/d3S/nPLylmn/WNtBghDe/MROjbuBvdkq3VHe6uqolXs/IOQJNygvk5j6ATm8EPSQXNDL3wdM0H5sA+v00NK4GYN++b6FSGYmNncDY4ufQaM6mlxTCz6HSH+N2tnK6rA6IbpCTkG4OCeDPcLmdbNy4sUdlBAIBSkpKolovaXCLjY0lJubiaVDPFc4QwaE4H0iSLneXb5TYC2qNBn9tDcbUbCLJA1K/Y0unCfqTC0eSNns+G7ds7ejmu4SoPC5uvvWLGK2xrFix4oJc22azGZ/PR0FBATFeJ3uXvo4CjL/zKwTMViorKzEajVx//fV9VsfExMQ+Kzta9F4PRmsGEPkE1uwiG6NmptHW5KLhVBtN1Q6aaxz4PAH8vtAv8mZVgHUGH5X1Tpwq+ME7Jfxs8WjMsdHLChSJqk4m8BqtOuY/3MaRYz+iMP8PxMdPC76WmnIDZWU/p0m5E86L/QMBJ01Nm9h/4N8ZPeoXaLVWXO5qDh/+KU7ncQCy5v4Kd8NUfPbx6NS5ZI1KwO8LoNWrCfg9eF0qYmwG3A4fOz483uWqr2e0NbnxuHzoDGc/hgOBAJ988okMqKSLSkrqfL2QQECETEJXFAWbzUZ1dXWPypVDNiVp6JFBfAS8bjdCpcbh8YIm/N45n8mCzn1hD4kjLZ8Nm7dEo4qDgsrtRO1sI6A1oK+pYOOLv2HU7Lncc8ftGKyx+Hw+Gk9WsuPjFVj0OtRaHdUl29hXeoAzX0V73/wH4665jvGpSSTkF1K2dSOZo4sxWaObNs3j8bB27dqolhltep+bAlscm989EtHxKpVC7rhEFtw/Go32wt50IQROu5fVLx+kcn/HTdYbZg8t6rNf7pMa4NWfbmX+V0aTXWQbsMw1nWXhSR8ew+mq/8XrbcRovHDCX2bml7G3HaCpqfN5Dy0tO9i0+Spstjm43bU0N28NvmZMPErqMCu+UxnUHStHl7EQn9/P8SPleEv3cseT/43P50OlUhGfZqK92YOr3cvOFRUX3Bid4Xb4eO83u5n1xeGkD49j+fLllJaW0tIS3QxD0qXlYvOANpTXMyE7jhhDx3eSz+ejtbW1x+Xq9QN7Yy5JUvhkEB+BwvnXsnnfAYQqsubzG83QdOH2tEQbVZdIrmfF48J07ADKOb07DreLHcve49Cm9QybNJW6yuNUlZV2+dTB7/Oxc/l7Iduyi8fzxR/+V1QmtZ46dYp3332XhoaGQdsTZVQE1y5cSNawsWx+5xhVx+rCLkOlVrj1iUkk51gvuo+iKJisOq59sJi1r5ZyaGs1ilkDrrPDjJIK4jiyt4llz5Yw/yujGTEtNaJr6q0Ym+HsirQKzLirgoDxj7S0lKAoapzOkxgM6SHHGI3ZjB/3V7bv+CJ2+/6zLwgNDXu+w7DR19Da4KDsMxeOVg+q2KUkj38To3ou+QU/xmRJYOWKX1BWVc3O5nPG4/vhF0/9nHa3h6z0NBIDHoyKYMZtXyI+dRTrXz+M0975UK3a460sf66EObepMKoVGcBL3aqsrOx0e6JFz/feLuG5uyYB0NLSEtZwGl0UM31JktQ/ZBAfgaMt7fgiDOABTOlZKDUnCPh9IdsrP9sE5vjeVm9QULscIQH8udqbGin5eEXw9/TCUQgRoKqsFHN8AkVXXE1bYwNtTQ3EpqQxbNI0Sjev5+D6T0gvHMXN//6jXgfwPo+HnR/+i8NHjlDfOrhXv7xm0W0c3+Zn0/9tx+eJbJiFLcPSZQB/LrVWxbx7RhGfYmKMDn6wpZzTLR0Bc7Xu7PlX/+0AsclGUvP6dzGZ+pMdq6mekTXKRJPnv4PDZEaO+G/i46d2eqxKpSMhflZIEB8XN5XyY4VsOXw0ZF+do5iU8R8wafpTvPrqh1RUVKBSNPiTMkILVWtod3ec/MTpKk74/Whb6vnswI+J8zq49TtPUr4rQOnmalztocG8RquiaHaAZb/9JYnTZkfaJNJlxGrt/H18rL4dn//sZ264izx5PB4ZyEvSECOD+AiE84iyM3aHk0X3P8SWv/8R3zkLRzmrTsLw/gnirQY9wwsLqTh1+oLx6dHgM1vx6wxofB4yx07E1VhPXeVxAJJzhzH1S/fR7nJhMBiprKrGZDIx5hYzZUeO4rBasWtMtJniGTllCvEZGYxLScdeX8ek67+ANgqp0KrLD7P2rddwZQ4Dfc9WPhwIOo0a4VNTub93T2ha6pwIIcK6+Zm4MIeDm07zw9nDeXhZRwYWdcPZAeVCQMDf/08v9qyuDBmikjqyiTOZ2DWaWJKTF1/0WJ/PTl396tBt/mYMFi1tTaELsA2ffYLk1MWUltZw/PhxAHp0uWo13oQUABrtzZSV7CJz0iQMuUYs6kzaqt3YG+HQxiryxgbY8u4f8BrNnLAP7ptJaXBITExECMHbO08xf1QycSYdje0e/rT+KI/OLwjup1KpUBSlx08YI1mJXJKkgSWD+AiEk3u3M0IIPtm+i7HX3MDB998Kbld8XggEoI9XzlO5nQQO7aBs9ybis3JpUenB40btcpA8cTonTp3q/UnUGhz5RZiMBg643NiyRzBq1jzibTbM1lhWrF1LU1MnY4rOc+bRcUpKCmNHFxOfmt7NET1Tub8Ery2FwCAN4OfNm0fxmCLe/e8f4awOPxuMzqBm5Mw0copseN1+DBZtRE8vRs1MJ7XeyWv+YtYeqqVhXU1IjpbPPjjG9d8ah1rd96s9elw+ti8/zqEtoRP1vG4/aECrtTF50pshGWbOd+z4szgcoXMK2tsPY8tx03ben2N8hpvWluGsXPlOxHX2x8Sxes8+2NNxEzRzxgyOvPsPDJYYYmKt7P/kMB6DEWd2IQzSfPzS4JKXl8e+U6088dYerhubjlmn5rPjjQhgSu7Z1XzDnRxtNA7Oz0JJki5OBvERiEbmCJfLhUuEBlWKCKB4PQh93y66UTQsj+yZ04KTQw9tWs/x3R05psem2tDq9Rw9erSrInpGUXC4Ono3GxoaetXj397eDgkWzHHReVJRuW8PAd3gXNzEZrMxecI01vx9M4aYeexedTK84zPM3PBv46OWQSY+0UhuTiyxbx0h4AsNNE2xOggAfZx1svpoC1veO8qp0gtv/HSWU7gEJCXNx2TK6bKc9LQvUlv7IS7X2TYVwoctLY6K3c3BbSn5BixxCbz/anTnqBwuK2PigmvZ/Nb/BbcF9AldHCFJZy1evJjJkyfj9QuWPzqHkakdQ2t8/gAuXyBkHYdw5/k4HA4ZyEvSENP33WeXoGgtCnSq9EDI75bk1D4P4AFGTJ/NlBtuoWjuPIrmzuPm7/6IGFtH2rJdH75PUsLgG5fvcDjIGTsRg8XS/c7dKN++lZOH9g/aIH727NlsfLOc4yV+GqvD+79IGx7LzY9PjHoKyNS8WIqvzLxg+7Qb8lFr+/ZjpOSTk7z9zI5OA3gAtek0AFpNXLdlmc3DmTH9Y5KSFoZsHz6zlbxxZ1OMDp+URnn5sF4/dTtffX09e2sa8JmteOIScaVm407O6P5A6bKn1WqZMmUKiqKg06iCATyARq26YCG2i02AlSTp0iGD+AgYNNEJ4kVCMhrD2Z6PSTd9MSrldmfVqlUcPHiQ8vJyduzYQfmRI+iMRqbfcjtf/sUfKDt6rF/qEY5AIMCmDeuiUlZ7UyO+mDhEBOlB+1pqairZGbmcONQY9rEpeVaue3gcBnPfXNfwickXbGuu6Xn2i0gc3VXH+tcPX/T1kVc2YXd/QE7Ogwwb9p0elalSaUlPuy1k24GD3yZ7QkfWn9TRR7HkrGHr1s8ir3gXquobcGYX4k7LxRufDIr8GJZ6xu7qfJFA6JjYei6TydTjcnNycrDZbBHXS5KkgSGH04TJ7/fT2hbJEk8Xamy1Ez9mMmLHRhABKhr7J71cS0sLr7/+evB3tVqNJqDGZozlhRdf7PXE3b5y4FQNf/7zn1mwYAE5OV0Pm+jKmKvm88ma1Vz867D/6F3tqKsqmPqF27Fk5pAeP4wPf38IR0v4k8yKr8xEb+y7t3RL3YUTLz/6y37GzcvCGKMjZ4yNmIToPd04tqeOFX/c2+lrRquGgtkVBOJ+Q17uw2Rn3x9W2efnivf5Wqn1PUZi8Vwsmaext+UC/Zt1R5K6csXi6/hzTSvfyTOx9WgDRRmxIb3vz6w4xPNfnhT8PZwnxl6vN+yJ75IkDTzZBRQmlUoV1YmnTe1O2grG0V4wjr0HDkat3HD4/X7csTZ27Nw5aAP4M06ePMmHH37YqzLUGi0TisdEqUaRM5wsR3fsIPNvvwudfxxly/0s/eWuToPlnhB9PDEyb1witszQ4Uxuh49t7x/j0/8r5V+/3R3V850sbep0CYGiOelc/dBJPJb/wGotJjPz7rDKdblOU3niLxdsz0n7BfV7b6H8w4dROaZz000zIq26JEVVamoqm6xJ2HQdQfuH+6pRnxdwf3l6zgXH9FRNTQ2uLnr5JUkanGQQHyYhBD6fr/sdw6AE/BCI7tjbS1lDQ0Ovv3DGXXtzdCoTqYAfjb0ZgOyxU9jzyQkaT7d3te5Vt87PQR5tOoOGKdfmXvT1ljonzbWRDa9xO30c2Hg6OBGv+mgLBzacvmA/vUnDjFuTOFX1AgZ9OqNH/xKVKrzhQwZDOhnpd4ZsU6st2Gxn8rQrHN9WgMm8jby8vIiuR5KiacJNt7C6uY0Fto5x8PfPysOoO9vTLoQgcN6Hh1qtJiGhZ5Omr7/+ejmpVZKGIDmcJkxnHjtGi8beRJ3fT1bVcXwxcbhTshFaueBGV7xeLx999BE33nhjxGWcikYaTSA9PZ1Zs2ZRX1/P2rVre/638fl+CRlZ7Pn4+AVZXyJRf6Kt12V0J39CEjljbFTsuzDTkAgI3n5mB3njEtEbNQT8Aku8gfELskIe0/u9AUo+OUlTdTsavZqTh5poqXMQ8An2rzuF1qDhdFlzp08W0obFUlu/jIz0O8jJeRAlwvHkKSk3UFe/Co+nHgCzKZ+4ZAt6kwafN8D4RSZqW3Yyd86XaKivp9Vu76ZESeobFouFn55u5rVxw0jQavj0cB0nmxzcZevoeXd5/Ty1/CCVjQ7mFCQFj4uJieG2227jxRdf7PYc6enRSd0rSVL/kkH8AFO3NPDhjV/jG6/8Eq29GZXPiyN31EBXa9Crrq7ufqcuxMXF9boOeo2GL33pTiyWGE6VHqR6WD4Hy490fyBgPHWUEdNmkTX2S2x8q2fHdCVteCxX3FnY63K6oygKRVdkdBrEA7javBzcWBWyrXxnLVabAa/bT2p+LMf21FFb0XlQfLHtZ8SlmrG37mPUqP/p1fjd+PhpTJ3yPlu3XY/X24DX14rT7sLt8DF8UgJHd71BIHkvO//xKAFfCiRdmJlHkvpDXl4es+MsxH+eUKHO7ua5T45wfXE6sSYtb+88ycubKyhKv3Al17S0NPLy8jh2rOtkBRUVFaSkpPRJ/SVJ6jtyOE2Yop1yLq1wNPn2BloscQAo3r4dEnGpGDlyZK+Ob2wMP/vL+URDDW//x/dZ+ov/4s3//AHVW9f3+Nirl3yJq77ybfasCS8HfGcUlcL8+0ajM/TPPXn68Fj0pp6fq/Z4K+U7aqnY18DWfx0NBuopeVaK5qQzckYqBkvXQ2LShsVy9T0FJI9dSm3diqhMwNPrk5k9az1pqbfidB6n8tRvAIGzTZA5RQNKgLE3peGT70lpgJjNZq6//nqS9VrWNna8byobHRSkWLB+Pon9tklZzMi3kZ3Q82w05zuzIrEkSUOL7IkPk0pRUCnKBeMPI5VUNI6iYcW4M9IQz/8c9YixHYvnSBc1depUrrjiioiP9zgdqBx2hg8fTnl5ecTlWHKGYWxr4Mj2rR3l+rq/wVO3t5KZm0vhtCtZ+utdtDW6Iz7/GSarDmti/41n1Zu0ZI5M4MjOCBdCUiCjIIYptx+lrn4len0qtvE14C5k2yvTOlZg/Zxao2L2l72kDrdzuuqvnD6xgvS0JVG6ElCp9OTkfIOq6rc5efpP5M5fiUChsrICUJGQ/hV8GStBLqYqDYCsrCz0ej1bm9vxBgRz4iwsKznN/y4ZH7yR1WlUfGFCBn/ZcGFvu8/no6amJvi7Wq0mMTGRurq64KKFCQkJtLT0T2Y0SZKiSwbxYdJqNaiaGwjERmeVxZKSEtqSc2mLTSIhI582GcB3Kz8/v1fH+30+1v3lOSbe+EUiD+GhsbmZ2LzhpFnjOXakHG9cUpf7Zyclcu3ddxFjS2fj28dpqY0sC835krJjolJOT/l9AWorIstilD8+ibHXnaSq9gV8/msYPep/0OkSCQQ8lJU/xbyHj7LllVE01ziYeGs56rgV1Nj30HwoBUvMSPS6FDIz74nq9ej1yeRm/ZiNr2jQxOwnefwbAMTHT2ff/tNEYbqCJIUtPj6eL3zhCwAMM+lZlBiLoii0unzYXaFPh7Yca8CkD00p6fF4ePvtt3E4Oiaba7Vavv71r5OUlITP58Pr9aLRaNBqB996GZIk9YwM4sOk1miJzc6loSU6qRjdbjeezevYlTeaAqtcfr0nepuZxhhj5Yq7vkKrvff/h8GxpvEXLoR0vgkzZ1G2Q1CyZmuvz3uurFH9+3ezZ/UJ7A3h/R+otSrGX+ckd0IF8XHTyMhaHPK6SqVjROFPOHjohxRe+wmOVnCoN2MRI5g08XViYopRq/UEAt6ws9F0R6OJoansCuzVx6A6jeFTtOSPvhKrdSKrPnohqueSpJ6aMmUKen3HyssjzAY+bmjlqxmJqBWFz443BSex+gOCT0vrKEgJTf/qcrlCxsKPGzeOpKSOYzQaDRqN/PqXpKFOjokPk9vtpqGlNeQDMCYmhpiYyHtDDV4PjZZY2nX6aFTxkqbVaiks7P0ETp3JxLHTvZsc21NqlYoFCxZg02dx4LxJn+FKSDez6OtjWPT1McSnmQGo2NcQ1YxJ3ak5Ft7Nz5i5GXzxSR1+6/8QHz8dvf7iTywslpG0tm/Ep96IwZDB2OIXiYubjFrd8d6IdgB/RkpeLHpzx3vaV3c3iYlX0dbmx+mMztMSSeqp4cOH861vfYsZMzrWKXD6A7x8qp4yh4u3dpykutXFq9sq2XeqBYfHx8+XH6Sh3cPCotC88FarlYyMjODv5/4sSdKlQd6Kh0mr1fLkk0+iVqtxOp2o1Wp0uo6UkHV1dbz00kvBx5c9ldDeiiICNJtiMHt6P0b6UlZUVBTWcuLna66tYd369RzctROnpm9TearbW4kzGrhm8fVY4kax4o/78Lkjnxhtiddz3TfHBse/p+bHsvrlA1Tub+DEwUayR/ftsumudi+Ht1VzdE9dj4/RmzXM/mIBVbU7mDD+b+h1iV3u32Y/AIDJlMfkSe+g1V6YcaMvZI1K4NoHi3n3f3ex6+NK8sYlsm1/zycqS1K0LFq0CJvNxpbmNv58so52f4CSNie/GpnNT17dDUCr08v33ymhtNqO199xA59ivXC15Pz8/GBvfHt7dFYalyRp8JBBfJhU56zWev7iGElJSYwaNYodO3aEVaY24CetuYGU1t5nTLmU6XQ6FixY0KsyWurr2Ld3L54+DuCnjB+HfdcWbv3RTzm0sYalL+3qdZmTFueGTGA1x+m55qtjWPZcCdveP9anQbzfG+DVn27F0eoJ67jEzBjaHCVkpN/Zo4wy9Q1rAYWxxX/stwD+jIT0juEIydkxuFTNlJSU9Ov5JQmgra2NxMREpsdZmB7X8TdZ5/GSoNFw1YhkjFo1/+/aUeQmmjla18bPlx/k44O1bD7SwLXFaSFlqdVnx8nLFVkl6dIjg/go80aYju6Kst0ocgJdlxISEjCbzb0qI2f0GL7zRB6///53aEs4+/h5xIhCpkyZyrGyw2zespVAL1IYJiUlMW3KVMrEaP7y+Eb83shnK+tNGq6+exTJuTGYYi8cbmWwaLnluxNZ/3pZxOfoCWebN+wAHmDq9blYLPoeBfAeTwMeTy0aTRwmU/+vlNpc0/EEbcYtw9m0fVXU08n2iYAffVMd4+YvYs+Bg7jd8kneULdt2zZyc3NDtiXpOoaR3T87j/tnn31v5CdZePauiTz+xh5un5J1QVnnLmp35omxJEmXDjkmPsrO7fkIh8Xl5NPC8Tjlaq0XZTBc+Lg4XE1eH20aPQ/919OoAh1BmuL3U7P8Hf715OOU/O05tNUVEZcf097MFePHUrKmlZ0rT/UqgI9LMXHbD6aQPyEJS7wBlarzQFhRFGwZZo6X1Ed8ru4014T/KD67yEZ6QTxqdc+GP6nVFvT6NHy+ZpzOyP8PIpWaH8vwSclkjohn9uzZJCd3P1l5oOXHW9HVnqT09b8xc8L4ga6OFAWTJk0Ka3+9Rs3v7pjAmIzYC16rqzs79E2uyipJlx4ZxEfZucNtwqERAU7FJ9FitHS/82Uq0rY91wsn6pi65QAmaywFKR3DT4QQ+DxuxOd5kyOdpKx22Bk9/Db2rNBcsGppuIZNTObmxycQm9Sz/O8J6RaWPV/Chy/uxe+Pbp7Spup21r12OKxjErMsLH5wDIFAz59MqdV60tNvJylpEQZD/0/CE0Jgjut42pGens4999wz6DN4DB83AYCA38eOd14d4NpI0RDJ54/6Ijf4Z3LBjxkzhuHDh/eqXpIkDT4yiI+y3qwkObKqgmQ5Lv6iGhoael3GhBgTcRo1iqJgMH7eQ6zRoC2ezKgF12FMzaBFH9mNlE6jZsS0QlrqIstoojWoScmzotaquPqekZg7GT5zMScONoKAo7vq2PhWb7LfhwoEBGv+fpCm6vAma+eMsaHWqGhs3BDWcXGxk8jKvLvPstB0pa7STv3JtuDvFouF7Ozsfq9HOEpKDzPh5iVc+bWHMYweP9DVkXpp5syZJCREL2XsmTU15FAaSbo0De5upiGoN6n+plQcCv6seFwItQbU8r/oDJ/P1+sykvUaaj0+jrc7qS09AMY4AJp8gm0nayA+resCuiBamoh0vuywCUlc+eWRGMxanG0edIbw/t+L5qRTfGUGR3bWsf71w8Qlmxg9Kw2NLrLhXWeoVAq3fHcSzTUOlj1b0uMblIZT7TidFajV4a0kq9Ml0tyynfj46ZFUt1fW/P0QiVlnb+CcTmfIapeDUXVNLdU1tVB6dKCrIvXSuHHjuOaaa6Ja5qxZs9i2bRt79uxh5syZJCZ2nR1KkqShRUaIUZaamsrw4cOxWCwIIWhpacHr9aLX6zEYDOh0OhwOB16vF7vdjsFgwGAw4HA4MOq0+MoPkJSRSevJSlrqTuMPCERqFo1oEFEYTjJUqVQqFi1a1OtyJlrN/HhYOps2baTteDm6pHQ8idEZK5oybgo+b/g3GjnFNubcUYjB3NH7bLSEfydwptd+zBUZHNpcxfrXDyMCgnHzLpzsFi5FUYhPNTNuXlaPh9WcLG2ivm4v6Rk3hXUunS6Ro0d/g16fQlLivEiqGzG1RmHytblAx1jiN954Y8in5VMH/CguB35TDHLe/ODWm7VGLsZqtfLEE09QW1sbHFojSdKlQwbxUTZlyhSmTJkS9XJPnDjBX/7yl6iXO1QsWrSI4uLisI9rOHWCxpMncLQ2s+Wd1wn4/RhirCxNzGWKoqCrO43PlkpA6d0NktlsZvKMGVSUtIR13PSb85m0KLdX5z7f1OvzWPGnfexbd4qxV2WiXGS8bLjiU3s2QVWlUZh2Yzrtzo/RaO4K6xxqtRmDIY2ysp9hS5iLStV/H1GjZqUTl2yipKSEpUuXDvmgR+VyYDx+CEUESBhVTAVyMbnBzGKJ/nwoRVEwmUwXZLuRJOnScPl27Q4xWVlZF+Slj4ROp+POO+/k0Ucf5eabb6agoCAKtet7kU7KOrbzMw6sX8Pal/9MW2MDjpZmGk9WklZ7gvVTF4Ci9Hq1U4vFwv33f41Tm+DA+tM9Pi4xy0LRnOhP4MwusjFhQTbNNQ5W/XU/ItD7PlghBGWf9Wxoybirsii+Mgufrzns86jVehJtV2OzXdGvATx0PMVob29n5cqVQz6Ah47FxhTRcR2Nh/Zh6cUiaVLfs1r7d10ESZKGPtkTP0QIIfB4ws/Tfb4JEyYwYsQIAOLj4xk7diwHDx5k48aNnD7d8wC0v+3du5e5c+eGfdzkG25h8g23cKr0IK/9+LvB7Sn1p/lkxmJmbV+Nvr6KQGZ+l+1rMpkIBAKkpqZSXV2N2Wxm+PDhuN1uiovGsun/Kqjc3/NJydmjE7jukXEXTRsZLWXba0nKsTJhQeQTNOtO2Fn/+mGqynv2lGHkjDSE8OFoP4IQIqzJ3n6/m4aGtST281Aa6HjatXTp0iE/hOYMTXtr8GeBQluYK0lL/cvpjGxCvCRJl69BHcQ/++yz/OIXv6C6uppx48bx+9//nqlTpw50tQaEECIqi884zvsiV6lUFBUVkZmZya9//etel99XtmzZwpw5cyJOM5kxYhQxiUnY6zvyJus9bsbWVuD+zs/4twwbO3bvZv2WrZ0ee/3114fkbnY6nahVGhpPOji8rYZ1fzod1kJItgwzV355ZJ8F8K0NTnZ9VBn8ffM75Wi0KoqvzAy7LLfDy/LnSmhr6tkiQvFpZuJTTSgqhYSE2VRXv0Na2q09OtbprGTHzrtwu08TFz8t7Lr2ltPpjEoGpMFA8bhDgnhFBFA77PhN0R93LUVHY6PMTCZJUngGbRD/+uuv8/jjj/PCCy8wbdo0fvOb37Bw4UJKS0uHxCIs0RatlRj37t1LXl4eEydODNk+2FOQOZ1OWltbiYuLi+j46iNl2BtCF0P69qg8/ldjZHlAx61XXc2JqmqOV4QuMmRQq0i1mGhv9nCqtJENb5WjqBScdg+RzhSce+cIYhJ6v3DVxbQ1uvG6z97wCQHrXz+MMUbHsAlJIWPkfV4/Gm1oBhshBEKAz+Nn5Z/39ziAT861csu/TwyWn5v7TQ4e+n89DuJPnvwnbnfH0yCtNr5Hx0RTQUFB8EnLUCc0WlQmC3qNGmdrCwIQvZz3cSnQarUsXLgQq9XK2rVrB9XTx02bNgEwb968qKyJIUnSpW/QBvG/+tWveOCBB/jKV74CwAsvvMCyZcv461//yve///0Brl3/603++fO9//776PV6ioqKgttaWsKbkDkQDh06xPTp4acePLxlAytf+C0pecNpPHUCr9sFgKe5iTuLbfzv8WpuT0vgnnvvZdmyZezYsSN4rKLWEJOYyMcv7efU4eZeX4NGpyIl/8KVFaPp4KYLAxMhYOWf9mGwaLGlm2mpd6JWq2htcJGYaSE22YjT7kWjVdF4uh23w0vAL/CFseJs1sh41JqzwYdGE4sQfgIBNypV15MqPZ5GnM5KcnO+zYkjn+Lz2Xt+wVGiKAoFBQXRDeKFQF9zArWzDW9cIt74fuqAUKlQxk5jzvz5+BztbN+8ibbm1u6Pu8TNnDmTyZMnA5CUlMQf/vCHqDzhjAYhBBs3biQxMZEJEyYMdHUkSRoCBmUQ7/F42LFjBz/4wQ+C21QqFfPnz2fz5s0DWLOBo9PpUBQFlaIgoFcT74QQvPvuuwghGDNmDABNTU1RqmnPaDQaCgoKaGxs7DYXt0ajYcSIERFnWGiuqeaOnz5DUk4e9oZ6Nrz6MoFAgAPr1nD/LXewqqGF5ytreSQnhRtuuIGxY8eydu1akpKSSEhIQG+Kp+F0aUTnPp/PG8Bp94S1kFN3HK0eDm+rJiXXSm2FndKtF29PV5v3gpuRuko7dZW9D5qPldQzcVEOOoOGxqp22ppcFBb8hIbGDQT8LgyGDGJjx4cc4/c7OXnyH7jc1YwZ8zsObqzjwNJRmO/7E460Y5hMeb2uVziSkpKiWp6mrRldUy0AqupKfOZYhK5/ssQ0t7Tw9ttv98u5hopzF1KKj49nzpw5rF27duAqdB6tVjtkkg1IkjTwBmUQX19fj9/vJyUlJWR7SkoKhw4d6vQYt9sdMuSktfXS6nVSqVQsWbIErcNO+qgxlJWVBXP/6vV6zGYz0HHdbW1tqFQqDAYDiqLg8XhwOp0MGzYMh8NBRUUFiqJQU1NDUVERiqIwYsQIxo8fT3t7O0IIXC4XiYmJeDwe7HY7iYmJNDU14fP58Hg8JCcnM2HCBJxOJ9u2bSM2Nha/309zczMejweXy4XX6+248VCp0Gg0nw/TEKhUKm6++Wby8/MJBAK8+eabVFRUdIw1V6uJjY2lubkZlUqFEIIlS5ZQWFgYUbu1Nzfh87hJyukIBmNsiSx+5DsA7Fr5Abs/WsZT8xazaMdh7kyzYfYI9i9vYUrxApprHPgqBW9/uANXm7fbc2n0asyxOlpqO5+gptIozL93dDAffDS01Dl593930t4cOuQlId1MXIoJU4wOIQQnDjVhr3fSy0Q8F6UokDkinvLttRzbU8fxfQ0gYMzcDIqvnEp1ww+prV1GTMwYLOYRxFimYm/bhs/fTkb6lzm+cS77lu7FHKsjLtlMzZ5rSbDuwpbWiDVmbL+s4OpwONi6tfN5EZFQuRxom+pCN/btPGapG6dPn2bcuHHB3wsLCwdVEJ+Tk9MnqSYlSbo0DcogPhJPPfUUP/3pTwe6Gn1q1KhRwZ/P/SIK18yZMy/YdiawjsSZ3vxIqFQqbr/9doCQTCY+ny94A9AbikpF0dz5nb5WdMXVHNn5GWaNmieHpWP3+4kzahk+ORmfJ0DWqARc7V6sSQa0eg06gxqfN0Dj6XY8Lh+KSsEcqyPgFxhjdAyfmIzBouXo7jqqj7Sg1qpornGgKKBSq4hPM1EwJaXTukTKajMwamYa5TtqyRqVQP0JO/FpZuZ+acQFE2c9Th+BgCDgF1SVN1Oxv4Gju+pwO0IXqLLE6/H7AjjtXgxmLdNuykelVtj2r6O0t3hQFNCbtSE3NpMW5zLtxo4l3uPTzBzf24BKrVD2WQ0HNp5m1q3fZWTu10FdR+WuVD5dVU3W6LuITTRSuc5Jxd5T3PLvE0kbHoffH2DjG/F89mYLueP1GE3VjJieGtWbn/PV1NTw4osvRi21ZGZmJu3rVqLRabFk5VBTW4vHlorQXqQXXghUIkBA1ckKuyIAURjPnp6ejvvkMVzHDqNPTkeTN4La+vruD7yEbNu2jauuugqDoWNOSnp6OpMmTQoZQjeQBsvQHkmShgZF9DZJdh/weDyYTCbeeuutkMDy3nvvpbm5mffee++CYzrric/KyqKlpUXm35WkLrgdXrxuP0JAwC+ITepYj8Dr9iMCAp2x417f4/ThdvrQ6tUYzFo8Lh+t9U48Lj+peVZU6rOBZv3JNmKTjWg0KioPNiL8HU9hPC4/ljg9HpeP9hYPGYVxxKeaaW92Y44LDXADAYG73fv5TZI2pPxo27ZtG+Xl5RiNRkaMGEF9fT3Hjh3D5/MFAyutVotGo8Fut6NSqYiLjSXdaqai9CBtRittbW243W70ej1z584lcOIoE6+7CZ3ByIb336Vk1XLc5jgcqFBrNLjVWpTPb1zjaiqYfu0NxI8ay5o1a6itrSXObMK5fQOKz0PAbMWdOxL/eTcZWpUKnasdp6IioNWjtjdjMJlw600kJCTgdDrRaDRMGVtMw+5tHN6yAUNMx+eh3+Mh5+Y72VWyt8/adTC6/fbbQzpEtm/fzgcffDCANTpr8eLFTJvW/5mZ+kNrayuxsbHyO1mSomhQBvEA06ZNY+rUqfz+978HOsaAZ2dn88gjj/RoYqv8wJAkaTAK+P0oKhV+vx+NRtPx1ImOp1LK50+evF4vPq8XZ3Mjao0Wg8WCy+vD4XAQCATwer1YLBbi4uLQaDR4PB7qa2vx1NeQPmIUGr0BlUpFIBDAYW+l+vAh1Fot8anpWJOTQUD5Z5tJGT6CyqpqmpubUavVmEwmNBoNfr8fr9cbPFcgEECr1aIoCu3t7bhcruCwDyEEdrsdp9PZcQ2KEhzKp3y+mJrD4UBRFGJiYjCZTNjtdux2Oz6fD5VKhcfjIRAI4Pf7CQQCWCwWYmNjsdvtVFZWYjAYUKvVHe3i8wWfmKg+b8dAIIBOpwt25CiKgtfrRafTBYflnamHRqPhvvvuIzMzE6/Xy1//+leqqqoG5G/hfPPmzWPOnDkDXY0+Ib+TJSn6Bm0Q//rrr3Pvvffy4osvMnXqVH7zm9/wxhtvcOjQoQvGyndGfmBIkiRJ5zozp8doNAZvMFpaWlAUBb/fH0wg4HQ68Xg8+Hw+1Go1Go0GRVFQq9W4XC48Hg+KoqDRaNDrO54gNTc3o9PpcDqduFyu4JAdn8+H1+tFCIHBYCAQCODz+S4YMuj1esnNzb1kUyjL72RJir5BOyb+9ttvp66ujh//+MdUV1czfvx4VqxY0aMAXpIkSZLOp9Fo0GjOfu0pitLp2hNnEgWEI9qZjSRJkrozaHvie0ve9UuSJEnS4CC/kyUp+uSycJIkSZIkSZI0xMggXpIkSZIkSZKGGBnES5IkSZIkSdIQI4N4SZIkSZIkSRpiZBAvSZIkSZIkSUOMDOIlSZIkSZIkaYiRQbwkSZIkSZIkDTEyiJckSZIkSZKkIUYG8ZIkSZIkSZI0xMggXpIkSZIkSZKGGBnES5IkSZIkSdIQI4N4SZIkSZIkSRpiZBAvSZIkSZIkSUOMZqAr0FeEEAC0trYOcE0kSZIk6fJ25rv4zHezJEm9d8kG8Xa7HYCsrKwBrokkSZIkSdDx3RwbGzvQ1ZCkS4IiLtHb4kAgwOnTp4mJiUFRlD45R2trK1lZWZw4cQKr1don57hUyLbqOdlW4ZHt1XOyrcIj26vnumsrIQR2u5309HRUKjmSV5Ki4ZLtiVepVGRmZvbLuaxWq/yA7yHZVj0n2yo8sr16TrZVeGR79VxXbSV74CUpuuTtsCRJkiRJkiQNMTKIlyRJkiRJkqQhRgbxvaDX6/nJT36CXq8f6KoMerKtek62VXhke/WcbKvwyPbqOdlWktT/LtmJrZIkSZIkSZJ0qZI98ZIkSZIkSZI0xMggXpIkSZIkSZKGGBnES5IkSZIkSdIQI4N4SZIkSZIkSRpiZBAfoWeffZbc3FwMBgPTpk1j27ZtA12lPvXUU08xZcoUYmJiSE5O5uabb6a0tDRkH5fLxcMPP4zNZsNisXDrrbdSU1MTsk9lZSXXXXcdJpOJ5ORkvvvd7+Lz+UL2Wbt2LRMnTkSv1zN8+HD+9re/9fXl9bmnn34aRVF47LHHgttke5116tQpvvzlL2Oz2TAajRQXF7N9+/bg60IIfvzjH5OWlobRaGT+/PmUlZWFlNHY2Mhdd92F1WolLi6Or371q7S1tYXsU1JSwpw5czAYDGRlZfHMM8/0y/VFk9/v58knnyQvLw+j0ciwYcP4r//6L87NUXC5tte6deu44YYbSE9PR1EUli5dGvJ6f7bLm2++yciRIzEYDBQXF7N8+fKoX29vddVeXq+X733vexQXF2M2m0lPT+eee+7h9OnTIWVcTu0lSYOOkML22muvCZ1OJ/7617+K/fv3iwceeEDExcWJmpqaga5an1m4cKF46aWXxL59+8Tu3bvFtddeK7Kzs0VbW1twnwcffFBkZWWJ1atXi+3bt4vp06eLmTNnBl/3+XxizJgxYv78+WLXrl1i+fLlIjExUfzgBz8I7nP06FFhMpnE448/Lg4cOCB+//vfC7VaLVasWNGv1xtN27ZtE7m5uWLs2LHi0UcfDW6X7dWhsbFR5OTkiPvuu09s3bpVHD16VKxcuVKUl5cH93n66adFbGysWLp0qdizZ4+48cYbRV5ennA6ncF9Fi1aJMaNGye2bNki1q9fL4YPHy7uvPPO4OstLS0iJSVF3HXXXWLfvn3i1VdfFUajUbz44ov9er299bOf/UzYbDbxwQcfiGPHjok333xTWCwW8dvf/ja4z+XaXsuXLxc//OEPxTvvvCMA8e6774a83l/tsnHjRqFWq8UzzzwjDhw4IH70ox8JrVYr9u7d2+dtEI6u2qu5uVnMnz9fvP766+LQoUNi8+bNYurUqWLSpEkhZVxO7SVJg40M4iMwdepU8fDDDwd/9/v9Ij09XTz11FMDWKv+VVtbKwDx6aefCiE6PvC1Wq148803g/scPHhQAGLz5s1CiI4vDJVKJaqrq4P7PP/888JqtQq32y2EEOKJJ54QRUVFIee6/fbbxcKFC/v6kvqE3W4XBQUFYtWqVWLu3LnBIF6211nf+973xOzZsy/6eiAQEKmpqeIXv/hFcFtzc7PQ6/Xi1VdfFUIIceDAAQGIzz77LLjPhx9+KBRFEadOnRJCCPHcc8+J+Pj4YNudOfeIESOifUl96rrrrhP3339/yLZbbrlF3HXXXUII2V5nnB+U9me7LFmyRFx33XUh9Zk2bZr4xje+EdVrjKbObnrOt23bNgGIiooKIcTl3V6SNBjI4TRh8ng87Nixg/nz5we3qVQq5s+fz+bNmwewZv2rpaUFgISEBAB27NiB1+sNaZeRI0eSnZ0dbJfNmzdTXFxMSkpKcJ+FCxfS2trK/v37g/ucW8aZfYZq2z788MNcd911F1yTbK+z/vWvfzF58mRuu+02kpOTmTBhAn/605+Crx87dozq6uqQ64yNjWXatGkhbRUXF8fkyZOD+8yfPx+VSsXWrVuD+1xxxRXodLrgPgsXLqS0tJSmpqa+vsyomTlzJqtXr+bw4cMA7Nmzhw0bNrB48WJAttfF9Ge7XArvy860tLSgKApxcXGAbC9JGmgyiA9TfX09fr8/JLACSElJobq6eoBq1b8CgQCPPfYYs2bNYsyYMQBUV1ej0+mCH+5nnNsu1dXVnbbbmde62qe1tRWn09kXl9NnXnvtNXbu3MlTTz11wWuyvc46evQozz//PAUFBaxcuZKHHnqIf/u3f+Pll18Gzl5rV++56upqkpOTQ17XaDQkJCSE1Z5Dwfe//33uuOMORo4ciVarZcKECTz22GPcddddgGyvi+nPdrnYPkOx3c5wuVx873vf484778RqtQKyvSRpoGkGugLS0PPwww+zb98+NmzYMNBVGbROnDjBo48+yqpVqzAYDANdnUEtEAgwefJkfv7znwMwYcIE9u3bxwsvvMC99947wLUbfN544w1eeeUV/u///o+ioiJ2797NY489Rnp6umwvqU94vV6WLFmCEILnn39+oKsjSdLnZE98mBITE1Gr1RdkEampqSE1NXWAatV/HnnkET744AM++eQTMjMzg9tTU1PxeDw0NzeH7H9uu6Smpnbabmde62ofq9WK0WiM9uX0mR07dlBbW8vEiRPRaDRoNBo+/fRTfve736HRaEhJSZHt9bm0tDRGjx4dsm3UqFFUVlYCZ6+1q/dcamoqtbW1Ia/7fD4aGxvDas+h4Lvf/W6wN764uJi7776bb3/728EnPrK9Otef7XKxfYZiu50J4CsqKli1alWwFx5ke0nSQJNBfJh0Oh2TJk1i9erVwW2BQIDVq1czY8aMAaxZ3xJC8Mgjj/Duu++yZs0a8vLyQl6fNGkSWq02pF1KS0uprKwMtsuMGTPYu3dvyIf+mS+FM0HcjBkzQso4s89Qa9t58+axd+9edu/eHfw3efJk7rrrruDPsr06zJo164J0pYcPHyYnJweAvLw8UlNTQ66ztbWVrVu3hrRVc3MzO3bsCO6zZs0aAoEA06ZNC+6zbt06vF5vcJ9Vq1YxYsQI4uPj++z6os3hcKBShX50q9VqAoEAINvrYvqzXS6F9yWcDeDLysr4+OOPsdlsIa/L9pKkATbQM2uHotdee03o9Xrxt7/9TRw4cEB8/etfF3FxcSFZRC41Dz30kIiNjRVr164VVVVVwX8OhyO4z4MPPiiys7PFmjVrxPbt28WMGTPEjBkzgq+fSZl4zTXXiN27d4sVK1aIpKSkTlMmfve73xUHDx4Uzz777JBLmXgx52anEUK21xnbtm0TGo1G/OxnPxNlZWXilVdeESaTSfzzn/8M7vP000+LuLg48d5774mSkhJx0003dZoacMKECWLr1q1iw4YNoqCgICTVXXNzs0hJSRF333232Ldvn3jttdeEyWQa1CkTO3PvvfeKjIyMYIrJd955RyQmJoonnngiuM/l2l52u13s2rVL7Nq1SwDiV7/6ldi1a1cwm0p/tcvGjRuFRqMRv/zlL8XBgwfFT37yk0GZMrGr9vJ4POLGG28UmZmZYvfu3SGf++dmmrmc2kuSBhsZxEfo97//vcjOzhY6nU5MnTpVbNmyZaCr1KeATv+99NJLwX2cTqf45je/KeLj44XJZBJf+MIXRFVVVUg5x48fF4sXLxZGo1EkJiaK73znO8Lr9Ybs88knn4jx48cLnU4n8vPzQ84xlJ0fxMv2Ouv9998XY8aMEXq9XowcOVL88Y9/DHk9EAiIJ598UqSkpAi9Xi/mzZsnSktLQ/ZpaGgQd955p7BYLMJqtYqvfOUrwm63h+yzZ88eMXv2bKHX60VGRoZ4+umn+/zaoq21tVU8+uijIjs7WxgMBpGfny9++MMfhgRWl2t7ffLJJ51+Tt17771CiP5tlzfeeEMUFhYKnU4nioqKxLJly/rsuiPVVXsdO3bsop/7n3zySbCMy6m9JGmwUYQ4Z5k/SZIkSZIkSZIGPTkmXpIkSZIkSZKGGBnES5IkSZIkSdIQI4N4SZIkSZIkSRpiZBAvSZIkSZIkSUOMDOIlSZIkSZIkaYiRQbwkSZIkSZIkDTEyiJckSZIkSZKkIUYG8ZIkSZIkSZI0xMggXpIkSZIkSZKGGBnES5IkSZIkSdIQI4N4SZIkSZIkSRpiZBAvSZIkSZIkSUPM/wezVX0SBKd50gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "legend_kwds = {\"bbox_to_anchor\": (1.04, 0.5), \"loc\": \"center left\", \"borderaxespad\": 0, \"frameon\": False, \"title\": \"Niches\"}\n", + "\n", + "gdf.plot(column=\"niches\", legend=True, legend_kwds=legend_kwds)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Niches geometries\n", + "For each niche, we can compute geometric properties. Here, we computed some simple properties of each niche: their mean length (or perimeter), their mean area, and their mean roundness (score between 0 and 1, where high values means \"circle\"-like shape).\n", + "\n", + "> NB: Since one niche can be divided into multiple connected components (or multiple occurences), we indeed need to average the above geometric properties over all connected components of one niche category" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.spatial.morpho)\u001b[0m Computing pairwise distances between 118 components\n", + "/Users/quentinblampey/mambaforge/envs/spatial/lib/python3.10/site-packages/geopandas/geoseries.py:660: FutureWarning: Returning a DataFrame from Series.apply when the supplied function returns a Series is deprecated and will be removed in a future version.\n", + " result = super().apply(func, args=args, **kwargs)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
n_componentslengtharearoundnessmin_distance_to_niche_Bile ductmin_distance_to_niche_Lymphoid structuremin_distance_to_niche_Necrosismin_distance_to_niche_Stromamin_distance_to_niche_Stromal bordermin_distance_to_niche_Tumourmin_distance_to_niche_Tumour-myeloidmin_distance_to_niche_Vascular
niches
Bile duct53871.1634131.968860e+040.3378050.0000002380.5382681449.46156973.698113606.466864503.1886721458.109531554.878833
Lymphoid structure21036.8959466.074089e+040.65526799.2837520.0000001293.7052320.000000484.004416288.855609778.042413727.563948
Necrosis314679.9006011.859571e+060.144873215.1882142613.2685860.0000000.000000530.99492224.7056590.000000206.323638
Stroma1159551.4591212.385822e+070.0117770.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
Stromal border1032107.6453541.562288e+060.0236181282.7473934533.6204641263.667065356.9286890.0000000.000000624.666420365.469128
Tumour822964.4913586.363175e+060.178266258.9307672124.252221433.5902822.52935840.8519520.000000257.084459121.688532
Tumour-myeloid135625.1469042.741475e+050.116237531.4799983349.152789603.3209750.000000332.53288179.1963330.000000694.707711
Vascular28808.8560572.111648e+040.4036801065.8860053766.2613461702.920627401.167661477.280906283.6547051370.3712480.000000
\n", + "
" + ], + "text/plain": [ + " n_components length area roundness \\\n", + "niches \n", + "Bile duct 53 871.163413 1.968860e+04 0.337805 \n", + "Lymphoid structure 2 1036.895946 6.074089e+04 0.655267 \n", + "Necrosis 3 14679.900601 1.859571e+06 0.144873 \n", + "Stroma 1 159551.459121 2.385822e+07 0.011777 \n", + "Stromal border 10 32107.645354 1.562288e+06 0.023618 \n", + "Tumour 8 22964.491358 6.363175e+06 0.178266 \n", + "Tumour-myeloid 13 5625.146904 2.741475e+05 0.116237 \n", + "Vascular 28 808.856057 2.111648e+04 0.403680 \n", + "\n", + " min_distance_to_niche_Bile duct \\\n", + "niches \n", + "Bile duct 0.000000 \n", + "Lymphoid structure 99.283752 \n", + "Necrosis 215.188214 \n", + "Stroma 0.000000 \n", + "Stromal border 1282.747393 \n", + "Tumour 258.930767 \n", + "Tumour-myeloid 531.479998 \n", + "Vascular 1065.886005 \n", + "\n", + " min_distance_to_niche_Lymphoid structure \\\n", + "niches \n", + "Bile duct 2380.538268 \n", + "Lymphoid structure 0.000000 \n", + "Necrosis 2613.268586 \n", + "Stroma 0.000000 \n", + "Stromal border 4533.620464 \n", + "Tumour 2124.252221 \n", + "Tumour-myeloid 3349.152789 \n", + "Vascular 3766.261346 \n", + "\n", + " min_distance_to_niche_Necrosis \\\n", + "niches \n", + "Bile duct 1449.461569 \n", + "Lymphoid structure 1293.705232 \n", + "Necrosis 0.000000 \n", + "Stroma 0.000000 \n", + "Stromal border 1263.667065 \n", + "Tumour 433.590282 \n", + "Tumour-myeloid 603.320975 \n", + "Vascular 1702.920627 \n", + "\n", + " min_distance_to_niche_Stroma \\\n", + "niches \n", + "Bile duct 73.698113 \n", + "Lymphoid structure 0.000000 \n", + "Necrosis 0.000000 \n", + "Stroma 0.000000 \n", + "Stromal border 356.928689 \n", + "Tumour 2.529358 \n", + "Tumour-myeloid 0.000000 \n", + "Vascular 401.167661 \n", + "\n", + " min_distance_to_niche_Stromal border \\\n", + "niches \n", + "Bile duct 606.466864 \n", + "Lymphoid structure 484.004416 \n", + "Necrosis 530.994922 \n", + "Stroma 0.000000 \n", + "Stromal border 0.000000 \n", + "Tumour 40.851952 \n", + "Tumour-myeloid 332.532881 \n", + "Vascular 477.280906 \n", + "\n", + " min_distance_to_niche_Tumour \\\n", + "niches \n", + "Bile duct 503.188672 \n", + "Lymphoid structure 288.855609 \n", + "Necrosis 24.705659 \n", + "Stroma 0.000000 \n", + "Stromal border 0.000000 \n", + "Tumour 0.000000 \n", + "Tumour-myeloid 79.196333 \n", + "Vascular 283.654705 \n", + "\n", + " min_distance_to_niche_Tumour-myeloid \\\n", + "niches \n", + "Bile duct 1458.109531 \n", + "Lymphoid structure 778.042413 \n", + "Necrosis 0.000000 \n", + "Stroma 0.000000 \n", + "Stromal border 624.666420 \n", + "Tumour 257.084459 \n", + "Tumour-myeloid 0.000000 \n", + "Vascular 1370.371248 \n", + "\n", + " min_distance_to_niche_Vascular \n", + "niches \n", + "Bile duct 554.878833 \n", + "Lymphoid structure 727.563948 \n", + "Necrosis 206.323638 \n", + "Stroma 0.000000 \n", + "Stromal border 365.469128 \n", + "Tumour 121.688532 \n", + "Tumour-myeloid 694.707711 \n", + "Vascular 0.000000 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_niches_geometries = sopa.spatial.niches_geometry_stats(adata, \"niches\")\n", + "df_niches_geometries" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWIAAAH5CAYAAAALJEd4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVcPG4d8mkEJJQktCCb33DgHpIL2JgoJSBFQEFaICUeklgIIUkSIlICCKAiK9KCBFegDpvSahhhIgQHbfP/Zlw5oEEtiwCfvc1zXXx8ycmXNmP98nu2fOnDGYTCYTIiIiIiIiIiIiIpJknOzdABEREREREREREZGXnTpiRURERERERERERJKYOmJFREREREREREREkpg6YkVERERERERERESSmDpiRURERERERERERJKYOmJFREREREREREREkpg6YkVERERERERERESSmDpiRURERERERERERJJYKns3QORZGMMK2rsJkkhOvkft3QQReYJ6Tm/YuwmSSGuMC+zdBBF5AuVqyqNcFUneii4eaO8mSCIdbDHQ3k1IdjQiVkRERERERERERCSJqSNWREREREREREREJImpI1ZEREREREREREQkiakjVkRERERERERERCSJqSNWREREREREREREJImpI1ZEREREREREREQkiakjVkRERERERERERCSJqSNWREREREREREREJImpI1ZEREREREREREQkiakjVkRERERERERERCSJqSNWREREREREREREJImpI1ZEREREREREREQkiakjVkREREREROQxGzdupGnTpmTLlg2DwcDixYsTdfzAgQMxGAyxlrRp0yZNg0VEJEVQR6yIiIiIiIjIYyIjIylVqhQTJ058puM/++wzQkNDrZaiRYvyxhtv2LilIiKSkqgjVkREREREROQxDRs2ZOjQobRs2TLO/VFRUXz22Wdkz56dtGnTUqlSJdavX2/Zny5dOnx9fS1LeHg4Bw8epHPnzi/oCkREJDlSR6yIiIiIiIhIIvTo0YOtW7cyf/589u3bxxtvvEGDBg04duxYnOWnTZtGwYIFqVat2gtuqYiIJCfqiBURERERERFJoLNnzzJz5kwWLFhAtWrVyJcvH5999hmvvPIKM2fOjFX+3r17zJ07V6NhRUSEVPZugIiIiIiIiEhKsX//fqKjoylYsKDV9qioKDJlyhSr/KJFi7h16xYdOnR4UU0UEZFkSh2xIiIiIiIiIgl0+/ZtnJ2d2bVrF87Ozlb70qVLF6v8tGnTaNKkCT4+Pi+qiSIikkypI1ZEREREREQkgcqUKUN0dDSXLl166pyvp06d4q+//mLJkiUvqHUiIpKcqSNWRERERERE5DG3b9/m+PHjlvVTp04REhJCxowZKViwIO3ataN9+/aMHj2aMmXKcPnyZdatW0fJkiVp3Lix5bgZM2aQNWtWGjZsaI/LEBGRZEYdsSIiIiIiIiKP2blzJ7Vq1bKsBwQEANChQweCg4OZOXMmQ4cO5dNPP+XChQtkzpyZypUr06RJE8sxRqOR4OBgOnbsGGsKAxERcUxO9m6APL/Tp09jMBgICQkBYP369RgMBiIiImxaz8CBAyldurRNzykikhwpV0VEbEu5KilNzZo1MZlMsZbg4GAAUqdOzaBBgzh16hT379/n4sWLLFy4kBIlSljO4eTkxLlz5xg2bJidrkJeZspVkZRJHbHJXMeOHTEYDJYlU6ZMNGjQgH379lnK+Pn5ERoaSvHixe3Y0sRLqj8U9vDdTChSw2C1NHonZv+Ab+DVt6B0PajSDLp/ASfPPPmcJhOMnw7VWpqP6xQAp89bl4m4CZ8PgfINoWJj+HIkRN6x/fWJvEyUq8mPk5MTHQa3YfaJiSyNnMusYxNo91UrqzJrjAviXN74rJmlTNsvXmPspqH8cXsOi64FJ6juV1pWZMTKr/jt8gzWGBeQr1TuOMsVqVyQUWsHsOTWjyyOmMXo9YNwcXN51ksWeakoV1+8EtWKMPj3Psw/P4U1xgVUaV7Bar+Xtyefz+jO/PNT+OP2HIYv/5Ls+X1jnedp2Za9QFYGLerNr5emszhiFt9uHEKpmsWszlGwfD5GrenPomvBLLw6k6AVX5K3ZK6nXsPT6k6fIR19f/yYxRGzWHQtmIBp3XBL65bYj0okRVKupmxv5anAmld7sqfpV8yv3oUSXtnjLVs3axF+qfEe/zTuy84mX7Cw1gc09SsZb/kBpZpwsMVA3slXOSmaLi+AOmJTgAYNGhAaGkpoaCjr1q0jVapUVo+8ODs74+vrS6pUmmnCnvLnMbFxYcwyd0LMvmIFYVhfWDYbfvjG3Mna5TOIjo7/fNN+gjkLYeCn8PNkSOMGXT+DqKiYMr2HwPHTMH00TAqCnXvNnb4i8mTK1eSlTZ/mNP3gVb77aDqdi/ZkWt+5tP68OS0+iplPr3XWrlbLN+9OxGg08vdv/1jKpHJJxcZft7J08uoE1+2W1o1/Nx9mWt858ZYpUrkgQSu+ZNeavXxUKZAeFQP5feJKTEbjs12wyEtIufpiuaV15eS+M0zoMT3O/YMW9cY3rzf9W4yiW9nehJ+9zMg1/XFL42opk5BsG/pHX5xTOfN5nUF0L9+Hk/tOM+SPvmTw8fp/O9wIWvEll85e4aPKX9CrWj/u3LpH0MqvcE4V/6P4Cam775yPyV3Mj76vDuGrpiMoWa0Ivaa8/5yfnEjKoVxNmRpkL0af4vX5/vB6Xl8/hcM3w5la5W0yuqSNs/yNB3eZcnQjbTdMo+Wfk1h4Zg/DyrSgqne+WGXrZC1MqYw5CL97M6kvQ5KQOmJTAFdXV3x9ffH19aV06dL07duXc+fOcfnyZSD2Iwlx2bRpE9WqVcPd3R0/Pz8+/vhjIiMjn1jviBEj8PHxIX369HTu3Jl79+5Z7a9ZsyY9e/a02taiRQs6duxoWY+KiqJPnz74+fnh6upK/vz5mT59OqdPn7bMuZQhQwYMBoPVcSlRKmfIkilmyeAVs691M6hQCrJnNXfKftIFQi8ZuBAW97lMJpi9AD54B+q8AoXywYgv4NJVWLvJXObEafh7u4Ehn0OpolCuJHz1CSz/Ey5dSeqrtS1jWEGbLyJPolxNXor6F2LLkp1sX76b8DOX+fu3f9i1ei+FKuS3lLkeHmG1+DerwN6/DhB26pKlzOyBv7Bw7DJO7T+b4LrXztnInCG/snvt/njLdBvTgUUTlvPzyMWcOXie80cvsnHBVh7cf/hsF/wCKFPlRVOuvlg7VoYQ3G8+mxdvj7Uve4GsFPUvyPgPf+DozhOcP3qR8d1+wMXdhVpvVbWUe1q2eWRKT46C2Zg/chGn9p/lwvEwpvWdi3taN3IX9wMgZ+FseGRKz6wBP3P+6EXOHDzPj4MXkNHXC59cWeJt/9Pqzlk4OxUblmFM10kc3n6cA5sP893HM6j5ZhUyZc1gy48ywZSr8qIpV1Omjvn8WXBmN4vOhnDi1mUGhSzlXvQDXstVJs7yO66cZl3oYU7evsK5O9eZc3IbR2+GUzZTTqty3m7p+bJkI3rv/I2HppdjMICj5qo6YlOY27dvM2fOHPLnz0+mTJkSdMyJEydo0KABrVq1Yt++ffz8889s2rSJHj16xHvML7/8wsCBAxk+fDg7d+4ka9asfP/994lub/v27fnpp58YP348hw4dYsqUKaRLlw4/Pz9+++03AI4cOUJoaCjjxo1L9PmTkzPnofprUO9N83QBF8PjLnfnLixcATmymvD1jrvM+VC4cs2Af7mYbenTQckisPeAeT3kAHikM1G8cEwZ/3Lg5AR7D9rmmkQcgXLV/g5uPUKZ2sXJXiArAHlL5qL4K4XZsXJPnOW9vD2p1LgsK2b8meRt88riQZHKBYm4dIOxm4byS+gPjP5rEMWqFn76wSIOSrlqX6ldUwNw/94DyzaTycSDqAcUr1oESFi23bx6i7OHL1CvfQ3c0rji5OxE4/frcT08gmO7TgJw7shFbly5SYPOtUmVOhUubi407FybMwfPE3b6EnFJSN1F/Aty6/ptjv6/HoDda/dhMpooXKmA7T4skRRCuZoypDY4U9QrG/9cjskuEya2Xj5J6Yw5EnSOypnzkDtdJnZeiZnL0ICBEeVeY8axzRy/ddnm7ZYXS2PYU4ClS5eSLl06ACIjI8maNStLly7FySlh/ehBQUG0a9fOcteqQIECjB8/nho1ajBp0iTc3GLPtTR27Fg6d+5M586dARg6dChr166NdTfsSY4ePcovv/zCmjVrqFu3LgB58+a17M+YMSMA3t7eeHl5xXueqKgooh5/Hh9IHWXE1TX53EcoWQSG94U8OeHyVZgYDG9/BH8EQ9o05jLzFsHoKXDnroE8OU1MHw0uqeM+35Vr5v+bKaP19swZ4PK1mDIZ/zMgIFUq8Ewfc3xKYcT2d/Se9b+OESNGEBgYyCeffMLYsWMBuHfvHp9++inz588nKiqK+vXr8/333+Pj42Oz9sqLpVyNnatGUzROBvu80Xn+iMWk8UjDjENjMUYbcXJ2YuZXP/HnvE1xln+1Qw3u3LrHpoXbkrxtWfOa/3fefkBrpn4+m+Mhp6nXvgaj1vbnvRIBXDgez6MNdmbrXE0+f3EluVKuJp9cPXf4AuFnLtN5eFvGfjCVe5FRtOrVGG+/zGTM6gUkPNv61BvMoEW9+f3mbExGExGXbhDYcBi3I8wj6u7evsdntQYycFFv2n31OgAXjoUS2GAoxui4cyghdWf09SLikvWjt8ZoIzev3SaDr5etP7IEUa7Ki6ZcjSNXHzzEKXXy7cbyck1DKicnrty7bbX9alQkedNljve4dKlcWd/gU1I7OWM0mRiydxlbH+vM7VKgKtEmI3NOJv133xfJUXM1pbTTodWqVYuQkBBCQkLYvn079evXp2HDhpw585S3Pf3f3r17CQ4OJl26dJalfv36GI1GTp06Fecxhw4dolKlSlbb/P39E9XukJAQnJ2dqVGjRqKO+6+goCA8PT2tlhETrj/XOW2temVoUMs8hcArFWHKSLh1G1b8FVOmaT34bRrMHm8idw7oNdB6vldHFm0y2nx5Fjt27GDKlCmULGk9OXqvXr34448/WLBgARs2bODixYu89tprtrh0sRPlauxcPcXh5zrn86jR2p/abV8hqN04upXrw9cdJ/LGp82o1z7u66zfqTZ/zvubB1EP4txvSwYnAwDLpq5hVfB6ToScZnLALM4fuUj9d2snef3PKjlkqjgW5WryydXoh9EMavUNOQpmY9G1YJZGzqFUzeJsX74bo9EEJDzbPvquCxGXbhBQvT89KgWy+fcdDFnSl4z/7wx1cXMhYFo3Dmw+zMf+X9Drla84/e85hi4NjPeFhspV5aokjHI1dq5e/S3um/QpXeTD+7z212TabPiBcYfW0btEfSpkzg1AUc+svJOvMl/sXmzXNiYFR83V5HsrQSzSpk1L/vwx8+RNmzYNT09PfvjhB4YOHfrU42/fvs3777/Pxx9/HGtfzpw54zgiYZycnDCZTFbbHjyI+VHs7u7+zOd+XGBgIAEBAVbbUl8va5NzJxWP9JA7B5y9ELMtfTrzkjuHeU7Xyk1g7d/QuG7s4zP/fyTs1Wvg/diTJ1euQ5H8MWWu/ac/+uFDuHEr5nhHFtcdVFdXV1xdXeMsf/v2bdq1axfrf1c3btxg+vTpzJs3j9q1zT8OZs6cSZEiRfjnn3+oXFlvq0yJlKuxc7WlZ0ebnPtZdB31Dj+PXMz6n7cAcPrfs3jnysybfVuyZvYGq7LFXylMzsLZGfbmty+kbddCIwA4c/C81fazhy7g7Rf/yAYRR6NcTV65emz3ST4o+zlpPNKQ2iUVN67cZPzW4RzbdQJIWLaVqV2cSk3K8VrGjty5dReACd2nUa5uSep1qMnPIxdTu+0r+ObOwidVvrR8zkHtxrHw2kyqNC9vyfXHJaTua2EReHl7WO13cnbCI2M6rodFPPsHI5KCKFdj52rFVaNscu6kEhF1h4dGI5nd0lltz+SalitRt+M5yjx9wdlI82Oth2+EkTddFroWeIUdV05TLnMuMrqmZd2rvSzlUzk50bv4q7TPV5l6q8cmybVI0tGI2BTIYDDg5OTE3bt3E1S+bNmyHDx4kPz588daXFzivlNdpEgRtm2zHvb+zz//WK1nyZKF0NBQy3p0dDT//vuvZb1EiRIYjUY2bLD+Ef3Io7qjo6Of2H5XV1c8PDysluQ0LUFcIu/AuYuQJb4OUZP5hVz34xnMlSMrZM5o4p/dMdtuR8K+Q1CqmHm9dDG4edvAgSMxZbbtAaPR3NGbkhgx2XyJ6w5qUFBQvG3o3r07jRs3tjw+88iuXbt48OCB1fbChQuTM2dOtm7dmmSfibxYylUPu01LAOCWxtUySusRY7QRp/+Pmnpcw3frcHTnCU7uS9hokOcVdvoSVy5cI0ehbFbbcxTMyqWzyXeOLltnqkhiKVftm6uP3Ll5hxtXbpI9vy8Fy+djy+87gIRlm2sa883rWPlsNFny2TWNC0ajyapTxmg0ggkM8Tw+nZC6D209SvoM6ShQNuZx5jK1i2NwMnB427FEfw62oFwVe1OueiTraQkAHpiiORhxkcpZ8li2GTBQOUteQq6df8KR1pwMBlyczde65OxeWvw5idf+mmxZwu/eZMaxLXTd8qPNr+FFctRcTd69WQKYR/aFhYURFhbGoUOH+Oijj7h9+zZNmzZN0PF9+vRhy5Yt9OjRg5CQEI4dO8bvv//+xEm6P/nkE2bMmMHMmTM5evQoAwYM4MCBA1ZlateuzbJly1i2bBmHDx+mW7duREREWPbnzp2bDh068O6777J48WJOnTrF+vXr+eWXXwDIlSsXBoOBpUuXcvnyZW7fjv8OUXI36nvYHgIXQmHPv/DRV+aXZjWua+6QnToHDhwxv8Brz7/QcwC4upqnNHik0TuwZqP53wYDtH8DJs+GPzfD0RPQd7h5dGzdV8xl8uWGahVN9Pva3EG7ez8MGQuNaoO3BmkRGBjIjRs3rJbAwMA4y86fP5/du3fH2VEbFhaGi4tLrPmLfHx8CAtLnnNDytMpV5OXf/7YRdsvXqNio7L45MpC1RYVadWraay3gadJ7061NyqzYvq6OM+TxS8z+UrlxjtnZpycnchXKjf5SuXGLW3MHGjTD46laouKlvX0GdKRr1RuchU1v0AhR6Fs5CuVmww+XpYyv3zzOy0/akS1VpXJls+XDoPb4Fc4OyumJ/3LwkRSCuXqi+WW1s2ScQC+ebzJVyo3Wf4/orT665UpWaMovnm88W9WnhGr+7Fl8XZ2rdlnOcfTsu3g1qPcvn6b3sHdyVsyF9kLZKXrqHfwzePNtmXm0QK71+wjfYa0fDSxCzkLZydX0Rx8PqM70Q+j2fuXuWMmU7aMTD84lkIV8ie47rOHL7B9xR56TX2fQhXyU6xKIXpM6Mz6+Vu4Gpq8pigTSSrK1ZQp+MRWXs9VjuZ+pcibLjMDSjXG3Tk1i86aX0IbVLYlvYrWsZTvWuAV/LPkJUeaDORNl5mO+f1p6leSP86Z8/rGg7scv3XJanloMnIl6janb1+1yzXK80netxMEgJUrV5I1q/lN0unTp6dw4cIsWLCAmjVrJuj4kiVLsmHDBr788kuqVauGyWQiX758tGnTJt5j2rRpw4kTJ+jduzf37t2jVatWdOvWjVWrVlnKvPvuu+zdu5f27duTKlUqevXqRa1atazOM2nSJL744gs+/PBDrl69Ss6cOfniiy8AyJ49O4MGDaJv37506tSJ9u3bExwcnLgPJ5kIuwyfDYaIm5DRC8qWgPmTzP9++BB27oPZv8LNW5ApA5QvBT9NNP/7kVNnDdyOjLmL0+UtuHsXBnwDN2+bzzn1a3MH7iOj+sHQsdCpl7nj99Xq8EXsJ0+SvaR4WZf7E6YheNy5c+f45JNPWLNmTZwT1svLSbmavHz38XQ6DnmTjyd2wcvbk6sXr7Fs6hrmDP7VqlzNN6tiMBj486fNcZ6n46A2vNqxpmV98p6vAfi01gD2bTgIQM7C2UnrmcZSxr9ZeT6f2d2y/tV882Nfswf9wo+DFgCwaNxyXNxc+GBMB9JnTMfJvWfo8+oQQk+GP//FJ5GkyFWRJ1GuvlgFy+dl9F+DLOvdxnQEYHXwer5+dyIZs2bg/dEdyODjxbXQ66z5cQNzh/xmdY6nZdvNq7f4ouEwOg19i6/XDcA5tTNnDpxnQIuRlqcSzh25SL9mI3mn/xuM2zIMo9HEiT2n+KLhMK79fwqBVKmdyVk4O65pXBJcN8CIt8fTY0JnRq3tj8lo4u+F/zDx45lJ8XEmiHJVXjTlasq08sIBMrqk5aMitcjsmo7DN8J4f+scrkaZX3KYNY2n1ehN91Qu9C/VGB93D6KiH3Ly1hX67FrIygsH4qvipeGouWow/XdyD5EUwBhW0N5NkERy8j0a776bF599jqL4eGQ7m6ByixcvpmXLljg7xzw+GB0dbXn0Z9WqVdStW5fr169bjYrNlSsXPXv2pFevXnGcVSTlqef0hr2bIIm0xrgg3n22ztWEZqqIxFCupjzKVZHkrejigfZugiTSwRYD493nqLmqEbEi4tDq1KnD/v37rbZ16tSJwoUL06dPH/z8/EidOjXr1q2jVatWABw5coSzZ88m+g2iIiIiIiIiIuK41BErInZnz4m106dPT/Hixa22pU2blkyZMlm2d+7cmYCAADJmzIiHhwcfffQR/v7+VK5cOa5TiojYXUp6YYGISEqgXBURsS1HzVV1xIqI3UUn8wD+9ttvcXJyolWrVkRFRVG/fn2+//57ezdLRCReyT1XRURSGuWqiIhtOWquqiNWROQ/1q9fb7Xu5ubGxIkTmThxon0aJCIiIiIiIiIpnjpiRcTuHPWRBBGRpKJcFRGxLeWqiIhtOWquOtm7ASIiIiIiIiIiIiIvO42IFRG7izY55p0wEZGkolwVEbEt5aqIiG05aq6qI1ZE7M5o7waIiLxklKsiIralXBURsS1HzVVNTSAiIiIiIiIiIiKSxDQiVkTsLtpBJ+kWEUkqylUREdtSroqI2Jaj5qo6YkXE7qIdM39FRJKMclVExLaUqyIituWouaqpCURERERERERERMShTJw4kdy5c+Pm5kalSpXYvn17vGWDg4MxGAxWi5ubW6Lr1IhYEbE7R52kW0QkqShXRURsS7kqImJb9s7Vn3/+mYCAACZPnkylSpUYO3Ys9evX58iRI3h7e8d5jIeHB0eOHLGsGwyGRNerEbEiIiIiIiIiIiKSYkVFRXHz5k2rJSoqKt7yY8aMoWvXrnTq1ImiRYsyefJk0qRJw4wZM+I9xmAw4Ovra1l8fHwS3U51xIqI3UVjsPkiIuLIlKkiIralXBURsS1b52pQUBCenp5WS1BQUJx1379/n127dlG3bl3LNicnJ+rWrcvWrVvjbfPt27fJlSsXfn5+NG/enAMHDiT6ujU1gYjYndFBJ+kWEUkqylUREdtSroqI2JatczUwMJCAgACrba6urnGWvXLlCtHR0bFGtPr4+HD48OE4jylUqBAzZsygZMmS3Lhxg2+++YYqVapw4MABcuTIkeB2qiNWREREREREREREUixXV9d4O15twd/fH39/f8t6lSpVKFKkCFOmTGHIkCEJPo86YkXE7vR4loiIbSlXRURsS7kqImJb9szVzJkz4+zsTHh4uNX28PBwfH19E3SO1KlTU6ZMGY4fP56oujVHrIjYneaIFRGxLWWqiIht2TtXN27cSNOmTcmWLRsGg4HFixcn+NjNmzeTKlUqSpcuneh6RUSSij1z1cXFhXLlyrFu3TrLNqPRyLp166xGvT6x/dHR7N+/n6xZsyaqbnXEioiIiIiIiCRjkZGRlCpViokTJybquIiICNq3b0+dOnWSqGUiIilTQEAAP/zwA7NmzeLQoUN069aNyMhIOnXqBED79u0JDAy0lB88eDCrV6/m5MmT7N69m7fffpszZ87QpUuXRNWrqQlExO6MJo22EhGxJeWqiIht2TpXo6KiiIqKstr2pPkNGzZsSMOGDRNdzwcffEDbtm1xdnZO1ChaEZGkZu/vq23atOHy5cv079+fsLAwSpcuzcqVKy0v8Dp79ixOTjHjV69fv07Xrl0JCwsjQ4YMlCtXji1btlC0aNFE1asRsSIiIiIiIiIvUFBQEJ6enlZLUFCQTeuYOXMmJ0+eZMCAATY9r4jIy6JHjx6cOXOGqKgotm3bRqVKlSz71q9fT3BwsGX922+/tZQNCwtj2bJllClTJtF1akSsiNid5h8UEbEt5aqIiG3ZOlcDAwMJCAiw2mbLt30fO3aMvn378vfff5MqlX72i0jy46jfV5XIkiI1zFfZ3k2QRFoVGf++aA3OFxGxKeWqiIht2TpXnzQNwfOKjo6mbdu2DBo0iIIFCyZJHSL28G/lefZugiTawHj3OOr3VXXEioiIiIiIiLwkbt26xc6dO9mzZw89evQAzG8DN5lMpEqVitWrV1O7dm07t1JExDGpI1ZE7M7ek3SLiLxslKsiIraVknLVw8OD/fv3W237/vvv+fPPP/n111/JkyePnVomIhIjJeWqLakjVkTszlHnhhERSSrKVRER27J3rt6+fZvjx49b1k+dOkVISAgZM2YkZ86cBAYGcuHCBWbPno2TkxPFixe3Ot7b2xs3N7dY20VE7MXeuWov6ogVERERERERScZ27txJrVq1LOuPXvTVoUMHgoODCQ0N5ezZs/ZqnoiIJJA6YkXE7qJNjjlJt4hIUlGuiojYlr1ztWbNmphMpnj3BwcHP/H4gQMHMnDgQNs2SkTkOdg7V+3FMa9aRERERERERERE5AXSiFgRsTuj7gmJiNiUclVExLaUqyIituWouaqOWBGxO0edpFtEJKkoV0VEbEu5KiJiW46aq47Z/SwiIiIiIiIiIiLyAmlErIjYnaNO0i0iklSUqyIitqVcFRGxLUfNVXXEiojdGR30kQQRkaSiXBURsS3lqoiIbTlqrjpm97OIiIiIiIiIiIjIC6QRsSJid9G6JyQiYlPKVRER21KuiojYlqPmqmNetYiIiIiIiIiIiMgLpBGxImJ3jjpJt4hIUlGuiojYlnJVRMS2HDVX1RErInZn1OB8ERGbUq6KiNiWclVExLYcNVcd86pFREREREREREREXiCNiBURu4s2GezdBBGRl4pyVUTEtpSrIiK25ai5qo5YEbE7R31boohIUlGuiojYlnJVRMS2HDVXHfOqRURERERERERERF4gdcSKiN0ZTU42XxJq0qRJlCxZEg8PDzw8PPD392fFihWW/TVr1sRgMFgtH3zwQVJ8DCIiNmOvTBUReVkpV0VEbMtRc1VTE4iIQ8uRIwcjRoygQIECmEwmZs2aRfPmzdmzZw/FihUDoGvXrgwePNhyTJo0aezVXBERERERERFJoVJOl/EL0rFjR1q0aPFc5wgODsbLy+uJZQYOHEjp0qWfqx6Rl0U0TjZfEqpp06Y0atSIAgUKULBgQYYNG0a6dOn4559/LGXSpEmDr6+vZfHw8EiKj+GlpEwVsQ97ZaokPeWqiH0oV19eylUR+3DUXLVrS20ReMlRmzZtOHr0aJKd//Tp0xgMBkJCQpKsjsfpD0bitfmsCeM3DmRR2BR+Pv0dA+Z/Qo4Cvk89rlrLCkzbPYI/rk5j8vZhVKhfMlaZ9l+9xrwT41lyZRojlvYhWz6fJLiCFyvaZLD5EhUVxc2bN62WqKioJ7cjOpr58+cTGRmJv7+/ZfvcuXPJnDkzxYsXJzAwkDt37iT1R/JMlKnPRpn64pWoVoTBv/dh/vkprDEuoErzCrHKdBjUhvkXprI0ci4jV/cje37rDB28uA9zT09i2Z25zL8wlT6zPiJT1gyxzvP6p02ZeXgcy+7O46dzU2j7xWtPbFv+MnkYsaofi64F89vlGfSc8j5uad2symTxy8zQPwL54/YcfgmbRtdR7+DknLy+/Nk6Ux2VcvXZKFeTXqZsGekz+yN+uzyDpZFzmbp3NAXL5bUq86QcLVmjKGuMC+JcCpbPF6u+bPl8+f3GbBZdC461r/rrlZl+cCzL7pjbUbFhmae2v3bbV5i852v+uD2H+Rem8un0bqTPmM6y3zmVM2/3e51Zxyaw7M5cJu/5mvL1Syf8A0oCylXbUK4+G+VqyjJ3EdRpA6XqQZsPYN+hJ5e/eQsGfwvVWkLJutCgHWz4x7pM+GXoPRQqN4XS9aBZR/j3cJJdwgvhqLmavH41vCTc3d3x9va2dzO4f/++vZtgxWQy8fDhQ3s344Uo+Uph/pi6lp61BhPYdCTOqZ0ZvqQ3rmlc4j2maKX8BAZ/yMrZG/mwSn+2/LGbAfN7kqtodkuZ1gGNad6tHhM+DuaTmoO4FxnF8N8/J7Vr6hdxWSlKUFAQnp6eVktQUFCcZffv30+6dOlwdXXlgw8+YNGiRRQtWhSAtm3bMmfOHP766y8CAwP58ccfefvtt1/kpTg8ZWrcUnKmuqV15eS+M0zoMT3O/W16N6fFRw0Z120qH1UO5F5kFEErv7LKupD1/zK0zRg6Ff6Ewa9/Q9Z8PvRb8KnVeT4c14mGnesw9fMf6VykJ/2bj+Tw9uPxtitT1gyMXNOfiyfC+KjyFwQ2HEbuojn4fGZ3SxknJyeGLQ0klUsqelb9iq87fserHWrScXCb5/xURF4c5WrcUkqupvNKy9hNQ4h+EM0XjYbTpVgvpnw2i1vXIy1lnpajB7ccpXXWrlbL8mlrCT0ZztGdJ6zqc07lzBfzPuHfv2P3JBT1L8gX83qycsafdCvbm82/b2fgot7kLuYXb/uLVSlE71kfsXLGn3QtHsCQ1mMoVCE/AVNj5uDvNPRNGr9Xj4kfz6BzsV4snbKGgQs/J1/p3M/56YkkDeVq3FJKrtrS8j9h5ETo3gF++wEK5YOun8HV63GXv/8AOn8KF8Jg3GBY8SMM/hx8MseUuXEL2vaAVM4wdRQsnQ19uoNH+hdzTWJbya4j1mQykT9/fr755hur7SEhIRgMBo4fN/+AMhgMTJkyhSZNmpAmTRqKFCnC1q1bOX78ODVr1iRt2rRUqVKFEydivkg8uqszZcoU/Pz8SJMmDa1bt+bGjRux2vHNN9+QNWtWMmXKRPfu3Xnw4IFl3/Xr12nfvj0ZMmQgTZo0NGzYkGPHjln2x/VYwogRI/Dx8SF9+vR07tyZe/fuPfFzuH79Ou3atSNLliy4u7tToEABZs6cCUCePHkAKFOmDAaDgZo1awIxdxeHDRtGtmzZKFSokOWzWrx4sdX5vby8CA4OtqyfP3+et956i4wZM5I2bVrKly/Ptm3bCA4OZtCgQezdu9fyoqLg4OA478hFRERgMBhYv349AOvXr8dgMLBixQrKlSuHq6srmzZtwmg0EhQURJ48eXB3d6dUqVL8+uuvT/w8UpovW3zDmjmbOHPoAif3n2P0+z/gkzMzBcrkifeYFh/WZ+ea/fw6djnnjlxk9pDfOB5ymubv14sp070+P41awtZluzn17zlGdZ1CpqxeVGla9kVcVpIx4mTzJTAwkBs3blgtgYGBcdZfqFAhQkJC2LZtG926daNDhw4cPHgQgPfee4/69etTokQJ2rVrx+zZs1m0aJFVtiRnytSYOpSpyceOlSEE95vP5sXb49zf8pPGzB32G1uX7OTU/rOM7PAdmbJloGqLmJGzC8cu49C2Y1w6e4WDW4/y88jFFKlcAOdUzgDkLJydph+8yoAWo9j6x07CTl/i2O6T7F67L952VWpSjugHD5nQfRrnj17k6M4TjO32A9Vfr0y2fOaRZOVeLUnOojkY8c54Tuw9zY6VIczqP59mHzYgVerkM/W+rTNVYihXY+pQrtpHmz4tuHzuKt90/p4jO44TdvoSu9bsI/RkuKXM03L04YOHXA+PsCw3r97Cv1kFVgX/Fau+TkPf5Nzhi2xYsDXWvpYfN2bHyhAWfLOEs4cvMKv/zxzffZLmPRrE2/4i/gUJP32JxRNWEHb6Egc2H2bZ1DUUqpjfUqbu29X5KWgh21fsIezUJZZOXs325bt5PaDp83x0z0W5mnSUqzF1KFdTvlm/wBtN4LVGkD83DPwU3Nxg4fK4yy9cbu5o/W4YlC0B2bNCxdJQOCYSmTYPsmaB4YFQsgjkyApVK0DO7HGfM6Vw1FxNdi01GAy8++67lsB5ZObMmVSvXp38+WP+axwyZAjt27cnJCSEwoUL07ZtW95//30CAwPZuXMnJpOJHj16WJ3n+PHj/PLLL/zxxx+sXLmSPXv28OGHH1qV+euvvzhx4gR//fUXs2bNIjg42CqwOnbsyM6dO1myZAlbt27FZDLRqFEjq6B+3C+//MLAgQMZPnw4O3fuJGvWrHz//fdP/Bz69evHwYMHWbFiBYcOHWLSpElkzmy+JbJ9u/mH69q1awkNDWXhwoWW49atW8eRI0dYs2YNS5cufWIdj9y+fZsaNWpw4cIFlixZwt69e+nduzdGo5E2bdrw6aefUqxYMUJDQwkNDaVNm8SN+unbty8jRozg0KFDlCxZkqCgIGbPns3kyZM5cOAAvXr14u2332bDhg2JOm9KktbDHYBb12/HW6ZIpfzs+euA1bZda/dTpJL5v3nf3FnI5OvF7sfK3Ll5l8M7TlrKpFTRJiebL66urnh4eFgtrq6ucdbv4uJC/vz5KVeuHEFBQZQqVYpx48bFWbZSpUoAli+EyZ0y1UyZmnL45vEmU9YM7Fm737Ltzs07HN52nKL+heI8Jn2GdNRuW42DW44S/TAagMpNyxF68hKVm5Rl9omJ/HhyIgE/fED6DOniPAdAatdUPLj/EJPJZNl2/655ZEnxVwoDUNS/EKf3nyXiUswPuJ2r9pLWMw25iuV49gu3MVtnqsRQrpopV+3Hv2l5ju46Qb+fA/glbBqTdo2iYZc6lv3PkqP+zcrjkSk9q2Zad8SWrlWc6q/7M6HHtDiPK+pfkN3rrG9w7Vy9lyKVC8bb/kNbj5LFL7NlCgMvb0+qt/Jn+4o9ljKpXVNz/571f69Rd+9bstgelKtJR7lqplxN+e4/gANHwb9czDYnJ/N6yIG4j/lzM5QuBkO+hVdaQNOOMOVHiI6OKfPXZihWGHr2h6rN4bXO8MsfSXklL4aj5mryGbrxmI4dO9K/f3+2b99OxYoVefDgAfPmzYt1h6xTp060bt0agD59+uDv70+/fv2oX78+AJ988gmdOnWyOubevXvMnj2b7NnNtw4mTJhA48aNGT16NL6+5tEuGTJk4LvvvsPZ2ZnChQvTuHFj1q1bR9euXTl27BhLlixh8+bNVKlSBTDPH+nn58fixYt54403Yl3P2LFj6dy5M507dwZg6NChrF279ol3xM6ePUuZMmUoX748ALlz57bsy5IlCwCZMmWytPmRtGnTMm3aNFxc4n8E/r/mzZvH5cuX2bFjBxkzZgSw+mOXLl06UqVKFauuhBo8eDD16plHdUZFRTF8+HDWrl1rmYMzb968bNq0iSlTplCjRo1Yx0dFRcWa29NoisbJ4PxM7XnRDAYDH4x6m3+3HOXMwQvxlsvg48n1S9Z3Zq9fukkGH08AMv7//0b8p0zEpRtk9PaybaMdnNFojHc+2Ud3gLNmzfoCW/R8lKnK1P9Kzrma0dcLgOvhEVbbr4dHkMHHy2pblxHtaNa9Ae5p3Ti49ShfNY2ZfiRrXh98cmWm+uv+jOowASdnJ7qN6Ui/BZ/Su+6gOOsO+fNfPhjdgTc+a8aicctxS+tK56B25nZlNdedwdcrzrY9anvKGCsvz0u5qlz9rxeZq1nzetP0g1f57dulzAtaSKEK+ek+7l0e3n/ImtkbEpWjjzR8tza7VoVw5cI1y7b0GdPx+czujHhnPHdu3Y3zuAy+XkSE/+f7a3iEpQ1xObDlCCPeHseX83vh4paaVKlTsXXJTiZ0j+ns3blqL616NWH/xoNcPBFOmToleOW1SsluPm6xHeWqcvW/4srV1FFGXF2Tbw5E3IDoaAOZMpistmfKAKfOxn3M+VDYtgea1IUpI+HMBfN8sQ+joXtHc5lzoTD/d+j4Brz3tnlu2OHjwSU1tIj/AQRJppLlf8HZsmWjcePGzJgxA4A//viDqKioWAFXsmTMi4x8fMwvLCpRooTVtnv37nHz5k3Ltpw5c1oCGMDf3x+j0ciRI0cs24oVK4azc8yXpqxZs3Lp0iUADh06RKpUqSyj4sAchoUKFeLQobhnYD506JBV+Uf1Pkm3bt2YP38+pUuXpnfv3mzZsuWJ5R8pUaJEogIYzB1LZcqUsQSwrT36QwLmu5F37tyhXr16pEuXzrLMnj073ke945rr8+SDf5OkrUmhx7ftyVU0O0EdJtq7KcmWEYPNl4QKDAxk48aNnD59mv379xMYGMj69etp164dJ06cYMiQIezatYvTp0+zZMkS2rdvT/Xq1a3yJ7lTpipT/yuuXD1Fypvt/5evl9CtbG/6vDoEY7SRPrM+suwzODnh4ubCyA7f8e+mw+zbcJDRXSZRpnZxchTMFuf5zhw8z6iOE3k9oClLI+fwc+gPhJ2+xLWwCExGU5zHJFf2ylRHoVxVrv7Xi8xVg5MTx3afYsaXP3Ei5DTLf1jL8mlrafL+q890vszZM1KufmlWzPjTanvA1A/486dN7I9jbtjnkbNIDj4c24k5Q37lw/J9CGwwFJ/cWfhk8nuWMt/3nMmFY6FMPzSOFVE/0WNCZ1YH/2XXLFauJi3lqnL1v+LK1RET4ploNQUzGiGTFwz+DIoVgka14YO3zR2vj5iMULQA9HoPihaE1s3M0x88XiYlctRcTZYjYgG6dOnCO++8w7fffsvMmTNp06YNadKksSqTOnXMSzsMBkO824xGY6Lqfvwcj86T2HM8r4YNG3LmzBmWL1/OmjVrqFOnDt27d491R/C/0qZNG2ubwWCweswSsHqEwt3dPdHtc3Iy9+E/ft74Hst4vE23b5sfzV+2bJnVH0Mg3sfGAwMDCQgIsNrWyrdbottsD91Hv0OlhqX59NVhXLn45D8a18NvkMHb02pbBm8Prv9/lMG1//9fL29ProXFjDzw8vbkxP4zNm6547h06RLt27cnNDQUT09PSpYsyapVq6hXrx7nzp1j7dq1jB07lsjISPz8/GjVqhVfffWVvZudaMpUZerj4srVlp4dE9XmpHItLAKADD5eln8/Wj+x97RV2ZtXb3Hz6i0uHAvl7KHz/HRuCkUqF+TQP0e5Fnqdhw8ecuFYqKX82UPmpxK8c2bm/NGLcdb/10+b+OunTXh5e3IvMgpMJlr1amKZe/F6WASFK1hPB/NohNnj7ZWXn3JVufq4F5mr10Kvc/bQeattZw9doNprlc37E5GjAPU71eLm1VtsXbLTanvp2sXxb1aeNz79/7ysBgPOzk6svD+fb9+fwqqZf3E9LAIvn/98f/1Pvf/1Vt+WHNh8hAXfLAHg1P6z3I2MYuzfQwj+6ieuhUVw48pNBr72NaldU+ORKT1XL16jy4h2VvPgystHuapcfVxcuZr6evJ+N4qXJzg7m2K9mOvqdcgcT593lkyQKhU8dh+AvLngyjUD9x+YcEkNmTNBvtzWx+XNBas32rT58oIkyxGxAI0aNSJt2rRMmjSJlStX8u6779rkvGfPnuXixZgfX//88w9OTk6WSa2fpkiRIjx8+JBt27ZZtl29epUjR45Y3rIe1zGPl39U79NkyZKFDh06MGfOHMaOHcvUqVMBLHe7oh+fNOQp5wkNjfkheuzYMe7cuWNZL1myJCEhIVy7di2uw3FxcYlV16NHIx4/7+OTdsenaNGiuLq6cvbsWfLnz2+1+PnF/XbVuOb6TA6Pzz5N99HvUKVZOXo3GkH4mStPLX9o23FK17T+b6hs7eIc2maeizTs9GWuhkVQ5rEyadK7UbhCXkuZlCop5ohNqOnTp3P69GmioqK4dOkSa9eutTxG4+fnx4YNG7h69Sr37t3j2LFjjBo1Cg8Pj6T6KJKMMlWZ+rjknKthpy5xNfQ6ZeoUt2xLk96dwpXyc3DrkXiPM/z/x0FqV/M95gObD5MqdSqy5vWxlMlR0DylSPiZy09tR8SlG9yLvEeNNlW4f+8+u9aY50A8uPUIuUvkxCtLTA6UrVeSyBt3OHvwfHyne+Ecdc6tF0m5qlx93IvM1QObj8Qa2Z+jYFZLtiU2R+t3rMXaHzdY5th+5JMqX/JBmc8ty+wBPxN58w4flPmczYvM81Ue3HqUMrVLWB1Xtm5JDv1zNN72u6Zxwfifka3GaHOH16NOtEceRD3g6sVrOKdy5pXXKrN1yY54z5vUlKtJT7mqXH1c3O/8SN7/23FJDcUKwj+7YrYZjfDPbvM8sHEpWxzOXjCXe+T0eciSydwJ+6jM6f9MbXD6PGTzIUVz1Fy1+4jYGzduxPofb6ZMmfDz86Njx44EBgZSoECBpw7jTyg3Nzc6dOjAN998w82bN/n4449p3bp1guc+KVCgAM2bN6dr165MmTKF9OnT07dvX7Jnz07z5s3jPOaTTz6hY8eOlC9fnqpVqzJ37lwOHDhA3rx5462nf//+lCtXjmLFihEVFcXSpUspUqQIAN7e3ri7u7Ny5Upy5MiBm5sbnp6e8Z6rdu3afPfdd/j7+xMdHU2fPn2s7vi99dZbDB8+nBYtWhAUFETWrFnZs2cP2bJlw9/fn9y5c3Pq1ClCQkLIkSMH6dOnx93dncqVKzNixAjy5MnDpUuXEjRKMH369Hz22Wf06tULo9HIK6+8wo0bN9i8eTMeHh506NDhqedICXp824FarSszsM1Y7t6+Z5nnNfLGHcuLBz7/4T2uXLzOzAELAFj8/Sq+XvUFrT5uwPaVe6nxemUKlM3D2I9mWM67eOIq3urdnAvHwwk7c5kO/VpxNTSCLX/sfvEXaUPRyfeeUIqjTI2bMjV5cUvrRvb8Mf+N+ObxJl+p3Ny8dpvL566waNwy2n7ZigvHwgg9dYmOg9tw9eJ1Ni82/wAvXDE/hSrk599Nh7l1/TbZ8vnScXAbLhwP49BW84//3Wv3c3TXST6b/iHf95qJk5MTH33XmV2r91pGyRaqkJ/es3rQu+5grl40/xBp3r0BB7Yc4e7te5SrV5Kuo95heuBcIm+Yf7zsWr2PswfP02f2R/zQZw4Zfb3oOORNlny/kgf3H77Ij/GJlKu2o1yNm3LVfn4bu5Rxm4fyVmBLNvyylUIV89Ooa13Gvj/FUuZpOfpImdrFyZrXhxXT1sWq5+xh63cbFCyfD5PRxOkD52LqGb+M0esH8XpAE7Yt203NN6tSsHw+q7a8O7wtmbNlZFTH7wD4Z+kuek19nyYfvMrOVSFkypqBbt925NC2Y1wNNQ8jK1wxP5mzZ+R4yGkyZ89I+wGtcXIy8PMo+z2Hq1y1HeVq3JSrL4cOrSEwCIoXhhKFYfavcPcutGxo3t9nGPhkgYD/z8byZguYu8g852u7VnDmPEydA2+3euycb0Db7uaXeDWoBfsPwYI/YNBnL/zybMpRc9XuV71+/XrKlCljtQwaZH6JRufOnbl//36sybafR/78+Xnttddo1KgRr776KiVLlnzq2wv/a+bMmZQrV44mTZrg7++PyWRi+fLlsR5neKRNmzb069eP3r17U65cOc6cOUO3bk9+tN7FxYXAwEBKlixJ9erVcXZ2Zv78+QCkSpWK8ePHM2XKFLJlyxZv+D8yevRo/Pz8qFatGm3btuWzzz6zesTDxcWF1atX4+3tTaNGjShRogQjRoywzJHTqlUrGjRoQK1atciSJQs//fQTADNmzODhw4eUK1eOnj17MnTo0AR9fkOGDKFfv34EBQVRpEgRGjRowLJly8iTJ0+Cjk8Jmr5Xh3Reaflm1ZfMPznBstR4PWaeoCw5Mlm9yODgtuOM6DSJhp1q8f0/Q6nWsgKD3hxr9YKvX8YsY8nkNXzyXScmbByIezo3vmzxDQ+i4n4kRByPMjVuytTkpWD5vEze8zWT93wNQLcxHZm852s6DjK/kffnUb/z+3cr6TnlfSZuD8I9nRuBDYdZsu7enftUbVmJUWv7M/PwOAKmdePk/rN8WnOApTPUZDLRv9kIbly5yZgNgxm6NJCzhy4w7K2xlna4pnEhZ+HspEodM2qtUIX8jFzdj6n7RtOoa13GfTCVxRNWWPYbjUa+ahqEMdrIuC3D6PPjx6z9cQPB/X9O6o8txYiOjqZfv37kyZMHd3d38uXLx5AhQ6weZTSZTPTv35+sWbPi7u5O3bp1OXbsmNV5rl27Rrt27fDw8MDLy4vOnTtbHm98ZN++fVSrVg03Nzf8/PwYNWpUrPYsWLCAwoUL4+bmRokSJVi+fHmirke5Gjflqv0c3XmCga99Ta03X+GH/aN5+6tWTOoVzJ/zNlnKPC1HH2nwbh0ObD7MuSNxT9fyNAe3HiWo3Tgada3H5JBvqNaqMgNbjrLqrM3kmwHvnJkt66tnrWfyp7No3r0BP+wfQ79fAjh35CKDWsU8fu3i5kLHIW8x/cC3DFz4OVcuXKNXtX6Wm2KSsilX46ZcfTk0qg29u8H4GdCyCxw+DlO/jpmaIPQSXL4aUz6rN/zwNew/Ai3eNXfIvtMKuraNKVOiCIwfCsvWQbNOMGk29O0BTeu92GsT2zCY/jtxSDLy999/U6dOHc6dO2eZiPt5DBw4kMWLFydo+Lwkb/XTtrd3EySRVkXOjnffd4dr27y+HoX/fHohB6NMlSep5xT7jb+SvK0xLoh3n61zNTGZOnz4cMaMGcOsWbMoVqwYO3fupFOnTgwbNoyPP/4YgJEjRxIUFMSsWbPIkycP/fr1Y//+/Rw8eBA3NzfAPFdeaGgoU6ZM4cGDB3Tq1IkKFSowb948AG7evEnBggWpW7cugYGB7N+/n3fffZexY8fy3nvmYSZbtmyhevXqBAUF0aRJE+bNm8fIkSPZvXs3xYsXj/sCEkG5Kk+iXE15kmuuOhLlqjyJMaygvZsgieTkG/9UNY6aq3afmiAuUVFRXL58mYEDB/LGG2/YJIBFJPly1EcSXhRlqojjsXWuRkVFERUVZbXN1dU1zpdsbNmyhebNm9O4cWMAcufOzU8//cT27eY5JU0mE2PHjuWrr76yjOiZPXs2Pj4+LF68mDfffJNDhw6xcuVKduzYYXnz8oQJE2jUqBHffPMN2bJlY+7cudy/f58ZM2bg4uJCsWLFCAkJYcyYMZaO2HHjxtGgQQM+//xzwDwiZ82aNXz33XdMnjz5uT4P5aqIY9H31aSlXBVxPI6aq8nyqn/66Sdy5cpFREREnI+YiYhIwilTReR5BQUF4enpabUEBQXFWbZKlSqsW7eOo0fNIyD27t3Lpk2baNjQPDnaqVOnCAsLo27dupZjPD09qVSpElu3bgVg69ateHl5WTphAerWrYuTk5Pl5Sdbt26levXqlheYANSvX58jR45w/fp1S5nH63lU5lE9z0q5KiJiW8pVEXEUybIjtmPHjkRHR7Nr1y6yZ89us/MOHDhQjySIJENGk5PNF4mhTBVxPLbO1MDAQG7cuGG1BAYGxll33759efPNNylcuDCpU6emTJky9OzZk3bt2gEQFhYGEGu0k4+Pj2VfWFgY3t7eVvtTpUpFxowZrcrEdY7H64ivzKP9z0q5KuJ49F01aSlXRRyPo+ZqspyaQERERESSj/imIYjLL7/8wty5c5k3b55luoCePXuSLVu2l+7NyCIiIiIiiaGOWBGxu2gM9m6CiMhLxZ65+vnnn1tGxQKUKFGCM2fOEBQURIcOHfD19QUgPDycrFmzWo4LDw+ndOnSAPj6+nLp0iWr8z58+JBr165Zjvf19SU8PNyqzKP1p5V5tF9EJKH0fVVExLYcNVdTzthdEXlpaWoCERHbsmem3rlzBycn62OcnZ0xGo0A5MmTB19fX9atW2fZf/PmTbZt24a/vz8A/v7+REREsGvXLkuZP//8E6PRSKVKlSxlNm7cyIMHDyxl1qxZQ6FChciQIYOlzOP1PCrzqB4RkYTSd1UREdty1FxNOS0VERERkWSvadOmDBs2jGXLlnH69GkWLVrEmDFjaNmyJQAGg4GePXsydOhQlixZwv79+2nfvj3ZsmWjRYsWABQpUoQGDRrQtWtXtm/fzubNm+nRowdvvvkm2bJlA6Bt27a4uLjQuXNnDhw4wM8//8y4ceMICAiwtOWTTz5h5cqVjB49msOHDzNw4EB27txJjx49XvjnIiIiIiKiqQlExO4c9ZEEEZGkYs9cnTBhAv369ePDDz/k0qVLZMuWjffff5/+/ftbyvTu3ZvIyEjee+89IiIieOWVV1i5ciVubm6WMnPnzqVHjx7UqVMHJycnWrVqxfjx4y37PT09Wb16Nd27d6dcuXJkzpyZ/v37895771nKVKlShXnz5vHVV1/xxRdfUKBAARYvXkzx4sVfzIchIi8NfV8VEbEtR81VdcSKiN2lpMcIRERSAnvmavr06Rk7dixjx46Nt4zBYGDw4MEMHjw43jIZM2Zk3rx5T6yrZMmS/P33308s88Ybb/DGG288sYyIyNPo+6qIiG05aq465lWLiIiIiIiIiIiIvEAaESsidhftoHfCRESSinJVRMS2lKsiIrblqLnqmFctIiIiIiIiIiIi8gJpRKyI2J3RQSfpFhFJKspVERHbUq6KiNiWo+aqOmJFxO4c9ZEEEZGkolwVEbEt5aqIiG05aq465lWLiIiIiIiIpBAbN26kadOmZMuWDYPBwOLFi59YfuHChdSrV48sWbLg4eGBv78/q1atejGNFRGReKkjVkTszmgy2HwREXFkylQREduyd65GRkZSqlQpJk6cmKDyGzdupF69eixfvpxdu3ZRq1YtmjZtyp49exJdt4hIUrB3rtqLpiYQEbuL1j0hERGbUq6KiNiWvXO1YcOGNGzYMMHlx44da7U+fPhwfv/9d/744w/KlClj49aJiCSevXPVXtQRKyIiIiIiIvICRUVFERUVZbXN1dUVV1fXJKnPaDRy69YtMmbMmCTnFxGRhHHM7mcRSVY0NYGIiG0pU0VEbMvWuRoUFISnp6fVEhQUlGTt/+abb7h9+zatW7dOsjpERBLDUb+vakSsiIiIiIiIyAsUGBhIQECA1bakGg07b948Bg0axO+//463t3eS1CEiIgmjjlgRsTujBueLiNiUclVExLZsnatJOQ3B4+bPn0+XLl1YsGABdevWTfL6REQSylG/r6ojVkTsLjoFPUYgIpISKFdFRGwrJebqTz/9xLvvvsv8+fNp3LixvZsjImIlJeaqLagjVkRERERERCQZu337NsePH7esnzp1ipCQEDJmzEjOnDkJDAzkwoULzJ49GzBPR9ChQwfGjRtHpUqVCAsLA8Dd3R1PT0+7XIOIiKgjVlIog7ubvZsgNpSSJtYWeVk5lS1m7yaIDSlXRezPuVhBezdBbMjeubpz505q1aplWX80v2yHDh0IDg4mNDSUs2fPWvZPnTqVhw8f0r17d7p3727Z/qi8SEpUrcd79m6CJNLmX+PfZ+9ctRd1xIqI3RlNjjk3jIhIUlGuiojYlr1ztWbNmphMpnj3/7dzdf369UnbIBGR52TvXLUXx7xqERERERERERERkRdII2JFxO6iccxHEkREkopyVUTEtpSrIiK25ai5qhGxIiIiIiIiIiIiIklMI2JFxO4cdZJuEZGkolwVEbEt5aqIiG05aq6qI1ZE7M5RJ+kWEUkqylUREdtSroqI2Jaj5qpjXrWIiIiIiIiIiIjIC6QRsSJid0YHnaRbRCSpKFdFRGxLuSoiYluOmqsaESsidhdtMth8ERFxZMpUERHbUq6KiNhWcsjViRMnkjt3btzc3KhUqRLbt29P0HHz58/HYDDQokWLRNepjlgRERERERERERFxGD///DMBAQEMGDCA3bt3U6pUKerXr8+lS5eeeNzp06f57LPPqFat2jPVq45YEbE7o8nJ5ouIiCNTpoqI2JZyVUTEtuydq2PGjKFr16506tSJokWLMnnyZNKkScOMGTPiPSY6Opp27doxaNAg8ubN+0zXrb8AIiIiIiIiIiIikmJFRUVx8+ZNqyUqKirOsvfv32fXrl3UrVvXss3JyYm6deuydevWeOsYPHgw3t7edO7c+ZnbqY5YEbE7o8lg80VExJEpU0VEbEu5KiJiW7bO1aCgIDw9Pa2WoKCgOOu+cuUK0dHR+Pj4WG338fEhLCwszmM2bdrE9OnT+eGHH57rulM919EiIjbgqG9LFBFJKspVERHbUq6KiNiWrXM1MDCQgIAAq22urq42OfetW7d45513+OGHH8icOfNznUsjYkXEoU2aNImSJUvi4eGBh4cH/v7+rFixwrL/3r17dO/enUyZMpEuXTpatWpFeHi4HVssIiIiIiIiIo9zdXW1/K5/tMTXEZs5c2acnZ1j/bYPDw/H19c3VvkTJ05w+vRpmjZtSqpUqUiVKhWzZ89myZIlpEqVihMnTiS4neqIFRG7s+fUBDly5GDEiBHs2rWLnTt3Urt2bZo3b86BAwcA6NWrF3/88QcLFixgw4YNXLx4kddeey2pPgoREZvQI7QiIralXBURsS175qqLiwvlypVj3bp1Me0xGlm3bh3+/v6xyhcuXJj9+/cTEhJiWZo1a0atWrUICQnBz88vwXVragIRcWhNmza1Wh82bBiTJk3in3/+IUeOHEyfPp158+ZRu3ZtAGbOnEmRIkX4559/qFy5sj2aLCIiIiIiIiLPISAggA4dOlC+fHkqVqzI2LFjiYyMpFOnTgC0b9+e7NmzExQUhJubG8WLF7c63svLCyDW9qdRR6yI2J3RZPvB+VFRUbHekOjq6vrEOWKio6NZsGABkZGR+Pv7s2vXLh48eGD1JsXChQuTM2dOtm7dqo5YEUm2kiJXRUQcmXJVRMS27J2rbdq04fLly/Tv35+wsDBKly7NypUrLS/wOnv2LE5Otm+jOmJFxO6S4vGsoKAgBg0aZLVtwIABDBw4MFbZ/fv34+/vz71790iXLh2LFi2iaNGihISE4OLiYrnT9ciT3qQoIpIc6LFXERHbUq6KiNhWcsjVHj160KNHjzj3rV+//onHBgcHP1Od6ogVkZdSYt6YWKhQIUJCQrhx4wa//vorHTp0YMOGDS+imSIiIiIiIiLiINQRKyJ2Z8T2d8KeNg3B41xcXMifPz8A5cqVY8eOHYwbN442bdpw//59IiIirEbFxvcmRRGR5CIpclVExJEpV0VEbMtRc1UT3UiSO336NAaDgZCQEHs3RZIpW78t8XkfcTAajURFRVGuXDlSp05t9SbFI0eOcPbs2TjfpCjyoihX5WmSU6aKpATKVXka5apI4ihX5WkcNVc1IjYF6dixI7NmzSIoKIi+fftati9evJiWLVtiMpns2Lr4+fn5ERoaSubMme3dlBemcacaNOlYA++cmQA4e/gic79Zxs51/8Z7TLVm5Wgf2Bwfv0xcOHmJGYN/Y8da6/Lv9G1Gw3eqkdbDnYPbTzDh87lcPHkpSa/lZRcYGEjDhg3JmTMnt27dYt68eaxfv55Vq1bh6elJ586dCQgIIGPGjHh4ePDRRx/h7++vF3W9JJSrL0bxMrl4450qFCiSjUxZ0jPw0/ls3XA4zrIfBzahcavyTB69kkU//WO1r2LVArTrWoM8+X24f/8h+3efYdBn8wGo16Q0nw1sEec5W9f7mhvXIwFo+kYFmrWuiE9WLy6F32D+jL9Zu2zvE9tfukIeOnxQm9z5vbl39wFrl4Uw8/s/MUYbLWXy5PehR59GFCyanRvXI/n9l+0smL05oR+RyEtDufr8ipfLzesdq1GgaDYyeXsw6JM5bP3zkGW/m7sL7/aqj3/tInh4piHswnV+n7uV5Qu2W8qMmtGZkhXyWp132S/bmTDkd8t66Up5ad+jLrkL+HLv7n3WLtlD8Pg1lmzzyebFrFWfx2pfz3aTObzvXLz1AGzfeIT+3WcDULVOURq1rkiBotnx8ErDh69/x8kjoU/8DHLl8+ad7nUoUDQ7PtkzMHnkMhbP2WJVpnHrijRpUwnvbF4AnD1xibmT/2LnpqNPPLdISqNcTXlea1Cats0qkNErLcfPXObb6es4dDzud4zkyZGJLm9WpVBeH7J6ezJu5p/8smx3vOd+u0VFur1dnV+W7mJc8F9JdQmShNQRm8K4ubkxcuRI3n//fTJkyJDk9ZlMJqKjo0mV6tn/U3F2dna4x7ivXLzOjCELuXDyEgYD1G1ThQE/fkiPWkM4E8cXzyIV8tJ3ahdmDl3EtlX7qNWqIv1nf0iP2kM5c/giAG98VJ/mXWvzTY+ZhJ+5QvvA5gz75RPeqzqAB1EPX/Ql2pQ9715dunSJ9u3bExoaiqenJyVLlmTVqlXUq1cPgG+//RYnJydatWpFVFQU9evX5/vvv7dbe8X2lKtJz809NSePhbNqyR4GfPNmvOWq1CxM4eI5uHLpZqx9r9QuQs8vmzHz+3WE7DiFs7MTufN5W/ZvWPMvO7cetzrmswEtSO2aytIJ26RVeTp1r8u4YUs4cvAihYplp+eXTbl18y7b/o77h3veAj4MGdeO+TP+5usBi8jknZ6PA5vg5OTED+NWA5AmrSvDv3uHPdtPMj5oKbnz+xDQvzm3b91jxaJdif68bCEljQqQl49y9fm4ubtw6mgoqxftov+4drH2v9e7EaUr5uXrvgsIv3idslUK0OPLply7fJN/1sfc5Fr+6w5+/G6tZT3q3gPLv/MU9GXw9x2Y/8N6vv7iVzL7ePBRv+Y4ORmYNnqlVX19u0znzPGYG/83b9yx/Htwz3mkTu1sWffwSsP3v/bg79X7ra7nwJ4z/L3qX3oOapmgz8DVLTVh56/z9+p/eb934zjLXAm/yYyxq7hw5qr5+3azsgwY344eb0zkzAnbD1RQroo9KVdTjjpVCvFRh5p8PXUtB4+F0rpxWcZ89TpvfTyDiJt3YpV3dU3NxfAb/Ln1CB93rPXEcxfO50vzeqU4dvrlGIzlqLmqqQlSmLp16+Lr60tQUFC8ZTZt2kS1atVwd3fHz8+Pjz/+mMjISMv+qKgo+vTpg5+fH66uruTPn5/p06cD5rfCGQwGVqxYQbly5XB1dWXTpk1ERUXx8ccf4+3tjZubG6+88go7duywnPP69eu0a9eOLFmy4O7uToECBZg5cyYQ+5GEJ5V9WWxbtY8da//l4slLXDhxiVnDF3MvMorC5WOPGABo8X4ddv55gF+/W825Y2HMHrGE4/vO0qxLTBC3/KAuP41Zxj8r9nLq4AW+/nAmmXy9qNKozIu6rJfS9OnTOX36NFFRUVy6dIm1a9daOmHB/KVn4sSJXLt2jcjISBYuXOiQXyheZsrVpLdzy3FmTfqTLevjHgULkClLej78vBEj+/3Gw4dGq31Ozk588GlDfhi/mmW/7eTC2aucPXWZjWsPWMrcj3rI9au3LYsx2kipCnlY9XvMiII6jUqxfOFONqw5QNiF62xY/S8rFu2idYdX4m1XjXrFOXUsnLnTNnDx/DX27z7DtPFraPpGBdzTuABQu0EJUqd2Zszg3zlz8jIbVv/L7/O30aqdpjARx6RcfT47Nx1l1oS1bPnzYJz7i5bKydole9i38xThFyNY8esOTh4No1CJHFblou7et8rFO5FRln01GpTg9NEw5k3+i9Bz19i/8zTTx6yi6ZuVLdn2yM2Iu1bniX4so2/ftN5Xxj8/9+49YOPqmKe61i0NYd7kv9jzj/XNsic5euAC08asZMPK/Ty4H/eAg20bDrPj76NcPHuVC2euMmvCGu7duU/hkn4JrkckpVCuphxtmpbnj7X7Wf7Xv5w+f5Wvp64hKuoBTWoXj7P84RNhTPxxA+s2H+HBg+h4z+vulpoBnzRi5ORV3HoszyXlUUdsCuPs7Mzw4cOZMGEC58+fj7X/xIkTNGjQgFatWrFv3z5+/vlnNm3aRI8ePSxl2rdvz08//cT48eM5dOgQU6ZMIV26dFbn6du3LyNGjODQoUOULFmS3r1789tvvzFr1ix2795N/vz5qV+/PteuXQOgX79+HDx4kBUrVnDo0CEmTZoU7yMIiSn7MnByMlCjZQVc07hwaMfJOMsUKZ+PPRsOWW3b9dcBivy/49Y3V2Yy+nhalblz6y6Hd5+ylEnJktscseJYlKv2ZzAY6D34NX79cTNnTl6Otb9A4axk8fHAZDQxce77zFv5KUPHtSPXYyNi/6tu41JE3XvA3+tiOjJSuzhz/z8/6KOiHlKoWHacneP+SpTaxTlWJ8D9qIe4uqWmQJFsABQp6cf+PWd4+DDmy/Ourcfxy52ZdOndnv4BJAFlqtiTcjVpHdx7lso1C5PJ2wOAkhXykD1XZnZtse7orNW4ND9v/ILJCz+m0yev4uqW2rIvtUsq7kf9N9semLOtaHar7QMnvM389YGMntWVyjULP7Ft9V8rx4aV+4m6++CJ5WzNyclAjQYlcHV34dDes0lSh3JV7Em5mjKkSuVEobw+7Nh3xrLNZIKd+89SvFC25zr3p13qsnX3SXbuT5qMswdHzVVNTZACtWzZktKlSzNgwADLHaxHgoKCaNeuHT179gSgQIECjB8/nho1ajBp0iTOnj3LL7/8wpo1a6hbty4AefPG7sgbPHiwZVRgZGQkkyZNIjg4mIYNGwLwww8/sGbNGqZPn87nn3/O2bNnKVOmDOXLlwcgd+7c8bY/MWVTstxFsvPtij64uKXmbmQUQzpM4uzRuOfDyuDtQcRl60dxIy7dJIO3p2U/QMTlW7HL+HgkQetfrJQUmvJyUq7aV+sOVYmONrJ4/rY49/tmNz+C9/Z7NZn67SrCLkbw+ttV+HpKRzq/NoFbN+/GOqZ+87L8tXK/VUfDrq0naNCiLFvWH+b44VAKFMlGg+ZlSZ3aGU+vNFy7ejvWeXZuPUGLtypTs35xNq45QIZM6WjXpQYAGTObf7xkyJSOsIvXrY67fi3Ssu/2rXvP8Kk8H+Wq2JtyNelMGv4HHw9owdx1fXj4IBqjycS4gYv4d9dpS5m/lu/j0sXrXL18izwFfXm3V31y5M7MkF7zANi1+Rgt3q5CzYYl2bhqPxkyp6ftB+YnsTJmSQ/A3Tv3mfr1cg7sOYPJaKJqvWL0H9eOwZ/MtZoC4ZGCxXOQp4Av3/ZflPQfwv/lLuDDt3Pex8UlFXfv3GdIz7mcjeOGni0oV8XelKvJn1d6d1I5O3HtRqTV9msRkeTMnvGZz1unaiEK5vGmS985z9vEZMVRc1UdsSnUyJEjqV27Np999pnV9r1797Jv3z7mzp1r2WYymTAajZw6dYr9+/fj7OxMjRo1nnj+R+EI5rtrDx48oGrVqpZtqVOnpmLFihw6ZB6h2a1bN1q1asXu3bt59dVXadGiBVWqVInz3IkpC+ZHKKKirIfeG03ROBmc4zkieTh/PIwPaw0hrYc71ZqW49PvOtG72TfxdsaKiH05fK4aH+Lk9OK/FuQvnJUWb1am+9tT4i3jZDB/Sftpxt9s+v8La0YPWsyc5QFUq1uU5Qut52EtUiIHufJmYVT/hVbb507fQIbM6RgX3AUDBq5fu83aZSG07vAKxnhedLF72wmmjV/Dx4FN6D3oNR48eMjcaRspUTYXJmPyfDmGSHKhXE2aXG3W1p8iJf0Y0ONHLoVep3i5PHT/shnXLt9izz8nAFjxa8yjw6ePhXPt8i1GTu9M1hwZCT1/jd1bjzN9zEo+6tecz4e/zoP70cyb+hclyuXB+P9suxlxh4WPvXTw6IELZMriwesdq8XZEdvgtXKcOhrG0X9jj9ZLKudPXeHD178jbXo3qtUrzqdDX6d3px+SrDNWxN4cPlejH+Lk7FjdWN6Z0tOzU216DlnA/SdMXSAph6YmSKGqV69O/fr1CQwMtNp++/Zt3n//fUJCQizL3r17OXbsGPny5cPd3T1B50+bNm2i2tOwYUPOnDlDr169uHjxInXq1In1x+FZyoL57p6np6fVcvJuSKLaZw8PH0QTeuoyx/eeZebQRZw6cJ4W79eJs+z1SzfxymI9stXL24Prl25Y9gN4/X+EglWZ8NgvtUlpjBhsvogklsPnatimRLXPVkqUyYVXxrTMWdqL5f/0Z/k//fHN5kXXnq8ya0lPAK5dMT8N8PgP6wcPogm7cB1vX89Y52zQoizHj4Ry/LD1ja/7UQ8ZM/h3mlUdRvtmY3mnybeEX4wg8nYUN67HfnnCIwvnbuW1miN4u8m3vFF3FFs3mDsgQi+YR8Fev3qbDBmtH+3LkDGtZZ89KFMlOXD4XL28JVHtSwgX11R0/KQeU79ewbYNhzl1NJw/fvqHjSv30+oJ810f3n8OgGw5Y0ZkLZy9mVZVhvDOq1/Tuvowtv7/RlfY+WvxnufI/nNky5kp1nZX99TUaFCSlQt3PuulPZOHD6MJPXeN4wcvMnPcak4dDaXF2/F37DwP5aokB46eq+eP/Jmo9r1oEbfu8jDaSEZP688xo1darkVExnPUkxXK60NGr7TMGNWeDT8HsOHnAMoW8+P1RmXZ8HMATk4pN08cNVfVEZuCjRgxgj/++IOtW7datpUtW5aDBw+SP3/+WIuLiwslSpTAaDSyYcOGBNeTL18+XFxc2Lw55o74gwcP2LFjB0WLFrVsy5IlCx06dGDOnDmMHTuWqVOnxnvOxJQNDAzkxo0bVkte99IJbn9yYXAykNol7rt3h3aeoHR16zm3ytYoyqGd5jllw85c4Vr4DUpXL2LZnyadG4XL5rGUSck0R6wkFw6dq77x/4BPSmuX7+WDtybRrd1ky3Ll0k1+/XELX370IwDHDodyP+ohOXLH/Ph3dnbCJ6sX4aE3rM7n5u5C9brFWPX7nnjrjI42cuXSTYxGEzVeLc72TUcxxTMi9nHXrtziftRDatUvwaWwG5aO3kP7zlGiTC6reWbLVsrHudNX7DItATjunFuS/Dh0rmaxfYdgqlTOpE6dKtYofqPRiOEJP8bzFcoKxNzYety1y+Zsq9moJJdCIzh+6GK858lbKCvXLsc+R/VXi5PaxZk/l4Yk8EqShsEQ//ft56VcleTCkXM1R6HaCW6/PTx8aOTIyXDKl8hp2WYwQLkSOfn3SPzZ+iS79p/h7V7BdPxstmU5dDyM1X8fpONnsy1PMaREjpqrjjWm+yVTokQJ2rVrx/jx4y3b+vTpQ+XKlenRowddunQhbdq0HDx4kDVr1vDdd9+RO3duOnTowLvvvsv48eMpVaoUZ86c4dKlS7Ru3TrOetKmTUu3bt34/PPPyZgxIzlz5mTUqFHcuXOHzp07A9C/f3/KlStHsWLFiIqKYunSpRQpUiTO8yWmLICrqyuurq5W25L7tASdvmrJjnX/cvn8NdzTuVGrVUVKVi3Il2+MA+CziZ24GhrBzKHmObQWT1nH10s+57UP67F99X5qvlaBAqVzMS7gR8s5F01ey1sBjbh48hJhZ67QPrA5V8Mi2LI8/s4GEUkch87VJJyWwM3dhWx+MaOwfLN7kbegL7du3OVy+A1u3bCe4/XhQyPXr97m/JmrANyJjGLZbzt5571aXA67yaWwCF5/x/yY3N9rD1gdW+PVYjg7O7Fu+b5Y7cieMxOFimXn8L/nSe/hzmvt/Mmdz5tvBi62lKlSszDv9qhLl9e/s2x7/Z0q7NxyHJPJRNVaRWjd8RWG9V1g+eL758r9tOtak4D+zfll1iZy5/OmxVuVmDxm1fN9cCIvAeVq4rm5u1iNOvXNnoG8hbJy68YdLofdYN+Ok3QJaMD9ew8ID42gZPnc1GlahqlfLwcga46M1Gpciu1/H+FWxB3yFPTlvd6N2LfzFKeOhlvO+3rHV9i5+Zh5/te6xWjduTrDP5tvyba6zcrw8EE0xw+bOw+q1inGqy3LMXZg7Dlg67csz5Y/D8XKc4B0Hu54Z/Uik7f5ya4cuc0v57l+5ZblqYHPhr3O1Us3mTluNWDucM75/xcypkrtTGZvD/IWysrdO1GEnjOP2O30yavs2HSUy6ERuKd1pVajUpSskIcvPwh+ps9dJKVw6FxNAdMS/PzHTr7s0ZDDJ8I5eDyU1o3L4eaammV//QvAVx815MrV20ye9zdgfsFXnhzmzE+dypksGdNTIHcW7tx7wIWwCO7ce8Cpc1es6rgb9YCbt+7F2i4pQ/L/r1ieaPDgwfz888+W9ZIlS7Jhwwa+/PJLqlWrhslkIl++fLRp08ZSZtKkSXzxxRd8+OGHXL16lZw5c/LFF188sZ4RI0ZgNBp55513uHXrFuXLl2fVqlVkyGB+gYqLiwuBgYGcPn0ad3d3qlWrxvz58+M8V2LKplRemdPz+cROZPDx5M7Nu5w6eIEv3xjHng3mR768c2S0mlvw0I6TjHx/Gh2+aE7HL1tw8eQlBrf/njOHY+6aLZiwCre0rnw8+m3SeabhwLbjfNVmHA/+88bblCgl3b2Sl59y1fYKFs3G11M6WtY/CGgAwOo/Qhg9aHGCzvHDuNVERxvpPbglLq6pOXLgPH26zYo14rRBs7Js/usQkbdjj0R1cjLQ6m1/cuTKTPTDaPbuPE2vztMJD42wlEmbzg2/3NZv8K1QpQBvvVud1KmdOXksnIGf/sTOx95Oficyii96/EiPPo347sf3uRFxh7nTNrBikfXctS+SclWSE+Vq4hQslp1RM7tY1t/v3RiANb/vZvRXvxH0+c906vkqvUe0Jr2nO5dCI5g1YQ3LftkOmKduKV05Hy3eroKbe2ouh91g85oD/DR1vVU95V8pyJtda5LaJRUnj4Qy6OO57Nx01KrMW+/XwierF9HRRs6dukzQ5/PZtMb6BliO3JkpXi43ge/NiPN6/GsV5tOhr1vWv/jmTQDmfL+OOZPMjxl7Z/W0ejIhk3d6vv815m3vr3eqxuudqrFvx0l6v2t+SZFXxrR8Pux1MmRJz51b9zh1LIwvPwhmz9YTT/+Qn4FyVZIT5WrytW7LEbw80tDlzapk9ErDsdOX+XTYr1y/YZ4Gyyezh1VfQOYM6Qj+poNlvW3zCrRtXoHdB87x0YCfY53/ZeKouWowJeRZPJFkpkHm9+zdBEmklVfif+yk3vpeNq9vTc1vbX5OkZdZ/fID7d0ESaRVOwfGu8/WuapMFUm8BiW+tHcTJJFW7h8W7z7lqoj9VX39G3s3QRJp86/xzwPsqLmqEbEiYneOeidMRCSpKFdFRGxLuSoiYluOmqvqiBURu3PUABYRSSrKVRER21KuiojYlqPmqtPTi4iIiIiIiIiIiIjI89CIWBGxO5OD3gkTEUkqylUREdtSroqI2Jaj5qo6YkXE7ow4ZgCLiCQV5aqIiG0pV0VEbMtRc1VTE4iIiIiIiIiIiIgkMY2IFRG7c9RJukVEkopyVUTEtpSrIiK25ai5qhGxIiIiIiIiIiIiIklMI2JFxO4cdZJuEZGkolwVEbEt5aqIiG05aq6qI1ZE7M5RH0kQEUkqylUREdtSroqI2Jaj5qqmJhARERERERERERFJYuqIFRG7M5kMNl9ERByZMlVExLbsnasbN26kadOmZMuWDYPBwOLFi596zPr16ylbtiyurq7kz5+f4ODgxF+4iEgSsXeu2os6YkXE7owmg80XERFHpkwVEbEte+dqZGQkpUqVYuLEiQkqf+rUKRo3bkytWrUICQmhZ8+edOnShVWrViW6bhGRpGDvXLUXzRErIiIiIiIikow1bNiQhg0bJrj85MmTyZMnD6NHjwagSJEibNq0iW+//Zb69esnVTNFROQp1BErInZnMtm7BSIiLxflqoiIbdk6V6OiooiKirLa5urqiqurq03Ov3XrVurWrWu1rX79+vTs2dMm5xcReV6O+n1VUxOIiIiIiIiIvEBBQUF4enpaLUFBQTY7f1hYGD4+PlbbfHx8uHnzJnfv3rVZPSIikjgaESsidmck5cznIiKSEihXRURsy9a5GhgYSEBAgNU2W42GFRFJCRz1+6o6YkXE7lLSGw5FRFIC5aqIiG3ZOldtOQ1BXHx9fQkPD7faFh4ejoeHB+7u7klWr4hIQjnq91VNTSAiIiIiIiLyEvH392fdunVW29asWYO/v7+dWiQiIqARsSKSDBgd9E6YiEhSUa6KiNiWvXP19u3bHD9+3LJ+6tQpQkJCyJgxIzlz5iQwMJALFy4we/ZsAD744AO+++47evfuzbvvvsuff/7JL7/8wrJly+x1CSIiVuydq/aijlgRsTtHfVuiiEhSUa6KiNiWvXN1586d1KpVy7L+aH7ZDh06EBwcTGhoKGfPnrXsz5MnD8uWLaNXr16MGzeOHDlyMG3aNOrXr//C2y4iEhd756q9qCNWREREREREJBmrWbMmpif0WgQHB8d5zJ49e5KwVSIikljqiBURu3PUSbpFRJKKclVExLaUqyIituWouaqXdYmIiIiIiIiIiIgkMY2IlRQp+tp1ezdBbMhR74SJJCcrls6zdxMk0QbGu0e5KmJ/y9cssHcTJNGGxbtHuSpif2kWbrN3E8SGHDVX1RErInbnqG9LFBFJKspVERHbUq6KiNiWo+aqpiYQERERERERERERSWLqiBURuzOZbL+IiDgye2fqhQsXePvtt8mUKRPu7u6UKFGCnTt3PtY+E/379ydr1qy4u7tTt25djh07ZnWOa9eu0a5dOzw8PPDy8qJz587cvn3bqsy+ffuoVq0abm5u+Pn5MWrUqFhtWbBgAYULF8bNzY0SJUqwfPnyxF+QiDg8e+eqiMjLxlFzVR2xImJ3JpPB5ouIiCOzZ6Zev36dqlWrkjp1alasWMHBgwcZPXo0GTJksJQZNWoU48ePZ/LkyWzbto20adNSv3597t27ZynTrl07Dhw4wJo1a1i6dCkbN27kvffes+y/efMmr776Krly5WLXrl18/fXXDBw4kKlTp1rKbNmyhbfeeovOnTuzZ88eWrRoQYsWLfj333+f49MVEUek76oiIrblqLmqOWJFRERExGZGjhyJn58fM2fOtGzLkyeP5d8mk4mxY8fy1Vdf0bx5cwBmz56Nj48Pixcv5s033+TQoUOsXLmSHTt2UL58eQAmTJhAo0aN+Oabb8iWLRtz587l/v37zJgxAxcXF4oVK0ZISAhjxoyxdNiOGzeOBg0a8PnnnwMwZMgQ1qxZw3fffcfkyZNf1EciIiIiIgJoRKyIJAMaESsiYlu2ztSoqChu3rxptURFRcVZ95IlSyhfvjxvvPEG3t7elClThh9++MGy/9SpU4SFhVG3bl3LNk9PTypVqsTWrVsB2Lp1K15eXpZOWIC6devi5OTEtm3bLGWqV6+Oi4uLpUz9+vU5cuQI169ft5R5vJ5HZR7VIyKSUPquKiJiW46aq+qIFREREZEnCgoKwtPT02oJCgqKs+zJkyeZNGkSBQoUYNWqVXTr1o2PP/6YWbNmARAWFgaAj4+P1XE+Pj6WfWFhYXh7e1vtT5UqFRkzZrQqE9c5Hq8jvjKP9ouIiIiIvEiamkBE7C4FzastIpIi2DpXAwMDCQgIsNrm6uoaZ1mj0Uj58uUZPnw4AGXKlOHff/9l8uTJdOjQwcYtExF5MfR9VUTEthw1VzUiVkTszp5TEwQFBVGhQgXSp0+Pt7c3LVq04MiRI1ZlatasicFgsFo++OADW38MIiI2Y+tMdXV1xcPDw2qJryM2a9asFC1a1GpbkSJFOHv2LAC+vr4AhIeHW5UJDw+37PP19eXSpUtW+x8+fMi1a9esysR1jsfriK/Mo/0iIgnlqI/QiogkFUfNVXXEiohD27BhA927d+eff/5hzZo1PHjwgFdffZXIyEircl27diU0NNSyjBo1yk4tFhFJ3qpWrRrrhtbRo0fJlSsXYH5xl6+vL+vWrbPsv3nzJtu2bcPf3x8Af39/IiIi2LVrl6XMn3/+idFopFKlSpYyGzdu5MGDB5Yya9asoVChQmTIkMFS5vF6HpV5VI+IiIiIyIukqQlExP7s+EzCypUrrdaDg4Px9vZm165dVK9e3bI9TZo0GkElIimHHXO1V69eVKlSheHDh9O6dWu2b9/O1KlTmTp1KgAGg4GePXsydOhQChQoQJ48eejXrx/ZsmWjRYsWgHkEbYMGDejatSuTJ0/mwYMH9OjRgzfffJNs2bIB0LZtWwYNGkTnzp3p06cP//77L+PGjePbb7+1tOWTTz6hRo0ajB49msaNGzN//nx27txpaYuISII56jO0IiJJxUFzVSNiRcTukmJqgsS84ftxN27cACBjxoxW2+fOnUvmzJkpXrw4gYGB3LlzJ0k+CxERW7Dno14VKlRg0aJF/PTTTxQvXpwhQ4YwduxY2rVrZynTu3dvPvroI9577z0qVKjA7du3WblyJW5ubpYyc+fOpXDhwtSpU4dGjRrxyiuvWHWgenp6snr1ak6dOkW5cuX49NNP6d+/P++9956lTJUqVZg3bx5Tp06lVKlS/PrrryxevJjixYs/x6crIo7IUR+hFRFJKo6aqwaTyeSgfdCSktVzesPeTZBEWmNcEO++AguG2ry+dgceMmjQIKttAwYMYODAgfEeYzQaadasGREREWzatMmyferUqeTKlYts2bKxb98++vTpQ8WKFVm4cKHN2y1iL8awgvZugiSSk+/RePfZOlePvfGVTc8n4giUqymPclUkeVM/QMrzIvsBUkquamoCEbG7pLgdlJg3fD/SvXt3/v33X6tOWMBqdFWJEiXImjUrderU4cSJE+TLl892jRYRsRHdZhcRsS3lqoiIbTlqrqojVkReSq6urk/teH1cjx49WLp0KRs3biRHjhxPLPvoRTHHjx9XR6yIiIiIiIiIJIg6YkXE7uw5n4vJZOKjjz5i0aJFrF+/njx58jz1mJCQEACyZs2axK0TEXk2KWmeLBGRlEC5KiJiW46aq+qIFRH7s2MAd+/enXnz5vH777+TPn16wsLCAPNLYNzd3Tlx4gTz5s2jUaNGZMqUiX379tGrVy+qV69OyZIl7dZuEZEnctAvtiIiSUa5KiJiWw6aq+qIFRGHNmnSJABq1qxptX3mzJl07NgRFxcX1q5dy9ixY4mMjMTPz49WrVrx1VcpYyJwEREREREREUke1BErInZnz0m6TU+p3M/Pjw0bNryg1oiI2IajvvxARCSpKFdFRGzLUXNVHbEiYn8OGsAiIklGuSoiYlvKVRER23LQXHWydwNEREREREREREREXnYaESsidueob0sUEUkqylUREdtSroqI2Jaj5qpGxL5kLl++TLdu3ciZMyeurq74+vpSv359Nm/eDIDBYGDx4sX2baSDKFGtCIN/78P881NYY1xAleYVnnpMyRpF+X7nSJbdnUfw0Qm82qFmrDLNPqzPjycnsuzOXMZvHU6hCvmToPUiAsrUZ7VjL3TrC9VfgyI1DKz923p/YJB5++NL18+tyxw4Cu8GQMXGULkp9P8aIu9Yl/nvOYrUMLBsXcz+7XviLnP5asLb+jS790Px2tCyc+x94Zeh91Bz+0vXg2Yd4d/DiTu/yMtGuWpt6hx44z0o1wCqNoceX8Kps9ZlBnwDr75lzpEqzaD7F3DyjHWZ/YegUy9zZlZqDF0+g8PHY/ZfCI07D0MOWJ9n1gJo+La5rlqvQ9B3EBWVuPb+sgTafwLlG5rrvHkr9nUnJOP/KyF/O06dM38+/s3M9bfrAdt2P/m8IimdcjX5Sexv9uqvV2b6wbEsuzOXqXtHU7FhGav9r7SsyIiVX/Hb5RmsMS4gX6ncSdh6SWoaEfuSadWqFffv32fWrFnkzZuX8PBw1q1bx9WrV59+8P/dv38fFxeXJGylY3BL68rJfWdYNfMvBi78/KnlfXN7M3RpIMumrGHE2+MpU6cEAT98wLXQ6+xcvReAGq2r8P7oDozvNpVD247zWs/GBK38kncLf0LE5ZtJfUlJx0HnhpHkT5n6bO7ehUL54bVG8HG/uMtUq2hiWN+Y9cc/oktXoHMANKgF/XrC7UhzZ8AXI2DcYOvzDO9r4pWKMese6WLXtXyOiXRpYtYzZUhcW+Nz8xb0HQ6Vy8LV69b7btyCtj2gUmmYOgoyesGZ8+CRPnF1PDPlqiRTylVrO/ZC25ZQvDBER8O3P0Dnz2DpLEjjbi5TrCA0qQfZvCHiFkycae5oXTMfnJ3NHZhde0PtKtC/FzyMhu9mQtfP4c8FkPqxX3wzxpjInztm3csz5t9L18CYqTCsN5QpDqfPmzs/DUDfHglv790oqFbRvIyZGvuaE5Px//Wkvx1gvrGWKwcEfwuurjB7AXQLhFXzIEumJ5/7qZSrkkwpV5OXxP5mL+pfkC/m9WT6F/PYtnQXtdq+wsBFvfmwXG9OHzgHgFtaN/7dfJgNC7YQ8EO3F31JScdBc1UjYl8iERER/P3334wcOZJatWqRK1cuKlasSGBgIM2aNSN37twAtGzZEoPBYFkfOHAgpUuXZtq0aeTJkwc3NzcAzp49S/PmzUmXLh0eHh60bt2a8PBwS32PjpsxYwY5c+YkXbp0fPjhh0RHRzNq1Ch8fX3x9vZm2LBhVu0cM2YMJUqUIG3atPj5+fHhhx9y+/btF/IZvUg7VoYQ3G8+mxdvT1D5Jh/UI+zUJaZ8Npuzhy/w+8SVbPz1H17r2cRSplWvJqyYto5Vwes5e+g84z6YStSd+9R/t3ZSXcYLYTIZbL6IPC9l6rOrXhl6doF61eMv4+Ji/lH8aPF8rINy/RZIlcrcoZAnJ5QoAgMDYPUGA2fOW58nfTrr87i6xq4rk5d1GafHvv0kpK3xGTgGGteF0sVi75s2D7JmgeGBULII5MgKVStAzuyJr+dZKFMlOVKuxvbD19CyIRTIA4XzQ1AghIYbOHA0pkzrZlChFGTPau6U/aQLhF4ycCHMvP/UWbhx08BHnc2ZWSAPdO8AV64ZuBhmXZ+Xh3UePt5Ju+cAlC1u7vTN/v/MalwH9j82kj8h7e3wBnRtB6WKxn3Nicn4/3rS347rEXDmvIGubaFQPsidAz59H+7eM3Ds1JPPmxDKVUmOlKvJT2J/s7f8uDE7Voaw4JslnD18gVn9f+b47pM079HAUmbtnI3MGfIru9fuf1GX8UI4aq6qI/Ylki5dOtKlS8fixYuJevwZov/bsWMHADNnziQ0NNSyDnD8+HF+++03Fi5cSEhICEajkebNm3Pt2jU2bNjAmjVrOHnyJG3atLE654kTJ1ixYgUrV67kp59+Yvr06TRu3Jjz58+zYcMGRo4cyVdffcW2bdssxzg5OTF+/HgOHDjArFmz+PPPP+ndu3cSfSopR5HKBdmzzjpYd60Ooah/QQBSpU5FwXJ52b12n2W/yWRi99p9FK1c8IW2VcQRKFOT1vYQ82OtDd+GgaPh+o2YffcfmDsHHu8wfdTBuvs/3z+HjDU/gtr6ffhtGZjiuLPesgtUa2l+DPa/xz+rhcvh/EVzZ0dc/toMxQpDz/7m63ytM/zyh23qFkmplKtPd+v//RKe8Yyev3MXFq6AHFlN+Hqbt+XJCV6eJn5bZs7Pe1Hw63LIl8tEdl/r47t/Yc6kdj3gz83W+8oUM08ZsO+Qef3cRdj4D1Sv9OztjUtiMv6/nvS3w8sT8uQ08fsq8+f08CH8vAQyZTBRrFDC2yeSkihXk5dn+c1e1L8gu9fts9q2c/Veiug3/ktLUxO8RFKlSkVwcDBdu3Zl8uTJlC1blho1avDmm29SsmRJsmTJAoCXlxe+vtbfyu7fv8/s2bMtZdasWcP+/fs5deoUfn5+AMyePZtixYqxY8cOKlQwz3dqNBqZMWMG6dOnp2jRotSqVYsjR46wfPlynJycKFSoECNHjuSvv/6iUiXzt7iePXta6s2dOzdDhw7lgw8+4Pvvv4/zuqKiomL9UTGaonEyOD//h5aMZPT14np4hNW26+E3SOuZBhc3F9JnSItzKmeuh9+wLnPpBn6FX9AQq6TioI8kSPL2smYqxJ2rqaOMuLq+mPuzr1Q0j0DN4QtnL8LYH+D93vDT9+bHbCuVhZETYfpP8M7rcPdezOOtj8/v+tG7JiqXBTdX2LwTBo81//h+53Xz/iyZYOCnJooXMv/w/3UpdPgE5k82jyp7VqfPm9vz4wTzqK64nAuF+b9DxzfgvbfNc8MOHw8uqaFFg7iPsSnlqiRDytUnMxrNj+iXLWGiYF7rffMWwegpcOeugTw5TUwfbc4TgLRpYNZY+OgrmDTbvC1XDvPo1UcZlcYd+nxookwJcDLA6o3m+V2/Gwa1q5rLNKln7th8u4f5ptbDaANtmpl4/53Et/dJEprx//W0vx0GA8wYDT2+Ms8P6+RknhZm6qjEdRTHS7kqyZCj5Wpy7wfwzJw+0b/ZM/h6EfHf8uERZPT1SqpmJh8OmqsaEfuSadWqFRcvXmTJkiU0aNCA9evXU7ZsWYKDg594XK5cuSwBDHDo0CH8/PwsAQxQtGhRvLy8OHTokGVb7ty5SZ8+5puNj48PRYsWxemxW9w+Pj5cunTJsr527Vrq1KlD9uzZSZ8+Pe+88w5Xr17lzp24Z+gPCgrC09PTajmF3nbycjEkwSLy/F7GTIW4c3XEhOvxlre1xnXMP/wL5oO61WDSCNh/2MD2EPP+AnnMj7sG/wJl65tHs+bICpkzmjA89s3lww5QtgQULQhd20LnN2HG/Jj9eXJCm2ZQrJB5vsNhfaF0cZj1y7O3PToaPh8MPTpBHr/4y5mMULQA9HrP3L7WzeCNJubO2RdDmSrJk3I1foO/hWOnYHT/2Pua1oPfpsHs8SZy54BeA2NeonUvCvqNMufc/O9h7nfmHP2gr3kfQAYv6NjGPF1AiSLmR/ab1oMZP8XUsX0PTJ0L/XrBbz/A+CEmNv4D389KfHufJKEZ/19P+9thMpmfksjoBXMmwM+Toc4r8OEXcCnhU2U+gXJVkidHylX1A7xsHDNX1RH7EnJzc6NevXr069ePLVu20LFjRwYMGPDEY9KmTftMdaVOndpq3WAwxLnNaDQCcPr0aZo0aULJkiX57bff2LVrFxMnTgTMd+TiEhgYyI0bN6yWPBR+pvYmZ9fCIsjg42W1LYOPJ5E37nD/3n1uXLlF9MNoMvh4Wpfx9uR6WMSLa6iIg3nZMhXiztW+H2WIt3xS88sGGTxNnL0Qs61JPfh7Eaz/FbYuge4d4VoE+GWN/zwli0LYZQNPuHRKFsGqnsSKvAP/HjEwdBwUr21evp8Fh48bKF4b/vn/27kzZ4J8ua2PzZsLQi/FOqWIw1GuxjZkLGzYah7Z+mjKgcelT2ee87RCKRg72Dwv7Nq/zfuWroULYTC8r7mTtXQx+LofXAiFdZvir7NkUTjzWB6Onw7NXjXfNCqYzzz6tGdX+GGuefRrYtr7NM+S8f/1378d/+yG9VthzADzTbpiBWFAALi6wO8rE99GkZTEUXI1ufcDPMtv9uthEXj9t7yPF9f0G/+lpY5YB1C0aFEiIyMBc2hGR0c/9ZgiRYpw7tw5zp07Z9l28OBBIiIiKFo0npn3E2DXrl0YjUZGjx5N5cqVKViwIBcvXnziMa6urnh4eFgtyflxhGd16J+jlKldwmpb2bqlOLjV/PaDhw8ecnTXScrUiSljMBgoU6cEB/85SopmSoJFJImk9EyFuHP1RU1LEJewSxBxM+43WmfOaH7sdsWf5h/TVcrHf57Dx8EzvSnWW7Qfd+jY8705O11a+H2miYXTsCxtmpnnJVw4zdzRC+YX3pw+a33s6fOQzefZ604UZaqkII6cq49Gca79G2aONY8MffpB5uPuPzCv3rtnfizf8NhgIKf/r5uMcZ8C4PB/8vBulPU5AJydYtr5zO19gsRk/H/992/HvXvm//vfa3Byit2R/EyUq5KCvKy5mtz7AZ7lN/vBrXH1A5TkUEr/jZ8QySBXJ06cSO7cuXFzc6NSpUps3x7/y9YXLlxI+fLl8fLyIm3atJQuXZoff/wx0XWqI/YlcvXqVWrXrs2cOXPYt28fp06dYsGCBYwaNYrmzZsD5scI1q1bR1hYGNevx/+4VN26dSlRogTt2rVj9+7dbN++nfbt21OjRg3Kl0/EN6T/yJ8/Pw8ePGDChAmcPHmSH3/8kcmTJz/z+ZIzt7Ru5CuVm3ylcgPgm8ebfKVyk8UvMwDvDm9L7+AelvJLJ6/BN683XUa+jV+hbDTt9io1WvuzcOxSS5nfvl1Koy51qNe+BjkLZ+fjSV1xS+vKqpl/vdBrE3EEytRnF3nH3OF56Jh5/Xyo+d8Xw837vp4EIQfMo7W27oLuX0LO7PBKhZhzzF1ofmnMqXMwdxEMHQe9uoLH/5+E+2szLFgKR0/CmfPw02KYOgfavRZzjlkLzKPBzpw3lxs+AbbtgbYtE9bWR8ZMhT7/f/mvkxMUzGu9ZMpg7kAomNc8DyOY3xq+9yBM+dFc/9I1sOAP67pFHI1yNbbB38Ifa8wjWNO6m+dIvXw1ZkqBcxfN2XbgiDmX9vwLPQeYX25VvbK5TJXycPO2+VwnTpunC/hihHne1IplzWUWr4Rla+HkGfMy5UfzS7/efiwza1UxT5+ybJ05CzfvgPEzoGYV87kS0l4wrx86FjPa9uhJ83rEzZgyT8t4gEbvwJqN5n8n5G9H6WLm4wODzDfmTp0zH3MhFGr42+T/XSLJjnI1+Xnab/bewT14d3hbS/lF45dRoUFpXg9ogl+hbLwz4A0Kls/H79/FDOVPnyEd+UrlJlfRHADkKJSNfKVyx3qiVhLn559/JiAggAEDBrB7925KlSpF/fr1rabVeFzGjBn58ssv2bp1K/v27aNTp0506tSJVatWJapevazrJZIuXToqVarEt99+y4kTJ3jw4AF+fn507dqVL774AoDRo0cTEBDADz/8QPbs2Tl9+nSc5zIYDPz+++989NFHVK9eHScnJxo0aMCECROeq42lSpVizJgxjBw5ksDAQKpXr05QUBDt27d/rvMmRwXL52X0X4Ms693GdARgdfB6vn53Ipl8M+CdM7Nlf9jpS3zVJIhuYzrS8uNGXDl/lTFdJ7Nz9V5LmQ2/bMEriwcdBrUhg68XJ0JO80XDYURcsp7cO8XRqABJhpSpz+7AEejQM2ZI0siJ5n+3aGBiQAAcOWHuFLh1G7Jkhqrl4ePOWI1k3XcIJsw0v3wrb04Y+Ck0rx+zP1Uq+GkRjPjOvJ4zO/Tpbn6k9pEHD2DU9xB+GdzcoFBe84tcKpVNWFuDAs3bLl9N/JQCJYrA+KHw7VT4frb55TJ9e5jnZHwhlKuSDClXY5v/uzlzOnxivX14XxMtG5pv8uzcB7N/hZu3zDd+ypeCnyaa/w3maU++H26eJuWt7ubRsEUKmF9S5f3YiNdJs82duc7O5lwdMwDq14zZ/8E75tGk46ebczOjl7kTtmeXhLcX4OclMDE4Jlff+dgQq8zTMh7g1FkDtyPNYebs/PS/HRm84IdRMHYadOwFDx9C/tzmF5IVzv+U/0ckhHJVkiHlavLztN/s3jkzYzLGBMrBrUcJajeOjkPeotOwtlw4FsrAlqM4fSBmZLJ/s/J8PrO7Zf2r+b0AmD3oF34ctOAFXVkSsHOujhkzhq5du9KpUycAJk+ezLJly5gxYwZ9+/aNVb5mzZpW65988gmzZs1i06ZN1K9fP1b5+BhMJpP+pEiKU8/pDXs3QRJpjTH+PxC5Z46yeX2nO/W2+TlFXmbGsIL2boIkkpNv/I+s2TpXlakiiadcTXmUqyLJm/oBUp4X2Q9wpO0nREVFWW1zdXXF1dU1Vtn79++TJk0afv31V1q0aGHZ3qFDByIiIvj99ye/YddkMvHnn3/SrFkzFi9eTL16CR9toakJREREREREREREJMUKCgrC09PTagkKCoqz7JUrV4iOjsbHx/oFDj4+PoSFhcVbx40bN0iXLh0uLi40btyYCRMmJKoTFjQ1gYgkAxqXLyJiW8pVERHbUq6KiNiWrXM1MDCQgIAAq21xjYZ9HunTpyckJITbt2+zbt06AgICyJs3b6xpC55EHbEiYn/6YisiYlvKVRER21KuiojYlo1zNb5pCOKSOXNmnJ2dCQ8Pt9oeHh6Or69vvMc5OTmRP7954vHSpUtz6NAhgoKCEtURq6kJRERERERERERExCG4uLhQrlw51q1bZ9lmNBpZt24d/v7+CT6P0WiMNS/t02hErIjYn8nw9DIiIpJwylUREdtSroqI2JadczUgIIAOHTpQvnx5KlasyNixY4mMjKRTp04AtG/fnuzZs1vmmQ0KCqJ8+fLky5ePqKgoli9fzo8//sikSZMSVe8zjYidNWsWy5Yts6z37t0bLy8vqlSpwpkzZ57llCIiDk25KiJiW8pVERHbUq6KyMukTZs2fPPNN/Tv35/SpUsTEhLCypUrLS/wOnv2LKGhoZbykZGRfPjhhxQrVoyqVavy22+/MWfOHLp06ZKoep+pI3b48OG4u7sDsHXrViZOnMioUaPInDkzvXr1epZTiogDM5hsv6Q0ylURsSVHz1RQroqIbSlXlasiYlvJIVd79OjBmTNniIqKYtu2bVSqVMmyb/369QQHB1vWhw4dyrFjx7h79y7Xrl1jy5YttGnTJtF1PtPUBOfOnbNMTrt48WJatWrFe++9R9WqVRM1Qa2ICKCXH6BcFREbU64qV0XEtpSrylURsS0HzdVnGhGbLl06rl69CsDq1aupV68eAG5ubty9e9d2rRMRcRDKVRER21KuisjLZuLEieTOnRs3NzcqVarE9u3bn1h+7NixFCpUCHd3d/z8/OjVqxf37t175vqVqyIiz++ZRsTWq1ePLl26UKZMGY4ePUqjRo0AOHDgALlz57Zl+0TEEejlB8pVEbEt5apyVURsy865+vPPPxMQEMDkyZOpVKkSY8eOpX79+hw5cgRvb+9Y5efNm0ffvn2ZMWMGVapU4ejRo3Ts2BGDwcCYMWOeqQ3KVRGxKQf9vvpMI2InTpyIv78/ly9f5rfffiNTpkwA7Nq1i7feesumDRQRB2BKgiWFUa6KiE05eKaCclVEbMzGuRoVFcXNmzetlqioqHirHzNmDF27dqVTp04ULVqUyZMnkyZNGmbMmBFn+S1btlC1alXatm1L7ty5efXVV3nrrbeeOor2SZSrImJTDvp99ZlGxHp5efHdd9/F2j5o0KDnbpCIiCNSroqI2JZyVUSSs6CgoFh5NGDAAAYOHBir7P3799m1axeBgYGWbU5OTtStW5etW7fGef4qVaowZ84ctm/fTsWKFTl58iTLly/nnXfeeeY2K1dFRJ7fM42IBfj77795++23qVKlChcuXADgxx9/ZNOmTTZrnIg4CI2IBZSrImJDylRAuSoiNmTjXA0MDOTGjRtWy+MdrY+7cuUK0dHR+Pj4WG338fEhLCwszmPatm3L4MGDeeWVV0idOjX58uWjZs2afPHFF8/1MShXRcRmHPT76jN1xP7222/Ur18fd3d3du/ebXmE4saNGwwfPtymDRQRcQTKVRER21Kuikhy5urqioeHh9Xi6upqs/OvX7+e4cOH8/33/2PvvsOiuBYogJ9deu8siChgBQsqKKKxo2iMsRBbjNiNBaNiJbFrRI2xBuXFRNFEY4mxJCgWFHtFsYEdRKUqTUDq8v4grm4AFRxcYM/v++Z77sydO3dW38nsnTt31uHKlSv466+/EBgYiIULF5a5TuYqEdGHK1NH7KJFi+Dv748NGzZATU1Ntr5169a4cuWKYI0jIiXBEbHMVSISlpJnKsBcJSKBKTBXTU1NoaKigvj4eLn18fHxsLCwKHaf2bNnY/DgwRg5ciQaNWqE3r17Y/HixfD19YVUKi1dA/7FXCUiQSnp9WqZOmLv3LmDtm3bFllvYGCAlJSUD20TESmbApHwSyXDXCUiQSl5pgLMVSISmAJzVV1dHU5OTggODpatk0qlCA4Ohqura7H7ZGZmQiyW/7mvoqJSeCoFZeuxYK4SkaCU9Hq1TB2xFhYWuH//fpH1p0+fhp2d3Qc3iohI2TBXiYiExVwloqrE29sbGzZswObNmxEREYGxY8ciIyMDw4YNAwB4enrKzTHbo0cPrF+/Htu3b0dkZCSOHDmC2bNno0ePHrIO2dJirhIRfTjVsuw0atQoTJw4ERs3boRIJEJMTAzOnTuHqVOnYvbs2UK3kYiqOFEleoygvDBXiUhIzFXmKhEJS9G52r9/fyQmJmLOnDmIi4tDkyZNEBQUJHuBV3R0tNwI2FmzZkEkEmHWrFl4+vQpzMzM0KNHD3z//fdlbgNzlYiEpOhcVZQydcTOnDkTUqkUnTp1QmZmJtq2bQsNDQ1MnToVEyZMELqNRFTVKWkAv4m5SkSCYq4yV4lIWBUgV728vODl5VXstpCQELnPqqqqmDt3LubOnSvY8ZmrRCSoCpCrilCmjliRSITvvvsO06ZNw/3795Geng4HBwfo6uoK3T4iIqXAXCUiEhZzlYhIWMxVIqIPV6aO2FfU1dXh4OAgVFuIiJQec5WISFjMVSIiYTFXiYjKrkwdsRkZGViyZAmCg4ORkJAAqVQqt/3hw4eCNI6ISFkwV4mIhMVcJSISFnOViOjDlakjduTIkThx4gQGDx4MS0tLiEQiodtFREpEWSfpfhNzlYiExFxlrhKRsJirzFUiEpay5mqZOmIPHjyIwMBAtG7dWuj2EL2XnO4tFN0EElIBL+KYq6RozvPGKroJVEpX/N+ykbnKXCWF6962t6KbQKV08O5bNjJXmaukcGINTUU3gYSkpLkqLstORkZGMDY2FrotRERKi7lKRCQs5ioRkbCYq0REH65MHbELFy7EnDlzkJmZKXR7iEgZFZTDUskwV4lIUEqeqQBzlYgExlxlrhKRsJQ0V997aoKmTZvKzQFz//59SCQS2NjYQE1NTa7slStXhGshEVV9lSg0hcRcJaJyw1wFwFwlIgExVwEwV4lIQEqaq+/dEdurV69ybAYRkWL4+vrir7/+wu3bt6GlpYVWrVph6dKlqFevnqxMVlYWpkyZgu3btyM7Oxvu7u5Yt24dJBLJBx2buUpEJCzmKhGRsJirRETCeu+O2Llz55ZnO4hIiSnybYknTpzA+PHj0bx5c+Tl5eHbb79Fly5dEB4eDh0dHQDA5MmTERgYiF27dsHAwABeXl7o06cPzpw580HHZq4SUXlR1rfQMleJqLwwV4mIhKWsufreHbFvunTpEqRSKVxcXOTWX7hwASoqKnB2dhakcURE5S0oKEjuc0BAAMzNzREaGoq2bdsiNTUVv/76K7Zt24aOHTsCADZt2gR7e3ucP38eLVu2FKQdzFUiImExV4mIhMVcJSL6cGV6Wdf48ePx+PHjIuufPn2K8ePHf3CjiEjJlMPLurKzs5GWlia3ZGdnv7MpqampACB7I2xoaChyc3Ph5uYmK1O/fn3UqFED586d+/Bz/xdzlYgEpaQvP3gTc5WIBMVcZa4SkbCUNFfL1BEbHh6OZs2aFVnftGlThIeHf3CjiEjJlENHrK+vLwwMDOQWX1/ftzZDKpVi0qRJaN26NRo2bAgAiIuLg7q6OgwNDeXKSiQSxMXFCXH2AJirRCQwJb2wfRNzlYgExVxlrhKRsJQ0V8vUEauhoYH4+Pgi62NjY6GqWqbZDoiIBOXj44PU1FS5xcfH5637jB8/Hjdv3sT27ds/UitfY64SEQmLuUpEJCzmKhHRhytTR2yXLl1knRyvpKSk4Ntvv0Xnzp0FaxwRKQdRgfCLhoYG9PX15RYNDY0S2+Dl5YV//vkHx48fR/Xq1WXrLSwskJOTg5SUFLny8fHxsLCwEOw7YK4SkZCEztTKiLlKREJirjJXiUhYypqrZbpttXz5crRt2xY1a9ZE06ZNAQBhYWGQSCT47bffBG0gESmBApHiDl1QgAkTJmDPnj0ICQmBra2t3HYnJyeoqakhODgYHh4eAIA7d+4gOjoarq6ugrWDuUpEglJgrlYUzFUiEhRzlblKRMJS0lwtU0eslZUVrl+/jq1bt+LatWvQ0tLCsGHDMHDgQKipqQndRiKicjN+/Hhs27YN+/btg56enmzeVwMDA2hpacHAwAAjRoyAt7c3jI2Noa+vjwkTJsDV1RUtW7YUrB3MVSIiYTFXiYiExVwlIvpwZZ7IRUdHB6NHjxayLUSkrBT4GMH69esBAO3bt5dbv2nTJgwdOhQAsHLlSojFYnh4eCA7Oxvu7u5Yt26d4G1hrhKRYCrR41nliblKRIJhrgJgrhKRgJQ0V9+7I3b//v3o1q0b1NTUsH///reW/fzzzz+4YUREH0NBwbvTX1NTE35+fvDz8xP02MxVIiJhMVeJiITFXCUiEtZ7d8T26tULcXFxMDc3R69evUosJxKJkJ+fL0TbiEhJVKaJtYXEXCWi8sJcZa4SkbCYq8xVIhKWsubqe3fESqXSYv9MRPTBlDSAmatEVG6Yq8xVIhIWc5W5SkTCUtJcLfMcscHBwQgODkZCQoJcIItEIvz666+CNI6ISJkwV4mIhMVcJSISFnOViOjDlKkjdv78+ViwYAGcnZ1haWkJkUgkdLuISIko6yMJb2KuEpGQmKvMVSISFnOVuUpEwlLWXC1TR6y/vz8CAgIwePBgodtDRKSUmKtERMJirhIRCYu5SkT04crUEZuTk4NWrVoJ3RYiUlZKeifsTcxVIhIUc5W5SkTCYq4yV4lIWEqaq+Ky7DRy5Ehs27ZN6LYQkbIqKIelkmGuEpGglDxTAeYqEQmMucpcJSJhKWmulmlEbFZWFn7++WccPXoUjRs3hpqamtz2FStWCNI4IiJlwVwlIhIWc5WISFjMVSKiD1emEbHXr19HkyZNIBaLcfPmTVy9elW2hIWFCdxEKk5AQAAMDQ1L3B4VFQWRSPTR/j5CQkIgEomQkpLyUY5HVYuoQPilsmGuKh5zlaoSZc9UgLlaETBXqSphrjJXKwLmKlUlypqrZRoRe/z4caHb8dEkJiZizpw5CAwMRHx8PIyMjODo6Ig5c+agdevWAACRSIQ9e/agV69eim0sVRqNG1THwD7NUbeWBUxNdPHd93tw+vx9uTLDB7XGZ10aQ1dHAzciYrBi3WE8jU15a729Pm2KAX2aw9hIBw8iE7D6f8G4fS9Otl1dTQXjRnRAxzb1oaamgktXo7By/REkp2SWx2lSOWKuUlX2RdvG6Nu2MSxN9AEAD2Of4+fACzh7Kwr62hoY08MVLe1rwsJYH8npmQgJe4D1+88iPStHVse0fu3RpFY11Kpmgsi4JAz8fmuR49SxMsXMAR3hYCNB8ouX2BEShs2HL8u2/+z9BZzrWhfZ79SNh5jot6/E9qupqmB0dxd82sIeJvraeJaWgQ2BF7Dv7C0AQA9XB8wf4i63T3ZuHlwnrC3dF0WCYq5SZdXQ2RZfjGyL2g2qw0SijwXjNuPc0XDZdu8lfdG5j7PcPpdP3sHskRvl1jVvXx9fju8E23qWyMnOxY1LkVg4bgsAwLa+JfqNbo8GTjbQN9JB/NNkHPjjPPZtOSPbv1WXBug+0BW17C2hpq6KR/fi8fvao7hy+q6sjFgswqAJndHx86YwMtNDUkIajvwVij/WBcvKaGqrY9jUbmjl1gB6htqIf5KEfVvO4MD2CyV+B137tUCnXs1Qs44EAHD/1lMErAjC3etPii3vNb83ug9sif99/zf2bj79rq+Yyoi5SvR+enzthi8mfwpjiQEe3niMdd5bcOfywxLLt+nTAkPmeEBS0xRP78fj11k7cOnQNQCAiqoKhs77As3dHWFpa46MtExcPXYLv87egaR39CdQxVSmjtjKzMPDAzk5Odi8eTPs7OwQHx+P4OBgPH/+vFT15OTkQF1dvZxaWXGV53lX5u9US1MN9yMTceDITSz6rleR7QM9WqDPZ83gu+ogYuNTMWJQayxf0BdDxm1ETm5+sXV2+KQexo9sjxV+RxB+NxZ9P3fC8gV98dWYX5GSWtjR6jWyI1o2t8PcpfuRkZGNSWPcsNCnF7xmcO4m+niYqx9GGXI1ITkda/aeRnRCCkQo7LhcOfZzDPx+K0QiwMxAF6t2n8LD2OewNNHHt192gpmhLqb//I9cPfvO3kJDWwvUsTItcgwdTXX4fdMHF29H4/ttwahtZYK5nl3wIjMbf52+AQCY6v831FRVZPsY6Ghh+6yvcPTKvbe2f+mo7jDR08b8347gcWIKzPR1IBKL5Mq8eJmNPnMDZJ8LKtFdeap4mKsfprLnqqa2Oh7ejsXh3Zcx28+z2DKXTt7Bypk7ZZ9zc+SvJ1t3aYiJizwQsCII184/gIqKGDXrWsi212lghZTn6fhh6nYkxqXCvmlNfLOwD6RSKf7+/RwAoJGzHa6euYfNK4KQnvYSnT2cMc9/CCb39cODiBgAQN/R7dH9y5b4ccZOPLoXj7oNq2Oyb19kvHiJ/b+dBQCM9vkMji1rYdnU7Yh/mgynT+pg/NxeeJ6QhgvHIoo9v8Yt7BDyTxgirj5CTnYe+o5qj+83jsSY7ivwPD5Nrmyrzg1Qv0kNPItPLeU3TcqEufphKnuufkztvnDB6KVfYu2ETbh96QF6e3XF9/unY4TjdKQmphUp79CyDnw2j8PGOTtx4UAYOvR3xdydkzDedTYehT+BhrY6ajexwbYle/HwejR0jXQwdvlgzN81GRM+mauAM6QPVaapCSqrlJQUnDp1CkuXLkWHDh1Qs2ZNtGjRAj4+Pvj8888BADY2NgCA3r17QyQSyT7PmzcPTZo0wS+//AJbW1toamoCAKKjo9GzZ0/o6upCX18f/fr1Q3x8vOyYr/bbuHEjatSoAV1dXYwbNw75+flYtmwZLCwsYG5uju+//16urStWrECjRo2go6MDa2trjBs3Dunp6aU+59u3b6NVq1bQ1NREw4YNceLECbntJ06cQIsWLaChoQFLS0vMnDkTeXl5su3t27eHl5cXJk2aBFNTU7i7F474OXDgAOrWrQstLS106NABUVFRRY59+vRptGnTBlpaWrC2tsY333yDjIwM2XYbGxssXLgQnp6e0NfXx+jRo0t9fhXFhdBI/Pr7aZw6X/yP+b6fO+G3nedx5sJ9PIxKxOKVB2BirItPWtYpsc5+vZzxz6HrOBh8E48eP8eP6w4jKzsXn3ZuCADQ0VbHp50bwe+X47h6PRp3H8RjyeqDaORgBYd6luVynuVG6Em62QHy0TBXmavv4+SNhzhzMwqPE1IQnZACv31nkZmdi0a2FngQ8xzTfv4HJ288xJNnqbh05zH89p1B20a2UHmjs/OHnSHYeeIanj4r/od2txb1oaaqgnlbDuNh7HMcvnwX24+FYZBbM1mZtMxsPE/LlC0t7WsgKycXR0LvFlsnALRyqAmnOlaY8NMeXLwdjdjnabgeGYtrD2LkCxYUyNWd9ELBTyYwUyst5ipz9fLJO9iy6jDOHrlVYpncnDwkP0uXLelpL2XbxCpijJn1OX5ZdgAHtl/A06hniH6QgFMHr8vKHN59Gf/7/m/cuBSJuMdJOL7/Ko78dRmt/r3OBID/Lf4bf/5yAndvPEHMo+fYvOIQYh49h0tHe1kZ+6Y1cf5oOC6F3EbC02ScPnQDV87cRb3G1nJlju65ghsXHyLhaTIO7riIh7dj5cr817Kp2xG47TweRsTiycNErP7uT4jFIjRxrS1XzkSij7Gze2LZlO3IL2Fwg2CYq5UWc5W5+jH1+aYbgjaF4PBvpxB9OwZrJmxC9stsuA9pW2z5XuO74PLh6/hz5QE8vhODLQt2435YFHqOcQMAZKa9hM9nS3Fy90U8uReH2xcfwG/yZtR1soOZtcnHPDXhKWmuKlVHrK6uLnR1dbF3715kZ2cXW+bSpUsAgE2bNiE2Nlb2GQDu37+P3bt346+//kJYWBikUil69uyJpKQknDhxAkeOHMHDhw/Rv39/uTofPHiAgwcPIigoCH/88Qd+/fVXdO/eHU+ePMGJEyewdOlSzJo1CxcuvH48RywWY82aNbh16xY2b96MY8eOYfr06aU+52nTpmHKlCm4evUqXF1d0aNHD9ldv6dPn+LTTz9F8+bNce3aNaxfvx6//vorFi1aJFfH5s2boa6ujjNnzsDf3x+PHz9Gnz590KNHD4SFhWHkyJGYOXNmkXPu2rUrPDw8cP36dezYsQOnT5+Gl5eXXLnly5fD0dERV69exezZs0t9fpWBpcQAJsa6CA17JFuXkZmDiLuxaFC/WrH7qKqKUbe2BUKvvd6noAAIDXuEBvUK96lb2wJqaipyZaKfJCEuIbXEeomExlxlrpaWWCRCF+e60FJXxfXI2GLL6GppICMrB/nS97+iamxniSv3niAvXypbdy48CrYWxtDT1ih2n56tG+Lw5bvIyskrdjsAtHWshfBHCRjSpTmClozCnvlDMcmjDTTUVOTKaWmoI/D7ETiweCRWjP0cdpaV/MKYFIa5ylx9H41b2OGPc7OxIWgqvOb1gp6htmxb7QbVYGphgAJpAX7a+w22nv4OC34ZLnvMvyQ6uppIT31Z4naRSAQtHQ28SH19oyni6iM0ca0FK5vCJxVs61uigZMNLp+8I1emZSd7mEgKp6dp7GIHKxszXDn99qcR3qShpQYVVRW8eGP6LZFIhKnL+uPPX04g+n78W/YmZcdcZa5+LKpqKqjT1AZXjr2+kVZQUICrx27BoUXtYvexd6mNq8flb7yFHrkBe5eSB23p6GtDKpUiIyWjxDJUcSnV1ASqqqoICAjAqFGj4O/vj2bNmqFdu3YYMGAAGjduDAAwMzMDABgaGsLCwkJu/5ycHGzZskVW5siRI7hx4wYiIyNhbV14R3fLli1o0KABLl26hObNmwMApFIpNm7cCD09PTg4OKBDhw64c+cODhw4ALFYjHr16mHp0qU4fvw4XFxcAACTJk2SHdfGxgaLFi3CmDFjsG7dulKds5eXFzw8PAAA69evR1BQEH799VdMnz4d69atg7W1NX766SeIRCLUr18fMTExmDFjBubMmQOxuLCfvk6dOli2bJmszm+//Ra1atXCjz/+CACoV68ebty4gaVLl8rK+Pr6YtCgQbLzqFOnDtasWYN27dph/fr1sjuJHTt2xJQpU956DtnZ2UX+gynNz4NYpXL88zU20gEAJP0nJJNTMmTb/stAXwuqKmIkJ2f+Z59M1KhuDAAwMdJBTm4e0jOyi5QxNiy+3oqqMk2sTfKYq8zV91W7mgkCpg+AupoqXmbnYMr//kZkbFKRcoY6mhj1qYtsOoH3ZaKvg5j/jJZ9/u+oVFN9HbzIlD/fBjYS1LEyxYLfDr+13uqmBmhSuxpycvMwxX8/DHW14DOwIwx1tDBvS+G+j+KSMX/LYdx7+gy6Wurw7OyMTdP7o+/8LUhIKf0oFiEwVysv5moVylVpHsRi4XM19NRdnDl8E/FPkmFZwxhDvbti4S/D4d3PD1JpASz/HSE1aIIbNvj+g/inyegzvA2W/v41Rnb5odjOVvumNdH2U0fMHb2pxON6jGgLLW11nDzwemTtzv+FQFtXAz8HTYE0vwBiFRE2rzyE43+HycqsX7AP3yzywO+nvkNebj4KCgqwetZu3Lwc+d7nPHzqp0hKSMPVs6/fwdB3dDtI86Vy89qWJ+Zq5cVcrUK5WpAPsUilhD0UT99UDyqqKkhJkL8mTU5Ig3W94gdLGUkMkVykfCqMJAbFllfTUMOIRf0RsvM8Ml9kCdNwBVHWXFWqEbFA4dwwMTEx2L9/P7p27YqQkBA0a9YMAQEB79y3Zs2asvAFgIiICFhbW8vCFwAcHBxgaGiIiIjX8x3Z2NhAT09P9lkikcDBwUEWcK/WJSQkyD4fPXoUnTp1gpWVFfT09DB48GA8f/4cmZmle9TR1dVV9mdVVVU4OzvL2hYREQFXV1eIRK8f/WzdujXS09Px5MnrifCdnJzk6oyIiJD9h6K44wDAtWvXEBAQILv7qKurC3d3d0ilUkRGvr7ocnaWf9FAcXx9fWFgYCC3RN8/9h5nT5UGpyao1JirVSNX468efY+zL7uo+GQM/P53DFn6B3advI4FQ9xha2ksV0ZHUx2rvXrhYexz/O/v8+Xanl6tGuLek0Tcinr7KCqRSISCAuC7jQdxKyoeZ25GYcWuk/ispYNsVOz1yFgEXojA3SeJuHLvKab6/42UFy/h0aZRuZ7DWzFTKzXmatXI1QfJ5ZNjJwKv4cKxCETdjcO5o+GY+3UA6jW2RmMXOwCQfVc7/I/hzOGbuH/rKVbO3AUUFKBN18ZF6qtZR4K56z2x9aejuHKm+FGq7T9rgkFeblg8aStSk14PLmj7aWN06NEUy6Zsx4Tea/DjjJ3wGN4Wbr1fTwvz+eDWqO9YA/O+DsCEPmuwYck/GDenF5q0Kn502H/1Hd0e7bo7YsH4Lcj99wmG2g2s0NPzE/z4xjy55Y65WqkxV6tGrj7Mu/keZ191qaiq4LvfvQCRCGu/KfnGWaWhpLmqdB2xAKCpqYnOnTtj9uzZOHv2LIYOHYq5c+e+cz8dnbKNMlRTU5P7LBKJil0nlRY+ThkVFYXPPvsMjRs3xu7duxEaGgo/Pz8AhXfjPraynHd6ejq+/vprhIWFyZZr167h3r17qFWrVqnq9vHxQWpqqtxSo3bHUrdJUZKSCy9W/ztK1chQR7btv1LTXiIvXwojI+3/7KMt2+d5cgbU1VShq6NRtAwfUaCPjLlaOhUxVyVN3UrdptLIy5ficWIqIqIT8NPeM7j75Bm+7NBUtl1bQw0/TeiNzKxcTPH/G3lS6VtqK+p5WgaM9eUz00Sv8POzNPlM1FRXRZfm9bD3bMnzL77yLDUDiSnpSM96/e8kMi4JYrEI5kZ6xe6TJ5Xi9uMEWJsbluociN7EXC2dipirtYxalrpNZRH3OAmpSemwrFE4PUDSvy+Dib7/unMnNzcfsY+TYF7NUG7fGrXM4bt5FA7uuIjt64sf6NCuuyMmfu+BxZO2IuyNEakAMGL6p9j5cwhOBF5D1N04HNt3FXsCTqPf1x0AAOoaqhji7Y6fl/yDC8cjEHUnDn//fg4nD16Dx/Di50t8k8fwtug3uj2+G/4Lou7EydY3dLaFoYkOtoT44J/wxfgnfDEk1Y0xcmZ3BByb8e4vjZQSc7V0KmKu2qk2fOd+ipT27AXy8/JhaC4/mtXIXB/JcSnF7pMcnwKjIuUNkPyfFxCqqKrgu61ekNQwhc9nSyv9aFhlppQdsf/l4OAgN3m0mpoa8vPfPdm7vb09Hj9+jMePH8vWhYeHIyUlBQ4ODmVuT2hoKKRSKX788Ue0bNkSdevWRUxMzLt3LMb586/vxOfl5SE0NBT29vay9p87dw4Fb7za+cyZM9DT00P16tVLrNPe3h4XL14s8TgA0KxZM4SHh6N27dpFltK+EVFDQwP6+vpyS2WZlgAAYuNT8TwpHc0ca8jWaWupw76uJW7dLv7vNS9Pirv34+DUuKZsnUgENHOsiVt3Cve5ez8Oubn5aOb4uoy1lREszA1KrLfC4ojYKoe5ylx9F7EIUPt3RKmOpjrWTeyD3Px8TF63Dzl5pX/hyvWHsWhWpzpU3xhl0tK+JiLjkopMS9DZqS7UVVVw4ELxb+t+07UHMTA11IGWxusfTjUkhsiXSpGQ/KKEcxOhtpUpnqUq8KYYM7XKYa5Wwlwth2kJimMqMYCeobasA/b+zafIyc6Fle3rEXwqqmJIrIyQEJMsW1ejtgRLfhuNo3tCsXnloWLrbtfdEZN9+2Kp9x+4FHK7yHYNTTUU/Gc+b6lUKhtpp6qqAjV11aJl8gsgfuOFjMX5YmQ7DBzfCbNHbMS9m0/ltgXvu4JxPVZhfM/VsuVZfCp2/3oC34349a31lhlztcphrlbCXK3A0xIAQF5uPu5djULTDq//HYhEIjTp0ADhF+8Xu0/Ehfto0r6B3LpmnRoi4sLrJxRedcJa1bLAzO5L8CJJMVNfCU5Jc1WpOmKfP3+Ojh074vfff8f169cRGRmJXbt2YdmyZejZs6esnI2NDYKDgxEXF4fk5OQS63Nzc0OjRo0waNAgXLlyBRcvXoSnpyfatWv3XkPtS1K7dm3k5uZi7dq1ePjwIX777Tf4+/uXqS4/Pz/s2bMHt2/fxvjx45GcnIzhw4cDAMaNG4fHjx9jwoQJuH37Nvbt24e5c+fC29tb7nGJ/xozZgzu3buHadOm4c6dO9i2bVuRRzpmzJiBs2fPwsvLC2FhYbh37x727dtXZJLuqkJLUw21bc1R29YcQOELumrbmsPcrHC01K79ofDs74pWLWrBrqYpvvX+FM+T0nH6/OtwXbGoH3p3fz06bOfey+ju3hjuHRugZnVjeI/rAi1NNRw8Wvg4RkZmDg4cuYHxI9qjaSNr1K0lwcyJ3XAz4inC7xT/ApyKSlQg/EIfB3OVufo+vHq1RrPaVrA00Uftaibw6tUaTnWtcfDi7cJO2G/6QEtdDQu2HIGOljpM9LVhoq8N8RuPzFmbGaBudTOY6OtAQ00VdauboW51M6iqFH6vQRdvIzcvH3M8O8PO0gRdnOpiYMem2Hr0SpH29GrVECFhD5CaUXQkgVev1lgw1F32+eCl20hNz8I8zy6wtTRGs9pWmNSnLfadvYXsf9/QPepTF7S0rwErUwPUtzbHouFdYWmsjz1nFPf4XEXK1CVLlkAkEsnNe5eVlYXx48fDxMQEurq68PDwkHvbNFD4Ruru3btDW1sb5ubmmDZtmtwbnQHIHi3V0NBA7dq1i33E1M/PDzY2NtDU1ISLi0uRH5EVDXOVuaqprQ47e0vY2VsCACTVjWFnbwkzS0NoaqtjxPRPUd+xBsytjNDEtRbmrPdEzKPnuHLqLgAgMyMbB/64gMHfdEaz1nVgZWsKr/m9AQCnDhbOv12zjgRLfxuNK2fuYc+mUzAy1YWRqS4M3nh/QfvPmmDqsv7YsOQf3LkWLSujraspK3PheAQGjO2I5u3rw9zKCK06N0CfYW1w7sgtWVuuX3iAEdM/RaMWdpBUN4Jbbyd06tUMZ4+8fiphyrJ+GDqlq+xz31Ht4DmpC1b67EL80yTZsTW1CztyXqRk4tG9eLklPzcfyYnpeBr5rDz+WipUrlLpMFeZqx/TX2sOotuw9nAb9Ams61XDhDVDoamtgcNbTgIApv3yNYYt6Ccrv9fvMJy7NILHxG6wrmuJr77rjTrNbLHPv3DaMBVVFczeNgF1m9li6bD1EKuIYSQxgJHEAKpqFbtj+l2UNVcrz7BCAejq6sLFxQUrV67EgwcPkJubC2tra4waNQrffvutrNyPP/4Ib29vbNiwAVZWVoiKiiq2PpFIhH379mHChAlo27YtxGIxunbtirVr135QOx0dHbFixQosXboUPj4+aNu2LXx9feHp6VnqupYsWYIlS5YgLCwMtWvXxv79+2FqWvjYkpWVFQ4cOIBp06bB0dERxsbGGDFiBGbNmvXWOmvUqIHdu3dj8uTJWLt2LVq0aIHFixfLgh0AGjdujBMnTuC7775DmzZtUFBQgFq1ahV5k2RVUa+2BVb7DpB99hpZOHXCweCbWLLqIP7YfRFammqY6uUOXR0N3Ah/imlz/0RO7us7rtUsDGGgryX7fPz0HRgaaGP4oNYwNtLB/YcJmDb3TyS/8bbYn345BmlBByzw6Qk1NRVcuhKFlevLd55HojcxV5mr78NYTxsLhrnDVF8H6S9zcO/pM4xf+xcuRETDqW51NLIr7GzYv2i43H7dv/sVsc8LR3jNHtwZznVfz8W2fdZXcmXSs3Iwfs1fmDmgI7Z++yVS0l/i58DzRV76VVNihKZ1rDB29e5i22pqoAML49dTDrzMzsW41bsxfUAH/O7zJVLTs3Ak9C7W7X/9chh9HU3M/qozTPS1kZaZjYjoeAz7YXuxLyNTNpcuXcL//vc/2ctQXpk8eTICAwOxa9cuGBgYwMvLC3369MGZM4Xfa35+Prp37w4LCwucPXsWsbGx8PT0hJqaGhYvXgwAiIyMRPfu3TFmzBhs3boVwcHBGDlyJCwtLeHuXtiZvmPHDnh7e8Pf3x8uLi5YtWoV3N3dcefOHZibm3/cL+M9MVeZq3UaVsey37+Wff762x4AgCN/XcZPc/fAtp4l3Ho7QUdPE0kJabhy5h62rDqM3DeuK39ZFoj8fCmm/tAfGppquH3tMWZ6bkB6WuGLuj7p2giGJrro1LMZOvV8PZ9r/JMkDO1Y+OKdbv1bQFVNBV7zesNrXm9ZmSN/XcaKmbsAAOsX7oPnRHeMn9sLhia6SEpIw4HtF7DNL1hWfsnkbRg6pRum/zgAegbaSIhJxuaVhxD4x+uRdOaWhnKjZrsPbAk1dVXM+mmw3Hfz+9oj2LqW17pUOsxV5urHdOLPCzAw1YPnHA8YSQzw8Ho0vuv5A1ISCq9pzaxNIH0j78LP38OSoesxZO4XGDq/L2Lux2N+v1V4FF44X69pNSO49iicr3f9xe/ljjWty/e4fqro0wpUsYkK3hyPTlRJtOvxg6KbQKV04u9pJW6zn71S8ONFLJwseJ1EVVmzMcL//5DK1xX/knNO6FwtS6amp6ejWbNmWLduHRYtWoQmTZpg1apVSE1NhZmZGbZt24YvvvgCAHD79m3Zo5ItW7bEwYMH8dlnnyEmJgYSiQQA4O/vjxkzZiAxMRHq6uqYMWMGAgMDcfPm65HHAwYMQEpKCoKCggAALi4uaN68OX766ScAhY9MW1tbY8KECZg5c+aHfi1Eb9WtLucqrWwO3l1a4raKkKtEys5da/C7C1GFcujlbyVuU9ZcVaqpCYiIiIio9LKzs5GWlia3ZGdnv3Wf8ePHo3v37nBzk38RXGhoKHJzc+XW169fHzVq1MC5c+cAAOfOnUOjRo1knbAA4O7ujrS0NNy6dUtW5r91u7u7y+rIyclBaGioXBmxWAw3NzdZGSIiIiKij4kdsUSkcJwjlohIWEJnqq+vLwwMDOQWX1/fEo+/fft2XLlypdgycXFxUFdXh6Ghodx6iUSCuLg4WZk3O2FfbX+17W1l0tLS8PLlSzx79gz5+fnFlnlVBxHR++K1KhGRsJQ1V5VqjlgiqqAqUWgSEVUKAueqj48PvL295dZpaGgUW/bx48eYOHEijhw5Ak1NzWLLEBFVOrxeJSISlpLmKkfEEhEREdFbaWhoQF9fX24pqSM2NDQUCQkJaNasGVRVVaGqqooTJ05gzZo1UFVVhUQiQU5ODlJSUuT2i4+Ph4WFBQDAwsIC8fHxRba/2va2Mvr6+tDS0oKpqSlUVFSKLfOqDiIiIiKij4kdsUSkeAXlsBARKTMFZmqnTp1w48YNhIWFyRZnZ2cMGjRI9mc1NTUEB79+q/qdO3cQHR0NV1dXAICrqytu3LiBhIQEWZkjR45AX18fDg4OsjJv1vGqzKs61NXV4eTkJFdGKpUiODhYVoaI6L1VgGtVPz8/2NjYQFNTEy4uLrh48eJby6ekpGD8+PGwtLSEhoYG6tatiwMHDpTt4EREQqsAuaoInJqAiBSuMs3nQkRUGSgyV/X09NCwYUO5dTo6OjAxMZGtHzFiBLy9vWFsbAx9fX1MmDABrq6uaNmyJQCgS5cucHBwwODBg7Fs2TLExcVh1qxZGD9+vGwk7pgxY/DTTz9h+vTpGD58OI4dO4adO3ciMDBQdlxvb28MGTIEzs7OaNGiBVatWoWMjAwMGzbsI30bRFRVKPp6dceOHfD29oa/vz9cXFywatUquLu7486dOzA3Ny9SPicnB507d4a5uTn+/PNPWFlZ4dGjR0Xm5yYiUhRF56qisCOWiIiIiD6qlStXQiwWw8PDA9nZ2XB3d8e6detk21VUVPDPP/9g7NixcHV1hY6ODoYMGYIFCxbIytja2iIwMBCTJ0/G6tWrUb16dfzyyy9wd3eXlenfvz8SExMxZ84cxMXFoUmTJggKCiryAi8ioopuxYoVGDVqlOxGkr+/PwIDA7Fx40bMnDmzSPmNGzciKSkJZ8+ehZqaGgDAxsbmYzaZiIiKwY5YIlI8Jb0TRkRUbipYroaEhMh91tTUhJ+fH/z8/Ercp2bNmu98hLZ9+/a4evXqW8t4eXnBy8vrvdtKRFQsgXM1Ozsb2dnZcus0NDSKnX87JycHoaGh8PHxka0Ti8Vwc3PDuXPniq1///79cHV1xfjx47Fv3z6YmZnhyy+/xIwZM6CioiLsyRARlUUFu179WDhHLBEREREREdFH5OvrCwMDA7nF19e32LLPnj1Dfn5+kdH8EokEcXFxxe7z8OFD/Pnnn8jPz8eBAwcwe/Zs/Pjjj1i0aJHg50JERO+PI2KJSPGU9E4YEVG5Ya4SEQlL4Fz18fGBt7e33LriRsOWlVQqhbm5OX7++WeoqKjAyckJT58+xQ8//IC5c+cKdhwiojJT0utVdsQSkcIp6yTdRETlhblKRCQsoXO1pGkIimNqagoVFRXEx8fLrY+Pj4eFhUWx+1haWkJNTU1uGgJ7e3vExcUhJycH6urqZW88EZEAlPV6lVMTEBEREREREVVQ6urqcHJyQnBwsGydVCpFcHAwXF1di92ndevWuH//PqRSqWzd3bt3YWlpyU5YIiIFYkcsESleQTksRETKjJlKRCQsBeeqt7c3NmzYgM2bNyMiIgJjx45FRkYGhg0bBgDw9PSUe5nX2LFjkZSUhIkTJ+Lu3bsIDAzE4sWLMX78+DKdPhGR4JT0epVTExCRwinrIwlEROWFuUpEJCxF52r//v2RmJiIOXPmIC4uDk2aNEFQUJDsBV7R0dEQi1+Ps7K2tsahQ4cwefJkNG7cGFZWVpg4cSJmzJihqFMgIpKj6FxVFHbEEhEREREREVVwXl5e8PLyKnZbSEhIkXWurq44f/58ObeKiIhKgx2xRKR4SnonjIio3DBXiYiExVwlIhKWkuYq54glIiIiIiIiIiIiKmfsiCUixePLuoiIhMVMJSISFnOViEhYFSBX/fz8YGNjA01NTbi4uODixYsllt2wYQPatGkDIyMjGBkZwc3N7a3lS8KOWCJSOFE5LEREyoyZSkQkLOYqEZGwFJ2rO3bsgLe3N+bOnYsrV67A0dER7u7uSEhIKLZ8SEgIBg4ciOPHj+PcuXOwtrZGly5d8PTp01Idlx2xREREREREREREpDRWrFiBUaNGYdiwYXBwcIC/vz+0tbWxcePGYstv3boV48aNQ5MmTVC/fn388ssvkEqlCA4OLtVx+bIuIlI8Pp5FRCQs5ioRkbCYq0REwhI4V7Ozs5GdnS23TkNDAxoaGkXK5uTkIDQ0FD4+PrJ1YrEYbm5uOHfu3HsdLzMzE7m5uTA2Ni5VOzkilogUTlQg/FIaJ0+eRI8ePVCtWjWIRCLs3btXbvvQoUMhEonklq5duwr3BRARCUyRmUpEVBUxV4mIhCV0rvr6+sLAwEBu8fX1LfbYz549Q35+PiQSidx6iUSCuLi492r/jBkzUK1aNbi5uZXqvDkiloiUXkZGBhwdHTF8+HD06dOn2DJdu3bFpk2bZJ+Lu6tGRERERERERB+fj48PvL295daV1+/2JUuWYPv27QgJCYGmpmap9mVHLFVKaqk5im4CCUnBowK6deuGbt26vbWMhoYGLCwsPlKLiD4+3Zg8RTeBhMTRVkQKFzWA1w1VCnOVSOGeDW6m6CaQkATO1ZKmISiOqakpVFRUEB8fL7c+Pj7+nb/7ly9fjiVLluDo0aNo3LhxqdvJqQmIqErKzs5GWlqa3PLf+WJKIyQkBObm5qhXrx7Gjh2L58+fC9haIiIiIiIiIvoY1NXV4eTkJPeirVcv3nJ1dS1xv2XLlmHhwoUICgqCs7NzmY7NjlgiUrwC4ZfSzA/zLl27dsWWLVsQHByMpUuX4sSJE+jWrRvy8/M/4KSJiMqR0LlKRKTsmKtERMJScK56e3tjw4YN2Lx5MyIiIjB27FhkZGRg2LBhAABPT0+5l3ktXboUs2fPxsaNG2FjY4O4uDjExcUhPT29VMfl1AREpHDl8cICIeeHGTBggOzPjRo1QuPGjVGrVi2EhISgU6dOH9ROIqLywBfBEBEJi7lKRCQsRedq//79kZiYiDlz5iAuLg5NmjRBUFCQ7AVe0dHREItfj19dv349cnJy8MUXX8jVM3fuXMybN++9j8uOWCKqkkozP0xp2dnZwdTUFPfv32dHLBEREREREVEl5OXlBS8vr2K3hYSEyH2OiooS5JjsiCUixatkIwyePHmC58+fw9LSUtFNISIqXiXLVSKiCo+5SkQkLCXNVXbEEpHCKfqRhPT0dNy/f1/2OTIyEmFhYTA2NoaxsTHmz58PDw8PWFhY4MGDB5g+fTpq164Nd3d3BbaaiKhkis5VIqKqhrlKRCQsZc1VdsQSkdK7fPkyOnToIPv8am7ZIUOGYP369bh+/To2b96MlJQUVKtWDV26dMHChQvLbeoDIiIiIiIiIqp62BFLRIqn4Dth7du3R0FByY04dOjQR2wNEZEAlHSEARFRuWGuEhEJS0lzVfzuIkRERERERERERET0ITgilogUTlnnhiEiKi/MVSIiYTFXiYiEpay5yo5YIlI8JQ1gIqJyw1wlIhIWc5WISFhKmqucmoCIiIiIiIiIiIionHFELBEpnpLeCSMiKjfMVSIiYTFXiYiEpaS5yo5YIlI4ZZ0bhoiovDBXiYiExVwlIhKWsuYqpyYgIiIiIiIiIiIiKmccEUtEiqekd8KIiMoNc5WISFjMVSIiYSlprnJELBEREREREREREVE544hYIlI4UYGS3gojIionzFUiImExV4mIhKWsucqOWCJSPOXMXyKi8sNcJSISFnOViEhYSpqrnJqAiIiIiIiIiIiIqJxxRCwRKZxISe+EERGVF+YqEZGwmKtERMJS1lxlRywRKZ6SBjARUblhrhIRCYu5SkQkLCXNVU5NQERERERERERERFTOOCK2khOJRG/dPnfuXMybN+/jNIZkxGIRPIe1RacuDWFsrIPnz9Jx6OB1bN1y+q37OTapgTFenVHTxhSJCWnYuuUMDgddlyvzeW8n9BvQEsbGunjwIB4/rT6MOxEx5Xk65U5ZH0mgiom5KqxBX7igrWsd1LQyQXZOLm7ejoH/5hN4/DQZAKCnq4nhX7ZG8yY2kJjpISXtJU6dv4dft55GRmaOrJ5mjWtg5KBPYFfTDC+zc3Ho2E1s+O0U8qXyATKgV3P0cG8Mibk+UtNeYu+BMPy263yRdjW0t8KaxQMQ+egZRkza/F7nYmVpiF9XDkG+VIruX66VrVdREeOrL1zQtWNDmJro4vHTJPhvPoGLV6LK8I0Jg7lKFQlztXTM9XQwpUsbtK1jA001NUQnpeDbPYdxKyYeADC+Q0t82rAeLAz0kJufj/CYBKwKPoPrT+Lk6mlX1xZj27ugnsQM2Xl5uBT1BBP++BsAYKiliWVfdEM9iSkMtTXxPOMljt1+gJVHzyAjuzB7zXR1ML1rWzSsJkENY0P8fuEqfA+ekDvG5mFfoIWtdZFzOHH3Icb8vq/I+rk9OmFA88bwPRiCLeeulvgdaKurYWKnVnCzrw1jHW1ExCZg8YEQ3Pz3OwCAzva10b95YzSoZg5DbS30Xvc7bsclvue3XHrMVapImKsVW9/2jvDs4gQTAx3ce5KIZX8cx62o+GLL2lmaYExPV9jXMEc1UwMs3xGCP4Ll81EsEuHrHi3RraU9TPR18Cw1HX+fDccvgRc+xumUG2XNVXbEVnKxsbGyP+/YsQNz5szBnTt3ZOt0dXUV0awyycnJgbq6uqKbIYj+X7qiR89mWLb4b0RFJaJuPUtM8/kMGRlZ2Lv7crH7WFgaYNHS/vhn/xX4LtyLpk62mDK9O5Kep+PypYcAgPYd7TFmvBtW/3gQEeEx8OjbAkuWD8CwQf5IScn8mKdIVGUxV4XVpKE19gRexe17cVBREWP04Db4cX5feI7fhKzsXJga68LUWBfrNoUg6vFzWJjrY8rYzjA11sWcpfsBALVszLBsrgd+23ke3686AFNjXUwd1wVisRjrNoXIjvXNqI5o3tQG6zaF4OGjZ9DT1YS+nmaRNunqaOC7SZ/iyrVHMDLUea/zUFERY87Uz3A9/Aka1K8mt23UV5+gc3sH/PDTITx6koQWzWzxvU8vjJuxDfceJpT9yyOqIpir709fUwPbRvbHhcgnGP3bHiRlvERNE0OkvcySlYl6loxFgcfxODkVmqqqGNKqKX7x7AP3VZuQnPkSANDZoTYWfN4Zq46ewYXIaKiIxahjbiqrQ1pQgGO3H2B18FkkZ2SihokhZnfvCIMempj250EAgJqqCpIyXsL/xAV4tmpWbHu/2f431FRUZJ8NtbSwZ9xXCLp5r0hZN/tacKxugfi09Hd+D4t6dkYdiSlm7A5Cwot09HC0x8ahHvhs7WYkvMgAAGipq+FK9FME3byLhb06v8e3S1R1MFcrrs7OdeHdty0Wbw3Gzcg4fNmpGX6a2Ad95gQg+cXLIuU11VXxNDEVR0PvYkq/9sXWOaSrM75o74i5mw7hQcxzONSUYO7QLkh/mY3tx8LK94RIcJyaoJKzsLCQLQYGBhCJRLLP/v7++OSTT+TKr1q1CjY2NrLPQ4cORa9evbB48WJIJBIYGhpiwYIFyMvLw7Rp02BsbIzq1atj06ZNcvXcuHEDHTt2hJaWFkxMTDB69Gikp7++qGrfvj0mTZokt0+vXr0wdOhQ2WcbGxssXLgQnp6e0NfXx+jRowX7XhStQcPqOHvmLi6cv4/4uFScOnEboZciUd++Won7fNazGeJiU/A/v2BEP3qOfX9dxskTEfDo10JWxqOfCw78E4ZDB68j+tEzrPrxALKz8tC1u+PHOK3yU1AOC1EZMVeFNW3enwg6dgtRj5/jQVQiFq8+CAtzA9SrLQEAREY/w+wl+3D20gPExKXgyvVobPj9FFq1qAUVceFoj45t6uNBVCI27ziHp7EpuHbrCdYHnEDvT5tAS0sNAFCzujF6dWuCb7/fgzMXHyA2PhV3H8TjctijIm2aMrYzjp4Mx6077/80waivPkH0kyQcO327yLYu7Rvg910XcD40ErHxqdh3MAznQyPRv1fzsnxlwmCmUgXCXH1/I9s0R2xaOr7bexg3nsbjaUoazj6IxuPkVFmZwBt3cO5hNJ4kp+J+4nMsCToJPU0N1LMo7GhVEYvwbbf2WH74JHZcvo6o5yl4kJiEoFt3ZXWkZWVj+6XruBUTj5jUFzj/8DH+uHgNTjWtZGViUtLgezAE+65FID0ru9j2pr7MxrP0TNnSqnYNZOXm4tAbxwIKR/l+92kHTP8zCHn5+W/9DjRUVdDZoQ6WHz6Fy4+eIjopFX7HzyM6KQUDW7y+5t1/LQLrQi7g7MPo9/+CPwRzlSoQ5mrF9VXnZthz+ib+PhuOyNgkLN56FFk5eejZumGx5cMfxWP17lM4fOkucnLzii3jWKsaQsIe4PSNSMQ+T0PwlXs4H/4IDWwsyvNUyp+S5io7YgnHjh1DTEwMTp48iRUrVmDu3Ln47LPPYGRkhAsXLmDMmDH4+uuv8eTJEwBARkYG3N3dYWRkhEuXLmHXrl04evQovLy8Sn3s5cuXw9HREVevXsXs2bOFPjWFuXXzCZo2s4FVdWMAgF0tczRsVB0XLzwocR+HBtVxJTRKbt3liw/h0KDwglhVVYy6dS1x5XKkbHtBAXAlNBIODaoLfxIfkahA+IVIkZirJdPV0QAApL3IKrGMjrYGMjNzZNMOqKupICdH/od7dk4eNDTUUK9W4QVoqxa1EROXilbNa2HHhlHYsWE0pnu5Q09XfkRst04NUc3CEAF/nH3vNjdrXAPtW9fDSv+jxW5XU1MpcuGcnZOHRvZWxZb/GJipVNUoS652qGeHW0/jsbJfd5ye/jV2jx2Evk7F/3gHADUVMfo5N0LayyzZY/kOluawMNCDtKAAu8cOwslpo/G/wb1Qx9ykxHrM9HTQ2aE2LkU9+aD2ezRriAM37+LlG5koEgFLPbpi45lQ3E98/s46VMRiqKqIkZ0nn6tZuXloVqPkQQ3ljblKVY2y5OrHpKoiRv0aElyMeH2DqKAAuBgRjUZ2lmWu99qDGLSob40a5oYAgDrVTdGkdjWcvRn1gS1WLGXNVU5NQDA2NsaaNWsgFotRr149LFu2DJmZmfj2228BAD4+PliyZAlOnz6NAQMGYNu2bcjKysKWLVugo1P4SOdPP/2EHj16YOnSpZBIJO997I4dO2LKlClvLZOdnY3sbPm78FJpHsTiivvPd/vWs9DR0cCm38dAKpVCLBZj04YQHDtyq8R9jI11kJKUIbcuOTkDOrqaUFdXhZ6eJlRUxUhO/k+ZpAxY1yj5wpqIPr5Kmav5eRCrlG+uikTAhJEdcT38CSKjnxVbxkBPC0P6u2L/oWuydRevROGLHk7o1LY+jp++A2NDHQwd4AoAMDEu/L6qSQwgMddH+9b18P3KAxCLxfAa2QELZ36OSbN2AgCqWxri6yFt4TXzjyJzy5ZEX08TPhO7YdGKQGS+zCm2zMWrkejX0xnXbj7G07gUODnWRFvXOhCL3z5/GxG9v0qZq3l5EKuWLletjQwwoHljBJy7gp9PXkRDKwt8+2kH5ORLsS8sXFaufV1bLO/7KbTU1JCYnoERm/9CSmaWrA4A8OrgiiVBJ/A0OQ3DWjth87C+6LZmE1Jfvm7n8i+6oWP9WtBSV8Ox2w8we9+RUrX3TY2sJKgrMcWsvYfl1o/8pDnypQX47fzV96onMycXV6NjMLadCx4kJuF5eia6N6qHJtaWiE5KKXP7iEhepczVj3C9+iEMdbWgqiLG8zT5aQOfv8iEjaVRmesNCLoEXU0N7F4wFNICKcQiMdbtPYODF4s+qUUVH0fEEho0aACx+PU/BYlEgkaNGsk+q6iowMTEBAkJhfPcRUREwNHRURa+ANC6dWtIpVK5eWneh7Oz8zvL+Pr6wsDAQG6JenzinfspUrsODujYuSEWL9iLsSN/xbLF+9F3gAs6d2307p2VkdCPJFSiu2FUNVXGXH18/1ipjlMWk8d0hm0NU8z/4e9it2trqWPpnD6Ievwcm94YsXopLArrA05gytguOLrbG1v9R+D85cK5swv+7VAViUXQUFfF9ysP4Hr4U4TdfIxla4LQrHFNWFsZQSwWYfbUz7Bx2xk8iUl+7zZP93LH0RMRuHar5FFiazYcw5OYZPy2bgSC/5qCSaPdcPDoTVnbFIKZSlVMZczV52eKH0X/NiKRCOGxCVh19Awi4hKxK/QGdoXewIDm8teQFyIfo8/63/HlL9tx+l4UVvbvDmMdLVkdAOB/4iKOhN9HeGwCvt1zGAUogHuDunL1LAk6AQ//rRi3dR9qGBtiZtd2pW7zKx7NGuJOXCJuPH39QhoHS3MMbtkUPnsOlaquGbuDIBKJcHLaaFyb8w2+atkUgTfuQFrAXCUSSmXM1biw0udqVdDZuS66utTHd78ewKBFWzE34BC+6uKEz1wdFN20D6OkuVpxbyXQBxOLxSj4z8VKbm5ukXJqampyn0UiUbHrpFKp4Md+M8RL4uPjA29vb7l1vT5d+d5tUYTR4zph+9azCDlWOHIh8mEiJBYGGDioFY4E3Sh2n6SkDBgay38fRkY6yEjPQk5OHlJTM5GfJ4WR0X/KGOsg+T8jaSubyvQYASm3qpyrnw70e++2lMWkrzuhlbMdJny7HYnPi76oRUtLDcvnfYHMl7mYtXgv8vPlv5ud+y5j577LMDHWwYv0bFia6+PrIe0QE1c4b+LzpAzk5eXLdbJGPUkCAEjM9JGckgn7OpaoYyfBpK/dABS+gVYsFuHYnimYOncXrlwvOs9g00Y10KpFbfTvXTjfqwiFL+46tmcKlvsdwoGjN5Ga9hLfLd4LdTUV6Otp4VlSOsYMaYuY+NQi9X0szFWqLKpyrjZf8r/3bssrz9Iz8OA/j+8/TExCF4c6cute5uYhOikV0UmpuPYkDkETh8KjWUNsOHUJiemF14Vv1pObn4/HyamwNND7z/EK53aNfJaM1JdZ2DqyP9aHXJDV8b601FTxaaN6WHvsnNx6ZxsrmOho45j3SNk6VRUxpru3hWfLpnBbubHY+h4np8Jz4y5oqalCV0MDiekZWNH3UzxJZq4SvUtVztV2k0ufqx9TSvpL5OVLYaKvLbfeRE8bz1LL/nLtiR5tERB0CYcvFc6/ff/pc1ga62FYt+b451z4O/auuJQ1V9kRW4WZmZkhLi4OBQUFsjvjYWFhH1yvvb09AgICkJGRIQvQM2fOyB5peHXsN9/kmJ+fj5s3b6JDhw6lPp6GhgY0NDTk1lXkaQkAQFNDtchIKGl+wVsfUw2/9QQuLWvLrXNytkX4racAgLw8Ke7ejUUzJxucPV0YwCIR0LSZDfbtuSzwGRBRcap0rpbjY16Tvu6ENi3rYOK32xFbTOektpY6ls/vi9zcPPgs+gs5uSW/yOX5vzeeOrW1R3xiGu4+LBx5dTPiKVRVVVDNwhAxcSkAAOtqhY+AxSWkISMzG0O8NsnV1evTJmjWuAbmLNlfbLsAYNz0rXKjRT5xqY0vPVpg3PRtSHz+Qq5sTm4+niWlQ0VFjLat6uL46dKNDiFSRlU6V0s5LQEAXImOgY2psdw6GxMjxKSkvXU/kUgEdVUVAMCtmARk5+bB1tQIV6ILX0qoKhbDylAfMSkvSqxD/O/3r/ZvPaXh3qAu1FVU8Pe1CLn1+8MicO6B/E2uDZ59sP9aBP66UvKUXa+8zM3Dy9w86GtqoHXtmlh++HSp20akbKp0rlbgaQkAIC9fitvR8Whe3xohYYXvhxGJgOb21th5/No79i6ZprpqkQ5uqfT13y9VLpyaoApr3749EhMTsWzZMjx48AB+fn44ePDgB9c7aNAgaGpqYsiQIbh58yaOHz+OCRMmYPDgwbJ5YTp27IjAwEAEBgbi9u3bGDt2LFJSUj742JXFubP38OXg1nBpWRsSCwO0blMPHv1b4PSp1z/KR4xujxnf9pB9/mffFVhYGmLUmI6wrmGCz3s5oV0HB+zeeVFWZvfOC/j0s6bo3LURatQ0wcQp3aCppYagA9c/6vkJrqBA+IWoHDBXS2/yGDd0bueABcv/QebLXBgb6sDYUAfq6oUX0tpa6vhxQV9oaaph6dpD0NHWkJV58+bVgN7NYVfTFDbWJvDs74pBHi5Y/XMwpP/e9Lp8LQp37sdh5jddUcfOHHVrSTB1fBdcuhqFJzHJKCgAIqOfyS0pqZnIyclHZPQzZGUXjtbo070pVi7sJzvuoydJcvskPn8BqbQAkdHPkJ5ROG+ZfV1LtHWtA0uJARo7WGH5vC8gFonwx1+v8/ujY6ZSJcFclbf57BU4VrfA6LbNUcPYAN0b1UNf50bYdrHwB7yWmiomubWGY3ULVDPQg4OlORb16gyJni4O3bwHAMjIzsGOy9fh1cEVrWrVgI2JEeb26AgAOHSr8GZ+2zo26N3UAXXMTVDNUB/t6tpibo9OCH30VK7Tt76FGepbmEFbXR1G2lqob2GGWmbG+C8Pp4YIvv0AKS/lX8SY8jIL9xKeyy15+fl4lp6BqOevn2DYONQDX7ZwlH1uXbsmPqldE1aG+mhVqwYChn2ByGfJ2HP1deetgZYG6luYofa/7bE1NUJ9CzOY6sqPRBMMc5UqCeaqYv1+5Ap6t2mEz1wdYGNhDJ9BnaClrob9Zwrza/4wd3j1bi0rr6oiRt3qZqhb3QxqqiowN9RF3epmqG5mICtz6vpDDP+0BT5pZAtLE310aFILgzo3w/Gr9z/6+QlKSXO1Yt9OoA9ib2+PdevWYfHixVi4cCE8PDwwdepU/Pzzzx9Ur7a2Ng4dOoSJEyeiefPm0NbWhoeHB1asWCErM3z4cFy7dg2enp5QVVXF5MmTy3QXrLL6adVhDB3ZDt94d4WhkTaeP0tH4P6r+C3glKyMsYkuzCWvwzUuNhWzZuzAWK/O6P1FczxLfIEflwXi8qWHsjIhxyJgYKiDocPbwchYBw/ux8Nn6nakJFfuqQmIKgvmaun1/rQpAGCt70C59YtXHUDQsVuoW0uCBvUK34K9/edRcmX6jfwf4hIKOwRaOtlicN+WUFdTwf2oRHz7/R5cuBIpK1tQAMxc9BcmjXbD2sUD8TI7FxdCH8JvY0ip2mugr4VqFoal2kddTQUjB30CSwtDvMzKwfnLkVi0MlDWUUtEJWOuyrsZE49v/vgbkzt/gnHtWuJJSiqWHAzBP9cLX8iSX1AAO1Mj9BrQA0bamkjJzMKNp/H46teduP/GVAQ/HDqFPKkUSz26QlNVFdefxmHYpt1IyyrMpay8PPR1aoSZXdtBXVUVcakvcCTiPjacuiTXnj3jvpL9uaGVBD0c7fE0OVVuSgEbEyM417TCiM27y3zeNYwMYPTvHLcAoKehgcmdW8NCXxepL7NxOPweVh09g7w3HpHuUK8WfPu4yz6v6NcdAPDT8XPwO36+zG0hquyYq4p15PJdGOlpYcznrjDR18bdJ4mYsGYPkl4UTk1gYawnN7rVzFAXf8x5nbWe7s7wdHfG5TuP8fWPfwIAlv1xHGN7tsLMLzvCSE8bz1LTsfvkDWz4h1lXGYkK/ju+magScGv7vaKbQKV09OR3JW5z/fJHwY93btvb38JJRPLafv6DoptApXRy/7QStwmdq8xUotKzn1Ox32lARUUsmFziNuYqkeI5jWauVjahPzNX/4tTExCR4gn1lsQ3FyIiZcZMJSISVgXIVT8/P9jY2EBTUxMuLi64ePH9psDZvn07RCIRevXqVbYDExGVhwqQq4rAjlgiIiIiIiKiCmzHjh3w9vbG3LlzceXKFTg6OsLd3R0JCQlv3S8qKgpTp05FmzZtPlJLiYjobdgRS0QKJ5IKvxARKTNmKhGRsBSdqytWrMCoUaMwbNgwODg4wN/fH9ra2ti4cWOJ++Tn52PQoEGYP38+7OzsPuDsiYiEp+hcVRR2xBKR4nFqAiIiYTFTiYiEJXCuZmdnIy0tTW7Jzi7+JY85OTkIDQ2Fm5ubbJ1YLIabmxvOnTtXYpMXLFgAc3NzjBgx4sPOnYioPCjp9So7YomIiIiIiIg+Il9fXxgYGMgtvr6+xZZ99uwZ8vPzIZFI5NZLJBLExcUVu8/p06fx66+/YsOGDYK3nYiIyk5V0Q0gIhJVortXRESVAXOViEhYQueqj48PvL295dZpaGgIUveLFy8wePBgbNiwAaampoLUSUQkNGW9XmVHLBEREREREdFHpKGh8d4dr6amplBRUUF8fLzc+vj4eFhYWBQp/+DBA0RFRaFHjx6ydVJp4QSKqqqquHPnDmrVqvUBrSciorJiRywRKV6Bkt4KIyIqL8xVIiJhKTBX1dXV4eTkhODgYPTq1QtAYcdqcHAwvLy8ipSvX78+bty4Ibdu1qxZePHiBVavXg1ra+uP0WwiordT0utVdsQSkcIp6yMJRETlhblKRCQsReeqt7c3hgwZAmdnZ7Ro0QKrVq1CRkYGhg0bBgDw9PSElZUVfH19oampiYYNG8rtb2hoCABF1hMRKYqic1VR2BFLREREREREVIH1798fiYmJmDNnDuLi4tCkSRMEBQXJXuAVHR0NsZjv4iYiqujYEUtEiqekd8KIiMoNc5WISFgVIFe9vLyKnYoAAEJCQt66b0BAgPANIiL6EBUgVxWBHbFEpHDK+kgCEVF5Ya4SEQmLuUpEJCxlzVU+u0BERERERERERERUzjgilogUT0nflkhEVG6Yq0REwmKuEhEJS0lzlSNiiYiIiIiIiIiIiMoZO2KJSOFEBcIvpXHy5En06NED1apVg0gkwt69e+W2FxQUYM6cObC0tISWlhbc3Nxw79494b4AIiKBKTJTiYiqIuYqEZGwlDVX2RFLRIpXUA5LKWRkZMDR0RF+fn7Fbl+2bBnWrFkDf39/XLhwATo6OnB3d0dWVlYpT5SI6CNRYKYSEVVJzFUiImEpaa5yjlgiUnrdunVDt27dit1WUFCAVatWYdasWejZsycAYMuWLZBIJNi7dy8GDBjwMZtKRERERERERJUUO2KJSOHK4zGC7OxsZGdny63T0NCAhoZGqeqJjIxEXFwc3NzcZOsMDAzg4uKCc+fOsSOWiCqkyvR4FhFRZcBcJSISlrLmKqcmICLFkxYIvvj6+sLAwEBu8fX1LXXT4uLiAAASiURuvUQikW0jIqpwhM5VIiJlx1wlIhKWkuYqR8QSUZXk4+MDb29vuXWlHQ1LRERERERERCQUdsQSkeKVw82rskxDUBwLCwsAQHx8PCwtLWXr4+Pj0aRJkw+un4ioXFSeQQFERJUDc5WISFhKmqucmoCI6C1sbW1hYWGB4OBg2bq0tDRcuHABrq6uCmwZEREREREREVUmHBFLlVJqLS1FN4EEpOhJutPT03H//n3Z58jISISFhcHY2Bg1atTApEmTsGjRItSpUwe2traYPXs2qlWrhl69eimu0UQC0z57T9FNIAEpOleJCKix7LKim0CltaDkTcxVIsUziMx+dyGqNJQ1V9kRS0SKV6DYBL58+TI6dOgg+/xqbtkhQ4YgICAA06dPR0ZGBkaPHo2UlBR88sknCAoKgqampqKaTET0dgrOVSKiKoe5SkQkLCXNVXbEEpHSa9++PQre8h8BkUiEBQsWYMGCtwyTICIiIiIiIiJ6C84RS0QKJyoQfiEiUmaKzFRfX180b94cenp6MDc3R69evXDnzh25MllZWRg/fjxMTEygq6sLDw8PxMfHy5WJjo5G9+7doa2tDXNzc0ybNg15eXlyZUJCQtCsWTNoaGigdu3aCAgIKNIePz8/2NjYQFNTEy4uLrh48WLpToiICLxWJSISmrLmKjtiiUjxCsphISJSZgrM1BMnTmD8+PE4f/48jhw5gtzcXHTp0gUZGRmyMpMnT8bff/+NXbt24cSJE4iJiUGfPn1k2/Pz89G9e3fk5OTg7Nmz2Lx5MwICAjBnzhxZmcjISHTv3h0dOnRAWFgYJk2ahJEjR+LQoUOyMjt27IC3tzfmzp2LK1euwNHREe7u7khISCjdSRER8VqViEhYSpqrnJqAiIiIiAQTFBQk9zkgIADm5uYIDQ1F27ZtkZqail9//RXbtm1Dx44dAQCbNm2Cvb09zp8/j5YtW+Lw4cMIDw/H0aNHIZFI0KRJEyxcuBAzZszAvHnzoK6uDn9/f9ja2uLHH38EANjb2+P06dNYuXIl3N3dAQArVqzAqFGjMGzYMACAv78/AgMDsXHjRsycOfMjfitERERERBwRS0QVgKigQPCFiEiZCZ2p2dnZSEtLk1uys9/vzcWpqakAAGNjYwBAaGgocnNz4ebmJitTv3591KhRA+fOnQMAnDt3Do0aNYJEIpGVcXd3R1paGm7duiUr82Ydr8q8qiMnJwehoaFyZcRiMdzc3GRliIjeF69ViYiEpay5yo5YIiIiInorX19fGBgYyC2+vr7v3E8qlWLSpElo3bo1GjZsCACIi4uDuro6DA0N5cpKJBLExcXJyrzZCftq+6ttbyuTlpaGly9f4tmzZ8jPzy+2zKs6iIiIiIg+Jk5NQESKJ1V0A4iIqhiBc9XHxwfe3t5y6zQ0NN653/jx43Hz5k2cPn1a2AYREX1svF4lIhKWkuYqO2KJSOEq02MERESVgdC5qqGh8V4dr2/y8vLCP//8g5MnT6J69eqy9RYWFsjJyUFKSorcqNj4+HhYWFjIyly8eFGuvvj4eNm2V//7at2bZfT19aGlpQUVFRWoqKgUW+ZVHURE74vXq0REwlLWXOXUBEREREQkmIKCAnh5eWHPnj04duwYbG1t5bY7OTlBTU0NwcHBsnV37txBdHQ0XF1dAQCurq64ceMGEhISZGWOHDkCfX19ODg4yMq8WcerMq/qUFdXh5OTk1wZqVSK4OBgWRkiIiIioo+JI2KJSPGU80YYEVH5UWCujh8/Htu2bcO+ffugp6cnm4/VwMAAWlpaMDAwwIgRI+Dt7Q1jY2Po6+tjwoQJcHV1RcuWLQEAXbp0gYODAwYPHoxly5YhLi4Os2bNwvjx42Ujc8eMGYOffvoJ06dPx/Dhw3Hs2DHs3LkTgYGBsrZ4e3tjyJAhcHZ2RosWLbBq1SpkZGRg2LBhH/+LIaLKjderRETCUtJcZUcsESmekj6SQERUbhSYq+vXrwcAtG/fXm79pk2bMHToUADAypUrIRaL4eHhgezsbLi7u2PdunWysioqKvjnn38wduxYuLq6QkdHB0OGDMGCBQtkZWxtbREYGIjJkydj9erVqF69On755Re4u7vLyvTv3x+JiYmYM2cO4uLi0KRJEwQFBRV5gRcR0TvxepWISFhKmqvsiCUiIiIiwRS8x0W1pqYm/Pz84OfnV2KZmjVr4sCBA2+tp3379rh69epby3h5ecHLy+udbSIiIiIiKm/siCUihRMp540wIqJyw1wlIhIWc5WISFjKmqt8WRcRERERERERERFROWNHLBEpXkGB8AsRkTJjphIRCYu5SkQkrAqQq35+frCxsYGmpiZcXFxw8eLFEsveunULHh4esLGxgUgkwqpVq8p0THbEEpHCiaTCL0REyoyZSkQkLOYqEZGwFJ2rO3bsgLe3N+bOnYsrV67A0dER7u7uSEhIKLZ8ZmYm7OzssGTJElhYWJT5vNkRS0REREREREREREpjxYoVGDVqFIYNGwYHBwf4+/tDW1sbGzduLLZ88+bN8cMPP2DAgAHQ0NAo83H5si4iUjw+nkVEJCzmKhGRsJirRETCEjhXs7OzkZ2dLbdOQ0Oj2E7TnJwchIaGwsfHR7ZOLBbDzc0N586dE7Rd/8URsURERERERERERFRp+fr6wsDAQG7x9fUttuyzZ8+Qn58PiUQit14ikSAuLq5c28kRsUSkeBxgQEQkLOYqEZGwmKtERMISOFd9fHzg7e0tt+5DphAoLxwRS6ViY2NTqjfDzZs3D02aNHlrmaFDh6JXr14f1C6q3EQFBYIvRJUFc5XKAzOVlBlzlcoDc5WUGXOVyoPQuaqhoQF9fX25paSOWFNTU6ioqCA+Pl5ufXx8/Ae9iOt9VMkRsSKR6K3b586di3nz5n2cxii5qVOnYsKECYpuRrlrWtcKg7s5o35NCcyMdDF1zT6cuPpAtn1UT1d0cakHibEecvPycTsqHuv+OoNbD98+5L1vR0d81c0ZJgY6uBediB+2Hkd45Ot91FVVMGlAO3R2qQd1VRWcv/kIS38LRlJaZrmdKykn5mrFURVy9avpPfDV9B5y6x7fi8Mo1zmyz/bOdhjyXS/Ub2aLfKkUD28+xnd9VyMnKxcSaxN8OaU7HNvUh5G5Pp7HpeLYn+exfcUB5OXmAwAk1ibYfLXoo0iT3H1xOzSyxLaNXdwfDi61UbN+NTy+G4fxHRbKbS9rvUT/xVytOCp6rvaf9jla93SGdb1qyHmZg/Dz9/Drd9vx5F4sAEBS0xRb7qwudt9FX67Gqb8uyq3TM9bF+ou+MKtujD6SUchILbxuNLYwxOilg1CnmS2q1ZJgn98h+E/7vcR2tevbEt/+NgFn91/G/H4rZesPZW0ttvwGn234c2XgO8+339QeGLFoAPasPSg7fmnPkZQTc7XiqOi5Wt56ft4M/fu6wNhYBw8eJGCt3xHcvhNbbFmbmqYYOqQN6taxgIWFAfzWHcXuPZflygwc0BJtPqmHGtbGyM7Ow63wp9jwSwgeP0n6GKdTJamrq8PJyQnBwcGyGwJSqRTBwcHw8vIq12NXyY7Y2NjX/8B37NiBOXPm4M6dO7J1urq6imhWmeTk5EBdXV3RzSgzXV3dSvV9l5WWhhruPk7E/lO38MOEz4tsj45Pxg+/H8PTxFRoqKlioHsz/DTFA71nbkTKi5fF1tm5RV1MGtAOS7YE4+bDWAzs3Axrp/TBFz6bkPzvPpMHtscnjrbwWfcP0jOzMe2rjljm1QMjF+8o1/MVHEcFVHjM1YqjquRqVMRT+Hi8/uGenyeV/dne2Q6Ldk7EjlUHsX7mH8jPl8K2QXUUSAuzonodC4jEIqyZ8jtiIhNgY2+FiSsGQ1NbA7/M/VPuODN7r8CjOzGyz2lJGe9s2+GtZ1DPyRa2DtVLLFOWej8q5mqFx1ytOCp6rjZuUx9//+8o7l5+ABVVFQxd0A+LA2diVJPpyM7MRuLj5xhQc5zcPp+O6IgvJnfHpUPXitTn7T8KkTejYVbdWG69moYqUhLT8MeSveg9odtb2ySpaYpRvoNw4/TtItv+25bm7o6Y7D8Kp/e+u7O0rpMduo/siIfXH8mtL+05lgvmaoXHXK04Knqulqf27epj7NcdsWrNIURExMCjT3Ms9e2PIcN/RkpK0QFTGhqqiI1NwYmTtzFuTKdi63RsXAP79l/BnTuxEKuIMXJ4Wyxb0h/DRv6CrKzc8j6l8qPgXPX29saQIUPg7OyMFi1aYNWqVcjIyMCwYcMAAJ6enrCyspLNM5uTk4Pw8HDZn58+fYqwsDDo6uqidu3a733cKjk1gYWFhWwxMDCASCSSffb398cnn3wiV37VqlWwsbGRfX41RH7x4sWQSCQwNDTEggULkJeXh2nTpsHY2BjVq1fHpk2b5Oq5ceMGOnbsCC0tLZiYmGD06NFIT0+XbW/fvj0mTZokt0+vXr0wdOhQ2WcbGxssXLgQnp6e0NfXx+jRo4ucX1RUFEQiEXbu3Ik2bdpAS0sLzZs3x927d3Hp0iU4OztDV1cX3bp1Q2JiIgDg5MmTUFNTKzLp8KRJk9CmTRvZ59OnT8vqtLa2xjfffIOMjJJ/XEZHR6Nnz57Q1dWFvr4++vXrJze0+7+PJOTn58Pb2xuGhoYwMTHB9OnTUVAFLmrO3oiC/19nEXLlfrHbD52/jYvh0XiamIqHMc+x6o8T0NXWQJ3qpiXW+WUXJ+w9eRN/n76FyJgk+G45iqycPHzepiEAQEdLHT3bNsTK7SdwOeIxbj9KwIJfD8GxjhUa2lmWy3mWG2k5LCQo5ipzVWj5eVIkJ6TJlrSk13+voxf1w76fg7FzTRAe3YnFk/vxOLUvFLk5eQCA0GO3sOKbzbgSEo64R89wPugadq87jNbdmxY5Tlpyutxx8vPy39qu9d/uwN8bQxD36Nlby5W23o+OmVrhMVeZq+/ru8+X4chvJ/Eo4ike3ojGj6P+B0kNU9RpZgsAkEoLkByfKre0+twZJ3dfQFaG/NujPxvVCTqG2vhzVdGRqfGPnsF/6m84uvU0Mt7ydJVYLMKMgPH4bdGfiI1MKLL9v21x/cwJ106EIy4y8a3nqamjgRkB47Bq3C94kSL/91macyw3zNUKj7nKXK0I+nq0wIGD1xB06AYeRT/HytVByM7ORTf3xsWWv3M3Dv/bcBzHQyKQm1v89eTMb3fi0OEbiHr0DA8fJmDpD4GQSAxQt075PkJf7hScq/3798fy5csxZ84cNGnSBGFhYQgKCpK9wCs6OlruBk9MTAyaNm2Kpk2bIjY2FsuXL0fTpk0xcuTIUh23SnbECuHYsWOIiYnByZMnsWLFCsydOxefffYZjIyMcOHCBYwZMwZff/01njx5AgDIyMiAu7s7jIyMcOnSJezatQtHjx4t05Dm5cuXw9HREVevXsXs2bNLLDd37lzMmjULV65cgaqqKr788ktMnz4dq1evxqlTp3D//n3MmVP4mGfbtm1hZ2eH3377TbZ/bm4utm7diuHDhwMAHjx4gK5du8LDwwPXr1/Hjh07cPr06RLPQSqVomfPnkhKSsKJEydw5MgRPHz4EP379y+xzT/++CMCAgKwceNGnD59GklJSdizZ0+pv6PKTFVFjN7tG+FFZhbuPi7+glRVRYz6NhJcvPV6NEBBAXAx/BEa1S7sZLW3kUBNVQUXb0XLyjyKS0bsszRZGaKKhLnKXH2TlZ05tt5chk2Xv8d0/xEwsyocmWVgqgd7ZzukPHuBFQdm4I/w5Vi2fyoauLz9LrOOnlaRH+4AMO93L2yPWI4f/5mOll0dBWt/edVLVBrMVeXMVR19bQDAizduYL2pdlMb1G5ig0MBIXLra9S3wpff9sYPI/xlTxiUxaDv+iAlIRWHAk68s6yhuT5adGvyXmW9Vg/FxYNhuHrs1jvLlnSORB+KuaqcuSoUVVUx6ta1QOiVKNm6ggIg9EoUHBysBDuOjk7hvKdpJTxdS+/Py8sLjx49QnZ2Ni5cuAAXFxfZtpCQEAQEBMg+29jYoKCgoMgSEhJSqmOyI7YExsbGWLNmDerVq4fhw4ejXr16yMzMxLfffos6derAx8cH6urqOH36NABg27ZtyMrKwpYtW9CwYUN07NgRP/30E3777bcik/++S8eOHTFlyhTUqlULtWrVKrHc1KlT4e7uDnt7e0ycOBGhoaGYPXs2WrdujaZNm2LEiBE4fvy4rPyIESPk7t79/fffyMrKQr9+/QAAvr6+GDRoECZNmoQ6deqgVatWWLNmDbZs2YKsrKwixw8ODsaNGzewbds2ODk5wcXFBVu2bMGJEydw6dKlYtu8atUq+Pj4oE+fPrC3t4e/vz8MDAxK9f1UVp842uLEei+c+XkiBnZxgtfy3UhNL/q9AoChnhZUVcRF5npNSs2Eib4OAMDEQAc5uXlIfyk/CiApLRMmBjrlcxLlhC/rUg7MVebqK7dDI/HjhADM6rcaP03bCosaplj+zzRo6WrAsmbhkwJfTe+Bg7+dwqz+q3H/ejR8/5qManbmxdZnaWuGz0d1xIHNJ2XrXmZk4+fZO/H98P9hzpdrcfPCPczZMvaDO03Lq16hMVOVA3NV+XJVJBJhzPLBuHn2Dh6FPym2TNeh7fEo4inCz9+TrVNTV4XPlvH45ds/kPj4eZmP36BVXbgPaY9V4355r/Kdv2qLly+ycHpv8d/1K+36tkTtJrbYOPv9ptcq7hzLG3NVOTBXlS9XhWRgoA0VFTGSk+UHByQnZ8DYSJjf6CIRMH6sG27cfIyoqLc/wVXRKWuusiO2BA0aNIBY/PrrkUgkaNSokeyziooKTExMkJBQ+DhOREQEHB0doaPz+v9crVu3hlQqlZuX5n04OzvL/jxmzBjZ/Cr/nWOlcePXQ9tfDZ1+s40SiUTWPqDwUYv79+/j/PnzAICAgAD069dP1uZr164hICBA7nju7u6QSqWIjCz6ApKIiAhYW1vD2tpats7BwQGGhoaIiIgoUj41NRWxsbFydxhUVVXlzrc42dnZSEtLk1uk+Xlv3aciuhzxGIPm/o4R32/HuRtRWDz2MxjpaSm6WUQfDXO1gudqwcd7tP5y8E2c2h+KyPCnCD0ejtkD1kDXQBttezpDJC580caBzSdx5I+zeHDjMX6etRNP78fD/cvWReoysTDE9zsm4tT+ywj67bRsfVpSOv5afxR3rkTi7tVH2LRwD47tuoAvxnf5oLaXV71EZcFcVb5c9Vo9FDUbVIfv4J+K3a6uqYYO/VsVGSk6bGF/RN+OwbE/zpT52Fq6mpi+cSxWjfsFac+LH437X+5D2uHY9jPIzS55DkOz6sYYu9wTS4f6vbXcKyWdI5EQmKsVPFella8fQGgTJ3SBrY0ZFn6/X9FNoTKqki/rehuxWFxkLpLc3KL/wVdTU5P7LBKJil0nlb7/RBTve+w3Q3zBggWYOnVqsfW92Z5Xb4j877o322dubo4ePXpg06ZNsLW1xcGDB+WGUKenp+Prr7/GN998U+RYNWrUeMfZlR9fX1/Mnz9fbp2lYxdYNXVXUIvKJisnD08SUvAkIQU3H8Zi95Jh6Nm2IQICi941THnxEnn5Uhj/++jZK8YG2nieVnh37XlqBtTVVKGrpSE3KtZYXxvPUyvYS2PepRLdvaKimKtVI1draTVDbW0nhbQnI+0lnj6IRzVbc4SdKnzxS/Rd+TfLRt+LLfJiGWMLAyzdNwXhlx5g9eSS3+z9yp3QSDRr7yBcw8u53g/CXK3UmKtVI1ftVBqitmrxcwKWxfiVQ+DyaVNMcVuIZ0+Lf1N2mz4u0NDWwNGtp+TWN2nfADYNrdGmT4vCFf/+Xex66o8/lu7Dbwt3v/P4lnYSWNiYY8FfU2TrZDfP0rdgROOpiH34uvOnYet6sK5XDYu/WvvWems3tYWRxAB+57+XrVNRVUGjT+rj87Fd8Jn+EEjfmEqhpHMsd8zVSo25WjVy1ca2E2xruSmoRe+WmpqJ/HwpjP4z+tXISAdJyR/+G/0br85o6VIbk6ZsxbNnLz64PoVT0lxVuo5YMzMzxMXFoaCgQBZaYWFhH1yvvb09AgICkJGRIQvQM2fOQCwWo169erJjvznRb35+Pm7evIkOHTqUWK+5uTnMzYt/FLMsRo4ciYEDB6J69eqoVasWWrd+PbqoWbNmCA8Pf++3vdnb2+Px48d4/Pix7G5YeHg4UlJS4OBQ9AepgYEBLC0tceHCBbRt2xYAkJeXh9DQUDRr1qzE4/j4+MDb21tuXQcv//dqY0UmFomgplr8/wXz8qW4HRWP5g41cOLqAwCF18vN7WtgV3AYACAiKh65eflo7lADx0MLH8uqaWEES1N93LgfW2y9FZaSBnBVwVytGrn6he3k92pjedDU0YCljRmCd55HfPRzPItNRvVaErkyVnYSXA6+KftsYmGIpfum4P61R1gxIeC9Xvhg18gaSfGpgre/vOr9IMzVSo25WjVy1cOs6Mt2ymr8yiFo9bkzpnVZhPiokl965T60Hc7/cwWp//mBvnDgKqhrvn4Dez1nO0z5+WtM6bQAMQ+LvnCrOI/vxGB0sxly64bO6wstPU2sn/JbkSkP3Ie2x93Qh3h4IxpvE3b8VpF6p/w8Go/vxmLn8r/lOmHfdo7ljrlaqTFXq0auft57zXu1UVHy8qS4ezcOzZra4MzZwt/oIhHQrGlN7N135YPq/sarMz5pXReTp25DXFwFu+4sKyXNVaWbmqB9+/ZITEzEsmXL8ODBA/j5+eHgwYMfXO+gQYOgqamJIUOG4ObNmzh+/DgmTJiAwYMHyx4X6NixIwIDAxEYGIjbt29j7NixSElJ+eBjl4a7uzv09fWxaNEiDBs2TG7bjBkzcPbsWXh5eSEsLAz37t3Dvn37Spyk283NDY0aNcKgQYNw5coVXLx4EZ6enmjXrl2JjxlMnDgRS5Yswd69e3H79m2MGzfund+BhoYG9PX15RaxSsW6h6CloYa61maoa20GAKhmZoC61maQGOtBU10V4zxao6GdJSxM9FC/pjlmD+8CMyNdBF+6K6tj3bQv0LdTE9nnbYdD0atdI3Rv7QAbS2PM9HSDloYa/j5d+AKDjJc52HfyJiYPaAen+taoX9Mcc0a44/r9GNx8WMk6YqlSY65WkVwVqZTp/Mti5Pwv0KhVXUisTWDf3A5zNo9Ffr4UIX9dBAD8+dNh9BzdCZ/0aAZLWzN4zvwc1nUscGhr4SO1JhaGWLZ/ChKfJGHDnD9hYKoHI3N9GJnry47h1t8V7fs0R/XaFqhe2wL9J3VDly9bY9+GY7IyrT5tgg3nFsi1zdLWDHYNq8PIXB8aWmqwa1gddg2rQ1VN5b3rJfpQzFXm6pu8Vg9Fx4GtsWSoH16mZ8FIYgAjiQHUNeVH6VWzk6DRJ/URtOl4kTpiHybgUfgT2RL3b2du9O0YpCamycrZNa4Ju8Y1oaWjCQMzfdg1roka9QtfMJObnStXx6PwJ0hPzcTLF1l4FP4EeW+87VtbTwtt+7RA0KaQYs9pyUEffD6mMwDgZXpWkXqzMrPx4vmLIvPgvu0cid6GuVpFclVcsfoBirNr90V0/9QRXTo3RI0aJpj0jTs0NdURdOg6AGDm9M8wcng7WXlVVTFq1TJHrVrmUFUTw9RUD7VqmaNaNUNZmYkTusCtUwMs8t2PzMwcGBnpwMhIB+rqFf/7oKKU7m/N3t4e69atw+LFi7Fw4UJ4eHhg6tSp+Pnnnz+oXm1tbRw6dAgTJ05E8+bNoa2tDQ8PD6xYsUJWZvjw4bh27Ro8PT2hqqqKyZMnv/UuWHkQi8UYOnQoFi9eDE9PT7ltjRs3xokTJ/Ddd9+hTZs2KCgoQK1atUp8+6FIJMK+ffswYcIEtG3bFmKxGF27dsXatSU/fjRlyhTExsZiyJAhEIvFGD58OHr37o3U1Mp9R8feRoL/zewn++w9sD0A4J/Tt+C7+ShsLI3RvXUDGOpqIjU9C+FRcRjtuwMPY16PHLAyN4Ch7us5Y49cvAtDPW183asVTAy0cTc6Ed+s+EvuBV4r/whBQUEBlo7vAXU1FZy/GYWlW4LL/4SF9v5P9lAFxFxlrpaWaTUjzPx5JPSMdJD6PB23LtzH5K5LkPrvnIN7/xcMdQ01fL2oH/QMdfDw1hN8+8UqxP7bcdCsvT2s7CSwspNg681lcnV3NX09Am3glO6QVDdBfr4Uj+/FwXfkzzj99+vRCDr6WrCuYyG3/+RVnmjcup7s87qQwrcOD2nqg/h/R3u9q94KgblaqTFXmatv6vF1YYfl8iPyb1FfPup/OPLb65cUug9th2dPkxB69EaZj7X+4mLZn+s62aHjgNaIe5SIIfUmlaqedv1aAiIRju88W+x2SzsJ9E31St0+Ic6xzCpArvr5+eGHH35AXFwcHB0dsXbtWrRo0aLYshs2bMCWLVtw82bh0yROTk5YvHhxieWrOuYqc/VjCTlxG4aG2hg2pA2MjHTw4EECZny7A8kphb/jzc31IX1jJKiJiR42+A+Xfe7fzwX9+7kg7Fo0vKduAwD0/Lxw5PCqHwfJHWvpD4E4dFgBeSiUCpCriiAqeJ9n+ahKGTFiBBITE7F/f+Wd3Ln5sBXvLkQVyqVN3iVu69pkjuDHCwpb8O5CRAKpCrn6ZgcmVQ5Bz0r+8Sh0rjJT6WOrCrnqrjno3YWoQjmUtbXEbYrO1R07dsDT0xP+/v5wcXHBqlWrsGvXLty5c6fYR9gHDRqE1q1bo1WrVtDU1MTSpUuxZ88e3Lp1C1ZWVkKdBlUiVSFXO3ZeougmUCkdOzKzxG2KzlVFUboRscosNTUVN27cwLZt2yp1+BIRVRTMVSIiYTFXiYq3YsUKjBo1SvZYub+/PwIDA7Fx40bMnFm0o2PrVvlO5V9++QW7d+9GcHBwkRGRVLUxV4kqFnbEKpGePXvi4sWLGDNmDDp37qzo5hC9xoH5VEkxV6nCYq5SJcVcpQpL4FzNzs5Gdna23DoNDQ1oaGgUKZuTk4PQ0FD4+PjI1onFYri5ueHcuXPvdbzMzEzk5ubC2Nj4wxpOlQ5zlSosJb1eZUesEgkJCVF0E4iIqhTmKhGRsJirpCx8fX0xf/58uXVz587FvHnzipR99uwZ8vPzZS9/ekUikeD27dvvdbwZM2agWrVqcHNzK3ObqXJirhJVLOyIJSLFU9I7YURE5Ya5SkQkLIFz1cfHB97e8u9QKG40rBCWLFmC7du3IyQkBJqamuVyDCKiUlPS61V2xBKR4ilpABMRlRvmKhGRsATO1ZKmISiOqakpVFRUEB8fL7c+Pj4eFhYWb913+fLlWLJkCY4ePYrGjRuXub1ERIJT0utVsaIbQERERERERETFU1dXh5OTE4KDg2XrpFIpgoOD4erqWuJ+y5Ytw8KFCxEUFARnZ+eP0VQiInoHjoglIsWTKroBRERVDHOViEhYCs5Vb29vDBkyBM7OzmjRogVWrVqFjIwMDBs2DADg6ekJKysr+Pr6AgCWLl2KOXPmYNu2bbCxsUFcXBwAQFdXF7q6ugo7DyIiGSW9XmVHLBEpnEhJH0kgIiovzFUiImEpOlf79++PxMREzJkzB3FxcWjSpAmCgoJkL/CKjo6GWPz6gdf169cjJycHX3zxhVw9Jb0QjIjoY1N0rioKO2KJiIiIiIiIKjgvLy94eXkVuy0kJETuc1RUVPk3iIiISo0dsUSkeEp6J4yIqNwwV4mIhMVcJSISlpLmKl/WRURKbd68eRCJRHJL/fr1Fd0sIiIiIiIiIqpiOCKWiBRPqtg7YQ0aNMDRo0dln1VVGY1EVMkpOFeJiKoc5ioRkbCUNFfZ20BEiqfgRxJUVVVhYWGh0DYQEQlKSR/1IiIqN8xVIiJhKWmucmoCIqqSsrOzkZaWJrdkZ2cXW/bevXuoVq0a7OzsMGjQIERHR3/k1hIRERERERFRVceOWCJSvIICwRdfX18YGBjILb6+vkUO7eLigoCAAAQFBWH9+vWIjIxEmzZt8OLFCwV8EUREAhE6V4mIlB1zlYhIWEqaq5yagIgUrxxC08fHB97e3nLrNDQ0ipTr1q2b7M+NGzeGi4sLatasiZ07d2LEiBGCt4uI6KOoRBejRESVAnOViEhYSpqr7IgloipJQ0Oj2I7XdzE0NETdunVx//79cmgVERERERERESkrdsQSkeJVoLclpqen48GDBxg8eLCim0JEVHYVKFeJiKoE5ioRkbCUNFc5RywRKbWpU6fixIkTiIqKwtmzZ9G7d2+oqKhg4MCBim4aEREREREREVUhHBFLRIpXIFXYoZ88eYKBAwfi+fPnMDMzwyeffILz58/DzMxMYW0iIvpgCsxVIqIqiblKRCQsJc1VdsQSkeIpcJLu7du3K+zYRETlRklffkBEVG6Yq0REwlLSXOXUBERERERERERERETljCNiiUjxlHSSbiKicsNcJSISFnOViEhYSpqr7IglIsVT0kcSiIjKDXOViEhYzFUiImEpaa6yI5YqJY1BcYpuAhFRlZKflKzoJhARVSnSnBxFN4GIqEqpufiOoptA9MHYEUtEiqekd8KIiMoNc5WISFjMVSIiYSlprvJlXURERERERERERETljCNiiUjxlPROGBFRuWGuEhEJi7lKRCQsJc1VdsQSkeJJpYpuARFR1cJcJSISFnOViEhYSpqrnJqAiIiIiIiIiIiIqJxxRCwRKZ6SPpJARFRumKtERMJirhIRCUtJc5UdsUSkeEoawERE5Ya5SkQkLOYqEZGwlDRXOTUBERERERERERERUTnjiFgiUjypct4JIyIqN8xVIiJhMVeJiISlpLnKEbFERERERERERERE5YwjYolI4QoKpIpuAhFRlcJcJSISFnOViEhYypqr7IglIsVT0kcSiIjKDXOViEhYzFUiImEpaa5yagIiIiIiIiIiIiKicsYRsUSkeAXKeSeMiKjcMFeJiITFXCUiEpaS5io7YolI8aTKOTcMEVG5Ya4SEQmLuUpEJCwlzVVOTUBERERERERERERUzjgilogUT0kfSSAiKjfMVSIiYTFXiYiEpaS5yhGxREREREREREREROWMI2KJSOEKlHRuGCKi8sJcJSISFnOViEhYypqr7IglIsVT0kcSiIjKDXOViEhYzFUiImEpaa5yagIiIiIiIiIiIiKicsaOWPpgISEhEIlESElJUXRTqLKSFgi/EFVizFX6YMxUIjnMVfpgzFUiOcxV+mBKmqucmqAS6NGjB3JzcxEUFFRk26lTp9C2bVtcu3YNjRs3VkDrCAC+sumAdmYNUVPHHNnSXNxIicL6+wfxODNRVsZYXRfj6nRHc+O60FbVQHRGIrZEBeNEws231t2nuisG1mwHY3U9PEiPxco7+xCR9li2XV2sCq86n6GTxBFqYlVcTLqLH2/vQXJOermdr+AKlHNuGFIc5mrFIhaLMXheX3Qa1BbGFoZ4HpOEw5tDsHXRbrlyQ+b3R7eRnaBrqINbZ25jzbgNeHo/Trbdqo4lRi8bjAat60FVXRWR16MRMGc7roXcKvHYmjqaGLlkEFr1bA59Ez3ERSZg79oD+Od/R+TK2besi2GLBqK+S21I86V4EBYFn67fIycrR9gvQyjMVfrImKsfz4CZvfBJbxdY17dC9sschJ+9g19mbsWTuzGyMp+OckPHgZ+gdjNb6Ohro5fREGSkZsrV8+W3fdDi02ao1cQGeTl56G08tMixxq0ehgat6sOmoTUeRzzFmGbTim3TF1N6oPsoN5jXNEPasxf4e/0hbFv81zvPRU1dFWvP+6JWExuMaToND65FybY5d3GE57x+qNnAGjlZubhxMhz/m7oF8Y8SS66wPDFX6SNjrlZesUdiERMYg5zUHOjU0IGtpy30aum9c79n557hrt9dGDsZo/7k+rL1BQUFeLz7MeKPxyM/Mx96dfVgN8wOWhZa5Xka5U9Jc5UjYiuBESNG4MiRI3jy5EmRbZs2bYKzs3OlD9+cnAr6Q/Y9NTW0w19PzuLrSz9h8pUNUBWrYGXTkdAUq8nKzGowADW0zTDzWgCGnF+Bk4k3sKDRV6ijV63EejtKHOFVtwc2PTyKERdX4/6LWKxoOgKGajqyMhPq9kBrM3vMvvE7JoT6w1RdH9839izX8yWq7JirFUv/GT3RY0wX/DThV4xwmIRfZm5Fv2k90WtCt9dlphd+Xj32Z0xo6YOsjGz4Bs2CmsbrnF3090yoqKpgWqf5GO88Aw+vR2Hh3zNhJDEs8dhjVgyBs3sTLBm8BiMcJuGv1YHwWjsCrj2cZWXsW9aF78HvEHrkGia4+MCrhQ/2+QUp7QsGiIrDXP14GrdtgP3rDuEb128xs8tCqKqpYsmhWdDU1pCV0dBWx6VDYfjDd0+J9aiqq+Lkn+fwj//htx7v0KZjOLHjbInbx60ehm4jOuHnab9hhP0kzOm5FLcv3n+vcxm1bDCexyQVWW9hY475e6cj7PhNjGk6DT5dF8HAVB9zd099r3qJqgLmauX07PwzRG2NQvXe1eG4yBE6NXQQvjQcOalvP9esxCxEbYuCfj39Itue/vMUsYdjUWt4LTSa3whiDTHCl4ZDmsNr0cqIHbGVwGeffQYzMzMEBATIrU9PT8euXbvQq1cvDBw4EFZWVtDW1kajRo3wxx9/yJX9888/0ahRI2hpacHExARubm7IyMiQbd+4cSMaNGgADQ0NWFpawsvLCwAQFRUFkUiEsLAwWdmUlBSIRCKEhIQU297nz5+/sz3t27eHl5cXJk2aBFNTU7i7u5f9C6oApoT9ioOxoYjMiMf99FgsvrUTFlpGqKdfXVamoUFN7H58FhFpjxHzMgmbI48hPfcl6ulVL7HeATXa4O+nF3Ag9jKiMhLww+2/kJWfi8+qNQcA6Kho4rNqzbH27j+4kvwAd148xeLwnWhsaIMG+jXK/byFUiAtEHwhehvmasXi4FoPZ/dfxsUDVxD/KBGndp9H6OFrqNe8tqxM74ndsfX73Ti3/zIib0Rj6ZCfYFLNCK17Feahvokeqtethu1L9yDyRjSe3o/DLzO3QktHEzYNrd9y7Lo4siUE10+EI/5RIg5sOIoH1x6hXovXxx67Ygj2rD2AHUv34lH4Ezy5G4OTu84hNyev/L6UD8RMpY+NufrxfPvp9zi8OQSPwp/g4fVH+GGYHyQ1zVDHyU5WZs/qwsyKOH+3xHq2zNuJv1YFIvJGdIll1k3chP3rDiE2Mr7Y7TXqW6HHmC6Y22sZzv19GXFRCbh35SGuHL3+zvNo3rUJnDo3xv+m/VZkWx0nO4hVxNg0aztiH8bj/tVI7PpxP2o1sYGKqso76y4PzFX62JirlVPMwRhIOkggaSeBtpU27IbZQUVDBQknEkrcp0BagHvr7sHawxoa5hry2woKEBsUi+o9q8PYyRg6NXRQZ0wdaaj/PAAAIP5JREFU5KTkICm06I2sykRZc5UdsZWAqqoqPD09ERAQgII33iq3a9cu5Ofn46uvvoKTkxMCAwNx8+ZNjB49GoMHD8bFixcBALGxsRg4cCCGDx+OiIgIhISEoE+fPrK61q9fj/Hjx2P06NG4ceMG9u/fj9q1axfblveRlZX11va8snnzZqirq+PMmTPw9/cv8/EqIh1VTQBAWu7rR8Bupj5CR4kj9FS1IIIInSSOUFdRw9XkB8XWoSpSQV09K1xOej2ioAAFuJx0Dw0MawIA6ulbQU2sistJ92RlojMTEfcyWVaGiIpirlYs4efuoGnHhrCqYwkAsGtcEw0/qY9LQVcBABa25jCxNMLVozdk+2SmZeL2hftwcK0HAEh7/gLRt5+is2c7aGprQKwiRvevOyM5PgX3Qh++5dh34drDGSbVjAEAju0boHpdS4QevgYAMDTTh33LukhJSMWq04uwM3YDfjw+Hw1a1y+xTiJlxFxVHB0DbQDAi6SPPy1Vyx5OiH2YgJafNcOWB3747aEfvDeMgZ6R7lv3MzQ3wOSfx2Cp51pkZ2YX2X4v9CGk0gK4D+sAsVgMbX1tuH3VFleP3kB+Xn55nQ5RhcJcrXykeVKkR6bDoIGBbJ1ILIJBAwO8uP+ixP0e73kMNX01SNpLimzLTsxGbmouDBsaytapaqtCr5YeXtwruU6quDhHbCUxfPhw/PDDDzhx4gTat28PoPBxBA8PD9SsWRNTp75+TGfChAk4dOgQdu7ciRYtWiA2NhZ5eXno06cPatYs7Jxr1KiRrPyiRYswZcoUTJw4UbauefPmZW6rlZXVW9vzSp06dbBs2bJ31pednY3sbPkLNGlOHsTqFfOfrwgifFP3c1xPiURkxuvRA3Nu/I75jQbhYPv5yJPmI0uag2+vbcbTl8+LrcdATQeqYhUk5ciHa1JOOmrqmAMATNT1kCPNQ3pe1n/KvICJ+tsvgCsUJZ0bhhSLufqfXC3Ih1ikmFFG25fshba+NjZGrII0X/rvKKg/cGzbaQCAsYUhACA5PkVuv+T4FLlpB2Z0XoD5e6ZjX9oWFEgLkJKQCp9u3yM9JQMl8ZvwKyb972tsf/I/5OXmQSotwMrR/rhxKgIAYGlXeEHsObcffp62BffDotDZsx2WHZ2D0Y285eaorVCYq6QAzNWPn6sikQhjVw7FzdO3EXXr8bt3EJilnQSSmqZo+4Urlg1ZC7GKGGNXDMXsXVMw3W1+iftN2zQe//zvMO6GPoSkplmR7XFRCfBxX4RZOyZjkv9oqKiq4NbZO/iu++LyPJ23Y66SAjBX5XM1PycfKuqKuV59H3kv8gApoG6gLrdezUANL2NfFrtP2p00JIQkwHGxY7Hbc1IKpzRQ01eTW6+mr/bO6Q4qPCXNVY6IrSTq16+PVq1aYePGjQCA+/fv49SpUxgxYgTy8/OxcOFCNGrUCMbGxtDV1cWhQ4cQHV34mJGjoyM6deqERo0aoW/fvtiwYQOSk5MBAAkJCYiJiUGnTp0Ea+u72vOKk5PTe9Xn6+sLAwMDueXJ9guCtVdo3vV7wU5Xgrk3tsmtH1nLHXqqWpgY+jNGXlyDHY9OYUGjr2CnY6GgllYcnJqAFIG5Kp+rkbgtWHtLq10/V3T88hP4DlqNsU4z8MNQP/Sd8jk6e7YrVT0TfhqJlIRUeLedAy8XH5zZdwkL98+UdeQWp+eEbrBvWRezP1+Ccc4z8PPULZjw00g07VT4Q0UkFgEAAn8+gkMBIXgQFgV/7814cicG7sM7lvmcyxszlRSBufrxc3WC30jYNLTG9wNXlvuxiiMSi6GuqY6lQ37CzdO3cf1EOH4cuR5NOzZE9brFvweh14Ru0NbTwnbfvSXWayQxxOSfv8bhLScwvsVMeLebg7ycPMzZNaWczuTdmKukCMxV+Vy9HvDuaU8qk/yX+bjnfw+1RtaCmp7au3eoYpQ1V9kRW4mMGDECu3fvxosXL7Bp0ybUqlUL7dq1ww8//IDVq1djxowZOH78OMLCwuDu7i6b+FpFRQVHjhzBwYMH4eDggLVr16JevXqIjIyEltbb37InFhf+E3nzUYjc3Ny37vOu9ryio6NTQg3yfHx8kJqaKrdUH+DyXvt+bJPr9UQrU3t8E/o/JGanytZX0zLGF9at4Ru+C6HJ93E/PRabIo/iTtoT9LFuVWxdqbkZyJPmw1hd/u2Kxuq6eP7vKNnnOS+gLlaF7r9TIbwuo4fnOR//8TSiyoa5+nqxheIetR+1bDB2LN2LkB1nEXUzGkd/P4ndq/7BgJm9AQBJcSkAUOSlW0YSQ9ko2aYdG8LlMyd8P3AVbp29g/tXI7F2/C/IeZmDzkPaF3tcdU11DP/+S/hP2Yzz/4Qi8kY09vkF4cTOs+g75fPCY8cW1v8oXP5FGdERT2FubSrI+RNVJczVj5erXmtHwKV7M0zrOB/PnipmnsCk2GTk5ebh6b1Y2broiKcAAPMaxWdkkw4NYe9aFweytiEoZzs231sLAPC7tATTNo0HAHw+3h0ZqZn4ZcbveBAWhRunIrBk8Bo0c2sMe5c65XxWRBULc/X10nhoxX45maqeKiBGkZGquam5UDMo2tGalZCF7MRsRPwYgbOeZ3HW8ywSTyci6UoSznqeRVZ8FtQNC0fX5qbJf/+5ablFRt5S5cCO2EqkX79+EIvF2LZtG7Zs2YLhw4dDJBLhzJkz6NmzJ7766is4OjrCzs4Od+/KT8wvEonQunVrzJ8/H1evXoW6ujr27NkDPT092NjYIDg4uNhjmpkVPioUG/v64urNCbuL8z7tKQ0NDQ3o6+vLLRVxWoLJ9XqirVlDTAz9GbFZyXLbNMWFASktkL9Lkw8pxBAVW19eQT7uvngKJ+PX8/SIIIKTcW3cSnkEALiT9hS50jy5MtbaZrDQMpKVqRQKpMIvRO+BufpGripoWgIA0NTWgPQ/d7Gl+VKI/x2NGheZgOexyWjaqaFsu7aeFuq71Eb4uTsAAI1/3xZepB5pgaye/1JVU4GauioKpPKZkf/msaMS8OxpEqrXkx/ZVb2uJRKiE0t7qh8PM5UUhLn6cXLVa+0ItO7VAtM7zUdcVMkvgClvt87chqqaqmwaF6AwHwEg/lHxGek3cRPGNJmKMU2nYUzTabLpBhYNWIlNswpf7FPSfxeA108qfHTMVVIQ5urrpSJPSwAAYlUxdG11kXrr9aCsAmkBUm+lQq+2XpHyWpZacPR1hOP3rxfjZsYwsDeA4/eOUDdRh4aZBtQM1JByK0W2X15mHl48eAG9OkXrrFSUNFcrXm8WlUhXVxf9+/eHj48P0tLSMHToUACFc6z8+eefOHv2LIyMjLBixQrEx8fDwcEBAHDhwgUEBwejS5cuMDc3x4ULF5CYmAh7e3sAwLx58zBmzBiYm5ujW7duePHiBc6cOYMJEyZAS0sLLVu2xJIlS2Bra4uEhATMmjXrre18V3uqoin1esHNoil8rm1GZn4WjP+dnzU9Lws50jw8ykzA48xnmGbfB373ApGam4G2Zg3R3LgOpocFyOpZ1WwUTibcwl9PzgIAtkefwncO/XA77QkiUh+jX41PoKWijsDYywCAjPws/BNzCRPq9EBa7ktk5v2/vTsPz+nO+zj+uRNZ3SINGoklsUViD0JJ29Cxtk3FVHkSLWYwY5SMLdJ0aGwdU5m0zDCjpU36jHZCBcNgqmmLKapEedREEkuCNmOrtSUkfs8fxql7KEm5G8v7dV25rpxzfsv3HJevc3+d+3fOa1TjXtp5skC7Tn//G3DvNB9ceq+iQ8B9irx6Z/h0RbbiXvypjhw4psJdB9UwvJ6eHh2t99M+stosnbVScb95Wl/m/1tF+49o0JR+Ov7VCW1YtkXS5ZdunT1xVuPTn9eCqYtVfO6CHh/aRTXrPajNK7dZ47z5r5l668V3tWHZZ/r2zDntWLtLQ2c8p+JzF3Sk8JhaRDVR1+eiNHfs21afRb//mwZO6qd9Owq1d3uBug6MUp3QWpryTOqPd5HKibyKikJedb6Rc4bosdiHlRwzQ9+eOW99W+CbU9/qwvnLT2E94O8rv5q+qtXw8hJY9ZrX1bkz53XkwDGdOXH5W1M16lSXj59dD9atLhdXFzVoGSxJ+nLPv3X+m8vvHwhsUFNedk/51fSVu5e71abwX4dUcrFE27J2Ki97n8a9OVx/Gp0mFxcXjZw9WNlrdlhPyTaOaKjxb4/Q+C5TdPyrr3X04DFdXaI9d/byXEV7D1tP9m5euU0/HfWEnp3YRx//9RN5VfHSz1+O078LjmjP5wVOurI3Rl5FRSGv3l0CewYq//V82evZZW9gV9E/ilRaXKoHoy6/5yV/br7cH3BXUL8gubi7qHIdxyeEXb0vF5uv3h/QI0CHlh2Sl7+XPB700MHFB+Xu6y6/Nn4/3ok5wf2aVynE3mUGDx6sN998U48//rgCAy8/nTNhwgTt27dP3bt3l7e3t37xi18oJiZGp05d/l8YHx8frV+/XjNnztTp06cVFBSk1NRU9ezZU5I0cOBAnT9/Xq+99prGjRun6tWrq0+fPtacb731lgYPHqw2bdqocePGmjFjhrp16/a9Md4snntR7/8sLzC77TCH/S/vWqjVRdkqNZeU8PlbGtaop15pOUhelTz05bfH9PKuRfr0+Hfrh9XyqiZf9+8S7keHd8jXrbKG1O8mP48q2nPmK439/E2duGrZgT/mrZBpZPRyi+fk5lJJnx3PVerupU4+Y+DeQV6teLPj39Sgqf+j+DlD5PtgVR3/6mutfOMDLZiy2GqzcMbf5FnZU6Ne/6Xsvt764pPdSur5si4WX/6a1unjZ/Riz5f1s2mxSvkwWa5urircdUjJMa9o3/999w2BuqG1rDeMS9LLsTM1+LdxSlrwa1Xxs+tw4VGlTfir/j53jdVm6axVcvd017BXB6qKn137dhQqsdtUFe377oWMAL5DXnWup37VXZKUutbxZVgpP5ujNW+vlSQ9OayrBiT3tY69tn7qNW0GTe6nboM6WW3mfp4iSRrbOVn/t+5fkqQx84apZaem17R5tt5wHS48KmOMXnrqd3r+Dz/Xq+um6Pw3xdqy+nO9Pu5/rT4e3u6qG1pLldzK/iTb9o+/0PT+s9Q3oZf6JvTS+W+LlbMpTy/2fNkqNgP3E/Lq3aP6Q9V18fRFHcg8oIunLqpyUGU1Gd/EWkag+FixvudLsd+r1pO1dKn4kva+tVcl35bIJ8RHTcY3kYs7X3K/G9mMMXfPirbAfzycNb6iQ0A5fdLl5m/GBFBxuro8U9EhoJzu16cIgLsFefXuQ14F7mw/2/Kzig4B5ZQWkVbRIdxxKJ8DAAAAAAAAgJNRiAUAAAAAAAAAJ6MQCwAAAAAAAABORiEWAAAAAAAAAJyMQiwAAAAAAAAAOBmFWAAAAAAAAABwMgqxAAAAAAAAAOBkFGIBAAAAAAAAwMkoxAIAAAAAAACAk1GIBQAAAAAAAAAnoxALAAAAAAAAAE5GIRYAAAAAAAAAnIxCLAAAAAAAAAA4GYVYAAAAAAAAAHAyCrEAAAAAAAAA4GQUYgEAAAAAAADAySjEAgAAAAAAAICTUYgFAAAAAAAAACejEAsAAAAAAAAATkYhFgAAAAAAAACcjEIsAAAAAAAAADgZhVgAAAAAAAAAcDIKsQAAAAAAAADgZDZjjKnoIABIxcXFmj59upKSkuTh4VHR4QDAXY+8CgC3F3kVAG4v8ur9h0IscIc4ffq0qlatqlOnTsnHx6eiwwGAux55FQBuL/IqANxe5NX7D0sTAAAAAAAAAICTUYgFAAAAAAAAACejEAsAAAAAAAAATkYhFrhDeHh4KDk5mQW6AeA2Ia8CwO1FXgWA24u8ev/hZV0AAAAAAAAA4GQ8EQsAAAAAAAAATkYhFgAAAAAAAACcjEIsAAAAAAAAADgZhVgAAAAAAAAAcDIKsQAA4I7RqVMnjRo1qqLD0Nq1a2Wz2XTy5MmKDgUAAAD3OO497x8UYgGUic1m07Jlyyo6DAC47e6U4i8AAACAexuFWAAAAADATV28eLGiQwAAp7lw4UJFh4D7AIVY3DM6deqk+Ph4jR8/Xn5+fqpZs6YmTZpUpr4nT57UL3/5S/n7+8vT01PNmjXT3//+d+t4ZmammjZtKg8PDwUHBys1NdWhf3BwsKZNm6YBAwbIbrcrKChIy5cv19GjR9WrVy/Z7Xa1aNFCW7dutfqkp6fL19dXy5YtU6NGjeTp6anu3bvr4MGDDmP/+c9/VoMGDeTu7q7GjRvrL3/5i8Nxm82m+fPnq3fv3vL29lajRo20fPlyhzZffPGFevbsKbvdLn9/fz333HM6duxYma9dcHCwJKl3796y2WzW9o4dO9S5c2dVqVJFPj4+atOmjcM5AsCtKC4u1rhx41SrVi1VrlxZ7du319q1a63jV/Lo+++/r7CwMNntdvXo0UNFRUVWm5KSEsXHx8vX11fVqlVTYmKiBg4cqJiYGEnSoEGDtG7dOs2aNUs2m002m00FBQVW/+zsbLVt21be3t7q2LGjcnNzf6SzBwDn+8c//qGHH37YypFPPvmk9u7dK0kqKCiQzWbTwoULFRUVJU9PT73zzjuSpPnz5yssLEyenp4KDQ3Vn/70J4dxExMTFRISIm9vb9WvX18TJ06kiAvgjtOpUyeNGDFCo0aNUvXq1dW9e3etW7dO7dq1k4eHhwICAvTCCy+opKTE6hMcHKyZM2c6jNOqVSuHz89l+Yy+atUqhYSEyMvLS507d3a4/5TKdp8r3TgfX7hwQSNGjFBAQIA8PT0VFBSk6dOnS5KMMZo0aZLq1q0rDw8PBQYGKj4+/hauJsrMAPeIqKgo4+PjYyZNmmTy8vLM22+/bWw2m1mzZs0N+5WWlpqHHnrING3a1KxZs8bs3bvXrFixwqxatcoYY8zWrVuNi4uLmTJlisnNzTVpaWnGy8vLpKWlWWMEBQUZPz8/M3fuXJOXl2d+9atfGR8fH9OjRw+zaNEik5uba2JiYkxYWJi5dOmSMcaYtLQ04+bmZtq2bWs2btxotm7datq1a2c6duxojbtkyRLj5uZm5syZY3Jzc01qaqpxdXU1H330kdVGkqldu7Z59913TX5+vomPjzd2u90cP37cGGPMiRMnTI0aNUxSUpLJyckx27ZtM127djWdO3cu87U7cuSIkWTS0tJMUVGROXLkiDHGmKZNm5pnn33W5OTkmLy8PLNo0SKzffv2W/hTBHC/i4qKMr/+9a+NMcYMGTLEdOzY0axfv97s2bPHpKSkGA8PD5OXl2eM+S6PdunSxWzZssVkZ2ebsLAwExcXZ403bdo04+fnZ5YsWWJycnLMsGHDjI+Pj+nVq5cxxpiTJ0+aDh06mKFDh5qioiJTVFRkSkpKzMcff2wkmfbt25u1a9eaXbt2mUceecQhRwPA3W7x4sUmMzPT5Ofnm88//9xER0eb5s2bm9LSUrN//34jyQQHB5vMzEyzb98+89VXX5kFCxaYgIAAa19mZqbx8/Mz6enp1rhTp041GzZsMPv37zfLly83/v7+5pVXXqnAMwWAa0VFRRm73W4SEhLM7t27zdq1a423t7cZPny4ycnJMUuXLjXVq1c3ycnJVp+goCDz2muvOYzTsmVLhzY3+4x+4MAB4+HhYcaMGWN2795tFixYYPz9/Y0kc+LECWNM2e5zb5aPU1JSTJ06dcz69etNQUGB+ec//2neffddY4wx7733nvHx8TGrVq0yhYWFZvPmzeaNN964/RcZ16AQi3tGVFSUefjhhx32RUREmMTExBv2e//9942Li4vJzc297vG4uDjTtWtXh30JCQmmSZMm1nZQUJB59tlnre2ioiIjyUycONHat2nTJiPJFBUVGWMuJ1ZJ5tNPP7Xa5OTkGElm8+bNxhhjOnbsaIYOHeow9zPPPGMef/xxa1uSmTBhgrV99uxZI8msXr3aGHP5Rrhbt24OYxw8eNBIss65LNdOklm6dKlDmypVqjjcdAPArbpSiC0sLDSurq7myy+/dDj+k5/8xCQlJRljvsuje/bssY7PmTPH+Pv7W9v+/v4mJSXF2i4pKTF169a1CrFXz3m1K4XYrKwsa9/KlSuNJHPu3LnbcaoAcMc5evSokWR27txpFWJnzpzp0KZBgwbWB/krpk6dajp06PC946akpJg2bdo4JWYA+KGioqJMeHi4tf3iiy+axo0bWw9PGXP53tJut5vS0lJjTNkLsTf6jJ6UlORQTzDGmMTExGsKsTe7z71ZPh45cqR57LHHHM7nitTUVBMSEmIuXLjwvdcHzsHSBLintGjRwmE7ICBAR44cuWGf7du3q3bt2goJCbnu8ZycHEVGRjrsi4yMVH5+vkpLS687t7+/vySpefPm1+y7Op5KlSopIiLC2g4NDZWvr69ycnJuOPeV49ebu3LlyvLx8bHm2bFjhz7++GPZ7XbrJzQ0VJKsr5799xhS2a7dmDFjNGTIEHXp0kW/+93vHMYDgFuxc+dOlZaWKiQkxCF/rVu3ziHXeHt7q0GDBtb21bnr1KlTOnz4sNq1a2cdd3V1VZs2bcocx9W5MSAgQJJumhsB4G6Rn5+v2NhY1a9fXz4+PtbyUwcOHLDatG3b1vr9m2++0d69ezV48GCH3Dxt2jSH3Lxw4UJFRkaqZs2astvtmjBhgsOYAHCnuPq+MCcnRx06dJDNZrP2RUZG6uzZszp06FC5xr3RZ/ScnBy1b9/eoX2HDh2uGeNG97llyceDBg3S9u3b1bhxY8XHx2vNmjXWWM8884zOnTun+vXra+jQoVq6dKnDEgxwnkoVHQBwO7m5uTls22w2Xbp06YZ9vLy8bvvcVxL39fbdLJ5bnfvKXFfmOXv2rKKjo/XKK69c0+9KUeFmY3yfSZMmKS4uTitXrtTq1auVnJysjIwM9e7d+4eeCgBIupy7XF1dlZ2dLVdXV4djdrvd+v16ucsYc9vi+LHyOABUhOjoaAUFBWnevHkKDAzUpUuX1KxZM4cX1lSuXNn6/ezZs5KkefPmXVNEuJKrN23apP79+2vy5Mnq3r27qlatqoyMjGvesQAAd4Krc1xZuLi4XHOveb01sH/I5+uyjHFl7rLk49atW2v//v1avXq1srKy1LdvX3Xp0kWLFy9WnTp1lJubq6ysLH3wwQcaPny4UlJStG7dumvmxe1FIRb3vRYtWujQoUPKy8u77lOxYWFh2rBhg8O+DRs2KCQk5JriQHmVlJRo69at1tNaubm5OnnypMLCwhzmHjhwoMPcTZo0KfMcrVu3VmZmpoKDg1Wp0g//K+/m5ubwBPAVISEhCgkJ0ejRoxUbG6u0tDQKsQBuWXh4uEpLS3XkyBE98sgjP2iMqlWryt/fX1u2bNGjjz4qSSotLdW2bdvUqlUrq527u/t18xsA3MuOHz+u3NxczZs3z8qzn3zyyQ37+Pv7KzAwUPv27VP//v2v22bjxo0KCgrSb37zG2tfYWHh7QscAJwkLCxMmZmZMsZY/wG/YcMGValSRbVr15Yk1ahRw+GFWadPn9b+/fvLPc9/v7zr008/LdcYZcnHkuTj46N+/fqpX79+6tOnj3r06KGvv/5afn5+8vLyUnR0tKKjo/X8888rNDRUO3fuVOvWrcsVC8qHQizue1FRUXr00Uf19NNP69VXX1XDhg21e/du2Ww29ejRQ2PHjlVERISmTp2qfv36adOmTZo9e/Y1b4f9Idzc3DRy5Ej94Q9/UKVKlTRixAg99NBDVmE2ISFBffv2VXh4uLp06aIVK1ZoyZIlysrKKvMczz//vObNm6fY2FiNHz9efn5+2rNnjzIyMjR//vwyF5ODg4P14YcfKjIyUh4eHvL09FRCQoL69OmjevXq6dChQ9qyZYuefvrpH3QtAOBqISEh6t+/vwYMGKDU1FSFh4fr6NGj+vDDD9WiRQs98cQTZRpn5MiRmj59uho2bKjQ0FD98Y9/1IkTJxy+chYcHKzNmzeroKBAdrtdfn5+zjotALhjPPDAA6pWrZreeOMNBQQE6MCBA3rhhRdu2m/y5MmKj49X1apV1aNHDxUXF2vr1q06ceKExowZo0aNGunAgQPKyMhQRESEVq5cqaVLl/4IZwQAt2b48OGaOXOmRo4cqREjRig3N1fJyckaM2aMXFwur+z52GOPKT09XdHR0fL19dVLL71U7ge0hg0bptTUVCUkJGjIkCHKzs5Wenp6ueO9WT5+9dVXFRAQoPDwcLm4uOi9995TzZo15evrq/T0dJWWlqp9+/by9vbWggUL5OXlpaCgoHLHgfJhjVhAUmZmpiIiIhQbG6smTZpo/Pjx1tNRrVu31qJFi5SRkaFmzZrppZde0pQpUzRo0KBbntfb21uJiYmKi4tTZGSk7Ha7Fi5caB2PiYnRrFmz9Pvf/15NmzbV66+/rrS0NHXq1KnMcwQGBmrDhg0qLS1Vt27d1Lx5c40aNUq+vr7WPyZlkZqaqg8++EB16tRReHi4XF1ddfz4cQ0YMEAhISHq27evevbsqcmTJ5fnEgDA90pLS9OAAQM0duxYNW7cWDExMdqyZYvq1q1b5jESExMVGxurAQMGqEOHDrLb7erevbs8PT2tNuPGjZOrq6uaNGmiGjVqsI4hgPuCi4uLMjIylJ2drWbNmmn06NFKSUm5ab8hQ4Zo/vz5SktLU/PmzRUVFaX09HTVq1dPkvTUU09p9OjRGjFihFq1aqWNGzdq4sSJzj4dALhltWrV0qpVq/TZZ5+pZcuWGjZsmAYPHqwJEyZYbZKSkhQVFaUnn3xSTzzxhGJiYhzWcS2LunXrKjMzU8uWLVPLli01d+5c/fa3vy13vDfLx1WqVNGMGTPUtm1bRUREqKCgQKtWrZKLi4t8fX01b948RUZGqkWLFsrKytKKFStUrVq1cseB8rGZ27mQGoAyS09P16hRo3Ty5MmKDgUA7huXLl1SWFiY+vbtq6lTp1Z0OAAAAADuIyxNAAAA7lmFhYVas2aNoqKiVFxcrNmzZ2v//v2Ki4ur6NAAAAAA3GdYmgD3vHfeeUd2u/26P02bNq3o8AAATuTi4qL09HRFREQoMjJSO3fuVFZWlvVSRAAAAAD4sbA0Ae55Z86c0eHDh697zM3NjcWoAQAAAAAA4HQUYgEAAAAAAADAyViaAAAAAAAAAACcjEIsAAAAAAAAADgZhVgAAAAAAAAAcDIKsQAAAAAAAADgZBRiAQAAAAAAAMDJKMQCAAAAAAAAgJNRiAUAAAAAAAAAJ/t/nPPTruFuMJIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 4, figsize=(15, 6))\n", + "\n", + "for i, name in enumerate([\"n_components\", \"length\", \"area\", \"roundness\"]):\n", + " vmax = df_niches_geometries[name].sort_values()[-2:].mean()\n", + " sns.heatmap(df_niches_geometries[[name]], cmap=\"viridis\", annot=True, fmt=\".2f\", vmax=vmax, ax=axes[i])\n", + "\n", + "plt.subplots_adjust(wspace=1.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Cell-type / Niche network\n", + "\n", + "The distances between cell-types and/or niches can be summerized into one network, and plot with the [Netgraph](https://netgraph.readthedocs.io/en/latest/index.html) library. It provides a quick overview of the interactions happening in the micro-environment of one slide.\n", + "\n", + "To continue, you'll need to install Louvain and Netgraph:\n", + "\n", + "```sh\n", + "!pip install python-louvain\n", + "!pip install netgraph\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import networkx as nx\n", + "from community import community_louvain\n", + "from netgraph import Graph" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.spatial.distance)\u001b[0m Computing all distances for the 4 pairs of categories\n", + "100%|██████████| 28/28 [00:07<00:00, 3.61it/s]\n", + "100%|██████████| 8/8 [00:02<00:00, 3.69it/s]\n", + "100%|██████████| 28/28 [00:07<00:00, 3.52it/s]\n", + "100%|██████████| 8/8 [00:02<00:00, 3.48it/s]\n" + ] + } + ], + "source": [ + "weights, node_color, node_size, node_shape = sopa.spatial.prepare_network(adata, \"cell_type\", \"niches\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "g = nx.from_pandas_adjacency(weights)\n", + "node_to_community = community_louvain.best_partition(g, resolution=1.35)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/quentinblampey/mambaforge/envs/spatial/lib/python3.10/site-packages/netgraph/_edge_layout.py:978: RuntimeWarning: invalid value encountered in divide\n", + " displacement = compatibility * delta / distance_squared[..., None]\n", + "/Users/quentinblampey/mambaforge/envs/spatial/lib/python3.10/site-packages/netgraph/_utils.py:360: RuntimeWarning: invalid value encountered in divide\n", + " v = v / np.linalg.norm(v, axis=-1)[:, None] # unit vector\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbAAAAGFCAYAAACc+aY0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/UElEQVR4nOydd5gUVdbGf53D9OTADAw5I0EQFBARBQVFAVnRFTNGXBVz1jW7xnVdxbBmMYGCihlUUEQEJCpIznGGiR2m8/dHf6e4XdMDQ1LAep9nnpmp7q66VV1133vOec85png8HseAAQMGDBg4xGD+swdgwIABAwYM7A0MAjNgwIABA4ckDAIzYMCAAQOHJAwCM2DAgAEDhyQMAjNgwIABA4ckDAIzYMCAAQOHJAwCM2DAgAEDhyQMAjNgwIABA4ckDAIzYMCAAQOHJAwCM2DAgAEDhyQMAjNgwIABA4ckDAIzYMCAAQOHJAwCM2DAgAEDhyQMAjNgwIABA4ckDAIzYMCAAQOHJAwCM2DAgAEDhyQMAjNgwIABA4ckDAIzYMCAAQOHJAwCM2DAgAEDhyQMAjNgwIABA4ckDAIzYMCAAQOHJAwCM2DAgAEDhyQMAjNgwIABA4ckDAIzYMCAAQOHJAwCM2DAgAEDhySsf/YADBg4UNi2I8DU2VtZuaEah91Mz0559O5cgN1mrNsMGDgcYDzJBv5UTJs2DZPJpP14PJ56fe7vf/87zZo1q/P1hcvL+Nsl9/PcCy+zcmM1v62u5Oy/nUKLtkcSCEbqdQyTycRtt91W6+9UeP311zGZTPz+++/12rcBAwb2HYYFZuCgwFtvvUW/fv0wm/dtTRWLxdhRVsHzHyxn2dxPMFvttOxyqvZ6MBRl/NeruPD0tnu03w0bNpCRkbFPYzNgwMD+hWGBGTgokJeXR3FxMQ0bNuSiiy4iJyeHM844g4yMDB599FEAvvvuOxo2bMiRRx7J+vXrtc8uXryYnj17kpaWxtFHH82Hn/3EzK9eonTTEravW8C4B/qwde08AIKBau4YM5KsrCzefvttAKZPn07nzp3xeDycfvrplJWV1Rpf48aNefjhhwE48sgjcTqd5Obm7tIqM2DAwIGFQWAGDgqcccYZeDwe+vbtC0B5eTlXXHEFxx9/vEZgY8aMoVGjRrz55pts2rRJ++wll1xCOBxmzpw52Gw2/nX/TbTv+XeyC9uQ1+gIzhgzkfzijgD4q0vofMIVNG/egieffJJ4PM7ZZ59NcXExM2fOZMWKFTzwwAO7HOsdd9zBr7/+yi233MKjjz7KypUrD9BVMWDAwK5gEJiBgwJjx45lwYIFvPPOO0DCIhs0aBAdOnSgvLwcgBUrVnDcccfRuXNnjjrqKO2zv/76K8cffzwdOnSgX79+bFy3EpvdjcVixWy1kZZRgMVqByAzrxnNWnemdevWlJeXU1JSwrZt2/j222/p3bs3K1eu5Oeff65znBUVFbz55pv07t2b++67DyCJTA0YMPDHwYiBGTgoYLPZcDqdAMTjcSwWC5AQTwhat27NDz/8wKJFi/jll1+01zp27Mj06dNZsmQJ06ZNo127tqSnWbFYHdT4yvFVbsWVng+A2WymT5c8Ji8wEY/Hyc/Pp0GDBhx55JFcf/31lJeXU1NTU+c4v/nmGz777DMefPBBtm3bxn//+1/i8fiBuiwGDBjYBQwLzMBBgfPPP5/GjRvTuHFjfD5fyvc8/fTTbNq0iZEjR1JYWKht/9///ofFYqF79+6EQiFee+01LjqlEa2PPBlf1TYmPXMm/qrtADhsZk7r01D7rMlkYvz48WzdupWhQ4dy2223EQwG6xzncccdR5cuXXjqqafqHKcBAwb+GJjixvLRwGGI8vJydlQG+X5+Ceu3BbHbzHRs7uKotlnk5+dit9v/7CEaMGBgH2EQmIHDEtXV1YTDYWpqaohEIsTjcUwmEw6Hg6ysLBwOx589RAMGDOwjDBeigcMSEk8zmUxajCoWi1FVVUVVVdWfOTQDBgzsJxgEZuCwhNWa0CepidHy965EGgYMGDh0YBCYgcMSUppKJTD5PxQKEYvF/sTRGTBgYH/AIDADhy2sVmsSgcXjcaxWK7FYDK/Xu1+OEff7CLz1Av4XnyRWWb5f9mnAgIH6wRBxGDhsEQqFqK6uxufzaSIOq9WKz+fD7XbTqFGjvd53PBYj/N0X1Lz3KnEhLlcazr+dh/3Uv2GyGimWBgwcaBgEZuCwRSwWo6KiAp/Pp7kM09PTKSsrw2w206xZs70qHhxZuojA688SW5O6hJS5qBjnBaOxHdVrn8ZvwICBXcMgMAOHNcrKypIILDMzk8rKSkKhEAUFBWRmZtZ7X7HSbdS89SLhn6bV6/3WLj1wXngVluKmezN0AwYM7AYGgRk4rFFeXk4gECAcDgMJAotEIpSXl+N0OikuLk4qV5UK8WANwY/fI/jJ+xCqu0pHSlgs2E8eivOsizCl1a/XmQEDBuoHg8AMHNaoqqrC5/MRCoUA8Hg8ZGZmsnbtWkwmE8XFxbtMag7N+Iaat/9HfMf2fRqHKT0Tx9kXYR9wGiazZZ/2dbBjW1mAKT9v4fe1VdisZnp0yKXfUQ1wO424oIH9C0OFaOCwhs1mS7KwQqEQVqsVp9NJLBajsrIy5eeiq5fjvftaAs88tM/kBRCvrqTm5f/gveUKIr/O3+f97SlmzZpFnz59SE9Pp7i4mDfeeEMjcfWntLSUe++9V/s/Ozub0aNHE4/Hk97vcDjo06cPq1evBnamLdjsdtq1P4JxE6awbouPlRuqefertdz70iL6HHc8JpOJxx57DIBFixZpnzNy8wzsDQwCM3BYQ1/VPhwOE4/HycrKAsDv9xONRrX3xyrK8I99DO/tVxFd9ut+H09s/Wp899+I74l7iG3fst/3nwobN25kwIAB2O12ZsyYwZtvvonNZtNef+SRR9iwYQMbNmwgJydH275y5UquvfZaXnjhBRYtWpT0/h9//JFFixZxyy23aNtHjx7NOde/Q42vkiUz304aw5bSANvLEyQ1btw4INGFe3/AyOn768IgMAOHNaxWa5IFFo/HCYfDpKWlYbVaCYfDWlX56NZNVI+5gPC0LyF+YCfFyOwZVF9/EZHlvx3Q40CCMHw+H88++yxdunThxBNPZOTIkdrrWVlZFBcXU1xcnKTKbNSoEdnZ2bhcLoqKipLe3717dzp27MiSJUu07YGIjbA5G5PZjCd7Z8V/QbUvTMeOnVizZg3z5s3jnXfeoXfv3trrb775Jnl5eTidTrp168avvyYWEJ988gnt2rXD5XIxYsQIAJo1a8YxxxxD586dufbaa5O6cnfv3p358/94K9fAHw+DwAwc1kgl0KipqcFkMuHxJEQVVVVViVW83wcB/x83uHCYeMWBT35ev349AC1btkz5+nXXXYfH46FZs2ZJ2/Py8rj++utp3769VltSUFFRwYoVK2jadKfCctxrzzP+sUEEqkvJbtC61nFi8Th2h5Phw4dzxRVXANC/f3/t9Xbt2vHll18yb948qqqq+Ne//kV5eTnnnHMOnTt3ZsGCBVx55ZXa+1etWsXLL7/MLbfcUqsr90UXXbRH18jAoQmDwAwc1hCNkkpkgUAAgOzsbC3+cjjHYJo0aQKgxav0uPPOO1mwYAHfffdd0vbZs2czYcIE5s2bl+Tuu+6668jPz8dut/Pggw9q2884cySDr3iDwmZH8cuUZ2sdx2wyYbWYOP/885k7dy4jR45MsviWLVvGueeeS69evVi7di2bNm1i5cqV+P1+Ro4cSdu2bZMI7/jjj+foo4+mSZMmtbpyL1myxGg0+heAQWAG/hIQsQAkLLBYLIbVasXtdhOPx6msrDxsJ7yRI0fidru55pprWLRoEdOnT+fdd9/VXpdu2DabjUgkom13OBya5aUSzZ133snq1avZsGEDRx11lLY9N8tFg7x0TGZzSss305MQ1Jx44olcdNFFjBo1Kun1xx57DIfDwUsvvURRURHxeJyWLVvicrl45513WL58OdOmTUsat0Dflbt9+/a7TY8wcOjDIDADfwnoJzOxwnJzc7X/RWp/uKFJkyZMmTIFv99P7969Offcc5PO9fbbb9e6Yf/+++/a9latWnHOOecwZMgQzj//fG17fn4+jRs3rlXF5IUXXuDVh4bhLdtIj0HXJ73WqjidguydZPjaa6/Rvn37pPdceumlrF27lmeffVbruJ2Tk8M777zDwoUL6dSpE//9739TnmOqrtwGDn8YeWAGDmtEo1F27NhBJBLRGlsCDBs2DIfDwaxZs9iwYQNffPEFV1xxBROP68KJhTm72eueYfC0+QSjMab2P6rWa+6b7sd2dJ/9erw/C6FQiHg8zvQffmbm4h2Y0xqT4XFxTMcCehyRi9VirJcN7F8YmYUG/lKQgr4nn3wyjz/+OFu2bCEnJ4cpU6aQmZ7OcQVZf/YQicVie1Wj8c9GPB4nEokQ8JXTMs/LiScWkZGRgcfjMdx5Bg4IDr2nxICBPUAqEYfdbmfgwIHE43E+/vhjXC4X06ZN49huXen6+SzyP5hGx89m8tGGRALzPYtW0mTS9zSa+D0X/ZSQdv9cWknfKXMo/HA6/b+ZC0Cnz35i1KyELH7AN78weFptKfdN85ZT/P/7OnvGInyBgJYgPGTIEAoLC/nwww8P6DU5EIhGo8RiMQKBAJWVlWRlZWEymYhEIgZ5GThgMCwwA4c1UnnIzWYzLVu2pG3btkyaNIlOnTpRWlrKCT2P4bJ4Jc3SXNyzaBV3LFzJsMYFvLxyExe1aMgFLRqy1hsgHo9z4U+/0tzjYvpJ3dngr7+CcWBRLpe1asS2mhBDpy/g/a+nMvCyhOS8rKyMadOmkZeXt9/O/49CNBolHA5TVVVFJBIhPz8fs9mcJAoxYGB/wyAwA4c1UllgkUgEt9vNwIEDef7552natClpaWm0ataUB15azWpvAH80SiiW+OwtHZrx2urNjFuzhaGNC+iem8HWmhDXtm1C24w02mak1TputI7Q8nfbyvhoYwlV4QhxYFNJqfba2WefTbt27fbj2f8xiMfjRKNRQqEQZWVlABQWFmKxWIwqGQYOKAwXooHDGrFYTCMvtZxUWloaAwcOJBwO88orr3DKKafw+fQfWFLp48lubeiZt7PNSnOPiw+P68J17Zry1ppE+adCp53Jm0pYVuXju22JSTvLbmW9r4blVT6WV9VOiC4Lhhm7YiM98zJ5sEsrTCRbiKos/FBCOBzW8ujKyxOJ2Q0aNMBsNhONRg/b9AQDfz4MAjNwWCPV5BmNRnE6nXTu3JmmTZsSi8UYPnw45ww9nUy7lfsWryZTIZNXVm2i75Q5/Pv3dVzcoiF5Djuv9ToCbyRK3ylzuX9xIkH4qtaNWV7l4+q5v5PvrE1G2XYrwxsX8PWWHcwrq8JmPjxiQ+FwWKsnWVJSQk5ODna7XROiGARm4EDBkNEbOGSxcbufUDhKo3w3DnvqFiU+n08r2BuJRDSXVlFRET6fj8rKSgoKCnC5XIkK9LddmXI/BwqHuow+FApRXV1NPB4nEAgwZcoUOnbsSPfu3amursbn89GgQQOtqLIBA/sThgX2F0c8Hueqq64iKysLj8dDt27dtOaP+xORSIR77703qZKCyWTitttu2+N9LVxezm3Pzuf2Z+fzzxcXce0Tc5gwdR2xWO21WF3rs0gkgsfj4cYbb0yq57e/8MP2crImfMfUrTuS/j7cILlfZrOZrVu3AtSrSagBA/sDhojjL47vvvuO559/nsmTJ9O8eXO++eabA3KcSCTCfffdB0C/fv32ej+/ra7g3+8sJaqQlb8myiffb6TKF+KSoclFZFURgV7I4XK5sFqtWoV6YzW3Z4hGowSDiQ7VdrudTZs2Ybfbyc/PNwjMwB8C45n9i0MaOr7//vusXLmSyy67DJvNxrRp0zCZTJxxxhlkZ2fzj3/8gyuvvJL09HT+/e9/A9TZwuKDDz6gZcuWpKenM3ToUMrKyhg0aBAA9913X9LkNm/ePFq1aqUVZFUh+VGDBw8mPz+fYcOGcc31d/L2wwOY+3WipNDMjx/ig6eGAPDvx3bu+z//+Q95eXkUFhZyyimnAIn+ViNGjKBdu3Z06tSJmpoaTThRXV3Nr8uWc9I3v9Bo4vec8t081vtqy+PfXL2ZTp/9RNHE6dy5cCUAL6/cRIdPZ9Lsox+0bXVhRkk5nT/7iYIPp9H181ks//9K8YcifD6fZn3V1NRQVlZWqyWLAQMHEsad9hfHwIED6dWrF+PGjWPYsGG0adOGzZs3a683adKEkSNHMnbsWDp06EDfvn15/PHHAVK2sCgrK+P888+nf//+fPfdd0yfPp377rtPa2J4/fXXs2HDBm3/paWljB8/nq1bt/Lqq6+mHKPT6eT666/n448/ZltJBc06ncSy2ROIRoJ1ntdLL73ESSedxDfffMM//vEPTCYTN9xwAzt27GDixIk89thjmM1mLBYLJpMJr9fLZbffSSgW46sTu2ECbl+wImmfy6p8XPfLMgY3yuP7k3pwWqM8llb6uHn+ckY2K+TdPp14YcVGPttUUue4PtpQgttqZmr/o3iiW2sy/7+x5qGGSCSi1VO02+3ad6q6Y8X6NQjNwIGCcWf9xeF2u5k5cybz5s3j2muvZePGjXz++efa6yeffDIdO3YEYPDgwbRv316TSqdqYbFixQpqamo47bTT6N69O+3bt+fXX3/VknMzMjIoLi7W9t+/f3+6detGdna2tl89TjzxRLp27QpAUcujyS5oSTweI1TjS3pfTGlCecsttzB//nxOOukkxo8fT01NDUuXLtXG27dvX+x2O5BwLcbjcX5dvoIlvhoGTpvPnB1V/FJWlbT/pZU+YsDIZoW0TnfTKy+L36t8xIGxyzdw5veLiMbjtT6n4txmhXisVgZ9N5+Hd4TxNU7do+tgRjwex+9PpAnIImDdunXY7XYaNmyoCTYkhcFwJxo4UDAI7C+OH374gSeeeAKr1crxxx8PQEFBgfa6WCjyN+wURqRqYdGqVSucTieffvopc+fOZenSpRxxxBHYbDYsFgvr16/Xgv3qPoVEUkEdQ8N8NWk4jt2VTjjopbpsE9vXLdBeycnJYdKkSTz++ON8+eWX/P7777Rv3z5pvGJBSH3ENm3a0LlzF96fOIm37rmd645MTipul5mGCXhn7VZWVfuZVVpBu4zEtlEtGzHu2I48fVRbTmhQdzHgoN3BM3fdzsyfZ7NkzVomT55c53sPVkjSMiRy16qqqigrK6Np06ZJasNDtaajgUMHxt31F4fH4+Gdd97hmGOOYdSoUVx44YUMHjy4Xp9N1cIiNzeX119/nalTp9KvXz+OO+447rnnHiwWCxdeeCHjxo2jZ8+eez3eY7vkJ/3fssupONxZTB03hswMt7b9gw8+4JhjjuHGG2/ULMennnqK7OxszjjjDG666SYtdwkgMzOTxx57DKvVyoizzuL6l17Df+JgQiecStyS0Dq1y0jjqW5t+HRTCb2/nsPHG0ton5nGE93a8NHG7ZwzYzEvrdyIvY5J23Lk0azoP4yhjzzF0b160b59e4YPH77X12JfEYnE8AUie5SnFYvFkqwvq9XKmjVrAGjRokXSe6PRqCGfN3BAYeSBGTjk8MP87bw/ZS2V3oTc32yCjs1snH9qc3JzsjRhRjQapaKiglgsRiwWIx6PJ/XBatSoUZJVuXnzZmKxWJIbLBwOs2HeHDyfT8CxdOFejdfSvjOui6/G0qxVrdeaNWvGunXrkrYdf/zxXHTRRVx88cUApKenc/LJJ/P222/jcDhqfWbChAnk5eVxwgknkJ2dzZYtW3A4HAwfPpxJkyZx6623ctNNN3Hqqafy22+/4Xan0feUi8hqfQahcIzcTAcnHVOIK7SC/v1PrHMfjzzyCJFIRBP+2Gw2bDYbH330EXa7nSFDhmikFovF2Lp1K263m6z9GOeLx+MsXlnB0jWVWC0munfIpWmRZ7/t38ChBcMCM3DI4biuBTx9Y3euHFbM2f0yOL8fnNYzHbMpTk1NjWZZqRaWCnFHqq+bTCaysrKIxWJUVe2MYdlsNtxNW1B53lUErrgFc3H9c8ZM+Q1wXXcPnvueTklegNaPrGvXrvTs2ZMNGzYwYcIE7fVp06bx2GOP8eGHH/Lll19q24cMGcKGDRvYsGFDksVcXl7OZ599RllZWVIsMxQKMXjwYL6Z9iOFrY5l4luPU1ayCYAdlUHe+3odn87YWOc+4vE4sVhMKxklRLVp0yZqampo1aoV33//PTabjS+//FIr4mu1WrU4mN1up2PHjsyaNQuAe++9V3stJyeHMWPGALB582aOPPJIzGZzkrVe6Q1xzwsLefytJdxx81WcOaAZJ59+Ps9NWMb27aXY7XZMJlNSU04DhzeMPDADhySsFjM9uxSzYsUKyspMSZXPA4EAdru9FkHF4/GkWJu+0Kzb7cZut1NVVYXH49Esuby8PLxeL96mrfDc+x+cP04lOP4N4r7q1INzOLCdfjb208/G4nTu8jyk87DdbsfhcCQJXCBRU1C6R6enp2vbXS5XrfcC9OrVi7feeovt27dz1FFHMXPmTAAaNmzIP//5T975cjWZRV2AjwgGqvBkFWmfXbyyos59CIH16tWLlStX4na7GTVqFP379ycYDPLwww9rZLdkyRLWrVvHlVdeyYgRIwC4+OKLsdls/O9//+P444/n2muvJS0tEc9cuXIl7777LnfffTcnnXQSPXr04OKLL+aVV15JOrfnJixj7ZZk4c66Jd8xc8FW5n0/fr8k4Btxu0MLxjdl4JCFxWLRXH0Wi0UjLJPJRCgUSnIXpoLeQjOZTGRnZwMkKSKtViuZmZnE43HKKyuxDzoDzzNvYj95KOgmO3Ovftgf/R+Woedgstv3uQ5gt27dOOWUUzj33HM58cQTte0ffvghHo8Hj8fD0qVLte3nnXceX3zxBWPHjuX888+vtb8fflnPbz+OI7dhe3IKW9d6Xb+P8847T9teU1PDddddx4wZMxgzZgxPPvkkCxYs4IcffuCTTz7hzjvvBBICGllMCEFXVlby0ksvkZ2dTY8ePXjiiSe0cTdq1IizzjoLSJBfgwYNGDNmDDk5O8UwazdXs3RNsrrTmZaDzZnGppU/8enH79OrV2/ttW+++YaioiIcDgft2rVj+vTpAMycOZNu3brhcrk45phjgERifdu2bTnuuOMYNmwYGzZs4KSTTsLj8dC+fXumTp26y+/IwJ8Hg8AMHNJQK7hLR2C3263FYXaFVK87nU7S0tIIBAKaWAESVpgk7FZVVWFOz8R16Rg8j/0PS8euRJu0IHbLw1ivvJl4Vo7WH0ssl73F+PHjOfPMM/nggw9Yu3attn3gwIEsWLCABQsW0LLlTil+ixYt6N69O8uWLdNIQeD3+/no5esJB30cP+JhTKbUj7+6jzPPPFPbXlJSwvjx4znllFN49NFHAaioqGDbtm20bduWo48+GkhYjUJgl112GQAfffQRkFhovPHGGwBs375d2/fs2bMB6izrtU5neQmadxzI4h9eZ8eWFQwaPEzbXlRUxIQJE1i8eDG5ubnceeedxONxzjzzTDweD/PmzdMqwwCsWbOGf/7zn/znP//hxhtvZNmyZcycOZP27dtz9tlnG33NDlIYBGbgkIbVmuwFlw7Azjpcd2pOUl3Ekp2djdlspqysTHuPxGkgMWmL9WZp0hzrLQ9RffVdWNp0SLK45LPxeHyvLbFWrVrxxBNPEA6HGTt2rLbdYrHgdDpxOp21XGe33HILd911V5IFEw6HOeOMM6jYvoreQ+8kTpxIuO5GnDfffDN33HGHto9oNMr06dOZMmUKV1xxBRdeeCGAVj9z2bJlzJ2b6EwtYhjYucAYOHAgkCDB22+/HdiZrpGXl8f555/P4MGD+dvf/lZrLPF4nGAgdW5d804nU7ZlGY1a9yYvN1vbvmHDBq666iqOPvpoZs+ezaZNmygtLWXLli0MHz6c9u3ba9VhADp16sSAAQNo3rw5v/76K927d6dz584MHDiQsrIytmzZUue1MvDnwSAwA4c09C071JWynqD0CbV1EZjFYiE7O5toNKo1aATIysrCarUSCoU0JR4kXGtx0EQEVVVVWtxKjiEqyL1B06ZNOeWUU3jttde02oOffPIJjRs3pnHjxrz22mtJ7x8yZAh333130rZNmzbx9ddfU+OvZsqb1zDpP8NZt+TbpPdkptm1sZ522mncdddd2jWLRCL06tWLjh07MnbsWM16atKkCbfddhtDhgzh/vvvBxJuuuXLlwM73bSdO3fm1ltvxWaz8eGHHzJmzBiteefs2bPZsWMHn376KVarlXA4zMKFCykvL6e0tJTHH3+cVYu/w2aubQVl5Damfc+zOWXYRbidOxczzz77LKWlpbz00kscccQRxONx8vLyKCoqYuLEiSxdupQpU6Zo71ct+Y4dOzJnzhwWLVrEV199RU5ODkVFRRg4+GDI6A0c0ti+fTsrV66ksLAQq9WK2WymsLAQs9msxbHEjScuRplU09LSyM3NTbnfeDxOSUkJgUCA3NxcPJ6EVNvr9bJlyxZsNhuNGzfGYrGwfPlySktL6dChA06nk5KSEmw2GxkZGZr6TmA2m//UyhTxeJxvZm/iva83EAzvJPDCXCfXj2xPYa5TI1oZq9/vx+/3Y7PZiMfjWCwWvvnmG7xeL3/72980K3jGjBlJcTpI1JhMT0/n1ltv5V//+hcffPABI0aM4IMPPmDx4sXcd999muimpKSEjRs38ssvv3DFFVck7ee9997DntOBSTOqiMcTNTA3r/qZM2/4BLfTwl2XdOKbLyZw8cUXs3TpUhYvXswVV1xBcXExhYWFLF++nLVr1zJjxgyuueYali5dSqdOnZgzZw79+vWjpqZGU0euX7+eiy++mFmzZtG4cWOeeeYZTj755AP5tRjYSxgEZuCQRllZGb///jsNGzbUrLGMjAzS0tI0OXxdBOZ2u7USV6kQjUbZsmULsViMBg0a4HA4AFi3bh2hUIisrCyysrJYunQpXq+Xbt26YbFYKC0tJRqNkp2djclkwuVy1aqK/2cq3aqqqqiqDrBsY5jPvvyWiu0rufXac2nZsqVGrkJesVhMy6VzOp1EIhGqq6uZMmUKHTp0oHv37hrh2Ww2IpEI27dvr1f+VyAQYOPGjWzYsIFNmzYlVbbPz8+noKCAwsJCHA4HwWAQk8nE5nITU+eUsmxdNTarme4dcjn9uEYU5bl3eSwDhycMGb2BQxri+onFYppwIxwO1yvoHolENGl9KlgsFgoKCti6dSvbt2+nQYMG2uS6adMmvF4vJpNJi7s5HA7i8Th2ux2/308kEtGsFrPZnBQT+zPl2vF4HKfDQvd2ThqkdePJJ7/jyy+/5NJLL8XlciXVLwyFQsRiMe08AFasSBQ5btu2rbZPeb/PlxBbuFyulMeurKxk7dq1rFu3TnNDSnyxefPmNGjQgOzsbOz/r+AMBAKaO9bpdNKheRqdWuVgs9kMubsBg8AMHNoQ91w4HMbj8VBTU0MoFKozJ0gv4vD7/bhcrjonQyGs7du3s23bNvLy8nC73TidTmpqaqiuriYSieB0OpMSdv1+P+FwGJvNRjAY1I6hklg0Gv3DXYoqYcfjcVq3bk2nTp1YsGABv/32G927d096XchDrKuamhrWr19Pw4YNycjISBK5yPW02WxJbtPq6mpWrVrF6tWrtZii3W6nadOmFBQUkJ+fj91ux2azaYsAv99PIBDQXJYej0eLMRrkZUBgEJiBQxoyqQlZSCWOVASmJwpJavb7/TidzlqKRoHL5aJBgwaUlJSwfft2XC4XLpeLmpoaIpEIkUiEzMxM7f1SfSIUCuF2J1xbQhwWiyVJ0KFWbD/QRKYXksjxRowYwdKlS/noo49o0aIFubm5mEwmgsEg0WhUiy3G43HWr19PLBajTZs2tfbv9XqJx+Ok2azUvP8a/h+msvKIHiy2JxKwnU4nrVq1orCwkJycHMxmM2azGYfDgcPhIBaLEQwG8fl8hMNhTU3qcrm0YtB1fUcG/pow7gYDhzTEdRcMBrWJVtyINptNI4a6FIdCRNLcUghRD6fTSVFREeXl5Vp+mMVi0UorSVUJSBCY3W7XCEBIS5KuZYxCJiKzPxBEpq86olpg0WiUeDyuNf2cPHkyU6ZMYciQIbjdbi0mpbpp165di8vlonHjxrVSBrxeL44FPxOZ/B7xHSVYgXbTJtOwsDE1w84ls+ORmsUppCWEFAwGNbFIPB7HarXicDhwOp1awrpBXgb0MO4IA4c8XC4X5eXlWhwsFApp8SdIEIrExPTkYLFYNBILh8OaWCEViVitVvLz84lGo5oQROruqZOrxWLRSDUUCuFyubTfAnGBpSIyGaeMYU8ITSWVuvLPVGm/uDdPPfVU5s+fzzfffEObNm1o27Yt4XA4qelnaWkpXq+XTp06aRaZoHLhLzgnvI5lzXL0R8zYuoH0Fx/DfNwAnOdcgi0nV7N+o9EoNTU1+Hw+QqGQZnXJYsJisWhjMGBAD8ORbOCQhxCDWGGAVoEeSIrHqGSgysXFTRWNRvH7/XUWAoYEQdnt9qT9ithBjqHG5nYFcaPpSUqEHrFYjGg0qv29qx/9+/TkJZaouAUtFgvhcBifz0c8HufSSy/FZDLx3nvvUVJSook3ZJxSAb9Vq1baNQ6VbKf6vw9jffxOLGuW13mepniM+PdfE7hxFKHPPiAWDhMKhfB6vVRUVBAKhbBarVo9SrG8RLFpNMU0kAoGgRk45CE5Wn6/P8kSEvJQk1TrgurWEvFCfZSM4XAYi8VCKBTSFHiwk+TEqhNro65ji5VRlzhBrKld/exq3/IjJGu1WnG5XFrRY5/Ph8fjYejQoZSWljJx4kTC4bD2EwgE2LRpEzk5OZhMJipKS6ie8CbhWy/HMms6pvpm4/h91Lz5PNU3jqJ65jSqq6sTqsj/rypis9mSLGCDvAzsCgaBGTjkIfEnv9+fNNmJvF0lhVQWmAqbzaZJyWtqaggGg3WSQygUIhgM4na7icfjWr6UQPLGpKhwfaqli9BDtczqO4GrMTSVuNR9CInKdpfLRXp6Og6HA7PZzDHHHEPXrl359ddfmTZtGjU1NXi9XlatWkU0GqW4uJjo3JlY7r8e68fvYAoG6jW2Wti6Cdvzj+J++SnSqiu03mIyDvV8DMWhgbpgxMAMHPKQuoBiAamV6YXEBPUhA31cLB6P43A4an1Wyknl5+fj8/kIBoNUV1eTmZmpWWCQIDCn01knEaaCPv6V6rNqvCzVZ1NBJTB5r9ls1mpHxmIxRowYQUlJCVOnTiUvL49OnTqxadMmMryVNJv0OtYVS+p9HruDdelCeOAGzCcOxnbmBViUpG/D+jKwOxhLGwOHBdLS0giHwwSDwaSA/65aquxqcpS4mAhAAoFALSVjRUUFkGgfkp6eTjwep6qqimg0qllSNptNcyNC3fUXdwe9dZXKwtqdtSaxMf171c9Eo1FsNhuXXXYZubm5jB8/ns0rltNw+mcM+PFTbPuRvJSDEpvyCTU3XULkm8+IRnZaqob1ZWBXMO4OA4c84vG4Fgerrq7WJnWz2Uw0GtXKEMl798Ql53A4sNvtxGIxAoGAZsGIy1BEB5LXFAwGNctMPg9oltz+aLq4txCRhxB8KuGIEH5ubi7XXnstHo+HBq8+Rct1y+of59pbVFdS8/LTRN55WSNnAwZ2BeMOMXDIQwjMZDJpBAY7J+iqqqq9kqTL+6VbsirukGRbaYBptVo1K8zr9WpEIQQmOVX70htsX6F3H4rKT309EolgNpuxWq0UFRVx++234zT9weVSawJ/SGK3gUMfBoEZOOQhdQU9Hg9+v19zk8n2QCCwz5OhiDsg0T6lpKQEIKnnlvQRU9utqG5ENd/rj4aqgtQTvEj2xTqU2J3VaqWgoIBY9A8mXUM6b6CeMAjMwCEPIYSMjAwg4UYUN5lMxrvK66ovLBaLVhqqrKwMm82muS4B7X8pT6UW+YVEPG5fOzTvLST/C3aKI/RJz1K+SXLEJHk5Xis1+cDCxJ5bygb+mjAIzMAhDyGEtLQ0TKZEQ0m9FFvIQ8XeTJJSgSIYDJKZmVlrv2KFSU0/1Y0o8aVdCUsOFIQ49QIOEXaIhSjlt+T6bd68+Q8fKyaDwAzUDwaBGTikoe+zlZ6erlUxl9dFhKFWyhDsjTtvx44dQIKswv9fUULtiZWWlkY8Hsfn8xGJRDQ3YioS/SMgic5qCxdVqamKS2bNmoXT6aRfv34ATJ48maJxX/DD9vI/ZKyjZy+lxW0P/CHHMnDowyAwA4c0xC0mv6UqfGVlJSaTiWg0qllA0v9L7zrbE8RiMUpKSnC5XOTm5mrlmCTh2WQykZWVlWSFqaWl/gw3Yqr4lyg05TW1bBTADz/8wKxZs7RUgb1FbA+v7yNHtmLmHdfv0zEN/HVgEJiBQxpS7kkIweVy4XQ6KS8v1wgM0Bok6mNhe0okZWVlhMNhCgoKtARgi8VCJBLRSMzhcGjVOaRy/d5U5dhfqCv+lUq8IQTXunVrHn74Ye36ROJxxsz9nWYf/cARn87kg/XbANgSCHL2jEUUT/qe9pN/ZK0vwCO/rSFrwndc/vMSWn4yg3AsxrVzf6fpRz/QbvKPPLt8PQDPr9hAi49nUDRxOid98wsAty9YSe+H/w3ALbfcQmZmJh6Ph7POOusPu14GDh0YBGbgkIUQkr6Ke8OGDYnFYlpljmg0qtXXEytMsKcEtnXrVkwmEwUFBdrx9CQGCUGJ9NTyer1YrVatUv6fIeSQ40lrErlusVhMc3OqeVdjxozhiy++0NSWq70B3lyzhbFHt+cfbRpz9Zzf2V4T4q6FK5lXVsWkvl14pecRpFt3uiaPyEzjixO68cbqLby1Zguv9OzAFa2LuWvhKhaUV/PG6s2c0CCbb/t355q2TWqN+bnnnuOSSy5h9uzZXHDBBQf4Chk4FGEQmIFDFuokLBDpt81mo6KiQiM5cePp5dl7QiRer5eqqiry8/OT3G2pSEwaMUoCdDweT6pQ/0fFwuT85BqI9SUFhlNZXwAtW7akd+/eTJ06FYCXVmwE4LJZS3jg19XUxGL8WuHlt0ovPXIz6ZGbSe/8LHIdOyv0j2rZiHYZaSyt8pJpszKgMJfTGuUD8HuVj2vbNmFRhZcB3/zCe+u2UqOzju+55x4++ugjevXqxUcfffSnxA8NHNwwCMzAIQtxx6kk5HK5MJvNNGrUiEgkgtfr1dxnQmJSsX5XFeJTYdOmTQA0bNiw1mt6EotEIpqsPxgMEgwGa7kR/wgrTG3LoncfCoHV1W9r0KBBbNuWcBVe1qoYi8nEv7q25s1eHbm3UwvaZabRIdPD7B2VzNlRyewdlZQGdyosbebEQqF9hofKcISpW3fw6aaERdcuI41su41xvTvy5FFt+HxzKUsrfUnHb9myJV9++SW33XYbr7zyiiaeMWBAYBTzNXBIQu19pa7MxTIqLCxk06ZNVFVVkZaWplWYT9XwsT7lpXw+Hzt27CAnJ0fLBdNDSEyKAEuRYWnYKEV+xY0oRX4PJFQLVSwslbyApMaRgmg0SmFhIZ06dWLx4sW0THdxfvMi/rloFaFYjCOz07mwRUMe7NKKMXN/Z9j0haRZLXzdv1utMVzQooj55VWMmrUEl8XM/Z1bcmR2Oi+s2Mhnm0qIxOOc3iifDpmepM89//zzzJo1C4vFwhVXXEFeXt6BukwGDlGY4oZdbuAQQzwep6amRrN0VAGHSi6bN29m7dq1pKWl0bhxY83iikajGsFkZmbidrt3W3dvyZIlVFRU0KVLF619y67GJ3UTw+EwO3bswGazabL7QCBARkYGdrs9qUvz/oYQvGoB2mw2jfRFYOLxeJL6hZnNZsrKypg8eTLdunWj+XMPQOUfI6MHsJ14Ku4rb/rDjmfg0IXhQjTwpyESjTF36Q6mzt7C4pUV9Y5xCAnp41/iohPk5ubidrvx+XwpayRC/dyIZWVlVFRUkJ+fv1vykv2LK9NqtWqNLYPBYC05/YGEWFpyflarVTumiFlsNlutuKDJZKKsrAzYWd3EgIGDEQaBGdivmDZtmtZKJDs7m4EDB7Jw4UIgkSTbp08f0tPTaVDYkEEj7+O+Z75gxOnH0bV9AzJyivj3f/+n7SsYDNKiRQt+++03mjVrhsPhoEWLFrz//vu18rlsNlutOI7dbqdRo0aYTCa2bt2akqh2pwiMRqOsWbMGi8VC06ZN630dVBJTaygCWr1EOf6Bgkpgat1D1X2oJ32B5H9JaSwDBg5GGARm4IDgjTfe4OOPP2bjxo2ceuqprFu3jgEDBmC325n4yRS6DrqdmhBEIyFaHTmYUy99lcz8ltx8w9WUVSSC+dOmTeO4444jMzOTl19+mfnz55OWlsZ9991HPB7XcsCAlHEpiUnl5OQQjUbZtGlTrRiYWHOpEI/HWb16NcFgkGbNmmnWU30h5CUKv1AoRCgU0iqDRKPRA1ZWSkhZCEsldzVxua6q7+Xl5Zrk3iAwAwcrDBGHgToRi8X5ZekOflxUgtcfoUlhGv2PLqRRfmoRg4q8vDz69u3L448/zuDBg3n99dfx+Xw8++yzzF7lIL9JN/L//725RW0ByC/uxKYVM5ny0xrOPqUjX3zxBaeeeirFxcUUFxfj8/nweDw0a9YsadK1WCyaslAPi8VCVlaWlo+1fft28vPztdd3ZYFt3bqVkpIScnJytLyvPYXUQnS73Xi9XoLBoEa2oVAopfpvf0CIS0heajjKcYFaXabl9XA4THV1NW63G7/fT5onA6orD8g4U8GckfmHHcvAoQ3DAjuMobrsiouLeeONNwBYtmwZAwcOJDMzk4KCAv71r38BOwvf2u12OnbsyPUPvM8z7y/jkdtHcvelnbnwtJYUF6TRqLi2K01IZeDAgQB8+umnALRo0QKABx5I1Lfr2bMnj9x1Wa3P+6tLWTb3Q5q068emHYlJ9euvv+bkk08G4JlnniE7O5tffvmF4cOHJ1kudakCIeFatFqtZGVlkZaWRnV1Ndu3b0+qlaj+FpSUlLBmzRpcLhetWrXap+KyTqdTUxuqsa8DWY1DH/+S+J9qfeljX/L+cDiM1+vF6XQSj8cx3/EYptPPhj20QPcUprwCXNfdg3Nk7fvDgIFUMAjsMMXGjRs1l92MGTN48803sdlseL1e+vfvz5YtW5gyZQoff/wxWVlZ2ueuuuoqFixYwOYt25n07lgA+v7tAc4YM5GhV7+Pze4mraAT1b7ak++QIUN46aWXgEQVhUmTJrFq1SoAzUJ66623aNisQ9LnanzlTH1rDM60HHoNuQObzcyqVavIyckhMzOTQCDA8OHDmT59Oj179mTMmDEaCZjN5l269qQChslk0kQYYompZCITfSwWY/369axYsQKHw0GHDh3qtO7qC7UpZiQSIRwOJ/UI298uOpWM1Qr0kGx9qcpL1Z26Y8cO4vG4lnqAw4H5jHOxPvwC5mP67texJgbjxHHWRaQ//Qb23v32//4NHLYwXIiHKcaNG6e57Dp02EkY7733Hps2beKll17i6KOPBqBXr17a6+np6bRs2ZIoVqz2hGXjTEt0HV635FvCIT/Nuwzmx4UlDOqdnNDrcrk0oUNmZiaPPvoo5eUJ+fVFF13EW2+9xX//+1/+dt6tfPLdfPzVpTRq1Ytv3r6BSDhAn+H3Egp66dDEzieffMKAAQPw+XzMmjULs9lMUVERDocjyfW1O1WgtAYRiXhhYSFlZWWUl5ezdetWqqqqyMrKwm63E4lEKCkpIRgM4vF4aNeu3R7HveqC3W7H6XRqknaXy0U4HCYcDhONRveZJFWoycvSGVrqQsqx1Gsi8bhoNIrP59OacaalpZGZmaklOpsbFGEZcxfR3xcTevN5YmtX7vNYbX364zz3csy5+bt/swEDOhgW2GGK9esTBVNbtmxZr+2Cp556ivT0dMKhIEeeeEXSaysXfEpGblMKGndme3lAm4BTWRCVlZXMmTNHqw7ftWtXpkyZgt/v57arz+Cnjx8gFo1QtnU55dtW4K/azuf/u5hJ/xlO5ZaFfP755wwYMACTycS6des455xz6NatGxs3buTZZ58Fdm99CcSNKGKG3NxcGjRogMvlwu/3a/liGzduJB6P06xZMzp27LjfyAvQ5PRmsznJdSjXcH9Cb1VKnE1VHso2lbwkRif1HLOysrT4olqtw9KuE84Hn2V9v9MIO3cfD00FS8u2pD3wDO5r7zTIy8Bew7DADlM0aZIojrp69Wrat2+fcnvbtm1rfW7UqFH06tWLiy66iDWLvqJjn/MB8FVuY+vquXTtfyUAGS6T1sFXVfH169ePSCRCcXExRx55JK+99hpFRUWsXr2aK664gpkzZwJQ6Q0xfso6flpcwnl3z8DlMNOjXQYndvNALELv3r058sgjsdvtXHLJJVx66aUEAgEt+RZ2b30JbDab1o9L3Gs2m428vDytAkUsFtOSmg9EM0XVjRgIBLRrt7/rIqp1DlUBRzQaJRKJJHVbjkQi2nav16sRnIzH7XZr79WLTTZs3MgcZxbNzr6CXqUbCH35EUQj7A6mrByc51yCrd8go2mlgX2GQWCHKUaOHMkDDzzANddcw1NPPUV5eTmbN2/mtNNOo2HDhtx2223k5eURj8dZsGABl19+OZBYdV944YX8+7//Y9ncD+nQ+xzMZiurFn6ByWSmRedTsFpMdGvr0apZiMLN5/OxZMkSxo4dy9atW7n88sspLCzktNNO46WXXuLYY4+lZcuWfPzxx9xxxx1cdkZrzhrQiGpfEIc1jomENRAIBLjgggs01SGgFcUVWCyWeltIqvUgk7j6mlTikIr1Bwo2mw2Xy6URmMPhIBwO79eaiLKYUPO/zGazdu2kGoe4LiORCNXV1RrZZWRkaF2YhcxTNb+cPXs2drudXicOSKQKnHQ6gTfGEp3/c10nj23QcJx/Ow+zu34LDwMGdgfDhXiYokmTJprLrnfv3px77rmEQiHS09OZMmUKDRo0YMCAAZx22mkpi6Tefsu1BKpL2bhsRiIfatHnNGpzLO70bEb0y8VCQqnm9Xrx+/3E43E+/fRTjjrqKKZMmcKzzz7LsGHDAHjzzTcZPnw4l19+OT179mTOnDlAYjK0W01keWyYTXFNbCArf6/XS2lpKQDV1dVJlkp9rS9IWD+S6CwVPFJVpN+Twr57A7F+pAmmQC2HtT+gqg8tFovmJhRBi1heIpcX8srMzNQsVUioJ/UltkwmEwsXLsTv99O9e3ctSdtcVIz71odw3fYw5kbJrVHM3Xrh+NeLOM+9zCAvA/sVRi1EA3UiFoszZ0kpP8zbhq8mStMiN8d2ziE7becEqSYTC1HYbLak1iXyW99IUbUWpBmkuL+sViuVlZXEYrEklSQkLJk9LXEUiUQoKysjGAwmKQDFrScEdyBrE0KiKHBFRUUivyotTetVlpmZuc8xN4llxWIxQqEQkUhEK2MVjUbxeDxaTzKxvNRO1hLrmjlzJuvWreO8886rRWBlZWV89tln5OfnM3jw4FoVPkwmE8RihL6cRPin6ZjPOBdLx64acRtuQwP7E4YL0UCdMJtN9OiQS6cWaUmr92AwqCXhejweIpGINilKtQmfz6eRg8jY9RBCEzFGMBhMIrnMzEwqKiqoqKjQJl+z2bxH1pfAYrFgs9k0olShzwk7kLDZbDgcDvx+v9bKRF0E7AvU6vpq+ahoNKrlfenJy2QyaVXyZaEhDS719RGj0Sg//5xwER577LG1yEt7r8WCY/CZmE8eqhUH1uecGTCwP2C4EA3UGxJLkhwiccfZbDbcbjfp6emkpaVpr4dCIaqrqzWLQ3KSJH4lq3v5W7VAZN8SA/P5fMRiMa3n1p5CjmsymbRxCNSJ/0CTmCwEhLikf9i+KhHV1jLyo9ZclDQBtUeayWQiIyMjibxkX+o1lkXFypUrKSkpoUOHDmRnZ6cch7oPuZZihRswsL9h3FUGdgn9qlkmOqksIROvTFKS75SWlkZaWppGSjU1NVRUVFBVVUUgECAUChGNRrXVuexbTbAV2bsUlPV6vfuk2HM6nVit1lokpVoQB5rAZBEg9RAF+2qFqX3RZF9C1jabTVMler3eJMGGkKl8z6rlpbp9A4EA8+bNw+12061bcs8vOa5qkckxxHVowMCBgEFgBuoFdbJVY11qLEsgVobVatXIzOVyYbVatTJFFRUVWk8vv9+f1CJFVIJyTKvVSlpaGrFYjO3bt2t5SnsKyQeDnZOu3vLaX+68XUFywtTjiXW0N9BbX7IfkeqLlaeSlwg29OQFO2X3gng8zi+//EIoFKJnz55a01B5TaC6LCUeZrgODRxIGARmYJeQSUgmSHUykhqE0ltKIKt+ITERdbjdbs0qE1m8WGSqu0kfM5Oq7m63m2g0yrZt25Ik9XtyLqmEEqr1cqCViJCcAiDHE1Xg3kB116m1D2UxICkOevJSS0ypLj673a6JQeLxOJs2bWL16tU0btyYZs2apRyD6jpUx2C4Dg0cSBh3l4HdQlbmMjGpK3aHw5GS3ESgIGQkriQhsszMTM0NGQwG8fl8WlwmEoloE18sFtP24XK5cDqdhMNhysrKkpKa6wu73Z7U2FGFWA4HWpgrbjur1ZrUmFP+3hOo5As7FxORSEQjKJ/Pp5FjRkZGLctL31JFFibV1dX4/X5++ukn7HY7xx57bNKx9ddKnzxtuA4NHGgYBGZgtxC3W6qqEWlpaZhMJk2VqK64ZTLTN00Uq87lcpGZmalJ1/1+P9XV1ZrrS+Ivav2+tLQ0bDYbNTU1VFVV4fP59mjSF1WkiiQJOAfeChPykNiUWs1kT92IqsUjlpich9VqpaamRhNyZGRkJIlnILXAIi8vD0iUHZs+fTqBQIDevXvXWfVfvivVdWhI5g38ETAIzMBuoU62ahsTmazcbjfxeJyamppaJBYOh1NK19XcMDUPSnKYRFIPaNaE7Ds9PR2LxYLP58Pv92vW256cix6qNfFHxMFE1g/JMaw9Oba4+QSywBDpeigU0rpAezwezfoU1KUObNiwIU6nk/nz51NSUkKXLl20tjgCvfWlEqn+HjBg4EDByAMzUC+Iek8mTXWScjgcBINBrU2IXoQhE53EfWSildgaJCZji8WiuQij0SjBYFDrCBwKhXA4HNq+MjIyqKyspKqqSov3SAWP3UHiP6rlpVZuT1WtY39DT2ByDntybJVEhPzUWJ7ECT0ej1bFX594rofErQYMGMCyZcsoLCyss/CzCtV1aJCXgT8Kf8lKHP6aCLN/20FldZAGOXZ6HFGAxWI8dLuD1MFTZdpqbpXX68VkMtXq9CsQa0sqbwBaPpSqLJTP1tTUJBXfTU9P12JksViMcDhMRUUFZrOZrKwsrFZrvUgsHA5TUlKi5WHJj1p1XeojHiiEw2H8fj8lJSWauERyskTuvyuoVTcg0edL7S8m5OV2u7XYoWolpbK+9NVSIHUsS31dbdMiAhyDwA4MfIEIPy0uYUdFkPwcJ7065eFy/LVtkIPmTps2bZr2AKWlpdG/f3+tDh4kOvqqHX8BXn/9de0zJpOJjh07AomK6Or2J554QvvMD/O3M+IfL3JC90KGndCUPt2b06zdMfyyeO0+j/3LL79M+vtwg0y0UiNPVv1qTytVQKCSApA0sUrhXLG0VEg+WUZGRlK+mVSPUGNI6enpxGIxqqqqiMVi+P3+3brhZFyQbCX+kXEwIQWxbPc0F01vfanuQ7nGLpdL+1HjbKmqy8t22Z/8vzsyMlyHe4fdzXd6/PxrCWOemMMbn67m0xmbeO2TVVz7xFzmLytL2t/hPgfpcdDdbW+99RYffvgh3377LW+//ba2/cMPP8RkMvHdd99RUVGR9Jlp06axYcMGvvnmG21b165d2bBhAxs2bODKKxMtQJavq+J/H60gFE5MEL2H3s3xZz7IxpVzGXPHM/gCIQzsHmazWcsDczqdmnvK4/FoFpWaA6Sf2MSyktJO+n2rybXqBBwOh6mqqkoqdeR0OnG73UQiEY3EAoHALklMVd2pRCCWBBz4OJg+90rNRdsdeaoSdyCpjqTEvBwOh2Z9ichGjlsf8pJteks6ldtSzsNQHe456prvVGzc5uP5D1YQDCcvbGqCUf77/jK2l9f8EUM9KHHQEVheXh6FhYUAWuB49erVLFy4kBEjRhAOh5k8eXLSZxo0aEBxcTENGjTQttntdoqLiykuLtbKEX3502ZUh6nTnYnTkwuALa0B0+duTpq4Xn75ZZo1a4bb7ebGG28EYOzYsRQXF5OTk6NtqwvTp0+nefPmOBwOWrVqxfLly/fyqhx8UCc31Q2Xnp4OQCAQSJoMJSdMUFNTU6vCvD4HTI4hxXYlZlZdXU1NTY32utvtxuFwEAqFtMr40rKkrrGrhJrKi66Xp+9vyNhVAlPjcbuCPm9NCE3Iy2az4fF4cLlctWotpiKqVNvrIjr9OMCIe+0LUs13Kl566SWO7NSGcQ+dyC9T/gvAsrkTmfj0GYx//BRmffEfvp2ztc79H85zEByEIo4zzjiDUChEdna21p5+4sSJANx22218/fXXTJw4kfPPP1/7zFFHHYXJZOKMM87grbfeAmDOnDkacX3wwQcMGjSIVRurk441fcIdxKIR7M500jILWbXJS01NDXa7nVWrVnHFFVdwzTXXMHr0aEpKSvjtt9+4+uqrueOOOxg0aBD9+vWjb9++WtdhPcaPH4/b7ebnn39m27Ztdb7vUERdE6FU3xD5tkjopSwU7OxCnKq6R6qJUEpMqcIPsbJkkk5PTycajeL3+7U4kjqh7wp6N6KIKvQ1AeuDWCzOb6sr2VEZpCDbQfvmmXUKMnZFYHUJOVJZX6obVhYRIpffXdxLtssYBKnep7dWDQLbd6Sa7wQLFy5k9OjRdDvuLIo6DCHoL6di+2rmfPFvOvY5n4Ytj2HKm9fy+ae9GTW8c8r9H85zEByEFtjYsWOZPXs2NpuNBx54AEi4DwsKCjjyyCM54YQT+Oqrr/D5fNpnJk2axIIFC3j88ce1bZ07d2bBggUsWLCAvn37AuC0J09GR59yI4MueQmzxcriH17HYkoIEaTuWywW46KLLqJt27b06dOH3377jXg8zr///W8GDRqUVJ07FS6++GLS09M59thjueuuu2q5Pg8HpLJSREghk6tACEHf/0rIKxVZyMSodhJ2OBxamxCv16sRTkZGBmazWcslE2l/KktMjqUXLajJxLtzI0qswWKxkJ2dzXHH9+fCW97lsTd/45WPV3LDg+/TuGVXPJ50iouLeeONNwAYOnQoTqeTjIwMzbWnj8HVBfW6qeQl5C71DYW09bUqUyVq72nsS638Id+Lgb1DqvkuHo9TXV3NTz/9RCwW46hjTyMzrwkFTbpQWbIGiLP05/F8+85NxONRtqz/rc79H+5z0EFngUlcRR6izZs38/PPP2sPqOCLL77Q/m7SpAmtWrVK2o+YzCqO6ZTHpO82aP+bzFYsFjtgwmQy07G5U5vwWrRogclk4rXXXuPqq69m+/btHHHEEZhMJkaPHs3AgQNZs2YNbdq0qfNcgsEgzz33HDabjZ49ezJ58mTatm27j1fo4IBesaZOvCaTCY/HQ2VlJX6/H4/Ho71XKqGr75WYl7RUUSGxMKnIIV2E3W43VqsVv9+P1+vF5XJpfcKkaHBWVhYWiyWlJSb3koxLtbb2VE7/xhtvkJFdyIWjLueX+WMYetW7BGuq+Wbc9eQ2as+plzzP+ScXUF2ZCNKfcMIJuFwu3n///ZTkoY5BhVitMl5Rb8oY5XzVOov6/cr5qtdfPb56bVTI9yxSf3mfYXntG/TzXSAQoLKyEq/XS9OmTTGZTGxc+iWWosHU+MvJzG8OmGhz1DAatjwGb8Vmzhx2bJ37P5znIDgILbDzzz+fbt26UVxczN13382kSZOIx+O8++67zJ8/n59//pmMjAzNrbgnGNizIYW5Tu3/mR8/wOcvX4I7I5+zL7iaDi1yNLVWw4YNeeyxx5g4cSKdOnXigw8+4IgjjuC5555jwoQJDBkyhGeffXaXTQgXLFjAKaecQo8ePWjfvj3Dhw/fq2tysKIuNyKgSdrFChK3n5681OC/Sl6qFSQJuGqOWTAYxOl0atL6QCCgNavUKxNTWWJ6ctAXr1Xdiep7rrnmGvLz88nKyqKkpARIxDH8tlZ0PfGqRBfrFTNZs/grIuEAPQZdjyOzOfH0DowcORKA6667jnbt2mnXQE8qqa6pKpyQNAQ1zUDIS40VqrlZu3Jjqvuvy/pKRV519XkzUH/IfNeoUSOuvvpqtmzZQnV1NSaTia5du3L//fcz49vJfPriBaxfOo2sghYcfcoNrF/6HdPev5X1iz7miFZ5de7/sJ+D/mp5YJXeEJO+28CPC7dTE4qRm2mnb9dcTuyWi9mceBi9Xq/m2pGJWGr4GSvOnZAJra6Av7hCpC6ifuWfqq2I+rpAldLX1NRoVodUuI9Go1qxWqvVisvl0qp0qOpIUS1KKart27cnSfztdnuScERib2K5vfjii1x55ZWMGzeOLl26MG3aNK655hq++OILZq0vYt6C35j8/Ll07X8VvorNLP/lI865/VssVjudWmZxy4VHaOd07733ct9997Fx40ZqamqIxxMNPNPT04lEIrUagYr1JZVKpCEmJMhLiEvOIRQKJfVfq+sx17sVU0nhVfKSfRr5XvsHkj9ZXl6uzTlutxu32822bdt488038Xq9DB32Nyppyg8LStlRGSQ/y8kJ3RswqHdDrH/hHNaDzoV4oJHpsXPR6S25YHALQuEoVktiZR0KhbSHODMzk1AopEm2q6qqcLlcRCIRraPu7hJN/wrQS9H1q3HJcamoqEiqNi+TqtpiRR9vUvcnYhCxMKRye01NDWlpaZpwwefzad2g5fuSah5Sx6+mpkazHgTSPkRy2QAt30xI0WQysWjRIjIzMzn33HMBkvJ2rBYz1eWbAEjLbEA8nrBUvOWbycxvhs1W9yQjLlK9bF1ie+o1iUQiSQpLKc6rpi2oMSr9wqGu70/+3x15gZHvtT8gXoEdO3Yk5UZK/HjdunWMGzeOSCTCeeedR7du3bBYLAw/sdmfO/CDDH/Zu9BsNuF0JKTdDodDW+VDYvJyOBzk5eVp2wOBANXV1Vrl9D2pv3c4Q7Vg9JCYlx5SxV7eU5eAQ03sFUJRJfuSwAs7ydLlcmkJzR6PB4vFgt/v1xYo8Xhc6w4tEOJQBRx6lx1Ap06dqKys5O2332bp0qX8+uuvQILIXKGVzJ86Fld6HsWte9O840lYbE7mfPVvyretxOpfxrvvvgvAqlWrNPJbtWoV1dXV2jhSxcIikYg2NrU4r3S/FuKR70KtlLIroqkrHqb/DlRCNPK99h3BYJCtW7eyadMmAoEANpuNrKwsrcbnsmXLeP311wEYNWoU3bt3N9y1deAv50LcFUTRBjvFBfF4XLPG5DUhPJlQ61P653BFXW5ENQYl7wO0vC31vXKdpaKHHvLgSjkkKfYrSsOMjIyk/ClZZEDiu6qqqgISlrVMBCaTifLyck0BKW43vdpR3Jw2m41IJMK1117L+++/TygU4pVXXuHss8/GZDKRkZFBVmE7Oh4/muwGCfFQyYbF/DL1OSpLVlGQl8NDDz3EhRdeSLNmzVi3bp12fo899hjDhg0jNzcXl8tFNBrVAvsSw5PahrIgcDgcZGRkALWr2wvByXmkesRTiXD0FeRVsYjsz6gyv/eQ0mfyXFgsFq0/nsw3P//8Mx9//DEej4dRo0bRsmVL43rvAgaBKVCrd0Nyv6twOKzFVWDnRCwijr8ykakTnMmUqFWoT1IWV1YsFtPKUQnUOM2uSEwqgIgbTb4Xq9VKZmZmUiUNKT0FCaVXdXW1VjNRJvzKykrtdYfDodVylAlFRCPSkHN3E0mlN8Q7X6xm9pIyItE4NquJLi3djBzUnPzc1Pk3paWlVFdXE4lEyM/Px263a/E9uV5CXur5ZGVladdVro/NZtNiZfJ/qoRsPUnJftRFhZ68DNHG3iMajVJdXU15eblWpSYtLU1bpIg34ssvv+Tbb78lLy+PUaNG0ahRI8NVuxsYBKYgHk90rpUJIB6Pa6IAQFv5S2wMdoo85OH/KxKZuJgkliQTLexc6dtsNlwulzZZO53OJAWnTKBqRQk9ZJVqsVi0RGZxr6WlpZGWlqbJ7GXyFSI1m834/X6N7Ewmk2aZ2Ww2MjMzKS8vJxqNai5NEX3IQqY+k0k4HMbnD1FS7sNuDmMiisfjIScnp9Z74/G4RmDRaJQGDRokWfUig6+pqaGyslI7j5ycHO26CqHI2ITA1ftvdwSmt74M8to/kMT6srIyzSqWzuJq0ehAIMCHH37I3LlzadKkCRdccAEFBQXG9a4H/jqzbD0gE20oFNIITIQAUvNPJN3izhGRh91u14jO5/P9pYhMHjSRsqvbTaZEPUNZZaanp1NZWamVglJbiqhWVqrkY/k+pBiv/A2Jay6uPovFkiRyqK6uJhaLaW1fvF6vlpumxnYcDocWH1M7Qgsx14fAYrEYZlOUwlwXfn+cYDBaZ0K0/hxFoCIWolikQsImk0kjXzUxWT22et1TJS2r11KQSjxiyOX3HrFYDJ/PR2VlpSbQcDgcmuDIbDZrCzg1ptquXTtGjhxJVlbWn3a949Eooa8+AosV+0mnYTIf3PHOw3923UNIhQeRVYdCIUKhUJJEWZJm7XY7fr+fQCCgtbMQohNpt6jt9IHvWCxORXUIp8OC23nofw16UYtMsGlpabUUf9LLKxAIJLmu1FiamoSrQnKgJG4FaEnHlZWV5OTkaCRosVgIhUJkZGRQVVWlqQxFmagiGAzicrm0XDU1fqSKGHYHeb8UO5ZqGXpFIeysaagXbpjNZk2ZKeMGtCobYomqY1L3syvlYSqok6W4YeuKixmoGyIekgR+SCxKpIu4uKfFmt+xYwevvfYa69ato3v37gwbNkyL5/4ZCC+YQ80bY4ltSsRnQ1Mm47roH1g7dv1TxlMfGA5WHVSf9MyZMxk0aBCNGjWiefPmvPrqq6xdu1bLD2rUqBFnnHEGv/32mxZvuOmmm2jatClNmjTh5ptvJhqN4vV68Xq9rF69WpGRm8nNcpLmsnHy8H+wcbt/r8d722231fr7j4IEplXyklV7enp6SgtULfrr9/uTPqtaIHVBRA1ivUlMQYQj6kQuK12Z/GUFrFciCrmJW1MmcVEv1pfE1HGrkvxUFqVYZkIWai5WJBLB5/Npn5Ngv7xel/Ul5y37rev6qeNV3Y968jJiMAkEQ1G+nbOVB19ZzJ1jF/DyRytYtyUhqJHQw9atW9m6datWjzMzM5PMzEzNc5Oenq55abZv384LL7zAunXrOP744xk+fPifRl7RLRvx/esO/A/fqpEXQGz9anz334jviXuIbd/yh4+rPjDuzhSw2Wxs2bKFIUOGYLfbmTJlCi+88AKwc6J4+OGH+fbbb7FarZx11lkEAgHWr1/PuHHjOO+887jkkkv43//+x9y5c4HE5JCVlcUjL37L0H+8D0C7Y87mjDETyW49lAdfWcyW0sCfc8J7AZHIpxJrqMnDdUEqputl7UJOu5Nq64Ue4rKVJF/9saRqh4gyTCZTUgNIsexEXKKX1KtVKHYFNY6kWnH6ElnqMSS2JW7UYDBIIBColR8Euy/ftLt6h6neL2MRq1fI62CQy/8Rva3uvfdeTCZTnbHXmmCEh15ZyGuTV7FsXRXffPEer772Ov98cRHfzd7Asccey7HHHovP58NkMpGenk52dra2eJKWQJJXuH37dp5//nm2bt3KKaecwqBBgzSXdl34/fffMZlMmrx+fyDu9xJ483m8N4wiMm9Wne+LzJ5B9fUXUfPO/4jXHFxzlEFgdeCDDz7A5/Px+OOP0717d/r168eZZ56pTURZWVl0796dF154Ab/fzwcffEDz5s1JT0+nadOmFBUVATurUUSjUUorIyzZaMedkSj9YnO4ScsowO5IwxeIMOm7dcTjcWbOnEm3bt1wuVwcc8wxQKItQufOnfF4PJx++umUlZXVOfZt27Zx9NFH43Q6KSoq4r333tuv1yYUCiVVDoCdSkJpbVKflaTEBVTxDOyMO+ml+XIc9W+ZgEOhEB6PB6vVqiU0qxCCk/eI9aYWFpZJXywd2S7vqU+LFf15q40/9Z8Vy07GJ69LkWLYSfSyb7Veo7ofQSqLVy/40G8X8lKPcTCQ18GCSd+uZc2WnRP3qvmTWbXwc6KxOG99uYFHHn2SF198URPriDrZ4XBo4QZZMJWUlPD888+zY8cOhg0bRt++fUlLS/tDLa94LEZo6qdUj7mQ0KcTIFqP3nfhMMGP3qV6zAWEpn21Ry7qAwmDwOrAxo0bAWjevDk1NTWa6a8PyEsPnw0bNtCoUSOGDBnCbbfdxq233sqFF15I69attVjG7F9L2NXXPndpGX6/nzPPPBOPx8O8efO47777iMfjnH322RQXFzNz5kxWrFihVa5Ohe+//54FCxbwxRdfMGnSJK3u3r4iEolohUZViFovPT19j+MvYl3oLTGxRiQuJlArdKhxJSEJETlUVlamrO4hrVf0dRVVclKL4YqgQchmbwgMqNV5Wtx1qppVtou8X2KIQjRqDltd2J1sXn89UqkND2byKisrw+l08vzzzwNwzjnn0KNHD9auXYvJZGLw4MHk5+czbNgw7r//fjweDzfccAOw09K64IILyMzMZPTo0Un7Hj16NJmZmVx99dUAvPnmm+Tl5XH+kCP47H+jqNi+moXTX6F00xK2r1vAuAf6sGHlL1x19Rj+8Y9/kJaWxrx58+jbty95eXn07ds3aYFVVlbGmDFj+M9//sMrr7zCK6+8gtVqZd26dZhMJoYMGULDhg054ogj2LJlC9FolLPPPpvs7GweeuihpLHeeeedFBQUkJ+fz80331zv6xdZugjv7VcSeOkp4pXle3z94+U7CIx9FN+d/yCyfMkef35/wyCwOtCkSRMA1q1bp8VCVNm3TLSrVq3S3v/111/z9ttv89BDD/H444/zxhtv8Pvvv2v5HsHwrl1QkUicNWvWsGXLFoYPH0779u0ZNGgQJSUlbNu2jW+//ZbevXuzcuXKXbZx6d+/PwMHDuSMM87gnHPOYc2aNft0LUQarwoKYKdqMzMzU3OR7E79lgpOp1OroKFaYnVZYSrUyTkcDmtKvXg8TmVlZZJ1JRO1JAGrsSSv15vkzlPVkbCzsvvu3IiqC1H/vxCl7E/flgTQxiFxPdku10BciHVdE/1135W7Ub0mss+DPeaVk5PD8OHDefvttwmHw3zxxRdakWRI3EvXX389H3/8MV6vl3PPPZf//Oc/Se7B/v37c/fdd/PCCy/w008/adv79OnDOeecw3PPPUdpaSktWrRg7NixnHLpK4SDPn79cRzte/6d7MI25DU6gjPGTCS/uCOxuEm7fueffz4ZGRna4hMS5OX1enn66aeZNGkSvXr14uuvv+arr77ixRdf1I4fjUZ54403WLJkCRMmTODjjz9m/PjxPP3000mL0M8//5yHH36YRx55hH//+9888cQTTJo0aZfXLVa6Df+/78f3z+uIrVm5z99DdOXv+O6+Bv9/HyZWVrLP+9tbHNx365+IkSNH4na7ufXWW/n111+ZPn0677//vjZxlJaWMmfOHEaPHo3b7ea8887TJivJ9YDEilF84q2KPbs8ZlFO4gFs0KAB48ePZ8GCBXz11Vfk5+fToEED+vXrx4cffsi4ceO4/PLL69xPWVkZN954I3PnzqWgoIBXXnllr66BFBqtrKysJUIwm814PB7N6lK3y2frC1F2SvKuXtGoby0iJKN+Xt4nic3S4FLyp4QwZJKWChviLotEIhp5QGorrL5uxLogOWuwsziv/G+z2bSCxECSK1YVtezO1bS70lDyHr1q8VAgL8Gll17KzJkzeeONN6iurubss8/WXjvxxBPp2jWhmhs4cCCdOnUiFotpVi0kmkgOGTIEgGXLlmnX4W9/+xsdO3YEEs/37Nmzufnmm/n6tSvxVWwlUF2C3ZGGxWLFbLWRllGAxWrHbk18P16vN2nxOXDgQE3F/Prrr7Nq1SoikQjTpk1j4MCBVFRUJC1ETz31VPr06QNAeXk5K1as0MZ7+umna++TEmYjRoxgxIgRSdv0iAdrqHn/Naqvu4jwT9P2/qKn3Hmc8A9TqR5zITUfvkVc57b/I3Bo3LF/Apo0acKUKVPw+/2cdNJJXHrppZrsGxLuiBNPPJFIJMJnn31Go0aNOOmkk7j44ou59957ufXWW/n73//O8OHDcbvduFwuuh/RgMYFzjqP2bWFmWAwyAsvvEB1dTU9e/bk9ttvx+v18tZbb7FlyxaGDh3KbbfdllIUICgpKWHUqFF06NCBbdu2ceWVV+7RuUejUaqqqqioqKgVS4KEBZOZmZmy07FqceyplDuVO1EspFQSdP0xVetG9hUOh6msrNTOQxKl1bwumbylBJUIMOT8xIWo74Zc13nI+auQJG09EYqrNBaLad+ppGKIu1DINBVp6wlLtfz0BKYSl95CPNixYMECpk6dytSpUzn++ONp0aIFN910E8cffzwNGzbU3qfK/vWlzeScP/zwQz766CMAWrZsmXQvyQKitLSUsWPHYrfbGfWPu3Gl5xL//wCAxeog6KvAV7kVpz1RINxkMlFQUEBRURETJ05kyZIlfP7558RiMT755BPWrFnDwIEDcTqdjBgxgkmTJvHqq69y1llnpRx7PB6ndevWQKJh7+TJk7X3CclOmDCBCRMmAHDEETs7HQiim9dTfd2FBD98C0J1zxf7jGANwfdfo/r6i/5wteKhn4B0ANG7d29mzpwJJOIkkuAsTRlNJlOSeshisfDqq6/y6quv1tqXxFxuOLc9z01Yznl3z9Bec9hMDOjmoXleorpE586d+fLLL7UHMBwOc/TRR/P9999rx5Eq7mqMSJ3MVq9evUfnKhOotPZIBclp21UPNEBT1KVqyri7z8m+/X6/VlXeZDJpVeHVuJYcR4UqhHC73VrsSRKZ1diaaoFIM02pVi/Bd7nGkhyttmXZHdTrKAQWDAaTqt9LvqEoJ6W4tHocsdLqSzapCD8VcanV62Usu0th+LNw++23a39XV1czatQo7rzzTs4555xa75VzVF20qljn+++/Z9KkSVx++eUcc8wxmsIxEAhorsby8nKGDBnCSy+9xC8/fEhOTh6h//86m3U6mV++foZJz5zJl9MW8sjUndbx+PHjueaaa+jWrRtHHHEEhYWF/PTTT7Rq1YoRI0aQmZnJnXfeyfjx42natCmPPvponec8dOhQRowYwZgxYxg0aJC2/dRTT+XWW2/l1ltvBeD666/njDPOqPX5WMk24jv+OPdevGQrsR0lmAuK/rBjGqWk6ol4PFHSR2qZyWQgJZL2ZD/RaJQV6ytYu9mH3QqtG9mpCSRqpUlFdUBbfQthqc0K9ZOMWBEyAaVyO6mycHm4ZYLe3W3gcDhwu931mtzUWNGeJsKqwgKxhlRXX6oYlBrLETekIBKJaBaXXCMZTzgcJhAIaApFtdeYx+PB4XBojTDFIlML2grJqZBcNPkupLdcVlaWlkDtdDq1TtLhcFj7XkVgIkIKOZ58P/prKWMVqAIaVW6vF6DI/aHK/PUqxIORxASxWIy33nqL0aNHs3HjRrKysmoRtB4mk4n777+fBx54AK/Xqy1IxCKWtAWJVfp8PjweD0VFRYlrabGwZI2XOUvKqQnFaFmcQb/uDcjJcNQam1j7oVCIxx57jFAoxHXXXUdRUdEfel3DC+fgf+jWP+x4AGn3PY21fec/7HiGBVZPyGpYnwAbDofrXSdP9mO1WmnfIo/2LfK0UlXr1iUUQUISMuEEg0FNLCGFcGXSUQlKVbTVByqZqdDnEZlMJi0eU1/IBLk3Vpg6uXo8Hk0SL2IG1U2W6v9YLKZZamLlyFhUIlBrKsp5Z2VlUVFRQU1NDV6vN6l4sJpgLddIrXgv94D+uuoJRSZMtfCwGjtVRRoirZfvenfuWfV19R7Vu1uFoNT7RxqDCpkdTDEx9Xzj8Tj33Xcfjz/+OPfdd58W61Shpg2kumbV1dVaZwO/31/L6yBWcqNGjZIqvnRulcmRbbLrTBMR8pJ9zZ49m8rKSk477bQ/nLz+Kjg47tAUCNREKK8KEosdPAaiTOZqBXCgzgTI+kBaiVRXV5OZmUl+fj4ejwe73Z60gpZGjZJTJtvrK+9O9X6VpCThUp2ErVYrGRkZe0Regr2NhclnZQIVJZ4QfSqXoToxCJFHIpGkyuwiQRdC9Xg8mqWrWtNZWVna+UpVD7U6R6qKHFLguaqqSltwpBqfKqlXxybWnNwLsmBJBfn+9OkFKhmpMUF9fcS6vhd9/pea2PxHQL039d+huhiJxWLcfffdVFVVccMNN2hkb7VaNS+FmgoQDofx+/1UV1dz4403Ul5ejs1mo6qqSmsmKYua9PR0rYhyXl5eUodu+amLvPRNcaPRKAsXLsThcHD88ccb5HWAsNcENmvWLPr06UN6ejrFxcW88cYbWi6G1Lvr06cP06ZNS/rc119/jclkomfPnrX2qd4obpeNnEwnHY85nc9mbNwr9VezZs34+9//XuvvfYFMNupEH4lEUood6oNoNKqVmGratClpaWlkZmaSnZ2tydPlYYzH41rpJslzUnN3VDei+iNIRVoZGRlkZWVhsVg0FykkLEGRmu/tdUqVdLunn5d4lN1u1wQYu9qfxJn01qjdbicrKwu73U5NTQ1VVVW1JhWpX5idna2RWGVlZZJFKZNoqvYq6gpc/ZHvQH6Hw2FN1SmuQiEsPbHorcvdlbTalXWmF3aoVqm8Ry3eK9ZYfVzM9YGepISohKTkWOoCS8a8K6ISy1gWKCJbr66uxu/3axVX5NkpKyvTBDOyaCkoKCA9PV3rpCDdA9TrVVdLHTkHlbwikQhbt26lWbNm9YqX7k/E43Guuuoq8vucSKOJ39N3yhxKgyEe+W0Niyqqd7+DQwh75ULcuHEjAwYM4Oijj2bGjBns2LGDrVu3aq8//PDDDBgwgBtuuIHBgwezfPlyGjVqBMA999xT54p+7sLlPPX2Uj589kIaNO3KUSdfg9Xm5L2v17FxaxVnntBAi4eoD/0fDZlUpfAr7IxH1KdvlCAeT+R9BQIBmjRpolkEUlXd4XBoLqxgMKgVhpWJpbKyUqt+ocan1IlCT/xSIUAmKWk5ovb0crvd++XayqSiTkZ7+nkhQWlrIhXvZSJTLQ9Vli4QgYbsRxKDVWtOHZ80hRR3olhXHo+HUCikLRpCoVBS2alUtQ5lMpZjy1hDoVBS2xO1HY/aDkbvHt1VDtruYkByfqpwQ6BWPpFxSrFg1epUY6y7gt7lVx8rXE+werLdFSSWmyqeK7Frvevf4XCQnp6eNBdJKkOq2GaqruGpCF7it3Lv1qf82P7Gd999x/PPP8+kZ56k8NP3mb69nG01IR5dspYmaU46Z6XX+kwsHsd8CFqJe0Vg48aNw+fz8eyzz9KhQwdt+9q1a4HkMktHHHEE48aN49Zbb2Xy5MnU1NRwzDHHpJSBz14ex+zIxWQyY7U5Scso0F6bsaic1gV+vBWbeeCBB/jtt9/Iz89n5syZrF+/njFjxrBkyRI6derEf/7zHwoLC7XcnpUrV2oT9eLFixk9ejRz587F7XZz1VVXMXr06CRStNvtSS68VDCbzbjdbi3xVm5mUbvVJ36wYcMGduzYQU5ODoWFhUmvyWSqJt+KIEFECTLBVFdX4/V6sdlsKYUWUqRWdX/E43GNDOTBVmvu7S+oiru9EQfIRBCJRLRJxO/3axOHfE/6CVKun7jlVAIVN7DEv/SfE5dhVlaWVjLL5/NpKkYhMSnSKrEyVRQAyRO5WrhXrDRZLKiWsnw+GAzicDjqJADV4hDoY2XqGNR9qGIggT55XP1btfxUslMXJ/rzreu71JOU+ntPIC47eeb0x41EIvj9/lrtfdxut1ZODNDyAU0mk2bdi/JVIFapCrHo1GPLNkgslFq1asWiRYvYsGEDjRs33uNz3FtIztuEr6Yy2OvnwhZFHP3lbAD+Med3/vXbWj7tdyRdPp/FoKJc5pVV81jX1phM8M9FqygNhjmuIJuxPdpRFY7Q5fNZnFyYwy9l1RyTl0mXbA/P/L6BC1sU8fCRrXl37VbuXLgSXyRK+1/P5q3xEzSp/4HGXrkQ169fDyRyKHYFKbO0fv164vE499xzDw8++GCdN+ycJTt2ub/V2+Cuu+6itLSUl19+mZtuuon169dz2WWXUV1dzeuvv044HOaOO+6o1VkZEjfimjVr+PHHH3niiSd488036dKlC36/X/OJb926lfXr17Ny5UrWrVvHtm3bkuJOKuSBEMjkI8q1XT3MmzZtYsuWLaSnp++ybbhMbFI3MD09HY/Hg9Pp1KwS2DkxinsxFAppPa5kEpdxiYtFuhqL+m1/kxckr6T31g2lWmJqXCwej2vpDXqhgiqsSGUFulyupBQI/efFCs7Ozta6JMs9JSQm/0uPOLGa9eerxjLVjtPiGlXFITJRhsPhWipDlYhUEYj+OqkEk8ptKNcrlVBD71aU8avEpsap9Hlt9XX5qWOsD2TcPp+PqqoqvF5vkkcC0FoY7dixg/Lyco28LBYL2dnZFBUVkZWVpX1ParK4+v2qdSlTxSPlWauLvCSeeeqpp2K1Wnn++edZuXLfq1/UFwMHDqRXr16889kXnDvzV7p/8TMvHN0egIe6tGJq/27aeytCET7tdyTH5mdxxc9LOb4gm8nHH8mPJRX867e12vscFgtXtSnm882l+CJRRjRtwAsrNlITjdImw82Hx3Vm+kndqfb6+Ne//vWHneteWWBSZmn16tW0b9++zvepZZYmT56M3W5n0KBBPP7440ByLbtYLE4kuutYSdxkYeXKlZx55pkceeSR2s0rGe4XXHAB4XCYrKwsqqqqtAdNXYV16tSJ4cOHc++992KxWLjhhhs47rjjEvtPEUiurKzUVjRS708mUHkAVVeBuH7ETaQP+sbjcTZt2sSmTZtIS0ujTZs2KeNUMilIIF3qD+rdXRJ0lriPfNbn8+Hz+bBarZokXJJ11ZyYPZHH7y1U9d2eTFr6fcjELYILi8WiTWLyHnEZyt+pLASZsNS4k1wzuRaqJZadna1ZYqKIlLhnTU1NkrAHdioj9bEv2FmBQxYXakqEfEasI3FF1XW99ESpjxvJtlQWmZCPuAvlGgj2RNEqY9lTUqoLKknr40v6RZA836ninno3oXhZUo1R39JHrpveE6Na0OqY5NlTW/I0bNiQSy+9lFdffZVnnnmGHj16cPLJJ9OgQYN6XQfV6lWFLOocJQsdcZOKR+Xll1+mYt5s3rzvbl5cuZHfKhPzR5bdSgOng3W+hPfhjMYFtMlI45eyKmpiMQY2zKNrTgZt090srdpZ87RvQRbN0hIhjv4NclhW7ScGVIWjrKj288SStWyvCeGLQ+NNm+p1fvsDe0VgI0eO5IEHHuCaa67hqaeeory8nM2bN9OrVy8AKioqmDt3LjfccINWZmnChAnMnj07aTVzwQUXMG7cOADMZhOtG6ezfH3dQcYm+TbatGnDjz/+yMqVKykrK6N79+60bt2aWCzGNddcQyAQYOvWrUlVFLxer+aWWb58Of369eOiiy7i3//+Ny+//DLDhw/XVoqqjFlW3vIgifuutLQUl8uVZAmoE5Z+pay6W7Zs2UJpaSlut5vmzZsnxTzU9hr1iR3Y7XbS0tI0AhO3irhWIDERVVRUaBOVWGTi9pJJ/kASmCqC2FNZvUAeWnWSkmuukr5cZ9UlBiQ9+CpJqNaZ9N/KyMjQJmO5B1QSU5OqA4EATqczyY2pt+rEElFLZAnpyeQnbkm1PqPEdtRJN5ULTlb+eiuzJhRl2txt/PzbDoKhGC0apdG/RwOaFLqT7i9J0N/VPaB3K6rXWSwRNS1AvnP1s3V9r3qrUsgg1f0v10t/nwvEta93E+6qwr5cA1kUSUmvtLS0WuQli2G9ZawuStTz7dChA7feeisffvghs2fPZvbs2bRu3ZrOnTvTpk0brVqMGm9U5wE1naampkZz+4vnQWJ/6nVYtmwZW7Zs4YoB/Tg2P4sXV27EY02c+1pvgNLgTsGZzZwYa/M0F06zma82l1LktLOs2s/fm+4kWovJhJyWGiuLE+eZ39djt5h5untb7lm7Y689LXuDvbbApkyZwk033UTv3r3JyspKqpZ8xx138NBDD9GpUyetzNLIkSO1Ol9XXHEFoVCoVkX1wX0asfyd31MeszjfQY9ODRk7diw33HADf//738nNzeXHH3/kmWee4ZZbbuG6664jMzOTkSNHkp2dra3GpUK5WEpPPfUUmzZtIiMjgyuvvDKpTppewaeq+4SsotEofr8fv9+vxUFU1wgk+/vlRty6dSvV1dW43W4aNWqkPYS7ixtIvEUsO7XvkKwqnU6nJhmWlb3qXhMXhxS8tVqtpKWlaQm86nEOBPQxk/oSplxvdRWuWmPqxCsTYCAQ0CZ91Y2oL6CrFy7ItZD6lXLNZUXt8Xi0xGQ18dfv96dMZtcTmuqy1SdcQ7LsXT4nrrNdWQ9yXWUfAF9P/Y7TTh2IyWTG5nCT27AD3fqP5qfFbbj8jJZEq5Zz2223sWjRIjIzM7n33ns5//zzk65HqmOlIhXVja3+6CX86jVRyU9foivVdRHXt95dLPuX+1kEMfK87y7uqpKSyWQiKyuLHTt2UF1dXat4dyo1pjxX8vxIcrwsSuRn0KBBdOrUiQULFrBixQqtzmFubi4NGzYkNzdXu+dkQSrnq7qd9RD3rDQ8dTqdWK1WJk+ezHvvvoMtGuWcpoWc3bSQD9Zv46nf1zOztJKxPZI7VOQ4bIw9uh33LV7NB+u306cgi1s7NMMb2b0I5fwWRTz86xr+t3ITDQqLd/v+/YmDrhLH1NlbeP/rtdSEdt6krYrTuGxoM7LSd95Q6upEoCcc/YpGbnx5cNQVjLqSqetmSSVR17tN1AdfnSBl9e52uykoKEh6sHYVr9C7NWUcGRkZmgWldxGpRWFlUpdzTfXwS4ko9eGvb0+vPYG6Sq/PxCLuI4HEUYSo1XOAnYQkiwLVBRQKhQgGg9p3LNdB7g1xtdpsNs0ikf5hYq0Fg0Ft4SJpE1JZIzMzUzu+WMMymWVkZBAKhaiuriYWi2luaFnxiyhnV9DfU+JClnNXV+Amk4l7n/qAf91xHr2H3k1aZgNmf/4EoaCXoVe9iynm55OxI+nRowePPfaYFvtNlWaiXtv6Jjan8iCkIi5V7KL/vDyPeitLf8+IJ0TN2VLjnvpjp/qtIhwOs2LFCuLxOI0bNyY9PT1p4SUWokosuyJfuY/FgpIqH5s3b2b79u2UlZXVSsGRRbEQksRzRYgl940sytR7OxAIMHjw4IR3Z/EvhB+7q17f2f7CX74Sx4Cji+jdOZ95v+8gUBOhaZGb5g09tQLTAlVCq/qLJWCcShGouitSmeyyD7kpZNLTm+oqVPeP/iESpaJ0aBWLT//AqeeY6nzVklL6Sg7qj6j2xEUm7lHVb64qqEShKdUnxDUpD0x9J67dYXeuRNVNqJ6bKpmPx+NJAh31XhCCM5lMVFVVaTlAeqiVKOQaSL8mgdVq1cgqIyMDl8uFw+EgGAxqKjWJc4qaMSsrS7PS5XxkjHrrS8apKiVVV7AeeqtGjbv+8MMPDB48mGHDhjF9+nQ6dOhAWrNE9XKnO5MGTY+k24B/8N17N7NxxUy8FZvx+Xw89dRTu4xhq+eQSjSi/w5SEYLqXqzLJS7fubqQVPetr0gi5dskH7Oua7Srseq/f9V9mZubS0lJCevWrdtlg1ZZBMuP6tpTF8epztnhcNCsWTPatGlDLBbTan96vV7tb8lJ2xNYLBa8Xm/iWTMdtHUq9hsOOgIDcDut9DmyfoFOcXs5HI6koK/6IKjuBCEZIQMVqhtGtfDUeJLqzpDVj+SD6SsXqA+TxJ0k1qHGnvRVFVKdo2pdqucgv1PFJQTirpKHVJKChcxUN6NMyIFAQCMPl8ulVSnYV6iTnZy/KppR3YRms4XNpUEwRWlcYMVsTm56qV4zIZTt27dr1plYYKoKTiY+SEzKolYTF1Q4HNZiDRLzrKqqwu12k5ubi9vtxuv1apOaBM2lU0FeXp52XnIuqgtIlKMyEauTuhC1jE0IMtWErBK8vJ6Tk8O4ceMYMmQInezJMmZPdqJiu69yG/7KbUAiFKCSUl3uyd1BTxzqM5PqvaprTe8ek3sOkj0Q4iVQyV+/wNM/e7IPOZYIPVQxRCpyiUajWrUONUdSfV525daDnd9lenq6Zk2pLj79M1jXdRKrTRbPEruWHnrS6SItLY2MjAzS0tK0+ytsPXgbk+4vHJQEtreQyV1iQKrUV25iFbtyA+r3KxaDkKEE7sXa2bJli6Z6CgaDlJeXU11drbnjVF+7HvLQ6itpqGPSCxhS7UPGJ5+Xffr9fs3dJKtZuVbyMMj+ZdKUh1sWArIaFOtMrY84bdo0TjjhBLKzs7XrMHz4cCZNmsStt96aJKtVLUS9FFm1tr6fv52Ppm1gR2XCvZKdYefU3oX07JBIwrzqqqt49913GTVqFA888AAbN26kT58+hMNhvvnmGzp37pwkrlAnsVSJ0PI9u1wuMjIygATxSD80r9eL1+vVJg6ZhFQSk5Wvqm6ERGV9WaSIiEaNG6WCjAWSy2PpJ0318/3796dnz57k5eWxasEnSe+rLk8ow9IyGxCPJ/axevVq2rZtW+c9tTvURQAC9RlUf1TIhKwuZNRFn0z8cm+LK1ddkKneFJX0VEtY9Tzof/ShhF1ZcPJcyfco41NdfHJfyXOkxs7UGPqurp2Qn9xvLpdLa4yrnx/2t6v/UMJhRWAq5EtWJxPVZai6CusLlWjUSSgYDGK324lEIqSnp1NWVqYVDG3evLlWiFdvHaoldGRyreumTmWB6W/gVEFm/fhVq03/t155qXc1yrkKQUPCbVdRUQEk4nyffvopJ5xwAp9//nnSsdUYgt6qkOsp5/Tt3K289smqpM+XV4V4+8v1BIOFHN81V9s+ceJErrvuOj777DNtJSsBcdXKE0tMv6DRr9pVcYbkD+Xl5eH1eikrK9OsMrHmJA4pcayqqqqkjgLyvci1kvtxV25ZdbJLZZ2Jy1N/70pbkNLSUoad8w8+HPcMNf5Ktq9fyPypY3Gl51Hcujc2k5fls97i5ptv5sEHH6SyspItW7Zw5pln1jmmXSHVYjGV5SiTv6qyVOOicp5qfpreQ6BaLaoVp/+t37a7UL9cX7fbnZS7JgQl49Z7N/SQ56O+kOID4qJWSVC9bvpcvHrhzyC2P/iYhy2B6aG6JlTsKuCsWmR13TzyUIlQYPny5Xi9XrKysmjcuHEt4YKqJJOHUX2AJbdJVoXqQyg5L7t6GPU1EVWS08cHUp2PXqCiSu3VFbSMQVSRAF27duWll15ixYoVdOnShdmzZ2tukOeff57HH38cv9/PaaedxtixY/n55585+eSTGT58ONOnT6dNmzZ8/fVUPpi6mlmfPsr6pd9hsTpo3+scOvRMCAy+nFXC0e3TqampIS8vD5fLxbx58/jiiy/o2bMns2bNwuFwMGPGDM477zzKyspo1qwZzz//PH369GH27Nlcf/31LFu2jA4dOmhEK+end0nJwsNut9OoUSOCwSBlZWUEAgGqq6u1ahoul0urJSlyfJmE5ZpLcvSu7qVdWTXq6zLJqgnV5eXlXH311XTv3p2T+3biw3Ew8+MHsTnSyG3Yjj7D78XjcXP5kDac228id999N4MGDSIzM5O77qo72K+6pdVYkV7AoL+P1Bin6tLT5zbJb/2Crq6fXRGIQO9hUBeeatK5kIZsVxcJqstQSFCfW6hXHqvPnowhHk/kccr3lJGRQWFhobbI0l/DVFbW3sB6RFecF19NcPwbxH0HtgaiKT0Tx99HYWlTu7HmgcRfhsDqwr6a4HIDBgIBLXm6oKCAvLw8TUShyuz1xxLXotzcZrOZ3NzcpPfpxQ2qzFZ88epEoJed13Xedbkr9e/Ru1bVberDPHToUB5++GHWrVvHueeey+zZs/F6vfzwww/ceOON3HzzzfTu3Zvhw4fToUMHunTpAiTk6Q8++CCjR4/m1bc+YO73C1k5/1NOPOdxyratYN6UZ2nQtCu5RW3xBqIsWrZNs6wuuOACnnnmGZYsWcL999/PrFmzACgqKmLChAlkZWVx2WWXcc899zB9+nTOPfdcWrZsyY8//sj69eux2WzaokDcUzIRqbEWITiLxUJBQYFWKLampkYjMlk5S/xK9iP3gajHUomK9MSlj+uo7jGZVNXKKgBnnnkmY8eO1b6jTZs2sXxDgAUrfYTCMZoUujimQyYel4WmhV359NNPk+JXIjbSx4D1hKESmerRUElGfz/qt9eHhOQ6qJ4C1RpSi1gLWakWkyp6ErefuJVlzCK+CIVCSepSFdKpQT4r7j01gV2f7iDbNm/ezNatW4nH4+Tm5lJUVKTFv1QLeq+trF1dO4sFxynDsfXpT/D91wlNnQz1vO71hsWKfeBQnCMuxJTm2b/7rgf+8gS2r4hEIpSWlmrJwsXFxWRmZmoP2+5uSH2MTNwf4sqrKw1AYiQejwePx1NL0Sck5vP5tBiNSnbqRLK7XDR1rKny3OShLyws5IgjjuDXX39lwIAB3HPPPcRiMX777Tfi8TjHHXcc7dq1Izc3lwULFmilyE4++WSaN28OwI4dO6jcvhq700PDVj1Jy2rIgm9fpLJkDblFiXiN5K+ZTCaGDx/OQw89xNChQ/F4Eg+Q1+tl/fr13HPPPWzcuBGfz0ejRo0oKSlhy5Yt3HzzzXTu3JkOHTpoY5e4oFxfmXBVAZCqLHU4HNp3IIIPv99fy22tFxKp11AlD70HQC8zj8WSS5Sp7mKxGsRFqX6XbZu4adPYpe0/EqmhomKnVaGvBK+STqr/6xKV7Aqq4EjiRnWJkurzo7emUsUz9fesvN/r9VJRUZGSrOx2u5aL5XA4NHGEWFCSYiHnIWpndQEYjUaxWq0Eg0FWrVqF3+/H7XZTXFycJKZSr8uBjmOZ0zNxXToG+8lDCLzxHNHF8/bLfq1dj8Z54VVYGjbZL/vbqzH8aUc+DBCLxdi4cSMlJSWYTIl2KNI/a0+k5ybTztbxYl2JTFqd3FQXnnxGJiyZ2PREpHZ0htrxFXXf+pVyqlSDVHELmaSDwSDnnnsuK1as0CbxYDBIYWEhJpOJyZMns3HjRnbs2EHjxo01YUhVVRWlpaUAWOI+8opasvyXj9m8chZl2xIJn5n5CYJz2k00yrNp4yguLubKK6/k1FNPZd26dUBiUfHiiy9SWlrK008/zVNPPUVlZSUul4vCwkI++OAD+vTpw6ZNmzjhhBOSLEyZCPXuMvW6q9+txZLoLZaeno7P59PK+cjkpF5vUcHpyXBXk5d8XshGzQeUCb1Xr14sWbIEv9/P6tWrkxZCerfcnpBPKutHtRT07jL93/pYbTwOVmuy0EjvbhMykgWCSkByPVRi17v9U12/QCBARUWF1uEbdva6k04Oak4d7Hxu9N8BkCSuEatLxh0Oh6msrGT16tVEo1EKCwvJz8/Xvus/irRSwdKkOZ67nyA8ewY1b71AbNvmvdqPuWFjnBeMxtatdkusPxoGge0lotEoK1as0FqaFBYWkpeXV8sSqi+EkKTslWoZiPWkD+hLMF+gEpI+/0aNXalxCL3LSB2PGhOQbepkL8dKT08oAz0eD3369Enal9VqpUOHDtx88828+uqrvP322wwcOJDhw4fz66+/AiS5waKRMH8/ayjbNizlh4n3YrE56Nr/Ks366tLczI7SbZq7a+PGjVx22WWYTCbmz58PwNatWznppJOYNWsWDz/8MHl5eezYsYPNmzfz5JNP8uCDD9KnTx/atGnDxIkTk3LBBPoFSH3l5U6nU8sD0l+3iooKbaKW66d+d/rf+r9V8pLt0WiUxYsXpxyLHqKeFZeauDQtFguLFi3i+uuv197rcrk48cQT+emnn/jqq6+47777+Omnn7R+fvX9CYXjzPgtwNOP3sn65T9z6T2f0qNtGj07uLCYTdxyyy18//33mutXdUeqLmxVWRuLxXjiiSfo27ev1ixSfw/LNSsvL9dERg6HA4/Hg9vt1hSkqRaaKnmp37XEumWRY7FYkrwaquUF0Lx5c9LT0w+Ie3BfYDu6D9auRxP87AOCE9+GmtpdGVLCnYbzzAuwDzoDUwo9wZ+Bg64Sx6GAQCDA8uXLqamp0UpVNW3adK/JS52c/H5/kuBElfXq42gqSendUOq+9bGKuoLu6oShj3vt7YO3O+tCL7UWwv3h1wCzf68h9P9hApsVurey07uDLenz6u+6th3uWLp06T6dr9lsZtmyZTz44INcffXVdO7cWVNZRqNR8vPzefLJJ5kzZw6ffPJJLdedqtBTCSEUifPm1xVsKYsw8+OH2LzqZ868ISHvb9fYzpl9M7j99tv54Ycf+PHHH5PGlOq+k7/D4TDt27fnuuuu48Ybb0zpYgSorq5m69atOJ1OcnNz6yyTpiddNV1G/q6srNRcx6rCVJ4vEXmsWrWKQCBA8+bNyczMrNO1ebAgVr6DmndeJvz911DXPWQyY+9/Ko6/j8KckfWHjm93ODho9BBCZWWl1l9M8jOKi4v3irxUclGJRVyCsk31r+8qT0UeFNUFmErKrLow1J9U+9OTWapt6mv6sajCDzXArVoV6rnKz1lFcPpxEVZs8BKJRGjSwI7FtDMBdU+ucaq/63pvXZONajHpBRa726deeq2PJda1/7q261+X7uZ6OXsqN7B+MSO/pe5feno66enpRKNRnnvuORYvXswzzzyjxYyuv/56lixZwimnnMKQIUP43//+x/z582nTpg1lZWXce++9vPjiiyxcuBCnO4MOx11B804n///4Inw/4S62rp1L+57n0OuIm7TrYLPZGDt2LC+++CKhUIhOnTrx1FNPYbFYuPLKK1m2bBmZmZncfvvtvPfeewA8/fTTPP3008yaNYvLL7+c33//XVNUDhs2TKuQImXXxIWXapGnfvciupHEYfU70CsrVRWx3+8nEAiQm5uLx+NJen4PVpizc3H/41YiA4dS8/qzRJcvSXrd0qELrov+gaVZqz9phLvGYUtg8ViM8LefE/rxW5xnXoD1iCP3bX/xOFu3bmXDhg1A4kG3Wq00atQoqehnffajJy6BaoGksqYEQhZqroy+xp+8L5WkHmpX91CD0eo+VLWX6qpRyXFXVQ0E6udEJSZjUVfGqsTa6YxzVPrOord6whPXo0wgdRGAvLY3E8nuXIf1iV+lcgeqn99TK1efHqFKuVMdXyZkcSWrbjaBlDcT0ujQoQPFxcVYrVa6detGdnY2fr+fCy64gB9++IEPP/yQESNG4HK58Pl8nHDCCbRs2ZJJkyYxf/587rjjDj74Yh4/TX6EwuZHARAKVNP6qKG4M/JZNP0V5vx2viZAaty4MQMGDOBvf/sbNTU1DB06lEmTJtG+fXt+//13xo0bp6UhPPnkkxx33HFcdNFFXHzxxcyaNYulS5fy6quvan3yhHwASkpKtAoV+libqgpVvyO921Ag10//XVmtVs1tnJOTo+1H2u/I83OwwtqqHZ4HnyX0w1Rq3n4JLBZc512BrVe/P3tou8RhSWCRJQsJvP4csbWJJnK+3xZgPaYvrvOvxFxQuJtP10Y0GmX9+vVs375dKzlkNpspKiqqdxNIdbWmj1XtKsCuTlZqAqgE6tWYiOr20AfTRV6sD1bXNVZ1NS+ScNVdpK5E1RwhNa6War/xeFyrfq8qyvTqRjmOOrlIPUFAE0PI9d9diZ9kMUFqq2xXLsm6/t9TqNdev1CR71jUhGqsTFWRyvWpy3JWk3D1lkOqaxOPx8nPzwfgmWeeoWfPntjtdu6//34sFgsNGjTA5XKRmZnJ0KFDyczMZMKECUQiETweD5mZmVx++eXE43Hee+89WrRowYgRI5i/IZ3Fsz6mumwjAHanh6IWPYjH4/w+ewIbN6xJGvOiRYsYO3YsO3bswOv1Ul5ezvDhw/n444+5/PLLycrK4sEHH6Rbt0RDxry8PFq1akVWVhbHHXccV111FRkZCbek9Nlzu934/X68Xq/WQFTEFwJVpajGBeXaqddMb1XpXY1yre12u3YMWZiqi8SDFfbjBmA7ug+YzJj2YGH+Z+GwIrBYyVZq3nqR8KzptV6L/Pw91fNm4Th9BI5hIzE5a7e/SIVQKMSqVauoqqrSVncmk4mioiJNvLArpFLx1VUWCHZOtOrkpS+Do06iYiGphWxNJlNSqac9hfpQ2my2pIoH0p9KtaDUALucsybKqMPlJ9aAKimW/ap5Ouo1Ecm6HFtdDUu3aolF6HPk9kT+vScuwr1BKrehaplHo9GkFjfq5ChWsCwqZMJVr72QubTdke9Rrq0KSeSVOpdNmjShc+fOxOPJaQWxWIzKykqmTJnC9OnTMZvNNGzYkHg8rgkrAFq3bs3cuXNZuHAh21b/hNliIz0n0WIjVONly+o5bF75EyaTmc4dW/Pj+m+1sdx///306NGDBx54gNGjR2sijJtuuomnn36ac889l/fee49zzjkHi8VCSUmJVgHl+uuvp7CwkCuuuIJJkyZx2mmnaUIQp9NJMBjU0h1EyCFuefX5ErejPulZniv9PQloz4d4Ynbs2KHJ8dXml9J2RU94BxtMjn2vefpH4bAgsHiwhuBH7xKcPB5CuyjjEg4RnPg2oe++xHnuZdiOO6nOmygeT1SRX716NYFAQOu9JZaX5Bylgmq9yEStugdV6N2Bcmx9fo46+aoJm+KOk1wvWXWmqjqyN5BJUhJ0VXelaiWokPwo2NkxV69yVM9VrpmU4VEnZCEo+XE6nQQCAe246oQv8muZfF0uVy05fCoXrRCHWDbquau/dwVZladysarnmcqFKL/1FqA+xqIfi5B4fbGr8xDX+IYNG1i6dCmQyKeLRqOUlZURiUTIyMhg/Pjx/PTTT1x99dUUFtb2Zlx22WWsW7eOSy65BE96Jr1Ovw2XJ1H6y+5KZ8UvH7NlzVy6nXgpw0/qzI9KxbErrriCF154gYyMDHJzE58pKSlh1KhRbNy4kYYNG3L33XdjsVi48MILeeutt5g2bRrvvvsu1157LRs3bqSoqIjbbruNnJwc7TmS+yoQCGhtbaTUm0pmqiBDrZsp104ITe8CFzKT7uYlJSWkp6drsTf1O1Tng0PBtXiw45BXIYZ+mErNO/8jvqNkjz9rad0B58X/wNqqdkuJiooKVq1aRSQS0RpiWq1WGjZsmLJ5Iex0FagWSyoRRaqJUawJmQD1FprUSJM2J2azWXs45RhSaeBAPhAyNsn9MpvNtdqu1wUpYLorEYqo2dT/9Ymqavkk2NlSR25lucbqIkL2p8ZBhBTV3C0p5KuOSU8kspBRFyRyzEgk0aVZPaach2pZSyUN/bXQuznrUpfqP6P/u74Ck/q+V3+cXR1bxa9rg3z6UxVhxdngcVu4ZkQbOrTMqddx9wb6VAbVfV1ZWZnU1UDSC8RroQo31OdZXSzIfKC6ey0WC6FQiLVr12IyJfJCpeWLel+rfwMGke0DDlkCi6xallDNLPtt33ZkMmE7bgDOcy/HnJ1Y9dXU1LB48WLi8bjWXt7hcGhlYFTI5KlWNdALKdZuqWHWb5WUVYfJzbTT84hMmjZwpKy2oH7earVqq0RxB6rHkf3v775d9YFqJcpY6xNfAzS3TyoiU2NgKvlIXEHcWhIDlNdEzKFfNIgFqSdZ9bZX28dIY0o1/qFeayEvmdxkXyaTKWlMKnFJzlGqcUmllFTWuT61QRVh7Cn5pDrvXSEVMaUSjui/R1lwuN1u0tPTsdlsBIIxZv+2g/LqEIW5Tnp0yMNuO3D3qjwjektXtZKj0SjV1dVUVFRoRCf3naiL1bqV6uJJ9Y54A1HWbQthNplo29RDhifRGX3Lli2YTCYaNWqUtCjSx87U71I8DwaR1R+HXMezWEUZ/rGP4rvjqn0irzk7Khn07TyKJ06n9S338eJpJ7Lshae1+NEJJ5zA6NGjmTNnDunp6RQXF2O327VEzmOOOUarf1haWkqHDh2orKxk1KhRtGjRgg4dOvDss88yZU4Fz3ywntlLK5kxYwbX/L0jPTo1pqCggMLCQho2bMi7776r1WOLx+M4nU6ysrJo0KAB6enpxGKJVh3V1dVau3Kr1cr27dvJysrijTfeYP369ZhMJl544YX9eLXrhhCn1IcTq6g+cSZZ7aZ6WFXBgrhlZKIUoolGo9p2EXdI3yQ12VRN+FabDarEqJ6PamlJjTy1nJQaQ1KtxFgsphXwhdqiAPlMKjexTPRqUVlVDarGtFTCVoUaak1AfdKsXjSS6ntUY23qftRjSPxXOgLL+MXFa7PZyM3NpVmzZjRt2pT8/Hyt95nHbePEHoX87cQmHNul4ICSl1wv/bnOnj2bk046iYKCAtq2bcukSZNo1KgRt912G7169aJbt26ae7yqqoqPP/6Y448/niZNmtC3b1++/vprotEoZnOiIWmaJ537n3qXLh3bcP7Zp/Hed+U8Mm4jPXoeT3FxsVYkesOGDWzatCmpkID8yL0lz4G423dXx9TAThwyMbB4OJTIHJ/0DgT8u//ALrDJX8Ow6QvplpPOFyd0oywUZntNiODk9wG486LzOHLwUP71r39pOSiy8r/rrru05pler5d4PM6MGTPo2bMn06dPZ/LkyTz11FMsXryYBx54gDNvOBpnWjYA+cUdOWPMRLzlm5jy5jVcc/0dnP23U8nKytJECmr3Vwkow86yQaqlsyfy/QMFsU5lZSrJ3btzicj5xmIxjfj06j+xSmTCFHIRa0kNuquWlvSDS6WOhNpKPFmZq5OKamWkIgL5jIxHrgXstEYlrqYKAFQCFJdWNBrFYrFo1p801FTdh/o8uV1dV/256S0R9UfdJuegf13drnaMNpvNOJ1O8vPzD4p7UcQt+uuzefNmBg8ezNFHH82MGTPYsWOHVmC3X79+uFwuJkyYQOvWrYlEIsyfP58xY8Zw4oknct999/Hqq69y/vnn880339CmTRssFgsf/VDC8g2JeaiydC07tizDYrGxfs3vAJo7WmovVldXk5OToyU3y3ySisREfGS4FnePQ8YC8/3zOoLvvLzP5AUwfv02fNEoj3drQ6csD8cXZDOiyc4O0DkLf6bPttW8+OKL+P1+3nrrLaqqqnj33Xfx+/1069ZNmxgsFgvTpk3jlFNOoXXr1thsNho3bkyDBg2wWm2YLTsrR1isdtIyCnCmJXz/26vtFBcXk5+fT2ZmJhkZGTidTqZOncoxxxxDUVERl156KZmZmXz99dd07tyZvLw8Lrrool32HFqyZAlHHHEEDoeDJk2aMH16bVXm/oSQh5CvxB/qs4qUFa1a+06FiDtENm+xWLQuydIFWR+/EDGH+rfUvJP3yXj17U3kXFTVXqoxyW/p/qzG1JxOZ1JsTC0+q563xDnF0hRrJj09ncLCQgoKCsjKytJKH6mNEyUlQsapt8KAJPeeuGClUK3ae0rdl77ai9vtJi0tjUgkktSY0+Vy0bhx4z3OgzxQEOWpHiaTifHjx+Pz+Xj22Wfp0qULJ5xwAmeddRahUIirr75aa+rpcDjIzs5m5syZhMNh7rnnHjp27MhVV11FOBzmvffeY9u2bazftJ0fF5Vrx8gr7siaxV+xZvFX5Bd3AsDpTAhDhg8fzrHHHstJJ53Es88+y7p161i8eDFDhw6lQYMGtGrVijVr1nDvvfdis9kYNWoUjRs3JhKJcPnll5OTk0PDhg158skn/5gLeYjhkLHAYuVl+21fG/0JAUDztLql9J5IWKuQvnLlSmpqanj44Ye57bbbeP7557WJymQy8d1333H77beTlpZG3759Ofvss4nFYpw0fAx2Z91qxZpQokqAtGqARE+nCy+8kMGDB/PJJ5+wceNGysvLOf/88/n73//ONddcw4ABA3jhhRcYOnRoyv1+9tlnlJSU8P3331NTU0OjRo329lLtESQYLvGoYDCYZFHWBSENq9WalOulEqCII8SNpubsqMIFVY6uH5uMRVxf0oRURByyj1SxRDmGmg4hZb/UMeirqqj5eDImVeAjq2/VdRqLxTRytdlsWkV0WRiogh99HFXvQpN91CXAUN2c4r4SEnU4HJSWlibl1jkcDq0P28FkGeyqmPXGjYk8tJYtW2pxZjXuJJBWOps2JbpXt2/fHqvVqiUml5aWEo1GWb0lSCS68zgtOg1k0fevYbZY6djnAko2LsYXTNQIfeSRR2jXrh3PPvss//nPfxg2bBgPPPAA8+bN4+WXX9Ysc7mv27dvz4033sirr77K66+/zkcffcTChQu56aabOP744+nevfuBu4iHIA4ZC2x/otidIIu1vrqLWEaiEZYsSZRVadiwIV9++SV2u51TTjklyb2ybt06cnNzady4MePHj+ebb77h9ddf56abbuLbj8fiLa+74rPHbcXj8WjkBQmy9Pv9jBw5krZt29K/f39WrlxJIBDg3Xff5bjjjqOiooKff/65zv3+7W9/o2PHjgwYMICrrrqKbdu27dH12ReIa1Nyg+obF5PPipWkCheCwSB+v59wOIzFYiEtLU0TtkhpKhVCAvqYk+omi8VimqxafS1VySeVIMWNqVpeItRQpf+yTzVuJiQqbk0hbjlPtQqJ5IGp7kwpRivnL1XwxXIXVSokFkYNGzakQYMG5OTkkJOTQ35+vhZ3LS4u1jwFZrMZr9dLOBzG4/FQVFRENBpl+/btmsvQbDaTk5ND48aNNdn5wQIhWD15iVXfpEmi3ceyZcuSRD7iMta7WGXBV1JSgt1u17qPt2zZkuLiYjJ0+Z8NmnbFbLESi0Upat4jsTEeo7S0lGeffZb+/fszbtw4IpEIbrebVatW0bFjR1q0aEHr1q01tzHAWWedRdOmTVm0aBFZWVmcdNJJDBs2DIBFixYZ8TEd/pIEdmaTBrgtZm6Zv4JfK7zMKCnng/U7J/nKcIT5GzZx00034Xa7Ofvss9m8eTPz5s0jLy+PH3/8kblz53LVVVfx3XffceqppyaRmrjEotEwNYHKOsfRrllmrQm4ZcuWuFwu3nnnHZYvX860adNo1aoVTqeTESNGMGnSJF599VXOOuusOvdbWVnJQw89xNy5c6murubdd9/dxyu2ZxASk0oQqtS/PhC3oBCFdDcWdZjECuS9asUJ2NkvTXVtqfEwGY+42FSSUvcLyVJzmeyEJFSxg3o8VeChrvBlopIWHHrlqBrrikQiWsV9NUFdzlesT0h83zt27CAcDpOenk7jxo3Jy8vD4/Fo1r0021Rdo4FAgC1btuD1enE4HBQWFpKZmcn27dvxer0audvtCVe3vtHqwQB9qgTsjMtKNY2zzz4bt9vNddddx6JFi/jhhx+0eoqrV6/WWvksX75cq/5hs9m4//77+fXXXzX33ogRI0hLS+OoI4pwOZTapyYTnfuOonPfizH9//eZlW7n448/5scff+Tee+9l8ODBQMIi7NKlC0uWLGHt2rXMnz+fjRs3agQWDAapqKigadOmVFRU8OmnnzJx4kQgYZ2JwGhPnqfDGX9JAmvsdjKp75EEolEGfjuPy39eSki5Ie5fvJrTx75OPB5n4sSJtGjRgpEjR/LTTz8xe/ZsunXrRseOHXnggQf4/PPPOfXUUwE4//zzGTJkCBdffDFjx47l2muv5cIR/escR3GD2u7FnJwc3nnnHRYuXEinTp3473//S05ODuPGjePnn3/m9NNP5+GHH97l+a1du5YRI0bQqVMn0tLSuOCCC/bySu0bJOlzT0ksHA5TVlamueiksaC+kKq44kQEob4m8RDZLoIJUTHqLS31s3pXlEpeMnmIa1DNuxNLWs0Xk9esVis1NTX4fD7MZjPZ2dmkpaXVqo6h5smJ27SmpqZWPpzJZMLn87F161b8fj8Oh4OCggKtEK9M7PprLudeVlZGSUkJ8XicnJwcCgoKiMfjbN68OSmHyuPx0KRJk72u6nIgIZO53oISchdRR1FREZ9++il+v58TTjiBiy66SPvcKaecwosvvgjAMcccwyeffEKrVq2YMGECv/76K71792b8+PG89tprtGvXLuElcNk5tXeDpLG06noabY4aljSOU089lRYtWvDQQw9pC1Wz2cwjjzxC165dufjii7n99ttxu91Ji5GqqipOP/10zjjjDC655BKee+457rrrLtq1a6ctxESVKuceCseY8vMW/vniQm58+hf+8+5SlqyuOIBX/+BAvfPApk2bxgknnMAXX3zBoEGDDshg7r33Xu677z4CgUCSWw2gavTfie/YnrRt8LT5BKMxpvY/Kmn7gG9+wWEx81m/rrs95n+Xrae5x8VpjfKTtluPG4D76tuBXVcwePLJJ7nhhhswmUxMnTqVGTNmcO+99ya957fVFUz7ZRulFUFyM2z07ZpP5zZ5ux3b4QK1nuKuEq3j8UT1E2l06XQ6NYtLLBO9WhF2quiEWNT4hsPh0BKL65KRA5oLDdDUgOJqFCJQFZCSoydiDHFtCinI62L5yMraZDJprT1kTCLB11fcUF2PNptNO14wGNSIS1x7EidTY2JqXpH8RKNRysvLCYfDOJ1OcnJysFqt+P1+SktLk+Ixubm5WvznYENduV6S76cWAtjT3DdVkFNdXc2gQYNo0aIFb775ZtJCacqsTXwxcyullQmLvGG+i+H9GuMrWUz//v01JWKPHj14+OGH6dSpE9OnT2fgwIF89NFHnHTSSdx999089dRTeL1eNmzYwCWXXMIvv/yCw+GgX79+/POf/+Tll1/m+eefBxL35plnnsljjz1GWVmZ1levUbOO9Dvv+aTz2bp2HlPfurbWeb722mtcdNFF9b/Y/4+1a9fSvHlznn/+eQYNGqT9feWVV+7xvvYXDhkRRyq80euIfd7Hf5dtoH9hTi0Ck7jE7pKDb7zxRu3vqVOn8uijj9YisCNaZHFEi6yUn9fHag5HSGxIcqtSCTsikQgVFRVJcS5VtSelrCDZSpH/VdGEKpaoq9SS/vh6IYhaA1KOJW4e1f0nx5X7xWKxaNaakGAkEqGqqgqArKwszZqRSdLj8RAMBqmpqdHIQ85RPR+xBLdt20Y0GsXlcpGXl6ftT0hWPiPWlrg4pSxUNBrVYmcWiwWfz8eOHTu03C6AwsLCetX6/DNQF3mJlaNWaakLcu13V2A3KytLa7apx8m9ihlwTCO27AhgNpkoykuIwqZNSzzPb7zxBk2aNGH06NEMHTqU5cuXa25mUYAKIVqtVt58801WrVrFDz/8QHl5OfPmzdNERwCTJk1iypQpjB07lh49enDUUUdx1llnUekN4Q/VrquaX9yR4ddN5IIBHoaddjJPPfUUI0aMOGgXJXuDvZ45y8rKcDqd2srgnHPOoUePHloZlcGDB5Ofn8+wYcO4//778Xg83HDDDUDC0jKZTFxwwQVkZmYyevTopH2PHj2azMxMrr76aiCRDDh08jQaTfyeo7/8mWnbEorEC3/6jb/PSHSjnbB+Gy0+nsHgafOpDNeetALRKGd8v4DCD6fT4v/aO88wKcqsDd/VOUxO5DRkSSpIUHJUUREVFZBszjnrsqxZPhUVRWXXAKIuIoIkBSXnnBHJYUjD5M6hvh+zb1Hd0wNDlPDe17XXjt3VlWaop895z3nOpAV89OceHli2mcM+P9/tPkjS+NnsdnloNHUxnX5fQfM3P+TRRx+lffv22rylO++8k+rVqwOwZcsW2rZti9PpJDMzkxkzZvD2228Dxf84hg4dysCBAzW/uOeff177RyKuv1+/fqSnpxMIBLSS2SpVqpzzNatzgUh/6b/hCzwej1btZrfbSUhI0MRLCIHehkek72IRq4JRT3R/k/5bu76QQ+/qoShKhCjpHUHE/4sHTbSHozDBDYfD2gj7WOckHFf063bR6cT8/HyysrIIh8MkJyeTnp4ekdrTVzzqHUNEI7QQr4SEBM0doqioqIR4iQb685FYjcrid6qf7B0LIVj6dcHT7bMyGBQqpTs08dKTlpZG27Zteffdd8nKymLKlCkR56JvebBarbhcLnJycpg0aRIWi4XHH3+cunXraoJTtWpVOnbsCMCGDRtQVZXu3bsTUmJPxDCaLDjiM9h7tPhvMjk5mcqVK5f4G5w8eTL16tXDbrfTq1cvACZMmECtWrVISEhgwIAB51Xbjp5TFrCUlBRuueUWvv32WwKBANOnT6dPnz7a+zabjSeeeIJJkyZRVFRE3759GTFiRMS3o06dOvHKK68watQoFi9erL3eunVr+vTpw8iRI8nPz+epp55iW34hv3a8kjoJDgYt2UhQ9w08pKo8s2orLdIS+VfjmhzwlLzZm/NdzD6UyyfN6/FT2yY0T03kzctrkWY1c3PldDZ2b6VVJ+4s8vJJ7548++yzpV7/oEGDOHLkCIsWLeLTTz+lQ4cOPPjgg0Cx4AqxPh6NGjVi/vz5jB49mtGjR/PVV1/x1FNPMXjw4HNaOXiuEOXaIrJRVZX8/HwttRYfH4/dbo9YtxJpL5GWEz1M0S7tglgpRigpXGKh32Aw4Pf7IwRMGLkKEQK0f8BCiKPRC4CIxoLBIEVFRdrwU6fTedz7YzKZSEhIiIhQxX4KCgrIz8/HZDKRkZFBXFycJuz6KFA/okb8D44Z84p7LNKhOTk5EWt8aWlpJfwgzxeEQMX6/R4vTagXrVhVq2ebzMxMAPbs2XPc7e655x7S09N5/fXX6dChAzfeeKNWuCT2Iyoi69Spg8PhKI60w8dPkRa6AqW+l5ubS+/evWncuDFr1qzh/vvvJycnh379+tG2bVvmzp3LlClTjuvwo2/bGTNmzDlr24HTLOK4++67WbRoEV9//TWFhYXccccd2nsdO3bkiiuK16C6detGo0aNtG+jgp49e3LTTTcBxRVAgjvvvJPGjRsDxaa6GzZs4PL0ZBomxdGpXAq5/iAHvce+aR31BcgLBGmXkcyVKQlkxpX8NtQwKY7bq5bj2dV/cceCdWzMLyLJYsaAgt1opJLDhvF/D41r0pNoVr2KVn4r0K9RrFu3jm7dutGkSRO6deuG1WrVvrVWrly5xEMg1uiUBx54gMsuu4z164ujyD59+vDiiy/i9XpZu3Ztqff9QkU07EJxmufo0aO43W7MZjMJCQlaKbq+JFqk5cRakr6kvLQoLPqYsSIum82mRVpAhK2VOL6I9sQ3fnFcfUVgdAEIHKtgFPZVZrOZ+Pj4MqWKhZCLtULxb0Y4nCQnJ0d46IlriJ5aoBcxQIsO9TZQ4mEo1s3i4+NJTk4+4Tmea0TxTGkWYNEIIbdYLJqn4d/J9u3bgeIISjwjxBcin8+nvdawYUN27drFrFmz6NKlC7NmzdI+C8XPlXvuuYfrr7+eQYMGUa1aNerWrXtCa6705NLHo1zobTsnvQa2Zs0a7Rtohw4dyMzM1JrsKlasyK5du4DICqzoCjHBxIkTOXKk2EW+Tp067Ny5s8RnVVWlYcOGLJo2hQ15Rfx+KIdki4nytmOpllSrmSSzibmHc2memsCOIg9NkiNTIHn+ILdXK8cLDWrw0tptfLFtP4NrVsJmNHDQ62O/20ul/0VgZsOxfxTJycmsXLmSnTt3smzZMu28GjVqxK+//sratWs5cuQIbdu21b4pbdiwgczMTJKTk8nPz2f79u0xw2rxD6thw4YYjUY+/PBDKlSowLp162jQ4PTX985HxMNf2HCJQg0hIPr0oljXKK2xWJj4Ho/o6ES8JvrT9I3I+hSiPoUpjqEvexfRof7vVP86oE0FjouLO6nxNoqiaO4XIu1nt9u1/ivhhSmKR6L9GSFyrpy+CVmIXEFBgSaAYpZVWtr5V1gk7n+sL4Cx1jFFteb5sK6cnZ3N/PnzefbZZ6lYsSI33HAD4XCYuLg4/v3vf2OxWPjll1+05uQvvvgCh8PBVVddxRVXXMEff/yhjZWBYj/H8uXLaylFv9/Pli1bsJtDFAb95GfvJj65Egbjsb81m8XAlfUSSz1HfdvOZZddRlZWFo0bN9badvr160dWVhaJiaXvQ7TtpKSk0KVLF7777juuueaa0719ZeKkf8svvPACXbp0oUuXLng8HgYPHkx+fj69e/c+6YPPmzeP1157jfvvv59WrVqVut3w4cOpmRRP1z9W8meBm3+3aIBJ9wdqVBTevbIOS7LzeHHNtghxE7hDIV5Ys40Wvy5lZU4BD9QuHrLXu3p5Fh/Jp8HUxSU+A/DQQw/hdru58cYbI/6B/+c//yE1NZVWrVoxZMgQwuEwN954IxUrVqRRo0b897//ZdCgQaSlpdGpU6dSR7BAcepgyJAhPPvss9x+++3MmDHjuNtfyHi9XvLy8lBVFYfDoU3JjRYvUYIf60EkXDD0XpEnQl/BKNa2hHei6A3TC5go5hBFHAaDQfvCIYQrOhqIlcay2Wza9Z0Mfr+fI0eOaGk/p9OpRWSAFo3o+6CiRVgUckS7Toj+Mr1jiXhQnk9NssJG7HjiJa5ZVGqWdbTPuaB///7aM2H69Ona0NWvv/6azZs3c9ttt5GRkcHHH38MFH/BePXVV2nUqBFjxozh/fffj4iIMzMzIwowsrKyaNKkCX9uWkvuoW388mlf3IXHxkpZzAYeuaMeDlvpX54u9Lad0xqnEg6HGTNmDA888AD79+8vc/rheOXypRGrjP5sYm7bRSujl5wZ3G43+fn5WuWd3gE9ejxMrAe+3k4pmujtj1fEAcdK00Xln9i3+DkhIQFFUbRGao/Hw5w5c1i4cCFbtmzh8OHDWtFJxYoVadCgAW3atKF169aaNRQUC1hycvJJPVS9Xi979uwhFAppVYbRY2L0Jfb6VGZ0AYeIsHJzc7U1RDGX7cBRH8s2F+INGKmYEUeby9OomO48LwxkhXiVZT2ztHXJS41tewtZsPYwRe4gVco5aHdlBknx51//3pnktH7rw4YN4+233+a11147L3PnkvMHMQ7GYDAQHx+v+RCKlJaoECvtQSRsko7XyxWd0ovVOC0iFTECRXy7N5vNmg+g+KzJZCI3N5fRo0fz888/a+tZderU4bLLLsNms1FQUMDu3buZPHkykydPJjExkT59+tCvXz9MJlNEVKkG/PinTkBJSMTc/lrNtUF/bh6Ph3379hEKhSKqDJcvX851111HUlIS69evx2q1MmjQIKZOncpjjz3GsGHDtOvS94HpLahEQcm6desYPXYq1qo9sNiKU+3rthfx25KD3HVdNTo0K18mQWjfvj1er5clS5ZE/Hy6iIg4mmjhEl9CJMXUqhJPrSrnZ/Xo2eK0BGzo0KElep7O5uckFyaFhYUUFRVhNBo18YpOwZUmXqFQ6Lh+ivqCCn3fFaBFIdGiJ9JrojBDpGuF673YZt26dTz66KMcOnSIJk2a0L9/fzp27Kg1V+tTjHl5eUyfPp1vv/2WTz/9lOnTp/PWW2+RmZlZnLZcNh/vmFGEDx0AwP/bZGwDH8ZUryFwbF1u//79hEIhypUrpz2cheMHFBc1zZw5k2uuuYZZs2ZpnxX9X/roST9FWjR0h0Ih/pi3kkk/jOLmRzppAgYQVmHM9N3UrhJH5XJxf0skJoo1otGLl/iyU5YiHsnFzfmRLJZctBQVFZUQL31hBBx7IOkR0Yh+9Hs0+nldULJHKFZaUb9mZDKZtN4rEQWKz6xatYqBAweSn5/P0KFDGTduHNddd50mdtFFG8nJyfTs2ZPvv/+ep59+mgMHDvDOO++gZO2laNjTuIf/QxMvgNCOrbhefRT3B/8inH04okepXLlyEf1d+vXQVq1a8eOPPzJp0iStUldEjK1btyYtLY0qVarw6quvYrVamTRpEnXq1CE1NZUOHTqwefNm3n93KAA/f9SLRZNej7hHroJsbr65p9YztGPHDvbu3UvXrl2Jj4/niiuuYM2aNaX+vlVVpW/fvjidTpKSksrUTiI+J4a1RqP/vZxMBark4ueCSRwrVivncnlZsZRtbU5SOsIWymg0amXysfz5ohGDMUtDRFx6jtcbJKIwEY3oF/31xRpCDHNycnjqqadQFIWPPvqIFi1alEhfif2IKE6cr9VqpX///tx1cw8s039E/b+X4TjXG1g0m8DKxVhvugNrjzupVKkSXq9Xe5BHO7/fddddPPnkk+zatYuBAweyfPly7Roff/xxGjduzLRp0xg6dCgDBgzg22+/pW7durz66qvs3LmTatWq0ab7g8yf+gndBo0iITWyVWTlzI84uncd06dP11xTnnjiCTZv3szcuXN59913GTRoEKtXr455PdnZ2YwbN47hw4fTtWvXMpVUC6uxaPQRF8i1LklJLpgIzDnsQyydbwTlLJ+yw4mt/wPYBj9ydo9zkeN2uykoKNDES6wx6ZuDo+dUhUIhXC7XccVLRF16hLjoU4n6tSx9Kk2fZhPrRfqmZUVR+OSTT8jJyeHll1+mQYMGEW4b+vMQCFE2Go0YVBXD7GlY/vk4zJmBUhYDY58X3/ivKXx8AP6Ff0RUDUZHGpmZmTRr1oxt27Zx6623aq/n5eXxww8/cP3112uOMPv27ePuu+8mOzubG264gdGjR+P1eklILE4b2uNSsdoj+xXzDm2nVr0raN26Ne3btyctLY3169dz8OBB2rZty08//cTatWtL/R2lp6fz2GOP8f7779O+fXvmzZtX6mWrarHJ84nESziVSPGSRHPB/EUYEhKx3/sElq434fl6JKGNa87sARQD5o7XYes9BENC0pnd9yWG1+slPz9fMzPVFzPoqwDFGpWiKBE+gLGILtCI/nYufhYVgGI9K3q0SXTjsd70VVEUjhw5wowZM2jRogUdOnQo0cOoF0rxWTHuxbR1A8Yfv8FwcN8p3Tc1+zDeD1/HULchtoEPYcqsE3O7Z599lrVr10Y02s+bN4+ZM2fywgsvkJ2dzRdffKG59H/wwQfk5uZy++23s2LFCmpWKp6CkJ+9C4s9AYv1mENIUkZN9mxfy5IlS1BVlczMTBo0aIDH4+GDDz5AURQ2bdpU6hRmr9dL27Ztefjhh/nggw947733GDZsWIntSivUgJK/0/PRCV9yfnDBCJjAWL0mcf94j8CSeXjGjEI9cvD091m/MfZBD2OsXusMnOGljd/vj7CG0pfICwcJ0Wyqd08/UTdHWXqu4JiBr1649Iat+mPpe8PE+c2aNYtQKMRtt90GHIu09AIqhDAQCBSLV/YhbJO/w7B+5ancshKE/9yA+8WHMHe4FtudgzEkRZqv3nTTTdxwww0RY1tatmxJgwYNGDVqFNddd13xfsJh5s6dy5dffonX66Vly5a0aNGC2rVz+G5MVWZ/9wyN2g6iSbsh2r6ffuFfTBv3Lzp37kxcXByLFy/m//7v/7jnnnu46667sNvt9OzZs9S2gHA4zLBhw9iyZQtOp5Pnnnsu4n3xpSH6y0qsYhHhHCKRlMZp9YH93ah+P74p/8U3cRz4TuxAHY2SXg5b3/uwXN3+zJ/cJUgoFNJGcoi0oUjNCYd08bMo5CjLn19p0ZZ+LUxEQvqmVyE04hu8KNmPXhuDY84VDz/8MLNnz2bmzJnYbDbN9FXfMCs8CPMOZmH+9WfM839DKcX1/rSxO7Hd2hfL9beimMzaeevL5aE4ZRtdGANo91hct8/nw2azUalSZZZsyGbuykPkFPgol2Kn41XlubJebKdy0QAurL1OpUJRHD96DVTv6i+Q4iUpCxe0gAnCOdl4x31BYP4sKMvlWG1Ye/TGetMdKKWkQiQnh6qqZGdnEwwGcTqdWK3WiPlc+j+zss5p0q9tlVZCLYY+6qvX9NZQsUaeRJ+H/hg33ngjPp9Pm9jrcDi0dJmIHAGKNq3HOPINDIWlT9w+kxjKV8Ix9H1IPNZvqY8yFUXRpijr3xcVl+KLhNfrJT4+nqSkpDKbCAj0IibuRVlFLFbKUKxXRjttiKnREsmJuCj+SgwpaTgefoFgt5vxfvkRoW1bSt3W3LoTtr73YkhNL3UbycmTn59PMBjUrJPEw1X/bVv48pXlO1OsYg049hAVlWt64dKXwwPaUEkxwkW/bXQUID7jdrtJSkoq8bqIvqB4nSd4YB/mcyReAOGD+wnl5WD8n4DFuocJCQkUFRVpBRZ6gdP/t97ZQwzJLAuKokQU4whPxuOJWGkpQ/ElI1q89KNqJJITcVEImMBUuz7O10cSmDcT77gvUHOPau8Za9bFNuhhTHUuTpPcvxOXy4XH49GsimL1YYmxJScSL330pF+/gmMj5KNThSLV53K5IgRHNEyLfQoB00eE4jiiQMNisZQwFNZvFwgEcLlcmM5xg++JEOcZHx+vWWBFi7RI4er75txud8QIm7IcRwz7PJGIlWbEK7aPFXlJ8ZKcDBeVgMH/HlztumJu0QbfT9/iX/gHtl79Mbfrds5dBS4FAoEABQUFKIqi9SzpH3IifXW8CkM41tul90fUO7+L0ST6tJ9IJSqKUmL9JzqCE+9bLBYtQonu7VJVlYyMDDZv3qwJmr7AIxwOU1RUpP3330WstJsep9OpCT1ERmD6QhpxfR6PB4vFUmplYTTi3h9PxISzSPQXFtHIHh2JizlmEsnJcNH+xSg2O7Y+d2Prc/fffSoXLeFwWJsp5XQ6tXURUTYvHm4nQghW9Hh3MVhSH7kJ6yfxsBXFG9EPa/0DVZxHrChQL1IFrgDl6l5HgfUqfvwji2suT6fG/wZoQrElVjgcxuFwoBrO/ZchfRoz+nX9/8fygRRRpyhACQaDWpGEvriirOtixxOx0sRLrIvGEq+yiqdEoueCaWSWnF+oavE05VAopA2bFIvvIlo6kXgZDAZtuKTeHmj+/Pm0atWK5ORkateuzdtvv01qairjxo0jMTExoipQpC31jB07FqvVypYtxWuhIvrSp62iC0PWby/glc+3UGiqT/labVizM8zIiYd4Z9RU4uPjcTgcVKxYkT59+pCdnY2iGGg0dTGDl2wEiPj5RKzOKeDNjTvJ8weYdfAoSeNnM/9w7gk/Z1CORaTZ2dkMGzYspq2TSLXCsUhR/wUA0KJivZAI1/0TOaUI9CleIWLhcPikxEuMzZFITgUpYJJTwu124/V6NaNZMYfpRA3JcGx9ym63a0Mig8EgbrebTZs2cd1112EymZg6dSpffPEFcXHFjbelrbVEp9Oi3T1E9KU/L32kV+QO8u9fdhMIllyfW7fdBcDrr7/OqFGjmDdvHuPHj8dkMjGr05X835Wxm42Px+rcQt7etIv8wKmV3quqypEjR3jttddYt25diff1k4ujK/r0adVwOFzCBUP8Hk5WxESPXbR4CReNWOKln7EmkZwKUsAkJ43f79fWghwOhxYBud3uE0ZdJpNJK7OH4oq+goICCgoK8Hq9/PDDD7hcLj788EPatGlD9+7dueuuuwCYMWOGNnvrwIFiY9yXXnqJSpUqUaNGDV5++eWIY6mqyq+//kqtWrVITk6mWbNmLFiwAEVRuO6667j88su59tprqZlZlT9X/QrAzvW/MX54d3798gEmjezNit9GAMVR3YgRI7TrbDn4Pur9soirZixlt6t4sOauIg+Npi4mY8Icqv48n3IT5pIyfjaHPD4KA0EyJszhi237eHLVVgCaTFvCkyuLf35r407KT5hD0vjZfLszKyIyC6kqz6zeSvmmV5GUlMT48eO58cYbAbj77rupWbNmxHXrhdpisUSIhEgj6onuzVJVFbfbfdx1Nj0itRnri4SYAh0tXtJhQ3ImkAImOSlCoRBFRUXaeokoyRZDEkvDaDTicDiw2Wz4/X4KCwvJz8/XRE880A4fLh5aetlll5WItgKBAF9//TWbNm1i/PjxTJs2jTfeeIOhQ4fy5ptv8uGHHzJ58mTtAR0IBMjIyGDs2LEsWrSIlJQUXnvtNW2/Bw4c4M033yQ1owqblnxPOBxi+Yz3SK/SiKbdHsVTlK0d+88//2Tjxo0kJSXx6aefUrV8OcrZLLiDIZ5fs41gOMyq3EI6lU9BQaFFagI/tW1CGHhhzTZmHcwhrEKPyhl0LV/cLPzW5bVok5EEwIqcAh6sUwWAl9duJxg+di+/2ZHFF9v2894rL7NgwQLq16/PV199BcC7777LokWLIu6V3qcw1oRiMXol+t7qRUaIWCyfwmiEn6SeaPGKRoqX5EwgBUxSZsLhMB6PB5/Ph9FoxG634/P5jpsyFClGo9GIy+UiLy8Pl8ulrb+YzWbi4uJISkrC6XRSvXp1AHbs2FFiX9dffz2tW7cGIDc3lw0bNgDQo0cPevbsCcCWLVu0lFkgEGDfvn08/vjjdOzYkZUrV3LgwAHtYV+vXj2aNWtGxcrV8XsL8bnz8XuLKF+jGWkV6xOfUkU7dq1atahfvz5Go5GcnBw6XdUUs8FAisXM5vwi/P8TnJZpCfjCYeYfzuP2+etQgPlHcpmelU27jGQybBaKgsUP9OsqptG9UnE/oj+s8vGfe4uvLRDkoOeYIGzMd5FgNtHn5h40bNiQBg0akJqaCkBycjLly5fXttW77usrOgX6lgR9GlW8Fh1Bi/XM0hBpQz1ifVHvM6n/cmOz2WRFsOSMIAVMUmb8fj8eT3G6zGazRay1xEL0TRUVFeFyuSLmcDmdTpKTkyMGXAL06dMHh8PBI488wrp165g7dy7fffcdcKxHDIofiA0bFg+D/Pnnn5k4cSIADRs2jHg4fv755xw9epQRI0ZQv379EmswoVCItEQLqCpWRyIWWzyHdq0kO2szhUf3lrgeo9GI1Wpl1rIVBMJhcvwB6iU4Mf+vKnFJdgFWg8I16YmMvaYhj9eryhFfgOlZ2dxWtRwAFezF0cf43YeYtv8IAA6jgftqVwbg5srpbMh3ace9LNFJQSDIuJ8nsXnzZtavX6/NCNu5cydHjhzRttUXZog2A/3aob5oQvSFCUT1ot/vj7Dc0v/e9cQSL1GYI94X+xVETyCQSE4HKWCSMiFK2kX5dbQtk37mlnBe0DexikgrOTmZhIQErZIwmqpVqzJz5kzcbjdXX301ffv2LTWNdf311/PMM8/w6quv8vzzz/PQQw9x6623RpzXHXfcgdfr5d133yUtLU07V0E4HMZqMWC3GjEYjFx17RMc2rOWVTNHYotLwWYpXj/aunUrmzdvplKlSowYMYI9Bw9xyOvHbjTy1uW1MRsMXJEcz6yDRwmpsCKnkDsXrOeXfUcob7MQCKvcUKn4+M9eVh2b0cBrG3ey7GgBAFckJ/DVjiyMCkzZn81+XQTWv0YFhtSsyOP//BfNmzdn8+bNVKlShS5duvDWW29xxx13aNvqBUzcY72o+P1+bYgnxE4n6l36xb5iFXfEsobSu7BE32s5z0typrkovBAlZwf9PK1AIEBhYSGqquJ0OrX39f/TIyrMLBbLSXnmnSz6eVIGgwGn00kwGNSq4fR2SrF8GfUu9Ru25/P1f3/HZ0hBCRYwbsQ99O/Xj5dffgnr//rBRPortGw+gY/eOOH5eUMh+i7cQKLFxH9anp4LTNw7X2CsXjMi8hXnL0RIpGgB0tLStHWo/Px8cnJyAKhZs6a2linSv3oRiy620LuhiIb1aDcUIV7C6it6P7LXS3I2kF+HJBoFrgAL1x4mt8BPerKFFg1SsZiIEATRvBqNaGIWonWu0kTR7vPCvgiOPUCjvQCBiIeycHavlmGgnHkH7733MEajka5dOvP4449pxxFCdzJRRPMZywijMqFNk9O70DKivx/iPA0Gg+Z5GAqF8Hq92O124uLiNBHTD/QUbh1C7IPBYIQzitvtjhC8E4kXHGsYl+lDyZlEphAvIubMmYOiKLRt2xYoLjtXFIU5c+Zo782YMYO8vDwaNmxI3bp1yc4urrSbt+oQjw1fzrgZu5i+KItvpu7iqQ9Ws3Zrjtb0qv+mv3DhQlJTU1m4cCFr164lOTmZBQsWlJoaPFtEp6j0s8D0FXUCRVGw2+3aw1ykO10uF6qq8thjj3HgwAH27dvHuHHjtLSjEAZ9YUJZWNe9FRu6X03dBOeJNy4DsYRBj/hyoXftEBWBovIvP7/YhNhkMuFwOCIcOUTUqnf8F6lhIXR6KyjR0wfELObRC+LJ3DeJpCxIAbsImT9/PsuWLYv5ns/n4+abbyY7O5sZM2aQlpbGjv2FjJ60jWAo8uHo9Yf5fNIuDucUp6RET5HNZtPSiH/3orw+qhJWUdGvi/MTaU39tOZQKKSJV3x8vDZBWkRberNf8QCOdrA415QmYtEpUz0Gg0Ez+i0qKopYm7TZbCVELBQKaS4p+tf1a2N653/9OqX+/KxWq/Y3IuaxSSRnCilgFyG1a9fm3XffjfneU089xYoVK5g6dSo1atQAYObSA9oYtb9W/8LED2/juzc7sXLmR/gDKsPe+oSmTZtSs2ZNXnnlFS2CicXcuXOpUaMGVquVWrVqsXXr1rNyjVBSvKL7mPTo/RUFqqpq4pWUlKSJl4giRX+auFb9Z0Ohv+FBrBx/hpr++qN/P4qiaA3kwopKvC6iM72IiWpEq9VKXFxchLGyiFxFylBfoRirXF6YO8PfL/6SiwspYBchjz32GJMmTYrZS7V9+3a6dOlC06ZNtdd2HyiOsPKP7GLZ1HepUrcN19/zJVXqtiXv8A7Gfv46ffr04aeffmLkyJFMnjy51GP/97//xeFwsHTpUkaOHEliYuKZv8D/UVr0pU9V6UezCDHSO8urqkpiYqIWUQrEg1afStOnyNQmzTDcPgjsjrN2fdo1JKdif/A5DFUzj7ud/vximf4ajUZSU1NRFEVzPoFjdk962ykhVC6XC6vVSnx8fAmBE4Uc4n/630f0OqgUMcnZQArYRUjNmjW56aab+OCDD0q8165dO37++WfeeONYBZ3DVvzQyjuyA1UNk9nkehLTqpJRtQn5R3aiqiqffvopN954I6FQiKVLl5Z67EGDBhEfH88111zDyy+/TF5e3pm+PI3oNZVYLuxCuMSgROG7KMQrPj5e81oUiBSjqJwTYiCKPRRFQTGZUbv2wPLOF9C6E+rZSKOazVhv7k38iG+wtO9WonUh1vqX3gMxFna7nfj4eKDYiURf6OJwOCKKW4SIud1uzGazlm6MFY2J6E80p8cSUPHlQaQiJZLTRVYhXqQ888wztGzZssTrzz//PJmZmbz88stUq1aNvn37cnWTdP7cXUBieg1AYcfaaZjMt+B155KYXgNFUXjggQfo1q0bO3fupE6d0g1sfT4fI0eOxGw207JlS3755Rfq1q17Vq5RL1axHB9EibnD4dDeD4VCWjtAXFyc9jAXBINBbTCmiCLEuplYMxMN1aqqEnTEoQx8hMA1nTGO/wrDjj/PyLWZmrfG3u9+DOUqnnBbIWSxKhBjbZueno7H4yEQCJCVlUXFihU1oXc4HFpqUAi23++PqGi0Wq1a8YsQLbG9XgBjIaJf/b2USE4VGYFdpLRo0YI2bdrEfO/zzz+na9euDB48mNmzZ9Pm8gzqVI0nKb0Gza9/ir1/zmPKZwPYs3kOndtdyYgRIxg/fjw33XQTH3/88XH7edasWcN1113HVVddRf369bnlllvO1iXGnDgsEA9kp9MZESnk5+dr4pWQkBARxYTDYQoKihuLhcM+FEcz4qEc3VStrblVzSTw5D/h3qcgJe2Ur8lQNRPnq8NxPj3shOIVHYFFtxSUegyDgYoVK2IwGHC73Rw+fFi7DuFZqS/OCQaDEetcFotF64mLjsaE80ppEZY+lXgiJxeJ5ETIRmYJAP5AiKkL9jNvdXEfWLlUG+2vzKDt5SlYrZbzzkFBX4ABkbO+oPhBLMRLTCfWN2InJiaWsFES881sNptWqOLxeFBVlaKiIrxer1bNp39w62dr2Ww2CPhRfv2Z8LQJ4C/dR1CPEp+A9Y5BWDrfgGIoXXz0a01CpMS5HD58WFsHK1++/AmjG7fbTVZWFqqqkpCQQHp6eoQRst7MVxR76PvBxPkEAoEIwRKl8zabrdQBmfrWjL+7klVy4SIFTFIq+jTP8dJCfwehUEgTFyhZNm+1WrFYLPj9fs39XohXQkJCCeeJwsJCAoEAFosFh8OhPfxF6tDj8WiC6XQ6tfSiSIfpBUykH82F+XjHfkZg0ezSL8RoxNK1B7ZeA1Di4kvfTnfdpQnYoUOHNCGpUKFCmX5nLpdLWwtzOBwRwufz+bRUoziO3llFX/Gp7xMTvwOxvcPhiClQYu1M+DVKJCeLFDDJBYnf79e8+KLtoUSDrnAQEeLlcDiIj4+PeFiK6Eqs8zidzoj3xXRjEcGJ/iin0xnRHyYETJjs6kUwuGU9ni8/Jrzzr4hrMDVphm3AQxgrVyvzdUdXGuonSx84cEArMqlY8cRrZwKXy8XBgwcJh8OYzWYqVqyopfnE5AAhjPo2A+06TCZNWP1+f4loTPhgxvJc1E8lON++JEnOf6SASS5IPB6PtoYSXbhht9tRFAWPx0NBQYEWNcXFxZUqXkajkfj4+BJpN1VV8Xq9hMNhCgsLI7bVjw05noABqOEwgTkz8H73bxSHE1u/+zE3u/qkr7s0AQsGgxw5coRwOIzRaIwYsVIWfD4fWVlZWu9beno6CQkJANp1i/tssVgi1gdNJlOEg724H/poTFGUCBNh7b7orL/OpQWZ5OJACpjkgkSUwesFTBjPWq3WEuLldDojSsvD4TAul+u44iUQUYVII4riEL2ju3jACwFzOp0xIwrV4wazGcUUu8z9RJQmYB6Ph9zcXC2aycjIOOl9h0IhsrKytP4wp9NJRkaGNolA378lhpnqR6f4/X4MBoPWquD1ektEYxaLhbi4uJhzyIRTikRSVmTMLrng0K+9RKcOo8XL4XBgt9tLiJc+8kpISDhuwYMoMhAl4iLKEMePLgY5HordccridTz0LhynKgJGo5HKlSuTkpKCoii4XC52796N2+0uMRhTiLre+UOUyItSe7vdrhV+QPG98fl85OXllWhCNxgM2nqiRFJW5Mqp5IIjlpODqHzz+XwR4uVwOCLSVqKJORQKYTKZIioKS0Pv4CEe0oFAIKKMPHr7c0WsHrCT7a0S63hirc9kMpGcnKwVthw9ejQichKVlyLCEutcIj0bCoW0qQTCISUYDGqCFwqFyM3NxeFwaEUvIg0pCmlkKlFSFqSASS44RLouOvoKh8Pk5eVFRF7iYSjWWsRQRrPZrK1jlQWj0ag9mMX6TvREYz3nOjOvT9WVtaJP3JPoqcpiH0lJSXi9Xi3VmpOTo6UORduCEHefz6cV1Yg1OavVqkWtfr9f+4yIFsV+xZcIMU1ADE2VSE6EFDDJBYV+1L1ARF9Hjx7V1qFE+gqOrVGJsnubzVZqaXdpiFYC8UAWUZjJZDrhiJNzQVlcOATHEy44FnECxMfH43Q6KSwsxOVy4fV68fl8WqO3EBsRmer3L0RLFH0YjUYtbSui6EAgQG5ubokpACIVKZEcDylgkgsKIUJ60TAajeTk5Gji5XA4NNd1URGnL0worbn2eAiRFOa++jRitGCJB/DZtEmKdUzB8QRMPz5Gj+jZslqt+Hy+iHVGg8FAcnIyKSkpHD16FLfbjcfjwefzafdZrDOK341+IKaIzkSRRjAYxGKxRLja5+fna2lKUbYvG5wlJ0IKmOSCQT+sUk9hYSHhcFiLrPQPx0AgoEUCekf1U0GkuKLTiLEE41ykEPXrX/pKzJjVj6oa0ZQsMBqN2O32iOZlvXjpt7NYLFSqVAm/38/+/fu1ykwRbelTtvo5avpmc5FmFGuKomJRVDHm5uZqkwFKu7cSiUD+dUguCMQDWP9AFD1awv5JuKmL9JR470Rl8mVFH4Xp04ixesfORjVdaaKoP15pYup2u0uUtIv7JdCLl57o8naLxUKVKlU4cuQIbrebUCik3WtR0CFK7KNFKto5RWyvj8aKioq0ilJRoSiRxEIKmOSCQB9lQKR4CbsiMdRS9C2pqorVatVcM84EJpOphICJtTY94mF9JlNgpQmYPqqKFjAhCHpBNZvNOByRc8yiKzv1EV2sqkDhWmI2m/F4PHi9Xvx+PxaLhUAgoJ2TSEuK6c5ifUy/XibSlCK9KFK/ouDjTP7+JBcXUsAk5z0i+hI/i3UVURUoxEsUBYiUYVxcXExxOR3Eg1aMFBFpxFiczXUw/QNdH1npIyXh8agXJlFFGI3+GvTbR9tG6YmLiyMvL09zrxe9daKAJhgMaulFOJaGFOcgvmzojymqScUXFq/XSyAQ0MRSCplEjxQwyXlPdPQlFvlFFCCKKoTlk8lkIi4u7qyJhyjkEFGY6IUCIvqkznYhh0AfgYmeNxF56e9bafdErEuJzwmOJ15wzLbL7XZrPXWiwCMcDpOSkqI1losIzePxaF9GxJDMaE9HMcdN/N5DoRAFBQURXpVSyCQgBUxynhMdfYkIy2AwaA9kkTIEIppjzxb6Sc0ijagXDjhWiXgmKa1cPzoCE2te+uMfT7xiFW2U1VzXbrdHfHFwOp1aheLRo0c1T8X4+HhtrUw0LIv/F4hGcfEFQRTNiHMTEwgO5QZYv72IUBguy0ykQWZSGe6e5GJEro5Kzls278xn6oK9LF6fg8dXvB7i8/m09CAUz7Ty+Xxa460w8j3bCKcJiOxNix6QebarEcWDXRxbNBXrRU1EqdGUJl5ina+sOBwOrrjiCtLS0ihXrhzVq1enTp063H777YwaNQpFUfjzzz8xmUwMHz6c1NRUnE4n+/bto3PnzlSrVo1HH31UWx+74oorSElJISkpibS0NHr06FF8L1H4etperr2pH7d2qs7tXarTsGZyRPR2KgwdOhRFUfB6vRE/S85/pIBJTsicOXMiSqOFeAQCAV544QWqVKlCamoqt99+O4cOHWLPnj04HA6eeOIJAMaOHYuiKMyYMYOvvvpK2098fDx9+/bF6/WyadMmqlevjtVqpVr1Gtx2z3De+HIDP8zcy5gZ+xj03DhSU1OpXLkylSpVIiEhgbi4OMaNG6fN+DqZdN2uXbtQFIVRo0ZF/FxWhHWSWHvTFyUIznQ1Yiwx1IukaBDWpwTtdntMMdIXbUSXy59sq4HVamXWrFmsW7eORo0a0axZM1auXscLwz4mt+jYeeoRdlVPPvkk5cqVw2KxkJqaSmpqKrNmzWLVqlVMnToVg8FAixYt8Hq9TJ63n2Wb8mja9RF6PvYTdZr1BKDnYz/xwnuzTuqcJRcHUsAkZWbMmDHs3buXrVu3AvDmm2/yzjvv8NZbb/HLL7+wYMEC+vbtS9WqVXnhhRf4+OOPWbx4Mc888ww9evTg2muv1fY1Z84cPvroI8aNG8fo0aNJSEhg9OjRrFq1Go/fxMyJH0UcO6n8ZfR87CdGjPoOgH/9619s2bKFgQMHnvWUYWnoxSFWIce5MKfVrw+aTCYt3QqwatUqOnbsSHx8PJUrV+brr78GYPny5bRr14709HQuv/xyvvuu+J7u2bMHq9VaQshff/11zeB3xowZEe8NGTIERVF45513qFSpEhaLhSO5bjp2uYGe1zbn089GAzB35YGIz3Xt2pX69etTUFCAzWajoKAAh8NBXFwcFStWpH79+qxevRqA/v37YzRZWLq5WA2t9gScCRmYLcWVlM6EDPbm2th/2B1xXx555BHS09NJSkpi/PjxBAIB7r33XlJSUqhSpYp23aUxYsQI0tLScDgctGrVqgy/Dcm5RgqYpMykpaVRuXJlbVjimDFjuOaaa+jbty9XX301d999N7///jv79+/n2WefpWrVqnTq1Im8vDzef//9iH2VK1eOPn36ALBp0yYqV65M586dKQqlgMlOYlrkkEejyYIzIYO/DhWn7SpUqEDdunW1aFAwefJk6tWrh91up1evXgBMmDCBWrVqkZCQwIABAyIilGg2bdpEgwYNsFqtVK1alblz55a6rShCgGOTkvWl83pHirOFPlUookGArKwsbrzxRiwWCwsWLOCbb77BbDaTl5fHddddh9lsZvbs2XTt2pUhQ4awcOHCErO6BLVr1+aRRx4p8XooFGLSpEkoisKUKVMwGAzkFgYo9ISp2/x2bM4UbdtHhtyA3eHkjTfeiNjH2LFjgeKIWGA2m7HZbIwdO5YuXbpQu3Zt3H4jbu/xvwzszDrWLjB69Gg+/vhjPvjgAxYsWED9+vUZPXo0o0eP5quvvuKpp55i8ODBHDp0qNT9ff7553Tp0oXly5fzzDPPHPfYkr8HKWCSMtOzZ0/i4uJo27YtAPv27aNy5cra++Ln/fv3Y7Va6d+/Px6Phy5dulCjRo0S+1u2bBkA1aoVi9Unn3zCNU2rcnT/ZqrW7xDzHPYdLhafWOnC3NxcevfuTePGjVmzZg33338/OTk59OvXj7Zt2zJ37lymTJly3FTh1KlTOXLkCPPmzWPMmDFUqlSp1G2Fi7p+XEg0Z1vAop01BBMnTsTlcvHxxx/TpEkTOnbsSJ8+fZg0aRJHjx7lhRdeoEGDBgwdOhSLxcL3339fahR7++2306FDyd/H3LlzOXr0KL169eLQoUMsWrKCQncQk9lGnaY3YzQdE8R2vd6g16PfcN9992mvNWrUiJ07d+Lz+dizZw9XX31swOcrr7zCli1b+OOPP2jdujUH9+8CYO+fC5j8SR++e7Mje/+cX3ytH97G9H/fw6A7OvDoo4+yfv16/vGPfwDw/vvvEwgEaNiwIevXrwegT58+vPjii3i9XtauXVvqvX322WdZvXo1LVq04JtvvpHrYuchUsAkZeaTTz5hzZo1jBs3DigWrP3792vvi58rVapEbm4uI0eOpFy5ckybNo01a9ZE7Ktp06a0bduWFi1aaA+1vn378s4nv5BWpSHLpg2P+eC3mEv/k922bRtut5s+ffpQt25dOnXqxLZt2/B4PHz33Xe0adOGvLw8li5dWuo+br31Vho2bEjnzp158MEHj/sNHdAMfqFkGlHvC3i20AuYECCLxcK+ffsAqFmzZsS2e/fuBdCiaLvdTmpqKllZWSd97J9++gmDwcBrr72GoiiMHfcjpWm1M7EcqqU8Jmu89prNZqNTp04cPXqUcDhMkyZNtPfWrl1LUlISy5cvp6CggM8+HUH1dFgwcShJGTW5/p6vSC5XW9velZfF11/+m2effZYhQ4Zo0WR+fj69e/dmw4YNNGzYEKPRyIcffsiECRN46623aNCgQanXl5KSwsSJE/n000+ZNGkSGzZsOOl7JDm7yDJ6SZmpUKECtWrV0v77rrvuYtiwYXz33XdUr16d0aNH06FDBypVqsTDDz+M2+1m7dq1dO/enYceeogFCxZon504cSKXX365Njl44cKFGI1GrmpYHqPRjMEUeyZUkzrJ/LeU86tZsyZ2u51x48Zx2WWXkZWVRePGjbHZbPTq1Yt+/fqRlZVFYmJiqdeYn5+vrfl06dKF7777jmuuuabU7fWzrGK5qOvTiGdynS66hF70TimKgt1up2rVqgDs2LGD+vXra+cmIsqsrCxq166tzfs6XqQZC1VVmThxIk2bNqV27dpcfvnlzJ41FQwJZTpvKJ6qPWnSJO2/P/30UwBcLhe//fYbDoeDtm3b4nK5qFKlCr1qBgkFvNRo2IXEtKrEJZXXPtuiZWuuvrolABs2bODee+/F7/fz5Zdf4vV62bhxI/fccw/r1q3j2Wefxefz0axZM+65555Sz/XHH39k4sSJBINBbrnlFho1anRS90hy9pERmOSUeeGFF3j66ad55pln6N69O61atWLcuHGsXbuWUaNG8cILL1CzZk0++ugjFi1axDfffKN9tmrVqhFj73fs2MFNN91Elw4tUIJ5XN3jpRLHS4wz06FpuVLPJyUlRTt+o0aN+Oijj0hJSWHs2LEsXbqUG2+8scQaTDS7du2iV69eNGrUCKfTSf/+/UvdVm+DJEQren1NlLmfjTSivoReHF847ffp0weHw8EjjzzCunXr+P333/n+++/p1q0bKSkpvP3222zevJlhw4bh9/vp16+ftt8tW7Ywa9YsZs2ahcvl4sCBA+zZswcoThsfOHCAJUuWkJWVxfLly1EUhdWrV3PwwD6uufEpOvYeTn72bsLhIFZHEjc+8C2JadXISLHxf++8pt2zhIQEQqEQAwcOZNOmTVraz+l0Urt2bSpXrsznn39OhQoVUFWVNi0bYbPbKdg7D3feXirVasHr/15HQpyZ8unH1kIbNmzI/Pnzefjhh7n88stp1KgRd9xxB2azmVGjRpGdnU1hYSGzZ88mJSWFoUOHamN29D9//fXXFBQU4Ha7mTBhwhl3dZGcAVSJ5DwjFAqrU+bvUx8bvly965UF6sChC9WP/7tFPXjU/XefWgShUEjNz89Xc3Nz1QMHDqi7d+9W9+zZoxYUFKj5+flqfn6+WlBQoLpcLjUYDKrhcPi0jhcIBFS/36/6/X41FAqpoVBI3bdvn7pv3z71yJEjakFBQcT2CxcuVFu1aqU6nU61YsWK6hdffKG63W517ty5aosWLVSn06nWrVtX/eqrr1RVVdWdO3eqQMT/1q9frw4YMCDitQEDBqhPP/20ajKZ1N9//11dvXq1+ttvv6lGo1G9pc9Daud+H5bYz12vLFAXrDmknVu7du3UFi1aRJzvP/7xDxVQPR6P+sEHH6jx8fFq69at1WbNmqnt2rVTVVVVJ06cqNapU0e1WCxqz549VVVV1WrVqql33HGHtp81a9aoV111lWq329Urr7xSXbFixWndd8n5i6Kq53h0rERSRsJhFZcniNViwGI++5ZMJ4uYcyVGgYg0YlxcnLYuJpqL9c7sp4owuoXiknmv10tOTg5QvJbldDpLRAni3KCkTdTZcnmfMn8f0xbup9BdnN5MTbRyW6eqtL484wSflEhODilgEskpIkaUCJEIBoOaR2N8fLy27iXWyfSzsk6FaAHLzc3F4/Foo1ESExMj9q3+z9lCjRoAKsT0bBIIhtl9wIXJqFC1vBODQXoXSs48sohDIjlF9MIgIi1FUbRRIPoIpzS7qdNBRFaKosQ03hVuG3rx0pf9n03MJgO1qsSfeEOJ5DSQRRwSySmiFwYhXkK0onuG9K4cZyLpod+fELBY70efo5xwLLmYkAImkZwi0dENHKsGDAQCJfrC9K4Zp4uYTi2OGb2eFT2gUkw+lmNIJBcTUsAkklOgtChKURSMRqM2+kWPiIhiCd/JItKHUNKVRKzL6SnreBSJ5EJC/kVLJKdA9JpW9EBGQKtKFKi6vq3TIRQKaeIoBFN/jOhIT8zZkkguNqSASSSnQGkehHBMVMLhsNbYHO2ccTpRWHR6Uj/+RF+pCMVierLjUSSSCwUpYBLJKaAXCv26kt6PEI6Jjdj2TIxY0R9bX5gRDocjoi+57iW52JECJpGcAsdbAxMYDAZCoZDWiyXeE9HbqURgotdMj0gP6tfFxOty3UtyMSP/uiWSkyS6HL60CEeUtken/PQR2cmKmOgxE4jS/eiqQ5PJJEvmJRc9UsAkkpMkur8qVgpRVVVMJpPW2BwdhcWydyrLcUWFYbTjRvRgy9Nx/JBILhSkgEkkJ0m0WOjRC5i+wVikEgWnEoXF6i0zGAwlUoeyYVlyqSAFTCI5Sco6HkVVVc3/UKxdnWoUJqKs6PWv6CjLYDDIknnJJYMUMInkJNFXEZalSMJqtWqDLX0+nyY6oVCozPZSgUAgYmCmXggFIm0oCzcklwryL10iOQlOVMARvTYFx4ZMigKMYDAY0eys37Y0fD5fxPTl6OPpXe8lkksFKWASyUmgTx+WNdoxGAxYrVYtghIFHVAsiGJdqzQR0wufvjgj2gFERl+SSw351y6RnASlNTDHQi9STqdT+7wQMX0UdjxnDr/frwmnqDAUlPazRHIpIAVMIjkJ9FWAZY12wuEwRqNRi8JEQYYohxfGv7FELBwOEwgEtPRhdIGGPvqSllGSSw0pYBJJGYl2kj+RgOkLLcLhMA6HAzgWxelnhkV7GAqEIbAYkFlaf5eMviSXIlLAJJIyEu1AH0vASksDhkIhLBYLVquVUCgUEXnpy+r1x1BVFb/fr1lPiegrVtpQls5LLkWkgEkkZURffHEipwv9aBVFUbQCDhGFiepDfXOyiLTEMYSg6Ys3SlvzkgImuRSRAiaRlJHo9S99BBYdeelTh2K7cDiM2WyOiMKgWKj0Rr+hUEhz7tCvfZUW9cnKQ8mlivzLl0jKiD69F10NGE20Kz2giZaoSPR6vdr0ZtHgrHfc0A+uFPsorXlZIrkUkQImkZSB6Dlb0RGYILrAQ1VVLb0n0ogmkwmbzRbhrCH6vMSxfD6flk7UR196wSprMYlEcrEi//IlkjIQ3f8VHfVEG/NGr1UJEROViU6nE0VR8Hq9mntGdIOzWCcTny1tnUuuf0kuVaSASSRlQF9cIQZFxqo4jH5N/xmxHwCz2YzdbteESvRwichLCKbRaNQELlYV4qkMxZRILhakgEkkJ0BV1ZgFHNHRlugRi04v6osvxDqaqqrExcVhMBjwer1alCbWwMTal8Vi0aK20tbBJJJLFSlgEskJiF7/EmKij370P8dak9J/RhgCG41GHA6HVsQhBmDq176MRqPm5HGitKVEcqkhBUwiOQH69S8hJKJiMBallddHpxFVVSUxMRGj0YjX69XcNsT7YgyL/rOikMNqtUasqwGEDuzD9c4reMaMQnW7ztj1SyTnK3L2gkRyHERKT1/xFy0c4udYJfZ6sTMajdpcL73NVFxcHPn5+Xg8ngih0o9d0e8PitfQxH5CRYX4fh6Hf/pECBVHi4F5M7H1HoK5/bUoskpRcpGiqDL/IJGUSigUwuVyaca7VqsVi8WCwWDA5/Np7hlut1tLDdrtdu19g8FAfHy8JnDiM/oIKhgMkp+fTyAQ0ARSNDvDsXEs+jUyRVHwuFyYl83DMPl7KMiLef6GGrWxD3oYU71G5+R+SSTnEilgEslx8Pl8eL1eLYISThqiBF4Iitvt1rax2+2aWAkBAzRbqEAggMlkwmQyaQUiHo8Hj8cDQHx8PGazWRM7g8GAxWLRorlQKIRh+xYCY0Zh2LerTNdhvroDtrvuw5CWcbZulURyzpEpRImkFISZbrSBb3QxhYi84FiJvb7wQ1QmQqQrhyjq8Pl82nsiohOCJfYfDAYxmUyEsw+j/vc/hFYsOqkF7MCi2QRWLMJ60x1Yb+6NYrGe9P2QSM43ZAQmkZRCOBymqKgoZvoQwOPxaCInRqPY7Xbsdjterxe/34/RaMTpdEYUZ4jIzWAwaHPAhHWUEMPExEStlB7AFAqh/DoR9deJ8L8G51NFSc3A1vceLK07ndZ+JJK/GylgEkkp+P1+TaREGk+kD6FYwMLhMD6fT3PNcDqd2Gw2PB6PJmBxcXFaAQcUpyX1hSFCBJ1OJ6FQiKKiIiwWC2azGZPJhHH5AkI/fg052Wf0+oz1GmEf+BDGzDpndL8SyblCphAlkhhEVx8eL32oL7YQo1P06EehiOnK+v3q18rcbjcmk6lY/PbuhIljCW3bfFauMbRlPUUvPIi5fTdsvYdgSEo5K8eRSM4Wsr5WIomBEDAoFhmTyVTCc1CY8QrBEiIVLWACfUGIEDsRlSUlJWmvO51OTBtWYh7+Mpwl8dJQwwRmT6fwsQGES6lklEjOV6SASSQx0Hsf6t03BKIsPhwOczTfz5Y9brKy/TGNfgOBAHl5edrcL5vNpjlshEIhrFYrNpstYvaXyeNGOZfZfY8L/L5zdzyJ5AwgBUxyUTNnzhwURWHGjBkAfPXVVyiKwpYtW0r9TKz0YbQwqapKfqGfPvcN48GXx/DvKQcY/t0unv9wBZu2Hz3mjqHrETObzdhsNq1KUQhaXFycVsTxxx9/8Prrr0uHeYmkDEgBk0iiUFVVS+2J9KFwhBe4PT4+HL+DOdO+Ye+fC7TXc91G3h2zibsGPcTMmTO1+V92ux2z2YyiKJp4AVpRiEg7zp49m7feeguDNOyVSE6IFDDJJYnP56NXr14kJiZSp04dfv/9dwAGDhxIWloavXv3plq1agwfPhxFUXjnnXdISkrCbrfTtm1bZszdwI//fhWvK4cd66Yz9l+tKco7wO5Ns5ny+UCm/zKewYMH0717d9auXcvbb79NZmYm6enpjBgxgmHDhnHllVcCsGnTJqxWK9OnT+e9994DIOXmO3lz4072ub30nLeGyhPn0WbmctblFf5t90wiOd+QAia5JOjZsydxcXHcf//9ALzxxhtMmzaNadOmcdNNN9GnTx8t6srLy+Puu++mT58+vPHGG+zfv5+WLVsyb948FixYwLp16xg9ejQHd62MOMbPH/Vi/oRXKV+9Kdf2f49gMMjmzZu59dZbGTZsGAMGDGDWrFlceeWV3HXXXRw6dIh58+YxefJkUlJSaNWqFYMHDwZg3eiRPFSnCq+s3c7WAjdT2l9BnXgHDy0vPfV5tti1axeKojBq1KhStyktNTtq1CgURWHXrl1n+SwllyJSwCSXBJ988glr1qxh2LBhABw5cgSv10u3bt0YOXIkhw8fZufOnZpDfIcOHejatSvhcJjdu3ezYsUKevToQYcOHSgoKCAv5xDXDfkCqz0Jiy2BtEoNaH/H24BKpdrXULVWE6pWrUpqaqp2DmvWrGHp0qVkZGRQv359WrZsydixY5k4cSLXXHMNS5cu1QpFMitVJMFsYlN+EYe8frrPXs0v+4+wIa8Ir242GUD4PGjlvP3229m7dy+1atX6u09FcgkhBUxySVChQgVq1apFRkaxF2BaWhoJCQn85z//4ccff+Qf//gH1atXLy7OyM9n9uzZzJw5E4PBQJ06dRg2bBg1atTg448/xul0kuAwYo9LxWS1o6rFguLKOwDAzvUzOPrXVHbs2EGNGjVo164dAL///jtPP/00ffr0oXPnzqxYsYKff/6ZtWvXkpqayjPPPMNXX30FwOSFS3AHQ/xZ6MZhNPBFy8uwG400TorDYjDQaOpiOv2+gqt/W8Zzq/8qcb1J42dz09zVNJiyiC6/r+SLbfuoMnEeAxZvAKDjrBUMWrwRgC+37ydjwhxy8/KYMGECtWrVIiEhgQEDBmg2V3peeuklMjIySE9P55lnngHgv//9L1WqVGHbtm3s37+fpk2bUqFCBX799dcz+FuUSCKRAia5JHnppZfo2rUr9957L3379mX58uXa9OOkpCS++uorxo0bxz/+8Q8qV67Mfffdx7Jlyxg/fjzJyckkxZmokmEjs/G1BHxusvdvxGR1AJC9fyM/j3sfgCFDhnDXXXcBxRWJwWCQv/76i/j4eCpVqkQoFCI9PZ3Vq1fjdDr57LPPMJvN9HntbSbuOwxAssXMPUs2URAIUhQMaQUeO4u8fNSsHo/WqxrzGj3BMC82rMHynAKWZufzcN0qTNp3hG2FbvpnVmTGgWwKA0GmZWXTqXwqqqrSr18/2rZty9y5c5kyZUqJtOG0adN44403ePPNN3n//fcZPnw4EydOjNjm7bffZuvWrUyePLnUnjiJ5EwgBUxyUdO+fXtUVeXaa68Fios0VFWlSZMm/PDDD+Tl5ZGXl8fUqVO1vi6z2cw333zD/v37efnllwEYPnw4BQUFjBkzhmXLlvHhhyN4pFcNhtz3FGmV6pNR7XLtmGO//YEvPv8cKHaWFw/x1157jeTkZACeeuopqlevDkD16tXZvHkzLVu2pEePHjz00EOYjEb6VCsPQM8qGey/pS0pFjPNUxO141yTnkTTlASqOGw0m76EchPm0nPeGu39lmmJNEtJAKBtuWSaJBW74uf5A9xaJQMDCt/vPsi8w3ncViWDbTt34vF4+O6772jTpg15eXksXbo04n5u2FAcwfXq1YtevXpFvCb466+/qF27NldddRWdOkm/RcnZQ1pJSST/I7p52WAwRDQve71erdm4eKyKhSE3VePr4XYUo5m+19Vi8WTIPrCNxYsXA2iiCFC7dm3atWvHzz//zOzZs5k7dy6KotClSxd2797N5MmTadOmDQsWLKBO5UooikKi2cROl4el2fnk+AMR52s2HCu1/6nt5QTVMDZd/5hRUVB0PwtUIN5s4uYq6fxrw05MisJ1FdMw16iBzWajV69e9OvXj6ysLBITjwkmQMOGDQEYP348Vmuxo32DBg0oKCjQtqlduzYLFixg+fLlWnWnRHI2kBGYRPI/AoEAn3zyCX/++afW/yUIBoOaCa+iKBiNRm22l8EANouBG67rSNOmTXnmmWfIysoCjo1NEbRq1QooFoAhQ4ZgsVh48skn+ec//4miKAwaNIhDhw4x4qF7AXi0bhV+P5jD/23eRby59O+bVZ02MuMcVLSXfUxK/xoVKQgEub5SGg6TkZTkZMaOHcvSpUu58cYbeeONN0p85vrrr+e5557jueee4/HHH+eJJ56gZ8+eEds899xz1K5dmxtuuEGmECVnFelGL5FQHCkVFhZqo1NMJhNOp1N7r6ioSHOfF7O69NGVaEb2+/1YLBbNJkpRFNLT03G73Zr4zZ8/nwceeICbb76ZN954I2Ko5YIFC1i6dClXefPofnT3Wb3eXS4vTacv4b9tGtO5fCrxn3yHIa3cWTumRHKmkRGYRELJ9KHeysnv9xMIBLTpyGIqshA7MSNMjE8R7yuKQlJSkha5QfGaWPPmzWnZsiWTJ09m165d2nGdTie33XYbjzzyCA6H46xe74IjeTSdvoQbKqXTqZx0oZdcmEgBk0hAGywJaKIExY7zbrdbs37SD6Y0m83Y7XZUVcXtdmMwGDCbzRE2UUDErDDhaj9kyBDC4TCjR49GnwQJhUJkZmbSrWvXs3q9bTKSyenVgW+ubljCfFgiuVCQAia55In2PjQajdq6lUj9AdprRqMRu92OxWIhEAhQVFSEoiiYzWZ8Pp/2s9FoxO/3o6oqJpNJK9NXVZXLLruMq666il9++YXs7GzNLFjvSC+RSI6PFDDJJU/0TC995OTz+bR0oBAmp9OppQz14uX3+zEYDJpBr1jbguLoS596BOjfvz+BQIAJEyZEnAsANvs5vAOA0QQm87k9pkRymkgBk1zy6KMvg8GA0WgkFApRVFSkvWcwGLDb7djtdkKhED6fTxMvo9FIIBDAaDRqQgVoqUGr1YrRaNSir2AwiNFopGPHjpQvX56ffvopYvxKKBTC0roTjudex1Ch8lm/ftMVzYn7v9FyIrPkgkMKmOSSR6xRiUgqHA6Tn58fIV4OhwOz2UwoFMLr9eJyubSoLBQKYTabSUlJ0YQKjkVTdrtd++9wOEwwGMRkMmEwGOjRowdZWVmsWrVKOx9xXHPTVsT933+w9LkH7Ge+qMNQsQqO59/A+cJbGCvGdvOQSM5npIBJLmmCwWBEr5LZbKaoqEgbaGkwGLQhlGI4pdvt1lKEqqpitVpJSUnBZDJprwHa9GWDwaCV3AuxFEJ50003ATBp0iQtchPbACgmE+YbemF+5wto0wWUM/BP1uHE1v8B4ob/G/OVLU9/fxLJ34TsA5Nc0rhcLgKBQETjstvt1ta9LBYLFouFYDCoOXEI8RLrXU6nE6vVqm3j9XqB4sgtKSkJg8Gg9YXl5+dTVFREcnKytq+77rqL7du3s3jxYq1QxG63a2txwWDw2ATnvTtRfvgPoS3rT/5iFQOWTtdjvXMwhoSkM3L/JJK/ExmBSS5pRNWfWMvyeDwRZfKiWMPj8WjbqqqK0WjUoiufz6elB/XRnEgTwrF0otfrjXDmMBgMXH/99RQVFbFgwQItCvN4PFoqUY+hei0cQ9/H/virKGkZZb5O42VNiHt7FPZ7n5TiJblokAImuWQRJe5QLEoulyvC61CkDb1eryZqQETUZTKZCIfDuFyuiApDfTWjSCsGAgGCwSBWq1XbzmAw0K1bNwBmzpypCZiiKLjd7pgiBmC5uj3xH3yN9faBqJbS7aPUlHTMD7+I/ZXhGKvLWV2Siwtp5iu5ZBGpPtF/pe/BEsUYXq9XEzlRiSispIAIF45oaymzubgsXbzm8XiAY+tfYj8VKlSgQYMGzJkzJ0LYRIO01WolVqZfsVix3dYfS4frKPr6E9Qlc7X3VIsVX8fu0LUHhoREyu6QKJFcOMgITHJJoreOEpWBYl3LZDJpBRv6UvikpCQSEhIinCvEOpnRaCQcDmvbi2ZoIWp6tw6RQtQXeHTo0IGcnBzWrVsHFEdtoiRf9KKVhiE1nYQn/4Hllf/jaHwy6+xJTLu6O56ONxBAiehni4XqKsLz1ce43/sn4cMHT//mSiTnCClgkksSEVmJ1J6qqlofmL4Qw2QyER8fT3JyMna7PabtkijmgGO9XyL6Ev8tBMRms2kO9cJWCqBjx44AzJs3TzMGVhSFuLg4rVRfX+EYC3ujK6j62Q9sbdud5X9t59dff9WKP6LToABqOITvt8kUPtoP/7SfCCyZS+ETA/F+/29Ur+d0bq9Eck6QKUTJJYeYjCx+1kdOPp9P285msxEXFxeRMjyegBwvfehyuYBj6UObzaYJJhTP1EpOTmbhwoU88sgj2rkJv0WPxxMRzamqisfjwefzaUbDopLytttuw2AwsG7dOm2Ypzgns9lcnDLdsBrP1yMJ794ReREBP76fvsU/51dsfe7B3Kaz9EqUnLdIAZNcUujXtcQ8r+jIRjhqCMuosiAEEdAanMV+RSGI8EKEYnEUx4LiKO7qq69m+vTpFBYWEhcXRyAQ0ATHYrFo1Y5Hjx7F6/VGVDyKVKTYf7t27bSiEf1MMu++PYR/+A/BZfOPf59ysvF8/Cb+3yZhG/gwplr1ynQfJJJziRQwySWFy+Nj/yEXNguYDcfK4gU2mw2Hw6FFSNHELKbQpfggsggEoKioSNu3aHwW+xbjWcLhMK1bt2bq1KksWbKEzp07lxDFYDCIy+XSxrokJCQQFxeniZwQS5/Ph8vlonPnzlo1pCUcgonf4v/1Zwj4KSuhrZtwvfQQ5jZdsPW9B0Nyapk/K5GcbeQamORvZc6cOSiKwowZM8jLy6Nhw4bUrVuX7Ozsk97Xu+++S3x8vOaIceutt2KxWOjcuTP+QIgxU7fzxHuree2rv3jli7/4ctpBjhYEsdlsOJ1O4uPjjytepaGqKg0aNODuu+8GoHHjxvTu3VvrC3O5XNqcMDgWfQmE2LVsWeyKsWzZMoASqU0xcDMhIYHExETNs1GgH8SZkZFB1apViY+Lg8Wz4ZWHCU/570mJl+4CCcz7jcLH+uOdOA71VPYhkZwFpIBJzgt8Ph8333wz2dnZzJgxg7S0tJPex8iRI2nZsiW7du1i9+7d/PTTTzz33HN8//33fPDdFn5behCvvzjtpqqwZY+HT3/Owhs0aYa7+ujoRIjtSq3u+1/loaqq2O12wuEwRqNRc/wQiDRi5cqVqVChAsuXL9f2LYowcnJytAGZiYmJxMfHa+NahPVVCXb+he2DoTh/+DeGgrwyXdNx8XrwfTeaoicHEThBClIiORdIAZOcFzz11FOsWLGCqVOnUqNGDXbt2oWiKIwaNQqv14uiKAwdOhQoFo4uXbqQmZlJZmYmq1evZuDAgezevZtZs2bRunVr2rdvD8Brr73G3fc9ypKVf/L7t0/w/dtdmPr5IHIO/gXAhFEP0KzpFXTu3Jk777wzYs1ry5YttG3bFqfTSWZmJl6vl/Xr19O+fXvS09Pp3Lkzu3fvLpHqg2Pi1aNHD+rVq0fdunUZOXKkZuyrRy9oLVq0YOvWreTl5QHFzdZHjx5FURTi4+O14hCDwYDT6cRms2lRnlbokZON+6M3cL38MKG/Np+x35EgfOgA7uH/oOhfTxPas/OM718iKStSwCTnBdu3b6dLly40bdq0TNvn5eUxefJkDAYDzz//PO+//z7p6en06tWLJUuWMHbsWADee+89uvZ6mlWzRpKfvZsu/T8mIa0qiye/oe3r8MG9/POf/+TDDz+MOMagQYM4cuQIixYt4tNPP8VgMHDvvffi9/v5448/MBgMPPXUUyXSeFAsYCtXrmT+/Pl89NFHjB8/nubNm2uTnvWIoo9wOEzz5s0BNHf6goICQqEQiYmJJSI3sb4VFxenjXQJZx+i8LH+BObPKg4zzyKh9asoevYegutWntXjSCSlIQVMcl7Qrl07fv75Z954440S78VK0bVp04aGDRvSvHlztm7dSnJysjb2pHz58loKMjk5Gas9gbzDO/AUHWXm1w+zd8s8cg9tIxQsLplPLV+Tzp07U6NGjYhjrFu3jm7dutGkSRO6deuGxWJhw4YNbNy4kY4dO7JkyRKWL18eU8AAqlevzs0338yLL75I7969+fPPP2OmJ8XalaqqNGvWDICVK1dqBRk2my0icosuJNFXTeLzFv/vXBEOEz4T6UmJ5BSQVYiS84Lnn3+ezMxMXn75ZapVq0b37t0B2Lp1K1OmTCmx/fz589mwYQPLli2jTp06x913veoJJKbXIBj00azrY4BK/pFdGIzF6Tinwxbzc40aNeLXX39l7dq1HDlyhDZt2tCgQQNCoRCvvPIKfr+f/fv3R3xGvy529OhR7rzzTl5++WVeeeUVvvjiCx577LGYxxIRVPXq1UlOTmbNmjVaT5re/aO0ZmZhRly6X4dEcvEhIzDJecPnn39O165dGTx4MKtXr+b+++/niy++YOLEiSW2TU1NpUePHoTDYd56663j7rdhdTvdbnuShNQqLJz4T5ZMeZuivCwUxYCCQlKcOebn/vOf/5CamkqrVq0YMmQI4XCYzz77DKvVSt++fXniiSc4evRoRD+WKGcPBAL4fD5eeeUVrr76alatWsUjjzyCz+fD6/Xi9/sjIjd9evDKK69k48aNFBUVRbh1SCSSSOQ8MMkFh6IoPPfccycULkEwGORwjpvRk3bx195C7fXkBAuDb6zJ5XVTyrQfVVXx+XwR/V5+vx+/3084HMZkMqEoxd6DLpdLs4E6HmIsi9Vq1Ua5jB49muHDh/PZZ5/RvHlzrdfL4/FgMBi0GWWxCO3bRdGTg8t0PWcK+6MvYWnd6ZweUyIBGYFJLgFMJhMVMxJ49Z7G/Ov+Jtx3S22e6XcZ7z/RrMziVRrRBr7hcFirmtSLl9FoxG63Ex8fT3x8vGZR9eSTT1KuXDni4+O5+uqrCQQC1KhRg4KCAn777TfMZnPsEvkzTKOpixm8ZGOJ15PGz2bouu2nvf/oSlKJ5Ewg18AkFxynkzSoXjGO6hXjzui5iPMxmUxaFKWPkOx2Ow6Ho8RnFy5cyJdffsmPP/5I+fLlmTdvHqFQiLS0NIqKili5cqWWktRzPGf68wnhGPJ3fV5y8SP/OiSSMhJdQBE9wFL4LAKagIkZYrHIz88H4Oeff+bw4cMMHDgQg8FAnz59AFi0aBGNGzdm9+7dWCwW7rzzTmrWrMnEiRP58ccfqVmzJvHx8fTo0YOcnBx27dqFqUoNbp+/lpqTFtBn4Xre3rSTSj/N48U1xX1v3+06SOakBZSbMJe2M5ezKb/ohNe9Pq+IK6Ytocm0xazNLU7BfrFtH/V/WUjVn+dz9+vv4PP5NFeV2267jZSUFFauXMnjjz9OUlISDz74YMQ+P/nkEypXrkxKSgpPPfUUQMzPSyTHQwqYRHKK6NOHYgyLGFSpn/lV2jpYt27daNWqFWPHjuWWW26hefPmHDp0iI8++ggorj784YcftO1zc3OZNm0abdq0oV+/fnTq1InZs2czd+5c/vnPf2rbWY1GHqxTmWlZ2biCIXpVK8eov/bhDYWok+BgQpvGzO3SjMJAiA+27Dnhdeb4A3x7TUMMKPxz/XY257t4dvVfDMisyJhWDfj2t1l88skn2vaKorB48WLcbjcjRozgmWeeoV27dtr7Gzdu5OGHH2bgwIFMnjyZESNGMGnSpBKfr1u3bll+DZJLGClgEskpEr3+JUx7nU4nqqpq1lSl4XA4WLRoEatWreLRRx9l3759LFiwgOTkZKBYFA8cOKBtf8stt1CnTh127dqF1+vlhhtuoFmzZtSvX58NGzZo27XNSKJxUjwAncqlcFmikzBQEAjxV6Gbe5ZuouvvK9nj9pLl8XEiWqUlclliHE1T4tlW6GFLgQsVuKFSOu3KpZCRlBRx/P79+1O3bl0OHiwejnnjjTfSs2dP7f2NGzeiqirvv/8+1157LaFQiKVLl5b4fEJCwgnPTXJpIwVMIjkF9ONSAC36slqtWlpRH4nFYv78+QwfPhyTyaRFKOXLl9fWy4LBIIsWLdK2FzZSmZmZ2Gw2pkyZwooVK9i8eTMNGjTQtjMqCiLoM+iiPxWVD7fswWI08EGzupS3WSjLauLi7Hw25RexMqeQWvF26iY4UIAp+48w91AOh/PyIo4vzrN27doA/PLLLxGtEA0aNEBRFB544AEmTpzIZ599RteuXUt8XiI5EVLAJJJTQAyXFD+LtS/hTaif0lwacXFxjBs3jhYtWjB48GAGDBhA9+7dqVy5Mm3atKGoqIivv/5a216IZmpqKl9++SWzZs2iffv2tGnThldffbVM590vswJ7XV6+2LafDFvsUvxoUixm+ixcTxiVfzSqyWWJcbx5eW2+2pFFv0UbuLNzxxJrXFDcz/bYY4/xzjvvMHPmTO31Bg0aMHLkSMaPH89NN93Exx9/XGpbgERyPGQfmERSRsLhsOaOIUQrHA4TDAa1gZVi5pcY0XIqZGdnU1RUxJNPPsnGjRtZtGhRxIwxi8VSqmu+7AOTXErICEwiKSP673pi/UtVVfz+4vlYVqu1TGtfJ0IIU6NGjSgqKmL79u0Rr5dmJyWRXGpIAZNIThGRRhRrXwKz2Xxa9k9i3axJkyZAsamwPmUpji2RXOpIAZNIykh0DxigRV9iDedkh2LGQghYw4YNgWMCVtq5SCSXKlLAJJJTQDQxh0KhMxp9wTFj37S0NCpVqsT69etLFI2U/mEzKOf2n7Vije3mL5GcbaSASSRlRAiHEBMRfYmy7zMRfen3p6oqTZo0Ydu2bRQVFaGqKmaz+bj7N5avRNzbn2FscPlpnUNZMFSqhuPFtzFfdc1ZP5ZEEgvphSiRlBERAQWDQVRVJRgMag70UJxGPBOjT4SABYNBrrvuOmrVqqUVjYjo7LgiVr0mcf94j8CSeXjGjEI9cvC0z0mP4ozH2msAlm49UOSoF8nfiCyjl0jKiNfr1crnPR4Pfr8fh8OhlbjHxcVFzPU6HQ4cOEAgECAlJQVVVQmFQoRCIeLj4wnN+w01Lwf7TXeinKB/SvX78U35L76J405/UrPBgKXzDVjvGIQhPvH09iWRnAGkgEkkZcTj8aCqKm63G7fbTTgc1mZ+nU7fVyxyc3PJz88nPT1di74CWzZgnvA16s5iY14lvRz2u+7D3Kr9CfcXzsnGO+4LAvNnwSn8kzc2vAL7wIcwVs086c9KJGcLKWASSRnxeDyEw2GKiorweDyYzWZsNhtGoxGHw3FG3SS8Xi8HDx4kMTERY0Eu6vivYdn8mNsa6zfGPuhhjNVrnXC/wb824/3yI0LbtpTpPAzlKmDrdz/m5m1O6vwlknOBFDCJpIx4PB4CgQCFhYUEAgEtfWiz2bDb7Wd0dpWqquzbuQPr7GlYZ08D/wlMdxUD5o7XYes9BENC0gn3HZg3E++4L1Bzj8beyGbH2rMv1htuQzFLmyfJ+YkUMImkDASDQQKBAC6XC5fLBRS7zpvNZux2+wmrA08W/6LZuL/5FCUn++Q+6HBiu60/lmt7opxgPU71evD99C2+qeMhECh+UVEwt+mCre89GJJTT/HsJZJzgxQwiaQM+Hw+gsFgifShw+HAZDKdMQf10I6teL4aSWjL+tPaj6FiFWz9H8B8ZcsTbhs+fADPN6NQ845iG/gQplr1T+vYEsm5QgqYRHICQqEQgUBASx/6/X7sdrsmYIqinHb1YTg/F+93/yYwewao4RN/oIyYrmiOrf+DGCtVPWP7lEjOF6SASSQnwO/3EwqF8Hq9FBUVEQqFiIuLw+FwaM4bp7r+pQYD+KdNwDvhW/C4zvCZ/w+jCUu3Hth6DUBxxp2dY0gkfwNSwCSS4yAalv1+v1bEIcalxMcXTz3WNzOfDOH8XFyvPkb4wL4zfdoxUeITcbz4Fqaadc/J8SSSs420kpJIjoOwjQqFVQ7l+MlzqWfELgpALcw/Z+L1dxxPIjnbSAGTnHeoqsqDDz5IUlIScXFxXHnllQQCAebMmYOiKNr/4uKK02EDBw7UXsvIyOBf//oXALt27dJet1qttG7dmh07dgDFVkzPP/+89nNCQgL5+fl4vV4URWHo0KHa3K0bbulPYkI8N/d+gDe+2cnbY3cycfoSGjZsiMVioXfv3jGvo3379iiKwjvvvAMUu8qL8xETnCUSyakjBUxy3jF79mw+/fRTxo4dy9KlSxk4cGDE+2PGjGHv3r1s3bpVey09PZ3du3fTvXt3Xn31VfLz87X33nzzTRYuXMi6det49tlnYx6zsLCQzz77LOI1VVX58fddzJ/9K6Cw788FqGqYA0d9TFqYy62976FcuXInvJ6xY8dq530mCMusv0QCSAGTnIcI8fnhhx/Ytm0b99xzT0SZelpaGpUrV6ZixYraawaDgapVq1KuXDlsNlvE9klJSTRr1oyGDRuyadOmmMesXbs2I0aM0BzmAdzeEF+Nm4bPk0+1yzrgdeVwZG9xeXtCajWM5Tpjsx1/lEijRo3YuXMnq1atYty4cVx99dXae2N+nEDmpAWUmzCXtjOXsym/CIBpWdlcNWMp5SfMZcDiDcX7mbqYTr+v4OrflvHc6r/YmF9E599XUvGnubSftYK1uYVlurcSycWEFDDJeUe3bt1o1aoVY8eO5eabb6ZOnTpkZWVp7/fs2ZO4uDjatm2rvXb48GEcDgdvv/02H374IQ6HI2KfeXl5/PXXX1SrVi3mMXv06IHNZmPcuHHaaxu257Fj4xwUxUCT9vcACnu2zNXe33XARTh8/GjI4XBwyy23cN999wGwceNGAOx2O4OeeJocf4DLEp0UBkJ8sGUPef4Ady/ZSINEJ/O7XsXgzGMivbPIy0fN6vFovao8snwLgXCYPzo3w6woPLh88wnuqkRy8SEFTHLe4XA4WLRoEatWreLRRx9l3759TJs2TXv/k08+Yc2aNRFik5qayrx586hXrx7vv/++NvoE4PHHHyc9PR2LxcJrr70W85hGo5EnnniC9957T3stGAqz9895pFSoS0JqFZLL12avTsAAypLM69evHytWrKBPnz7cfffdAFx++eXUrFaN6g4bfxW42OP2kuXxsaPIgzsU5raq5agd76BduRRtP9ekJ9E0JYEqDhubC1xck55EvQQnrTOS+LPAfVJTmvX3RyK5UJECJjnvmD9/PsOHD8dkMtGuXTsAMjIytPeFCwYcGzJpNBpp1qwZL774Ips3b2bGjBna9i+99BI7duxg7969NG3atNTjDh48mJycHO2/XUe24CnM5mjWZsb+qzW5B7fiyj/E0awtBANeTP6DhENBCgsL2bKldHPcjh07MnDgQAYPHqwVnpjNZg4cPoxfDVMUCpNqMZHjD9Dx95VYDAqfbt1L0vjZXPvHKqr9PJ9cf4ANeYVUnjiPkVv3Uj/ByayDR7nmt2WM2LIHk0FhXV5xCjJp/GyGrtsOQJ3JC3lgWXF01mjqYlrf+zCNGzfm0UcfLfsvRCI5T5ECJjnviIuLY9y4cbRo0YLBgwczYMAAunfvrr3fr18/qlSpQpUqVTRfQkGvXr1ITU3l008/1V5LT0+nSpUqJ2w2djgcPPjgg9p/z/ptCgajic53jeD6e76kU9/3URQje7bMJXv/Jr56+zaysrKYNm0a9euXbr9kMBj48ssvS2xTISODHF+xB2Gq9dia3dP1q7GzyAPAIa+fXlXLURQMEW82cXVaIh/9uYcRzeqxz+1jU76L2vEOMuPsZUoj7sjKYvTo0aUWs0gkFxKykVkiOQ6BYJivp2xnwZojhP633mW3GunRrjLdW1c+5f22bNkSqwJ3hPJ5aPkWlnVrzk6XhzsWrOeXdpcDcOPcNfzQuhH73D6eWrWV1de15N/b9zN6234O3tqOCj/NZVBmRd64vDb/XL+dj/7cy5Fb25H84xwer1uVoY1rUnPSArpWSOXT5vVpNHUxTa9qxsQ5sceySCQXGmdmfKxEcpFiNhm4++ba3NqxKlv3FGIyKjTITMJmNZ6R/SeZi/8Jbilws+BIbon3jYqCaJk2/O8H8Y2zfoKThUfy2FLgYsHhPOokFPsyJppN7HR5WJqdT44/EHk9RvlPXnLxIFOIEkkZSE6w0qJhGk3rp54x8QLoUC6Fq1ISeHTFFva6TzDzK4oRzephVBQ6zFqBPxzmk6uKU5SP1q3C7wdz+L/Nu4g3S8GSXLzIFKJE8jcR2reLoicHn9Nj2h99CUvrTuf0mBLJ2UJGYBKJRCK5IJECJpFIJJILEilgEolEIrkgkQImkfxtnP5IlpM/5N9wTInkLCEFTCL5mzBWrob90ZdQUtPP/sHsTmx33Ye5RZuzfyyJ5BwhqxAlkr8Z1efFN+l7fJN/AP/JldKfEMWAucO12HoPwZCYfGb3LZH8zUgBk0jOE8LZh/CO+YzA4jlnZH/Geo2wD3wIY2adM7I/ieR8QwqYRHKeEdy8Ds9XHxPeue2UPq+kZmC7614s13Q8w2cmkZxfSAGTSM5D1HCYwOzpeL//D2p+SYupmFhtWG+6A2uPO1Es1rN7ghLJeYAUMInkPEZ1u/D++A3+6RMhFCx1O/PVHbDddR+GtIxSt5FILjakgEkkFwChrL14v/mU4KolEa8bM+tgG/gQpnqN/qYzk0j+PqSASSQXEIE1y/F+/QlqUQG23ndjbt8N5QRzziSSixUpYBLJBYYaCkHAj2Kz/92nIpH8rUgBk0gkEskFicw9SCQSieSCRAqYRCKRSC5IpIBJJBKJ5IJECphEIpFILkikgEkkEonkgkQKmEQikUguSKSASSQSieSCRAqYRCKRSC5IpIBJJBKJ5IJECphEIpFILkikgEkkEonkgkQKmEQikUguSKSASSQSieSCRAqYRCKRSC5IpIBJJBKJ5IJECphEIpFILkikgEkkEonkgkQKmEQikUguSKSASSQSieSCRAqYRCKRSC5IpIBJJBKJ5IJECphEIpFILkikgEkkEonkgkQKmEQikUguSKSASSQSieSC5P8BQcXu+7NsQkwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Graph(g,\n", + " node_size=node_size,\n", + " node_color=node_color,\n", + " node_shape=node_shape,\n", + " node_edge_width=0,\n", + " node_layout='community',\n", + " node_layout_kwargs=dict(node_to_community=node_to_community),\n", + " node_labels=True,\n", + " node_label_fontdict=dict(size=6, weight=\"bold\"),\n", + " edge_alpha=1,\n", + " edge_width=0.5,\n", + " edge_layout_kwargs=dict(k=2000),\n", + " edge_layout='bundled',\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "sopa-hDHgkEug-py3.10", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/tutorials/stats.md b/docs/tutorials/stats.md deleted file mode 100644 index fe4d5d35..00000000 --- a/docs/tutorials/stats.md +++ /dev/null @@ -1 +0,0 @@ -Coming soon \ No newline at end of file diff --git a/sopa/stats/__init__.py b/sopa/spatial/__init__.py similarity index 58% rename from sopa/stats/__init__.py rename to sopa/spatial/__init__.py index acfcf78a..cf5e2884 100644 --- a/sopa/stats/__init__.py +++ b/sopa/spatial/__init__.py @@ -1,3 +1,3 @@ from ._build import spatial_neighbors from .morpho import geometrize_niches, niches_geometry_stats -from .distance import cells_to_groups, mean_distance +from .distance import cells_to_groups, mean_distance, prepare_network diff --git a/sopa/stats/_build.py b/sopa/spatial/_build.py similarity index 97% rename from sopa/stats/_build.py rename to sopa/spatial/_build.py index 37c7ea64..2b0c7322 100644 --- a/sopa/stats/_build.py +++ b/sopa/spatial/_build.py @@ -137,6 +137,6 @@ def _build_connectivity( def _check_has_delaunay(adata: AnnData): - message = " key not in adata.obsp, consider running the delaunay graph (e.g., `from sopa.stats import spatial_neighbors; spatial_neighbors(adata, [0, 40])`)" + message = " key not in adata.obsp, consider running the delaunay graph (e.g., `from sopa.spatial import spatial_neighbors; spatial_neighbors(adata, [0, 40])`)" assert "spatial_connectivities" in adata.obsp, "spatial_connectivities" + message assert "spatial_distances" in adata.obsp, "spatial_distances" + message diff --git a/sopa/stats/_graph.py b/sopa/spatial/_graph.py similarity index 100% rename from sopa/stats/_graph.py rename to sopa/spatial/_graph.py diff --git a/sopa/stats/distance.py b/sopa/spatial/distance.py similarity index 61% rename from sopa/stats/distance.py rename to sopa/spatial/distance.py index 5fd2ae81..d4594ff1 100644 --- a/sopa/stats/distance.py +++ b/sopa/spatial/distance.py @@ -99,4 +99,62 @@ def mean_distance( df_distances.replace(0, np.nan, inplace=True) df_distances[group_key] = adata.obs[group_key] - return df_distances.groupby(group_key, observed=False).mean() + df_distances = df_distances.groupby(group_key, observed=False).mean() + df_distances.columns.name = target_group_key + + return df_distances + + +def prepare_network( + adata: AnnData, + cell_type_key: str, + niche_key: str, + clip_weight: float = 3, + node_colors: tuple[str] = ("#5c7dc4", "#f05541"), + node_sizes: float = (1.3, 5), +) -> tuple[pd.DataFrame, dict, dict, dict]: + """Create a dataframe representing weights between cell-types and/or niches. + This can be later use to plot a cell-type/niche represention of a whole slide + using the netgraph library. + + Args: + adata: An `AnnData` object + cell_type_key: Key of `adata.obs` containing the cell types + niche_key: Key of `adata.obs` containing the niches + clip_weight: Maximum weight + node_colors: Tuple of (cell-type color, niche color) + node_sizes: Tuple of (cell-type size, niche size) + + Returns: + A DataFrame of weights between cell-types and/or niches, and three dict for netgraph display + """ + node_color, node_size, node_shape = {}, {}, {} + + log.info("Computing all distances for the 4 pairs of categories") + weights = mean_distance(adata, cell_type_key) + top_right = mean_distance(adata, cell_type_key, niche_key) + bottom_left = mean_distance(adata, niche_key, cell_type_key) + bottom_right = mean_distance(adata, niche_key, niche_key) + + for pop in weights.index: + node_color[pop] = node_colors[0] + node_size[pop] = node_sizes[0] + node_shape[pop] = "o" + + for niche in bottom_right.index: + node_color[niche] = node_colors[1] + node_size[niche] = node_sizes[1] + node_shape[niche] = "h" + + # assemble dataframe per-block + bottom_left[bottom_right.columns] = bottom_right + weights[top_right.columns] = top_right + weights = pd.concat([weights, bottom_left], axis=0).copy() + + # convert distances to symmetric weights + weights = 1 / weights + np.fill_diagonal(weights.values, 0) + weights = weights.clip(0, clip_weight) + weights = (weights.T + weights) / 2 + + return weights, node_color, node_size, node_shape diff --git a/sopa/stats/morpho.py b/sopa/spatial/morpho.py similarity index 97% rename from sopa/stats/morpho.py rename to sopa/spatial/morpho.py index 8eca35ec..f8402d02 100644 --- a/sopa/stats/morpho.py +++ b/sopa/spatial/morpho.py @@ -112,7 +112,7 @@ def _clean_components( def niches_geometry_stats( adata: AnnData | SpatialData, niche_key: str, - aggregation: str | list[str] = "mean", + aggregation: str | list[str] = "min", key_added_suffix: str = "_distance_to_niche_", **geometrize_niches_kwargs: str, ) -> gpd.GeoDataFrame: @@ -130,7 +130,7 @@ def niches_geometry_stats( niche_key: Key of `adata.obs` containing the niches aggregation: Aggregation mode. Either one string such as `"min"`, or a list such as `["mean", "min"]`. key_added_suffix: Suffix added in the DataFrame columns. Defaults to "_distance_to_niche_". - geometrize_niches_kwargs: Kwargs to the `sopa.stats.geometrize_niches` function + geometrize_niches_kwargs: Kwargs to the `sopa.spatial.geometrize_niches` function Returns: A `DataFrame` of shape `n_niches * n_statistics` From 6a460f57c1c372fef44b74c9ec92ffe2376b463a Mon Sep 17 00:00:00 2001 From: Blampey Quentin Date: Mon, 15 Jan 2024 15:46:37 +0100 Subject: [PATCH 7/8] add in docs: API + sopa.spatial tutorial --- .gitignore | 5 +- docs/tutorials/api_usage.ipynb | 768 ++++++++++++++++++++++++++++ docs/tutorials/api_usage.md | 9 - docs/tutorials/cli_usage.md | 6 +- mkdocs.yml | 8 +- sopa/cli/patchify.py | 9 +- sopa/io/__init__.py | 1 + sopa/io/report/engine.py | 2 + sopa/segmentation/__init__.py | 4 + sopa/segmentation/aggregate.py | 10 +- sopa/segmentation/baysor/resolve.py | 4 +- sopa/segmentation/patching.py | 15 +- sopa/segmentation/shapes.py | 4 + sopa/segmentation/stainings.py | 2 +- tests/test_spatial_stats.py | 2 +- 15 files changed, 816 insertions(+), 33 deletions(-) create mode 100644 docs/tutorials/api_usage.ipynb delete mode 100644 docs/tutorials/api_usage.md diff --git a/.gitignore b/.gitignore index a15225c0..e24ef273 100644 --- a/.gitignore +++ b/.gitignore @@ -8,7 +8,9 @@ explore sandbox *.html .env -tuto.* +*.h5ad +*.zarr +*.explorer # OS related .DS_Store @@ -31,6 +33,7 @@ run.log .ipynb_checkpoints exploration/* *.ipynb +!docs/tutorials/**.ipynb !notebooks/*.ipynb # pyenv diff --git a/docs/tutorials/api_usage.ipynb b/docs/tutorials/api_usage.ipynb new file mode 100644 index 00000000..c4f58567 --- /dev/null +++ b/docs/tutorials/api_usage.ipynb @@ -0,0 +1,768 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from sopa.utils.data import uniform\n", + "import sopa.segmentation\n", + "import sopa.io" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Save the `SpatialData` object\n", + "\n", + "For this tutorial, we use a generated dataset. The command below will generate and save it on disk (you can change the path `tuto.zarr` to save it somewhere else).\n", + "\n", + "See [here](`../../api/io`) for details on how to use your own technology." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.utils.data)\u001b[0m Image of size ((4, 2048, 2048)) with 400 cells and 50 transcripts per cell\n" + ] + }, + { + "data": { + "text/plain": [ + "SpatialData object with:\n", + "├── Images\n", + "│ └── 'image': SpatialImage[cyx] (4, 2048, 2048)\n", + "├── Points\n", + "│ └── 'transcripts': DataFrame with shape: (20000, 3) (2D points)\n", + "└── Shapes\n", + " └── 'cells': GeoDataFrame shape: (400, 1) (2D shapes)\n", + "with coordinate systems:\n", + "▸ 'global', with elements:\n", + " image (Images), transcripts (Points), cells (Shapes)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sdata = uniform()\n", + "sdata.write(\"tuto.zarr\", overwrite=True)\n", + "\n", + "sdata" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before starting, we create the variables below that denotes the names of the image and transcripts that we want to use, as displayed in the `SpatialData` object above:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "image_key = \"image\"\n", + "points_key = \"transcripts\" # (ignore this for multiplex imaging)\n", + "gene_column = \"genes\" # (optional) column of sdata[points_key] containing the gene names" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Segmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Option 1: Cellpose" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "shapes_key = \"cellpose_boundaries\" # the name that we will give to the cellpose \"shapes\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following channels are available for segmentation. Choose one or two channels used by Cellpose." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['DAPI' 'CK' 'CD3' 'CD20']\n" + ] + } + ], + "source": [ + "print(sdata[image_key].c.values)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, we initialize the Cellpose model. Here, we run segmentation using DAPI only, and we set the cell diameter to be about `35` pixels:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "channels = [\"DAPI\"]\n", + "\n", + "method = sopa.segmentation.methods.cellpose_patch(diameter=35, channels=channels, flow_threshold=2, cellprob_threshold=-6)\n", + "segmentation = sopa.segmentation.StainingSegmentation(sdata, method, channels, min_area=2500)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Sequential running\n", + "\n", + "If desired, you can run Cellpose sequentially, as in the lines below, but this is slower than the \"Parallel running\" section below." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.segmentation.shapes)\u001b[0m Percentage of non-geometrized cells: 12.44% (usually due to segmentation artefacts)\n", + "\u001b[36;20m[INFO] (sopa.segmentation.shapes)\u001b[0m Percentage of non-geometrized cells: 13.68% (usually due to segmentation artefacts)\n", + "\u001b[36;20m[INFO] (sopa.segmentation.shapes)\u001b[0m Percentage of non-geometrized cells: 15.69% (usually due to segmentation artefacts)\n", + "\u001b[36;20m[INFO] (sopa.segmentation.shapes)\u001b[0m Percentage of non-geometrized cells: 10.71% (usually due to segmentation artefacts)\n", + "Run on patches: 100%|██████████| 4/4 [00:54<00:00, 13.67s/it]\n", + "Resolving conflicts: 100%|██████████| 210/210 [00:00<00:00, 15649.55it/s]\n", + "\u001b[36;20m[INFO] (sopa.segmentation.stainings)\u001b[0m Added 321 cell boundaries in sdata['cellpose_boundaries']\n" + ] + } + ], + "source": [ + "cells = segmentation.run_patches(patch_width=1200, patch_overlap=50)\n", + "\n", + "sopa.segmentation.StainingSegmentation.add_shapes(sdata, cells, image_key, shapes_key)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Parallel running\n", + "\n", + "Here, we show how to run Cellpose in parallel for all the patches. It's up to you to choose the way to parallelize it: for instance, if you have a Slurm cluster, you can run one job per patch.\n", + "\n", + "First, we generate the bounding boxes of the patches on which Cellpose will be run. Here, the patches have a width and height of 1500 pixels and an overlap of 50 pixels. We advise bigger sizes for real datasets (see our default parameters in one of our [config files](https://github.com/gustaveroussy/sopa/tree/master/workflow/config)). On the toy dataset, this will generate **4** patches." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.segmentation.patching)\u001b[0m 4 patches were saved in sdata['sopa_patches']\n" + ] + } + ], + "source": [ + "patches = sopa.segmentation.Patches2D(sdata, image_key, patch_width=1200, patch_overlap=50)\n", + "patches.write()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, we run segmentation on each patch, and save the results in a temporary directory (here, `tuto.zarr/.sopa_cache`).\n", + "\n", + "On this example, we performed a \"for-loop\" here, so you **should** paralellize this using multiple jobs or multi-threading." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.segmentation.shapes)\u001b[0m Percentage of non-geometrized cells: 12.44% (usually due to segmentation artefacts)\n", + "\u001b[36;20m[INFO] (sopa.segmentation.shapes)\u001b[0m Percentage of non-geometrized cells: 13.68% (usually due to segmentation artefacts)\n", + "\u001b[36;20m[INFO] (sopa.segmentation.shapes)\u001b[0m Percentage of non-geometrized cells: 15.69% (usually due to segmentation artefacts)\n", + "\u001b[36;20m[INFO] (sopa.segmentation.shapes)\u001b[0m Percentage of non-geometrized cells: 10.71% (usually due to segmentation artefacts)\n" + ] + } + ], + "source": [ + "cellpose_temp_dir = \"tuto.zarr/.sopa_cache/cellpose\"\n", + "\n", + "for patch_index in range(len(sdata['sopa_patches'])):\n", + " segmentation.write_patch_cells(cellpose_temp_dir, patch_index)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this stage, you executed 4 times Cellpose (once per patch). Now, we need to resolve the conflict, i.e. where boundaries are overlapping due to segmentation on multiple patches:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Reading patches: 100%|██████████| 4/4 [00:00<00:00, 222.94it/s]\n", + "\u001b[36;20m[INFO] (sopa.segmentation.stainings)\u001b[0m Found 346 total cells\n", + "Resolving conflicts: 100%|██████████| 210/210 [00:00<00:00, 16158.57it/s]\n", + "\u001b[36;20m[INFO] (sopa.segmentation.stainings)\u001b[0m Added 321 cell boundaries in sdata['cellpose_boundaries']\n" + ] + } + ], + "source": [ + "cells = sopa.segmentation.StainingSegmentation.read_patches_cells(cellpose_temp_dir)\n", + "cells = sopa.segmentation.shapes.solve_conflicts(cells)\n", + "\n", + "shapes_key = \"cellpose_boundaries\"\n", + "\n", + "sopa.segmentation.StainingSegmentation.add_shapes(sdata, cells, image_key, shapes_key)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Option 2: Baysor" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "shapes_key = \"baysor_boundaries\" # the name that we will give to the baysor \"shapes\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Baysor needs a config to be executed. You can find official config examples [here](https://github.com/kharchenkolab/Baysor/tree/master/configs).\n", + "\n", + "You can also reuse the Baysor parameter we have defined for each machine, as in our [Snakemake config files](https://github.com/gustaveroussy/sopa/tree/master/workflow/config). Note that, our Snakemake config is a `.yaml` file, but the Baysor config should still be a `.toml` file.\n", + "\n", + "For this tutorial, we will use the config below. Instead of a dictionnary, you can also have a `.toml` file and provide `config_path` to the `patchify_transcripts` function." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "config = {\n", + " \"data\": {\n", + " \"force_2d\": True,\n", + " \"min_molecules_per_cell\": 10,\n", + " \"x\": \"x\",\n", + " \"y\": \"y\",\n", + " \"z\": \"z\",\n", + " \"gene\": \"genes\",\n", + " \"min_molecules_per_gene\": 0,\n", + " \"min_molecules_per_segment\": 3,\n", + " \"confidence_nn_id\": 6\n", + " },\n", + " \"segmentation\": {\n", + " \"scale\": 30, # Important parameter: typical cell diameter, in microns (see our configs)\n", + " \"scale_std\": \"25%\",\n", + " \"prior_segmentation_confidence\": 0,\n", + " \"estimate_scale_from_centers\": False,\n", + " \"n_clusters\": 4,\n", + " \"iters\": 500,\n", + " \"n_cells_init\": 0,\n", + " \"nuclei_genes\": \"\",\n", + " \"cyto_genes\": \"\",\n", + " \"new_component_weight\": 0.2,\n", + " \"new_component_fraction\": 0.3\n", + " }\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, we generate the bounding boxes of the patches on which Baysor will be run. Here, the patches have a width and height of 3000 microns and an overlap of 50 microns. We advise bigger sizes for real datasets (see our default parameters in one of our [config files](https://github.com/gustaveroussy/sopa/tree/master/workflow/config)). On the toy dataset, this will generate **1** patch." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.segmentation.patching)\u001b[0m Writing sub-CSV for baysor\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 208.89 ms\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.segmentation.patching)\u001b[0m Patches saved in directory tuto.zarr/.sopa_cache/baysor\n" + ] + } + ], + "source": [ + "baysor_temp_dir = \"tuto.zarr/.sopa_cache/baysor\"\n", + "\n", + "patches = sopa.segmentation.Patches2D(sdata, points_key, patch_width=3000, patch_overlap=50)\n", + "valid_indices = patches.patchify_transcripts(baysor_temp_dir, config=config)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we can run Baysor on each individual patch. \n", + "\n", + "> NB: depending on you Baysor installation, you may need to update the `baysor_executable_path` variable to locate the Baysor binary executable" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import subprocess\n", + "\n", + "baysor_executable_path = \"~/.julia/bin/baysor\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for patch_index in valid_indices:\n", + " command = f\"\"\"\n", + " cd {baysor_temp_dir}/{patch_index}\n", + " {baysor_executable_path} run --save-polygons GeoJSON -c config.toml transcripts.csv\n", + " \"\"\"\n", + " subprocess.run(command, shell=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this stage, you executed 4 times Baysor (once per patch). Now, we need to resolve the conflict, i.e. where boundaries are overlapping due to segmentation on multiple patches:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sopa.segmentation.baysor.resolve import resolve\n", + "\n", + "resolve(sdata, baysor_temp_dir, gene_column, min_area=500)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Aggregate\n", + "\n", + "This **mandatory** step turns the data into an `AnnData` object. We can count the transcript inside each cell, and/or average each channel intensity inside each cell boundary.\n", + "\n", + "> NB: Baysor already counts the transcripts inside each cell to create a cell-by-gene table, so you don't need to provide `gene_column`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.segmentation.aggregate)\u001b[0m Aggregating transcripts over 321 cells\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 106.10 ms\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.segmentation.aggregate)\u001b[0m Averaging channels intensity over 321 cells with expansion 0.0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 105.83 ms\n" + ] + } + ], + "source": [ + "aggregator = sopa.segmentation.Aggregator(sdata, image_key=image_key, shapes_key=shapes_key)\n", + "\n", + "aggregator.update_table(gene_column=gene_column, average_intensities=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SpatialData object with:\n", + "├── Images\n", + "│ └── 'image': SpatialImage[cyx] (4, 2048, 2048)\n", + "├── Points\n", + "│ └── 'transcripts': DataFrame with shape: (, 3) (2D points)\n", + "├── Shapes\n", + "│ ├── 'cellpose_boundaries': GeoDataFrame shape: (321, 1) (2D shapes)\n", + "│ ├── 'cells': GeoDataFrame shape: (400, 1) (2D shapes)\n", + "│ └── 'sopa_patches': GeoDataFrame shape: (4, 2) (2D shapes)\n", + "└── Table\n", + " └── AnnData object with n_obs × n_vars = 321 × 5\n", + " obs: 'region', 'slide', 'cell_id'\n", + " uns: 'sopa_attrs', 'spatialdata_attrs'\n", + " obsm: 'intensities', 'spatial': AnnData (321, 5)\n", + "with coordinate systems:\n", + "▸ 'global', with elements:\n", + " image (Images), transcripts (Points), cellpose_boundaries (Shapes), cells (Shapes), sopa_patches (Shapes)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sdata" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, `sdata.table` is an `AnnData` object.\n", + "- If you count the transcripts, then `adata.X` are the raw counts\n", + "- If you average the channel intensities, then `adata.X` are the channels intensities\n", + "- If you both count the transcript and average the intensities, then `adata.X` are the raw counts, and `adata.obsm[\"intensities\"]` are the channels intensities" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Annotation\n", + "\n", + "#### Option 1: Transcript-based (Tangram)\n", + "\n", + "[Tangram](https://github.com/broadinstitute/Tangram) is a transcript-based annotation that uses an annotated single-cell reference. Let's suppose your reference `AnnData` object is stored in a file called `adata_reference.h5ad` (preferably, keep raw counts), and the cell type is in `adata.obs[\"cell_type\"]`. Then, you can annotate your spatial data as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from sopa.annotation.tangram import tangram_annotate\n", + "import anndata" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "adata_reference = anndata.read_h5ad(\"adata_reference.h5ad\")\n", + "\n", + "tangram_annotate(sdata, adata_reference, \"cell_type\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Option 2: Staining-based\n", + "For now, our fluorescence-based annotation is very simple. We provide a dictionary where a channel is associated with a population. Then, each cell is associated with the cell type whose corresponding channel is the brightest (according to a certain Z-score). In this tutorial example, we can annotate Tumoral cells, T cells, and B cells:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.annotation.fluorescence)\u001b[0m Annotation counts: cell_type\n", + "B cell 110\n", + "T cell 106\n", + "Tumoral cell 105\n", + "Name: count, dtype: int64\n" + ] + } + ], + "source": [ + "from sopa.annotation import higher_z_score\n", + "\n", + "marker_cell_dict = {\n", + " \"CK\": \"Tumoral cell\",\n", + " \"CD20\": \"B cell\",\n", + " \"CD3\": \"T cell\"\n", + "}\n", + "\n", + "higher_z_score(sdata.table, marker_cell_dict)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pipeline report\n", + "You can optionally create an HTML report of the pipeline run (in the example below, we save it under `report.html`). It contains some quality controls for your data." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.io.report.generate)\u001b[0m Writing general section\n", + "\u001b[36;20m[INFO] (sopa.io.report.generate)\u001b[0m Writing cell section\n", + "\u001b[36;20m[INFO] (sopa.io.report.generate)\u001b[0m Writing channel section\n", + "\u001b[36;20m[INFO] (sopa.io.report.generate)\u001b[0m Writing transcript section\n", + "\u001b[36;20m[INFO] (sopa.io.report.generate)\u001b[0m Writing representation section\n", + "\u001b[36;20m[INFO] (sopa.io.report.generate)\u001b[0m Computing UMAP on 321 cells\n", + "/Users/quentinblampey/Library/Caches/pypoetry/virtualenvs/sopa-hDHgkEug-py3.10/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n", + "/Users/quentinblampey/Library/Caches/pypoetry/virtualenvs/sopa-hDHgkEug-py3.10/lib/python3.10/site-packages/scanpy/plotting/_tools/scatterplots.py:394: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored\n", + " cax = scatter(\n", + "\u001b[36;20m[INFO] (sopa.io.report.generate)\u001b[0m Writing report to report.html\n" + ] + } + ], + "source": [ + "sopa.io.write_report(\"report.html\", sdata)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With the Xenium Explorer\n", + "\n", + "The Xenium Explorer is a software developed by 10X Genomics for visualizing spatial data, and it can be downloaded freely [here](https://www.10xgenomics.com/support/software/xenium-explorer/latest). Sopa allows the conversion to the Xenium Explorer, whatever the type of spatial data you worked on. It will create some files under a new `tuto.explorer` directory:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36;20m[INFO] (sopa.io.explorer.table)\u001b[0m Writing table with 5 columns\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.table)\u001b[0m Writing 3 cell categories: region, slide, cell_type\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.shapes)\u001b[0m Writing 321 cell polygons\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.points)\u001b[0m Writing 20000 transcripts\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.points)\u001b[0m > Level 0: 20000 transcripts\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.points)\u001b[0m > Level 1: 5000 transcripts\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.images)\u001b[0m Writing multiscale image with procedure=semi-lazy (load in memory when possible)\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.images)\u001b[0m (Loading image of shape (4, 2048, 2048)) in memory\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.images)\u001b[0m > Image of shape (4, 2048, 2048)\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.images)\u001b[0m > Image of shape (4, 1024, 1024)\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.images)\u001b[0m > Image of shape (4, 512, 512)\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.images)\u001b[0m > Image of shape (4, 256, 256)\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.images)\u001b[0m > Image of shape (4, 128, 128)\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.images)\u001b[0m > Image of shape (4, 64, 64)\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.converter)\u001b[0m Saved files in the following directory: tuto.explorer\n", + "\u001b[36;20m[INFO] (sopa.io.explorer.converter)\u001b[0m You can open the experiment with 'open tuto.explorer/experiment.xenium'\n" + ] + } + ], + "source": [ + "sopa.io.explorer.write(\"tuto.explorer\", sdata, image_key, points_key=points_key, gene_column=gene_column)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you have downloaded the Xenium Explorer, you can now open the results in the explorer: `open tuto.explorer/experiment.xenium` (if using a Unix operating system), or double-click on the latter file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With `spatialdata-plot`\n", + "[`spatialdata-plot`](https://github.com/scverse/spatialdata-plot) library is a static plotting library for `SpatialData` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "import spatialdata_plot" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/quentinblampey/Library/Caches/pypoetry/virtualenvs/sopa-hDHgkEug-py3.10/lib/python3.10/site-packages/anndata/_core/anndata.py:183: ImplicitModificationWarning: Transforming to str index.\n", + " warnings.warn(\"Transforming to str index.\", ImplicitModificationWarning)\n", + "/Users/quentinblampey/Library/Caches/pypoetry/virtualenvs/sopa-hDHgkEug-py3.10/lib/python3.10/site-packages/spatialdata_plot/pl/render.py:263: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored\n", + " _cax = ax.scatter(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHrCAYAAADff6SAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5xk2VXni35PRKT3mZW2bFdVe0/7lgU5pB4xEojhDTMIcefCHV0JLtKDK+DBIMFDfT8zb95HjBh4MMOA5oIYIWEltYTUGnm1XBu1qTblfWWl92HPeX/89sq9IzLSZ1ZXV8f6fKKiMuLEOfvsvfayv7VOlCRJQo1qVKMa1ahGNXrJUerFHkCNalSjGtWoRjXaGNWUeI1qVKMa1ahGL1GqKfEa1ahGNapRjV6iVFPiNapRjWpUoxq9RKmmxGtUoxrVqEY1eolSTYnXqEY1qlGNavQSpZoSr1GNalSjGtXoJUo1JV6jGtWoRjWq0UuUakq8RjWqUY1qVKOXKNWUeI1q9DKkffv28a53vWvdv/vKV75CFEV86lOf2rKxfPCDHySKoi07X41q9HKimhKvUY1qVKMa1eglSjUlXqMa1ahGNarRS5RqSrxGNapRjWpUo5co1ZR4jWp0hdFXvvIV7rzzThobGzlw4AB//Md/vKa887Fjx/jJn/xJuru7aW5u5t577+Wzn/1s1WNLpRK/8Ru/wcDAAC0tLfzYj/0Yp0+fLjvm61//Oj/5kz/Jnj17aGhoYPfu3bzvfe9jYWFhy+61RjV6uVPmxR5AjWpUo62jxx9/nB/90R9lcHCQD33oQ5RKJX7nd36H3t7eFX83PDzM/fffz/z8PL/0S79ET08PH/vYx/ixH/sxPvWpT/H2t7+97Pjf+73fI4oiPvCBD3Dx4kU+8pGP8PrXv54nnniCpqYmAD75yU8yPz/Pu9/9bnp6evjud7/LRz/6Uc6cOcMnP/nJbZuDGtXoZUVJjWpUoyuG3vrWtybNzc3J2bNnFz87fPhwkslkknC77927N/nZn/3Zxb9/+Zd/OQGSr3/964ufzczMJFdddVWyb9++pFQqJUmSJF/+8pcTINm5c2cyPT29eOxf//VfJ0Dy+7//+4ufzc/PLxnfgw8+mERRlJw8eXLxs9/+7d9OaqKoRjXaGNXC6TWq0RVCpVKJhx9+mLe97W0MDQ0tfn7w4EHe/OY3r/jbhx56iLvvvptXvvKVi5+1trbyC7/wC5w4cYJDhw6VHf/Od76Ttra2xb/f8Y53MDg4yEMPPbT4mXnkAHNzc4yOjnL//feTJAmPP/74hu+zRjWqkaeaEq9Rja4QunjxIgsLCxw8eHDJd9U+C+nkyZNce+21Sz6//vrrF78P6eqrry77O4oiDh48yIkTJxY/O3XqFO9617vo7u6mtbWV3t5eXvOa1wAwNTW1pnuqUY1qtDLVcuI1qlGNtpxKpRJveMMbGB8f5wMf+ADXXXcdLS0tnD17lne9613EcfxiD7FGNboiqKbEa1SjK4T6+vpobGzkyJEjS76r9llIe/fu5fnnn1/y+XPPPbf4fUiHDx8u+ztJEo4cOcItt9wCwFNPPcULL7zAxz72Md75zncuHvfFL35xbTdToxrVaE1UC6fXqEZXCKXTaV7/+tfz93//95w7d27x8yNHjvC5z31uxd++5S1v4bvf/S6PPPLI4mdzc3P8yZ/8Cfv27eOGG24oO/6///f/zszMzOLfn/rUpzh//vxi7j2dTgNS7kZJkvD7v//7G7/BGtWoRkuo5onXqEZXEH3wgx/kC1/4Aq94xSt497vfTalU4g/+4A+46aabeOKJJ5b93a/92q/xV3/1V7z5zW/ml37pl+ju7uZjH/sYx48f52/+5m9Ipcrt/e7ubl75ylfycz/3cwwPD/ORj3yEgwcP8vM///MAXHfddRw4cIBf+ZVf4ezZs7S3t/M3f/M3TExMbOft16hGLzuqKfEa1egKojvuuIPPfe5z/Mqv/Aq/9Vu/xe7du/md3/kdnn322cXQeDXq7+/nW9/6Fh/4wAf46Ec/Sjab5ZZbbuHTn/40DzzwwJLjf+M3foMnn3ySBx98kJmZGV73utfxh3/4hzQ3NwNQV1fHpz/9aX7pl36JBx98kMbGRt7+9rfz3ve+l1tvvXXb7r9GNXq5UZSE8a4a1ahGVyS97W1v45lnnlmSy65RjWr00qZaTrxGNbrCqLKt6eHDh3nooYd47Wtf++IMqEY1qtG2Uc0Tr1GNrjAaHBzkXe96F/v37+fkyZP80R/9Eblcjscff3xJfXeNalSjlzbVcuI1qtEVRj/6oz/KX/3VX3HhwgUaGhq47777+PCHP1xT4DWq0RVIl7Un/p//83/mP/yH/8CFCxe49dZb+ehHP8rdd9/9Yg+rRjWqUY1qVKPLgi7bnPgnPvEJ3v/+9/Pbv/3bPPbYY9x666286U1v4uLFiy/20GpUoxrVqEY1uizosvXE77nnHu666y7+4A/+AIA4jtm9eze/+Iu/yK/92q+9yKOrUY1qVKMa1ejFp8syJ57P53n00Uf59V//9cXPUqkUr3/968s6SoWUy+XI5XKLf8dxzPj4OD09PURRtO1jrlGNalSjGtVorZQkCTMzMwwNDS1pprQeuiyV+OjoKKVSif7+/rLP+/v7l21Y8eCDD/KhD33oUgyvRjWqUY1qVKMtodOnT7Nr164N//6yVOIboV//9V/n/e9//+LfU1NT7Nmz50Uc0TZQCmgA2oBeYBCYADqBdwBPuc93A2PAOeCUew0DU8ACUFzpIhmg0V2kG+gD0kAzUAfMAlcBeeARd8I0MAnMuc8v0ydUpdBQ0+g2M4AFaWKghOam6P6/xkRThGamyb3agZ1AF5rFOnf6o8AZtFwTaDnm0YyVNnVjVQZk92rvEbqfxF2s5Aa10lJlgBagB9gHDKElbgH+EZhGN/hm4FvuuDp08xPACOK7WaDAmufzpUx1QD2alj6gHxgAdgCtaEovIj6oQ9NyAk1ZAe2mWTS1s4g/cogll52+yF201V2wF605aL2GgfvQGkVIhnQCP+T+fs4NYswdv6J8uNyoDskmY9JrgeuBp4GvolnsQkJxGs+cJbQaJxCjmuy69NTW1rap31+WSnzHjh2k02mGh4fLPh8eHmZgYKDqbxoaGmhoaLgUw9sgRRXv4LflGqRbhDambdYexJcppGtzSHLcB/xPJA12IyG9gKRBFkmKZYW3XaDZvTLIUiihzfKj7gQR2ghmHbTiNWDMZSexTanVIQHW6F71+B1QRHO44N5NcsaseCuRO0UDmoUG95NmYBfwBJKrF4Fn3WUjJOBNr8bB+5bcZxqvTerd/y1aV0TLk3Pvy/FDVDHAIuKhFiTzuoAZxGPdwM8AJ5FyOIesmVXm7kojsw3NdhpE5u4epMTPAh1o6m5AuvM82sq3oCmeQbp0xL3CTvPLKvLKbGEWuM5dII+Y7SxiwiHg37gLX4N0XeW5bN0vewot0xjdrG3eObQjTaaNAf8L8DW89V7AW7MJL9aNbzbde1kq8fr6eu644w6+9KUv8ba3vQ1QjvtLX/oS733ve1/cwa2bTLKG70ah+DZmXOU0dZQ7yhOIZ7/lvjsMfAcJ0tcgw7MDaZX6KkNYpFD6t7hXB1JBbWhTtLkfd6FNcQ8wjlSVhQnMr9xS33LjFM5bE9rXHchdbkFzkqBhmws0jva3Kb4VbiW0rWxJYnepnHvvcafsQH7CNFq2FrzNYI7/pkRICm9RNLt7rXPf9eCDJPPuXufcAMzmCi9ubFlyv5vDs0crci8B7gUuAM8A/wrxYRPSQFnWFdF4KZOxmQUvupDuNM/7WTR9zyHl/j00LT+Opm8ETesQWqpmdz6zn0zVVGXFMMKSdz9+GrgfyYM2xGTN7pgvojXvR3xg0bmX3FrZjRcRs82infZF955HM7qAVmUUhR++j272OOVMutLNm3Wz3BhePLoslTjA+9//fn72Z3+WO++8k7vvvpuPfOQjzM3N8XM/93Mv9tDWQaYYM8HL4lzGfGH8dpVdVKnITQnVIae4FfgpxJefx+tcU+DmIizhRWPQMJS+D6mc3cDH3edjwPNIC9wEvB34O2Tmp4KLXEZAwvC22pFL1IdCjh1I4ZSAI0h6TuCVVgqv4JZxk02JN6Dl2IWPYRxHIfN73M/PINGy2/3GLjOP9wk2TMZqlm7pcveTc/fei4ImKff/MTeYlBuEKYFKRV5y55hBczUOXI14LHY39zl30yfduR53E5BlTdGMK4WM1dqQ6ngUTUEzfre/GziEbOydyFMfcd+1AXuRkzzrztWJD6KtOJWm7XN4C/Fp5JG3ojW52v0NWv+L7tg51mBJVkYS1xFF3FYKmXQazWbK/X8U7cAWNNNtaBPUoVmeonxmq5EJXXuFyjyueL04c3HZKvGf+qmfYmRkhH/37/4dFy5c4LbbbuPzn//8ErDb5UmhXV6PpGiTe69z3xvjZfH+WBjeWea09kohaTCLlFMaKfIHkXa4BimsZqoHAZac2MZqHngPkvYjwKtQjP4bbqwZd8xhlAsfwGfwUsE5X+QNHho9zXjFZvbSfuQ6HwbuBL7kjutAt1JEAm6Z9EO4FObot6HpH0SC+iLScRfR6peAV6ClOoR0Yjo414ZmrNp9DiItkUZu4ALyvHa7+2pBy2juXRhVNDLNk0PLax7+KHIpG1F08kZ37CgyhgpIPpp9eplCJLaSQl6wYEgXmoZhNA0HkMl7HJnIdwFfRvbRUcR242hpwq07gaY/zzI8EqY8FtwrQTb4mBvETcEJmtHWPoXWbIZyJV5GlVHEUIlXRhLXQ9U8240YBqESn0U31Ivy4ofQzmtGcuxZvPVyESl6U+LVrhk6YXXuFQJMSvicVBjKuLRy77JV4gDvfe97X4Lhcyh3/0wpdiAR34iYwxKw02iXzeBhLMswQhjiHEPSYSeKyf0nZFw+jTbr9UiKDCOpYVHuJac2X9I0QDvSdOauzrgfXo+AInXuGAud73G/GwZOB+e8DCiMdbcghd2O9nkeeY7fQXN6K1JGM+jWm5AWzuNhAFWWxESRZeHqUcBuP/Cwu6yFS9+LZOkjaEmKBHGL5SJ1671Pw0vsROz0Nff/FuBHkGtnzkgJybAc1fkjTDXOBXOQRXZb0Z1rGM3rpPve8ATLKoYrn0xxm0d9P2K7Y2iZbkTS4Bm8nn0ExbmGkJI3tbSm+JbplCwSKXVoO55xJ7gfGXBPozWtd4McxVsIZf5DCLAIo4gpygVRJRJ0tcUOjYLQswhz22tILy658QJieNDMjSGZO4hH9b7gJsdeFgOrZoSE5lgjknFN+NWwjWGAowX3t83FpaPLWom/NKlSc/QgF6gPScI9iBkede+macPNYYwZUGht59Dms93+cbR5+9xxVyMhm0PGKMicr+oV2Ua1MHoD3m1rdMc8gXyFToTmvIigODvd9+cpD/ZdJlK70kPtQBGK16ChfhHdzkEUZrwXaddH3G+b8KCwVdxkw4qZU5sCXgd8BsnR/wWZQKfcsU8i7ohTkFQ6OVA+lat5smFMvxUZKwMoBFBAvLEfeclPAbch3plFincanz6olD8mq7N4tlxA89nofp9CVsoCHuRr8uxl4IVD+VLZbTfigyJNeKTJReAfkLc9ipaoCU2d2VZmVmdYJYgWDsBy4uNoLQy30IRf59PuWCsoMd/BdBlQbtiHkURTYGGIJute4YJX2yiVRoHVbIT/N4PAIpJrtQBDbzxxN5RBstfMqCk02xb5NJRvNSY1BW5OWKd7Gbgo464378476V6zrH3Tbh3VlPiWU8gABgzb4/5/CmmJ1wI3u2MKeCa20Ey12CblKGGr+PoS4p/rEZ9Zmc8ziKc78B5S6G0BS7VcHdrpJaSYP++OuQ3FnGOk8Y4ixW5ul72HVu1losjDXHELslPG0ByalI2RV74XzdcIPv4dxrorKNyuFkqfR3LxB8jrsgDA/0TO6heQ09+AhDZ1EGcgyThlbic2GRaimpab0sqYvgnrXwD+OjjPFFqiCWS0dOAh9QbYrWasGN+F3t4MXnpkg99Z5OKKyIVX5oGNqod9Qz3aiHbKJJrmYcRi16FpaUHTdIBybNnNwO2Ilw6xzmk0gytCazKMt8+P4o20PEt12aJcCBW4cXU7Hglah9/vs4ipzAq0k1WOtjLRYMWYWWQYdOKVsOUDwoGtRSHaMTl3vSLa6KEJFEYObGarlWUYvqcZ7V4rFOx182DFgTPIMLiAxzqF8u/SMH9Nia9EYQ46pGXXKGTWJrwSn0HS8mYk2m9CGbFxlFw8gpjFtrNZtcEFTFtUFpM2uUseRHUrj6LUzwk3nE73m7CEe4kSN4ZNI//geryV3YlUUg/wf7qTfxLFZq0AuAVtmM3HT7clk26Ru7NoqOdQer8TuBvN1XeQjWUa2QBvy4FSHYWCew4J7RG04udRoOQNyBv/Flr5KWBHCuYaYLgJio0QN+DhEhapC52cMkEbUKhnQhhGG/Bd4F+iJbsLJWQNNT6AhLvF9Fdy9+wmQx40WWlOmc1TaHBcIgW+mUzE8mesBmiyM1eCmZIlaekQYjWKdte/cH+/A9mIX8bnu1sRy11Ey/Q6vJO8xPZeiSwMVHInjtB6mZFmaxk6vGW6LEwFdrjP6pG50YY2UIIP45jFayevtvihTGxlqVebRhZHB2KsSXy4e4X04hKqLBWz8JLRWsL1ZsSk3Xit8cag+/8Q2qhPIJl30M2PbdowpF5T4i8e2R424WYvKE8HVQUlRnj4eDtSzlPIWsu5v7+BkFTfRBJ2AknWFnesXbDCSjSBaXmvFNKtjcBjyPvegXa/jX8ErxCWpH8qXTizkm90P7zJjemTaIPd6/5/M3AHyuC9gIyRMLG2duaNqG4rJRWvDVO4XgvIQ30aLUUr3jM/j2RLH8oSHEDeyypukJ06hNUYsuAgmrUvAT/sXs8AnfUw3QAzzbDQDsV2SFohaXQnHEbTXsJ3/TDbbiVFDpJbDUgOtrv7fRVKEXQieWvFyGfx6cH1yEhTAms2breHqsGtKoex/qBmaA2FgCYTAKaqLdzgBXa4Pafw4LZpVLXQgV/Wo0gSHHLHvxolqC6gJTuNlmga76WvyyO3AyN3gsoJqqrLQi/cUI8DSHEZAOx64OtuPlrx8LtwTsKTh6GwViSgBvDOjRkNO/FxfsMNhUbBWvPMlUxYeePhezWytbf/p9FqfN3d67vdfXaizTSCFPycux+LSJgTtv2boabEK8n4ONy/ISgxjHqHRldsPw4VYyNi3LvRdh0D/gmJ/L9AGqSINEef+94sBztfFW88H/wdgo4a8MZr7IYwwyplUmYw1KGN1Y5ExwtIzFzt3lMoKPwj+FZcBtmapLxQanXGDWfK7N4w9WxiYFlbaS1ke8gk61X4ou0DyLC+iLIdh9H87UEeeT3lYJ9lLh564rP4AF49WlHDzWWBnRGU0nC+Hi62wHQXZHuh2AdxF5LwBvC3CbmIT0OGYGCjkEVsooylWoA3Ah929/wgSszHSKmPU45SX8sEr0UObjNV8o29jELI1WqZiKVnNiVmUHwLy5gV1e7eDczkc6sxSZlBZw5xtzv708EZ29G2vQZFaZ5GpnwH8vvOo901iS/lX9ceCA80YGbld1UjiWHDpzaUSrsa7X1rT3Mb4vTb8V6CFUuG3oLtcvPCO5EC73DH1iGz92a0Wv3I/Em7vzeTm9kIo4bem5V5ZPCAmvPIJJ9w477RfXc1mo9WXowy25oSDynkYQMktuCVdydeIczjm2WUgXgqQ3HDiPn3oDhuFklPENoIZOk2I+ZYJX5rAtxC43l8TtPAKjl3aQMjmaCvjCyVWeAg0XITvhPIuDvpTqTlDgNvce/PoQ1sXrhBktemwM3erdZYzPRunk0GqEINO4+mf8J9l0Z78BrUeWMCj0xfQAnMlcCrAYVhVGMVc/Ctl8w4MBPBTAamGmC6HWb7ILcHSrsgsXRbGsHbJ5DMsBRkmbHoKAyl23pGSN4Y9uaf0KSOA7+Htxen3PGNaPleIjnsSshVg3sZ79ha5IKXLeHKXnklPqQNbfh2NKGG2tuBGGOSclSgmC0mWeSFBJ/JGsc3CrTpPogPnNgSjQVnvsjaKplXpHXpsjC91oMs3X48JHMfiif9hBvR/+nuaB9SauNo/izXAuWRvg53N+fwRlKM0JYNqJj9bnx/XytbvZRlDjYHBqAx4yJxYznvXqB4yvUomtpCOSfWlPilp0o8RwcyxCxVHSOBn0fCfsK9JikHJSZh/LaIGPY0HkVloac0KuTcgeqAUqxZkoYemSmp0CUJhbqFaMMhhQohDuOjBiy5CXniw8Bn0ea8Bm3UTyKmNgU+w3p8hVBUGtas1b0bjix2Iwkbi1lqeN1b2SInc+7vgrtwu3s9jkdbN6H9aU0wLCG5xiWxIhfDfjXi7fKRCAopyGYg2wTZDljoguIsMiJ+GsnNEWTYm9Q3N96cnDCUHeY5m9zfRbQkFxG7nUITHCF371r3GnGfnWGDrt6lp9DGtq4LGTz6O015aqMyE7FycNOsXKvS6MNvqJ3us2NoMieQeu3Hm22avITSEviA5cjDILVdzXrmGCI9g6TFND44e+lUWCUAzRTZhLv6zcgZeRRtlMNoNW6mHL0eOiIh0LcR4X/qUZegPHIG7kGMegHJwtciA2qEF8OzFYXcdhJx0n58mU8vUg4lxCvP8mKVYtSUuJGtmaWye/HpoC60o6ZRSDaH9FuD+63t4TiBkilFqxwewj/+YBIf5zyLpOrPIwYOpalt2RW2bWV4tYRfTXNRzL0N0wBWF5wFCu7HsfkO5/EtvfIIrh0jxn0BbbKD7mKGyhxnPeo1hM20oW3Q465urXC63Zkm8Y3FzHEMb3tVCiWpVZ1YyPo08BW0P9Puohn39wjlD4tZYW9W5vNt5W1GwxRBKQXFjIBs+RKUCmjKJ1Cy3CybWxF/5RC7jOMDHiV8z/dwjS38bo6QBXsSZEd2Iscqixyrxir3eRkrcFjq06XQVt2Hv4W9eM931L1Cm3ZlLjUwUxfa/BYIvwNx4g+C72eQ+WAoP48SS0gW2a6E33YWmzNlfR6/fDG+v5BtTyvfv/SVemHCIoO8439AyvvzqF3R3Shk9Aq0U8OEWFTlXHVIBl6NrMh3otKJATQL5nn3IqY0jE7lebebSUNOMQToMLKKj7ixH0By/X7EiX+FOM5KSi7tRqopcVgKKu/EezWtyAB7COmvfqTPCvhHD5XtthgSa/Nwwl3gTiQ1hxDu9Av4eOlZxMTgIeTrYIQwjGr4kbbgFbooVhpkZv58AjnnysfzeM1xFkn+biSoGhAD9yOBdhL/yCMb7+oU2rZWQT+IptECbAW8SOihvId0uEXWvE3shzl3zzE+3x25ObEon9WHmQu0ghceJkzCFLaJL8t0LBoekV5JGuJ6KO1ALPFqhJn5nPvxPJKTrSg52opkmkUKzIWziK9F8UJDrYQHDVutcOSOnUSarSG41yWNPraLqiVm1/5L451WxBsNaNgH0RSdQObybnyFIKwlPx7hzYNmJAD6UfRpGPhbPOPkkOf4euSJzlINR74YmMOH+EODrxoWBJYGzFZPA2wH2SgKSFh8D93nMTTaY0gInsSjQVcojS3LNd+P8lgWYhoAPobmbjeyYHehUtxVUovbQmEO7pz7ex8+9N+EajdPIs77MpoPazQTcYk20yLVlLhRmA5LkFQYQsbmwyjCPIIiPdPIkzNX0tJiuQSKMSRhDc4kWvCd7iJnkDV3DKmw40hpjuFzy6so8ajiFWJROpAks9TW9fj8qCGvRtxnJM7oKEA85X5QQgKsAVmXgyhctgttuu8hEWmumyVtbWBJxat82KGdscOd1RzhaQSV+QEe0dtLuXeydpMhIJOiFo62RGrezcMYXmZVJlJDTEHFfYQ5fXOGw8tV4pdjIIlQPXgTYoObEEt8A60fbgKakYyYdiewGHKIudmB1rsBLYlFGRbQ0s3jlXuCUnhmmIzh3T27120hU1mVAnl9cZUQ49yG+KIV3UYGiX6DX16D1KqBC63y2Ozs5cdoKzqONnQv2r/1+BiS+fczyGw4g0eRLs2FVu6CEMYQVflF5axcWp8uNDmyqIzqScS9bUiADAA/iQBeM3ggbGUxnG0c8EbBqDtfL94JOIa8pH73Po88dAO7hfxxKbzwEFVhgrMVbVSzev9/SAFciwySPWjTduD7DV+61aspcViaCmpCRtgLSDD+MPBRd+xTqOOX6bR2Kjp7hZZcHWL8w0iCGtJ1BiE8Z1Axr+Wc5lgxOVlpxtu7AeE7kNQackM448a7H+29nUiBm4tSREZHqQhFk/YtSOTtw+e7TTNY/HcKn8NPuUkLxU8pePfMXM2bKrmzgceTWRuI61HKuhuJ0inWjDUrpzCOam5OFt8OKxUcFyruUCu7z02Uh35bC54FCE5veF07dTGcGtPwBuw1LM+ku8A+pI2+6P5/Co8FsgDJkJvEo0jmfQ7/6OQY2YbzePlq1oRVV6wfvr0OqvQ3q9UflILX8oMIbVUrVOpxt2Uwhkl3S13otkv4CkxLx1jV8NIrhVcwc7EDLcTVKPT7feDTSJl9Di2AmXIJa83bVqqjarbTi5fVCGXXHGK2KTQXt7vPbsQjy+9FwuQsPi9TuTtDpbiAUnDfQuC4x9Dq7MM/qeXTaB6PL3O+7aYwlN7gxn0a3eMc3mkxnFOjG++guxfzFGqe+KWnUJHvxK/HZ1D0rAsJy1vd8V34gtCwBG1RiVsi1pRz2v0ohW9TuoCs03l8eGmZ5GSl+xe6gBaf7kaCvd6d6rXIWZh192N7YTceObbgQuoloJjCo/Ty+I5yz+NVUwFfAmLWQyicq+HKYyKSJcCkdiQezgJvcmd4yg3ZdIzNxCweGLThAFvo3pgyN1S/vZtRBOUKrwRRCdKxf1irifkON6W2nS1yP4F/UFgpdjOURzxzGsmIncA/R7Volhu/FfjXwH9DLHMSH81txXfE3eeOfwz/WCyzG9spr/oJ4RahztwWWWMrXYkhN6vJrJg8Phe1cnlieMY0uu0ONBU9aFq+hm73R9GW/S4KhjdHUBe5LRpGVao6S40oxNGD+hmngE/gvfC9KD32PFJoKbRAhXXNkNHlBUOopsR7kcdyPVq3IQQmeQzd/xy+GM6y+nFwPlPiC2jF6tGqfBSvKPfggRs3o3kusqH04qYpnAMrFLTkmCHVY+QttSOlMI5HOF/q8b5clHi11Eq1GBdI+j6DjMyLiMc+gQzxAgK23eaOSeERV0tOboxQwCcxExR6ChOYFs8MISwVJwy1X1j6ZhBd6y5mud3jSM68gPbcWcRnFrW6iK9nmQAyscsR5yAJN7FpNhuvjS0VXNgAKFbUbLW0Vh5iir+0qMhT7uzPIT/nDMK8X4+CbaaDBt1wP4sPbIVZhA1tE5MrofNlt9KIt7s68c83cOXAUR4yRWiMfd8pW+E9aFtH7vAJJNoM7bAYWk/cFC+4cZx312tG63adm5yn3QQ8h29nbxGUEaTNjiA+OI/HYCVocLOUP0/cbKtwGbeFKk21VuS9tlIepjQw0wyrd7PxZ07hoQsN+L49/wyx9xNoSz6LVy3pOrfkLrISJfgikhgBUhPcH8Zph9DkPe+ucDcSCgeQqbkDD9aKKa/ffKmSTYqVcxgyZRrNQzua0XE0J0+wtJdrpQyz8y2435rZZVZlB+KTq/GPDZ1ETL7G9GJIUcX7hiLx5oxk3d9FvKybwyPxz7i/7RXWyF86uvKVuHlXJgGgPGxqAt3WzUA/R5FgPINAmePutyNIeBbdZ+dZBlAeMnIab1VWDiIMKVZxDarlvM0N7MP3a3wO6VAzoA+5cT2H9kwbchcH0L5ow9dApYAonBATthZrDuP4De6HnW6COvEdQ1rR5qzHWwh2r2bYiCxQP4BE4QX8c5Tn3O19DQnmPfj2lFtCdivmUrfjS4ILbqgd+NqgSYimIDXnYBNFSLl9eiOajX6Uwv4Kvp1Au7uU+ZtFYCGGYkG5cSaQRz7prmWlYFYoUHBjPBP8f5eboC6E17iIPPezbtwtqB/Ps3jEe4r1pqA3QSGGvBP/SNsuxMij7vMIjyG3vMVSPgkp3B173BlGEO8cRQZgGhmE+4G7UnA2DSNplfYVXLosqQpaiF2Vhq3UPDIrb0IT/i73+QtIAIy5+7IUlEWw4NKgqLeLTBCGSNAsYtJmtLaWJDLPG7yVWKlww/D0NOKPCSQj9uB7Cz+LckZ2XcMlrDGcbnu6En5Ryfdr0q+hMRMqdHNsqkUdjZkuZehfdOUrcatbskieOZW2eUPDyUBPrfgQ6xDqenXWHXcb4rN6ZIha/UhVJLP9ESZkK7krfFUhS8KGOe8Y7acbkDIexfcnuBWFWT+GonwtbozXuHF/GUUVrqLKwz1sjGZcVCbhG/FlHy1IVFpYKYc0irmxTZTjymMSYqwZRqe7nQT/8LVBpK9OoBaUA3ilbtHvTQN+KhV4lxtAP3Ku2tx3RfzzDYblxaWBuhjyee9b1uMTJ+cQTOengG/js8DmdNcnkC9CKQvJNL4TWzeK0ra6E6TR2s24MVucvtMdb7z8VTdh1yD52OUG8hC+FX7oIG5q4tZClfAzgy5aaLIeWR59+CdtV8OQV5e2JlabUOZgAQ8rexQFn465s44DZzKQboKxRH3qGYTEKjUsRTsPZBPIO+sqnnfj3oc2/y58TenjeDTk9W4kw/jEj2mRbZ/oVWi50ONaxlSpwMLSjhC+aZgYO265Egc7R5heNOFqqZZT7lzn3bWgvEJ+Bc0bKu9M8DK+N/GzBGG6nnmw8VcWjdq9hSdNNlGDsTG68pW4RWusM0SET7fYuuTwa1CPf/x3NxKm1wL3Af+I+LAbgbT7kHJfNRUSehfrWOJQ4YSVLyX888INiWzu3jyKMd6JNxRbkb6tQ7LTQFLLMnS44W28loxvdX83u5MOue++5y54Fl8fZRZsloQCaoRRWpyqDjyCuN3d0qC7hR539mP4Zmqb6lxlVImQspqkPchq6ER8MYs0hRXzxhAVIJOHlhwMFmUvfcvNwPfw5XDz6LkjZ4D/iIcB1iXy4CPLViTBtcbxbXOH8V1BLFJp0emr3H28gNzPeXc/be7zBff7myjXiZdEp4QWZzta2d3IvAEPs78WrWoLHkXgchZB/UEYGTWRalM3hV++YygTgfvbqucO10HSBpELCsR7pcQTm/MpHGIygdnYfTEP8QxaeKs+H8a3jjGR2Yl/4p8xVGUo9VKGVcNEU+iSwlJXdDWGCBVYGA4PwXux+8w+stxEtVOHxoCBO+oRX4TpurngemHJ2gq3HAKSDWdm8AuT9YZVtGqMcF+sSKGDFebgln4fkSxbg7Fpx2MVuvKV+ADSFhbXHERKzGZ7Hu1Fa520gH9eSQm5hXkUQcshnjviPjPtYgbBmhljjRSieaysKI88r34UgXrc3eP1SBF0uXH1oPjuWbTK/4g6pr4agai+i+TrmsdtNWttKC94APmbjSiofAMeftaPVNsM/qHFCyQUKBKRI1l0cvegJZlyt3oeKccCvoDnIn6JNl28UalnevHVf3vQfH4fyeg7kfzuh2geolmF1LtyUk9dRamjaaSOjrtx/3+QH3cv8uPaEYucxWUtwD+cyRwUEzwJ5c/2Dh2iBaSxBpAyn3MXvhrFku9Hin4WLdNZvNDa9iifbSi7iTrEhANoFsxyvAHVXZ9F8LMBxCMTwBQRGSIKRESLGArw/q3p31F3qzfj+eM04tD9dXC2Ds6noXMX1F8H0Q4otkKcQntoCsXiz7thxy6cnrgwSTLnrmIichzvEVjrFotIFSiPWFk5AFwaRR5e28KOle5oseK1GkOECsyw/pG/XJRAKtF75I6r1Hllpw9VmWnWMFRkPwo921XmzhycRmTRteMfr2tVgXl8Zdg03huoOsbV5mIpVQYClqvBsBnfjm145Svxq5B5bliMg0jHHEOLP4xmfRKPtbAwpuUhzQhrRLLmFKHcKa+E2Goy7jA4917EKQXkBs7g62360BOrmvGgqM8jYdWCuOcRd0/tSPqFFRHLcle1xPw33N/Pux8eQlns16AuTv/kLtqMtU5MSBFTKnvilwXlelEAwYayE9lKw/hHe64T4lL9NsKIr+EJEmQxNLljzP3fgU+XdLmBOGU7kdUM7AXeDPwXvP8withjH9KrjyGneXHcoSK3aMly8sx4Dzx2phV52jnEy0+4sVokKab8uTRVUz3bQWG9XgHff/w5lMe5Bs2IbZodbmBtQBMRdaRIkyaqWpRm7xZ8Mn085M7cGEF9PbR1qK3tXCss3Agz+yHXD4VWiL+H5mg32sdNbhj5BAoxFPNururdlZ7Hd2a7iAc4XUTGiYEqJtzn4/gFy7P9YRDbm2aZhihNE++mNA2laWDateymCk/UljgNZJJyW8H0vXm6S+RKEnwYpusqr7WGOQv2cdQG9EDUD5GDX5RewKfwc/juQKF2NQN5gxTOfAM+OVBHedY2R3k/sK3Grl/5SvxqpNyGUbn2vPvMIjcGRjVsgvG6fdbsjrO9OYLv7mXl09tVVRAiqDPIkjyFHkz8FJKFne5+epHb+gxe+XSg8qWjyLv8Il6unsQrKHNvVxyIaZt5pIK70CS+w312Eu2sw+hJG70o7+Dr72zvhNkLC35YNNn07FGkuKcoD5RU4hPXPeVhCC6N5vG8u5W7kUK8gIS8HX8YSg0qp4/rVIk3m/hHIfww8HbgvyPd2oxv2jmJjJFxKuRZOAFFlkY/w5szbTWHFPg4WoLb8DH8q5CuHEU65RzSKyE26JJQhJRIH5rgU0jhnUMrbebbze74BeRDQ4Y0dUTUEy0KxTDYWkS8YPUeMeK8Rpzfm1Hu+3wTzPRC4QBMDcH441DKuct2uIOtUiiMv8/FzlIMle8EvkSuHx+RMnF8Nb6L0rT7rpMA+s4G2hOtkcJ8WxPa3B3u+q34vtDmjk651ww+P70O6y6V+Kyaha1Na4HPd1jYetnQdeXOXScQMLjtVBOkOoFeyOyD1E4XdWmG4jDEExDthrgNojN4UOMmU02hW9OETLkWd8ouvNpYoLwGI0wYbZW6uPKV+H7kCj2L5MgJPP8O4XWS8XXIeBbqDPEcxgTmdoVgie0kY9ws8CGkaBK0X1+FQsF/iJodZZAGuRnJ0nkk+EfQ3j5H+UZbkaPsiyw+FvUcmtj73KBMa+xGXvgFd8EhpI49xcG7CecFJAKtMr2VpbjPCG/hhnj+NQTdlpIZRzl8dKUVJbCHkWDfgYyiHSh6c7I8O9iTgr5Y026O+48jhd3hxjThZsG8yCU421CAVLuJ0P00y8dwDycQ33YiiTEcTMYJtNYTvEgPN0kQnxxBvGLVC7NoI5bQzM1gz2SOWKCBmCaSxaK0ZrxOMN1r9kyMr3CoQ3XgqQjiNBQaINsK2S5Y6JHxtTh/nci5fgYVlN+AgkgWMErFgXNoMdkCYoQ+FHvZiSILDUiJfx9ZCF3ud+YNrFA2uiVk6YsGtAd3IPOxz42lyR1n5V0X0d60nbcOdzTMPbegBWrH2wopNAUmNw1C4NLma5Mxa6coBak6SDe7FNUctA5B/X6I+mBuDua/C9EQpNohaYB4EOI5lynZ5L4ITacO5Ohn8B3Ub8CnfibwiZkpypMUW0FXvhLfiVBHp1ANbgrpm72I57/vjrPQSwq/uMaQ1TAi4Wu7hGMYySogTdfvXpN4A2MARfzejvboOSQ/Dru/T+CrQc4j6RdGH1Y1Cw2234RYphdlgC2+exhfA3onYt2/xYMHlu4WE41WeJfG6yjDgNq0W5DQsml5yhX8usBuYai6Ee8u21wW8Z3QHkcebh2LBl8hVsv54UQf7URK/ChiL7OL9iFdMeteBdaAfVzu89BhSiFePYtPxofF6Gb2h6b/qkZmVPEKB7TG8ObisSU0mRPojpso92Zvd4MbAMaI6COhgXomaaFIJzE7SOhB+nbSHb0Xb7OM4TuwGbQgivRK0lCqg2IDLDwN8RP4suQJN0eWMj6DQA1W9rtYwRK7k9mkpfHPFMigzXY90mIngpHc7kb8Ar4X80qrHlW8Q/m8r0ShF26o10E3U7sQY3/HjdlAMy2U13WHm3+F64VuZ4s7dS++ZZ7J1SeRMdmL7wFVyb9bQRGkUpCpg4YmqO+XN546BIWnoHEXzH9evNB+B8w/B0knpPdAYRTiMUhM1kcrX6oaWSS/Hg+ubMK3/d2Ln6IpNC1mDlZmG7aCrnwlPoNCpn3IKbgFOZCd+MfAGvrXYnehol5un60q16pxxwa42BR4Fq/N3gR8CunIEjJSLBV2E76/xjDSJGPuXBn3mcV01gxqs/uxXTmLhMIjeIx5B4Kk/Y0b9CT+aURL3f0Q5mKwmQweDmS32kx5ds98ChuFVayuWZHb2lpmADSPA8gGsXq3UeBtqHYprYvF81DIw0JJTyGzrG8rEtlP4eWXZV1GKX+29IZlmTlP5uUYsMCUD3gLpzIJt+zEhPmaFNUT82FyfqUZDq0j+/8Q4pFONMGNSNH0YPV1KS6SJqGZNO3k6KfITmKGSBaf/We3MI5s0jr8fJoxF/JTAiQRxPVoEX6Af+BNCe3/t6EHzxzB53GqkinKenfmRrThbkYtZt7hRngV8H8jkKeBLZbTFCEcqlqCKPQOluOWylB6h5vjPfhH1n0O7ZZeFDkzY8RMyzW6o8YaVubaj4JuWTzI/DoUsWp3v2nHW91bXCWRiiAdQWMaWuuhawe0Xw3P/71aGzeXoLERmndD11UwfBqyY7qPumZFakphLn+dVImN7XO3dxZNjyVXnkWsNoiCwRYvMfFrKaHN0pWvxD+BvPAMMozPIUP1PHKXpt1xw1V+u26mM6FYWWxQaY6u8aShFz6POCCFUoivR9xRQpriOOKcF9z7UeR5GEKzEpy6KpitciBWLjaDVNdFJBiaEKued8d142Nup1kJIm0KPMbvJ0u5Weq+G18hcg0C1bfgn+ocij9YZVPY1Ft4dQZFHW92F74LmdHH3bBPuItmgGOQzKjGO1uE+kgda0/hq+L7KA9gJvgOuPNsMjVtN2j4BVuOSr1baeovy26hEjAlZchms2RDNRmW/KwUNrB1ziPGtHKys8AbEJ+YB5smoo0GirSyQCdZBijRSIkjbhQWlalHgWvDIdqcLlRclRiSEqoWuwEP3rwF7YlbkAL/KFr7Z9xJDQdTNl+hkdOO+P01CP9xAXUEOIC4II9/wGgz5d0OQ1mwiAoLXrg7sMYBYZ5uJSvb1s9yLDvcWJ5FLWOvdWO5Hin4rFuLEbc2ZmSsQKFT40r16McvyFNIrg6itN4YinAcxSeEs6zTYVh5OCm0/5ojaM1D5gLsugp2vAUyHfCdT0FXEzSkIP0UdDbBbARzxyFqhHQKPVFwg9c3jmhEcqqH8rYD7WiWO9Ast+ELEVuRaxM6LJulK1+Jv4D6S2TR3rsaWeZ9aB9ewCvK0NlY9wrb5rSXCUM72Zqlq6dKJT6BNo/pT9CmOYBahZ1y95NDnDKLlwmhM7WeCGnZ+E3zjeLbJw4itq1HYfUxpMQvUF4ctvoONmGdweeVY2TgT7gz7HdnvYryNiFrhiWYs2j2yAhyGHvRPH0JuXxXuYHMo7m8CMm0AFJ5Fwezku4ZN5YcPk0QYh/N8t6SiKKdxMIXG7IVTQwZQslgOc34BKdNkoFGDDCykucW8smU+/0uPODqsPvOQCZjpJikjlGamKGDHL2U+J4b4Tngvchw249/rssc4ocJNPcRkCSKfid2+VnkhGbROvahaPcUsie68I/Ke8odsyS6HN7jBXz+wtBwe9GeNrc06z7vxTctCec8zGGHKHID2JgMyeLr5qH63omC41vcDbW48Rxys3QSPfq4xY39ort5yx+ERsYKFCLSLfWeRczf4S45iwIUO5BImMG3dp4OLrVJWpzBBNpiaM1BMgrtF+EVr4C/+Evt0/ZWKE3ImBu6CbKNMFIPM5OwMAmlGEob3Iw2FZbIaEe3P4hvC/RKZM6l0JS8DgX18njut122WbrylfgAmsUjSAK8EXnnBo5Ns/wDeNZE4WayIoNGyuOcloMyNNk6AC8x/vkBFn+J8GnFOsQtwgfpc5MJJtBCwbQhxg2tiTl8XNKK7M3zOIvfZpP4zOXqeEzzKSxzmsH3zXoFghHNozL3k3jda176mmfU9Ewe/3yDItIvO9wJ5/DLeQEJojEdn+SgVFJFUhiVN78L/JJV5uy3InS2eA+2JJWCcU3ra8mLJiSCupFB1oEEvtUwGixn3L1P463C5ZS4zYq9n0biLcY/pWUcWCBFjhTTpJmmgXlaKTBDkX8G/Cek+j+DzMWv4RH/nVhRWpDGDll0wQ11BCnvDGKabtSIP48q3faiOOegG1pZ1iec5CLea34etcobcyf/V0hpvoCUtyG+hinneZtzg252uFcbHsAwiG9POkm155QvpcidYwF54D+MTJ6/QMz7XTcR1+C1azNLIwTLkG1nA600IVm6203FIff9IWT4NgB34FnJcmEbzD9XG046gYYY2orQmIXORnjo7+ETfw0zc9DaAu/813DsLMxkYf4sTJyA3luBSShmoVhELfM3qMjNDLbI4a2o+OcEEh9fQtPxiHu3wogJtsyeWaQrX4lbTfgsioT9HZrRESS4R5HwXpuuqUKhdW01o23u/2GJxzy+40BljGkFqvTGY7wRbQnCKbyit1IkM0os/LolLmAxGFQRHx4w780E90LwMsm4vAoLA7s2g9e4XzXj8Ycp4H8H/isey2VZ+jD7uOqthoaR3UqCB9qnkFAyZzTGO0ZFeXyl4DQvJvZx4xGjBnxr1CF8o57TSMncjfj1OXxNb+UdVbt45Tpn8Z2TwD/QXkZtRJYUOdLkyVBiH9K3+5BKOooH4j+KbHDjlTCTAE4gW5phCunRNJKiCdJn40iZz+H3/DjLdF20Ey4gBX01Xjs9i0JfU3hs8l34iJTtb7O0LM5kAVgDYFhwdQjls836sD0VhlYqZYV9Z+sTobX7TwiVWURr2ISUu+2Oc6wbNW8orkk3T7egXk8X3PA7gf8VD357Bj//4SKtaYNWp0V3KVHFQWkBDrTA5BTMzMq4rk9Bfzt86yF4/DlobobXvRlOXIQTn4amfkjPo66Jmwzvh4iReRTgTZCxeQ/imhFkx1hgNEWKCWIXSt/EZAR05StxsyKH0WYdR0zWixfUzstaf8wzVOBteEyiifNrgwtaGHqEpZtzFR/NvjZ9aGlKC1OBj9aH7t+aY8xrJVNbYdh0Fr9T7fP119+F2JlBxPTNaOYeQsGGFuA/u+MtJjDqzr4usKkN0/RQES2hxWdjfAbAEldhNiQpD2zY3YVKHJZXcy8uVcJy+tEoZ9ANTiBl8iRS6Jbpt+y+hdRXkoBhTirGP7nMNqJPLyUUKVFgkpgi0gn/iH8ezDx6nssZpIOn0I6aocr8VkbzDYhgzJFH3nc/Ph5vQQZT6Iv7PwzZGJxyGHHl7cjzfhxfRLgHKfjjlD+8w0ZokQ+zFkvIEGhGHH+v+/0ZfEleuJcq8QhhlCCLVEcLilm0ufM2uVm8Hfgf+GcctLJ6aqSCbIvXIbvveiR/FtAmvAHZe/8Hsm2+4b6vDEGtaUNURglCZZcQJQmlUkKpAPNTMJpApgTXdMEP7YWrhuA/fx1yc5Cdg/ZJaCzA9DTUN0FqDqKCihA2sj9DzjiBVu0i/tEGO9Ds70Ir24FWWjjUOiBGjVojlqZd1k9XvhI/hvZUHzKQr0XM+Dy+zc4EGwynh2HJDrSRdiP/oR5vNTTg47SNKH9lCLNVE5ii8DDjIMtVQblRvq3uX2h4FClPzIZqbe2DqIT8GFavG8mFMbyq+Yo7/vVo1o8HV1hXiCqM/JqsrPQabD5XmNPLU1EvR+bLhEp8B5rda5EK/WHgAeD/izepLuABjYZqXm22Qz4JGRZCEyghJke8iOjfg5bBSnZucFf8LTeik+4MBucq8yfDqFUJn+FpcT/qQVvQHGXzxi3dX2Zvhjw+j8zISTcPRxAH3oI01rg79rg7rtIqCA0ny5lbjPl+PLr2AIrvW+0WbvDVQuohA4/hY0LdeNTIhPv/c0gAnkEwchvfGgRe5RJGiCVmEetc5U55DLHRuJumPW7YR1iH029yxCRBKOAg9H07opgkjhmeg6469W0oZmFmBP7mBFycgro0/MuboWca7uiG4ymYnIMkRJmuc/OG02HVnIdQBuEGBAt4Fq2u4jYpZkmznwzfokieejI0ubiWGbiboytfiRuOYx5t4jN4982VDi1GfddVcBwGgZuRYh7A90U1tJl5NlbcbRvNIE/r4CZT4CYXKuSotTCOEn94+L51VDmQat9v7KoJcqJ2oWX7mvvsXjS7TyGRN4ZCVgYW2VDAIXSnw4hkte9fOpp6FbJsnqV/OpE4mkYi6W+QSPo14AtINP05ns/DQPZqfFtt8rxXJRXuzcBppAvuQbtnJ/BpN9LfQkvU794nKEf8l0XALepskfAS/nm3lhUwB7cSeL9k/ObpmkI/hn9CX7M7zlIRo5T3YraolWVPi2i+b3THP4EyqZZqs4iH5cMitEZTLI0zhRZLhG8EESHtOuxubicePLcXXzBvs7eGmLJF+AxrMOrm8hSKzNvCzKEwygCyHUJbZtXLhPeWxnffCasliiQUiMlTTAoUSzniFPxIRkC3qRg+0A4/fVGX64hhbBjuSMPULFxcgNF5SHKogmGDUUrjihjxZjPeD4iRtJ8CThKRImKKNAvUU6CVeZrJ0kGRiGTRXdkcXflKfBxfPZNF/DCLx2aFkd91LWqI8G1CXorBYJuA1yKVcxQp+DeigOB30Q5oxsfDi6yLqigVs/UrwcpxxfvW0tZot1CPFvDPL9iFfzzGSTTDN7vvDFnQj++Ds+GRhLdRKSevKKr0dMbwj56JEb+mgIfxDeP/GP9s3hIbg+UkVf8fqiHzJ1NIiU8jJ64JBc1y+KfYV2bAluiH0MZM8N2EwoBRZdSq6t4Pw17gWyZGyOuuc/+vdyOyegQDp4SJFkORd7qRWzjb/p9FRn8KRfN63flPUd5FPiQzLGxthvHNaZvQ7jHZ9A13Py2UPyhiFaFne8OUuGEN7P8WYLjFHXcCibwLePDo0jYRFRTypCnwbny1hPgzIUfCPDGz5JknoUgSlzg1pztuT8H/PKuZO9AEF2K4vgCj5+HRSRiPIRdDsQTxJtKMxhVWZzGDEk87UBHlPOKIRhpJaGWKek4Tk6OFeTqZJ0dCG+qE8PTGB+LoylfiFioLZc8ym3g5n7I6mUQwr2YWqZW/R/Wj/xGFASwInEG5qUN41bM52Kaxvv26ifLstN2i2dthGvhyolCYG37MQG7vAf4bytAWkFi6D22SUcqV/yZxKn4wVzzZjLv64vRboGS1i834uktrqjCMQljrNDbXOBJzmFvxemAGrwrbUQo2QpHwEXfckjR25YntFeGdVIKD1xRlCRW5cWkWjwUBD5goBC8blYWDI7RDDTPTjbSfneeE+/x1CF0+hwyDlRDk4dhm8Wtq167HP5sW97kZG6tq1nIynIjZfBfdZzsRJm8c3zDhWTxUwKL2qypxS0u2IeOxx50wxAfMkTBJkXFyDh6WIcuJOCFFQnsC/2VSZ9xZD29tgNEcnFqAbF4KPEtEMVY+utycXLtktN2TDX5h4LYJdz+TpKmjjhY6OEcTk8yTp4WY3cQUScjgnyu8ObrylbgxUKWL6t7tSXoplm6XSk92KZkaTeELjW9AT/AaQfZZFm9ZPoUyJUfw6nbdIYDFK1scoB5fcWrAdROOZuOvqwzrRSATj7YRhvGtVnfig4DP4nsVn8dDiLasDvuKJhNUMaRKkNoF6V5Iz0HuISidhdQQxM7ki14BXIDkOD51srUcZIZmDu2GcXeFNryP2YRUzxy+itIKB1bdPVtitYaufZjfX0s9QjDni+amZfu/h0yUJxG334BMmV40E8vG+QMyb9yukUdOhXnkBNfNUw5MXIfcMW98zv3f/I9zyLHfgTakZQlL+La/y1UkAl6SGazdek8Moahmu/uuAMyQcJESzeRIUU9MAxPMkqOXAhOJYhhHgOY8fK2kpjAXEkiSFMUkRTZJUSRFvATHsz4wkc2c9YbwtToRGVLMU089bYzRwwwdlGgk4j5KpEgW87mV1QYboytficOyvGrq1zJWxpfgt4TBzyqxoeVHxe7XNyKVU4c4eL/7/B2ox+NeFE6fppxp1kfVAvkd+MK2Ojcyw45PsbSw7XJSduFcGw444z6fRyJvAG3nU+i+juMfs7ImY79GjpwCjxagbgwaJ6BhBKbOwcIZaNilxz8lKag7oj6WBZfkiPKQhAHsrVPktvamhubwAtIMUovoVqqiS7Pmla49LDX5q81JyN0Gbn0Mmak73ee3oI5U/WiHfgZpRYtHrLUaILxOZeixEqG5Trljp7b/N+A982b8kz1scdbsNYTRTAMq7UZFhikUe+lFMfpeEvYQk6FAkXlypFxEYYGYTkp0ouLI06iWfIqIiSTFJGlmqSNHHTF1JGU9tiujKGs3cMwAtfc5ItIujjhHJzE9ZGkhxxQJZ92knES6Ir/seddDLw8lXoVMeYftWRoofxZsyI85oBBBKYIkgsUNG+cgGUFqZgb4B1R+Mo73wL+D1OsYvumLCUMLfq+dwuBTB/6hW70oENWAV4CjqBCmKbgv21OXk8KzrWQZxwTfJrwNP/Z2FMmbQsp+mjU+TbVGQIIeJ1mE1AxkYujshI5mWBiFuBEGe6HllTB1CqIdsLAAs71QKEI8BqW1dd9b56gWdUQYsE7w7RDMbykGrxcn8rKRnROaKVNoN55A2f4R9/0CShRdQGk4i0mtNc5kkRJT2JUh+ITlDY113kao0M3Jn8dvUvN6qns+FRRWS1jlzhBS5N9Gu/zb7pgBYKe7xAxZJkmYocgCCxSYJKLBqecYyCcR86SYp44FGsjRRJFmYv/IOrz6DfEM60M5222qViciWtQszSR0UqSOhKPuyDcgqdyJJPPm6WWpxMN2Fy34HktTaPn63d8LuPYsEcykYCEF+TSUUpBYi6hCAQpzkJoARqA0gt9484gZdyLL8muIQUvIVgwBM2tjmNALNxNhCA+ReQW+aeNeFLDrRrafKX5jz60J5mwNVXrjZkRZPXCY98/hW8mELXNqSnwVioB0DPVFaExBUx6GRiGagRs6oXE33HDAPbCrDoZf0OPAxiOYGYOFGXni8dbPdmVA01LYoSoKU1tLVVE175iqR15ashEb4mMSKauT7vPrUBy6E//YnHF8F5X1dKGqvNfK/OEWULgIlk20xQtthDVZWCGuyKCsB1CUYhZJsIvu80Z37C4gS0wHRVpIqKdEmhwpZimVYdlLpCiQoUAjBdoo0UlMFwltyPzfgZ/jSXxlQcQakzVQdtsRJSIiZ5jEzLnx34nWH4RdP4kcvblVz70WetkpceM7y8B0IQ+2D99P7QaC9iwpGElD2vXXS+ohyUApnUBSgnxKj7UqHNUBpQyytg7je6P2I2BQI1LeYSZ3fQIxZPlWlEEawnc3PIiCdSX3/ymUIzqI0ldpytnzclJ8oSwIxZ7Zy/X4liRhK5maAl8jpYBMAo0l6CnCYBHyZ6DZxaBywIXzcMfVCq/PzkFLKyQTUJqC4jzEBdSkfHtmPFTmUD1gXU4h4r6yrrgyV/1icUkYZzIlYRn/Hvd9Oxq7lZvVsa567mWvuw0ULkQ1Hbeuy4aKvA5JMivmP4RijbuQ8htCibSjwGFi6klIExMttnnwme6IhBQxDcS0EtNDvPjM5gRfUXCtO//TaL7bKEc9r90ITMreY7TW3ajfZAd6xKSVDG64MHYJvSyVeNjqog/5yruQqm0BvuWOuy4F59NQXw9JExRboNgMpSaIM5CQQK4IFxPtvdIpyByEQhYKre6KM6jetg1Z2iP4Os31q9LQCGnGFwo1opYO5xHm8S4UrBtHMYAud28n8I0yzGJd9kKVzk3IpdsoH0rBewEPIcoHl75c0wKXLRnj1AHNCXQWYSCr5zkORtAVwWenoSUL+Xl4SzO8sADHx2E+Bws5QXyLRdXnbPOkJxXv1cmUtnWwtq5woXtYafK9GBxjHGvdUixRUI9qxQvIuO9AZmsauRNVu9BcXrTpqTSIoiXUX3Cfn0Fxt1OoIU4/whPtxnejy5UZfeVJhBQJGRIn6RP6kCGwF83rJJKK1yD35gDlT8HaCAy4kmt70BoPubEfRcZC5O7pj9d43pXpZaXETY6ZEu9ASwl6sMYTaOtc5V7taWish6QVsh0w1w0LnZJnAPS4jdWfhuEEpnMwexbmZpymr8O3Wc3gfX0rnlx/Jje8B2s0MIkCUGNISe9EBsqjyDj5Z6iVsWWCVqz0rebYLAfC3UZ5GEJ1qgVIw/carYFCxmlKoDOGVE7NpjNF+N60lHmxCCdm4GwasiXHqrELTZUgG2+0InKLKUS1NOITRQb1NKVgySWDxL1YMagQz2xAWGsIY57oDFIkOXxv5ctYgW8ZReg+rX7NUPWd+LqECfddN5qPIeS2aD0TuVTB+SrdtV7EG6PI4LPOdl9HBYxF1OToBP556yaj10NhHDGNDIVdaC2fd991oXx4Ddi2IQqVeBtiDcMLPoyW4Efd33MRDDbBbAeMDcDYIEwNQGoUknNoLRZi6C/qZOeB4SKUZiGuh3wGYgudmUDJsdzztddDJpOz+OqOTsT+zwKfQrblEffdEMu3jCg7aQjVr6P8kcPGm+bYhM7NNlHN095CMrnWgLzxNmA6hkN56cIEOT5ZBJauB9ojjy7LJKs+fvrSUIhobkFCuhMJ+04UMi3hUS2T+EdQvJj1GWFCOWzSYkrHrONKJPllQhHlETqjDePlDO2SwiPqe5B3fAStZxdC9jyNPGlbW0s1LFfvHiKfWt15RhCvvAFhEf6t+/3zyBtvQRVFIfAtLEVb6z2FtfvjyMW6CWmWZxBQ7xS1cPoGqBJG0YRsr3G0re9E7PIxFI6+OgXPR1DfDs0DUGqF9AFIdUL0ACQPId7qKkFHCeqK0FWAXBYKaSimHHOHoT1T3pvzBgzP2ooWsQcZJhPu712IZTvxDzlbsXgiVOD2sKVmd9I6d4zBhhcof1B2LSm9AoU5iXCSXoQJq0w/7kQy8VlU8dKNZGcOOUC7gR9KlJq0gFI1IX5JqRLa2YmSYgNIaHYhBEgJL0CtYcjlkIhZPgDsv9+wVtweCvmmEnpgU7q+MuuAzKCZgcUO+rNIAB11J5tFyjdGufIGd1xYmxJeOAwnmtU6iQTYM+71duBn3WffxD8d5xzy1jfaiKtSiY+564+7696JpPUsHuC8OXpZKfGQzE6zgPYIss0ewbX9jeAbCfTXw9NZODcOF6dh9DhE74fUWSj9NDLmWnAatQR1CUwXYT6CfOR4K9yUm1PeoR0fu7FasOkapH/teQQZvMLuQfK5qs4NLRszXgfwD25ucMfl8I7NBD7qtV2KPGKp9X8ZyrjqZAKgUhBU8sHyN1H5qy2hUOgWkVyxXteTwFtR6KYJ3AOXqpcKrcc52VIKUSGtKA61Cwng5xCDXosAUMfdMXvcYCt7LL+Y9Rkm7GFbUORbRaFxb52lrH0++Oic9aAPm2qsiWxdEnxZbgcqsxvB4xy60bqOIC/WlPhKnedsXo8gCdiNf1ThZ4B/gRrtzLj/Z/Hh9kLlydZxP5ZTn3f3ZJ/n0OZK8AXNm6ctD449+OCD3HXXXbS1tdHX18fb3vY2nn/++bJjXvva1xJFUdnr3/7bf1t2zKlTp3jggQdobm6mr6+PX/3VX6VYXG9+ojrZ9ikhFjmNWOZzaBl3Andk4IUYGpqgsQNoh7lJmH8eFn4PSvcBf4seZpSgePWtQFss9G+mCFEoNLYGRx3aeXNIRJkOjZAf8mrglcgHuYh/ovMUyzysLUwfGVy/CTWXuwEJeVPae/HPc+nAw+K3kpNCZ8tSnuHL+N88g8uKQqnXgCayBa1Uq/u/9dZbOnGVzYdMhK2aClkLmd6yrimzboglN8zDqM3B95A+nEaMU/kQrUrj6pJ65sasBnXcgXbsXhSy/D7wHxDCJY1CDLuQt96BbtR+f1kk97lsLdLQuLegxw6sXNtHcvqQ3GhF/LQueWD3ba7JOPKGp9Be6cM/l+I55J6cw+fKq3kQoaFszW+ywG34B9FcBD6Of+TuPyBG78B36N/omthGy+IfQW1AqvN4XNRGDYVy2nJP/Ktf/Srvec97uOuuuygWi/zGb/wGb3zjGzl06BAtLS2Lx/38z/88v/M7v7P4d3Nz8+L/S6USDzzwAAMDA3zrW9/i/PnzvPOd76Suro4Pf/jDGx5bGEyz/gQzaFrr0BKXkDh4MtFUPzwNPbug9WrY8xMw898gP4kMuXtRH5d3oOcLdOOYONm20GOlEp9Gi3gzksvWoHAX6lx0DP90wBmqYOIro5N97oRWQH8dHq7fi0CjJbR5Qwt8TY0d1kChFqun3PI3/Itd164Nl0nqMJxMayFkCtsQ0yZUrKmEwFYRcdkjIMzRsXZA9v/QFFzXVIcyLYt/GlW3++wcEs7fd8e9BTk71p/EngZmtxjydRhU2NZ1qBYm7cQ/TnXBHXcEcfpNSImPIKF/kXItUyo/NVy2unS5VLS9b3kQLIIoDZEp8A6gC5JuSNohsbJt67zUgRc04aDWNDBjGusMUcRbDVPuu3H8A8zX0pTF9loeWRsH3OdtKEIT4/ln1N3MswhwNkU5qHAjsxtuNlPo5n1YlcLsBs67lLZciX/+858v+/vP//zP6evr49FHH+XVr3714ufNzc0MDAxUPccXvvAFDh06xMMPP0x/fz+33XYbv/u7v8sHPvABPvjBD1JfX7/h8dnShjaSQR6OIpE7DlwsQVsDjBVhYhx6eiDfDi3/T8j/LvBl4F8iw/4pd4JRpNy2kUxOFpASN/zjt/FRfevYFuGrUEcRay5pYWAy0Z440omg+ePuoJPumHPIG38FwoFYgzqzDCwiFu6npOJ9NQoBx014x7UZ30rPisfn2MRjZI22MiZcibawFkLt+BuI8Q/PmEKTN0eKLGmK1BEvdhC0crrwoTbWQXBDGOuQceZR6GkKAdhsGy4goK613p5H+nASXwVk4YFQ6ZllEYZSt00ZGsMa5ze712NojntQ+KiEwq5/AfwE5QAPZ2FHkTrYXaZp6dBkCdPRRpWp6K2wn+x6qQjSzphO6iHTB8mgSmwLRWTQ1+MZtdv9XTmwNWcsTOmFEtrKBiPErGbBh8jaagsUWqz2/NRTeINgtzt3K/JarKxvkvIe85vxxsMNZ+POsrQd7uZp23PiU1OauO7u7rLP//Iv/5K/+Iu/YGBggLe+9a381m/91qI3/sgjj3DzzTfT39+/ePyb3vQm3v3ud/PMM89w++23L7lOLpcjl8st/j09Pb3kmHBazcG4iH++vdlKx0APRUlDUxMU2/Uc2pk5mPlLJJ9Poscsp5DcKCB+sKbO24idCf25GXcpE/LjyJ5MkN61iOksS6Oii2RK3KoxUvhnt1ipap276BzwIyh8MYv40bQOFScOU7+rCfYw1WnGRDea23akzQhuehw5V5PBtVad7+ViwFshtcO6hwakYFLufb+7sRhN4Diy+i46Aa22Fc0ktKLnG8272x7Ai6JZTO2v+0n0/jbtZPb/76H0SL076UF3ge+j+bV+vUU8j4SK3DZUWHix7S30zJqbQsI5QlY1+Pj/K5HVOYl/yKlb91Az2iuUq5cBQDyMN4Sp6HDaDay6VcGwxSBYpMrD+jooZKBQgmgCWm+DuWnI/wBN8w8jfTjoBjOC9qxZmuseUCV63x6LE34fvlY6cWixTuFrwwsoatOPLJF+5KmPIokZStf1lwCXUyhT7J4qAT6bp21V4nEc88u//Mu84hWv4Kabblr8/Kd/+qfZu3cvQ0NDPPnkk3zgAx/g+eef52//9m8BuHDhQpkCBxb/vnDhQtVrPfjgg3zoQx9adUzmOOTwjyEZQ/p3PxKUo8DutEpi5xKob4WxcZh8Foo/BHwWeaQjSEZn8DFuS7+YhN0GCo0Rux97fIClrsEXYFjmqGrVaYg8NSF9FJ/GSdzn/wH4E2TAnEPeuAn2BjcY85aNjG8ry9Gq8W6oAxMktfYiAdGDFHuEjIeTqION4UJCgVvV8l/0LyjPMMPWSO3QAmnEP3+7G0m5G4C/QQyzBwNbqUFjiXoKtLimkDsoLeIIE7SWV7v/j6FlSQffr6tYym7TOv2kkT1hWqEZraVhisy7tgBDS/BqcJ/PI0u4DW9lWEn2tihyW69mxDCTyNS5A5mvFrq0Hg31wJfQ7i5AqgjpRCmv+kT3ETZPCNM1lQ/8WvZettY4DINjje5OW2HZjt9z+GKRjRau2vZL4aoPU9BSB/VdcL4AMxOQOQ+t+2ChAUpZqMtAYRzNlQU6GvFPW1q1o1Q1MokWU72yY61zGSrjWTx6aBDF/tNIuY/i266Os75+9WulcMyV/LF52lYl/p73vIenn36ab3zjG2Wf/8Iv/MLi/2+++WYGBwd53etex9GjRzlw4EDladZEv/7rv8773//+xb+np6fZvXv3kuNMBFhWIodvmjLv3q+JZGheLEA8C8XDUMzDQitKp7wahZy/CvyAxfRNlFEL9dIEsABRzHZ1pyxT5GF0IXQqQtW0JvVkMqjX/W1CbBz4fTRRZ/D9T60MzRK3phjSLE3/WjlaNSkTSi0LyXUhRW0LdQGFSIbd+V/lzhGW31eVYKa8rejd8lKVrmSepaZOUj4vUG5EL8oVu3HLsRXc4F/hznMBCYZhpCHvB24mIk+GORqYo50cfRTYRcQQCb2ItUruzAfcWWx6wuj1ulREmKqLkdCdcUOfR3NsVqFNg0Ueu1HIykBMaQSGa3G310K5hWHyeMso9GpKiPnMkzoI/BvgV9EsFRHatBWZPz8AJiCdh0xB4NMOfMrGLPodeM04i1dGNtlLKDQO7f/hDqwMeq++UsatTSga04WmvhPfpdGCYifQUra5326kCt6411AGDcBgCroy0N4Mt+yHE2mY64IjX4eGFNS9FuLdUHgYsfUuN1gbeJC12BhtVRgzDD3ZrhljZXNoO7vkbb1C2DYl/t73vpfPfOYzfO1rX2PXrl0rHnvPPfcAcOTIEQ4cOMDAwADf/e53y44ZHh4GWDaP3tDQQENDQ9XvKsmWxtoLgC9YyKBQ+lwMubSexFiah9K0a4/uKgeiPCQWqWmEpkbkJU6qa2WSd481SbYvtRba+KEerfb9imOwE1izqAK+f+sOdM97EMjt75Gk6MY3Nm935zEwtpXkmhE8hQdkmrsQCsRQidchqWUI2M+4/+9G+q/OXe8MHsdk2LElln/oITfhY8N9eO21gKR4CZ90cIOMSuV1sWFkz3RJDMQRJGklDxevY3nxCdRM4DUo9DuGPUQ15hwZrqKJCTqYpZ8UuyiyH6mmH0JPpq8HriblMgqJs4uSjYfUQ+vPFHqIKDZmCYMLljKqR3nzdlQ/fjPqlBkhXjHjbdvy42EsbRYx1nl8CGnAXdTW9kZ33Ii88PospLLQUPJRnk53mtjdwzQ+XVM5J0vAJGEZhQW9DW2ZotxADM2u6hQiK6yAbtC9utC0N7qzTeF9yA6WBprXOu3mhVuAZW8EeyKI8zA6Cq+4Cm68Db49AqOtMHwS4q9Bug4pcDP6zAowBb7pcoqtIjNrTKFb6MXC9RE+KRGGXl4atOVKPEkSfvEXf5G/+7u/4ytf+QpXXXXVqr954oknABgcFCrsvvvu4/d+7/e4ePEifX19AHzxi1+kvb2dG264YUvGaUtkzF5gmeeJJ1AqQWkK77w9DYxC6iSku6A5BY2n5IUn004fppRL2krg9nIUypdqGJ1VfxwK8xfw0cgG4D6IisArIfkoypUfQB5bA4uoVdJI87RR/izUCRRuvYhXsEsEIl6SdLnz70WW1esQcPCf3Bj3AP8aFfSDomEWyi8TGqE4NKRryg2yCVkFh5EY7HGfjbFY15lacGHX2Ft6oYFiRn0+gmKkxj5xBpImZO1cjyyNM8A9wD+6ybkPeemPACkyNNFEHR2k6UGe1UnUbOgAKRaIaSWiiTRjJPSTYoKYCWKmSUiTrLsx5JI1KFTMXWj7ZJA26XXHDbnp7EXysMvd7jl3nDk1YUi9mgdbGdmwcYXvyw7ecldOOVPnPj+F1u+H8A/SeAxt1gjqF6BxQePfgU/X7HBjH0cLMIA0Wn1wuXATJ1Ce/2nG5xmMj0Aqdx7v0q/eHcnMgka0tYzdDqKWJDHwvyHWm0DT3oa4rI3y/Pha5E0lFGUQ2JFAtgDfXoChAhw5Am+7Gb5zAQa7oRRDth7yR6DhGkjugLyltp5bw0UvKYVMHgLMDFdhM1CZb3/p0JYr8fe85z18/OMf5x/+4R9oa2tbzGF3dHTQ1NTE0aNH+fjHP85b3vIWenp6ePLJJ3nf+97Hq1/9am655RYA3vjGN3LDDTfwMz/zM/z7f//vuXDhAr/5m7/Je97znjV722uhShiFLSkoDJ7E8qgTIClB1OwclFGoG4d0CerPQ0sEvWlIz0OchUJeDzabT3xwZt0e0wZp3ecPedywH93A9ZBqhfhPIXUr1Kchn4OkX7+JO4F6iBogcdEIhvAezU14GduM9olNsjkklYLcJNgkkr23IQFr6MM8Snv+Pf6ZBc1IVmapsGDCEHc70jqD7iL7UXh1D9JCk+5zV1qQKrnFjdVnPJXoVO1I2CfBfYbgv0IEpbS8ckbxj5v5Qzf4fneCUWAvddxDwveBIo0kZIkYJOIJEv4HeuBiF/AG6nmYiHZSJKR4jgWyRNSRcs9w2qDQMQUVsXQ9zGA1l9DxBAUEhvsucAvSLC1ovU+548bwWCJLRYQpQZOb9m4UbshlXclQic8FJ7CY91XumBfQ2juPPbUAmRloykF/DPsi2JNIkduyPOcOP+JOO4THuJSla0JV24Z4qMe9twU3UMQD68bdpITWU/kN2tRkgjNPIQ46677bg8y/r6MWFe3uClehOIQVbJhaWo1CU9c88QvAaBF2RoIO/Mt+eOEQNCzA5FnYfQs89iVo74Cu98H4LERzUHhO8q/sOSLbLfDWRNU8h6ji/2uyIC9L2nIl/kd/9EcAvPa1ry37/M/+7M9417veRX19PQ8//DAf+chHmJubY/fu3fzET/wEv/mbv7l4bDqd5jOf+Qzvfve7ue+++2hpaeFnf/Zny+rKt4pCWbGE6WP3nUuRpPKQqXfg3AJ0ZvR0xkwMV2WgIYa4KAU+nXhs7Iw7ndmClxUFSjyaV0Q4k4LUMCQnoK4FGiagbQaSq6HUC7kRyM5BcQpK+5GiNSljFYY9+E4le/Ay16LVywH/EndsN3IvLEefQnq3G1cDiKTNXrwjtkimHTJ493nEDfT1qK1Pp/vhzfiOAbHyJOksNOSgpQAdMXQlOrzV/WQBn+ZuxzeBSmJIikL98Ig7dw9qPNKGzwvMAW1ETFNkhgILTFCgkxKzJAwgHRkDP0MnP6DEBYoM0Ug9dXSRZpgiqcUwoOrMlxM/y0U0k8r/2LvpxQif42xDruEehNE7itZxwE3rOXyDAvNiw1K0UHmHnWxMmYfRjTAUX1UTmYLMBj+0tEgB3wzETjQrw6wuC00FPfylL1G6Zjdaom/jwcmvRXZWFmnRSbS+WVSWtui7NiOGbMY3Veh0313Ax+cNLGBjNat56YrZ9DTgPWOzJXrdsB5CSt7+3oVHCIQYvbVgysIlKeEDZg1AVxo+2A9/fwyOpCHdA4MtcP5ZaG2DzDykj0ByHBLb09P4ktPLRokbLWcZXlaDXDdtSzh9Jdq9ezdf/epXVz3P3r17eeihh7ZqWGuiqiN3jBglTg7knYxKoD8FTSVoiaG5CLtjiecmtLkuUL1j82UXrHEyJbUgBd6Ql6xr6pFD2tUC6achzkF+DubnYWxOuIFUvXADcR2+2mcWtfPsQhPxWqToRpBsDUPfoZFs0S4DG4Em9KeADyOFccC9P4Mm9yLLxA9DeFArEuid+AfPvgD8GJI4aSQuD+vYuhZomoHOrB5uY12pOt11LTGZBmYSuSs4Cy7OQmnW3Xwe1eOdBL7oJuhfAxlSHKPEV0kzSRNpmok4QkIrEaMkdJJiHPgf5JlzIfNbGCShnjYWiIk5vQgDhmqF8qHDG2LzbMmr+4NVTpBFPTDOoWzAPajJ0UngvShi8gm8JjGMQmVxsxkFIZLZeCHGI8LDPjg22DIKw0fGOFlk3aWwx1SKHNI4FamLYkNJaZJRFEk4gtzacfTYv6vcfebwTfbKgFqh79qGlHTJ3cw1+JCRgaYO4uszw9KV5fOu4RWuQltnHP/4jhxqQPo04rIhFEQIp3w9FMasulF371PuvF8bh7ZW+MEwZMYgXw87hqDUBjvvhzOnofQERFdBdNENdLlGamsZSCWzhgbmehL966FqG2Q7r7fFtO114lcEJQ7jFENDpI00GMG+EuxNYDKWwW5I94Noc1lq2GAtl6UnDpDo3tJ5jbkths4cdE/rfvOnYFen0PbzeZgqQUs9TPRpzyZNEP8M8DVUD1WHHNHX4HE9bUgYLidpwrz8Gfd+M1KcJrW+hyb/K3hF0IR/gs2i0LAdaaJwEInDFM5lRtZAI0Lm7ETWxQuQTEI6A6110JNSgrDHXb/b/bQZSbhhhBFIEgEg8jkozEFxHOJGd73/grZZG9JOXwOuJeE8MErMPDEZ0qToo4GD1PMEBbppooESzzJNCw38W17HFBEXyNFBB8c4zAxzxDSTEJMEMejw7s3hDac8ptzpXTbyabrSmhFEyGi6wc177NbiX7ip7KO8MVUlYNvsqm63jnn3Xo88uE58+fc0vnzEBl11cGGu0+7A0Mihe48YOJ346qF/dGv5A+RtX4s3IL+PdHLYbSeCcpWXuP/fhRh/D/BpxMB3I+xD2o1txl3EXFUru1hZS/wAQUJ2IA66gLbFOTfcR5A9sofN6Z0ELeFuN8oR4HAR6qbhnfXwQAc8mpesO3MCBq6C7CGYPguNAzD9HWfIh0p8rZ648YZlKULDz5Y5jMxslRcUXjfk0zDyXgr+f5lSTYmvSpH7N3KlpQmtQA8Jg/iy5gYkz3cAf4faqO9C29WA2QtcnlGmCCnxeqAlD90xDORhaA5emHfVR8NwT4scz5EUNLfCbAmSEUi/Cgr/hLhpJ6ohzyMBP4j6cFSWZ4dkm8Qh/2lmESgVHYTEot93ool8FfKaGvA1qUuERhgoHEPx/oMoAfqk++4teEh8DtgFqTmFJFpS0J1Ss4Cn8cbCq92hhmFKEPhhugQX5yE1KYuPXhSj3ekGej2+rdBR4CyqE0+RJcc0CQdopoNOfpIdfIdZrqKOw7xAHa1cx4/zXY6TIs84KRaYIM8cJRKS4KEeEcniXRuw3NrPGD7PsN1hf5ay6rwwdFRAivZa5Lma8tvv/l+PsgU5hFa/ifLmaCZhTO+14SMbFkWZdXM5hI/p2mDD/HhVK6MyxxzmOt13qeDHCd7CbkE8eh7/eO9bUR+IA6j0/Onw2qF5VELWxpSbve+4Ez2FfOfbUC/mm/AQeMszhFbBUklg9uxJd/YGfHtyKzM8iLIb16PtNeqme73Or02JLfUx926ZrEbgT0fhl3rgnh3waATPxTA0AMenobMdzhzS7SRn8ADwpYGh6hRam2EFqOUEbDJCT6jI5r3ksLDAXrYslq2x625bpcXWUE2JL0thEi/lBC5kiMmiDltjxJxFoSfQnv8m2gijSN53Uf5cgOVyVVHF/yvTlNtJi75FDG0J7IhhdxGKC1LoszH0L8BMVk1wOhrU6GGuFbKtMJOD+DbIfxXpx31IGV+FBL+lpK38MtyA9m6bdR6iaaAR0nOQPgmls+4nKYgaoaEd8kUoXnSR2GVzcKGQH0ZAs6N4a+H3kDbagYRvBjIt0BhB8wx0JOoL0Ib08RASUN9H7sq/wiUmE2grKd+SzECmAUqWE21HHHAYjfYIMEGy2E2nxAI5xkg4zSyPkfAKdlJHL0cYJkUTA9zCf+IhOriJHP3M0kqecaCBEudJXDFzRIkU8SISoCW4uv0N5X33zcAMg7yLU+fWg4vIIj2MNMZVbsrGkNI7iGyV/cjQMW+20c2XAeQ6HaNNI0W+x11wHnnn5mKO4DMgayrvqGSoKhI+TNdk8a7rTnftaXwk4Vo3frO8y1oH2A42i8QQnI8A/xMfqvmGm7gfwmsnAwo4S7YSrJB45y/nhtSIbNcimnKD7Y25Ie7Ddx8Io9hr1TehAp/DFx7c5K75Alr2Xx2D/0deA7q5C6ZGYGJW9msGyE0EA19rKD0MljXinxPU5KYrwkfn5igv4zbFuhEKgQdN+M69Zl+ZQ7Hgrhde8zJU5DUlXpUstqJgZOQCkkrdFciQ57TrsHUIhaA6UdYzj3+SZ4LnxxDDE1JoKoSpmUr/YjvTM4aIbQBaE+gpQX9JVv9+FAg8hkLsTRnojKCYkyee64azPeqnnLdqmicQ059DwrrbXeh5lu9m6JRGKgfpaT3RtX5chkXSBInbQJlmKDwtBV8sKf1cXFA62lv+la5kJ9qRR5Bg3e+OqUfek8XH85BOQXzeNQRJ5OocwS/g59xkRO7/P4db5MSVWBWhOI2vTT/vDu7Ai8U5YIaYWYoskKXEBJHzimMm2M0CGU5yDOjiWZ6lnl662UGaLooMMEWWLOeIXT42Yo6IPGkiGkloQ/5fL17A34VvSjqAdOUInt8W8+RhJHoe6aApN3VWOdeAvNUnkYHTh3rbFN2ttuE7KFmaugP/8KbDyMK4C3iTO+YbjmfA6zvw3U3WTFUUeIyUwRiyrJ/Cp7WtnqsZWd6jKKx2BBlrFv0uE+CmfU6jmZ5zk9TrJu7xYCKeZvHZ2FFSvumDMSbuVUwgm3jbpwXtwRHExaNIoQ+7oZXctBkyoNr2WmmmSm70xWA6upDJO4uXPZ+fgcEs3B7BhRmHiwFKdZqfqOD36apeuClww0i049ss21qk8M9EmcA3VLOBbyTMbWK9Ee3XDneznfjHzhvfT+HRyWEotabEL3cKg5GK7SQ0EznTsJGYZmYZYoEFZukgxx4UPCviUcU/hvjwGcoxEyuBdS3ibFEkc07N6NxIqGw1Csdh+ymHHsy3C8neLL4edbAENxX1dLenF6C5ARq6oGE/zB9EEmYIya02FJq4A0mgKcpDbeHNJArpZwoO9xtDax5aZ6G5EepdGKMwA+dGIJ2DKAXzWcjllZKOl3jhZsbPIJ/FAoRF1ASkCYnCfwbRGETPQfHz6u6TzSosvjOC84nG3Yjco5lgssZsEhMBCFIunpgqCQlIMwqMpoMxSV0n5ClRJE9Eiiaa2EEn+zlDFzEttHI/RU5RZJI5ZkjIkiKhwBGK7KbEMSRGMy4wHy1C+TrxWPhmN8TrUdA3jfi1FR8YDvPjCZCE+cAiUrrXIoHWhBg9A9yOB6D9NR70b0rcPCoTmjfiKxn6HGP9X6j4+Sr0xLwb3DkfwVuYm8lDhe7mPNK79UgwtwQT9MNI1/4AGRS2ZIZVKzktS4zNuzSAoeH2uRsfcZPX5276IqpVT0OqABkHrksnXiC4DR8XZZxmY+2BBpSl6HNDPOaGe427wqN4G8NSI+uRE3Y3Jl8m8U+8PuuOsUTQFFBfgEcn1VM9ijUlhRzEseOZ9eTBwyq9PsSweWT478L3Y5lA29Sqi22woYezFqoUdF3umoPI9jJ8RhH/dKwLLC0s2E6PagNUU+JlVFng0Y52fjMJe0hIU6LIFCdJnGmfJ0eWiDwwhrpodSIZ8CqqdxsNM2t1lD8quw6vxPPu95a7XBnTunEy3jbfwgTBUff3ML63x1cT+HYOzjn3rXESMucglYK6Bijc46ZwN9r140iHnUebcRlgQIRkWn0JWhLoiqGnAD0L0JGBppSAwdkYcrNQiHWKVAmSkvNgFucmlNoLbiBt7i4GkPv3NBJPO4ALkJyD6BjEJdUNzuZgoaBF6XeTcBeKJlhiMouEgaGpS4mTZrZS5kJaZKdSZJacoZZ2XVDrSMiwQIo0nUzyPAldpLiXHP+DHDNE/BUp7iLhalLcTcwzSKFEi/KpBcmnQVSBl0Jq5dPIeT7plqIBnyEIK/8Wo5S2Ril30FHkKc2771IoXXIRNeN5wV1wPz4EVYfPnTch4diMQvBj+Nbnk8h5HXfXugWFugv4J0VuhozXUpQ/cS9291OP8mKzwQQZar4Mc2HS3FTmHFKlr0FgthaUc/gCCkqfQcwD1M1AXU4I+YbEh29hMf+a5KCUg3xB9uBUrFsfQdwrPI4U7HF3dZMpln1Yr60T42XOlPvMwPkJ3g7rceOIHLh1FsgnzmjYiDK1VyfaYzaAc4hXnkRMPIcMyAgvFCuF6lqvG2IzehGPpdFk1rtjXod/CKEBDSwnb9dcJZQfVbxWSfZsimpKfJGMsyyA1Y3MwzSCse2lRJo8BZppIc1pdtPOHqaJmGKQAkPkqUMy7A2oJ8kESx9sZ1dqwEeSOvDpICtOMVCcOX+WmtlOQ9DShC3IGH7KXf+IG+v9CF/dm8ArM3BsTvqPAqR68ACA4/jI9Un8s1CXAb0sRrkSlfH25GBnAYZyku/XpaAuDQsJTOY1prQbcCnxatFvGBO2WXcHF91dZVGgsB8fI3bv0ZRc/lQJprLw/VgT3oUwcAtoYfuRN5dCCn2SoKVs4qwK2+lFlq9dETeUiEiIiYkpUiRLgQxt5NlHiQw5/qubwHEShihxxl24H4vT2PPIzRPvQOZJD/C37kpvRg503i1Pq1uGDnzln5kdi0LZrEZDaTcB/xz4pDvJLmQdLCCheLv77BDV0el5pMB3uFt6Dm/0taGHj5nnXS3/tFGy5bDqr2Z3f63B9Z5y92D1/1P4R1gv8qxNiiXJzqDZsyLpA/jH1BxxEzEF0aweC9a2AG0FaI1lrdbhNa9rV5DMyI7M5mQPFmKfmWhwwzHbYtqNyOzIteLJQjJ7Jh/8P4t/0mgTWppJfG+j+VK50bdueRTyRCua9yZ38i4EOJxFbG55hSl83nxxv63jmhbVMe9/B5pAC9XXoXTKk2jCC8jKPYrHSNhNVwM2BbdlrJ8OvgtN+DXYAWummhJfpDAz3I4UeA9ain0k3ECJDHlyru3GPlo5TSPHGKfIJPP8NEX+hJg6FFk0o3EGLwfMsTFToctdqQ+ZDRbiNJEwhgfrGhOYGNkqCpnL+PMVaE9Nudn4QTDeG939zGUhl3J14jlIJlFXu8gNuoiclDo8QKQK6KUyytXplPJErHK3duBhFALOoVW6Fe27HMsJsMoY6oT7O41WZdhdsZfFYGEyCaVpiAsqgrdccAaPWdqHHPhd7sLDeDsgjDKUJe2qIJgq/o6JScgTM0+O54BR6vhxcjxEeZP4DEKAPYv8Ik2qlHhS1n1rDgGtS2649ssmfJrkrBt+JfCybAqL7sur0OL3u6nrQI1fDFn+46iO/DmWNmyx81yH773+CXxv0ePAv3MDOozyUGXxfTZPxg52X01o6Rvd36Pub2OqsF59kWdDa8BMyZT7//cQ6rEXrcJJd+E6aEpDxyx0Z9U1KlvSZt+LIgBpJASOQlIHccobU8WiIlAhaNuyHAXKmyBuNEoXTrMpdHNCp5AMM5PUrrnhFJ8xWRjwbEdGVA4p7jP4ssO3ugsewTPvYt3+Oq8ZbpAOxKtn3HUM49GJJuEBlNIxgWwlHuZlVSGLrtazBMa4yDUFfAZqK+R4TYkD5dnpJrwSb0C7epKY75NjgiLz5OkhoYc6dpJlkouc4SjxIsjkMffrcKuHRmMY0elDTsgo4qkb3ShyyPK1yK3JH9usttk2S6HDZajlKRQZHUU5OMMdHUWK835gKoLvF+HUnKLOxZw8iMUwsw0u595duLCapFmixN1czLjvDiPHt4TMqll3bB/luJMsoYFsuzZG0ti2kyW8Zt339st5SBYgdkn2FD5iamCXbrx70o0srJN4b3y5fP+KYs5WoEhCjhKzmIYpcBZptQaEUTYOmETc8ySV0FlT5AV82/oIGV9fR7x5M+rR8rj7Pks5sHLJ8IqIKY4hhTfoPhvG5xGbUZTiFP5pjua1FPA91c+iQMgx5Am9DjHWAfe7h9ygzL3cTC682r2YMWH3ZaxhLtMU3ppdFoxiu9EQe+Dj9CMod3QDi/H4lhS0zUPnLAzmlPSOUWn5be4UXciQuVrzkXRDyeWZS4kCPLmkfH3iitdmpygMvNh2ta1qU1Z5vQ1f03ymNvf+ZbQWb0QC8TE8KHIWuBePTzhL+eMal/GKq14zVORNKEV2GvHqLOLjR9G6HEFLeRxFj06wYicdQ1FZJUgL5Y9bsJoYA9lbGmuzVFPiixR64m34ZtETwF8iVdxKif3MMcU4nTTSyynmHD44RQtp1yoxZgYPbpxBMsw2hOE5zGrbjS8f2YU6lxoDPI/4qxfvkRsYaasozPLNIKU54sZwrxvTJxHTHUfK83zijOUiFBLnjWdR23Db7Wax2muF0JeFnizFEKNVmMY7K88jg6IfzdVpd4xdxhvmdrbQXA/rR0xtWWGN09ZJQV54lPh8qGGUuvDWWOwGNIIUeAHflnNDrol5d1ZYVA+kiDmGZj/Bu6wzbsxHkTI3bSkxa2eyipw78U2IYnyCqNXNigV/n2MZ28P01RT+aXZfdffehRCcf4zSJl9w82LAsVCRp/A5oYvuVu5yt3vGfdeCmOwkHtAUVjNslSIP45mVYfvQHV1WU4U7JgxAWzLMMUiUUovHumloWYDuHAwW4UCkvNEoMgR/GAmEq1DIaZBFAyZ2hkQcC0gWJX4E4XC3isJEj8krS0WH19qyaybuAoNo/f8lmsb/hvJ6d6Ec0CnU/PB7bN1NR4j/LIxvvHcLEv9tiO93UK68KxLdIZKqFTkhPfhO+vV4m9RgQhPuFDUlvmUUIi0sq9iKdljs/i+AG3SRcD0zvMAFmqmni4hOGkiRYpY55pkgYZ5kSavwBN/XoNFdeQ45NHci2fZnSGZNI5hMHkUqwTsLlsJbqwG6GoUiybzcE0heN6EKoluRnO3HO5/mxZViKOYhDpEcduLwtQzZ4aaMn0UzPoh0xXP4FMRz6NHmn0Cyvw6vV5PFs4RFoKFNbLDBortTc7UK/hU76W2SawzfQ9ui2WZWD+Obg1mcbENKvHIF5pCCNnzwHndMi7u/c/jMqBAXCSVi4jJjLIccZbNFLrq/dyFno81ddRgfmC9T5KHnatNqAQyrpT6Jwp02P8bsBuQIa57MCMogpf80WibbHIfxyPZhfEeazcSJl6NQmS+X7VhxHcNQk8WxZvERn3lVN6SLgnQ3F6GzBH0xDCWyyp9HIeQOhIKtxz/OtZUyNGuS4PGSl4CqbtlqoeuNCiCbfysgWUDT9x+R9rsfn96IkCX/bbxADffZesZg1y248+x152zDtZ9Elm0OhaoOsLS1czA5YQy3GR9c2Ifwmp34lOhunAOEx3uOrmPoy1FNiZdRqMxPIHvJJNmrEOb8+0CBIo3MkVBiL/XMM0meaWbLclWhXI8rrmAeeOKuZBnOTvfdj7rj34AvU+vBh0m3Cu9DcIfml0Z40PXz+E7UPUj4m/Fs0c5CwuJz01dN/65CWbzKPYjudRZ4B2oUNuAuMeDGOoF/imSqqk3cjW+5YzaxQ+ItPlUqg89SJV5xmWzO4ZFfTZTr3Cw+NLshBW5kF7X47gRS5DY2i8VY5wvzyLUKyqrryNNuPnbiUeofd58PIMHRhdcRxqfGB0six0U84m3YHdBLeT1vGl8Cn3MDsPyyebW2PEXE7BZGPoNX8uNugCWWxVBsKW3Kq7PZCi2dwGWLErnPmVied2usOWtAYMCvIsPnDAofTyJDph4ZSRbTrsQGbLVBsxKFhnm1iEVVplmFwikbwyfgDeTSC7wN8cE5pEgNYfcka3mia/Vr2r61uPYECmjtRny5B/hJtAbfxD9ZpuDGWQU5aNNi0XlT4pNu+PfjizX24p9mnuAzjZulmhIHyjnSzMMcEns347sCvBVhs1uBc2Q5RJH9ZCiSQi0vwcssU97GZ2EKZx7xz36UfnkOieWb3W+eRj1T5lFNaAH/LKTtINtTRhYBX8DjOS4gORsCXIpU8PVaNlVU/p44A6CU+CeaXu/Ouw9FJNqROr6IdEUP2s8TGFzNGo5WFoEOIfu33f0CJCGPoe03TrnWditmN2QLWMJj4gg+s4XedIjPTmj/N8lm6Cvzk2fxKtdDjBKSRXljv+7Cr1E/0hV51EMsg+TjeSRwIpZxeEPBN+c+m0QLYbARy0wM40uzQvSwbYh5vKQbc7+dcu9mk8xSaZ9cWqW1bqqUHRVWbJSw+ChbQzw9hDpDFZDSiIA/R4rrVsSqbXhQXSVybatj6MuR2SQWPjRQl0FNwm1TKexWolCJW25wH7K5exFv/AP+EcNW4zaJz4svg69ZkcKs1QwSATPIoNyH+He3+2wA4RMOuesaSrkitWMpdoND7wt+dgzvlOxCzw067v4/hWTpVlBNiS9SKK0m0Sr+CFIddfik6G34yu0RisTENBGVIXCSZaPI9tksvsysgHh3HqWA/gLx1TDypnbgwRBbhfGpRpWYHwvu2t4NI1EhQnXNYwot+sCqT5wnX4hhtOTTDfVIVzQhq/Yqd72vuTGddt9L1keUSJMsPgC7B22XfUiRdyEN86w7++tQou04Htli0jIg05Wm5UoV322pQLUZDuOEk5SbbgvB/8shTbZu1nPggjvbLAKFz7vbGENCZBTx2SSrPD3SGMPyFpYCttC4zc00YtQ0XvmESsdehgAq4OOQM/iwgAEKNx3duJS0QmzXlJbxjwGrWlE4/Tl8b/67EJtOoT0yhBc35pVfijmxqEkdWqtGyksYwihVWLe91rEZs1pcecL937477d6b8Y+FP4+YN1Ti640AhErc7qHL/X8GodFN4B5x1wNvlFYxHEJI9ARK4YOU+gv4XvQNaB8eQUu9FflwqClxR6FpaOVHMb4QZwAlSI4i0XgQqd0CsEC8GDdc3TQ0PrIeIoNIKc2gaM7/5T7PAG/HC+Bj+GrU7TTGlwsQWv7dvgtfayKz6M2qt9Shs+rjklq3xlmYSlyVTyJGf8r9rAsvPwyTbSAuFVlVKvEOZBN/AkH0LiKV1ePOsBOPx59GCtKAScHsXirPZ/Fi5tGFsdMwjlmdA2zNcsHfBpWz2ESEUiQWkDend1XuDS28tPvBKN6+CCMToZcU6rbKkKZZh/OUK7rQe78E875campLLh0uiqsDX7Sonkah20k81vIEyp9Zzfo9LF2orQT6VZIZ2paVskYWbfgeECPu2AQJpXo87Dpk3ZUo9Ipng89mUHjSDB7LLBlK2LbpRiI0oRcy537fgM+9G7DyebQmnXgU2jKGQwh4N/tmAcnyq1ADwnN4++AAstOGkRTaCqop8UUy0zCLTMIFfJux69HqNSEOu4BPjlrJUri7lr+C/cJ0mvFPJz6fAr4paAnfKjM0FbZTtoXyuLLsKJQdax6DKe96ytvTOa5PYojzUFiAVAYWcnChBF1FXaMBzc9xlG5I8GBpCzTLE085Jd7s7uBpd6E8msUO9+s2912LO7NJp9CyeLHdv9BkqlyBlX8VlgNZFDxsDlbpRFn8YVWZGKYWilRnjtAKrDa4MAWxHHNdQuWdCt6XG8aGh2Inka0vpj3sLvgIEiXn3bENCADzG4g161FotxePSlxDnfKaKKp42ViNLD7ciiy/HW4cXUhpj6IgVy74rdXFrsfAsLmx/xv45ji+sOQCvm7fQG2bwUmEYt5+b5GjGBlRje78p2EJOnmVTXIQ2TwHUNqqFSnyU6j3xr2oj00BD27eLNWU+CKFsZYM/uEYabQEN6AkoKEvjuN3gXzBtUif0N+fQnvzAFIvNyOldATfidmuZp5TFWzFttGWGPtmrTQGfw8h7m5kMZ+azENpGrLnoFSC+rQYvaMEE4nmoRnFQ0yxT2GNdCInO8wmrkMzexFlqN6KlLi5d19AsOoetLUqFfjlRmtfhTAgH/KayX4oj+yWguPXdJXVUghrDaWaElq7fbJlZEo7DAyFZcdhQCAMCqybwqiDoTAvoE3e4U76LxCIqgP4bXzlYAMSDFZg0YS3xCpKnNZM4Y2ngpeN1W4yjW/714MQWTuR+HsWKfDr3P2cR8rOABewtB5tOQqNnNDYsa424BfD8nebWhDKN4atj4X0p93/E3wnvRCTUEW8h8GlMRQxfT3+AUNPIjn1r937f8S3l9oqSVNT4osUxlosvmfuYjtSrSnKk4O54O+1qdbKtIyVVTfgu/sNIuP3PD6KFqaCLpGjsnkKUR8t+Cq9qxDUwJB6OUimIR51fueoup7mYj2/vL7kH/dsEcUUvqGW9phJAZMkA2j2QCbAbWidvo/W6hpkJl2ZFDrE1UyTTXuaW8WAl5iRw9BnAz7da/rRHDWLUoSp6HXrjVBJGRo6g5h4B4qrPoAU5SPIziwg1mxDijHnBj3FMt141kghQM3aiZm3C16xxe64luC7CXfsDnf9c27sPfhud65f0qKXvJ7ceCl4N3EaGhc2j1uVYqm0dA3zElEuXMyAWGGjhHbaPB6V3oXstQTZOP8N+GfI0Z9E4fajm7wNo5oSL6NQxdrqNqB6Xct4hMpi/WiTaqZCEe3rUbxzashwA+vOsmzb8cuXDPHRiKx6a2hxNbLq2/D51XFI2oHzUGjS54UCLJRUoZNK/OwXK14xCT5bbmtTj98q+/FI7/8VJb3egaIpz3JZPyx4E7RcQN6+e7lRWN5pnSAs3duCd8gsTXsWH/Zcu5leQWH4dgYZrx3uYjngv6CNP4yUZOwGtBftlTqUH7cc7kYWzhT4cq0TwHfVsxC5hdLN6D6H7OJvuvF+HPh1PCBs3L2mKQ9rrJXi4H25evStZtowPVTNQFot6kR52sqm9DxazhPIG8+iafkmctBGkQSaWXq6DVFNiS+h0OwKbawwV2qqxMy09e2uBB9BMkU0Tzn400wF21eXEpi6JWQS02CbHXgvIIU4/mp87VoXmoCTkKShOA2lBSjk9TySsFNVXPGeLF4waLRBHmFDW5B0sfqli8C/QdtrFI9auTIVudGVd0frpwj/1MB2pDOb3OcHEafElHfaH6c8OrxuXVItL96Df8DKC4gN29HDY1pQGH0W1VYexwNlqgEG13LTYTSsExkS3e6aDe44s1ws3GfI231on34Z+COEtn0e73Z2or3dgvc2zKbeSMh/O5T1atcL3zfw8zBjMoYH9VsF3S40VTk0TZZRmV16ug1RTYlXJVualRA4m4a9lO3H0FQIr/AigHWrUFjYXYmEWWEOTK82Iot+CknFp5AEfQTBDc4jIXc/MllbhFZnCuI0RBUWcvUrhttpFm2n69z/X4WKc4+hhPzn0GwewkN/t7pR94tFy7kxL28K0RItSIcNIfa0sPkdiBX3IhOvGYVCzSO3fbhuTFnork27/1uZXR96aIwNCjzi9bAbiCVQXTjADNo17cYwGtaJFPNOfJ/w691xC/inec3gs4kvoLB+2o3nB+6777pxX4sm1awjC4i9jMicsRA4vwNN9y7393X45yUV8M9n3wqqKfEVafsROBZtuwzAulWosrC7MrsaV7ySpT81yTmBotsWUrgO+Azi5OcQZw/iE0l5XS5JoaeirWrV20wZDPA8CqV3oU578/g+of2ojucs/glUlqzY7pmOKt5t7Ju5bgg1rrZGISe9PCnMhWeQMzyEIsVHEHv+BdKtXQhZvCftPawF9ACSIqg74XqXy6beQmmWZx7CWk5oH+xwA7DgUZ7FyshoAaICpFx6adXdGOYPWtx5h9A+PI8MiKtR45kssmKG3Vied2O8BlkyOfzDjV5w3z2KMlVm4bS665hAe5lQ6PKBvG5T6hZdteirgewX8H2jNks1Jb5m2j7hbou/ct7yUpc9hfFwM7UNxwve/lwBNmpWeRYJkH4kCHqAP0W1Fzfi68f+CXkHQ0jIWBnTmqgSRWReeRHlvbvdhRsob/CSwDrq/DdOlQVN1RTtRqI7pp6qtdUy8WLxnPXGYq8cCsvIbKas/f2jKCJ81h13DfDtCPZHMBpBnILGjMNmlCCK0ePi18sqlu+N8Y/oM7vTekpNo+V5zr23AqMQzUAqC5kS1CWr78Y8ztCI8E+Zsz34OffZArJvu9G2OI22SOLGMYvy4La9p1H+4Q73myZ8L2TbQkaXOiz+IpMBSA3LZDgnS/CF0smms1D1TOunmhK/jGip0q4s5rSjNpSdWweFLnQj2q3NlCNhwg4WYQEnLEo3CzMsIEXdha+7mESC7DwKy1lMs8dduhMf1lszmVTNuR824YtPp/B9U0fwfRTtwtsJGQwLmkz8hv0rw4Km9UB77byVbbXsQS8mNuweDcv/kkFWbBmZEq9Hs29tm16FZuQHKBDUjmI1bRHM1UNjPTTUQX2dnmUShWVHJSCOglBRSCvs0Rj/4ByT+uP4lrST+JKnGYhmIT0PdQVoiKE50W40VD14W9l2o0XfEwMC2NZtxD8lLo+MhOtQiuvLbkL6UB1UC9o2Y/g2fwOoNew5lI3ajyIFE/jIwcuPvYDqaKrKlEdltGQrqKbELzsKw9cm+MN4sgn9VWofNn1960HehrRvJxJxlvjKIy07iW+lBIsK1Bqimycw7w55Hm36Pfh+qj8A3oJybsb5oyx98MOayHwS20pmaEyxfPPY7QS0VXa6aXLvpmhtu2cpL5pbLSoQQo5tnexVWeMwg3etLsVTRS4vChMYdtf9aEba0cqYruuKoLkBdrVAWwf0dcOzGZguQWSsNAfMR5BNQTElVz0JoyvVxHXivypR/n+DL1vJlxm/OV0zlZcCbypBe6wx245spBz4Ool2YzqCVBrydVAo4Z+L/QgKOwyjPfZmxEL3IMhIG76x/ll8t+JxxG5n3fgOo8YWBhywGthL0Y3qMqYwtF6ZOAvF2FZOT02JX1YUZu7qg1eIWTcPeJUuBJsagyFh2pBZPuBe3fjHVmXR7rZWUja+oG7D/rRQ3CjytK0Tk2v0Qjc+BmXed9gLdN23Foaniyy1iasJ2O2QOmGnmxYkPTsoV7QW/p/Gt6+xprLLjavS0OpCydQ+fFz2AlJVOfzDEK0SOvQXrnwKBWeYbHg1ciRj5JBelYZ3dMFXI+jqhyMZeHIaij0wmobZBOJ+YDqCCbdPs3VQqIekMrgdBrYrUk029aHLtkB5lsXZ6lFRIfSGGNrdjViXCoOOgEzDQaSbGyKIUgKFxhkopiFpxjeRaXavCB8Rew4BBG5BDx855i4widh1Jx6UdxTfQvYYYi1T4lcCNnQL6FJmE2pK/LIhU+DmsbXgkSIN+BhchC+XquwHuFm2CfPgTcjWH0B1Jj1op/YjSLllD1vc/01gOaGVxEIAWTh9EkmYXUgoWGfUO3X4Yn1PWBy/KYcxtIkNNhh+Z+/bnZKw/pXd+OL4IpKK3XjIsvXWDDNoyylaO7cZWtZ1Yz9yt86jvlFfd+foQeu5g/Kw/ctH2tqMWkjdVGxdBD+ZwBdTavl7qgl2dcOFNoh3QO4iXJiH6VlI+iFuBtoykKqDuEkfxM2QNEESppoMwjTHsqmmkD0r8R8Jiw9AyyTQlGg3ptFq9rlTLCA0vTUY25+C0ViNkupSUN8ApXYoDEJyG9qHJxH73YZSWf83MrDbkF1ewjdxmcI/ac4Q7meRLTqP9rQFeTZcTE/1zKHN08ssv75eevkp8cuWWcI2FB14IFYn0nBn3Pd9aKeNoRgXeOzjVgw+9PA68UU41uS5HyHSRoHXwmILp258fzmnfZPEN7qwJhAx0iVDSKAccbf7fPDzcbYwv/ZiLaoZQ6Zs+9DcTaKEYx+ajBvQerbjJ8hgL8sp2souOml3zh+47weAm9AancbXM7XgsbFha60rn0KnN4dXgudSkE9BawriRinu2++Fz83Cwg645h2w8CxEQzB1CpKmFMmZOii0QK4D8l1Q6IJSGyTWFua4u1onvkEwVI2u2J9h/DX4LtyNHQhMfjVa7Ub3/48hR/p2YFcaHktDJoL6dih2QK4domZIupERfQsKQ/ShPsY/DLzRTc44Hv5yFu1bK3iuQ+yLG+9ZyuEWG2lkEWYPLXBVLSsRdlirURm9fJR4Zaq5MoUVNre/5A5KmN9swyfH+pBw34923xgKnQ7juzRsZX48DNNaS4wYxcz6UAfgYXfsIfTMtSF86zVr8Owm1zadRbPBF0mOuO/m3HcXKX+WtFn1L0kL3KxEA7ClkAJvQNGLCPVzmkIK/BZkBP0A3y2jgeqKNjy3ZUQHkZE1hYrtX4MMq1ejNXnCHf88ktKTePiTYS2ubAoREtZFoDGCQyX9fXUz9A3A3AA81gHZvTCWgYUhKDQrt5y6LgVn60niJphph6k+GGuGUgqBPIyB+5EmrMd74OEeXcZwqlgG2432S0OnHEYxlgPIHDvjjukAjqdgqBGiNhjvg7l2SLdD1IkCQjsQa33cneh+9FQO0J48hTIxY3gP22DUxsrhhIZYzPXKzTB7WIdvBWuKvDIrYeO4pIq8mrd3edHLQ4mbjqxkFmPIEt7zi9h8k/11UyiU2/FesIXWD6IHlk7gH05qIWwzhbcKdRyG1C2BtgeF1B8DvoeUwgIyxaeQkbED7fyKevIQMG6bcp7yVL91iapsT/eSjvbaHJrk7EadNXqB/4okaBteob4ZlcJZL6fwaReVFFYPFJFivg4V8MboOUlfQUrcMqj34p86E0rKlweZPVnAB3siYDqlsHOhFY43wPQMNE5B++vg+/9vKHwJ6n4KZr4NpeMx3JdAdzN0dEGxHmZPQLIPkhJa75vwUZAzyCs35l4/hiVEmljPpDoUER8F/g7p3XcA0xlYqIOhHZAagtleSHdD1A6R9QRtdD885IYzjX9WprV/Pe8maBaPVQkHZBMaRhHWu0+rZQ9tjIY0tCjefDCW7S4kWSSTYZVh283c9PbQla/EQ2YJ+wabLDMv3EC8Bt6tSGFVO629h3xt72tf3lBpmhK/GpnDI27Q+4Cvur8n8X0Rw/IiQ8ZsBXcbaC3CP/Sz0/2/ESmDgrt2JzLnXwjup4LCIIHh8iwaAuUYNLPoL589sgEyrrD1yKI5O4sMnTOIIWfQ2t6E5vJuvAd3inJBklScG/d9J/7Z9gkS61e57x5D/HIr5ZXFNvEbvbdwHNWk+voWrhpaYTvI2C+LV44NQLoJRprg7Kx69XMI5g/B9OPAINT3QGkSbb+zEQw2Q0MXpJrk8mb2QamAolWdSDPuc1dZcH9P49Ga64t+GBwR98vrUELrNAKIX0Qc1VQHra3QuxuOd8PxM5Bvg3gP/mHyRbSNr3dD60JbdwoPbZ9ArLkWuM1GFiy0QZuRyOvG95VvwgepupFMHnd/G22bIrd9a1UlCT46aYLKQhCXh6C68pW4KfBWfKo5h2/sD2LWSeQcNeJb7FSRSaF4Dn1O25bLFJasQqGlYSjmQ0joH0eJY0tiWU/wW/GMFHpWmw2PhuLCPZlkscf4AaSE2lEu9ygKHVqX9zApVjGGSiBPNQM3nLCXrAIPKcKvaRo9Qe0CklLmoY3gK5Wr5XoqKZzbGPHKAdQ1p4h4ZQrxx7Puezt/aCVthGxcJuAq4dS2uKtzf1TlFd7VdiAZQm8c1IEtFQk0Np+BfDuMnYPirMsfp4FJyH8IBcOmgZYEplJAG3TdAM0DMHYBknuRRjSU5tfcCbrRfrFC7ZXWtvqYjSvCQsSrUTzsb93ZSxmB2E5l4FgWnjwD48MaZnITFC3ws9fdx22IFS+gLT6F730e4mW3o1zMWCgsgBnEP77xNLKuzNbcic8eVgrXLR2bSXRzjBrwqY8OPPfYSljI8MWtqbvylbgBrTsQ3mcQzX87coBATDuGB5RaKUWFLAp95rCPmanPsPTDAmeri8zQLAg9633u1+eRIEiQcBhDnH+3G7A18NuK0KiJOWPkWXzd17i7zhjaaSW84jiEpIF1Dl6GqcNNt9pwq33/klPsltvuQBv+duSNHcJzxX7EiI/hIxyrYRzMIrIQ0ix6juVJJPEGEdSpF3HqBFofQ01vRDqHnG+lj2FOysB4lrw0F66c+yuhKWYKhHcapli32s+pVOSpFMQR5Ityqot1kExD+jVSjBxBUxchufDxHAydgztvh3wT5MYgmUBG0uvRGu/Bt16bRb5ynvVGQWyspvNm0Ur2Iiza/8R3BmvLwK09MN8OR1shW4S2+2HhRpj7jDtJC7AbGSSn8D2QRpETY4GCEIqxHQq8sgCmH//Y1VeiLnL1aCrPumN3Uv7gyC0vZasM2bYiOWspKEMnVHu2JLyYivzKV+LmCHUj7u9GMnMHYhwre+pGa3Wc8o5Gbm2ixKfVrS9WCuHH69EesKxYhvIeZmuL/IR+SIwsjmnERDHwBaRAY2ROx5Q/tXaryESc1YVZ7NuaCPYhMNvrkeKYQEm1EXxd2Bp2V7WvwyhxpaduQ9tYxPYSUxh2M2/7m/ia7ruQcbaAFOEcEhjmDlU+jCWpOHcYGJ5BfDGBBxV0ot7woFSHJTqtuHeBZSMmVakSIxEmMC1slceXVFm3cQvx6xohjsnw8vXu23m8CA07IWyHn2MmEEAcQ5JAIQfRLEQ7INkLpXnE/jvRJl9wt16fhijjlV7RcAlfR51U7gX+X0gb/T3+yeRhYnntFObxT7rPnkYrmkHPH/m1Jlhog7FW6NoP9YPQdwscfR7m/gwpaaswvBNN/F4UqAmXbZ5y+26FSQ+3Z7WM8YrrVVmI04DmcxYJV+tmB8J89qKg35R7WTnblhVWhPF9syx24B+gnnOD7nXHWXTS+gLYHb84lR5XvhI3x9Y6buYQA4Oi0heBH8G30TZPPKyWily9JlridsRnGWREpt3P9iNRPINEqvHbyoxt39h2zbkLX+8Gd8INLoUEwX70ePlz+AT+VqHAQgWx4O7AMocxUt5zyNI5hW/yYt76JmJwlS6apW/DaG2Ihr2kwMONkMVjFvBPip9ANziMBMQ4kmKfQUp2Px5RtFJ9nQEIsmiNLiIXqwExbzcy/hL3f2vOGXZtXmtYPVTgrfiQcQMK6poaNn4Zd68U4hUJt4ikTEy24J/jPYtHdXS4Xxq8b7v9nCSGYg4iVwaZWCl/IzL2r0XG/gjQm4LOVljohYvzcPTTUOxFvF/CP6LvM0hbzqLY8B60nraf1jg2ypV4EcVrzPiZQ4mUR4pwvgDzC3DspNICc00w9QQextKPMiw7kCf+HH6rh40LV2GLyrhhZXJg1YSKnSBkqd3uZBPI9rwV/7x1q86cwGN+txyXaUrcqoN6kWe3093h1/BPnt+LHKdq1UEvTn78ylfiGbwEOICY+MsIvHsKGV0/QLKugGSUbWJXIRQWgLUgHrIA6X5kRN7oXpP4Hmbz7hRhtrA62bc5JBCO4uHcIM4tuEHtw9doTbK0oHozTBSClEx0WPnYLnc3F5AI+a4b3wQSXkV8DfIGFbi5aBbqsGo18O5Z2AL8kqBUw0EarXZ/Jn5N0TagAe/CN8u8GRloX3PH7ESS1UJ1K7WrM6vfPHHzhnvR/L8A0ZsgyiMlMg5chGQcEkNtrkUthgtjUYRB99kMWqCb8bWCo8gYsfF4AZciKcts9bjRNyFn6wyKnHay+MyPxeKF+eBs20IlSKyXgfFfGm1u6zLcBuQjOJxX0nz0hIqwSeH78+9Ahq5VjZxEe9QAbuuPAdt9F/GNajqQSmlFsuYR4HwW6uchtwNyjTD2mErXidEEFxA29tWIHQydvo4SsZAbKivCoLzDgb2q2gS2lcxKa0HsNQp81t1cBom4HnzdegNLjfvNQoAWT2Ix1g5kNexGoKk0UhjN6Mkvne7/4Fs6W8y1shy0/Ar2HkrZrRBfV74ST6MN2I721yyKcp3GM8NXENBjBP+krYBZosh74Wm0vPNIJJuncCMyeq/FZwbP4kHuVvK8dNFM8ZrXNo0U5VkEHrsb36Pc2ig9ga8JWU3gr5UqIXuG380jph1HgrrZ3anlwK17nDUQ2aACr3TR2vBWtw3D9JtVEcA2K/Jq8Csoj60sd/FQ0Vqg+Cga/Dnk5u1C89rgPi+wtk43oY8WTEQ0p8RuKoHoGffILVd2kUxDPAvxAiQFxZHXdP+mOlrwD/A0b3wXMipHUHTBUikD+DBynogSaRIaSBYL7nYi7r0WiUXbTzvxzwKxLGQYUt+WpbZswKy75ZIb0CjiwQRlLEZimChoHrONQr9FB9F+qMNHIerxwW+ri7JY9caUuMmRNL4OZRboSMFkBNm0OsAuJJCdgGwDshE73aVTSAZ+3w33jDuhGcSrAMXCgLOVuq1UEWbm/LIVYWHGKXEnfBYPLLrOndwEZ2VGacsojCsY0q4DTdKgu5O9SOrvBf4LkvYDlD83onrfhUqpGkpXC/xulq58JQ6SkT3o6VnzeKtuxn1uad9WxPiG2EyW6pghxLTX4v2RCXfqRtT46Af6KTegwPNFvJqtTqEnPo1fFksSXY8sj1k3gp3urFulxCtt7IbgZVvUXGADVE0Hn4VIkw1c2ozgNrQeve69g/Kk6QS65RH8LlhTEm4jgzKxtRwSu8TKLoyJX1O0WTS3BkJ8Ds9ZBpax11o63dhcu4hNVIDUPGQmIVOnll2ZGFIFuZlxTnHjYgGKJSgla9AnIdjHQuk5pNE6kYv3T0iB78Nbxb34PrtpUqRIU6IB/wid55Gf0+7OmiCfftz9sgffUjxM0mwLWVjZUmoWhDI5YfbseAKFSE8UKRQgPwHFR9Aa7sQXXI+4/5ummsAbZusPuYaK3OzZeXfVGSejSmkoRjB5CgoTCBRmkIV/jto7DKAl2oGi/la+tUoGrFIGtgc/bUHrGLnTmLsxju9TZ6ddlA72gRnq8+4kdyIg4QxikHtRb6RZ5LeM423bVYyO9VFoopiTci/i32b8Q9+/idbyW0i6t+GrDpbG9yulagiETrlbqCnxtZDJ0VlY7JhwO9qwJi/TwJdQiq8D3zUxhij2+XATQtejpQP4OWRzfwvxWDvyoa2P1tpSOLZNrYa0VX9HExCVgGmIWxEDZSF1EpIpvTZo4XsKt6jZ2K2UA5fAhwgtb292dhjX3oQXbuDDIWT0DiLpbsGHWVQCeMpdrpHyHN6WglyqGTSVSOxKqGy1wGEofl1uhhF8XNDcvkLF+dY6n+6YKIF0Cepy0JCBphQ0RdCQ6OkZSQmKRciWYCGGbLLUA1uWQt5oR8r6WQSv6kPS9ha0ccYRXuN5PNcnRKTIENFIsviQrC73ygLfBn4MmQPdiOsm8QLOUlNL/ZwtojD7ESr0cOMmSEsWEinx4jwUY2Tg9Lkf9Ls7eALfo9TUmRlmG4slGCeFHJVGS0/JBVfmIelALVYfR8rwehQA2oeW6AXkhXcjg3i1oA/lKex2/FNKe9FW3Y96Orag7WvpRLN9wkRfUplpssIXy0T0ujE+jRwqw8uexYk/twZbln4OA90GxtmHFMIsPjHQCvw48C/wyZ9WlisJDc0Cg4OGWYE0vvZos3TlK3GLUueQku5Ce+sNaFZ/CmngFnz9eBOSWQ6VZqGiEn5BbnCn/j/QPtnlvn8ej0fuZGnfreWFUOCNRwlERXlW6XFI1UNShKROip2S4LNxFuK8hPSahEOlGWFi0WzsNjdBPe7dEAAlPFp93I9zUfolFeczSireq1w+BBv0IIdmH5IOPfiuoaeQENpBebo1jNdtSW6s0qBpQ5s1RGIb+NA8ZwMYwtJ1sIHZ+pofZQZB+J291uFiLCrwGJqL0FaAugQaY+hJiQmTREXRs7GWcMoNG1ZxccOIhImjHuQ2PQb8J+TenUMLBpK+M/hnWjYQUSjrAX4d3kT8S3eF4+7v65Bgu+CGaDAJE5Xb6o2HWtIwGCE7xwnEJYgLEM/h1/oM0kgt+Nx3Ex7ybTnTzTGpDS3Gy6TFL4qQLEhEJE14FjuAeCBCSvCIG8pcxfsKQwsrwiw4Nuju9tVopZ92d/l6tFtsd1isbnGLhpmgOTwus0BZBJQulIJuyqjBTnvswMaReLmUQLIVyZXwposoQmZhmClk7bwSce5J/DrfgMIZI1Tu12qRi053S2k03b3uKltBLw8lPoeY4wKSFuaB/O/IiD6KcuQ9SIJMssRCrdzTCd77/j56jkA7Wt79iC+txHF5D7ySSk4ox5AuQl0W6jNQl9YDgqME4iIUii6cV5Q3UIpX0OHL5XXD70Hs1oO255CbmNNIQN2AhLR5kVAOXam8ls2Q7dhlYl9htLYFSYgL+FhTgm8LuQuhavegffY8vjQmt9y9r5cqY/vdyGrocX/X44Ngk8iVGQvu2Qyb5ULrpqyXy69vID4Y4R9z1Q40lqRXx4HOWBbmOXcr44gxLUMSLs2K8jBcSyuXa3UnOYXvbHUf2hX73N+tRMwQkSxmHQ3JkUOCfxwt9240/GkEUN6L9tELlJs8205x8F65TCAtlIQIF4uyxHiIl4X+LEpjKmxrMvpLuCTMxs24LxvQmlsKMUZaxLI3duwqmRubAlPiFpd6AQWc9yG7YD+Sd8fwss/8V9uii5IiwYP1DR1XQqw14MY3CMxm4GsZmExDLuO6TseSf6VS4Lxs1nq3/WnrlkX7fhBFlgooTtSDFHmPG+jZ4O78OMLIRRveJTjofj3uvju9yVEbbfne+OAHP0gURWWv6667bvH7bDbLe97zHnp6emhtbeUnfuInGB4eLjvHqVOneOCBB2hubqavr49f/dVfpVjcWJ1lmRI/h9ZoDp/aOIRm+SqkwM+77xZY3HtJ4lsA5NESfwnpk153mcT99AgS7wOUt+5YxScVRUiB1xWhOQ8dC7BjDgZmYOc07JyBwTnoW4CuPLSW9KBhi9QuIROd5kU14dt6GpvZ5+1IcZsYfQFtyVOI9awEare76w53rkaWItLMe22mPBRdYUCEkWtDAc+hzfw94LdRF9EGpLj/Fm389uDU1aNZG6DQfm5GErDNDewAmrODCJB2Awrr7MU/pCYMkS9HoZtnrzVCg5cbcpjK63bDakcu0ptQWs9Cl73umAE8yHaZpfHjTdBmMLDlw8gSnkQPWrnbHWMI7fPIKh4ljNfbmWbR9roBRUvngbcjrppDtlkTSo/uoDwAXc0E3TaqDJCEBk9ZUNugXHl8e9V5vDJYTznfJsi8W8PGzqC1P4eWxKpVz7j/T7ImwHy4RRsiHTqJ1msW+CCKx6QQJ4y5UzbgZ2hJOtHmNcYXNZx24z4O9NXDxUZ4Mg3fScHRJrjQC5M9sNAFhXb0TNgwRrNRMs602uJOZO1cRGbmE8Afu4H9GPArwGvd981uZryUN4PVjJ5OJClb8E+bNWmxaxOjDmlbPPEbb7yRhx9+2F8k4y/zvve9j89+9rN88pOfpKOjg/e+9738+I//ON/85jcBKJVKPPDAAwwMDPCtb32L8+fP8853vpO6ujo+/OEPr38wlso1lEUXmtk6xOgP463YEh5s6CzUJPH72ey0Z5At9jA+dTaEbwR3Cu0XK/hZUyCtTIck0F6Crlih0VZgwNW65ROHHkk8CmguOPmirKgsBjGQWgYf5KrHmyc7kIQfcaO+ASmvGFk6zchsedZdtNVNapu7nhkKttamORYoz587kybML5it0eU+e9qduhOtxeeRVAfdcyvecNkyqR7G9lvRCpuG/Ia7l2eQ0r4WzY1tYLtH5bMjt5mNqhtwW5DQs7mzSEY3SkccRIxah/TsN9ESn8bPVxflPVmqxqnDvIXhAOqAH0JK/TlkEdzuLnoHmrOn8JC0IgkJMQkFNHsRKovqQwLuAQQGfRb5PuNo7xxBLGBpU0P22si2JCW6YQojJyEzV/v+Eg3Hcs2hQg8NfAsKhPbjaoIpkgwsRJBJK7jTH8NrU/CXsVRbClWvvQn4N6iTXDOSg+dZIZ1o9mGCyveIoJiCpxsh0wpTeYiboGGPoPe5CPJZKM1CMsPSqpiNzrVFUQpuhLaRYmS4ziJO/C7aOPP45yCECQNdP3QFOtHOaHYjvdl9fx2SNF5Lbpy2RYlnMhkGBgaWfD41NcWf/umf8vGPf5wf+ZEfAeDP/uzPuP766/n2t7/Nvffeyxe+8AUOHTrEww8/TH9/P7fddhu/+7u/ywc+8AE++MEPUl9fv+S8K5JFvOz/BgBvxD8rdwr/2OyKsr8k8XvD2lk0IYHTjkRYjByfZrSsFxBLmFW6Cm5EVBmD6QUGE42lDbgp1upn8cDfZdEjqeBkYV43zNl1ByOrR0prDonVVvfdP0eNK/pQ568TyMuKkPmc4MVshO+iA/4Zo1NuwGFdmJtYKI+4W0RrCu+ZX4OU0BHgPe6+T+Ej2lvm4ISx/Vb8E3Lq0FwcdZ+fdO/t7pUFOoiYImKOFCkiSmW+wSpJhc0P2eRPC7LFBoC/Rs7CDfgc4zFkhw2i+bRbDGteyihMA0SId/Yi5hzAP4LD1KsJNvtugYQCMTElksVCq3p31v8Nz23taF+NIG4dQxxUojyWFOJTNhpIDT36zavdF8+cqLRfk3C5TGgtl+FaNYXC4rLaaecyQsPvScGxGA7ntGYziNWeQYr8oPt7Hx67toTspDamQsrp0nqYaYJUJ9ALhQblwQt5iK53ZZITiFMslZVUnHC9FE6MVQdZqK8bbRqQyXLCfW/VQZY2MU98qSjvdn8Po4Dvu9x379vASKvRtijxw4cPMzQ0RGNjI/fddx8PPvgge/bs4dFHH6VQKPD6179+8djrrruOPXv28Mgjj3DvvffyyCOPcPPNN9Pf3794zJve9Cbe/e5388wzz3D77bdXvWYulyOX88nR6elp/cfW1jxtA3OEYOPQ0QitVMcPoRKfxPeDMA/7Amq6eCeKAlsh2HlW770FlMesLAYzgORlBumNFvyuGHN/p/Bg8UVQcwRJmGgO87qdePF4AF/NCRKnp9zfTYhhz7uRTyFvfBCJ3BQe7j/ozpfGN0HI40FQHfiOOzFl6iz0HgwrNgDcg/bKNIrqZ9xwPofq+S0ma2n5LSFbBAuL7nInP4APtx13x/YhRPYX3HzkSNNAmgwZIjJEpN2GhvIAehid3bJhlxBDZvGN2s6jeTvrhr0bubydaCmbKHv0+/LhdLOCLSdl+d8+5IGfQIw5h+9fMEvYPjYhXlziGTxM8Ay+Yek0Mg1id5Un8djfFjeSenzTxZVqAlaaqjDwE956pS25Fh33YtBKCJdF/ZxQjnVdktdfw0VskuqFq62vg3QaSgWoa4DHJ6E3J1VmYK2nUcPZX0B+7CFWSScuhjgj1ciRgWIrzBaAUai7CVK3QHEB4gXgACTT6Kpm5dvu2oxZF/K5ORoGqzQv3fj6CN5yNsekPCcRBlUbkFQ9hkTbQyhS8Va0g7aCtlyJ33PPPfz5n/851157LefPn+dDH/oQr3rVq3j66ae5cOEC9fX1dHZ2lv2mv7+fCxcuAHDhwoUyBW7f23fL0YMPPsiHPvSh6l+Glqcp8jAUG35XxV1KoEwIRfjgdMikh/AtgLNIz6y5ACyEM3agFd6FhPEp4FPAz+C7nR5xA+im/CmHpUproN+daAj/3L/r3Qgth5fF55f2uFF/DviPqKTiafzTt17hvrdkgaG4R/D9hA/gO3r14Z8g0Vw+YxbmMB0xifR+Cu3ThWDC97j5GUU2hQUZsm7+Qmm8bjJGsFWy2HMPUiWTaAsW0Kr+MDKM7gDmqCNPHRdpJHIvP5sW2cwGr7CIbEvIEEcDyOD7JtKQFgyxC11033WxPM5xCYWx2RQelTSJL8Gx0PlZtGApPGqqREJShrsy5ICdZQEp6k4EljqMt7E78X20LNO8lpqASgrtZEswhblasyXNODDb8HJS5BbvSAevML1QqnhZKnDdeyLAqSTNELfqVWqC5jqYysLdA3DkJNRPwVheu3wGSZtn8G3OVy1Dt8hhkub/z96fx0mWXfW96PdEREbOYw2ZlTV2V8+tbrXUkloNkhBoQhJCGJmHAMsycOFaV/Z9tq59sT4WNsIGjB7PYPvix/WHwcaSjGVjC8OVAQ0gCY2tbrV6nqqruqbMrMp5jIzhnPfHb69cOyIjs3KI7C6pa9cnPlEZceKcPay9xt9aG3ogsYDLBFSeQ/wpB/wUooZZ3JAo0xjK2nmzlS6F/3eE12W8sLblTFjYsCFEuEE7h2htEOV0zKOd0ipAWsuF+Fvf+ta1/995553cc889HD9+nE984hN0dnZu8svdtQ9+8IN84AMfWPt7fn6eo0eP+gWbhbCyhmsa2prCiJeA7MKN4SLijxYFXsLDjXF6xYYt9sF0IBodQP6XW3B19yx+KNW58LAholMOE0gaIzJm0vcgm8cs7jcix9ck2hgWsTRJsIy24f8P+CfosJOHUTzY7KICIs1TyCJbRO7Vl4bPzPdv8fccdWiaLHOlahE5CTrDXBRDtw079Eq82EuZ+hJWpjDDLsGq9uN+NIdTwO+hlb4ZLc5b0aJMkJBQYD9FJugipQ8viWkJaSmui8zh+ha0UJDbTR5C82H6xjSatxuQ3vZnCOj0HFq22FrbcM5iKwXqixLZhjmNJ1YaQ/O8aMXEXVezu6zgEIf28IsCotoCXjQxw8sLncHxeLZ9N8oJsGZRhzhntxuHeJo9Z9G0be3d56nFCojBUW0HWv/L1Jdf2lHmpWkJARqSDUG6H6pDOiHt8W/Ct8bg0QHo6lQpgpeV4fwS3JXA01U5z67HTwEwJ2jzfgTml4WHZj1IYzfX0ukwkkfDqIaQU9p4yzTaWUvUp7XspNlKW49XwwjyeEFZcHVvTV1qeie7yoKUt4f3T4bvZ3bYy8a25ylmAwMD3HTTTTzzzDO86U1volwuMzs7W2eNT0xMrMXQR0ZG+PrXv153D0OvN4uzW2tvb6e9vX3D79faDkNYpuna/83+aNTmTYvftrsvNhXakfF7ASF++pFF/peIIo4gI/BiQydy4SaJJYv2I4t5FEXx55CJdiPaHEt4fu8cAiqZH/YAYnNPogDrHThsfxn34Q6gpPv/jjbYPuB/4FZ9H7Jau6k3DTOf1DiDIIef2ZHhuf0WVCrjtZW7qM/Y2jHnirW7DrR5j4WxzIa/DchXRiJ5nhzztLFIFyUGqXCAGsNk7COjDz+RyxLRuvENF4cmd6xzxPL1IvJhtiH+dhwvWjQJ/Ds0lzcjl1Gc93NFArULDEBkIsPEyFT4rBB9V+/ejNmjebYsPNWFH/7Yh5bflKEefB6/iXSRZ/BqvFvB9se+qT680Ew/vrq9iPwsf30WUYOrIhu3Zs6MHa9pk2YWeOxB6Ee7ynACC/ixpAvh3bDxW94OsR/Ysh3KUDsDq9dD2y1Qm4DaPBReDrkxONkBjzwAi6twLhP2rC9zdISFEzfvQ6xmWarrUWQ0nEV78SjwUcRvXhLee2n9iSix2zYGFcSx93hW60cVb8lptEYKuMkMeglKxDwbvqvPy9pZ23Mhvri4yKlTp3jPe97D3XffTVtbG5/97Gd517veBcCTTz7J2bNnuffeewG49957+aVf+iUuXbrEwYOKGnz605+mr6+P2267ba+7u2kz9tXolY9dWi2Jq51DK3M03OTzuD8/h1Z+HwItPYjMk7XWoErTD/whspK6wk3a0DbrRdu9Awnoy8jsj9HZh5AplyIBb/AkkEbcjlhjOfx2KTznXpR0sg9Jl0eQjt7QjKNbBoE9Jhe6cRoX3quIseTRDiD8bhA/0XPbnCvuiHVmOcxHETl4l6JxKMEwxxB5JigyTQ/z7KPEIcrMUiZPtnaYxyuQDdGOw2NMp9+RvtHYZTNp+9D8vATNx6fCQx9F+tcga8eY5w7h+V2RU2Tzftj8NOAaAOf+zV7O6BrtHHOGLiOKmUEWnAmlRUSZbwvXn0eM8DZEaRaeiLHBjWOId0MvIhtzz9+KK1iXwz0GwnWmam4QYasbdSObp+E3uxHo8b3bEBW2o513EM1bgpb5TBhXB/UzX9lqH0yWGrZziLWk5upBWL0Z2u+EvjFYOAuzS5C1w2QHLC3K1T7YBsurMFNTAs0Wstiih4NWYwXhLYbRAUE3AH+EVKyngP8LeG2YEfPXxO7V3apQzVYuvu/m9zch3o4c8McRt30UcZJh4A3Af9hlL621XIj/g3/wD3jHO97B8ePHuXjxIv/0n/5T8vk8P/ZjP0Z/fz8//dM/zQc+8AGGhobo6+vj7/7dv8u9997Lq1/9agDe/OY3c9ttt/Ge97yHj3zkI4yPj/OhD32I97///VuztPe4NXrlG3W/HW9cY8hzaPNcjwqxP43cnxcRI34NQmyPIP/iFBJ6FQKoDcWYWEb+1dO447AbScQMbYIzaNt/JXw+Gt5nw01Po938RiQB+vBk+3Yk1E6jjbWAw5PeEzp7LrwbQzdL1+JOtXoXB7hB14GfhNEXHnkc7e/rwjxNIk5WxU+nsbncMueyZh0xF5pZl/uQeDmN2xa9JFxHgXO0M0HGeZZDYedZsrVjMMwpbxlxR/Bqv8tsLny23Iw7mrf7IlrCu9B0T4WOXECOliLkM8jPQLIMWQWyFBUjYzNm22gtdeF1Aiz6v4ofimOKXuxzqBduBkmyv7vxRL5eRP6PIR32HeH/EzgQvxd3pJrt36zXZoX3IwZqjtdb0A7pRVT6MFJZZ5Cw38gtHassJkJiMWLCP4Zb7dQlb+G6TtynNoKXIzGlJxfGNYCHIOri42yBxuxGMSa2D9HQJKx8BVbHoXQ3FMagOCQ8Wv4WODgH2QxcnITlCizXPFK9NW+kbVpjgpeQ47kbrcQsUrUOIX5zHM9zSBvu06qWbfD/zX9hFG/7ewJna2fww/J+GOXY77a1XIifP3+eH/uxH2NqaooDBw7wmte8hq9+9ascOHAAgF//9V8nl8vxrne9i9XVVd7ylrfwb//tv137fT6f50/+5E943/vex7333kt3dzfvfe97+cVf/MVWd3VXbbcadtOb1fBTBXqQkDKv9RBS3344XHsWbS7DpZURJ167YQGvrVlGYLOD4cZjwK8iNpBDR+3VwjUWqbR6S524/3UMMXEr52AWah/y1WZIVP0NRJ5fQxa4WeobOD5t7Eb9hgozUyyPOPBK6LI5Dy6H7rwMz3hrzC7Y8iLZw60aQBtim3N4PmgXhsJPeJo8E7RziT5K7CdlHynDCLNeCt06jJwlBpWpIaExw3ar+W3QZZMwOTzIVsNNzUVgFnJLkOyDji7ouAz5OUhKkFahltbX31vPdE1cmYnWjxdc6MYRh7O4P7aAlw+zBfFu2/Ik4ds2ROInwlNmkWr5JJqvU7hANaE5i+dFmIrYaDtFGK21vw+E96eB/4IE48+EkY2Hv58NfxtI1Ryr8Wy0Ux+fNuFpsVDzEsRel+20uP8GkxkO/V8O3/eF/o7iMMMi7uHYlmMqdqcbrsv24IO6cXoMSv8ZkldBegKWPguFEvQfgnQZqnko5wQ4r2bbEeBp6EB/GNVjaIUS3F9iNuwXkDg0debK4LLns8VceBmn7U4cFXQGjbQVreVC/A/+4A82/b6jo4Pf/M3f5Dd/8zc3vOb48eN86lOfanXXttQareutOVB22WL5YeGdCfwAnX4UA88Bv4UE2TBePb+IJ9WmxiITxGATlLPVh9hhhliCoaAuo0DpebRRZsPD28JDcoilGZqsgltks6Ez34fMvDnE0j6JTMJa6JixsU1Yis2BcUsLehZCF8bxEzAfx484N9kwiteW2bFL3RZhBYcL9SH2eRDTqBKeIWGBHHMUmGcfZW4mZYkad4XHn0XsxqBew3hxxjg9uyUIVVP7Lesv1PBJnoRcWxA4OejMQ+cUtM9DaQG6ajrobDVzjO969HxjoHQwjGYEL9dSRNaRsevZMMrYCl+/GLGOZVjGAnKXHwF+Hbfx78drAB5FDtYv4vHyjVoscM0ivgkx18+GsT6JKHw8XDsbnmFwTFMSsob79aId1o2opC1cY9mSC3h8GrYvyOOZB63PI2jmjwL/CaFV3okE+73h+meQGj5DfWXVbT3UMCf7EZ+ZR461ABjIPg7LfwPyA1CeRDXb83IC1pIreXXiFlswRsQz4dfmZyijVbsldOR2xG+m8VMcd+3TakmzPR3TjCWtVvH6lTVaEw+HF0Pt9C00E9y56N1a7B7ZVfzySs0EmMFwJ0JHxlBK8gIyeh8MnTDDeIrIn5jJN7qGFNuHBFBfuMlTSALeBrwbbZYbUEWy6dCReVx/tpS+2DkHbkNO49pGimLgVoThBsQq+3GUqQn0DWayMVZhcmM6vN8UftqL9vqdSI50hnkpII5q3oltZ5zYOGMkdik8YJl6W0saQ0KJOUo8TIUlNLu50OVfDaOvocj6TJgZm71WRvHWulpDkqcsfGMhHyrBV6G/AgOrkCtBuazCgP34ORSzNDs+sjFQug+J2AOoKkIPsmOPo/pTTyAXwGXqFb+Yfrw17i+7qhNXF8dQBGUVqZuvRrbYKqLspXV3rR+DyaSjiITmwv1vDf8fRSrtA+F5PxD6EMOljC+YF6CAyNCY8i3h/2Z9zdCaU3MtHNCBF7Y1NEspjP9raO0OInXaIKwd7LCwYbwoy0jLsW0xg8AdBeBZqN2oTq2UIJchbEW2XXq2PWVJiJejTqwgGrsRaRHLuGJ9Lox0hSupSBvtt1aKfaOP2JHRiSvtaeipYXlLzW+z7faiF+LGomxj2iuObzUCkfZEmDfSsfkZK4hWT6AzGy3VzLBoc0QAJRNCFSQuUrS1H0S1S4fwrMXvDiO9iEf/LNfLUMhxs1EbW8mFZ7QhNlsEXo/YyRcQW1sMHaxSnzV/BddXox90ECHEvo50gVuQrPga8MFwq2/goQczc3fkq44Fub2bADfdWlSRUSWlShsVLuAROmMS+xCzfSsKVDwa7nKBeruhJbRkhBrek1XI56CYhPpzFehK1Y99NS+kYlbCZfzsmdhuVgHZRmgYqI7ABGJTX0e4iXO47WiZw7FDun7nxLLCSN8E4B8hNj2JBPgSWvY7cXexUexm+9F0mzIip/uQz8ms6v3A7yIK/tfh3rcii9daLMSLOBrgBNo9M2EmetGuehTtjB486SmOjzeL3W/U7NldeK5HCQnqO1HFgk+huTsXnn0Bj+lvy9PTbDFuxaE055Eb4LVhEI+xdopHVoOabZltE7TNivGfSdwwaEcrvw+pnIsoXm4vs8SbP7gRchkL81h53A1uAeoBlF3UnyDRiReINbZmoZZWtBe1EI+hOrHm1E59fqrBdWIkbMsFeexSt78N/l5F/kTwXCWrPxCjRzL7YRUvRjCOF4xdRH55SzErIvY9F24QM9zNxIvFr2xbFNHsPRbel/BY+BTupo+xqldotjgFZH6lyOc5wRrQhgT4/wAfwCu+nqFegO/IzDVBHjOXXPSt/qWkVEjJEIMtofPlL6DR7wN+As3IRbzKfJyk11IaijzXuSoUEj8FPFcV2RxGumAvUuluR1ChPjxBzOPjCemaELc1NpFfQmL2DkScfUij+gqy0h/HM8A3Tv+JVSarTGCIjNuQvvp4uMtjiEEeCX2f4cqRE9ODLaPuGH7etQHG/mno+UtxWy+OtBq12iz0o7VN0boeQELzOLL0DX5bRLRg670T3hErOjXkNehBeu2TwO+EMV2P9NxxtF3AndJbbjEPWsYP6lvB60y/B2cdneEhfeGz5rraFlv8YHD0SD50wkZjVRfm8aoLzVW52HPShiM1TFE18GGMB9kNXzdH4CCih/04asSUvUH8NMxy07vs7LkvyhY7CS1PtYCifYNowU0EGj5yHteo6qE6LWpGWfFmasPrDViSbQ6nvFjFB3y7G5lM4tm2h/CgsgG4bDMsNIzsSqRsWnOKF8Z8GjeDl3E0t6GVN9aYm86FDaUabn08fLaAfKrj4fspHF48R73+sWMpGbPP9UgJdS1bi+JlyGi5D/kjHgmv30SMvYKE0AISheaf2A7T2MixkDX8kWQRKjuR0DmJhN8DSM/pC/2YRHX/i7iwsziuhI6NPY/jwksoAvuPwig+jCrJjCKL/BlcHY4duus1qliIW05AF1rqEWRZpqG/ORwkaDkUsSO1cR5tDuy1GO75XsRcn0MF7E6h2oQPIEE+hTu4TDyA+xjMB3URCfM7cZz+IeDfIIG6gEP9zBprBsDbrMXzY4CoPqQcWADsaRTQOIi8Fl9HO9p225ZpzB5WYi0NIMlDciOkBvE3cx+0SBU0kbNsozzllUZqhsgKbhSYTyM2q8yD2ByKafzdcimaGWimYNnddtp981H24cU2DyMFryfc07ILDHvRKvnxohXi5taw1JMONNkHUTS3A3dI26YzIMLGUJ0WtFiAG02n1Kfdmuzc0LdvPrGV8P8ynrM1j/vqjTXEPoatCFm7v3W2jDaawYDAbTrbaI12zRXmIOZci8h3+SQywQw1a+ijTmSyTeAIklYGu5rcrDH6Ya/XI6HwPSjO+hRe5e8CXlEr9ndcqW0Fr9HYwzUAVuaW2xNIfTN4xTlkxQ2jqX4Gh0PaSrroNZACSC3JoRDNx5EzOkWO6b+Ol9m9cmukoKlw5wvh+TfiJzt/GTHj59BSXykaGs+NKeGXkFf4OlxZGAr3nsKt8KkwT3HqWizEVxCjfhnyQ0ygsMlUmI1PoUSSXlzv3NgfsfncWPzUFIvl8Lyh8PlLkEJxEoekzlKferdVIZ6kwCpkVcgXoDgG+Tbg5VA6A8kXoTYE6WlkfRdYvxg73ncxJcf+mdi1Zlr9xgl8pnK2I1ruR0rbAJ5LkeGnts7gRYRhk0P9mjTbHwbfGQi9mUKOwy7g/8Tpph0vSnnNnb6LFse3LB3yGNqURxCDM5Fn9qllCxvgxkho59pUs+2c+VvMoWPvdeP3TVu8/e19hfpzCWMzN94QW92BsSpj4izGW9tGjDfaFgW43bKE41yeQqrtPegEgWfxQOkYYiTdaJcssmtfdSMQxroW3zIWPgbmPYMYg/k+bkUb+gJ+0rThcK/UxWZgKovMx6sV06JZBI2wgi7E6PtR3PYya7Vf+H4853qF+nKeSR1TNcRgHxIdD+EFgPrDXf4YP7g8FiEbE2ysclbxfOcVvKLbYnjqHBLEFhy60jza/JgQbAvjmkDK+hCyjm5nLbzLBeShMCFo97a1qOJJk18Knw+gOP7/Cz+j5yIiz8fY2anX8VYw73YfniK3P/R9GTeSL4bXFJs5mpu3HJBPBVAr5IWhaJtVXYFkFhaXQux7GUqXIM1BWoK0cTF2E1yuC2VVccvFmplUzVRXH0ecS3EQKYH94Y4nwq/N82OWMdTvq60Ow/b+IFqfaWRvHELy5Bham+eQkp+h2geVJvfaSXvRCvFGvC24tnwSMT6L4PbiJ2nn0YbZcRZTnV3VDGYRMbxGt/C2NIYGTSCp6LlJeF5mz9guyTY+I44d1ysmdq520rDZNmXpsf5hXNyy1UaQlDTOdBw/qvQ5vPj1jgE29QIwBsPEXYvX3ARyDkcOz+HlMc07uUR8wvaV4X3WhzY8Gt2BW8iz4bo26k/2qka/t/cMCb6bkVJxCU3XCPIa/HskxIbQHji39ttGq6gHV2EPhLu/BLGsl4e7fAE/68+d8pstRvwEUwfB/TfmPG20vOMY80bNKNM8JiBmeya8bsdj8F3IuJwNzypRrz+b8gSywAeQ6/pI+N15hAi4Dqk27ahUbAc799rFW2EOj7teH8bRgZdbegDRw3wYk+WCbGUrrLmfM/G37ir0LEFnDYolSOZ1KmipBIuXYakCyyVYXYFqCdKtLMaWW8wdGmcu3o2bjAPPyx4NvzqDEBw3hmvMM2NZBRWcBrdjicfPNPf8oXDfX0AVjw/hlv4Qskdmt/iMK7UXvRA3F8go0sq+hjb847gz+hakmY+iDfQc9ZG+rW3OmBWYTRU72GLLuLmbaEctl0FSQ4ej1OqFeBq/7+YhsYaRrFlwRtyN9rmNLA7/17XYNJsLNzmIp1CtIC66ijjnbLjOgrrbMT+iZgLc8oDbEDisDpOe1Wcq2PrHwYvY6uuivvCHCabNuhcL8E7qTy/vQnQ7HT0/hviY4DE2uIREbBseS/1quMcNaGofRcmBzyE6fzYaX7a2thYxPBx68Yf4CT2ziEV9MfTcbA+z3K8c/a+nIFeo7amzuIBPG15XWmYThPYcg5rk8HIiNsI4uJThHgnjFzXcnX4SWVbL+MEs5kq9Hh17kEMevJ3qlbGCY9iLMn6ka0fo3yx+9MASDlGtbOGZjZ7J/kwZDEMZ9KfQXoKVRWgrwnwSUiVTgSWpyDqnBumexRc3+3v9WMyVnsMPFC4hQVpBrKQPzaGtmcHlDPO0XQMt9phZRYkbgH8W7vsFBHL9XPju5chD04r2ohXixqxNkB9BG2I8vL6CFuZ2XFMDZ6Lbi2812lXteC6UxZCNRRkLiUXFDlqsIhaAQhYkahiJCcrYm76pi36rj83W1BQbbZxva5quMSNjrnWjbMa5DIfXg59FUsHj4BXqK1tsc9psqrLw3p+DrgTaEwlywiNKGaykeq9mfr2hXw1+Y++WsGdj3QrqwGjTkOUGzOlCLtQjeExvBi9cZwqFWbKm75ggKYZr7kZW3GnE8G9DgmcfEuRm5ZoQz9YWYwGJ+TY8nayC1NvLSARUkOvEnN5bD5Q28+sYkrfBr7QtBhs7d4yUjC7t/rFiacrRmiIXvex3GRKcxxH5vYF6DPWdSL8s4TWIdgOaspBAHMIx2GCMcLHnbQcJ30hvw8BoBodS2F8RTXSVYKSgimzjGbSFxUhTqKV4scgXuJkQb0Pu8wX81PsLqCLGfaiGwzCOV5jE8/63b6A5jZk3a4X6IpIg2M4lHF5cXX+bHbUXnRBvjHPmEPs5G/7fh9xSh9Gi9oXvZtHkn2c7wtue1GhX9VJ/Ao+x3kV2X+eJ+vQs0xc68fJWZep9vS3KnYs3kMVhu6k/8vESbrFaElxTT1wj5zIr2zhrbD7FY9iq/7Ch32aJtAE9iRjWQAHaklCnuqDKZgspzFdhoQarqaIRhczLbxbCo3uo9+7HAuJKAtwUgDx+gJsla80hB7YVjbgeza+5eqsN70bTs0g5vQvFBF+Je5T24+lQZcT8zI2drbEnEx3ml9iHn2c6hhz1liR2nvpqWlsPlDaGWpKG7+L37bRYkBvksjFcEtNBJ16NrbH0gCGL55C6UkQ843rk1TuJ65tj4frdALdNuYnHUKIe4WLXbBfh0sidBlGY5QTwrQxqmQTTGaCnAm0V3bcDGEqkzO5Z2u02W7yOBcRr2hBo8R48o2Aa+DVkMf8t6k8J326JiTjgZGGPXvwwnxnk6cqAjyEs7ijyjm1UpGi77UUnxGNGYMboNDLobOGXEYt6I3IMPoe0t2W8LOPWibVRz92H4okmgY6grWPQlcvsqs5TM52hPzy6ErqygriTcaJ5dp071/jYPrT5B8PjTdAM4Seomrs3oYkB3ci5TKCbz8quafQm7ICTWL87cjCYh+E2GCnCwQ6YrKqy2Q09AvLMVmByFWZWYbkMWQXaU13ThZ8hXkLTOotbelsRZbEi1Imo5WQ0X4to6c6ieKvNbRtORRZ1WAN0Jd6/Z8J9enPwklT3+CYiDQN0xaJXUxlHlsFtfIscd+ER2WU8pXCHbhF2J7A3u2fMdGNUinmPYrDrPjS/c2huLQ3VvCrLSABcxrNbMuSjmEF8wxj1zmfCm5G2bQcT4DGniK/ZSsuoR1f34yWhLuN1p9oQndjctAODWT3AcFfA9BY2E8CdeDmNaSS0LcXrT1Eo5Am8xmSjgbfVZmDMXjRfB4AfxHdAP5Irx8Lf53DUSCvai06IQ6NcSDhCxgieEgDakH+J8j1NdlQRkyux1bBro2izJINRtM1nwt8zeGlBE3fWw9jBuIXWqDPsD5+Xkd/UijYMoR15KbyIBrQdLhA91mJRvXhOpN3SXKMGoFpGQm4c1lmpdXMacyUzn2JsS9bww21ykbUVykF3HgbaIFeAzi5YzMOxfjhbgkoffP4iFHNwYzcMtgutmyTQWYa+FHoybcy50KVxJOqGGsa4lXh4D14swnJNH0OMZx9+VvEca6dFMhj+by78WqLDKBZykOTk/k9TGE/gkTysVqGjqn49ixjZDBsBooweTQRa6oA569vxGEgcPHih7bP1LVYQGoW4oYwPIW9cHs39RPh/BxIG02juH8WFnM2MpYFZHNxykHeZMLHWZ1NAYgzBbr0Utnd7kJX4SPhuCI35r6Ec/RXkCVrGQXux+/mFbDZ222ujCPfai454AmVmfAPtzWmkDBvQ7Wm2bwcY+7HcjRyeJDOEhPXrEfBwKTz3cVxhbEV70QpxsZuEJfIsUiClQDcVnmKVl9FBJwlPs8ocBS5So48sYHPTtY15ZTkXizbzaa8iVeAkgj70hWtNVTiG9ENwHPwWmWGsMxiyYyTc4nB41M2I55ra3YFXhYst2m02Y2Qd+GlLxxArN023ip9INYCDThpd6utG2ci5YiFOsx9sr9/5RMK5uyjwzrE+mK7JZf7kHBQKMNINZ5ZgpQo9nfD6gzAxAWkVFsowkqkbj4exFBCTH0Eb2ZCvJhw3m2ITKJbnajncJ8P95xEqeh/SyyaQ+/MSUaZ+DtI8VAI4IWsTECmtQFLU57kKdFWgVIXzNVhMYTnbKIe9mVPXcPngO2JTleyqaybIzY3eg2NkhhFuwNTv0whPMIqD7kyZryKX8yyaiXY8Rm3CfDdWeLN+N/v/dpuxC6O5Kbx+fmd4fxrt5RNI6N2HaDCPxhbXE3ihm1HnIgpljCCFLIdUzu9Ga3sJt6B7wvWxR2G7qmeC7wDzyFjhpM8iOhihvtzH5I5HWd9exEI8YZU8ixSZooN2OsmTATOs0sdLGGCWKT7PEkdop5OU05SDwMmokm3REo+T2Y7jWZ55BLPYB/wGOp5sEuGED+L6tdlVW4BZxI/L477W78F5awfiNgXk18mHbpkHdLMSWJs81piAudINoTmDl3837XMWxYtGcGR1vIE2bHvgY00QcL+tAF3tcGwIZmrw5pdAvgv++HGNo/MgtLXDTYehUITDh+DZaXiyArnUi4N8A0WH9+Pnxg2EuTDE8GbTG7t4lxHTtNzy69EyPRyunQ33eAVixNMEiygsRi1BJ0sNQtqp/mcLMFGGUh8kK5CuQHUZyqtQrkI5VRx04+W3b8xh38i6d+gSeQFbvG1A830f8F1oPQfD56aGH8Np+wgSFrPUA9iMlk1ha6UA36u2imgojyoZ/2ck7HrQ/u1A9Gy0eD9+Vt3V0owyLdwxjTwLfciO+U3Eb1LgR1AGwQlkaMxTD8PcjjVuSnkV8QLD4VZwOI+BXy0QNb/TQTa0F6kQT0jJU6HIMl3M0EfCIEP00ctFlujhQTpZoI2MOR5hgS7aWSFhiTIVUqrUAuhnsxbDlFYQSy6jEwQSRDqDaGs8igT6+fCbQ/jBG1vUcWOTYh+SpF3INzaHuH0XssafDI8fRRLnWUSNMWR3B0LcXHIDYbQzYYQGaDuMCnYeQEKvhhjjdgElrWpJIqGXL0BbJ8zlYD6Ff/8wHD4ItSI8dgbKBTh2BBZX4EPvgs9+CaoF6GqD8yVN7+242zVBVvPrcGiCuR43G2McITAM4k1IvfsuNE8W/ZhGbrrriJzXwQJfQ+l0Qe0QZP1Q61b1rVwKMxbPmIHaLKSLUFuRZyG9oidmLyLWL0yL3eltaNvMoy1SRGVYl8N3o8BbkGC32LmB3FapP94nDptc7bNkQmgVjekE2qs3ITf6KBLijwF/H2EnnkBsY5YdQ1H2pNlYbJ9NIo5qgNOjaP904icOjoXrZtnKeWjNWxqeZ0kycQaBhRIv4vgfw+G2or0ohTgkpBSo0UGJfuAgNUa4zDIlOlmgjyGOs8AZVigwxyJLFCnQRZVFyiyTkl5BiMes2pKtMty++jQipXHgh3BJmiBJe55mBVSu2MzI70RC/DDyxQ4jaZrDkToziGJ78JTeHfrGEkS4s2G05xGwZwoR+Ek08pO4y840X0tBawTqPF8tyUFSgKwIT89CR7s69MAZmF1QCs3807LYX3EHPLYI+4bhZF7C//9+Wtb73wLehrKlz6HUlknEFBtjh5uNMcVjqMNovi4DH0VCZhipfDU0d5Yav5TAak6KR9oFyRBkI3rVDkDaD5X7WauAUTgAjENWCMIm1euq4cjPU7P1MGv8XtyyehyvSfcryHL7JpqeYZxmzS8RI9C/HaYwVhjBFcccfpjLnchnmCDONYmUxyfZXercXjSNJ6FCEk7ES+ihtpalAW7nLCA2OUHzk8m32+IsXfPGGF+Lwa27iFo2bS9CIe7435RuqgyywiHKdJHjBlIeIuFGSnSQ0c0Kj1BmiJQ+8uRCTLxMekWnS/x5gnzb3cgB14WWuA1tizkUbetGMItZHNu6A3Iy08KgmUNI/fx3SFAfRcHUZ8MjLB2tjV0drWMGoHnmO5A/oRsJ7x9C+fc9+JkmJ5COEXf9+WxZolctD5ViqLyWQW+vUOfVOcgyGBqCrm7o3gfPzEFtGdqX4a52uLcLvr4Av450pqcQA+xDFaKeZOt6kTHVGN0+gBfzGAvfvzb8fSLc9yJCoa+EcaQ9kFlS+XFgFLLPISm0H1iEai/yDafU49G2gaP8Tmo29/Nou6Rod5or9PN4EugInokQW972+nZqhnCw8q0rSHEsI+Xxi4jGFoA/R+RzHi/As+VCNs0iLy1tYnwpOWrkWA0qVg3oJuUCKSWqlMnW0ByX0fpaoaTdKiTNMgg2wuG2ik5epEJculhGFzUGqQU8sTKX7qTMZfK0UaMM9JJyghodVCmRskC25azPeDktnewY0v3uRjr/f0Ti7jhyjM6E38T64lbc9tF7lgX/WCZT4gLi8inKm7scuvF9SKKWkaSwKpnW9W20DC89ejaM5FVIqK0ixvil8OgbEdLV0vtiF6SNomFEa89otSN3LYaWQLkNbrwJFhbg0iVZqOSgrQ0GhqGzG25/HbAMT1xQTPnBi3BPAd7QBv+94jFUc4N/BoUOrMjNlTau9ceyIaYRYz0U7mFFiB4BfjRcewH5c2YTWM6rPGbaG4T4KFrrZ1C5qGXgTajs+Tju8+unPs3wajGt9rg1hi9WkW47gqpqLeLVfi1fvzd8ZgDXmH6/3aYsHvsK4jiraLzD4fsJRDYJGvfpcH0Bdx1vOPY4XtFMiLfMbWFWiyLPKQUqFMhIqJFRosYCFdqokKPKZAiIlsm2VYhpK60Rh9tozrWaRl7EQjyO4Kp6SI0ulFj2TWrchBxJR8jz3aQ8Qbp2XnZcZmGzZstpEZJZxDmfQvbpM4jwXoYOSLyAdNxncPPoSjConL9nSVCrM1VhOFVxnaAXuddfBvwB8N+RpLWNZUGjHQSEbC8aiCePdAaL/XwtXPNavDjJvuh7U4ky3E9iKM7Y9dxo7bRCk7X7loGlFMYW4PJFmLsMtRr0H4BKCcYuQqEN/uvH4ZXfBze9Gk7/JSR5OFeGV+X8uEnLGf4a8E4ERDOX95WYfTyXFSTEzY3ZhhirFfp4GFn7k8DlREK8lIdqEdJupJgliNweCT9eRrrkCeB/hhsfx6vJbBC0j5WqZorVt5vwilvjLp0Pn00hQX4GeAeanmMoXel/IoFmtYaauWCbeV6uxnmybV/CuZrV5+tFbOIUfrLjHOJkMRCs6V60TVzA6zvYA2wDx+i/HROSuRKtTE8XGZ1ktFMlR0pKhTKrLJNjmYQSWYAn16jV8ZNWrk+ze+3F+r8IhTi4WLiIWONfR9T0OBKiQ+HvMaCDGpfxE4PjoqtXcpDWiQg80aojPKcHsYVJ4HcQrvkCflryRhZ/HMUrUHe+VS2BSgpLNWjPQ08ZrkuFippEOgThEeOIsZ/AK2TuwJ9ko6zgILU2JNBm0MxZOsX1eF6zud0Nf5/he93uYTLF9rulasUZ9LvZGFkmNHalpkMdytOwuCxw2MjNcOQ2ePqrsDQD+Q7IeuG5KegchMGjULkIWUk1pW9CJ4K9EtUnH0CxxCLbQ75mCVQTWE3ESFMgX9P9hhLYl3nVrin8NPjl8JtaiO/Tidb32fD+ttABSy8cx32iht5q0JxiQyp+EY1jK/nvV3OLgV2L4bMiElwzSN0+g7whJYwraAvlqM84SNjY+Gx0p14tcxVb48s4x5oM3+1HY1kMn63gNeY3ZBe2kYt4OcOANQFca7L80ivZKxs2s8ANQmY5MieQE32elIwcbVSZI2GGhDkgIWMFlRVOr5q12El7EQvxBD90cQU5er+EtudJxOXaEQlX0ZZeL7QbXb+xu9cPjzAhbnZVL7Ly+9E2eBovp2YV2+ZoXucp9iQU8fOt2iFrCzuwBktl6FyBwyUYXIXZKuRDZY//BRXYWkC6xBjiVruoDWnavKVPHECWShcy9IwpPBa+/zpuiS+F35qibmjurjDCHPUIYHvFaTy7aWkKlaqEd1sG/bfBgRth+E649DAMvhQqj0LSAcXjUHwJPPoYrDwGBzNVeDu1LLDZOFrdzjAHZxCzt5KMmzo6zKGSE8q8EpwrtQxyNVioSua2JwLbGUCmjg8m0f0nESlZZYsFdCLDV5FfHiSZvok0gQY8RExpRm0GQmxUrOy15+lUzVwC9Ztu2808H2UkqAajW48iRWkRcYPH8cIeVgbXKuRB/UEYplrHnqQY1LQn8fMdmv/GqWKF3PptNZZiD1Fc72Dd7RsLHfSGVzcavBU/WEY0OY8Hpbe1oT006rkClmNwHdqBTwKTpJTRDuzDT0mIzf/WiPEXwvvyIhXi5rgdCe+PIWfvA8g6H0bb8xhCgV3A0eNiw3bQR6N1Ao0u34xszVllrM/YbhfugO0O9ze7ygLUzaIqheg3fWiHFCHrhzSBSgWWl2B2HnLzUFmA+ZWgl9TgicyDXW3h3SzxneRX4Bt8FS/VaMUU+pAgn0Bbqh8Bh4wZlMI9DL9fQSuzL4zwMtrvo2GGwJljiV2CRLJgjVcgWwpVzc6rpOr4RbnLkwxWytAxCIU75VpfGYPqAszOSF8q1DTWDkRNZbwkpaWdbIp8Ne4fFWdJCxLkaQbJql7VTFZ5uSLhXiASCpkUEmpI2s+Eh82FzyYQKf9ymLi7wvdHkbvduHamMVvaleVHd+Ml+E2xsnCIlRiIi2W0tDVzCcRCvNEnuk3OGYO7bJeu4Gr2DFrXFdx5YXnh5kWy+YpVa5sro+tVfJ7imna7brHp36jgbNH8jy8zVE6CaLhZSKvp7cxBaKUxhvD4Ujd+mq2xU7PQjYGusI0NbbzQ6kQeRqsyjIykAcRFvoE02f7wmWmssU9vd6J2s+mP5+qaO70lLdaJV/AYdwERwTiyunMoNv06RJVPAQsklEiohhpv2ZrbN9a4Y221QkaNlIxKZJkb9thc8xkyiS3CZnbVRgLcYvn7wrWGn52F9EaozEE2DMk0pJeglIO5TAW021JJLXMOGNx2eYNHbqPFs5rhjzBmZlb3PM4ES+F3VrsZtM26UXChEy8BeTx0rz/qZuxS3/EGSVFudBVqq1Aeh8UL0H49dB2GrlugswCVGbj0BFQnIZuFfKYzlasVwQ0OotU5FY19S8jX2LHSydqRZVk7ZHlIF/WjQg1KQWKm6IZVtJxZeF+TRqUwkdfhPtIV4F/gFUr2IzJaChM+w5qWYQKpE7HHQdbXwbciFrPI0J+NhtRSQW6CoTHOYq5ZG7NJxR3w5dhnBvVeJduls9QfK2vV2MyNHs+XqdZd1NfTN8NzHi2LPWvHcxUrNsbG7G+jB8tr2oL5H8v8ZgHDrOF9XYsJZwBp42Z9vxqBK29DsacZNME9UT/jdYsfsqHmayqXceECqthwXejEZYRo+K94MdYJ1pv/O+MgNv2beV+2Mf07ai9SIW7bdRmxJZAQfRnaehfD9+0oscTM1RlyLFOgQpGUTrK1IyJN4zY7ewW3TsprEApbVnPtxIVc4uW2bd243LZTO0K/h/EjIeeQUH8SstdCdQpWrleAdDWFxQq0VWXGkcmMi+tCtsAsaHRQmSyJCTvFrVPbOqa49yH50oeMxFFk/YwhAbmI1KwTCCEbl2vdlS4dOp5G7uQshdUxSPqh/BiQg/IULJ6GQhdk85BbUOGUlVo4nhHnneZmji2uK7oee9CyDiIG2Il8uUFYVTshmUHSJAesQGaagY3D/Ou18Hsrofc4Xi/ge1AVk0nk72+I3iSpFBTr0n7kdT+Ey/0MAetMuJv3pZ1dGcTrmwlwcwnYhuvAUyIXEQGZS8A0pg3dHs2bTaNNnylihsuI1f84dGBd7ETLdwDR6z409UW8Yt808kLFWI8dz1UMizHzv51628DowTSPbezzbffJJFobEtqm9Zm75gKa1DG0wYuoqs4irtEbPdtGigV63UTFKoZxgUuIa3SHB/8Fmvlz4XMj8kFExTG+afstnn5zKBhZ2vQbD4hDXtBaQf4iFeKmulucuhi+qyJLfADZgeeQuCgCY+SYIc8y7ZTpJaWfrM46MdfmMiIXUzSVJJYFmzyOLMVO+Cv5veIIZRd+aOCN+A6eRgrIOGS36/SLtAqVZSgtQW4FcmXdK81c822hihjPbjzKCCtVN0Lb8+2I4R1ASnoJlXVcRUGNAcQD7kZyyCwa2/+mQO24GXeGNQ6bVaF8TtYwy8Far0FmqVirqkdey5TNF3t4bTo3BX3FTM+WdBiXlothUi6xlvOfmbnfzA1hn1lMYxJ3MK3gUmYs/N/I5RJ1yLtc5qqiwYWOo3V4KnTlFuALoXsnUZjEZIlNZdMxb6fFrtmu8LCB8OoNHTyN1zroxwPVy9F8bFOQx8I6pt3G7zPWR2X3o+k+hnZnBWXz5UK3bwzdTvD9sSOAZkw75q6Ozf82PAl6iPooHexNzCNWuDrRWjyDCGMfyoSYQHT+TfwAvG68+pOluMbrFlvpdUh2e6Cp/5Uw6I8A/xL4YcTHjwH/LVz7euTHNzxUs9y37Q+1B7fIT1DvfTFnZxwktWG1or0IhTj4Fi1BQCqKAOaR4B5CVGfO0BoJ0+SZo8gKPVQZIl2LqM/hGeB2l0nEK/M0atsS5r6N47bZNo53rdUZmkFY6NtRaf9nUTmGPBKHT4VSXZOyzJOigrxU6xl/i4M1jTKl0S3XGCAwPm0uyzyywE/jRx+aJtsW/jbFqTFXYFfDMLIw90AJalXqOXrQi8xpkqUhZh2Np3EONuxTY/zQirOcQILVygfMIE4wjLuSNwrpmaNnGQlpcw31I16Xhec9hfvBp1kL2ic1eRdAtGysbjh0pYQijDlEdR3oGJ/n0I4Zx40q04l23GL4h2l4Bra4DfHrPJKW3XgAF+ol7TaRj83oN/7O3o3mDBvdS/0SHkG1dZbx3JQfCb+3IFgM0NzWNoznph8/4Xg/mqt25Fy0eICVD2scYAv3/boJyUJ/XoLY6iPI8h4K74Phd31hDP2I6Oy31sz10cybkBXQ4ueRirSI+OAC8HuoFsdIuPmdOKE0CxZsvZk5ZXrxfhxWdwvufVlC2/cyLmyzMIxrQnxXLTZZwDldHscWP4nEcAVoQ+edrdARrPADZBzFPZGd4a4LiOH1owU1nrqe3+5k98T63yKemXwI+E/INnojYh+PAK+C7Dxk3UA7JA2aZys3cJOWNbw3ttjKMeMyqBicwmOQQ8gZdhcuvONkvxwtbDHjj00xcE4bWb8Wj95Ra5QA+9CSTiIp0I8n5Y4iF/gjSEvsQ8TWLC3QYBfmTl1BvKsjPO9JXNAvsu7o77hbRxFTGgi3ziMh/jjKWuxGytYtyNBaoEWKVex46sTPBzWE3XGUTDIS5qUf+HIY+xC+6XZk5qpdiX6tm6aHmQf5YOjqKPJS3Ar8HOIm0whCa+GjGdwe3EzXiEVOkgTvUFFbO7MNcjQ8uIgE+M3IfXV/+KEpcXGAdrepHc06ajH5EUQYVUQw7ajK063A/4o0v/bQxx6cyGp4kBnqkexmzpYQyrNmm7WCn4/4duBT4ccPhhu9Ez+jwmKIO4uFN3pf9iHvy9Ew5MEwLIuEXUJka2abTf/u4XRqL1IhDs0jYJZEY9RiaJlFclQoUKWdGjlSSmih3o72yDBarEmc5xhD62X9MXc7a7aVc8gU2R/6/n/jeO+Hw9NquD81iLps55rnXrUMyZglBEW5EXk09qFN8DKkxE+hvf5yVI6nstedik0xqJdGrdh5sdVi7mKzRC6jyWgD/gTPb/oqkgTLiFtY3m2jqRh7FGL3els0DuN7sYaZCpWehC4N4li7U+EW/Tj27iWhq8+FR5riGgvwXc1PLB378OjRCUQU1oHX4SlzVrAmBmvu2kWzeTdjr7Z1dSD8/1+Fa0aQAB+ivsTplRSeWCauKb2JklBqQBYqJ2WHIV1AC3EBaRIjSKi/HMmu/nCDxjSCVs6N7RsDvzyFTksxh+dlNFm/FPp1L55XOoDHJTuQstmD9sIcfojAGpI9g8zALEu4BlwLE7AfaXhfRUfXfAlpNx3sBsnbzPtSIKR/oim3nCPLYFjGay3F2Qmt0KFexEIc1kfAVmmeu1JZg6VZ7DZDJFNFNPbHwE/hJWLO4MVPeqjntzvnKdafGqJ2Q80buO0WRFaGEPkr5ELaceRtT1ssE2O43zI6Lem30AhszgfQKE0xj+tD7GkHG//fqtYoyDvRTj+JJOj/RDxpEPmuv4kEWBGZcI0SM55Q400GUDCXhV1n16TRtRuM0RhREa1HG/CG8PcdiGGdQMLchtWSZpZ4GUnAgdDXKeCt4fMfQLx5KYzlFcjq6+R5OxovXkYDiD+CduV94fNXo3l8bfhsADH9zbrWkHW4du8kCeKnGFIi+6E8Fm72TbTe16M5OYMUn4cJHpwCzGQqiLC6dSt0o35mjX+YpV/GQSsHwuAncRdED57Re3sY2CAeTH4GDwUkyKswRlRZMoNqqthWtgrZAp6OAQrsdISb3YLCjCfCTcfwE5+2b403874U0VQ/gdb+XrRmT4WnZWEa+tC6b8X7stX2IhfisJ6bxTaEq5XxBs0jEhhD+t0/Qsrv/xd4T7jTOLIiZ3CE6+75ifXVNM8ZZHK0h89Oo1h5O3KpVxGsxgJKO0+l2KuW4i70JWTxXcJLNxSR9ZLh+cq3oM1xiV17TF/4FofnllGt1hvQ4C8gbvAcwuUcQJbIcbZGSI06ajNh30AOjU4Io6ru0J2vIyb05yi8UUOoDKi3LnZNZeZ7XEHjHgj//wOkvz6I9NPfQKbPeTRXFjYwAd7SWEvzFk/xAvLMLYYutoXufzUM6TSap3NhGBvRrekvCa7ErmFAEkiLsNAGpS6YexYKr4Ly58MDTMLcCmQ51eO9LtG5uXN5KGbKUsnVlIqQbbx7zBNg73FrBPnVTcRK9MUjaK32IRvjJrRWfxpuuhTeTyHvwVFEeCO4IL8hTISFilaQElKpQVoKQtxw/wdwLWYOrzFnroDLOIpue2ZA7AuNMYU3It3SwM1jKITyo+H6e9HSmDK8c0z8+nZNiK+1jdlO7NICtwDPIejENKKtC8DvIkPqbur5Zmv6Z2aVZbCaanEE7YzT4WkltBPOIt2wQH317qtD3NmM24jmcb5tcda70Qguoo1hOPxJvIDK1TOiHTRb1mXgz/DMxqfD+xByqafIbzeJgwhid+hGE7ADaZqFblxEc3sDEiDjyJJ8CFHT4dCVZ0O3DCramPW24xbHxIeQ5lBBWkQJQUCW8dodY/ixbrD7jdfs900UHpNbEwjI1o8L3hEUcvv3iMl/ETlbuqh36MZod1ve9vCcHhTy7ge6k2CsJrDcDhcSSAZh/iyUzTnXiTSI722H/60LfqcGF2qQ64FCu1IqkjgB0lbMhVkz70KMPzGTpy4hNni311xlM+EHPeH/P4KXwzuPp7bO44XWLGD8BtwNt4z2wGHkJZ8O95sPykjV8gxNQ13B0xgKeDGEU2EVzLSyLP/tu9Mb58fq2FgWXQJ8HE89HkK6eOzrvSbEn+cWO7L7EGPrRLz2OFqsBxCZTOOx3E5aZS3G7GIZP6SyDUWRDyOT5Ks4Jj6Jrl/kahPi4CmhNbz8TSd+brHlmdfQ/q+Ez2Mhvs104Be+xVphggvxMhr8ETSwzyM3qAHS3omIbAZH6rZ48I0h9YXw+RQS1suI104jr/VLEGV9EwmmOuDwbjtiwXlj2iXken018NvIlz+KOOcqIorzSNo1ova302Lzs7ljbu3/cSCuHc+Ea8eL4t0fhlFFQt3CclM0Pzwlzjrch4T+CMEdmwXkcwZjFSiVYGgYJl8Gpx+DlZuh9iDSJj64Cu/th4NDsLIE2QCUB4ML2njCEvV157I6TKEpzZZuaALDoBaWiWDyOM0gi1mUuRBOIBe5IbweQ+s2iJdhvSPqxuXwoB9FbjdjtCvUH9aTyyAx9dF8+ZaaYR5KWzzLE4iLCWw/GBd7qy6F91twzGg+DKsGvBntkxRx6wraR630h37nC/F89P8m7sOttkZHdg7R5TAykP5T+N6yYQbQAs/RkmJooRnLsNQ40/EuoN1Rw13sKZ4wOs+uCqPvYYvDaKZL11Bve/D05T7EUMbRCGfZjS79AjYT3pZkEMe1T+C5SfPh8+eA70UcvBMR2xKey7UH4CRbDwtHXkYG0DJii6/HXcVP4DnRC3hamQ1zV10zci/jhXDMhL0OkX0fckK9GvgEIhbT/rY7N7FyZeZn7IKz/pgJGjzRJtDKSJU+gmg0ZClSRt65H0SytYZnf8XdtC6YNzxOWTsa7p0ho/pwFcqrcG4eas/BwZMwc1DVBGsGVlxpgwOHoTACN9bg4RXI3wTlZajNQvVSKH5QD5TIka1LPzccUDviIt149UULfYPOXkprClOvnaKcIckVkmRIwgRZ/uKlMClPIbDbE2FCvx6+vwf4sfCAx2lwC8QeSuPSpejmy+GBbTiSc+eqpl1tT0yRsfZ1pJcY4O0U8PuowvEU0sdvopWywNt3vhDvDO9mRm8ByNPY4hhhCa+j0Yt4ru3z4fD+aqSRLSEevIAfkrA7DaxRlTDHZ294onGX/eGJ09SXGLg6bVYTGqZLx+hdk3PmnVumHuFpS/pt0Uw4tOEmjgkIS7HpxusNvRoN+jbEJZ9BDG+G9ceitbAZa7Nc5snwWScyfB9BqqMZRov4SVc1xMRiFrkjhmW8uYybt1149Z9HEWl/HZm7T0S/nY5+u9WHx4FOW5t2XJOJ+2NekLKszjStP6cQXN8yujWPxiJi9qZSN4aDTIibAN2HSOIS4iWzyBofqMJNVbnULy3C3JMwMAJz5CiN5OCv7YMbTsDpfrjUCU9XYekgTJZhqgrVGyGbD5NqwWZl3uTJ6rIeDyId8n4UMjgQlmAIKSKXqVcDKmmwxkvRnC3iyT8xLmMVz8k6gECKNST1xhEW5Kvh+79DfXrc2rrGgtzSLko4RSZ4kD7+8c42jt3FDIhVHPx/PUqW+HgY6qdxRczooFFx2237zhfig7iUaFTEtsFdYrfZPJ68fz78vw8xNQvZFFFct0KrFy52dtoOWQ5PtIEZJCYu9rcX+SStafEWjH0NhshNos8tgmexuKtvNBs0E+Dmc+3BEwnyaKe3o4Ga+6aIGNsTiAnO4q7lGBCwR1qMBWPmo0fM457MRdzl2hcN01J8DasHOxDkMVGYJDTz9BlcgzgRHn45/Ma0vmm27niKBbilk/Th1c+mcN3YzM8p1soRpggovdIw1rbQxYv4SX2LOC46FgQWPWhEPg+EoX8hdOkE8oQ8VYV/PweHSvCSTthXyjE1nqe3u0j5aCerj7RBNig39HwOkpdC2ytg8qOwMAU1E+AjWN3DhDI5arSh07gHwrcWrLsQ+nld+KVV6TuAmw8V5OrPUrwksAHdGtG9llqWDw+phcF9Fe0BwiRewk8/6mWD1JTYzWqhxMa2C1dsw13icMIgrNUMGQrdfBWasxspMA1kZEyQMke2m3OmmrbvfCF+FDcrLCRixQK2oakbaawikjdXYR4/5KMHCfU8fvzkDHsRjbblN+vaCtWYWWcsIn61MgrT+hZbbMa7Y09mvD3j674tmnHmdkQkg0gg7EOc2YKO5oYo4REQA9bGIcyG4ix70Ww9rKV4qXIrDPbN8P5yPHS0HzEzE+wx29x2Ok1j9AikyDyF4MDHw2eruLSbYONTfDdqhiSzWJiZn/uQeWVSdwmvB2UMoAxZOdQcydxeMI/vc7hBeh5XqU0ZbdTB4nD8Ah6u6AnXvRRhvJ4hzPMqJHPQeTEhX8jRPtxOfrad/OhJas8OwmNnoO2gkG8cBF4PtU+gxPrDCEH2FHYgSI4cbdTWqgAfCtN8PEz9DShMfSb0/2wYr0UtzZRIM3QgTyxTG18G3bGUycvI7XMMCe1F5IV6Rt3mMF4FasPo4N7zudh8WiShQI5x8nSQUCXjMgm3BAz6H1NiFZ1cXiXHPDVKZFTJrrnTt9xuRrNu2QZmyRhT2IZ0jXkK4f/dSCst4Q7tRn1hbxzZRr3Wq0a8YxZdc/UK78YWu2CbjejbazShxSjrAWTeHEaMahClleUR9HsORzwZPscKl5gbt2Xosc1bTF0mWFbDUE6Hz6ZD96fRmr0c1znmcY/JjoCdMbcE15qNMAy+XYHEhKzhtFYRUno7Vrgl/Y4iTeUIQrxb1SYLBF8fTUiINWQp1FIJLutmPglI5SSwoCxYrFm9MtrYzHC1YX8vytJ4GBnWT6P5NuzNiQqMX0pYzTIqMzk6jxyjNnOC2kQOVkZhNoXaMVj4U8huxcu7fQ/SUoQUkzhKaCOhi2ytnOgEYpmjSH85iYT7UaRQfAvHCRnEw7ARdZs5nnMDv4CfDGM/Xg1dsz3TE655Drk1pnnBcbraFwkr5EkosECOPop000EXbTxCyhDdTLHAPCtUqJKSUaIa/t+6zfudL8SXEWdZxguaW8GAxhDJFVpsJZrGbXl/5va1z2Nte+/4bSzSGt1HV7eoi8NijS1reP+2biYkivgZnlYdZQEFSMfDdV3I6rBgqrlsTSM0bfB5dKzYI8wAHUYuw0EkQDIUvswjQfNKxOCfDUOJsc874rex08ncAQHhmOSDPKiFrKkA6MqqEuBZuoV91+i/3ocH/qdxT8g7kbvhFuorDi2zti5ZENJpArUEkpxe1rJgnWZB6GcbdMzCR8NIUD6ASOMvw3ejSI9I0Vp0rSaU5qA9X6CYtrP0XIFaWoX0Zpj4GGT7IeuC2ljo7A/jRdZd9CYk5EjWpuMc0ht7Qj9mEQRhFYWqLwPfF+5gTqULbJA+lTX5v3meDMm+iJwFnWFwltptMZnTOCbkBcbpZiTUgna+TGcYSh+rHOIcl+nhIAsMUmWVKvOsMEWNVcosUqNEuraRd9++84X4MKLIKbxUZYY2ofm2tsEUY0HeCKGwltIqCMV22tUt8ho9aWatZA2v3T8lblfBnNiAzVkygIjmfvxAum5ERF/FS6oOIIZlbtsYx/E8xxFisJUZq7cgi+xjuBg4gBwMKW5cTeMYvGZRyi21eBMFDTmXg1wS8nQzyKeqXbJmFZvVi+/HptTQKMQHkSAxy/5uJDz2IWn2ZVS5I/bqmVUYHpDloZaHxCzLHGuMIzOm0aRjse/MQvvmfPlzJOdWEAs7iXCPTwNTFZhLIcnnSSsFaksZtdI5SFahMhs6ewLHlZ9C/pN+BP2u332md5pH5U4kxL+M2OgXkAA3GEee+qq+W15nY5KGZLdiBAmeRmb4ECskMYcfXfiCgmISMnJhSxZp4whlDjLDPmp0U+EgefqpMEbCMFUGqHGJlIS0Lji4+wF85wvxlyPr27LtF9AmnaO+vvI2lKJY6OwthOLbv9mmjgFP4LLIvKP29/bJulmwzVrM/V+glYgnoA1JuW4UIF1B3PhbeIHy80jxNDe6cUZ4QayOOHwZ4776Q1fuQfpIOXT3j5Aw70fDNLBTnHa9oyGYWzYI60LiR9h2oCJkbZlc1VZbIAKRb2y02doY6LA7/P0y5E4/gOTfH+DI9MM46M3ccDGBB3R71olLOVNAVtG6x3n+DYLc5Noi0uXGkC7xAH6k6RLyLJ8HxmoZy2nGfC1lpVKlmpQh60Wi9xVI5N4X/v5RVFvyHIo1PkOcM52FWG0NpW3fgGqufDZMh4USC2EK7kAOTpuabZNoHKNMNW9cpL4GvmUoWEqKhZReICu8fkN3kDFAmYPUuI6EUXJ8N2W6SHmAWkhCVoAiR0asxbVGC/nOF+L/B/Lv/Q20uZYQNfYSFQxgR9xlvf7azBLceypLGt7tyfH7C9Fi/mgM1yoYWXqN8T5Lbd1e0kCcdG2vGApnoL7Y7HkBmvmi+xES6DrUzSlkYnWHayYRfX4Gcc+M9bV6X4AFbVTEbD1XEPDqBBImVeRMOISETgHXj3dshTe0XCbL2+Rtb3iZ4XY5/L8Y+rdAlMPMJnw/Htwk8ldfQrGCpfCQozgodoB6kjMkm4EX+5F/uTt0JkMEP4WksqUXxjVHsnohbqmsVgDpdeGW1+ElXlfCLWtZjflaSikpU2WJhANBHM/hwfxVpDW+FKHHLLdGJVsyKmSkVMnW0gs/HfpTQDaQFXsuIMP4fqRzziCHxbaxD7FrMxbojVt5mvrjv14wAQ71vqn9aH5TarSTcJIaB8jWCkj3ApNkHEeDjJHVOys209hyV75ke+3EiRMkSbLu9f73vx+A17/+9eu++9t/+2/X3ePs2bO8/e1vp6uri4MHD/IP/+E/pFqtNnvclVsnorAHkT/qRvz4IKuvvGMO04y1FaObNxYrbG0zUorrhhSj/9uTW8VAt9u3OGvH6jwMI6Trzaja1yDqcz9emsas881bo/nUj9wt+8NrCLcHO7Z15z1pxqy6Efd9Iw6aGEF89W0oqHwzQuUe4qrAJsZepzl0yOPn0Nl5X0OGqenK3SguOoZ47hBa11Z0P/Z894R72+rfhEqFvya834Jk7gE8AcBwK01bilfmnEQ89tMIhn0aybtT6AjNV7IeWm48vQ95+o4hXnMrqjJ3e+jUdaFTgzQ1JEyIG7ufQobp06jOyYMI4PZI+HsJsbUpEhaosZqVqWWLpNkUZBdxhN4xtEKfQCt2DK+9NwcBP52SUkFpULNhOJ1hSD1It+wOczuKZ4DN4k7NHQMYDUzUmI0RZxPZvO/1fog1V3ut2Wkxd7M0vX6gh4zPkfFHyG9SQ7uljFawjJ8DaMJn963llvh9991Hrea+6UceeYQ3velN/MiP/MjaZz/zMz/DL/7iL6793dXVtfb/Wq3G29/+dkZGRvjyl7/M2NgYf/Nv/k3a2tr45V/+5e136DiavzPIZDiONinskhCaCfCYTVjApzGY2Rrqi59sLxNRZtFaKPaFsEMT6rN2jNyt8ME02qdH0B5NwmeGYzFm1rw1CnCzxczssVkwTmAFbyyQ1hpAyZaaMSgDqh1FEudr+OliU8gvfUcYhqXSGCLMvG4vCIDH18Jm1MIfz+LV3D6GM/B2JMQT3EvaCl3EVt1oyhxr+5DOM4aKbnTjbHIU92Q3xajEAsQSeAeQBV7ET08bRxJsDBVCBy9fluH4hqHw0GNoHYfwEzKfwQ8COYu0HRNIUUwps7BA6GQH7sauoCyYFM+CEe4xo0SNKmXSNfFvHGI+dMpcCwNImEzhlXEkxGtkawrETJiCQ3jI+k0IkX4xDPEMjn9YYpe2pRFajFyPPaRbIZ4dx2ui38fCu9ELtkbMOchiHtSBiGQREZIhFr4HKVLLaMEtBtM6g6LlQvzAgQN1f/+Lf/EvOHnyJN/zPd+z9llXVxcjIyNNf//nf/7nPPbYY3zmM59heHiYu+66i3/2z/4ZP/dzP8cv/MIvUCwWt9ehifB+CEmMz6DN1MUuYONxlNCichYAsyk1v1CJ+gN8d69GmvUdP9lszRzafKu4S9HigvD8CPLYYjJSPRm+i1OQlpBlblklhuGKM9vX99fuHvstB3F2vYzYi9mNU4iDGrootiufp2buwpXQJVugFEnAKSQF78WPtprED2Bqjddtx826bwLZ6Op2xJYsdX0YzfwsEhPPIpbWWJVsJy0OzZjHpojk6nch3SiGFDyMHBojeLaeGXN1fD7WUDIcCPtWtAZfRLLvdcAPIf4xHa43QGKKn4IxFP6+HCboBNIsfic87wZkoY/iChq4AlET+C1NoVrTkdnVTJfG4XdTTCrEoajYjjb4aEf4fxteqscgh9Z5rxykO1BniV9A+ohFg+4Mvz6FG8+ztBAwnm3w/2ZtIzhM1vDaSoujc7Ej1QjGInNrbv0EUuNap5B29v0IQDEG/EM0c/8DCfJDyIdSZ9bvuu1pTLxcLvPRj36UD3zgAySJd/hjH/sYH/3oRxkZGeEd73gHP//zP79mjX/lK1/hjjvuYHh4eO36t7zlLbzvfe/j0Ucf5WUve1nTZ62urrK6urr29/z8vP5jPP525ItawKvx7aS+8jpHsQU75U7RVgOHpszhKLoVdotKNBqL6xpb+K2T+uyXhfDkeTzH9/kw6GIx24UY+hSywq0YxEk0G2dQ+PEoLijiOjzrW2PStVkbNyFxsog45TlkL5QRZzZza5s5A81gDttptty2cDNofx9HNPl1vOzZcTRp5o+ewc2bFygfttFQnUOUP4ni3odCNx9Cs9yGtttFtOatTOd1KJEL87sQavpuRDc/iByYfcjrfR7tBZviuhxmG6AJcTNgO/HDOr4X1UJJkGG1jLb8HDIQjJ+048cXlBGxX0Qel5nQ2Q7kTr8ZEb7xnwLuiw4u46wMtQoq61pzwF4M37Gum+IrUFqKayS10KlOtB8st7YSOm+r4uXP4ulYDN/2Ij1mES+xar9YoL6w8/OWPBFby83gMLE1sJXtbvcp4mvZgYN4bJpK0aucSdNKp9HsPIXUmynEg34bCe9vhI7cjR/d1DpOvKdC/JOf/CSzs7P8rb/1t9Y++/Ef/3GOHz/O6OgoDz30ED/3cz/Hk08+yX/7b/8NgPHx8ToBDqz9PT4+vuGzfuVXfoUPf/jD6794NaK8LyBKG0SLY5LOfIBbbo2O4gOIfR0M3y+iRTyBFu4S9QWYbRNtfwFjC9eU/oPh6ZYBM4f4/yjSjsdxcGwavfZSHth+sBj4ydCXIsorzSNS/wZe2esgUjZm2ey4lsZY1CAS5IfCUw6Gz59DHLSX+qNTDC1gUvEKg9hIw9+ObzgG7izjqKAMD9gaCc2FCbiEV9h4gfNhoR5YbbbcJSTT+tFUHUczOoOo/3J4X6I1h9TEKPl2tLtuQdNliSddaJubrOzCAW+xFVunl8XrsxQuWkGGVSU85HK42aO4n96cPiUcpGao6UHk9XssTJhV57sD+AmkWZggIHRyOfrM3FTL6KjssgR5kvlcWNfXG5sxcZpAX2ZdrludyK0P9ZnSFt9hMZpDcC9As/pDe96MEEwzs5dFM+P4+laKIzVaHbFl1IUfo2hIydkM5lNYqkK6rBeF8IMqygg4jJAjM2jx5/CY2hKtnK09FeK/8zu/w1vf+lZGR0fXPvvZn/3Ztf/fcccdHDp0iDe84Q2cOnWKkydPNrvNltoHP/hBPvCBD6z9PT8/z9GjR6XxmtAeRXNZw5Mut2WJx0LErEErTLiIBMWZcN0Q2rVW4SMuAWMa8PbYWoyJNME3iBjqAaTgPxfufgSRjvGbuPDMXlrjMbO1+iZ9iHQ7Qp+KwG8iZPMInnPaH/WzecSo0Qti/q6bEJBkEElDwvffhw7pnsPV9iKb1tCLoQ6xhm862Ar1eXJbmcxYCi6Ezyrh/z3h3uei72Pnzd6U+9tWi5m5+TpMLFj3Tbhbt+fx6GArmXu8PO3Itft7aGtXkEp3Dp2j8TSyzPsQjcUCfJ1L3aJfCV6hrYg04gHchT4eBreA1xu1G63ix5d9LkzAPeGzv0CsoYw2643h9x344QqWmz4bfhMwZ1kWHrFld0ZsoxvfyTV8H6vz61cnDmeZsI73pD0hfj2vAjyk8dETXl2IIGIv6yJOrA1ZAOvuF9sFplRbPZw2vPD9FFKwC8FfsXpJ79wI/CRy4TyDFvFlyMd4CHHmU7im0boY2Z4J8eeee47PfOYzaxb2Ru2ee+4B4JlnnuHkyZOMjIzw9a9/ve6aiQkFtjeKowO0t7fT3t6+/osx5LY0Ab6InwK17YIBMQUZnMwKED6FXCimIdwFofS9HzIQpxZsD1wVxwQ7cCx2MdxpDvhjZKHfguj2IkKwxi74babE77jF/W1HM7Mv9OEfodzTwTCOGbRXLE2pxmZ5xfFdLdHpqwhCfBRtHEs2MshcilScUzjkqkk8Ko6HmVvNltosrzzNvJCb05AJehPk1qUSIpXYy2mAAQMztNoKTxres4b3DVocjLAVGMfPbLFyrJY1Zem8rUGBeIs9pVWkDF5AFPBGxEoL4TuDEFkgK57GrNlNK+FvG0gbWh/zfs5Sf4qZXW+CYwAR9DIS2JcQCRLudRlpF+8N15xD6zCLxwMsr2yMXbrQYhvd0GLNvt+4xSK+ynos9XadUrtujTp8P2Iq+9Dc7UdMpYLz+cnwbh1udILaPc0Kb0fEMoMY0q3hvgbynwDaw8irZVhKoGzByjOIGhfQESgVFMP9Gp7xbwGmbwMh/nu/93scPHiQt7/97Zte9+CDDwJw6NAhAO69915+6Zd+iUuXLnHwoFzUn/70p+nr6+O2227bfkcMzrmKuI4x0Y00s01bTEUDSDPYjwT5K5D69ghCw/xHZKG/DRenK+wmMT0W4r1o7x9BYutB5GI0cPMynmNqTC0G4D5f3tkMj5vlEfk+G/p3G5qFNyMg0giawSXE/+z33owRmbS1EMYFBLkZQ5zxWbSbvwtZ6RXEQTfJKYxjYuaH7cVz42bD42bxElVL1APPtuteL+H81Uxdk36tTqexYTdiamLP6xXGYCzHPIvmMbFb2nD2Kp3XxFGM+bgRebmPoKX6U1QS4u8j2+cv0PL1I+rYsD/xuljnDW1p0ivWZGxwCZ6EUkZ0cwRHkt6MNqStcR/Kg/vXKJj/3QgUcgvSMceRwChSTxMxsGBbE7pFLW2TX9svG0XO8+4cit3evXiJwINocfuR0P04mueT+PnlRjiNmcoWHTU30jxy79izjGAq4btHUbGCtqqu6StA1gvL85D+WfSj07hPKsWPIJyl1acX7YkQT9OU3/u93+O9730vhYI/4tSpU3z84x/nbW97G/v27eOhhx7i7//9v8/rXvc67rzzTgDe/OY3c9ttt/Ge97yHj3zkI4yPj/OhD32I97///c0t7Su16fBexeOLsS9o25SYwznwASQ8ngDejqzxCjohaBpR1ARaWLMLYjtz6834bgzuGURqwgzSU54BPoyEYRnlYb8KheYex4s1mMzZK6xUrL2v4p7IWVRz+ZVotj6DROx9SCWaYKtYw9ge24/m91nk6zIpeCl8fitSosY3vms8sd14UfB2JCVswlaRg2UW6QRmKTXT8OPWiHg1rFE77po34WG6XaukX+x/jnMRY8FkQmiLktecgWadNYvRtlpJjGlqBbHGS0hxfUX4+4sIHd8O/Ndw/TlEVyYHN+1X7IU2gb6RwmM3iQWE5WUNInT7g6GDw6EjGRI6lxBWZxEJn68g8uwJ9xpGQmoJFyzGu54PN9oGbW+F9hYQpDEcqR8J70No0e9Ec3MzmvNOpBwZsZp7fTW6l72bYlDEk99fgda0A9kIx9DalpHlfxlIqtBR0n0TM84INzyPNIl2tJDjeIlQwyO0pu2JEP/MZz7D2bNn+amf+qm6z4vFIp/5zGf4jd/4DZaWljh69Cjvete7+NCHPrR2TT6f50/+5E943/vex7333kt3dzfvfe976/LKt9Vmw7ttzG2Ck5s34/g5tPNKSEwm6JiCM0jA3xUeYkUXZhBF7LzFWCtL+zgK/G7ozX9Ccucy8tCdDNcM0DyXs9WCPHbgWdWnA2iPnUT66QxCC/wgAmffgSxxi6NurKfGfmmzxwyjPI1mZSLcKY98lxdQ7pZtniZ3jsEGvYg55BEzNR1gDDGHBG32w+G3VwK8N8IousLrYOjSYLifuVLnWW8Z73SBksSF91o+Yqb+LOJu/Fgvjadog+duZp3B3jD72FC29KdHkZy8I3y/iLxSZ1ElsVF8OreFkt/IA23fNbYYzm1GwxTaeA8gXj6J54E+gCzvdwL/F5r3sTC4ISS4RxBt9FBfqWb7DryruCVNXlCvDoZXHJ/rxAGhs2iup1A8ZQi59s6ieTyEp3X24JaFydD4vgOo6FKK4xfuD9c/hPb8gfC3rcvZKuRLkC9C2o4OUW/HQQ3GCe3VegjgngjxN7/5zWRNjug5evQon//856/4++PHj/OpT32qNZ0xBGjsVdrVJsjQTuxFq3wIAajmkQAfQ4s0imzNLqR2P8puHNkxSc/i9YpP47HlMqLhU+G6Z9ACP4Xs1Xnqwfi7T3jbuK9GunGI7w/x8NJ+NFuzaA8Nhv7FUIX1/Wq0x+bC3QeQKvMgko4vR+bOfWj+J9kwkzW2VG1pDyKN4wRiphkStEeQttGDJ7fHsetmEiIG0/eG+1yPV8LsCF03AWAIrHhhtkWzgRkmCeRy0JZEBc8z6Ethsab+91FfF9UwI9uAbTyf8sRWvoS62oWmfgKv0taGJwCcRkOYZ4eZetsNj1j2gQEWbVNeQmzCkO6LaO5HgfegHPLXIOH+IHLsvR/RhpWe2L7z7ipvjflhje6hGPkQNkKSOSK9C3ePl5DQ/Sia+/Nou5/AwWldbFy00ULabYhR9YX3fTh+dgCt30h45rcIeFlb/BSSCmTGSMzkN24Ya/uthQDuKTr9qmgtdT/FQsT8M7OI+z6K1yPrQKv+OUQ9x/HyhrsT5LGFO4/kQoqiv2Uc17GKrN9vIjkziui8GnoW03GrvXSNQrwNL3ljXumHkXvflI0JxN9MiDdntnZns8JnkZuqiJKLEuDHEPf8IlJplvBDiC3hqeHupombpWza9rOotvkg2thP4An5RRxFbIZ/I3OIYdQ9SDk4ihZjAZmNc2EChvAYHuzwIG5zKeQhyUOhAO056E00poM1OFCD1TJ01eBApkOu51ifCRmjmq6SFtOVTXUvooQn8fDnGM5Cl6nXS/ZE6TB5YwTfET4zEOSh0LHzSDDcHN7vB/5N6OQvo2B+gtb94zQ7YOw7pMUAlEYEKdRn8gQNOalCkkKaab7a0P6cRczPFOW/RDr7cfw6u3WJ5nOZ4bn6PciKP4/YiKElfwD4Bygs8n1oP00CtQydKZuhI+oata0mXoUWt+98Id7SZlwtFiJfQhzwFOLmNyGBcQYJ9QRx+qcRt4SdCPFYfehCW+BJPNPlNTgWxpzMk8BLKVAkC9jI2lqMupf16SGtIq9G4yTBQ1iWC/4NJMtMVs7ihuDmbk9zp5tT1YAkN4e7XUBCO0HmriV3zrChJZ6gzW4YxT7kSv80YsiPAb8A/G9I2P4kMvJr1JfKa3R3NgPiHEGk0oWUAgPLnERC3awCQ6g3A+M0bVHgPWmHXDu0dUB3Gwzl4FAKnYtQWdEYbqvBM6u6/014JqTFx2Nd8yoSIrEKbTtxCTdYLQS6hNtDW4gQtK5jK9RX9ioibdUUOdsQXUjP7Ec0sIoUxtegyFwX6yNAV9E67LzF2SXGydoRNzAt8lz4vJ91JZOrtXoMQgUX2k+jeSqGz9+InKGTuAu90VqJDeVOxFKewDHI3xu6+efhPv244r5MxKxsoxjasfEhe9euCfFtNVtxYxPTeOmSmxHB7UcUcRjtXsuEXqa+hMLOLPHYkdyGaAlghoQDtPEZyryMhOvp5Hry9AJPU+Ib1Ogg4SgZOWS/ZSPJdgABAABJREFUmrcvBrq1qpkBZ1XirN+L4TlPI55mGTuWyml7os4AjEEoWehpZkm9WfhVX7jjY+Fiy401J70l426QU2gC19x196FlvYRcGr+J1xn9b2EAh/EyeXFIj+hv41eW/30x/G2x0j7gDUjAj+Iu2SmkICzh9Wg3JBnrfPAzJj2Q74diD3R3wlABDtVg4QxcWIEnK7I0judUFeVYCvms+SFLLyCQaqNm8jIGT8bO2EYHZquV1KbNHhprsJZcbTS1jAsZg3JY/Y8MWecXEPJzBMXBYpDIVaZQbb/FFng3cnEZGOUEDmDqRpMBa/GlDMhWIFcT46shq8AYC4imOxALPo0AN7NofmfxY33jOYzdO+No3XqQovsY8C/Dc1ZCl/YjV88U9SyljsCe30W6JsS33TIcXmNgqgUcVpohc86i1eNoxdtwu2BnPkoThua1y5PnULA/xsmzTIFuEr5OjZQiKW08xiJzJGQkTJPyRnLcRMogsoAth9aAuK0kv1iQm/JsnisrGmLM1oy/NQEeY13WeahSSKva1FkK2Wq4m9lj4DvTqmhswaSxcFUVLxrdgZb1WcRwX4mWfRjFJQxY0KxZ32uIVz2H4gYGcruEmPV+xNf+MxLovXhlsGZu+qYPMX9iD6QFqBUgGYXOEehvgwNVeMUIfO5LcP8K9CRwIYU3F2C6DGczMbr+ML7Yu3AVCo7Y219lvQ4Vf/+8dr+xYxb6NfIzr0+j97gHbYrb0DKeR7Qyy/bTGK+q1riRDV4+gDbREaS9/hXScAtIs7wDKd+GvqyFPZ9CWoOxTB4kK1QwjpTqG5DwtcShTryITqwI2TzGmmAWunknEtzfRAr1RcTST+C22yWklG+71kjr2zUhfqUWW4EJQBoWbBXSFE3hKvAkSbCP9ZMKMEHGAtnaERFbxsc2bTFvWAJqJEAHHRTpoo02CqyQcIxuZqjxNHmeJWEfbcyQMUTCCnl6qTFISjfpWj1pkzWtbs14mrlD4zGl0bVxaHctVh0LlGoWahZnUEtRkWkze+zCGBizSXDZNrQ5WFbQ5BZRmlA7Ahl9MFz3hvCIP0Ruz3k21g2MZqyy1DHEnIso3tkN/D84WOEgLuC3DGaKrXCDzPaq48l+aL8duorQU4H9M/D9ZRWreHwMBttFug9k4qFtKP5nRNEoGa+qlqwtXUq2ZSD5Dh5zZfB0swfHQsLIEVyO5RG9tSNZtojkWRcSEOPUC/HWApr3uDXTwG3g1oZw+P1R3O1k7q1VJDUDiiZb0R6vVmG5qv16GqHJcyhmvYBY7Ek0b6t4BNNcjo0CN46QWvcuhN/eiLaSWU3zeAGZKVp3us8u2zUhvlGLadBea5wiWIJrIMqUhCUKnCchHy6T7ZlSJmMVnS5UI9vlTpS8SYJoylGgmxKd9HCEaWbpp5+UlDNc4ge5kZSLfJFzHKKNWyhygBq1UImiSEYhuNf3ssX8rlnmTh0vjHOq2/F8arMMU7SBCuiP1QwqQZCnzbKW69SD5i0OtI6He9+NNPFBJOCWkfHwJzjk2W4bQ/5hvfBbwQ9VvwVh72ooFn4RMYjvRZlwjS6JKzIH89kbmqobkjsEbFv4FizcAgs98Ng5mFuAUgkKfXD5IjxcgfuqMJrJAu+gXnhfdQK8mVsGQEd/tNTfbI/KR+/22LV9z5XJK+5SGZ/XFEehtuNHlp5G7tpL4RoTFC+wtbf1Fk9cXJjANjU4QGQMScwJ4H9Hx6TW0Ma7BPwo2ng1oBvSBaiWoJyHpKb5vIiUoAu4DmsM7XJ4zSZuba+tVTSZMZ7BmNQysrhtT6R4PX1DS14lHpJrQrxZixXHAn5uhhXmqALVlKRWJamk5JM8hbRGW7pMnhwplTX7qEqNKilVUmqkLVHa0sC4U7pYoZdlKqxwmWEOc57H6KKNJVKepsr9TJGR8CPczI/Ty19xmovMMV1P0c9Lyxre17XYqOzGzy8x97Khfc1FVgUWMliuwWoidGgWC/FNn+Zfx0H7Ktqkl8LnRQRAsmvHkAA/gbtAjcHGQVlrZolVkQZ/J6pEcgMS4jbmNuRBfJZ6BrEpwSTRDSwRPDC9ymPABEydhq/+IVTOwMFBqE7DaAfMVGC2Bi9tg0IK783Lvf5o9jwFkbfTmll0JlWN68bR712arLEiaa5v2/+x18asO2Pkmz3WvrOYUg3RcBdathqyGiu4lUfD/a+a9diombVjqPMO/CiwEtrUfdQXKH8UrefDwF9Hg51DG+FbaDJyuk9WgFrO4S5mZS+hvWX4lCoqhzqfSIDPJ7CcQCWpR5Obkm/rAf5/qyhkcfQaUrbjdWxlRcVdtGtCvLHFAKcORBhdeIwyQXRVglx7SmE5o30lpaNcpZOE9hQWqFIgRw8Jq2SskFEiW3Mh727djZEVqVFglS4KtLHIMnM8QBsJJUoM0sdzLAUjMc9RbmCBGqc4xzkSOslRDhb9VeGli4VZF7J6DyAX8z4kMC+juLLFkC21C+RazwibtOG+8bu1RpeaWeI5WDuO2Z5vkZAeXMG4iLvsMuqZvDkAkuj/7eH1LBLkyyjO1ovobBL4n4g4ZnDQzBUFajxxnUB/YFIFyPfC7BcgmYR8GSZn4YbDMHYGqgm8ch8cqagvpzLPXbyqENGxRE3wUy56cO5qqUixz3SHnW9U3oeo3/8Z9WGXJTyLAK4syGNsqyGsDX9ptG9Ce5dDeX6b8SVzn8UaeAdimkUEI+8Mf9+Bakr+F4RIP4Vg4LegBPr/jkqnjaNcnBykiWjX0hNM6Z7Gwe1pAqs5WMnDSgFKeSjnoJaEvWE/jBS/LHPGbACeFeodP6aAZVxViu41Id7YbBNbcY4BPE/YXDVTkMxANg25tozefEb/EvSvQm+WUMggT8o0XihoAS+6t7vIOMR5UTWqtHErNb5EkUP00M8qY1QpsESNGRa5nqOcIc+neZISVZ6lwgBQIscqaQuc/C1osUFp3raj4TWMlzq1PO4xNIkHcJBAowu4MRxirdHLbn8botjAMpdRSUxDp54Pv1/ArWVwuogNw1hLr4brJ8N1Z5AiMIGSGkxBmIqeG1e92ZRQbMA5JHEOIEb5CNQ6IVuSax1gZQUm5uBN3wdf+hyMLcL39sHZMkxW4UwmMNBVY/3FaGYrdWfaVScOSCjiR1ZF6UjbRXnEniCrDHYITasJ757w2INIcEzjtGUK3WZz1ggSsYR2oxcT2o30edU3A1d24hr4AaSB96GB9iKBPIIGuwj8PtpYprU+iGD54yjXy9xX0WTYXo3DYGvOmRykeai1QaUI1Q6otgvsmVo8zpQ+y4cJk2+C3EIlG2EhXvB9Ud+uCfG4NRbnsLzhEbSRe1D5vW7I9wEL0NUJ+6swnMLBFIbSjIs1kXEX9WwoRz0N7BxIZnHQNlKGqbBKnlfTwUHgHGXOUaDILBepUmWcaZ4j5SwVMqCdTqqUmae2jeyVZibtFl3WWx2SZZv0UZ9THRtdd+HudUu/MXeaTXCGT5FZVHnqF8CsHOP1JmzBF8ieaYi8ReqtowQ/IMWA8RYjj/PmUvxEGvCCIP2o1Jh5FGbwON4CWwTN2JfWITMNjwNTkC5DoRMKvepAvh9m8zA6AmfPwJeX5cU4iLtxLV3gCsxqI8yXve9O/rjHyQvaW47PACKA/4Em6OXhMyMCqK9HuMVmCnwnflT9CbQ2Z8KjZ8OtX4kfUR979K+0sRvj6vEEGu20cFs9Py1mnMXwWQfawLN4EfLLiJGex60k0CkPC8ja7kKwc/Bj4p6hDhhgZ7PGylAOSCItLO2CtAfSPsh6IOsIP5jGmYeZVuZKCQsYE24zdneVtWtCPG7G+E2ZHEG88Bhicr0I2JQBR6HzJtXRyD0Jwx2QX4bTNZHECnIWvQIVEVpF5GtGzu69MUno6CQVpujgR4AuBvkx9vEAZb5CP9PkKFFhiseZIqWTTgr00sk4k8xTpkRCdVNLvBHh10jVLTAZ4lCnKVBDuHtsCfhxtPc/jHj19+HlFKfC9TM47D0Oh1iFtQL1FrctlBVUSRve2/Bzv2MdJvYY2LNuCM9YQszdeNQsXpTCqvCYItCP+JPFRw0Bu0j9gRdXFOJm+k8h034auSlnIXkw5IBPwMBd0D4AyTHYvwiVObg8BcUclNJwpGJ2xUOW4kh8jPmKowdxdHpnXp4YsGeoxjZEHKJ7adh5BEdexQVIHB/fIl024jG6ws+XkCx6KR7aTRFy2bCEljnarMhBM4BgM03nKhUQW2u2Vu2IcXajNLHjqKDCBH5IwCnEGUEa+Ukclfan4ffvRpsgRflitnkaNkTs1l4T4CEmkQ0A+yE7gFtg5/QZJfwUE4vHxX7yqH0brMs1IW7NBInFpfqR4D6C17U+GD7vhuIboPhNyM6qRPVEGV7dBudz0JXqNk8hT3AXIplL0KJkM3BWKZOxymWWGeUi/5U2MjIWOMEPcIRbuZ9/zGkucIIbgFUucJZZciySo0wu3KUZqzXBXYheMaDIpJ1trkYOto0Wz38nnnmSoFjxfQgQlkfrcRoVX5nAcTRxalYnEvIDrK0ZbaF7VsRtFi8TFxtu9lrT8KOpMLBTN/IWPIYY+NtRGc0SSns1K9522DzO6K3S5FkccR97+FbZhgA3xjMXOnYO5a9ZZfFXwurngyDvgeUeePw07KvBI5PQUYUDCVxOYTHzmPgGz44hIzHmq4CDrqthmDH2Z3sKa6zVmUbdh4jCFusR4IfDWBdQ5cROtNPigvZbfHKj4W+DHI7+nkfe3pcjBd+E/BxeoN1AV1AfyolBj7Hwucpcs9tvsUpnf9+GrOljaHLK4fv9SGgPIRf5AtrID4ZrDADzX9DEXMCSaX1ym0xYBgK0NsbjevDzhAuhX19EGlgfu6xxfNW0a0LcWqM12Ito7Vn8wIsqMALJqyA/CMU+6N0Hh0swsAyvLUCyDM+VJV/+AlVPvwtnal3Up+HurJkALyNivYEa/VT5M6ococQyVR7nDP0sU6CfH+IM/5bHeJgBRqiSZ4Uiq1SpkpCtI2DbmMaq7SSGHCL+WPKYSWvxpV1A5WKjPx9u91XErzPgZ3Cr+Ek8t9YARuCpaaaEDYd3Y7RdiAEv4YVXbEpjF53FxOzdaMNAt4PIELTKZi9B/OEyOkWpEz9+0tzr5hE0AFkcR7dnxnibLfESiwMUwiBzKOYDJMPBjTgLtQEoLcPY47DQHdzmiZZuvAZLNeeRGyxhI4SuCzdajTosRGlZOHHl0O2Fj2KNbhgJheuQX/thxIhfjtVj8B4OUo8MrLKlFq9xB5I1N6BSuPcjJXIWNyZH8BKEVsepgnPUhHp0exY9w7Qcc8tZF69C2bE1b7Kpb6Y09aDVNqSmpVocRtpuBRVZeJz6GsO9aNOcxcuypWg9zZ210caIPTd94bPzaJN2h/+bdb+AXCvQvF7kzgOdL0S7JsTjFluDHXjhhRS5SD+BuNhdsPTvoDoDnf0w8xScrMHnKvBARfrj/Ui8vgmx1keQHhrXeN6ZEDdJY+xyHpgkoxsR7A0k9AKXWQEus0iNp6nRQZUSs2RkdFMhpUYbKStkayaisdpG32JfeGYRbbR9CFnWhZjmLG6KwI4FeSzMKsCfoZTRXHjsJF6psYYKr5zDLcck6rKl7QwjwQpurR8K13aEz+N0oXj/Zg3/N8Zswx4BXosWdgrnZX8U+nYYP6nGpicW0M0iE9t2r8YTVsSrCHYJeckCUiPHYTUAv5ZQDfWsqPz6lZqHIeyWDa3RUdWHdNwh6vEfFcQqZ/BqlxZ13HqEOtbk2sP4ziAh/ixy0+5HtWsnkMX3OkQMT+JQ8sbwzxWa6cWmOwyiubIKaiA6vBl5YF4burWAuyTMe2MT1R3utYCXAzcch8EXdqbl7Fmz2W/kUbGOu548MzToI2iTzSLqMOH4HO4mq6A1W0UTNIoL+iqiLkOPznHFksl19GLFjvrDd/3ozNd/hlDvlvb2HH489HR4ToEd166M8aXx389DyOSaEG9sScP/rapWP5qtbkjOQX4ftGVw4DqYeBr2d8ITS/BkJhE3jk6cfB/wj/CTwxqBQDsgF5xxmxC/FDo3SkqJGudJeA01plnmMlWmSbiVjH5KoaxRSi/pmr20gHMUA5OYz3gQmbKDOLL0FtwnbGiozqhvO4iRx7LILJwOZA0dRoVQ/hjP13wpWpMxXGjboQU94bu+6P0WxIjbkCfvq2H6DuL8Io4FNwpwqLfUFsLfYygTpoCj1fvD/Y/giHorGgEuxBunZ8eb3KwgC7qvIiY1jtvE+9WJrAsqC1ANdnJWgax2RekaOyt7EPs7hNjvfkSBU7gTK6bzHUSoo3GVkFrchoqBDCILD7TDXoYAE2fxerEWrd/BLrO1mURpyuNoi3Xg5VEvIfrbj3i/1TQwgzKPb50hRA9TaImO41rONF4uPJaQL1CLRaG9mjmLGtdTzZR+28Q3ItPFoP1FNDmnEJXchDbIaXySTZuJY0sGWrlSfKnRT5Qg6vwudNZrDviPiBHchmjpZrRIO1T6rNnPGicN6kMne+StvybE4xaHeUsIdGQWyn7gY8ATkP4udByBoZfCwlfhLa+Ce8bgl8+JFK9DcucXEPm9EpHMAUTC8TrubD2NMsp4as0MsELKFNBLxuOkDFPlWTK6SOgh4wmgQMLtwfq2303iuTJmMzXGlrqBt4Xn34g2wjyOzDKX5g6SW+M4oQG8ppBL83tCFx5E+/FxJNj3hUeP44hqMwa6ELMso+PSzoXuD4fn3Y8Ybg4t1iXEpM1QaNbi0J8Naz484zEkrG/AgXbfhVePNG93fO+WMmsjXIM2V3GNxny2ZUiL6lCtSWrNFVrsrLRIxXE0HSNoCcxPM4Cm2KKghvvaftaa+Z0Phr9/AAmG29HCmpD4HF44uJk7Y4tPNEOugrbFLNoa50IXbkD0eQuuoM3hYGvzBHXimS0rSIm0uMKFcN+bwrPMe7MzLadlLRaBpp6b19CCZxYJijPyJVaz6C4raJDPoQ1yOfzyQrj6NcDrw3WX0ea7hCYydklUo9dWpV8cE8mhBXgQxUIeDaO7hBhKMTzzIOsl7zaaaT02cZsVBoqdnS3c/9eEuLXYS72KFPuLSNnfhzbwFPBZXVOdhfHPwf4O+MacvJMHc7BY88Oq3ofA1EcR/OYJPIS6e4XMtpWp/guI20wTw2szLgH9ZGvW9mEyjqBejiB/oEXprUc1HBm2P/z9YLjmZeG7p9AmNGh4DT8xJK5SssUWz73tfcOdGGbpZhSfWEQ6w8OI2cb5tgZOyuNuzMvh+hISrs+Ea74LT/eK9/GVDLci4g83ISXiCPIOWkqcgSBvQUthMf14rC1vsQQwBc9MA6g7Qy7bHogndqWHcjLsQ3bOJDos6tlwt58M15v3eZj1DtGttQxHl+XD03LADwE/G570ONpNlpPXT30UfhsS0fQgc2j0h78v4drJHYje+sJnfxUea0h2Mzj7w8A7cRfFEE4bx1k7q2bN6HwBC+zEwTPDlPbiVUwtelXC/XYGLyyjYtLZ2iZcROtk8eWFcLdXIKZ6IDzxItqUU2hSF6lHVMYeva3ykdhfcFPo4ddxtKGpmLfjhWh2AWiLMVQ2cRY+sdRDo6cl4klTa5EgvybE42abeAXfuMeQAP8s4h3vhNwrIXkaqkuwOAddVWjLw10dcPeSxNspRB5fRus5Hj6bpRXIdHBmbYxqBbFUc2334q7wI6EHhuq1kmR3hnvNhF4O4NZPB57rdRiBpf4Iub9ejTbgAM4894V+XEBkVWZbbkzbe8YHLoefmj5QC0MwfMo0HgEwwzIGyI6F7h8PQ7oUhjKC9JC/QotxMQxpEY8kNGsxf6iEvvwRcrMcx50XGcotNg9hjm0y6NgF3CwiCRvfJKYJAwnEWkmz19aaGRzG6M+iVb8R4fnGEZu+IXxndtUA68GcV6aKeLJTNJEZ8mdNoMl8E2sHvTAUfncZLeoO8j9iq8kiED3h8W1IIz+PvC5347HwHkSDU6x3YPUjpl5FiuMhtE1+AYXzF8LQ5qgP52y5NUPWbN/HFytoA3g2/hDaNkbW4CV3THCIijJqdeG9LsQ4zZZ/BQIhVvGSqufRWs5QH8rbGX3Wa2GmsH4D0cFAeP5+tLgPIDffEaQI7sC0aowvDaCJG8KB7xkix3FEE3H4ZJVrQrzlLXalm4yrIno7jPOTZyB9GConoDgATMFgD8zNyVY4UICbarA/k0h9CK3xBPWniu9eiMedNgK0eJKha0yfHkMEbNFKA5c8hTbVIKKwfrz0WTsS5DOhty8Jo7moSeAyco39nygX9FE8lzNlR66p2BIiPHY5DMEsdAO7WhTBhHgNSQqbgn1ow5zHT4q6HRVX6UcpqadDN4fwaMJm8jHmEXbtcngV0WbNkGTrxGVPbIZuyicac5Ia/e+Nr42afddsDbZPdXYXwxF3IJ5VRnaOZdu9E+lGhgcBya0ltnsoWrPNaND5RbSA5vMuhl7NI9qcDtfsQIhbRGIJ12tvRq60byDmPIqH5pPQjVm8ZK9BSXqRNvNaJPhvDp+fRU4t8yL3IZlnLtgtaTm2h+0Vz2psvV5ZKMXKWS/aCkfCK0XQjhwKnh2iviqxx8dTMmqka+G9yXB3c01cRsCR7vCaDp9NonUzAb5Trhi7UZfQJLejyZ1DXpv7kAY/gRa5L/zf6CX2AmyhD7bW5vkzgMgAop12pNE+gHiRhetMWTR50gJBfk2Ix80m2LSkMqKHVeSd6UTycBbSs5CtQq4NZhfg7DIsVZRu25VpQyziDubZ8AhzdLbOaxZrrUYR5gBL8HqlGbKgv4Qo7ggyJUcQSmcGcRfLkzEGMYaXrrkB1TbuC/cwnH2M6NhFilnMSM0VtYKnQCfR56vRy/ZeLvpNgvboKoqrW2z8c0gpqyLJY+lf7WjBNtrDRhsltO97wzR0h2d1huf81/AcS2U7jxuHpt+sazGkKM5LMq5uDKoSvbbiAmytX9Z6mOE4rhpaHsvunUIwg1cgHempHfckFuJVHFn2DI46seD0V5AAT0IPNskp3uojTUnrCwM5huTNIzhQbTa8DJPR3nC/2XD9KhLkRxFdLOImbjvrBfimzVahgGfox3Ri7gSjkc3DWjHWwWLfHUgJ+2zoqmVp9oZrH8UdEOYdrtVpuITn9oY+jSNNtjN8Phk+D+DKlgQYYzATeOGjV+PJ/M+hwGY/7tabxMsjboR+b2ixY6sQHt2HyPJsGNbtiDxnEUCyA7FMw+vtMhs3bteEeNziPWD/vxz+nkZ81WhxCtIUSvMqQV2qwkINulMvNGawDMNeGWtpMa4h6nwjQsaEQzfuG3w5XpfY0FenkUQzjbiIb4ojuNZ6LNzrPuCnw+T8FjJLTICb8NnMN71JaxbaNZ0ihsmaO8MEuE24uePNsdCB9vF5pKc8G747gB9uMRENfaOFseeWwv+n8doqh8JzTuOZLUvhmeN4qc6mvCqOOFtwzTAN8VxOhx+WqY/77n0QNeZXARrHRTxVfgVNYQ1RyB2458m20/ajjrFGbdLNQjRTSLnsQIt9ET/tylyzO+CQ8f63dMBVtCSnwgSsIr6f4Gj0OKFjIXTnpWgixvFCMUMoZXIY+JEEvpXBWBImZSszY8Lbghr2MpMwDR008bq5tIjVwzxe12waRQs6w9MmUILOq/ASDJYMMhemIVm7U7wxV6g/R9hSxho9h63giLZ4Fo9YQpvTtG7zENyPTOYppEnFQnyL/YhRgIfwQoFHcJzDwziW7jIa/ij12birtKRdE+LNmimV5s4FB/suYFRLJQfpMlQrMJWKXGL7KQYmGjq3RcrXJi22ymv4YRGnkHqYR5H6UcRlOhFhPxl62YerGyuISk+F141oUyZIq50N11hStk2W9WMXQ4hDu5a62TjE+GUTbh69qdD1w0hwfy8S4hY9GMUF+xz1fH+jrtvCVdHQTabOoc1rAtuChqvh/vNskuYa20IGvLG8JHM9zoaBzIffzOI+etM497bFInUBTeFUePolNOXPhWsewtUMi47EdvHWextbVzbZndQDOmdwBmxu0V2gTkwWNbrXzeCNlch4Q5sOa8zdhLtNSj/aZrZ96ICODFZSKKdQS9FJfBv12SxwC8L245XsLEu/imZ7jnppYfdsLsiN+kwXOYC2hlne80j1v4hw5SeQlT5LvQ/Om7nSTOHMR9/ZpMU8qhX0a/cz5dZeSzhgoT/06WlExQZGuJIG39ASvAJwB3JTFIF/j/jKS8I1x8Jj2hEJ9+FbeLNMmG22a0K8WTPKtuIgJkBss7aztua1LCx9on0YE3Qc/ogtkb1jufFmNbN0GQmDl6CteT+OuPhj4P34ZiviAjzBc73aEUXO4gzjASRYDiBKfpZ6adUCC3E7od2Y6S7jhutq6HZvGN4N1Hv95vAU1Svxk9hDsITzjDk0BSY/FhHdlPBiUBta4RaR7EZO6RHEnGu4ZnAYcYCVMLBYmtgk7Z1qaE+yaZvHD/UDTe+zYQSXkUFi6WXjiPkbS90eRcRPtvcS9RzQgBImHGL3zA6brbFtIwM3J9H3ccjZ3BQ2yBWEl3oNcql+E01CHjiRwKv2w6U8TNVgrgrLFShXIK1BVmsiyGM66UF0Mhxe+8Nnlk74eJiTQerpZJVm3MfUAoOiDiDyvQtFAkD+utcDPxiGcRZ3VpjBYr3M1ibI1qJ14Mort3gPxNbXLO4NMFoxv/bOkh/XHGgpbssY81/AMxlWcGyxaUkmR3YAG2rWrgnxuNnCxGkD5tlsx2nAXLazQFsg2aqTrN1qL8l14xb7oZdDJw8g6XUBUdRNyERYRltyEnfpmmVjMXFjHkMoxhQjyr4R7j2K7LFNTc7dDWkrzRR7C4vZ/2dx32BsXVmMwwN7V36W8YkYN2GWmskV8+rFybRN723E1oEf3XYsdNoC9sPIglhE3pBi+MwkxsYMupUttokNojASPm9HAH37LMFtYgP97xwHEu8e60WjYEgb3lswD42PhfVVuOz/5gWqQqilJJ7x1RxcSqGUQC6DQx3wuv0wc0Bb8WIVpkqwuAyL81BeDfdtJBYT4kYnBxGdHEUz3o9oaRIpebXQgQvUJyg3XwEbzpFw1wpegsHC+d+NOyM+G55kuJ/ms70dDbzVzZQI81mbvyDGDcQK3y6UvjzujRsIn51Hy/AJ5A18D1qqC3j9ioWdP7KxXRPicYt9S5ZLMYyotRevn76EFN4e1lzrabThGz2/z28zSWYsdAo/AOAYGtQokmrPAF/AY4tTuCPUoJQ5nHkYFNvcUAPhmQ+y/iin53/kgPP5JVzhXsAVcdvf9p1hgLYjYWJZYQ6PZpbapu4XE0Ixc66hM++OIYWoHylHD4UbzCMF7BD1xdiNYe7dvMf23CIOQbC4uKWdWRJjETdQGqdi5z2IY5bN4it70LZy65gWTPedysFQEXraJLyzdqgUoXYzPNErl8XYKkwuwuIslKtQTSExN3QM9rCbZmj/Hgj/v4AY1DmklI+gvX4kvD+L05fRyvquxz6OsWgoLw1PHUDrbE4r8yBblHvzdX0h+ECs1NmiNNJLvDF30MfYzWr44RUUd/gWiokv45iIZ3EteDdA/CbtmhC31ujZbIvea3g4uYKQHvOIa3Wyzr22hQJYe9hiS9wEs2kfB5A2YtZyBTECiwmZ3WTM0gi9igeQrYJFIdzLEl1j7fYFbDZ8qLfMY2BcvAHjYe7kOSn17hf7zt43vW8ct+lGa3UBj3Uuh47fijsv78BRVXEMwIBfeyfIGyPU5lI1J4dF6S0j0CIJrQVzZg3vV0kzWqsChRxUizDWBQMDcLkdOodgYhnmu6D/JfDcGaheBwtzsDwBWRFylyCdpT4sBi7EDd09iKBnF4Gvhb+7kfo0jAAgczj83azR2HtRr2uacnY23OkgssBPovSyb+FZCPtYn5jVguBZi1u8+ZpR3i56axNnzs5BFHP4bqR/gyanHdWRWEabw2pHbDMEf6V2TYhbiz2b/YhS+xAVG0jpfuRVNkoeRngw2xvPD1h4Cy2OYCY4rHqG+jM5B5FwNna8SP2WNAlngb55NBk1PPgTQ/lNouWi5z5/gYR1zabBPLDWWhnj2NU9jHBMkPciTnA3IrjTiJ3ehnJdfwep+N9NfXGMBEfM7J0gj622mMIsQ6pCMEKpx321ToC/MG3LDuEUqAT6zwpQ7oLFQZiZgeo4DN0DK6NwIQeVu2HpNKQ36bpaDtIY3R1ro2ZNF/BTuSyfzfz37cgcfA7FyY8hW/oxXBlcPxJT0a1MS0/49bPhs5N48cqhcM155EjYo+DZxs22S2O74h5sce9iO2kJbdsUTVQNuc5fhfSsy2gbL4ffzXJNiO9Ji3lpJxLenUhz2o+E9dNoQcwiP4gjdyxIaAbvC95iVdEozqKZhp83W8owxhnr05Zis9XQ6mYVxM8Cj58T/Wa35m4LWrxR3Ai5SttdqINPojpolj50E7K4/lN0zVE83BHH+6K4TqsHm/jKZgjUaQIgBnPG6t9WerEeGOX3eiGbib1G2dE4y3VfpAmsJmFi8rDUAdwCaV5FJFiAyhhUZiG5A7IvIc/LKPVHmiX4vrSYrgHYcqi0zhlUjuU65FJ/FmV4fw6J3FewkfCOuxxnHRQQS7McgB7ENUaR+pjHK0/EiVl7ulaxXdCYT28EZp14PrTFWJs1EK0BGx/AnSVzCDywL/R3HNlRVvHrmhBvcWvM4NiHqHQa7Y9BpJY+hs6LfiB8b7l/S6zFx68OYREL4lhtjOH2JtxN0Nai3xD91r6L2ZoxFrMirfCEQTYN2RUHnl/AWDkteHQzS2BX3t04mGoW9HUIwGaVa1aRQP9jpPI/jJj1qxBY0ea8MUbQotSzpMkrPIEMUgvjZvVkfyXjKL5dTFX220bw9/PZrE9G3QY6jmF0cfCoTlGx/1TboLoKlSoUXgrlz+EC+XH9KqshYZtHIaocsgwytKeMJqA+F9zo4mEUajkJ/A/8+DTzrNne23jfNcojwtVjyCH5AA5gmw3vICu8VWVaNm1mM1htGzOWYhCpsZemC7JHLXZQGmFYmmoRL/ZkcmQWzwzdRl2ZrbRrQhzquYkh00eo38U34AWjptD+uiX8fxp5sVqYNtCatpkQtu+3YjPFtkesDhu19uCV//PhXpdwKNR2IeBXUWuUNI0Atl1JnFiAW1WpFRRI60VnZN+Hatx/OTz4GRxadgLN91ToQC/1FQl22eIEhQL1TphAWll4rdP/NmmNQjIWlDadjWVDni93vA3RSu/ERdUaRai9TJCpj7Y/csAQpPugPIf2RrDE105X2Q/8CBr176OZGAlPMyFsKQ5xMHURZYZ0o/rB1+PFcH8QKebnkAie50pZ+ja3luNQDXdbwov2pOFO5t+LIax7tjZxckxHeGV4tZkMr7hohXd2mDG27RbbRuCsrjP8PR7eDTFo9Xfi/rWoXRPicYv9emeR57IXldK0utxjiLJvRCDQGdbLxquqNbrFm2Hnt0PtxqTa8WrL+5GroogEyiDuaDMhE7t7rwrgwJVbLG3M0RCnkpluZDJzW5iI2ApfwLHdS4hd5lHJpw/iZSKfxtdvNLy+jIjSihos4jHQXcxzbP2YJLNHgDOwWJJtYfxGPXZb481FXDhaJmCJemDcXkMmbblj1dQSUzqoP81rAT/Ny4rZuIjM4SdgzCEt/w4Up/5dJGyvQ0VpfxX4f4fv5lDsbgCvuGY0UcGzuR9ECtzZ8G5q0AHkXt+PZthM1MYshvUtFuSWcGHUZDvXvA+xwbtnAjxmM90oxJlHi9GGSieY9TtPvaUL7oDY7P7WdsqKYkFu71bbJuYRMUBkD3BT14Q41MsW26WXEVG8FRHSfdTvZHOzNy7GVSnIYZd+36jF6rEVNLdinAeRAL+EjgorIrR17GLfhsn2QjZjIgZ2tAqXZpaBB4QbtewtOxtibDBI2elA2uNTiHs9AfwFLvoyxNG+iGqGD6F5vh3FeqZpVkNrWy32SHXjkszqJYD7X02aLeEopw2YZ5wA0omXnzf+PBG+G0QzM4fXHDNE/F4JDRPgbWiYA0gU7kceUYtGV5FgG8PFKjSqpzF3v4yAiTeHX6UoVn0r8B9Q4vDXw9PvDE831cW8WDN4kNVSC+dQAacKArANh+sM6DZOfUjGFmXjWF8MZ7Xex9HBRhV8T3ewLUYnWoyDyEnRgeAg7aEjVpBtnPrFiAdjrUlYaO36+LWd1ujsjAsDNU7aHk3cNSFuzRbDEB6WEJlHhGTK7SoKRyZod0/iXub4dZXLqJ212FWYx0s/HkOTNYQ0n34EunkDjvarPy6hfpJ2DDvdmxZzdJM2A2hYPXjpTMvLmcOtgDiweMWuG9GZwDWM91nk6hlEmuJDaD73IU7wVmSNgeb8HhTPMdCi3W8HhBhbQD24o2Uo3PZQuMZwkpadYY9cYUNp25gAYpjR/Uh0DYZXB+LLk9Sfe7NTPruV1jjs/cjRth+J4UEkhs22nsXPSo/j4xkZWR0m5HqkiE3g9fAfRAnF7wq/OoAE8GgY/TeRqXkaxfFm8ZJvk3j50HFEnI9EI+jFa8lP41Z8vNcaFTyf2VjmbAdwmGzy3bZbrO0ZPukwcjqM4hURj6OpegrPFrLKQqZMJw33tFczkMNOMbibOTvt+/i9xe2aEIf6QJzFV04iQngCKcg3A/8RxcF/BHk2zevZRj3o4tvE2Nx+MzZstsoAYhQPAW9BnP5zyOI4gYTRUTRRM9TDYWLNJw44W4vV1+fZ/Z7glmgf4uTtaG1vRcMHr+h4CT/1JrYAtuxWN8ID5yjTSHC/CYmTR/FM3f8ZPj+PrLo4KrtLwrMlNgtoGC2hJYTfFq65Hy/hvYhov9FdGHUjdlV346fUH0MizA5UsTpLU+Fxw9RHLGx2Wt1syePaeUeRjWwpVtPAO8L3z4ax9IU+uXpqi280PhHuNInW0YClD+Jn5PYh70sbAqvdhlx/WXj6ndRrjWZlzOIn3lmWSR9aLHuZFW4jtKh/Y3hrPbB1M9kTy8ZGlI2975gSY2efCfFRRCyHkeBeRWzm42hbHEcRC4txmFfIOhmHhmInom2/ONAfOwy30/ZYWG/UrglxazEvncdP7xxHBPQUSt9NEeM6j/ZQD+4TtODY84WQfF5bLHDNongad3TOA/8H2mUP4+e4vhE/pMGCqgZhst1lO8wAc7A+2Gxwzj2e1GZ+1UNRN2/DpUwX8KnQtYOsj31tqbuNTN9+YCGKC4jYbkVixIrBfzl04LeRRWfFXzaQojsZ+2AY+3FE50toSQ8iw38YpayPo1Bsige3G+g/Nq56kV40ilS9LiQsTyEH8evR6heQ8IzF0V6UYjDKjpEeeTwwMY/ghFa88Vzo+zRe+GQOo96MhJRsDdHUGd6PoslsQxb2KWQZHAwj/SIS9ItoD/0vwK+hye1BvuRppBRk0YzYCIzwzPI2czTF95sp4BZDz3DkFdE9NpdgMVQkNmpNhzV1IFbBt9VMuFZCd81tcwZFljoQoXwuTIENqQ8HMMTYlXz4rJvmGNwSOy/DfBW0a0LcWhzTWEL75RC+uOZLexda/CO4a8fQLRbK2gUf3X5rBUJju8/L4XW9zX13G+L2HWjiDNDzBIqPx7khJqybBZxtZ8Ww08YSo3s0zpg7mcnYhWOMBoBPhm68C4WkLUl6AZmXMdJpW9Z47ApKEOdqR+aGuUm/P3TsURy0cSL8fxqvmbbD/JXGMEJ/+HsCLe9B4A/x1Mo7gb8Kjx7EmaFFUBpubdNaQmJsEQnIl6LTYl8V/v8IXmZ6EPHmGRxktRctxi92omVfDf09gqj0J5F9/Aga5s1I7Fo2v1F3/dnaJuJWkNJ7CClkl5ELZxwPQX0BMaH7kZB/ED/QvBfHmYCnkcVrHfuGTXTagoL7GTJckk3icXgT6BtLsHiezLC1sUM9et/UCPt8S63R/W0Aim6kSd2HdJzrEfu4G22R3miI1iF7mWa2L7yGkDC3apwGO5hEtAwNAIBGv4NdEF/4wrVrQjxuMR+1jJ+TOFj0+3E47Q3AH4TfHcMPxTEtbqcumS21vUBobKcZEwDF9n4UnTj8a2h3GeP6bjSBsWvCdqexyz484NyNY5MbYacWiG1R/rM1mz7rsjEOA3UZqqo/dGk8DOe38ZOJvhdx9hXED9ui+225NQpys5QWwg1vQZxoEJkkc0iSglKJLuFpSFUS0mAVrn/KptTRCGqbRfLmv4T/vwJJ19uBj6JIShsiA+PeDWOPfTimthVw7PRnkBp4CxJbQ2EWPotX+Y+F5F5BTmIdzmqDj+MHu3wKTcWTaCVuRjLBIGQ+ZFvLOP9oMVxldG0T/Bx+Xm4Vd/E8EO44Fe7Rj9dCjyHPjdpiPDO2z7rxCujFcP2+MIqjSCnsx5keNBPkNjeWrJDHz1Az77SpLmbUNvqHttwK4cYZvv2/B01+DfjzMJQTyJaw0GbMFk2Id+Nx9cPhepBudBqH9xzFtLDwSiTAMwtBxKscS/kXNn56TYjHLeaj5ei1jHjkXwDfhxTpjyMX4hF05GAF0f8c9TGZlsJpjc00c2bFBLVThMaVWjxBCdodOeDPkOXQhkBWbwp/n0QqriECzTwzKdER7mOuxj60M2uIXZ5BDC3W81vo4oj3pk2lda0rDG8c8b//HT8v5iEUwgQ/CM4sgcZiFNtqjYKc8H8T1k8gs2McEVwnkqinEeFVSSiRo0qOtM7nEd89ttXqZrHRCirgMIbu8P4UkgUPo+U7hgT6WZz/b9JyiPHfEi4fwcXUXyBe+zpEPRO4pb4LrP2WW8yWTyFBbvCHo+FzS6A8iuroPcpGFGkb34RsBdF2hsScQegsmeskWt9SeMIwctzfgizwx8M1T1F/NF6cfGdKMvgCxuCGUbSQeaRsZ2hRH8ezS2IqcQqJ9dtuRObD4f0kIoUaDvSbDnNl67Zl0yLWRYwNFEI3jyPe+01cu7oNsZi3o4jEVDQdxhrTcI8BJPSn8eMgZhHRGTAjhwR6KYFyDmpxlRkLQ0C9IhUjNlrK8LfUrgnxxhbvZFuPo2iRn0Iu1M8iz1gZUe3n0eIP4GWNY62wJXI05qxmKsYxZmMUcZW01rgDxBZsYmpka884hIuEl+OHLfwwMk0/iSaoC2k2lk2b4Jm4C2j3mL3zEMqhNeRtLx4gi2MVu4A32bpYnLuIg10MJ9QTXjchRvEwMoTm0BpfDMMsI+/nsYYh7rjFVpx1ch4pNDP4uWBJ6OizWBGQhCXylClQo41sbUhGioaiNjeniYJ1bCfWB61U9wQyGs3baib194aHPLHx2Budvcb6+pC46kTT90FcPZnBUeJ76tQKzRJTlvAkrRri70eQE+79SKb8AKL2efxQ3ub1RewTG/UqvofbqFfUJhADeQVeN8Ce0A+8FpmhFjKJVy9+qu0vk2BtyLcxivbVLB5ovg9pYAfD93Fqm+017fsY79iPR/LvQqyxC22RNuSktMoFNrdxFtYVm01ZBQcKzyEBfTdSpCvhQWdxQP+5cI1h+WwK2sO0PYVYTBcywMooJPS/IiPtv4dn5xOYy8NyG1Q6IO2ErAs/6iehPr80jqXC8y3IrwnxxtaoLprsNBr/OE4YM3gi6WXEdWK52rIAXqwHd+ASpjv8bT6gGKFh7gCoY4FbDKHHXim3gjIyqmSUyFggZQwJke8Oz3oOt2PMDZzibjqrCWWM5/owJrPHzC38DSQ5zdQrNYypwq60o9jitnibhQjN+7IfB7Udxc+WMPdcGwrcPou4WDf1hbV2JXGMCcQ1tAwKH9e+n8cYScIKeVYpUqWTbM2R0IkD5y3iaW5OC92vOYxcT/NS+ceRXvUwnqZ8Mow7wwPGloZnqdANLebLtpo3IGFwFKko/w9uH96CxNYTSHTtJV600QE3EYa1FP7+AeTmL+Jx8E+E/k1zpdO8MupFWI7682+NBZdxd/cpJCpn0L44jSTPBKKBKxU8jYV4Ptx3BFcIH0I1BQ4jX8L3h3teDt+b+0VehCQS4oZ3HEVrdQytoe1IC+rsCz2xKOO2EC02ZaZL5BBddYQu346OEijh+3Ak/NYicaYtGEizG9HvJ8P3h8NAXhPu/RBa0McTeCIHxTbId0HSC1kV7aQjOLjwGH7ozAx+AJHt2efPtX5NiG/UYv+PIRjHcEb2Q3hqp0FZH8XlZktbI9poCK+SZnHkM+F9CD9+NAi6JIOk1jwfJB5j9HW+4WXWeEpKjTI1FlllCa+E04d2WXuYiEW0ezrR1l5ABG4a0BDi+rchc/craILnw9imwzWT4f0S9bDTHVricWDPBM9QmErjMrbJTU8CTa/5CY1bPYUQWacR713AJ3HX0iYW5DHicj2CP6FKnipFanSR0ku2dthehs/iYBjaTBhGDq3SGhnEknYFP8DhmfB487behPi9LeflcO0msiXWDZaQDvA44sc/iCp/X0a24j1o6qu4WFlhD6JTUTOxZ+rueaRIpGiZD6LM0gLw6XDdA3jxl7icSvPWuNlsJKbs9iJiexx3pR8Mdz0Vvh/DT9DYihDvQhpmHx5+6Ubm60vDfX4YzfLhMJr18O4EyCXB/5dBf049PJxBMdPZegkKoi0i2joe7jCJO7uMXLYsxMv4acpFRAQPhRsexr1EhTA1thAWyjRX1H4cyH823LsLaZGXwlSbUt+eQKEA+Q4J8MTQETEsc1948HWszy+1NdmFp3Cbbduhpi984Qu84x3vYHR0lCRJ+OQnP1n3fZZl/JN/8k84dOgQnZ2dvPGNb+Tpp5+uu2Z6epqf+ImfoK+vj4GBAX76p3+axcXFumseeughXvva19LR0cHRo0f5yEc+sv3R7bTF7kTjOgvIZOjAre2XI874B0hutes3SQ1yKeSyVlRkjQnIHIxHEQXeinItunAheRJR+H5IeiBX1PnGxaQeCN7ZMJY8JImrC5aREasM+8jopkoHq3SxTCc1kjoXeR7tpseQ/fQscJGEaRKWyFEJ89FDsib0z4TrLiEGYklI78Gjok/hPtxdzKjxNsP69IdHXR+9H0MHRN2GFLQeRAujSOD3hClO0H6ewkOVs+E5LYMjGBHGcKEF3FqSMzdhlTwVOqjRF6ym2JF6FrHp88iSPIEMl0HqcXhrvKeC+PsMUlBSZIT89TBH84j2e0IXHgrXmenaxPcdBwmM0U8h1e0LSMwYwuI0EltP47bnxi7r1jQbug17OfSjA23tx5Eucz8S7kYW1rd4yJtTZizEbaJnUSDhDBKPi/jB1CfQmj+HZmOOK6s0tj8sTrQURvEMXkv6Qhjdv0Mx96fCKCOGQCKmkIdcAWr5kH2b6et9BTic0zp9DfgNFJa+B5HHQBhJlW06J2Nl0hZkDLlDHgzT0I+I2mA251h/tFqKeHIOTy/rxzNO2kIn9yENhAQdCVuALGAJshFIXoXiRtehoM9fR+rnpTCiw7hgbyy4tPdt25b40tISL33pS/mpn/opfviHf3jd9x/5yEf41//6X/Mf/sN/4LrrruPnf/7nectb3sJjjz1GR0cHAD/xEz/B2NgYn/70p6lUKvzkT/4kP/uzP8vHP/5xAObn53nzm9/MG9/4Rn7rt36Lhx9+mJ/6qZ9iYGCAn/3Zn93lkLfQGs2Gx1EM9KV4gbIcIhCDXx4B9kGhAskC5KJdHTuQt8+ELC5q6SHmgBxFG3wML+Z+LFyTg6QCuRUolKBYgfYUijUPkpqXNoTAkjLkKtBW06XdeETa0MFZmIYVarSxyiIZBTpY5RJV5knXCFg7MEeJhJXwXgkbuBDskYQq02TcgGyb2TCW4XCP38KTfSZwUNAumukZhinK4S50EMfJ40G+xfDo+9C6vw5xsVMoNjcVpv1p3Eq3NN2WBXGNGJPoPR5SRo6srkJlD+J7pfB+QxjCy5ER3UW9e70uK9LowmSLhWQPIJf68fCgJ/DQrZnLFnTfIC7e6E+wGOtZFJBpD/2ZxguITvL8nFtt/YsxUatIrJpXtwcJ9jG0yyy4k+ERGtiq2zgGvi2Fv1fRaDvx1MIxvH76TpOYs/C74XAPc4B/Knz2p7jbyVSldM1+SAJ2pC0nVtKVwGIOnqzBaq0+o3IfqmAwiiv/M7i7fcvN9FezoC0SYVjAi/iUxdNjhGL3MCjCdeH3J8NvL6C0iEfQpkmAp7OQft8GlS5IB6GWQTaG1JTvQRt+GCWpF8MIc3gYs5FS9961vm0h/ta3vpW3vvWtTb/Lsozf+I3f4EMf+hDvfOc7Afj93/99hoeH+eQnP8m73/1uHn/8cf70T/+U++67j1e84hUA/Jt/829429vexq/92q8xOjrKxz72McrlMr/7u79LsVjk9ttv58EHH+Rf/st/uaEQX11dZXV1de3v+fn5ptddscVxwRLaU0OIIL6OOM1bEZCiBwEjysACtK9AYUFyM1+TJZ5lzhxiTOnW3IJmOuZxIb4PTzMqIkzv08DfREGdC5CsQG4O8lPQPgudCfRmXpDG9qsheRYhWYTCMrSXddlQ6gbrTXip4mMYY60xySoJNTJWySiQRWdR5aiRp0ph7ZWRI7fmkK9RoUIfFapUuQNJxNuQZ+EhZKNVEHvvA76F2IFZ/jvYGI1C/ABa268jRnAsDHIahQmH8Yy2MtL2H0NM4Hi4fhy3yGepNxlb2rKGd2/mXOjCDYtJNFtHEL390/C5CSlLdJqjvpBKFjPPRTRnSzh2MkNCuxI+O4/j7Ix3NYZsov/GuHvToyYRWRbCNefQEnSFbmw77X6Hze5tfH82vHfg9m8b7uZPcUSKwdRMKYpE4RWeaABUg/st476RDKkyBuo0detKHCR221fRSvejmf4MUs0PhRFWwvsEMg6eZG1F2oK/vBPKFVhth+4e6CxCaRW+tQj5NhhcVc9uQl6KI2i31sKTenAn1baaWePGj+PElSrax/HU2bXms7ffm3ztClP4D5Cm8SCuoT0Thj2eQKkNVjv0XpuKOrCETptbQtR6AvdiTIWO5ZESZhvC1mrvqLelMfHTp08zPj7OG9/4xrXP+vv7ueeee/jKV77Cu9/9br7yla8wMDCwJsAB3vjGN5LL5fja177GX/trf42vfOUrvO51r6NYLK5d85a3vIVf/dVfZWZmhsHBwXXP/pVf+RU+/OEPt2YgsQY3ZQNBOznFzxI/AblLkB+AtmVoH4POeehYhWIV8qnzf1MYGy2fK7cY1FZB1DiMbIIeJEnOhU6dBd4GySAUeiG/DPlV6EilUR7EM75uZc1VlUxCbgrakgBcWYVDmX7SiUPMsvD0h4EFUrpISUmpUqVGDstMlmWYUSSjk5QOMtrJApOuUaXMKiusME+JURZ4jIwR5LI6i8TNncjk/TzaHGaxwI4FuE2lSbxL+PGBh5CS/QnEz0bReh8IU7+IeOHTiCNVkaRZZn1S7F5DqaNmap45QBfxqM/+0OUFxEyfQjL3JqS79OFeljpXp9G/1SrJIwbXgUjNwn+xbElxaWYCP0Z6ZfV8tVFPLuIOyAX8PBm7fuuK7+6buf3t2SU8EmUoj1k8n8IUk8XoZfbyxupmrOnYhNlITc2J43qx+r8V4mpUmfrw8izfFb6fRpTxQPjbskWq8uQVa9CXkfWFxKoeKFdhpRtqJShMQs8S3F2C9hI8UVG45uUJPJtJ14VdFD+zyTNmaTy5hmt8VpcgThGNmauxzEn8JJvTiKndBfwxUsT3hfdcDuZzsJxA5RJe83UOafuvRKGNCzhl7Ec7KqM+TmlZQqao7Q0Vt1SIj4+PAzA8PFz3+fDw8Np34+PjHDx4sL4ThQJDQ0N111x33XXr7mHfNRPiH/zgB/nABz6w9vf8/DxHjx7d2UCMw9gapGhNBvDCL5PAfZAfhOIsdE1D3wz0L0LvKnSnUMgcJ7XA+lOZti7Ic+FlCPAvI533y4jy2pF0eRbogvxt0NYOXX3QOy06HMskZA6i3VVFgvw5yCqQz0MxhZ4qVEvyIrwWCYR9wJfQPulCJYpNgR0jZYWMMjVqJGRYTD2jF+gnow/tnRpVquSCK36BOaaYY4wSk5QZRxvjLPJV34VEznRYBEtfK7FjrbZRkBfQorwXecp+O3S0EyGtjuJHPxt4pg8/p+QC9Rk5z7e0CS0GZRVwq+ci6vIh5EX8JFrHQwhx3U69AF8T4rG0tbTYWeoP/o5BkpYxBfVhfJuTyL8c3zoWkrESEfPf2I55vpptf5Mhhi8wqNg+BA3oZg0Gs1b0a4r1B++uF2C2ny2oEE8qNBfckTa0aYsXx9xKRbTqX0UC5yWIwO3+A6yZo8mcNn9bAl0p7INsWPiufMDMXpqBS9Ny8N2+PwARZ+CHSvCZBfhcTfpwDnEkg+HtWLeNh57hSDkD71gY3yJO8Z4EMeBpXMl8EDHk42iTzGrozOZhMhfA+UuQXhdu/pXooZ/H0ST9oUO9SIjfjDQEc69bUMjqZGzPfNtq+45Bp7e3t9Pe3t66G5oGmEfzfxmPE7YDS8EFPQOdyzCwBAeWYbgEK6uimdciujIgzwQ+4Y10eeXOZKEzw+GuY0iTeCBc0x2+vw/SSciXobMGJ7qgYy4UMEBCqxcJ8BNIJ+iAXDcUV6B7BdoWYTAT+nQmkwPOnBBD4UmvQEaZpiQLBSA1kg7qT6k6EP4+B6RUOEqZGRa4xCRFimQcZZZOlngkTPYDaJPchTbFxagHLYyMWmD4PqRk34/2Zy/aj4fwM+NDyGRNC4uV65jPPs8CPG7dyGa4FYe9XYf0ts8giqkh380V6S4mTpv2WO4YAzWQZAyHsPQ0y2OL05qz+ltbGD2Ol2ZNXi9kswhMH44XP4xIwzy8C4hFdNFQ9ItGldPyPQx01o4XlgDXgFZxXwRceSZMlTNz1LRUk1wV3A/9JKKCZaTeWapFCrkZBb57M+hXXDwbhupxWG6HrABzjws7c/IEVIrw29+EwSocSOGZTErOU6FH0zjesSUOZdOoOvEzK3oRLRoIrjNcuxA+s4hCjfoyCwYsbyfUgMj0Wkqh2hliS2fDHBaRcTGCysUdRubMg8g3OYSrdhYCOYsDkMxlB60W5C0V4iMjStabmJjg0KFDa59PTExw1113rV1z6dKlut9Vq1Wmp6fXfj8yMsLExETdNfa3XbPnzZgXiALnEQEUWWNq+Q6FnHvK0B/2XLGmrTccLr0eYYDMXj5I/TkZpnNv1JLQkWztqKgUr5XUg1jJKUTJQSolFcgmIJmFoSrclMCFBCYCB30FkouG3OyHXIcUko45uKkLbl+GwYrUhEm8ONLHkDv2ehxR3I7XTTFrZRA/eGgUr3q4SkZCKeSc5smRUaVEjUFqjFJiNozxL8NsTeFO4V36qmPvZBlpF5UwsDIS5EvhurciINsn8RzVOMHaBPhVIG1MGDay/iJipmeRCtSJ1uUetKYWw11mk1ltZpYmuKbWj1fONfK09LSZ8Irj4xEnj3WERtDTCyW4YweDOWwsDX4/GqYxTcOKGGvow725NrcxxXq2dTsOl+7FDweC+oPap6nHQmzEKeK0C+uxvSwIUEFa6QqqwzCE+5bn1etkBnLz0FaSAWCukkVI52H1HFRKkKtCZRXOrUDSB6VemF6CxSoMFmFfFSopjKcecdo11tN+aKGwQcQezKk7jPr75fD3MSSkp3DWYVNrDGsV0Wk53HcFKKWKGaRlZHYZKmg/ooifQCv7SYTduQfn7MeQ9xA8veUS4v4TOLVv1auytdZSIX7dddcxMjLCZz/72TWhPT8/z9e+9jXe9773AXDvvfcyOzvL/fffz9133w3A5z73OdI05Z577lm75h//439MpVKhrU1+uk9/+tPcfPPNTV3pe9Zi359xSYOj1iBfCunGqeTmcirZ+HrgT9DyTSBryAwWc72ZgWJWSLyczkiy8KqSUiJlkTzdVJlElHkKcck7kUY4CrkfhfZz0DMLB9qgd14otbHMg9sXkV/1ICp2MA9ZN1RrMF+Gtrwy0mYy+M3Q1wTJuBtRRO04Du/IRy/zqq6E3wwjxteJgKCzQJUKM1R4CSnD1HiGMTJ66GCYKr1U10TOWepRubtIMoolhoXXDyLP4ijySLwWTwIeRgu4gqezWMzbNLCrwEyMDeUSzvpvRt7+FaSrtKPkiik8q38OkcIiW2Cw9qVhLPvR/J0PNzmGNLvrws0mEe8yQ8SUpw3m7IW2tqG+Cm/sbDBnaYrmdD/Krp5D3qUFNPd3IjE5j3blHLEAMzdGEQnPASQgjoenGzfoQxLqNA4nNZBbbFlYMwFexBNDe3HlwCSWXbdKfd0GU+MCV8qVlGLTURPhlMItDwITkD4B6SLkBqB2A6wcgaM3QPspmH8ELl0K8JFVjcbmpiX+sxz1STrHkA3zl2jS3430E5CX0ZRKC+2shJcxK/PEmW5UzaCaQq0CqZnsB/ADnVKURHeJ+ipRo4h5gHJAzoX/34zWobEjW8tf2GrbthBfXFzkmWeeWfv79OnTPPjggwwNDXHs2DH+3t/7e/zzf/7PufHGG9dSzEZHR/mhH/ohAG699Va+//u/n5/5mZ/ht37rt6hUKvydv/N3ePe7383o6CgAP/7jP86HP/xhfvqnf5qf+7mf45FHHuFf/at/xa//+q+3ZNDbao1uxWAyFIC2cqglnMHhIMBPIGb5CZSZdjdCappb3co6TNO8bMn6aFlKQo2EhJQiKZcpMU11DTs7iijaiOgvgS4oLsLqFNw3qSe8E/hXeJXOIuLoE+rQ6uehVIPlCpyvwlhZjGg8uryAg1QewrM8jBTNFjBc5uXQm9uQJf5JRPKvC499nBVuIWEQqJFSo0KBHCkZKXO4bRn7rndB+GbMGPJ6KgzCjKAbYE0/uoz27XNosYwJxCbF1SB5cPawguOMTyAWUsBPpD7AmtOU8/iRG3m2wGRjWdGDFvQoWvDLaB6fBu5FhZAGca+VxShjHewqmTuozwFpwx3dHeH7PNphA0hVHkOFG29FgR9Dqhvuao76jGEp5An1iYAFPJhQQqt2GJ+wo3hVkmApN7XEbdcVw7UH8TKSvUiIg6eitONuElOOA9w2qUBSVWpNW+Yx5f3hJw+GLl6GtFvYr9njkK1CYY7/P3t/Hi1ZdpX3or8dEafvm8yTfWZ1mVWqTqpSqZeoUsmSSiAwEg/L4ItsycjXF137wrDRFTy4SOY9YWzDAIyRr21s/CxdbNMIEKAOtaBSSdWpGlVVtlXZd6dv40TE3u+Pb80zV+wTp81zMlPKXGPsEd2Ovddea67ZfnMuptuEpz0xDOVMBWLmsg2wws2qaaa+7qs97rbwuF/Ad6XZh3ux81ZTFl035u1ZBmmKKrSZyW7xthLS7L+GVs/uMDA3okyhJhSm2IfvPncrHnA5idfPt1yQjWlrFuKPPvooDzzwwMJnA5O9973v5b/8l//Cz/7szzI9Pc0HPvABxsbGeMMb3sBnPvOZhRxxgE984hN88IMf5MEHH6RQKPDud7+b3/zN31z4vaenh8997nP81E/9FPfeey+Dg4P84i/+4uXJEV+qRYzHaCp2js2i4l2tuCN4Gi3yHWjJZEiTN0RwMbqWXdcsgJaFI6MYNraoMUmFC8zQyxRFMm4h5TZqnGOBO6an9M/sorTJlhQOpUoFBQmoAuILe8PfRqF2Dmo90NsLtRloLsBNNZHeNK78zqO1cwjJNvNMG3sphue9KdzmBCozMR+e/Ubg/cC/AV5FyiRz7KVIhZRpytF4mNspD+y5hGZCfB5HrBovtYcro/X5LcQM7OHG8RobGyaE6uBkUSdXf/HYEjfIhilSQ0jQvBw96mP41hvnEpjMwqgGQy9bKeQaG5L9yEAxd/oMBnrQazOykmbQ2BnkPE6/S3Kv8aNfRiEfr+N23L7qxKud78I9tI8g8nl1OO/30aMdRo82gKPr9Wixc74F35Ckhtf1fQStjpPI35UiIWGqluHdY7+dcSH7rhiutydcvw+H3k2FHp7Gqcas8FjDCussCQNgsbDfR4zgVLjN62C2BBe+BaMJFE9ASw8wCfNFqBQgzRwXcMnTGTPGrtCnMnKfPx/6+Rq0F9N2pFltDUNg8UADvuVZSR3NZbhiNRH+ZBDQSUTwbXhS5BEUG/8omr8vIHfUMJrLGprHdtwiNyDjcoHU1bc1C/H777+fbJnVniQJH/3oR/noRz+65Dn9/f0LhV2WanfddRdf+9rX1tq9y9qMBU8h/etFXLc9jqb5NWjjs6cQr/scDpRMctcxAE077hDrJKOZlIQKFaYD0r1KK93MMMMc30H2epWMmYCPOQfVCZiZ8X0dT6CURgN3mGJ5f+jQKcW65oYhKcCuItycwisy6ZUWNhpBlsg2RO5m2McK7hjCwd6PksYeR6RtAKA/QokaslRqwdtQJVkW3rQBLXanW4wgw6uiWCDzdOjoKJrcUep3xbhkTIrNfoF6SsjHzFZ3I2M7ZbyCs7kyzwOtCSRJcJ4WYKIkKypLZDFVUxkgy+pKsRA3LfQcYqBlFDZMkPx5GFXA6sQL8bWG/8znrhnLoPjx7djkZgLc3Oa9eEHgEcSWnwD+BPhpJCssG/Fm5Km6Az3aGbwo5/PEjxrHrNNw5Z3IPzKLBnIr4iA3hTu+LHw3guPe82vBJsVcJINIgAdpSk/o1dbQ2zEk3WIVw7wBgbBtPZzC5dejoatPIZllStstMH8G5l+CQhPMjapSZZZAWoC0ukGrN2aQRn+dyLX0BK58P46XaA0exoXtJSyiACvYA6bpW4J5iqt15otsRvO3BSlgz4fznkdaQxmN+0l8P+Nb0cC+yEZXc/ueQadf7hbzHBPaZpFPolDzV1BNpBuRRfRFtMwqSDmMDRLzFlkEqwcZyj1IRE8yz3HmaaFCE3O0Mssw40AzGQkVUjLmIZuTBT4/J7dYuSbh3YqC2t1IAj+IaOwlSFIo7Yb0KEzNwUgVnq3BsUyZV82IlexAbOgIzormcAMrwSN4JeS6NSTvDwN/idbVDsQTzgDnyaiQMUZ9duymNRv0Mr5ezQ9tIGHLBjEkuvG82IpcV4sdt2ZaGBO2zhkDifNKlx8Ro8NK9NnA9G2JKm0lJag2qX7FTAlmisGJmkKtClmczpoXoLG2aYz0HBqfdkRbXwn//3o47yC+hbYZMvEj2xBYTCnmnXas7vHX3WL7uAMJ722IPregNb0DKaTTCC5hdtQTwPuQzLgnepS9uBPcnDxCttiqaMfxHjeFz+bvKiGX2QPhoXuQtGrF69mBT47RUi/u/2pDwqQH+QS3A/9reKKjOH7+RHQNdL+YqRXRmigiLWVPuLR5hR8Mfz2jS6ePq4u1EQTqzjZh2mIX6F/jYf8hJEufQLR5Z+jzeaSzxHryqpoRY7yyZhDBt2IJs+5VeRqvQfwcvsHGBJ7HYJ1YU0dW1a4L8XU0o3XjOeBexSYc1LIfMYYJNIWnqd89ysjE3OiGI63hmMizuDzpBCrM0U2NHmqklMLWFwk1UjJqZFkVqlUhLNvDSrqIFuGbkSBvDR0aAs5BdhJq56EyDuPjMDcL3TWtkRfC38dwxPk4AqmNhGc3IV7A5dxg6PfTwKtQkaRfQC7d/jAGn0EKQSVc3zCDm97M/5yPkcfa+oYLFBMZ5rhtiz53hXPMnjYEjsXOVnZINmI7swmUiqqqRSukbVBth0obVJqgmshaSs2ranFDMyGXU1j6w3n7kOCexzXP9yL36ylENFDvszZwXFv0OQ7sW1/ycfQNbrH3y9Dnu8Mj7UQAzunwPkHOaAsJNSMD9WL4XEMC/VYEo7AMgXqsQQEx/f24K7YfqVvPI+7xLiQI3ot8w+aSNS0odsHaExRxX9nzaNW2hDs/Bvy/gV9Hi/8YknCtOMLThEvmuJ9mxNDakWYzhoTi/44s8k8iV9sA0g2KArxtarEjI+4JPGmlGcXBD4X+7UJa1xHgHXhNjDVjMeI/WAzOTBYLa3Qgbt+MLGwjasMkjKOgS5H6feA3dnCuC3FrSylIS4x3zP8zHJGaoSWZ4Q6zp8J/9iHaOovIIRbiFu5J0bq5EenVexHjGEcy90bgBSpMUGOAErMkoTJ5RkpGlgXf6HwGU5lbPhWkjN+GCP7PkUQeAc5Ddh6q48J0pJlIMUOMqwPx4tHQd8uCzKjfwamAyHsMDzOP6/J8DXdPzoXvLiJFuSOagqVIPB96iOdhXS672GNtsjP2cm2oazd2p5ovsAevHbk3nGfB+nHqA8nWmdVb5LUE5gtycyYWn+mDtBfSbkhbIU0gs1uO4SlhaXTBfOzQ+FkPion8Ufh8K5rILWhS34A0uBKSKVl4/FoYAktb6MDTmC0eMBr6MxnuGyOIN7CZHRsL8e3hOIj4/+NIhv0gouf7wqM+gdZyhtcTLKDNXJpYvE2JhtFmyDTCsPjIwkP3hCvch1ZJzJ6XmvsEd42fCr2ZDk/xfcAfhN78ARrs3fjWv3PUraZ4PcQgTnMzDqB56wm3OM1CKI5hREexdbJRLR62GGxnWXRzoR/bEd19A0/TMHj8ukCVRvB2c1OorSNGOf04gA0UE59DaOLHEcPtYrH5tjHtuhCPw5ONpMMSEx8L8Um8Js+t+KZ+R1FdpFegpXo8vMYLHNwS70ACfAcig9PhHmfwVKD7wr32kXKaCqMk0QYRoZNp5laNScZZxCc6QgdaQ8cn9TmbgNqUOlXIxEsruLJboh7yYYclTNgQmT1QwTd+y4C/Cs9VQPw5o57nmyu+kagqNDis2X9iK3TVLV6jmwqyshm2Rb8F54atuLrThhB17fj2hrFoXrkjC0pNArUSJC2QdOkWtV40eAfwQlStyDA8F7pnLvAS9cpLLMBnQ3efx1OZK0jjm0MTPYOY/kvhfYqj1dsRgW8Jj/gCvqPcFqQplqifnw22xvNh1vbQhQEkwC2mbQ7wAnJyTyMP0nDo6iCayRk0dMdxHKSBodNFUmgWqcUJUujeg0PkDJk+g+hhAK9U0kgCZWgSk9CbAGzlPqQy94T/7w9PYTHxJQY0XuRN4a/HQzd6kQuuMwzaMTT/F6nf/GczPCdGY7OhTwb/fwvyMj4afnsrmsCR8Kgj1FsauX41st0Wdz1vKth8nkeU0Iryx59BxP9VNPYxZxrG0/pMtduYdu0K8Xx40hKeY75pyleDOKHxF4M/zKNleR7ZVb04WMas7hMsnkqibjTj+/A+iu9P9rfxCMzXkRDcB0zgNcnrdBDrv2mttdCJC+E38+ZWqJPI2XyIj6b+bDPUR21ND7VhiddFGl2yCecHFv/fgdLTz+DYqGHE8Mz9mA/F2tg0RYd5vc1oiMO56wKPr8uUX22LrfB2RCXb0EzvQoz3L9Co3Yc4kqlHsU9/KSbe+JZZEMRZOyLGbaEr/WjA78a9f/vxfUDHwi1iMxLqhfgUYo4W8zEwiHkXO3AofAFPRG/BYfM3IiHw7XDOneG7EepT00xLNMLb4GbqleWEH0Feo9nw3d9FoMyXIfr9HHJi3YwU9lG8FNE4mqlx8ruyxoqYwfUNhHYHmpwOpP5/Gw32WbRyxqkvlwLuv4vdRZY6VkQa0pPh+17kkv8aQhtuQe76ORrSVdzVBKutrDm8gCMn+/HdwybJ7aKzioFfS4s9BHO4vtuNmKp5cM4ha+EmNJkn8ZTRSIjHofW8Zy+22RaL2bgjKb7tIUhb3RY6cSOuDk7jBSfMLXDdEr/0FiNazN3cjSd2mtZntRAM6JRToOw0wtcXw/sqXtJ3FjlTjNanqM+0MQKK9YkhXNjvRtGWtyIX3jcRQzlNfdXlRc2o0TiJ+fsseN0UXqvUSWQT4LGSEhN67JzIK9yxd8K6UMZi+QL2mXyw4Z2isZMpFn2mc3TgYdRCdC8LoeajyBvfGpnr8etS/8kLcUsD2ous8LciLf4NaJ/il5BZO85iilnl4o+9973IICsh4kmBf48n8D8WunkR0bsBM2LrxSbcJs3S87bjToXHQ/efwjeFMaGfhr4YL0sQsz0brvlORNxjSLc5EfpibqBNjI3Hl3wWibhuVF9+GM3Ux4B/jIS4ic9vI7u3GY+WxrCCenZhWskMnrtyK5I63wlXKuB7Hyd4MScbyHgAbFJMQz8Tvre4udHbe4A/jP5/Ducu7iuoa/bR/mLdbsYZnlndhgyPQZGboRDHjzqJGN8sUgRvQErFaDi24qWyh6nzEBSyxVXri7lbxI7zxY9j3yS4uQJar314Xv8Ivhu9KWE2YNeF+KW12IfWhma0OxyDeBbIHL5zlaGUoY7m847OZjw0ZDLSrNEy9ftkNFqOZvz3hf8MId1uCunVBkUZRWCxQ6ywZmJ3ZA2XPWa+mjnbQCKnudfVii3TU2OePxn91hrej+DjYWSdt8Ibpf70oGViYf5pvHTFWNS3NbvWl22x3h77POI75V1ucTON0Zy2lje6PTzdXoTCeRox820IWTxO/TYla+xuPICV6HZfQJPy1XCrW3BUZUs415Rbk1h5Y9KIu4wGvhMHRnfjwt5S8wxgfXt4P4uE9Q8hof8YEtyP4Na90WgMONzglo8S3IYD658LXTyOfCT/A9HtTeE/p/HEr9hnEgsAv0s8eEbxNcQ1TiDqPo4s5ZdwX7AFqBtJSLvzbPg8gSx7087N352gyT8V7mVBvbklrks9X7ABii2GmegRYmm3WR6tvOszwxnLWbSkusM5R/BQ4TR1TocCXoPDSLIJd0iaCmSK2NJQNOPsJTT+J9BYt+AVNCxmOR/Ot/He2EG69oR4zNx68OJJt4b35sobR5ZFJ85EMhbx6nh52ussrt2Br4M8vRNdNmYkz4b/n0Ok8RDibXfgnkwzWuIIS0PSiBlwI1RY/LrE31c4ZdH5cXza3OsmD2ajc+LxyAtwAxx1ImNxO5I3W5AcOodr0ufxqGAaHavlKctjGk1vN0HcSHeP3Rn5mYijr2YajyH/yqdxxNBfhqeaRCraBJrtPhaXBVrlQ9ktWxF9b0PajpmM3Sg+XkH8/UHEDJ/H8+jzvkZwNKe5N8fCPcyLdREH2JsHyHIntyNBfgSttd1IWy2F/70MzwE+hNZh7PfcIP6Xl0/T4TH2Izzxw/hWmidDt3pxfegYbqjGjumlw/exn6oQzpoJdy4iBE0fLnUsym4ipRHzz3OWcWQR7sUt+RJugYwjGjsPC0iaZazCpYyARrxws4R3o/6YTGzGATimlxjTyVlNhdR12040j914Ap/BPNrRaNnqmwm3rh+lPJezhTBBfbBvivoUl81xVVxbQtxm0apODSCmVaV+4+wX0Dp4AjE9s9TjeYj8tTEdG63nXdCN3M9E38eYjXGkX+zGwb1/K3RnH7IKjuHVBFftoLlci416Rb5K4/FYav3H2UjdyDu2G3c+fwmJwCJyQN+EpmkAt+xX431dLjamvhfJKJIu6O2x7p7gKopZS3FOVN4PYHcqIGlq8KleBJXahZsae5CqNrBM79fYDiOgRRUN3t2In9+GTM4B5NFvZPXGgxi7WuIYeT7fOwYoGHDXrnMcTeKf41WD7kHDcQdCgj6LJvwYzkk3uMV6yCTSITrRjOzEZcWrkIyYRvQ3iTukbdZXRiz4Stfw1kgok9KM1AczcVtwdX411GwTYudbT0wcGT3N4pLOXIur5Bw2p9DYCLicLc9YTJM3JG38W1BAkuBGb0Wj0o90xC3hfQtS2O7EqzFfwHXSmLd7y5tveVcFeFAl/s/GD9q1J8TzJt5eHFZ+C17Z4XFkpTyDVnkPnrtqUik3H/EUrZbW80J8DAFoduD55oN4BkUbLuBM18tHyzam5VWR+IFXp34vNR6w9D/tjpY3340W205kp/zfyDthUeU7kBE5gMauC42JidalmonTGNNI+I+EeoEqJaq0UKOTlG6yuuIbhdCTBLGGcXzvQ2P/8dMaZxlHRDYQnu5FHPG1CzHYHoSFPo8nMq2xxbecx42uo2hgX4XcO19ACdEG3DAAw3JSKc9I87wr1lhtQq0fM3hFym48Dn8snDOIl/OOnRvrastjGPJ6iIX5tyF2EIqSLdTd+iYaohqitViBXk0XtZlRSoEKBVSFMaFEhYws5IJoj4QqWR2ab7nVHYuXDK8A14omshWJKDNPbXAbgHxW066E4M632BCOrSZfvHWuOOMnVprFjIJd4f1XENmfRUZSL3WbVS4TH4/5oHUg5nQbG/teql2bQrwZrUrzXe9Dq/M7yOydRqt4EEmQ03gerVkcKyCn1jJ1sS49hte+SBA7twJZY+H9UcTeR3Bde2PJJU7mMg4d+9DWHghbS9/srhX0zL24on0OjcHvoMU3jhwoR9A0Hsfxiea0XMrStwp5tmBbEZuTUC8yRzNlOikzQIWt1NhKtrCjegHNzlFEKC9SjwaIX83mK+NZ/wbCKCNR0YWUgnci9eQg6654EgtYAyXcEm67LQzqUaR7nMX3erCUoqVCsPl7NHK12m/WbK2YAH8BR7BPIBfTSXzi9uPVhRoZi3l53LDl8Qv5mIAeLCNdsKGs5Ek1dG8odPFEuP0ZNGOjoWtx1tJqxKAHZTKaqFEipUiNhCoZSXg3S4WMGhk10tC71cx5HpNRxd30cQArFkmr7flV3BoBdnJ8OYaHtKEVa/6uObxWxVN45b02fNPWGRyHuXQ05zK6OBu0a0eIx75Ti4n3I2n4OJrNW8L7MuKp29He299Bwt6kwybE52KLAERk3eE3M17acJS74ZYtHrcxXbEBsmCqDVQMCrCemptvc+I8FvWYxctzP4emZC9KVTsZ7nobWoDPIGa7HA4qdtVbXr5lR/UjzbxCkRlKTNLKOD1MMcQse5hnF1XakcTZGV5TvGTNHO5mjyWPsQ2D+G4JT9IPvDv0/BFcXTscrl3Eka1rHOMYRzWGZ7n0Ibf6BeA/hNt8EdH+cerB0KvRDFfDv0yZsBz0Ihq+YRQjegiPIBzFq5Car9o02hiKkD+AxnmjpnXboNSnY6Sk1MgWwvxTaBYsY8rSkU0HyWdBrFaAm9JoWX2tZDRTo7CgSCQB4Z4FOzlbo52c16oMjGDNhDhsKPO6GtoKjxKz/E60FAyF0IFyQ/4qfHcLckpNoqUyjI/WJmErL7ldO0LcWl6Y34J4ZhnN8kUkIb+A1PB/SH0u1xrxRattcajRrIMp6ncDHsc9o5b5tnEiNK/hmCC3uEMt/GZJXRaRz+ebblwzwHR/uMMQbqSNIIF7AWF534HvkrxUix0xneG6A2gMe5AyUCBhngITNHGRNs7TE7JoqiQLbHwcWcpn0Ti8MVylGS+mEQc5YnuvFbGHrnDeX+Nlb8C3jJyL3q9xfBvFaFrw4vfdoQvPhd93h0E0uPVahPhq+mJ4rsnQj524NpbhxRUsyHwSz1G2lMjm3HXzmK4sQcnxlpRo4tJWELg2YQlhWkE1asEuF33UkCplwQ8L6ccQpZWc3NZMpTClsRvRdIaBNLPghcsW8DDjNEyGWUUzjaYRijXNnXdttBhWaglJg4i0TuDpwPcjmMbXEcYmRfqsIWEsAHE1qj/XnhCPPcIjiJfejxjJE9T7sk1qxhkhm+g5iS9vgJvYjmjkFNs4G9giR5aT1BXuvB1x9kE0OB1oYEbw9JV4UDemGY/uR8K7G2048T/xEgov4Wx6DsfcLpXEYQy1FQfM7UECfRKJ5DeT8QVqVKhyI6000c1ppinzKFWGUJkPq2Iyjpb8HaHHz+FCvkg9C7aAicGtbYa78HJYp/HK2/NI+sY54mtoNh0GmjVfcVPo8hDKaJvHd2wbwYO967jlkv2IvQLmjz6GJqIK3IucEbPIlZJEfS7gZebjGInF2MtAJUF7XzZB1obGtAfNcoKLUFONTVRaDr4c6ybI46Vewx3Sae5YqcU4WqsQsDV8LqAp2IMiDAVEBedwh4M7/tezxq+si/dqazYXTYiTdSKKOIZI7nfDbzsROf4/OLjN1MDKoqteHe3aEeKxkmoBEePm5o/tAH4TMZuv4jWlY7zSJgtyW7QmrBujpjfagR2TeAceIL0t/G6+1lehwbuAF6OM3XjWu/U3U2BqaNhfQgtuDtWcegvaEvJn0PT8rdCjYcS2R2lcpNLGMa5/Ylivu1Bl6QEk175DSsYsr6bEcabooZcJSsxSosb9pPweIoy2cPe78SrztuTzSK84YJLiIKNm3M1puTIJnuASY5/XOJB2S/s8j1fMeSJ0szsMxDTuwt4gK3wBGhkkY1aG1DhhJ65UHMGdFXNoEs3rZRb4QOi7mcqmtSVAKYGkBJVWqHVDZmCWIRQf60N5bXOIdl/Ac+9tNQlelg/z28zEtLTaYYlxtF14euRuHFjVhMJFzUg9bA7Xt7IgmxOs+m5slwaLN85UQ9zsIoI9vQbxlcP45o6Po2XQi6/WlVh+HgK8dhjw+tu1I8ShnrFNIzOvjAygM2hm70Tg4S40i2fD95ZWuUoLZVX4m2W6udykbzwxxPhNe/BO5OOcQ8zwQQT/2IXE5bnQE5MC5mS89BZ7IhLEcmeRlvwSgpCVkIizrKTPIbFqGNxGsJ0Y4NIdPk+ioqdHUdXyA+Hcm2niLJPMUqCfXbTzE5zmJkaoMssgzgpmcdxAMVwxj4uP/Suxe53wehx371pZrDzmYB0tpne75QyeW1vE98Ew4Rj7itfZTP7GEShTnqsFSAt6n85AZrUyYi6bhT+bnmjZITchb8EMIsNyOI+ChHjWDlkv1DK0cAeQ6LQqAqaV34rYdi/1dV01TxvFcGPfVjs+q3+DhPjPIdqeQ+DMfWEIZvGCd2sBz33vtSR3xC22ypZusY/QyP85fLbvRxuzfQKN+V+imPgWJNTz5XCW8vCtBAOOSXuj+fe1KcQtPncRX9+BsfDvkOL+EPIkH8eh4SugdpciuYYYnFV29/K02GboRE6+A4icq2gQXgznHcQFTgdelSh2+67U80YLsr6ZkWZisRdnhlaU0tKHj+C1RWLQUXzVODZm1vjLkFLwUrhWCdlp9wDfRzNPUWaQIi3s5SBlSpSp8Tmk0WX4ll/P4SzacAKNmjEcQ5ybxW5SVj5iYZW19JOISa1LozeajzmZgTPBfccbEJ/Jw8qaiAq/ZZBlUa37GajOQa0Aad6MsZJavYjEJpHUux1pbRNIDvcDpxI4XYC0GWrtkPZB7RCag9ciimhDgIAJZO9WkbZ+mPqSXhsbnLKxaKY+HpuG8fkc2qO8ggrMbMPZ0gXcp3O1xmI3t8Vi0Y68aFxNCp6vLIssdYSzbwm/H8JJqxVRSCue/bOUYyoPA7baM/lqnXmVfKPRQ9eIEA8cwua+AkxnHtKdx+tq7MDp5RhaTbEl3iDgapMZk1weF5qPtV09CzIP/WhHZs8YclGUUd7PNCJzs27uRCznOeph+yvdZyk1x3Xd2FadQmrFLBq7E2jahkPPDiLfgcGVGlWZzvcgFjSnkM3WE55qD/CTlNhKkaPUOMckF3maUxziDOeocWv45xQSAlXgvyD23IOj+s28zPciDjvU52apfxkFMorhNXbNpdRr9Ku2zmJzIPYRx79fIlHGsMgWHJRomIUk3L6cwkwGMzWYS6CcoH3NwQPIJRzrV0QSroJ0yVciK3yMANsI8fC5Jphrg/kepIVPIdo8ER7sROhRB/LdPBEu0I4Wd7xiN6bFtFZBnqQuRDUGaTQA3WvCo3fhQZlidJ1rpzVSfyy8Z3NkojEqybaEv8LWSYxIKaPVehGx+FsQpWxBW5dcQNjKYRbtnVLXYnpvxwHIW8J3cU6KwYBnw383UpBfA0I8F5/MgEoWAnWpXG+zyKhqRxp/ihjGFF6D12LiOelg4s9SSOywuxoBGbldfXGuDBdvZUTCe5A+egEVHdmCwAIdaDHtQGRpiGx72nw0yFojrdrON9EUm4KCGVn41GTQSXyTq9lwFYuBxxlJS7kfYwdcFS9KaTHIXUg1eYQq+5nnKeZJKVLhPNNUqDFGxlYK/DApv4FXyT9DvWhdyQGal5hJYF3ZggVrWr2pRjGWyxDSrHCXFW+7gS0Pi+xFotSskR349h5jmWTwWOZ/riaRRW7SzOLgz4WLD6NJ+xgagBPAuRQGCzBWhHOzUDuPdv8+imMPngt/vh8FUg4jdp6xOG9048fF6NcCUxfCmLwy9LATOf1G8Tp+Fuq5WsFUm9fiDJlWNEIdCBI4g4MpptH6M3BiOfy/sSCPLXHDbc6h2T+CzBXjRMPU753SyCiIsw66EK1bHccbqM+oHKQeBjyD08RGtGtAiLdTZyVmGaRVqNQgq0KtBnMpTGbONY2rG9DGvJ853px3z3bgqEfTpG3xGsmZ825zqqytt8WEP4NIuBX4AHq6Z9BTvQ5F9L6CnM5jrCwZ8lp1Ky74E1xfNVtaak4WCfL8IrR/GouOQUArCfA4NjaJa+QFPNKyBXiMeYoUuJFmnqdMJ32k3MkkzVSZRhLmRPjnrWjJH8OdZtZWdoQmZHVlztujozkapTlcq19trnIj30fe8L5UGoz9OJaQuA2N7XFEObeFcyYQdZ3BXY5pFtZCApkNRDsOt3gynNgTvvs4Ir1TSNecSqE9EcCtWILiMNQ60VV/DHlKjuPo1YlwgbEGo7NxzVS6BImgLYjZt4XjKJrP70PpTWOhZ0U0RmaTXjstFo2dSBUs4LmRu9Cq7UCj1w0LZWszvKh/PUXHnr3p8O84+2cy3MVS/Cbx2ulxBNWazYvVDOtHStgOHCvahzwtvWiOd+OiZXVBgNW3a0CI96PhnkHT0YU2zp6DbA5qZahUYbYGxczXcmwcuoFY1wzPbZWABsLRhya3gjS8XkRAw+EA1xM2LinrUpqReTNivQnq3e8jvLaBtd6IKrd/HhUn2c7igi95fdV8FO146pqpOQZEmKV+2yHF12NBbqI+tpliF3N8LNXS6G4TCEh0HongLuD1+N5Oc2QMklEMmlwtLOuEPjKeRUv1Zfg+zoY2j70OaXTnpZdrHnDXh6i2G8d2nUA0NISLoIQlN5NcFOLJ+0lif8FK47ZSi22nbjx1bxvuNfkG8HI03hliaqZQ1Xmn8q6t2xEc4ywit33h9yfwwjUHqlCdh7Y+mNsOlS1oC5P70MidRaP7FeQwrYUeWB7D5qjTNs5z4REqiMJfgyCjn8XV2ZnQ4xLiIYfwYMu1AWozijUNrh/fGeflSKSOIs/gKF4o15S15UEdMRrFeO8IHvJJ8P3gzW4zJTnv+m6ktFrv25C6eAAFIR/HN/gbIm+qXBfiq2y70VRNoaELSRzZBNQmIJ2CdFbImyQigKzBEbXYvuxCom8n0sa24mWhC4jhdlO/09ZGa2OX1szWMwhHO+r9KGLBPcjs+QyyqUyfnMKt6KX0VUtb60O2yCCOWBrDHVrdSMUxfVVLLcPRwrZUG4EGYflxzMfGxlA8sg8tqlegqk0jSN9vJaVCwilmmCYLVb1eosYwGa04s6nhG6w24VEvK4xjDvDGojK2PUyL340v/H1IDA0gAXATEkkxHeXVp1gOmmvenMZz4bwi9QJ0vRh4UwxMiPfgqYF3ICvzOHJoG570ztAHi1ZN4RRUt94sd/y1KA/oICLLf4Q47pMoP7C5AM/Nwsw4ZFNQfRjRVCHcbSdiq3cAf4ZXlmnDt/vc2JVoj2ChtAR5H8bRCvpq+P0tSJX4HG4VDuMUU6Uh+/kebHnR2I+o9w40QmcRtX4beFf4bhfyfvWyWDQuL8gtN2SWesxGI9stfyXrqfkLBvCy7TvD9ccRld0F/De0br8drtlGfTmoS23XgBA/gFdoMru5hmyF85AVFBdPzE6LpmyZlRMzLrM+diOmeyrc7S1ooj6LSK4PtwRjPOyVt8bjqN2F8L4T6ZK7UYkVEJmeCd9dRAzQnijWK2OYk/kphtCi24mE+VE0eofQ6FgpL1isVW9M2k/eLR/byk8gH0Afnnl1hhrTzDJCyjRV5pmhxkQQ4gahNlvKPAx2h0YBlMVPYXRkNcasEMgEYk+PIiZxFsmyXeF8Ew6N1Cdjha2hRx24a34knNtGfWq4hSXWw1RiRaQNYRdmQ5+rCJc2iqphmWpjebjWrwKuR2c2hB1hgCaB/wP4bbwk+GsQqT4L7KpAqQmKKaRjId2sHweufQjR88OIrXahVXqGJcEuG9BsbVdCL0yhMsvvxtCTp3DBACXmsFrqKgm7+hrq382tkZP6FqS5dSPe8AjiO08g7voVxKMO4XXuDBXTuNlI5j1SUK8/LjXiprTGUR8DrZ0MPXk3Kvi5E+EbzFdgFnuVxeDnS2nXgBB/GR7/MuBWF1paAyw4WbOVsgG9xfhJA/IM4skscygechRBaYyJjSBSG8WTspaCgl3eFkeLTR89iaeVtSC/5t34jua2YGI7Kl4iCfXBBqtPtS+8fwGN0I1IVN2M28WWprWa5Jo4nhlHfe3V/5uPjVkUrYaE9o7w22k0T8oCr1FjnjlSqlSDc99i3hbB7sHxqTU0uy+G78ZwEJWNc7bQ29hXMYhYUopEzOkwKmXcy7M7fLb4XZ0VS71DsieM6EB4n4bXwdDDE3iWu43PWi1yG31T2Yyup5ErcSvKw38Bude/H62bfiRCF0rjZBLiC8CE6fDnb+HRlr2hk7OIBDNEKmci6V8bheJ2qN4enuTryAZ6G87oXwi9H2WzthACn+0Y5NSO5nWQhFYKvERCJ6K/dlqYpsQUhTCvVWrEO5p9r9vkRr2W/dGPqHUY8YoJRLVjwNsRdT+FRthQSBY4Wnqc4lFs5B9baYTNbzkdnWucoA15+Erh9Sa8APAdSOccZWOxDteAED+ANhF8PSKG59C0jSHx20+9tbQ6kRo7fzqQrjiLSO3zeHp5EfhRfFMmy/+MkcfrbnnZBetc5ybeKjh5HcMF8lZEhs/hEeUZHB3aKAkjjpSa6OhDLOwvEDl34ZtUnEdBzz7Eoc1WzudDWYvFR7x44+eJD/UtdqnZExtC/UXcrTYfeiD3WkaFGikJ2QKsriU813Y0m6fClV+JVLj+MCZWgyuOQNcLcbNiBxAdTSCa6gqj/XrEAHrDHUZwtcHc5AYSixVLS3VJcPqcRpbBDqSmNeHohEau+bW0JPRrHN8VewKpaM1oPTwP/K945fm6Zr5Mc5VcCA90Fvmfb0aa1U40xEPIW34KGK3C3CxUxwLMvYpoaTKMxDPhwidDz0a4pLK2q2xxCMeUpBkSRijSSokiLdRopZU2JmnmNBNUKZHSRpUyacOtQ78XBXm8nmeQyjeOqHkC7UJl5ft6gT/Fd5foxeFpa+Oo6x1J6+1FRIYtyFy8Gc31X4TevA5xApCVvhkzdw0I8W2IfQwjQXEf4gyPILbVF34zsbqU0GjcEsQYjyKLu4RYQgtinG8G/kW4y6vD1c/hcbJ1CXGjVUMuxS2WE2vixsZuwM2dIhIncdxwHt+kb7nSKrF4MqjxBGKmXwvn7EcW/rNoOUzh+3VbXmijEcpHfU17t8xaE892WN/ThV/tKWt4rDjW4RUTK1BFO0CnYRNJr8PdgqRMhgT5RRw7vxtZe29AytA8HolbHLMzdacFz6bqQOrO83ip8RbgTWE0W/Fd7GI6Mt9HL2Iu2/DSsl/FWeE94drbwnWsIsBaxURMZhYXvAUpRCfDdwN49f3B0AdL/KizgWPTdTIM7xDijt14CeSvh8GwaM4oMFmDcjlcLMX9Fe1ICziLZ+2a8nkJZW1X2eyR7H2VhDkKjNNEE20kdJLRQ4VuZkiYoUhKEwlbqTGFb4tigY8qV0MAbvNahqjjIqKcN6B5O4W8eJ1oHPYh0O3NiH+smeGtu3dm2rSE9+dwp9CXwuudoVffQmvtMKLE1WSUrLVdA0L8vwKPIZZh+N/XIlY2hwT7glOPtYhVAzAMoGXVgrStOxALvws5f7Yj5nwXArVcxKuNrYnkYtlYig4T5BbgqbK2rZYWWgylqSGRYF6Kqej7WDgudxPTMgxqvA0J8O3huvuBfwb8n8jV3oKD2/Ju8jjeHkd9zY1dQnZggmNMZ3Bloz6z2nocg+V85r3kigtvSwDrxOudd4R7zoRxKIT+70Zlam25mn0a13+qb8YcdiK/0WC4ant4PYpQ9E04WNv6n0SHoRAsH8Oo+wguEy8iTNgD4V7NeGqNKQVraSbAx5EycCPCE5uw7gz92oGi0s+j2L6pgguCPAvyt4Jv41XD0zsuhpt14sUEDVY8nSrLJCVcxIIm5quwi8UKVazgbV6Lgyg1EiqUKNJKgW4SBskYImWQCt2knCFlK6oaMIpm0DKQY+18c/t8+Vu8Gks4GHkM+TVtNbwcrTNT+mOY2OYpY0v1tB3PWr8QjjeEXvWjNXAx/G8nvsY2kuquASH+AAJmdSEB/jVkI7QjhmtOyLW7YWJbcy/iK2fDayfaptlgYhnSzPYglm6u2lW3OIBqKKi28LkcPhdYvNPimsN9efFWZvFmHqYtrMRM4nOryPuRIdOpiioVG/ba/KjnWFopiAV4HPU138dN4Twz5cbwCJRZXa6tx3p7LMBNS8oWwGuW2WseBZv1tyBxeBBZBKYo9CKV7RE8576VekUxq4vLVXHxcj+C7NwWnrQHCcb9iDEcx5Nr2sMTQr1FPx56PIpv+dETftuGjNthVJjikWhU17oSYkqZw5MRe1GGtkGO7sNV6cnwDAWcqZkquMghJP+zHsRyDI/gPuo6b3MKaZXFtFuILliLjkYR0c1pJsBTCtRoJqGdhH5gB9UFL+HbUJ5EEU+hOodnQcSK81KtEUbEenA1x9RtsqcQFY8hlXAeUU4/omjzYVohmO8gHhKLxs23xm29TiLJsjP0YhKttfvwTPYL1OubGx3AuQaE+J1IN3oCEUYHErUHqC+IujYCN5dKgmcw7kZgnioOdJtHAn5L+P0I9VHkVZFcLMDbEPfuwat8Gri7F6mE47hpZSb/mgR5HMNtZA2vNFax8J5FLHsXsgPNin08/P4CWgbbcICKCfl4dGJb0+LsW5FV340E6XkUk24K1ziHx9HieW5sCdfjTm2gu/HtUgpInG5BduVUNEaT4d6G7H8R0diXkdLYQyNPTyxupsII9QJ/F99I7ybEFDpwa3oczx2PR8l62RHOexvwH/AM/IlwroHoPoOj9OPerQVsaSNrI30eR9CP4LHDEmJ2Fgu/wBJlLWOHUDw4pmGMsdjjVKcFLOVjyRocl7OprI88O50k9JMxhLjCHNpLrxWpVu9DdPc4TpfmFTMRkA9hLYURgfqExKsxrm7r0pAUzUgMXkQrYidaQ0/i66wD+TjHcGJY5bOtHg/bsKcWsDFVywKPe8M5X8PlQD9aqxfwOhQb6TO4BoT4GGLmNbQo9qCh3o1vBBhrcSvHm/LWxwXcdZkgcfQAypVtRUz4OIqPWMGHRpHkJZut4RYcCj+EZFhfuPEOHK93ITxy7IFb17q9FEZnHHgidOQkGveXwm878PjXPYiRDaAlEbud4/vH2Os+vPpHL0KpmtV9ANmylpnbibtQV3L/x4mDg2iQB/HcgmZkdX8JoZ4tkWsHgnBdCM/zFF6MsQUvC1k/QjHwaRxf6AcQhuIUopdHkTp6GkUCh6lHpsf8J8FLZfxPvCjs25Aq24tYYWfo4V688vB6mrFf838k4fMMIldD7Gbh2cbCqyF8GzqL8rI4j/9IWYa2G/tY/Lcr1epDQRmzaAa+HwUawLfz+UNkld+GZn0Y0WCMFYmf0Wg3X7QXfBArrFzbcCNbkjtgsQKVf7XnMtxCB+6TmkZBpZFwnMeV6Hya6wpdWhsetq7ZaYawMFBpL77/YwE3RSbQaI+xNAz4Uto1IMSPI8FdQYy5gqy/FxADHmX5bTMat9hIsAicQbJmEfPMkKpQRXCuaUR2lt+7qomMrfB2RCXbEOfdheOpBhBGzGDxJufMA7cYT7WJLSbzlvCd+SsyZAN+AImSM+EB9ofOm3jKC/HYSraBGEIjPISE6CASVb+CB1W3oAVvzHOpDIR4oDvQgO5EYqga7jMQfr8R+GO0hG8OfflOeF5LJimhydkdnnOKRjNudDSHqwhp6P09OCB7ONwxwXddM5YcBzZimXc69Hhr+PyHaAXsQ6iQryJ/QRuL1Zu1kkms1MZe8DgP3AT9MPWFdpdkvaYdJNFr/Fv8umS72ixO8yZZeOcv0MLdjWj4flT65TyOKrDk1TgXIRaMti4MI2KHxdJrLC7aG6PdN+MZTesqsjikkfcKWB+Miuz3c7jnIUGrYRRXF0fRqokBiss8j0fKHKaTx8Oan3wxHrau2VfzaGWbIj6GI6xMLtjIxzDgjRz1a0CI/z5yw+xEk34GsbWR8Pup8N7Y2OociUaK8zh5ToQ7ZeFOzWjiXsAF+DzrKC+RN0C34Q6FL4fu/wBev6IfD8FaJYLNqWexTIvZehNui20JD/IMGiFblMO4uGqkVMXWhgEUJxDSYC8SS3NIlTJs6A8iUfbnOKNbCfFuaPoBxFQNWADSmv4OUjbuR/4WqzUwg5xm+5G9a5N0KPT3Io1idsauYiu2NTzJ89G/duB2B7gVEMfW8rHpofD5PsT+fh0P7yTheuagjUlkPc3kbd67YHkDSfS9KR+rxl6uWmBf7S22SnvRCA0hpfEkwjBvRf6YNuRWP4KHoPK0a9dqgqQNsm68aG8Frw+X4iCxETzh1QZ0I0VKLCmbabyVj1GAKRKxGhdT8xgOSG5B4wMOXDXeASuKxnoniOs5lgiT4IvHdB3DWsTdiloc9bFAgEX0C9H3q4UBr7ddA0L82ygmPoBYm+EJK/g+o+PU+55X12KmGbtXDMNcQDLVtLEYg7NqZ1Y+Hm5e3iHkTR4Mr+2I029Ba/h5FC66iGsTa0EsXXKLnaymGFkwwbLlCzhTacGrnJlrLB4hY1jGIAzdZ5bFN8N/bkEutyHEGDsRIzuI1zZv1Oz6c3j+8FZEN19Cg9kZnuEbCCX7M/iqfzJcZwxfupP4ZvR5kevNaMdGzehjLBoFA71ZrndsS2W565hr/jy+gcoRJBLuCv/574hkrJdxratLEeTWBxuBRl7wRjbYVdk23BNvPg4TUFtQ6TmQUjuM70Wf4FkNF8L7aHYSIEkgKUFiCa1bINsOtRZkxReQ3+U0vqGIVQ6wmdhIfIB5GYxZdVBfL9AkpVGxWRhQ7yqM1UEze0wVhHokSXzuEs8QC3DDpvaFowuvh30Czw02Ix+W2ldloSf5qE8+eBCP9GbQ+zUgxKv4ppOghTKDb7hhrpqVY+GNWl4bK+MemiT6viEGZzUtll3x2uhCuzmdQNz6OFqvjwIPIdnTjoiywhWyYox8YzVnGo/t2bjXwndzrA5SX0ZCuQnFDY+iATqAKqCfDb83I4BQHsGSbzbIFg9vDX14DBdvh5Al/iU0AQfw0mEjCGzzHHKFFpEVPhb6Mkq9YrLYpW6jY6rOHO71A/GTvKcvT0fmxrZeTYde9COq7wojcgb3PVXwAMaaExkatFgkWLQy/3t83lXZbL3l3ffxg627xS5jEHZjO6K5MvKZzCABvw8ppTMsrI2kBkkaPNWJdm0rtEHSA2yDdC/MdkP6ZLjuPThWJA2vA9TXLdgI27BRuKs/HD14sVnDdI/i6aTW4nGJ1UHzdxpHjSdiFX2PnWzdSDfvRMOwJ/z9LFogoOUd42HtFkuICPsppvfYn7vZtH4NCPEpFEU0e8CIolGhkvUNdV4bM+M5/j0+Z90TGoeZ/gStgeN4+k0Xvpdmgrj1NGtA0G1Gi7V981vEye2xmrOcwyleuDPh9UVkbf8yKsO4A2kwZ/DlZAxwtSKqAzEec27fiITzDcgRfQ5xgzFUm8/cn+cQrfWG9+dxF+bKUEY9WUKFJOQS23TruW0jmOXwxbFrPkV86ER4343I5W8Qa6/hpDOBp72sT5Vt/DxXrZBu1OJFazGN2HttizvWwtf8gLHjNbjBKaCRfwfyj5xDG3zsRMbHQRYg+cksFCpQSlUnvlCUbGxtg0IPZFuhugs4CdO3hE4+Hx7mrSisZG65dlZTa3z1zSSlgUItg6M/PEsnCnH1he/P4pIyT9WNVMF1ASIaY4rmEeH3IBj5OKqidB8a7glc5+lg1brOlaL5a0CIj+ApC+DEEjPVZeLgeXCltZwXKmawsG6SW9ziP5s5X0YywvKEvopk2RZEiG2IMCfCuR0s3ub6srZYlc2n/UC9erOcmWPaeYLvhFFA7u3DyHIxf9luvNJTvsTCcjOR4iChAWQJfT++z/rXkKveVPcvIQZl2ApTUs7ixWbMu7DUvcVpsuiokZCQkUQOOQnydMXem2vesuNPIpIwarceWe/iEM812fKAJ3PGmIw194jFNOLpXJNVHruIzSNlgMwTKETTHz5/E9F1SN5LZqAwA00VaM0CWjCD3hJ0FmF2BtpLMHYWCjfAzF8gXMYoZCa9/hYC0RyjvkrlpcbZ8jG/3nDvlvBdhhjVCfWHFJnAZpmbV2CpNXKJ4jEW4ra8+xBftPSIb6KhL4ZHKKKhb2PpZJmrpF0DQjyO0FkziRh/btBiYGWe1s3syQU7Ls2mX6LFIaApJKBfj7zISjl1RvNw6NMeJGssQLrRaIo1t0axt7zTaaX/m4iaw2GEe1E8sR9ZLimK/AbrhUP4rmJLrcRY66/iFZF7kGr+WUQAv4DiixbL/5+4hjRH/cYweeDOUhNgxNW0cGSB8Nz2bpQatJxFX7+V5Sz1INwxXB9cAYT7vd/yoapOpJt14sw8xYsWTuKwjXnWKF/i2bEKNhYnthoJBvo8giuEc5CMQ2kWWqvQnUJ/AQaaoK8Z5lKYTWD6JSiPw/BfQPMWqE1D9izUDgOfwvfpLiKN3/AqNhCXwiBMUragNZGhtTIWnmEI7SLxSeRt2IXXRx/HiwhvsCoZ42FbkRuqAznuquH9JKrMdRT4aeS4NS+nLcul8LBXQbsGhHgcO4m/W6YFQzEJE5g0QxZgthk4dzQ+bfrBZnDBeN3HiCXDXx1G66EDYWS+ihc+G2M92XOb3LIl3q/mf7EQb8cznTOc8/aiVTeGGGUTEq4xsKzRfWNXZyua4K7wvQHxfgu5OnrwMrTjOJhtnHrHdN5FmG/GXawqnEFmDfRnVpsVKDVo5PIeBXuSeMTy6bDxqrhqSONKtDjhoQffNKsVr3NbRetoFJGC5cjZIK/JQotxIva5jCO5nwsXm0d0MAPJJBRnoHkeOmowkMmA34Fk4+kqVDM4NQmFCWipwvxFaLkVZuehtgOnoU7kXTpMYxfjeppJymLo9xheMfEC8ih8DknQG4A3olDYPPKateGScoNbHlN0EU9MGkAJJp9A2T33IGeBxaSgsQF3lbVrQIjDWlhUkkBSBIoS4sVeSDrkkcqaICtAWoVsFjJLRTD/5GakXcaceAzXKItIY6wg5foAkl+vQN6yUzgI9HvGV2rakwnxKnJb9+EuynbEoMyNcpbVFTs0bhwXhTkVrvMQGtTTyCq/FanplgwW56XE1v5yZlpsHnTiJWR7kUZWwkumjCMJMgYLhS1WRivGQYwrAbi56pvJnmY0BYMofFsN729H0ZMyGv4BFKUxbJbFJ9asBcV0bDTXEjoyRr1COQfJPBQrEs5dGQxmsCuBXTU4OA17muHEGNx5M4xOQ/cQHD8J1WPQ/yOQ/FMYuwBzfx3u9TT1jGUtTKuRNDNJWUC0C74DmWVMzyA34WEcbdtLPUbmMpi7CdIZhlG94ceRU+LLwJ+hEg+vRVmqM0hXv8rbNSLEV9cKibAixSZIC1BsgfYhqBVhdhyyGhTvhGIr1CYhHYV0hHoFcjMEuRlkNUR8lja6BfH+W2GhCshFZKlXqM/WquPYjQL98QlXK2uPY4pE7ydwbX4UL+7SiluwK7kjYtf1NBroBA3yMTTQF1DWv3FwM9PiTOvVEEAebdOHXIvbw/3OIKkyjaTGIFJGSlE/l7Pw65+KFc9ab4tt++W+u0pbrEd1oWHeBdyNojQ7UabWE/j070dTYiRg62tNrVHQY456ky+K1xVqArK1pOrnALAtgzSDm6vw+WEY6oH0BNx3A3zjNPRvhekCdHTD7Leh+seIjgt4mtkqMEGA0+tSPCPmJ63ht15E04OIKd2EAs8ltF734pUQ4+vZ/TaIfmK3UwWFGV+GdIzPIEfAt9HQzyLsXSteEXOcqzYWbu26EA/NMjaai9DSCs3d0DoExa0wehaYhKZtkJ2CppdDugPmA1A5hcW+yY2c9JgQ55F8KSM+34E8cAkearPY+SIPgS3G+EhyN4iPq7FZvwxVa0LXQDopvqXsGB75Xc0zGbDAGFKKVnY39RuoXECCdzS6/1pcMXHOSxdeWX8vYrTTSGrsQdb/fuprQMXKwpVwscR0lBfaNm6bsRA2sMVuVpuGATTM38C3XetEMugYsswLSPZ04IXoLfKxpkeNPTXmK4mFZPgtCUcxE4nPIR3vWAa7qzJsJ5D1ce8ATI7C/AQMn4COG2HmG5DsgtoziCnswrfMbcczPRrNVewmtyPmGUZ/JshNUpqLPAv3tGJPtyGY5RQyeY9SD6vcJFrJqMcUjSJHmnkvrfuGNzqJJw0snRl61bQ1ByG++tWv8s53vpMdO3aQJAmf+tSnFn6rVCp86EMf4s4776Sjo4MdO3bwEz/xE5w+fbruGvv27SNJkrrjV37lV+rOeeqpp3jjG99Ia2sru3fv5ld/9VfX94SraAkS4C0F6CjpGOyEvTugtQztRdh6K3RtVZZH9dvAuCz24k4oDOA7VG6WR8j4olnYI2hdnEQE+VJ4fzb8ZoDsBW+ZmR1W8aALLbaecHTh8dg40/1qbMY8bJXZ6htDDMo0GLPAV5uZH6vsM3hM7xRe7HQAjZHVO4vTx1ar+CQsNgG7EdJ9NHx3BPn7Xhn6b+6VbtxNuVExzdW2GCXUTP0mMb3hNS6DdTXTEPWxUoNBfAlZY38E/EeUlVVAKUg7UEF707vsv5f0iLEwzKdaRh4X66sl9huOciycvg34uV3Ql8LNW2H7Tkiq0NwFvW+Gth+B4t9GW+TeycrzZDe0ee5CiusAotcBNOddOD1aLD8L/81CZyeQW2M78CMoLj4a/WY4j02QkvGStrqo58IjWVTuNcDfQ8NyAxqiNhxKcxUj02Edlvj09DR3330373vf+3jXu95V99vMzAyPP/44v/ALv8Ddd9/N6Ogo//Sf/lN+8Ad/kEcffbTu3I9+9KP85E/+5MLnrq6uhfcTExO89a1v5S1veQsf//jHefrpp3nf+95Hb28vH/jAB9ba5WVbvI7bC9DXBLUMKpPQWYG0BS4OQ1sRmkrQtFvKbks71LbA3ARk4+HYJIDlQjMZEWuWphzb7zE/WDA+YwCVLVzwdBBbfHE9sJXSoq50i93KjYTZSjHpla6bX/1x+R4b5BgtvhYBblRXwpWPQWRWlZDJdwKBHb6BgEA7kHJyBs2jTfzlssQbCXArh2nVuCy+G9cnjEF+V2mL3epbEJN/EZ/ef4xnqp7EMWg91BdYu+RlssIFDP+2E7gfCaB/E/r13DT8xDeh0AfzfdDUDJUybH9AbvXmN0DlKGQZpJbZ0YnjRWJzMy/ADbLfgQNyDJw3hSPLDaRXRvRcQrGJBHmTduIu9OPI4hiL/hujyDYIchlHJyyp5TzSQQ6j5fQyFCXrQPN/EjnARrkKgcGL25qF+EMPPcRDDz3U8Leenh4+//nP1333b//tv+VVr3oVx48fZ8+ePQvfd3V1sW3btobX+cQnPsH8/Dy/+7u/S3NzM7fffjtPPvkkv/Zrv7akEC+Xy5TL5YXPExMTq3qeBY9aAl0JDJZgvglKTXDxJejfA7t3wMlTcNs98NyjUDsHnc1Q2wqV81DshjQA3zbd+DBiMjmynOzKoF6AG3q7B1Hmdrzibw9e7HMUWZimLVzNqLjNcNnGCoJZ/A1cnet2Gceu0zIa85tR3suzeDEA8zL8Ec4UzVMSVya5HNwl9h504sy8F4+FdlG/F+4EjfZxv+qaTeUMeoTXoRDV3ehRHwZ+CO1V8u1wzousKeFlQ/pncrYbDf0oittOhOOZyVBMcCccflJo3Ll5KCdQ/ibUbgz97MNrjrbhGw4Zfcd4jR4k8baE/zQjAdyNbvZM6EwXGsAq7q4fCscAHn+4EF4vhvfTePJ2hgM649TMdUjQOOJj+m6Gl1zP8Aptz4bXMl5MboTF+s1V2jYB01/fxsfHSZKE3t7euu9/5Vd+hYGBAV7xilfwr/7Vv6JadXTIww8/zJve9Caam5sXvnvb297GCy+8wOjoaMP7fOxjH6Onp2fh2L1796r6Z0K8FejIYEsB7t8CY5Nw4hRsa4ftvXDzLfDCZxQHz8qQvgSzXwHOQakFkrwHejMFeSNjMG8YZtYJW5AdaBGm4WnfhFy1d6EiKbfii3EQcS+z+K5il+imNhPmNrhxZvXqAmX5qKLVExFfKaFY+H5UfrMK/ANkgb8m3Ndil1bcJlYmLte8xJZZJ2LKu5ASeBu+49sBXFEs4cnWm5Q+dKktdrYYNtFK+PejYn1FtBzKaInsxCdxDNdPNrOPRobgFYEv4Bs0bAde1iJXYUsbPPkipAlkRTj67+HML8HsH0L6Ecj+Gq8/2oErhUZXRq2m9JvrvIAEsvmc96MBuRENygAeB59BrvKTKCz0HJKUz6IKckfw3QuNH1k96dhNb7SzRh5kdouFSSxz0/TOChLQXWieD6NyEoeRcmZ1ieOCdlep/gmbDGybm5vjQx/6EH/37/5duru7F77/J//kn3DPPffQ39/P17/+dT784Q9z5swZfu3Xfg2As2fPcsMNN9Rda2hoaOG3vr6+Rff68Ic/zM/8zM8sfJ6YmFhRkMcOwhZgugYTM9CfwkO74L8fhpFz8NxJmE+hlsL8NOy8C5paoToP1QKUzwVsS3aF5nrJm8bIHVuQFbQ4diIB8hJaSDciyjWgVpwEb4LsWm3rm9UYPhhDggBSMlJq1GiiyigZx5EQN/f6XsRBTgH/CDHAUcS943SDy0Fx+XS4VuQ52I0Ye1d4wsdQjuPDiBkfxXO46rTLK99i4WiAp0EcCjGDmPkW5CB5DE3NbjzqETP4zRbkcT8PIfk3iIb0phIMhTV+5z3wbDuUD0HhAIych7nPonV8By6dDMTTKL0rnusiEvin0KDsRlb0iXDuGxHq7ygeQrEwinXYAAcpvs8juNEwEfpicfdZfG8LS7GBVUlTW2z2aKaExTASM4AsGhDr6DHbi42iq7htmhCvVCr86I/+KFmW8Tu/8zt1v8XC9q677qK5uZl/9I/+ER/72MdoaWlZ1/1aWlrW9d/YVs0yeGEKKseh1Ap3bYWHn4RKBrNlWdttXTByGHoS6LwFpp+HwpBSOdeQ+XOZWh5+a5UsjiLVdBAFiCwO+3Uk1PeF39v4roBnXoXNxF6Mm5I9KuKoUWOeeeaYpEA3Zawgh1kfJVRYZhAF7LpQUus4m1eUoFGLVd228J3Vr3wJIao6kGQbC7+9E/mdj4bzW3B00NqUwaWgexuyxCxaNIPCs2b0geTXWcTMH0Wp1WeRbnIeyR3Dbm32NMRCfBLf+KufkG5agNEi9HTD3CD03gH7fwSe+wbMv4jHuc8i6/lZNE928bjFZk0N0d0c8gztAP4DUiRfj7sktuHbnI7jWRRW3LcJr4hVpb42Qk84vx3FBnrCQw6H+5gfPO+SaNBiJ0IHXm1tL+7NT8Otp8JtDFdnIPlL9OJfibYpQtwE+EsvvcQXv/jFOiu8UXv1q19NtVrlxRdf5MCBA2zbto1z587VnWOfl4qjX0pLUBZHNROpnZ6B13TAiSl41W54fhguZDC4BZo6YGwaOlogLUNzM2RW8GVTcGDrjXnGACpDpPegBXQaubSewMuMHg/3GcTVUYuDXqvu9PW1mA0mOHtyDG9KhRrnmAy2eCcJOykzSsYEXhfyBTQPL+AWjPl+FyX/b2KL4+Hb8W19jyLB8BiisTuBpxDN7Q7npvhuVaunozikmc9QTqnnseuWoWaRGaD6AooSzOFG4TgyOpvRtBzHw7oGYs28z3HbsJmJ3f4z+KYcLwE9RSgU4EwGvS0wOgsT03DoD+HiZ0KvtoYLdeFZDsNImpm5ab2NecY25P0ZQuWHPxn+vz387ym8xrO5v02kmEVjFrldsxIeoBsvYv4qPNBvlXXOhvPjkNYy3pzYGrPSC0NoEV7AswmqKGV9GAEYDdNrmIPVZqNeRW3DhbgJ8EOHDvGlL32JgYGBFf/z5JNPUigU2LpVxPba176Wn//5n6dSqdDUJCT15z//eQ4cONDQlX4pbQGilMH2BLqK0FqCZ8fg1TtgJoX+FuhohaEh6ByAR56Blgx6t0O5LAAcU2xQ/CTJHfmeroVxxzEuQ5r2AW9Bi/JmtA/2UbRADyBqryFfYiu+m9cSykS+m2n0/XeBFrvRLRbgXWjUB5AN04PtIZWSUaOTAs8yScKL1JimQjM1ziIu8ySKKR5G8zCFJIcJ8cvl54uVwSbEbPcjDllDCoZVZ78f+NehfwcQcx9FkjCO4y9PGEaxZueZX8KuYFDDvMdzXeQWawOzSHbYTezGz+MeXgORhdSjJJUBkM8sza/WS14KNtUWg7f6MGNZqNJbgqmKcsTnhmG6jOYgFLNY2GDhiDrOHiTJGiG3jG9YQNmqvM2Ea4yhOPd5NL+vod41byNgzNAS6Q0Z0o5WRQUN8ulw3mj4bT8eXzewQpwu2mA07TZx5LAzdLMSXvegaM92xN7Gw3mWTFGOrvVd1NYsxKempjh8+PDC52PHjvHkk0/S39/P9u3b+ZEf+REef/xxPv3pT1Or1Th7Vquiv7+f5uZmHn74YR555BEeeOABurq6ePjhh/npn/5p/t7f+3sLAvrHfuzH+MhHPsL73/9+PvShD/HMM8/wG7/xG/z6r//6Bj22NyO1CkAC2wpwPoUtJThyEaqlsBFYB9zQAfMZFKswfgKK7VC5CLURSKe5xA2Z83DKGMQUI9nWmtIUt3PIQno1ouCvINOjHd8Q4RCi7O1owa+iu8bB8t26qkILm9/yxoBlA5UQG3otGpJngRIVukhpJWOa8wzQRYFmJtlGjREUgxxGLkoTZ6M4knhlQmvkis5yr6t/svgJC8i6eyfwBlSbtA+50HcjOhoIfW+kkC7d4iQ2EyGWyGalfCzpz1h7HFxYM6kZAzBr3Ly9Jj/Mm2u6UziSeUhqKqQWl0LJewvWk4S4ZIsFufW5lEGxBoV5uQRrIzD7FMyNI3/7HrSeLyCh/hj1+3HG5YhjlWMWCVez1k1pm0Qq6RY8JXUYqaz5ayyYSDgqpAnfDrUQ+mhVCr+KVsnO8J9pREMj+Ia5S9CROYviyGE3YmPmeDgWbt0fLr0T2TLdeOj9u9DpuGYh/uijj/LAAw8sfLb49nvf+15+6Zd+iT/90z8F4OUvf3nd/770pS9x//3309LSwu///u/zS7/0S5TLZW644QZ++qd/ui5O3tPTw+c+9zl+6qd+invvvZfBwUF+8Rd/ccNzxOMoyxwwmcJwCLl0JbCzFb48A8fnYH8Cd7fBixW4azecK8PsKZgbhdoEqqW+1jLEC80sHWNfdsRIDENdWBqHfb8c24qFfwUthpeQhXcw3PNFZCPeGN434xsZxKwx8hnG3TVrxTjYXK7LcXzpcrS8OZT/Pv+6YaaSizgLXsQZ1CfRFhA3I37xNmCKlFEyCiRMM8I8ZWapUKNIwgtkC7FFS5ecIVfBp2EznSoPV4pZ6tr0q3ilmHvUuN8FBG56Jny/HS9zNs5id+3SLfYZNYWrDCHqLKBx2xruYvC/MeqrC68LfhkPhgnHGepLA0RJCkkVCqm29W5G82xzbWHyKot3Lt0QFEMcQ6gChUydMUBqNgLlKi6RtiGpdQwJ5X1ImT+DI/jyQtzozgBw9v9WtEtIF4qt3xmuaZ6WuQbXsng8OABhDs1wD1II3gr8NyTMP4fUttcjt7sBKc3Kb+AVNH5kxNMR3eIDyLsyC3w+3P4F5Dx4GO0Fc5B6kP5SLc87YMN4x6W0NQvx+++/nyxbutfL/QZwzz338I1vfGPF+9x111187WtfW2v31txswRlm5EIKu4qwM4GhFA6UYK4EfRkMn4RyUfsQFMowMQzlWajOQrbuqj5xDMrSLDpxMZCEC89CMg2ZpeJZz5cS5PkFOYMW8A7ECg0JfRJp5GVcmFvl/wYPFZtKBgTqCt0uUF/vw9ZrXOp8M1o+AhGv8TjUF0s3ot/T3HGJ3bDQ2m7kvXsqfO5DGKlbEPs7Rca7KPICKYeYZJw52mkmo0SFk9QrYDFktvGcx8GTUnQYViu+WpyZuDzJ5lVdY+bd+OYzT6PtoAD+GhHAEKLjM9S7qBrfLe/FACepBImRLqQiNCEV4RzOwPJx8jU3e8Q4Th7TUjiSVHKzKQtpqaFfXaHflu1cxuv5TYX3sEGCPJaPNdSpBf9ErApNI29aFUelN+O1IOLAfhpd3BZsF/V1JW5A8esa8Ddofu8O9ziMxxQb0WjsjTG1rC2c/0k8b64IfDr08SCa6W4a125vcHlLM58Ij/jf8QhhM9I5DG+XUQ9WWUJHWKQR58OHGWvVije0bWqK2XdDszVrQryYQVaDuQxGM7nV394hAOjBszCSwMUULlYVgipXoFaFdF0CII41GvCsn4VcyaQdkgIkFUisCkGoB5hNQjoXzP+lKMfcYgleoWIgfG8hkT2IMV/E2aYhd3LI9HymkQnyLdQDR+J6H+N4vqUN+Ea1RhGI+jwuH5pYusV+T0OjWpB1AzKhTEfYGW41ibPOLhTA+M+Irb6bGt3UGGWeGiWKNFEgISEJXTDCWj71IRaCcT211ujfLXgJGXNDr073NIXRGP4FxP22ID/lKFJPfgCvMz/Jyvu4L+6/eUO3IGpMkRj5frRfRWsYRxDlmopqKo4967parPcuEcJPsnqv7QCeSd2DxtUqsY7hJU1yusDG8PoFRTVW1sGlEqFHh8PJ47h2HXt14rkxE99AZoYUH0SlzZoQHzkXzjmGQj/GM5YCBmW41n8WL2q0AxkOFeD/QiP271Coz/BUxuNWGDmbM4vmmO5yMdz2JmTHjIdztuEunkaXjbViY9P5sH81d1wi71hPu+aFONTH2UAo9ZkUhivQWgvpZWEyLTNhKoXZFCppEODrmjgT4lbtagu+UXATZBcD7SfQtB+KF1jYcSVNoVbTkWZhIeebubKqoddWAcwAJQPIkrKyT60IfnsOX/ABBR07DMxZsBOZRgYiKSKlvBXpImfxmGLew3apLR+BMH+mLTK7p3H0Qu48C7Batdk4wLrOLAPrUguywueQSJtGvON9CEJ4AWGlRtG+Tv2YblGlUCdBrK08cCbAjZJ6wmerl7YF2camX40hioClRGw+lm2rpCOc/Xzo9Vy40gjay7GGxO4pxD0nWQ3iMw5pdiKKDN5r9oarbEEkNYVKzLSEz7aCNjQZMu/JoV5Rag3ve5F9WsbLlmTI2RyrxUZqsbG/sa1RwHwaL7RjC6JCvcaan5eY1sqIWgfQaB9Es3McX0xHEL+4yNLo3lg7KuJS1GLsz6KZ+zDwfQgg+S08Dn+Y+hBSg9mNPWpdaFISBNn4K6RrjAMfB34FkW8vvv35RO6yNtlGlFaPJs43t5hJrBVfEi5qfe26EKc+FGbK1WwG48FtNpW5jttchHL4XMmgll3KfMWmbQ8wBMleKOyFZBSqjwtF13y7DPWkAi3b5bufnxM0fr4C1VQdWWTlmhA3kEgbulANiZlxtPgsF2MUrzkYL8jUNdJWnKBLyDc8hLhpV/jtpfB9Cedey3uC19ZiB4ZFIMylb1WZbCJNibfFOIKeZX94tBnc9TbGJVebNUzvGBLgzyI7YyvwRbxQZRmV3igiHPqu8N3EOlwVcXqsYXqGwndj6NFvxjOmzodz8/qVHjd2b8Q+xCILYR1GwtOlyB42d6fRkyl/q8u9jGEWpiMeC/94V/jXF5ACNI1T6o+Gc2zMNzsZMiY7c0Z1IAVtEs3jQTSXNyOyb0MG36nQ1yY202BrFNzPu6bygYdGFrMJ+xlcWs2hUY8X2EH05OM4ZL+RFLMFZa72HYiGdiB+NIny+M6F4wEkYY8jAR57cxqsj1hHsMjhBB7v/iHg5xDp/jEe/34BTVYNDwXa5WNtLU5p78KjnBU8acSGYAUQ/Wa060I8NCP7mPxnkHs9XnTlWtBfk0tdiHEQp40FCsmOA51QGJELvdgKrXMw0AstTTD3LKSz0NUKs80wXYSZ6jJx5zhgYK2C2LsB2MzfPYMz3ii2ZV01oh5Aa+8OxMHGkMftLAKMjOOIrnm8rLLpBJfaTPexYTOfZh9acE3U+1ljIf4I8h7swfnHMOKyxpvWGWA1XjKOOyMtoeY9qExGhtSnfcDfQRtlTSBesHoIWH2LvX69SGjsRcqC8ZwicoaO4E4To3Ox3YSUhKwOsZgveWlOYfNZtSOVwMojG4R7FA2eVfCqrvhUeUFuz5OgqbqA64mn8LLX+/BaLUuFNDeq2Tg3o3G+EVncVmvsIkIAVJHoGcWx1wO4w6dsfVwKKBW/rrkZB8vHBPIXX+4GMRcEx0OM45a9/R7nZy0nvcxNP4cYxlZ8RA0oV0arYxi57J/FPT0reHOsy1YkbhhpWITbGRjkTxAMaEs4z7TAWOGPCbE1PPIgWlgJ4h8Wzh9DxHkOJ7x6rXjT23UhHrWY/GssxjAsKHxJIKWlgFSrWoCxv6aAlnwPUIban8pNXhiHll2wYw/c/nqY+huY64Gp89DZAtNNMFyEJHSinC1xf9OsY414CrddxlgRQBWbe92Ig90YLnMMcbBbEQL0PtzTanEkc2FfKpeNfdZmdu4Mx1Dom9WIMCFeC/04jrJsWlAmS4WwAxTyHpRwDM86AqxGP6YLtIfu9gGfCl21mlTtwB+EW86GLo+ydistDwvoDcNgs5sigVJDIcHe8L1l3cgNnTBPgRolsjrfYRsuUlM8x8rQQyFZus5hbHHWOdaT/GV+o+3IqZqhqfkOYuslHOP8InLmdrIs5GlDWx4Wcj70wcqpvAIJ7vchvv7t0N/tuKpsy3URWCq2KOPXdbVVM6IVrmGSMQ2vsf/GJF8cEF7Kk2QPOIdvkJKgWexAamcrotYuJMAnccPCKrKsQohPIn40ivjBVlQaYwDh8WLnpLnC48I9sW3VHq4xiEcNmhCvuwnPrrMlsSHFC9bWrgvxBs3ooRFTyPL5OzHSuZG3asWWsBBfKmyHpl5InwZOQMsg9A7AQAHG/gi2dUh9PzYFU6NQnIMtmb6z8FbD+9qCtoVmGnEjV1sDAFVsJpk/8EVcUX86+r43fN6Bg1efox79eSktdusbjGB3dH8zjQj9+xa+xeAToU/vQubdDEpNfRnixOZtMPjAGiVqTDcZbvV2oLV+c+j6X4bPhfDdIDIOlnc8x2Iqib7Ngjs5XaiDNRCudwAJv2402/97GLYH8Cr60m8SCpRI6nyHveGfbbjdfgIv+BIPjtGNKYHz0dVXN4CxE3gM8c7DoTc2VuBwizfivoIlkiE3vMWy15bCF9HYml75/aHPzwMvD8/zHSI8ZUFHGmd5xM4OAwLEIeu1R1guocUqoWngMZrLOpXPcVhpnmPr3rD6LbiZa+rvBJ4TNoajlVbA9dvlQ6YdRdwS78dr4peQ8WEewhHqDX0bAsMa70DC+hYUz7F09nPAz6Jl0hTddzK6/2VyqV8X4su0uvGPV28jb2PMx/La2IotkQAvFAVia30tzJ6F7gHo7YALX4X73wLPfgHKI1Caht4UyvMwXYGOtL7275KcLPbzNLJdMlZkgwlaHCcQUT+ICHwM+W9fhrZyHA63O87SGtFaWxyByPAU1iHETU0rfgj4BNqgzZJ1jdO+Fs3jP0d+2TtwPmRG5zoDrHFYzspUWFeraMjOoyyXWRyVcA4Nn7GqxaMfa4x5d0YWbOiUHlJaSelEbuaBcN2v4bnUO5AIbgm/C+ZYpEAzycIOZZ2IsfaEgcvCwL4CmSKd+O4RF5CvwT7b01ZWPYD5kOZ0GJNt4SrvRXikF5HwNt/RDfi20JcrDBn3tYrI6RkcRfLHaBeClyNR9E2i7V8KkJmbNqM+q9QQcbGHOl7Tl0WQG30ZaK0VF7TmbTEvCzjTW63qZKNm7yvhHidxTL8Jelu0a0CLxY7GCZwHHw23sXE1Z8J0OOL0dnAeY5mUA4jHvAYR3e8i99D/FwHnbkML+QJSFsxFfzlcQ1wX4su32F0OTt+d1HsbTYhb/o5lb8TexEUttj0qkMxBcgLSFsgyGDwAtWNw9jBsH4KTj8DEGTh2Al67xatejGQqvdiW1W+dt2RbJujWKDa3RHdpRlrpRWTFWkz5RbTpVg2lexrQbaM4rMmuEl5e+SySjGeAP0epyk+inKRdyNX+/eHcx4CfR3zitvDfViSfLGV+uZzRFVrs5xjH2dI0qoVnNqwBn06zuA6bk0ve7rOcPtMwXGAmzJNQoUCNAilnyTgL/DAyHDqQvvO3kG7zF1iCWJHROo5lscoOfK/5bch1sS98PodPeGfoawvSoprC59hCWzkmYU8yjxsxJ0NPngo924Xc03uREG9BfHOcxXXHNqPF/ixDkNyK5MU+5IC6gPBSn0Dj24xGbCaB+SLUWiC1hHJD8XUhi24Sr3Q8Fi5sQmbTBXkcL7NOdePFVixwPIvXnzUU6Fp8ILZCjC4sPGMLzpiMuejX4Je2rljkMHavx1krpmPGVXiMROMlZ0rWM2g+7ka8pYSWgGnLlq3THl5N8bouxK9gy/vN7DCDxAKbXbi30cC443i5aGvLCvJAyLUzkLRDaRA6t8D0YzB6RIj0viJs3w7Pj0E6D2MTIpbOKtxbhO/UvMJUvBZW+6yxwIq7luY+16Jn24XcTKdx5bovfP8cbqSN4KjwtSjty/XX3FeD+LbVfYgRzuEg11E0LkfD668jK30MCe009GsP8iBkeBLyOltspRnyIMENrhnE3A3MZq+L9T2bmCY0gO3hCsb5zTIqkzFDyjQ1ZqhQpkyFKjVuBP4HcjbMIIPiXmQddoVhEaCtREYbtQUgQ1c4exxpZYOIoZ9AHOoI8iMcwCXNc2gCLJZhjHh1TDjmuXaFIuK/f4mcO+246NiHnDzn8ZIlK8Pn1tri8EVCRhJ02IwZMsbIuEDGAKozNhX6Po5GYwCN2mQCE0WYbYJqO6R9kGyFbAiPa5xCWpbhATuor2SzCifZpT2nQfY60GLqRn6bwfCdgWANCXoed7GvFckVh2EKeGUda3lgwBpaLMjN4LDIYXz7OHIYk2f9lOt/Y+H9nyKD4BTyPh5Ay+MwXiejH7fwL1O7LsTzzWK/sfFjKMUOxKcMDd0fvjuJZ9xcwAW7EVRDRTWmtjlgBmrN0HmzdmEZOQ+1GSgVIZ2BJ56A8ozSybpSuKGgusnNNeXBxQJ8tc+ZV1LyyrAd1u8qjvy2mNEQ4lo3I+T30fBdM7LSayzKVtuQ1ouUqduRlGpBvOARxNXPhD7cEc57AfhP4ZydUZ92hD79MZJdlxhgXWr4LQrTR33YMxZz9UNjPj1z/QyE79vCeyPUhJQxaoxSZpQpJhkno50a30Lx70eRXCgC30AbmhrQbZYCVUqkC0jBXsS1vo3XFTiG0Ip9aGBtUJ5EHO214RyL8sclZVaHEIzd6VM46U2G3+dRKNNG5UW8qvYqsMtLtEaaa/xbHMIoLAjxeVKmSBmmRjspKTV2hr5sR3rsVsQeTgLnEhgrwGwLVDohHYRsVzihPzzA3vB6G/BZvFiJwQzWm7qw6nGIvTG9eCz8NsTkvoLXsPgrvM5EHMBfix8kDkzEknMZT+FqW6zwmEadn+bllCL7n2mVPWgZfgF3r/Uh4d0W/tPM5QNn5Np1IR632HMZJ/enSDAN4BpdZ/i+F/cD3oDWgCEVDeOzJEAqcr4W2qDUrIIuXUOwexdUW2FmCraW4NyI9kBNU2irwoUa7KxBLdV3a9HUjTeZktJCfe1g0y0sNBWDbGqIqGvhWXvCtZ5FUuG2MFbnwvid5lK47OIWe9ssgPo8khePofl4ObKuO5G/cyeKXU0Avwz84/C8r0Jc9zlkXHbhccl19jXG/7XhYtEy3Ppwp4252g1GYbZ1fY6LfbszXO0MXgRjhoybSLlAhTPMUmCclPPUGGeefWRMIev7Gyhl9gByUDQBYxSYXkCmN5HRiybwC2EQbg29Po0CgX+OxOc/DwN+AWmzMyxkVlBEC8VcNrOsVrM0vmmiH1z5GUV6mAn6GYKbmrW60mMTy16t5YW4gV9URSijGO4vn8coZYpUaKJMNym3onndHfp1MIzQ+QTGSiEbdBrR4XY89FZAQ92F4hx3IUI5FD2kuWo2XDjYGJgQ70FqSAFRznHg62h070KL/Aha1IYetxlY7wLfAMG91GXXc8lYgF/EkzKG0PLbg4ZgHC2PtyJ91uyxOL5+Gdp1IW4t9ihZWkFv+K0dR0JvR+r1C8gl+2dowlqQtzFD3qap8J/YV7qoRU7EJIFSE8yfgNNHoSuDe7bBD+2Crz4DX7oAhVT92x2CPmNVfY4JZyWitedsQVKmMzpacNOnSD3aco56U8my4g4hou5HPs4qEqojeEXOuFbDpazTvIY8hSfjfgevRTEDfAjFuy8ibvoaJFs+gwNe9yFD8mZcshkwdo3IdKh3gLfjzoIhvB7ezXhm20XqPaYeQTYhbrHIPhZvjtMBNJGRkHITFUqMM0yBFlppZScVOpmnjZQqHsIbQILcrNhhakwzS21BKL8U7llBTuwfR1nuVcTgfxsvf2WxkjYkut4Qvn8WB4zkgXjLt5j3TUdPa6QUhzTjZMjVkVbsZjNL01xQdnfrQbxIDHnWREbGPCNASsI8KdN0UyBhnnPUaCLlOzh5jicwkUiAz4HviNKO+91r4fNB5KW+GxHPMJqSWMHelBYLcYuFm8A+i8ZoFCVK/iqSWgfRQh8OHTTE2KVIr+VAOZepxQ5S4wMJGpY5nBhfj7JdXo302vbwuopsuI1u14W4NeO+lhvYhgMk3oQm6HT47RvI43gUberzCJrg2xAvuxheT+CVNpbkY4EtZXOQZlCZg1ICLS3QOQHnDsNdGVxsVuWZsxWYr0GSwu4EDqVeKWglQR4beG3UhwYsNJWF37fgdYeHw/8tl3I23MfkioFYD+JlDDPcitjIgKVxcUs3tfDFdmTNHAlHOTzfl5CH5Fk8vnUnimmdR7wpQXzrNIuqza6lxU7JOMOlisimHfe9DIdulXCeIVtGSWPpgu2+FXGQO0IHCwiqZvGDN5JygHkmqQUUcQst1JhlmirnyWgjW6hDPowLwFGyMOUF0gU4mbmgmhBHmgA+GHp/ITzZrtCXWvjuAtLk9iAiaGa9OYU25Ir2L06GNOMqhsytzuCK3WwmnFtxRQPqgxsl6rV5abkZNeDrlElI2E6NYcoUQn38MsXQG8NEzAFzCcwXoNaFprKC6HI3IoJvISfHbYgejbZdd9hEtLMxJmMMU0g6nUOMDVQb79+HTpk/pCfq4CUgQevQw2vxeW9Ss9tVEO8yHWUQDdF2NG/mrACRzBk8ReFypUqEdl2IQz0Nd+A4Isum2Rq+O4SQipY31INoui8c/y8UcLwbadjGzfP0WdeC6pdVoZZBtQrFEszPw1cuwLESPNQO7yhAcwEeS+DpauAQWX1+0mqFuIU/W/E9VW4L19iL7697LpwL7ko397rFxVPEz81SmMa9DnHgd6M008h5oW3nwn2H0KK7B+1c9CSSKWb2mqVewl2ZI6Ffh8P7UdYdv4+dkoYhN1bXF275KNIFdyIdYieOY5omLmoXT1QPqhF7EVnJ1XCnc7ha8HlSjpBwM1VglLNUKDJJsrCv+UTom/EZ068EbDMB3oG4kcVMziJXam+49++FfrwJaUrfRspFGRFNIzDb+iY9hjVdOnvP+0gsDtSNeTScc9vkl8Jvgzi4y5LFzgOdVIKyJaOtRjGoYFBbUDDiSNTClI6gYdoN/C/Al8Pt/g6i6T9CyvUbqBfe65GRq242Rj24CfoVRL3fRDTwBjQjX0durLwnY633ywNz8uiztatqG9KiKOdCRaQLaMHeiUjoGTRXJ0P3LuJA2s1Ok8i160Ic6oV4J9KydiHeeRAJ8WlEx+cR/b4JQVLPI6zHm8L7EaSJ9SMCWFaAW8sgqym2PV9T7ncVvZbLcGMNZqvQmkJP6vmOD+NCdekk4/rnjENf/eH/NwNvDt+VwnffCs8FXuTf8lbN6xjnBNlzGh+39xsN8ojdXTPRfWYQTx5BczcSnqMTLbgq7kUdR/ziPJ4fblL0EtJ5jIza8B0O+1GRqN5wq2EUsjfj36ATpjuWUMJYQoFsgSjncRDGs+Hqt+Ga0yBCqW+lwkWmKVKhwBgZBTLa8bSteqhDRo002I1TyHW0MwzMcLj3o4hb7UcEcgIJvUNIFakgl1QJuW8s/hJre+uf/Hy0dH3R01iAd6LR6EYzNYo02tvRWBqRnw//7UUunv8ZrrMfxdFOUGOalO3UKFNhjqQuSTCrU0SyGtKkhsKtziI84F+giZ9AGt77gP+TxTVzNt0otZ62IAr9LBqnM4iS28N530YK3QS+Tc1aF0us8sboYcsVN3fbfHSs1RJIcq9roBwbCvNMzuMa8CHqS0pbeYQYu3AZrXC4LsTV4nh4B9KCb0AW5muQ4gmaRJAQN7ezhSv/Erg/nN+ELL9ZpKGtlsbTDKo1bY+WJJ57eGgexlJ3g0/g+w3kgWdL3SuPXzEjrxd4O1qboGpmw3hB/xKSRCM0dtvXuPyeMFMg7F4m0EdxLJh5BczCNv7UgicgWx0TW6iX6DWIdcE+fEuQDNmtb0DG1w4UbXwpdLvKYqekN3P5mJBsRoLyLlTh5uFwtQ+S8gxZEB7x8Jg7OoYUOCLeGOZM+OZcNBAFfHeqPpQJvRURQR8a2A4kxM+GJ+oIT533K65+QPMO1pgNx1davRUeu9kG0FjuQuP6lXBeLw5Jm0cL7RxC5W9HM/QYEu4PIcE+QkaZGmOkIdUuYZ4sMpcz67A5KIbD5c6jjIj9SAf7UcRvPgX8bSTQx6PubJpgiAMUMWRwO6KcO0Pn29BYHsIl2IvUa72rmefYK2IpP23h/1vC9+Zqm2ZxRZaVBiIGLOZBi7YCVrHAYz5q4YwyXh7BjAdz3piusVaQ/ga060I89uqYL3QEWW+3IAHehNBAf4Z42g1o8f1/UEGTf4vyjLuR5W48Mb8AV5rYhbUUTrb/VVLfUcOEaKwtxh7MlZ7VlJU5xDS2Io/CkfBcv49cR0+isMA44tcWJs0HJ7NoEOtcfeuzmVbdTFLZaznqn0msBT9maLbYktx1Ys/dOhWPvNAZRWKiHbGqXhQGvR34SRR1HMIzcI8QsxybXLNGZvHqNgOIMMfR/t3/FRHao4BgVzWqpKTYvuTl6IEW61cmYWJwV4xyvAsJ52MoPtECvBJprafx3ajmw/9nEAFNsh5wQZzUVaR+OuMpXT2vzLvZhpCAKqPY0auRRH0FEtr70WwMI0E9H55xH2IKM2gxvBR6MQB0kQU/StbItRyvywIamgFEryeQ0LaMvO3h9jvQkMfDuGnCIe8/Nu9LESk6r0cUfBhZ6S+g57fc8ZXjT742jNEqdyOjP/zLZv1WPH9jLPRnhMWIiEZ38HRAL70Y03U1OlZBQbErxXhM7PVfjiAbeWA3iSVeF+JxMzpoQwJ5CC2yh5ESvh9x5j9DtLwL3y2nHymtn8Yt5Di1arXWeKwUx8pxTDzmsl4DPS6sAUPb9IbnHMTDm0ej825ClrcJ/YZmYu6LrBHSd6P96VGLL23yLo4bxsr3cm0DvAZ5Pd/sh23Ilvvz8PkFJHbfjm9PmZDn0TERTCPN8XbkQj+OXAlnwvvfRkHVMeLNIjJq1MLV8g7FxT23+MRs+NyJV+YawKt22UA+iQjfYHm94Zynw/3T8N/Vw3RjFmzO1RZcLwOfYtPFVqe7GkM3S7wPF1ZnkJp1APiFcN5P4AR1EQVD9qB405+Ha1xEguUskrZx1TF7mqjZdFZwHEcRL/lWRAL7fPjrcHio81wS0HJ1LZZSNi7N+KimiBF8CQc11pACdDacH+e/1TdbjuIMCQUKJAtV4QZI2UGZLWQ8hyyhO5CCcBhX5fqp17TzNGV3MDCoPVMXXlHQns9ikeZ6W4E+be5ir6PdshHfMEKOX61tEku8LsRj7ciEYw/y7BzGUc0Wlvx7aG/ao+F4BucF7eE6p3Gv1HpiJNaXGB2T9yvGxLAaBcGIxq5jfPkgkiZNob/TaD3ch8Kj5mquo/WY5Rq4JcOlvTFBc8uuPgloXc0kYcx34q5mi7FBUD/1G9Gz2DkyhEeXW5D4fRGJxCeQ2N2K74bqUQo5xLMFpnMWZzivxFGXs4ihHkSCyZLWFptuKz9brDQYQ7dRmg73s/il3X8QzffzSKnYi1dvq7LW3OE40mOR607cAZQifboYfjcIg9n/jZeAPYNdvSWc2Yo2mR4JfXwYj4H3hXNuRBp5CaXafRYpKwVkOj+DmMMonoewRIsJw9IzO/FqNs/gGSGPh4c8ieTjRtZYWLaDRm8G6OvEqgkoHccE3kVcs5jEwyaLhWEsWhX5TihRpBi2QkzZwjgjtDBAxvuZ5zkUDDqCBHk/mg/DhZj6FrvYYve8VWawwd6KXBsQJf3h4R5YNW4jz1MatZglNuGs0f5vvHyDWeJ1IQ6LjRHjqkfQwsqQlW0a9BsRXX86fL4b0f0LiNOYchrT3FonK9byYg0w//taWoJv2pIiM9FwSn8LWd//N3p2M7TuQkh7U7bTBG3lFqfqWLqOAVMspmXVLOJ41lpBMEs8R6M4fPxqp2b1EbJ8IkzKYgV5PS1vz0widncRz1h8ORJ9lkd8FrEZw8Y4r7ZJN/+dMZ0jeIWJV6ExtWT4M4hAJ7g0zdFezQoyxE6cohUDkQwxeAK3dFYbv1SzK1uWcj9Sdvqp31m2CeeBhhklPO3yyyGOmY2hRXkH0l5HkPsY4D8jl9SPoNjSsfD7K8L3ZeDDwL9E49yNFr4pA8vEzYy/WKdrSE6O4J42w22Y82Way1MUvk7LmA6fK1HHe/Ed7zOkuMR0thgJGgcxFPlOaKdAGyWaaCGhkwqDlJlihqdJGSXjIJqjW9BquRfN+gt4keIS9QOZUF9tbgsa0O1IdW4P1zTQzAXqN7xYh1mcPzXvCFiOJc6weHObS2zXhTjUGyJTeOrRIJr3uxFXbgE+ibxvVZR58Uo0MWdxxdQq9yztZVpb3+LXS2lmVU9Gx02o/zvR8/0d5GEA8SfLpV6QMgXImiCzSjG94ehArLUTseLT4X0ehXcJdm9eGuczUnLeiRjqYHAHU45tCZu/IC4asl41I7ZnxtHQ2Tq9ASUBfDqc97fRMB/Bp8Tt55gg7QnOhc+yQ5MAuU/CHosZo+H1Uirr5F1A+Uh/HLGO4ys28PlRXHkkYzuqHU/H24l0zD7ckb8PseDTuMxbXXw8FlImMaeR8D4S7nILSqH73xC9HkYq1kXgP6LF8Xqk5Y6FHvci/8opVgxcx12ICWWC+k3ClooZbJoAt2ZzZWu0im8xM4bPs3XO0mFsBryDsQBvx9Ms+0hoJ+EiZbqp0Uk3TdzHC3yLCR5FM30DCa8jYxvyNB1CwtmSJS1kZ+PciHr2oBX4GSRN/w9EmxcQn7IAVh7Jus5BjsP8MUvsCo80jMitMzzKGJp3uC7EN6zlhfiLaND70DZQncg0OIs487FwTgl5M+P0JLPAY8Nz0xfgKlre23ARd6nXkFe0FT3LQbQGXoae27y05QJUi5C14PtOdyNNYA6JpT2Ieq1cp2nC1gEb7DW0OLDWFB0mjeOYYzgSVBunKXMHsFnEsXI8h2MQY+V4PYI8tp8NFtSPs7lhRFLTSEQMh/sZ/rveKRnb9cZUZ4I900yBURJqJEEwaUuOWVLKpFSDW3K9LWZosbsjL9DzAb94jldH9DatRlEDSIDfgLDiXcgR1IR06wuITdvc5XXl+rvajBhxXAj9eyPuTehFXo1Xo1j/s2ghnEJUcRfKAphEbvXjaHF8X7j7CB4/W0EFjAW5dclkUuwaijWTy8o/YkGeR3LFC82s78YMLm8bm1N7G3CMOaapsp8aYxxhgBvZz5t4mgvM00GRlwNvoMpWMv4rknYp7p8u5O4UZx704yrg36A5acVV5WbEn2Lkexz2WUczndZqbwyGbuxCxGzxshNo8Y/geLs0dPES23UhDosVddOOasiLdhJNwH4050/iiulZ6nES+QV4hVudFz5D+armKbAwoHmXtuHP0xq+O0kkZRKolSBtw3es6kBWjLHaBLgfwfp34MVDLiGHK84caMOlcQu+GGLvfXBXJVWPkvWFHveEy5xHDGYe33huzIdpXXp5rEvM4KK3Cw3jhXAf05kscjNFfaVXbybIMxKqFJijyCQlSpRIKJJRCBZFSoUaVaoBm75x+mPW4L2pQKuIZ6zQGrHhLkSeT4SrvRZVc+9C6uIZ5DQdRXMX+x4a99/MW8ViRafPIjdaG0KqvoCE+V8ioroDEZpZpNNoG6vt4fsn0SK5iEa6gNcmXmYMGoXJ8sO4XgLckBYrY3lvTBb91riTsferDa27bdiucxVeAPpJeC3tfJph5kiZICNhjmY6SHmOjD8h4wQSuM83uH/+bhYP70FS1FAUJvz/KvTkzXhd/4v41rmxkrLGZhqL3b43fH8SEent4XMF3zzFnAGta79do3ZdiFszmp0Lnw079Ez43kC384jbV6PzG3llrqD1nbeVFnhEBlmC9kuZDt00IF8XXhCsD9H2MJ4vPpNEe5WXwp+2owE5jrKgH0cgoXnEIPvCjafwzRLWGK/Na7o94fZb8Z1FquHSQRoXxqFQ1dGB1tK2cHSh/akNt7oFB5/l4+Tr0c1jp46JYDm8Hctdxmvq2NHYa6qrqRBrjSaqtFCmlYRWElrIKIUeV6lRJmOOdME63bxQ6sbFeGKm34pXr/s0Ml4seaIDsfNdKFr6HbxATt5WbNxfUyILyHLuCp/H8CI1TyFTqQ2pFaaKWf7yJO4dqSHKGWNd6XRLOTuuBq/dQidS1qpl5MMjvWi0Z8kWQIuDFPmPPM1t7KWfViYYZ5DdXOQ8RSqUuJ0KR5FCtR/f9jSv5lq/YkvaEIN3A1/DSzamiD+9G4dMmns+/4yrbHkdohcRKEhjP4Z46D58v/gSIuqLbNhcXxficTOuO4tb1M34NqMn8FCKccmlvUpXpOWjlnHkMgNqqSq71oBaBrUqZIb5MKW0hgNQF3BKieLhC3fpRg5Ps2G/iKuXNWSJvwJR7AUcUGKLZhWtkZk2hMa9E2m51u95tGiKkBShOYXOceirQHNF03ML0sPNAu5ATKUSnsYciLFLfT1TmrdlzMFjn5uod0wuRz7iE2ngEymdqJZbiYytJPSFmS2TLUB/DAYHl70C5OLOxwfU8f8k89OMXoeQKB0Pp48hO6oj/K0M7KOJMjWaFrwRK7m8bBYs9QJElxkaoa1oxs/itfVexFPuijgHHkczOIG7fi5RZboK+EZ9y2Mg8hOYA5/kWqyUWVo8KHnvAEU+wyzPARmn+AW+j9dxA8/Sw3/io0zzDINsY5YBqjQjprsbGQpL5eum+G5Nx9DcDgH/EN8u9yyezxerfesU4DZM8cOakXFH+PwMCunPAG/BScVKWR9a323z7boQj5txVqPNIlqbo/g85zE86/TCbEbLQ47aEV2Zk3sBlpLCXBXKGVSqUJuDNE6HsHGIUyFq4Ak+vXi1pQpiu8eRlH0dWq7/F0qufzvr1nrjgKkBT/eEhzsQ3n82dCNF2K8RSHugqRs65lWltr2iXu/DC4R2I49XC1rulqpkSVLGLtYZKasjJXNKGplUos8rsf36+GLGABlNiB/0k7GDbKHa9Rj12FuTl1Yb6LK1PAYu5pepH1ngx1mm/k0hlt0VjluQc2gM6ZG3ALtpoUQzPaRcJCOjSrZERNybudTNzWYutFFEmyXc3W7x0hlcMBdw/4nlUMdwyEtR+a62ZpNnAJTYFIB6OOhiCyaGr5RwTtEJ/DXwRbRfXifQQY3DPMM+uthKkb3cw0EeY54/poVXUF3IFR9FKzP2dtiR4KC2MlLTexEz+HPcItuF8A2mpm8QaCk2NGbCQ44hYW6GxlcQHrIf1xnNjbQB7boQb9RiJXMhZTYIniwJvwVt8CpZt7HX2bIqEzwu1Y2zpWlgPIWpDCYqMrCTkh5toS2JU8prsIfCSSXkwurHi0Br2cqRndd6V6H9mJZrLqstKMzejTxjJh07qatiVyhBqQtap6CrDLeV4Laq1k4PytHejXT0R9Dmil9By90wsHnY1nqb2QyNrrUS6cSKvqlO28Pn3eGc+8I9nkDo9yZkdxh8YIXEp41vsSYZZ6LFrcJCmcqsKmFeTUWXJeDtJLRRYJyEXrSZyD9jBw8yxCe5wAVSOmnmJDPMBzBftiBQGjUjZCMSE+IGDbeOx9DwfIpcQj3QMNJG1jS6SymxVzgGB9SjR+NcKavqD+6GtBJzSweD7Ir3IV3bkhC7kQw7QIFpzvENvsJLtHMPr2KEi8xwEmilyHZqC2hiE+KxJR7P6zxa3YbMfQKthG7EAe8L54/gSIqFvNmGfV/VcMWHRWvMEXk63GZfuM328P5rKPttIxgM14X40m1hTYUZSoJpsSDp7IQrHwg3Zm9e5xKO9LWodBUvRNhPyHTJAhQnhbQCtUahr0XNNBtjdhZ7+glUIOMYSu0oIGF+AYmf/EJfYaxild5aL0I1/TUyn/8CgYQfBD6PdjALSPpCBUot0FKEtkS9+AZSksfx2uYVZJEfwaMnZjxaNzZiVtdzjXhe23HQVyV83o/Y1u+E84eRI3ELDtKLM7Y3vZkANw2iA49ZjIZz+vDA9zRks1Arq49NaYEtNPE0RQZpYZwqrSRsAf6EKqO0Ms8uttDJCWaZYJQ5xhbS8rIl3LtqMcO31xiIZq6D1SJT14oLiN0TsSIc85FYKbjcLR/g7UbUZSblRdxBfgFR4hheR0DPYLNgjjwLXW0Jd3gIjfofAN9kgu20UqDGqZAa1EsXFeao8DwS3GMshi/G42NzaciTx8L7yej370PZB2PIY2hYhtjbssYxzwOPCJdqQoaGhSOriCHvxze+6Qm/V9iQdl2IL9uMKxUhy0eYLcIZ+5yvzAKMvc6W5dCLxOsQohdbgiCX8l48ypSgXU2zbDm2FUd5zeU4Ft6/DlnkXw932osWvkWh86kcqxwjWyQd4aHaUG5WU/juBgQ4fRlaOF/VwxVPAOegksHxsrwNpXC5w2Gc5hAW2SB3OxBrml1dzy5bM7uoHT3y0yiKcCG8vxOv63YArx9m6XKXiL1dfctrkr1I6+jHywUYlGIidHQEsrFAUeWEqazIcNbMTjo5TYEbGeT13MG/4284yARb6KGfHRxlknm2MUYbsxSokJKSkq1oFcfKdhzkyHuHNlopj90TsYs6z0c2olrBelt94EZitwNRmvG4k+G3AdznZ8+gwE28Ac8cUunP4cDs44gn7QaeJeX3OMvdzLKFLs4xTEIZSEmZJ6srFtUoHm7zaHiHEXyngi1oVfSF40W8KNIZLmnf0DheEIchzWExhbLcOhEa8160OA8hVGYPcv0Nr/6Wy7XrQnzJZgAIqzlkR7z4ytRnq65RSK271bul5XLNaAvx0Z1k3IJk3HYk2E+F4yTCkX8deXYsQ2t11pqdOYuWpWnkBkM6i8TNBRSD2o2W8TG0yNap9Voh7QStz3ZkVu9EmW1/icAk3wKOQ7YV0rDQsoLW0RxaP29ENXomQw+ryPE2Qb2vYK121ma02BnRjG85MYkUtCOIKd4E/DQKWryIEqZgcZbvprZ8ps8Q0oy2IZ55BGkctyNee0bnZxmkNajUEqbTIsO1For0MMQumtnHQfbSwzQF5qhyD8Ps5CKnGWOKSZqYpUaVedI1wRHjGY7Vm82YbeMjLXhRWcOI5PMj7biUagXrabEVbj6fHWixHUcLbTp8vhffJaqF+nJJWj0p2YJtbE/fjjjnqfD6v1Hg46Q8DQwzzQ6KpJSZZiKq/L8axcbwDrNIMPeH7zrxzVSeRxKzB60eS7tpnNi5bIvhAnHKq5Uc2IXrEza1zyLL6QfxML3dfgPadSHesNlMGXjLXEtWHcUcsTM4HngSX4CbJcjzLrnCAqMvkdFCShcpA6RUSBlBceD/gRzeu5CsG0YC/jweIYqLGTbueeyONBiVSdYy4srfjxb9IIqAHcTLdJgQN8unwIrMMzb+K+EyT+M61GG0AxtIX7hFXcuA2rws8a6is5gCDrQxRfp1SMU4Ey5rCQhXQ4TSWoaUkJuRevQ+xFb/DBayaX8DAWDvQLLyGfyZNr01kgEW/9uDBPkTiAQOIIOomQUPaVpOqMwXmK2WSNJWsqybObYwxk462EtGL6P8DSVupcStPMevkFKkwH7KTFFjAmHz53DBuNq2mbMc85FOPJG4Ez18ghsG47jr2HILLpcgj1XFjtDvrWiyulGxjPsRb9uP4lntaGKn8UoHtkO9c8cWNML7kF5n9Ph7pAwhTnGOjNNMM0ISqfpm068UYjC7vxx9LqNxbEdEOU2UK4uHANbIqw2gYnCBDrxApQX6wV1jNVTkz27/BJ6q0sSGxbiuC/FFLXZOd+I+wQLS7IzIy4goLiBxaD4VI7iNjkKa4Db/jTMA9Vh5xK3M08o8zwctdw9yfp0M/3g5qmV0K179OA4SLN/yoKAEd0sOIB/RNjz15ly4+iReb9Jsw3wssIHYzHvLToYOmyEwjsAjO/D9PYs6pzoDc/MwnQnYdmsNbsoEZOsLT3AfSoLbjfKOn+PqE+DgtdVbkAX+ScT8zHl4M4oEWol7S6q4bE7ZvBDvxTm2hZhvCQ9yErkUykibnIGslFFrTpifL0KthXKWMEXCBIM0s5VJTjNNF+M8R8IoYzwDtNPELaT0ktLB4uyHKz2D+fiC5UduQwNxALmTduPlXc/imwmtBzR3qX01gdeM1uwQMiGHkFp4MxLgRcRBJhH/szqI4iIZ2ULQbSLcoRLO7kK697lwNfnxUkapNLCNV/vsedCild5UEqJaDeN42aLNv1fRYuSwpf1sxZMVLM2lBelqthAN0NKGl+2fDO+vW+Kb1eLEv26cG92MZucmnMin8ApQcdrJZsTHE9wll4Q+dJHQQRLiUSkzzDBJRpGnqCzEpaaRFb4v/PPVqD7VIRYXMly+2SIxPTsL7ztwSXsOubUMxWuqArjlHl+rGh0RmCgOXc6h4e5BWSI3Af8/fA/xDPGS7wCnoJpB+TSU52CqBmMZjGQSfMbifxCF0y9QX/kwj72/kuLAWLn1Ywp5DS6G3/cg6htBTs7PomfZR/2GKpuO1DAZEOfLFlGYow14G45j+BLKSLwBBxy3QTadUCsUmE9KZJSZY5opXqCJTgq8kXE+T8rXKfKycIMRKgyQMEW29F65V7BZjNmQKluQwK4gSuwB/jmi+3EW4gsLiaDmRr5cOBszXjpw9/U3Eed4JaKyv0ETZ2s+pT591IS4i1KiJ5oMZ0+jUZnB9n+xosGX4sc0i1yvBeZIKJKQBIoQb8moBW+BYShWOTSxkmrC+QY0xc+GDk8hu+/lCKfzbPRbAdG7iQ0L9W9Auy7E61rMjawEzxBiiy+hhTYf3ncgabIXSY9zeGrGRrrUjSmVwj17kC0pv2VGc0CEzjLNMcapcZSUSvjHe5B+/3Xk4RxCHunteER/irU0W6ICoNT7h2bxildmgpn13YrnG8WR+Dk8VSUXC4w9Zeb0KIXXdiTB7gq3eSLcog04CLUpKFegXIXZVD18HCkvu8PfEsSWXkKsqj3qpWUOX8kW22Mg5b0X9d8s8EmkjE0j0fA8rvSbw/CyiIF46RSQptEdOjyBDM/taI+RjtCh16GIy0yykPhRTaeAlBo1KjwKTFGgSBrKZNboQ0GEmzGBcXW2vDGwBQVBvoke/j6UzVFBBH0K2BIcypMkTJNEKVUbDbVb3BJ8PfbhALAJRFGfDP1/D6qndx5JrMaKUyzI81zCjIYz1EfUDTGzfu9RiqobphSpUiJZoJCmBQ9BfKxybRhtm3O2hON1b8VzPLuRADfl1Fgb4TuLOsSFwjagXRfii1qCSK0VH/kO5Lc9h7KLd6EFeD58Z7k0BTRza6hKtmIzP06sVGwLr71AKxkpKdMU6QCO08wYtzLPduY5QnnBSfc1xNxbcSfZi6wHjhe7+SzdrIi71i1L3ZiYBY668OIaNTwBxeJV0+H6QZCbFCvj+zCn4W/dSJpNIal7EN+PYh6SKiQVpc/VMv1tK+7e+xoyFNuRQt2JWFcP8iPEBV+upCVufo/p0C8rTXoeibFdaC63ITFxClGqPcPlglrWtXO4I2YeRVm60TwNIgH/Q4jxbUf+VTKh3DKLa5dQnGSelG8iuimj9EVTwT6H/BGGNr5aAiExJNFQ3FOIOAeQ2nUeoRp24vzjHEX6KHCeAi0UAh/JggAyeIgti41tNm4WKkzROA8A/x1RVQvwP9EE7qFeGi0Wh0a/posbLiX2xaW541JmT5wyoyn4ZlpIqJGFpIhkAXC3crnjXLOptA52o+jIecS6utHQ3IOAm70o73McMZ0X8Mq8cWr6Bk3idSFe12LgWJydO4aI9igS8MfC5/tRjOh1iNifx6XNRjhjjXpMgBtqdB+igL8mo4cqdzLPLqoMUGCQjGO8khLjvMg4VXZT4wzOKiyCdZb8PtZr6W28RE14x4A1s7rNlbgV34dvDyK9GRQYPceSsUDjAOZ6qoa/tSO+0s2CpZ7MANN6LVYkyAup1x3ZiWB3F9AmlCkS2v8QyRGr9WQZUevArm54s4CFQQkTfHfvGqpU3x4+T+ORhTHqt6Le9E7GGkcVEZml7k7hO3veHTr0aTR/N4X/1DLIapA0ySSnipIAH8HL3JxCwKo5pLXF7l/rwNUkyE0ZmUOU9yLKDZnBiyQNIM2mhQJ30EILTbTQRIkihQVbMrZY4+DTxrRYLehAnGEOwSRvRrmbJaT2j6LJtBx74yBLC/IY/QL15s1GeRhiaF47ZjZkCwDWnmB5m9lgXm0zlJcV5HZxu0EBt4aGEXm2INzH6xA724aXcTeXZ5yNvIEkel2IN2wmfLejGTuMhNGNyHXehwj9U2gRWtqZmSAb2Y8YHDOABPk47gU4TcbbmOX3SLmZNu7iPDO0MEkb3eygxnFmSEkp4c7tDryY4VIViVfX4iVo42bMyxK8Ld2sgqj/C+G3WxG1W/3BBjn3tvoNt2ICfUK3SCYhyYLlPS/rO6lAsQql1LciNU/7K8KoXUQYq2kkTyy80E39zsVXOi5uc2L5/CmiRJtLiyOaMLe8dyvTfNmscFO2ZtGUd6JQai9C3H02dPQWRB5fD/+ZA2YzARnSahjsGp7Xa9DLIaQBnMETlop4WRsT/FdS5WrUEjQgR/Etd96A1sAFNCizwG462EsH52gnoR3IqNESXOnTiORbwtn2tBsDn7VFZk5vi3ccDH3fh8zMnSjYey9yrxt1rZxvvZmqlcnYGFc5iO9014Y4jYHrRtDIG+Qt1kEbXtxeu5EiOhyOVgSsuQP4LYT9e2244TtQPPw74bMt1E0YiOtCfFGz6TwV3regKZ8Kr69D7P8gYjJVxK1MVcvrmZfS8uTZiajCBN8FRFVfAu4gpZdJtlDkIhldbKEbmGWUGbbi+5qcD/8cZrPcxqZ4WOmZnUjpGQvPMB9+r+B1xmapR3xEqUKxIA/WXlKAQiHaziDVkdQgSaGQQXMw5EcQA3wRrcMdYWTH8bBUGfkHzDsfC/Ar3WJnhMUZDRhUxHeyNoUs7+Tc9BYHQGcQgVktoBvwsgGvRvJgBsUOu/HSlPOphHhmsF7LcOhCuJMp4E0oHv5VpMy2hotPcuWDH/kWi4aTqL8PIo7/G3jl/m0k/CQ93EAXh+jlOH1U6CHlPBWaydiOfH/NiAasnkjewr20vsaBmwEkyGtobBO0evajhP8/R2P/Elqnl1D5bANabCgXUO93I5I7gnOiMuJE53CzwZA7a3Ln70KC+QiqTWGJB18InfgHqILkDI5cN0tgE4bnuhCva/HCM/bdhHQ7Sww0J8w+xIUm8d2POpBo2EhQWyzI2xBX3I8o5HPILbcDuR4fYIrnmOccVVqZpsRFCrTSTJl5qqSM4taaPcnGMvs4FmhWRjtepmseeAAt+pfhgaV+pBSN4rCyyAaO/G6FFAqJ11toCaNTyiS8s/AX+72AZMULyChMkJa+L1zycXz31au11WNvFyMvjGrzTOmyNJMkFupoRtO3Ay2NflyXewlN8Tk09aPhP5UMamkQ4qYE9qKZOY5o6JnwvgkPMBpFb2Z9hvU0m5EpPIB1CikhL0MDUAXuoJl52niJDl6gm5cocoJOJhgEBsnoRGr7YfSUZ2kYeLrEZlqyBW768PBXAUkuM1wqaCLb8fqiV27sze+XIYrYikfsuxHZldD43QnBy6Fem8lg1LPIGs+iV1NU96EpPIC2mP9MOGcPmpwX0FBlaOo3OcnguhBfZDhbjLcXTXfIgWEMkccWRND3oYjqCeQqO4ozk42eMRPmk6EPL+Lx+QGEN7+DCr9Ihe3U6OICp5glYYyEppBmYcvUrDVLZNnY5ZeHKZ9GvlMrkHMUWVa/gLDhljf7HaTdx4VCG1w9g2LmxZI6w9GOhLnFis373oJmbBCpO1UcutiBx75nUfR1K/XiYG3jEtvusXi110sbZaMqk5fx3bIGx3rauv1IcajDwD7jaBnNool4BgcpjtFgc6pYRTE0gCUi2ezO49sK2swtXGAtPd7EZjMQh4cGEH6mFVUQfxBR4WHauIkiR2jhDLdQo0aZu6hyAwklEuaD8t2PRKfJElu/G8NtTEotVTTFEhsr+P6/NnmmLhaia23UXOTXk11fr7YGSjiCqRh6+x0c6/oOFIj5LeCt+Hbehn+ZYRmvWyzAZ8MfRhBc4J8B/y18dweyyD+Nl2/fipPnJgnya1OI55OBIdBdJkaSVSGz2njnkdA2399r0EKsILFwFmnYw2y8RRB7BiwVxaLaL4Q+GXr9D0I/u6gwDXQwwTmKpBQCseettc3LIbaB3Y4rRbOhz/NIJ/5t5BZtQuEIs5mXdmI3in0NhKMZLeATaM3cgG9CWEBs52zoTSdyt3WFc16PIIkJmuF8LaeVxycG9eUd8fEcXrrdFP87P0qXIrit9/Z5zUpBzOjiEOsErpuBy+gZXP4uDHYcN4m1ggCAWOiZwbxiNXQlSs4LgxjpsBl+TqP7eaRujuMQ57/B8sWb6aOLeQaYZyvT3MAsXVTYQ4U+5umnRhXRelP41xSeN2PyYeP6XI3eW+0Hq/dupkBc3yGJfsv7gS7FFxRTZR4obHSiV6WVecLKNjROu5GX7bnwFLuR+TCPZHAHGr+mBneoazFtTyFWfwbR8DhyqvShgpXfwHdVNIYSI0w3QYivvs5HaF/96ld55zvfyY4dO0iShE996lN1v//9v//3SZKk7nj7299ed87IyAg//uM/Tnd3N729vbz//e9naqo+W/mpp57ijW98I62trezevZtf/dVfXfvT5ZtJAYMrG9rJjhaEhCpWoWDM4zxy4Q2HP34OWZbfQqz/KJopizBvtBCP3VxdyEcJgvVuCQ91AYF+urBc8ipTlJljliozpEyT1bmONjf1KEPL5BBScEzfTfByD8+isR0O/T/LStBNmz7LvN2K1s5UOIoow+NlKOCwGwn2Eo6T34+8YCfC9faFXtyCW+GxcbgyG4pxsa3Ul+ntwesxWgb6xqUfbpTlbdUNWvHiUm3U58yvqoxKrG8ag7Pkg9PhOIvMoHGWWC4xzZfDSVbiyo5J6reSXI6SY+UqDsA04xkUBpLbSAREnvOb7ZdioqLANO200cLzDHCeW5hmkGH+iLP8NlP8NjV+D2WWVxB9nkK02UG+xMpGNRPkZbys9BhSg23SLOTRhlaV0XoXDgtdWxmp+mbzZWuqGecdxuNUZEa+isKCqC9GZ4wjftAU/m2lJo4j82IXqxy/WCk1IX4SlUl8Bvnre5HpX0QABqvbY3roJjqK1myJT09Pc/fdd/O+972Pd73rXQ3Pefvb385//s//eeFzS0tL3e8//uM/zpkzZ/j85z9PpVLhH/yDf8AHPvABPvnJTwIwMTHBW9/6Vt7ylrfw8Y9/nKeffpr3ve999Pb28oEPfGCtXVZbah3b2jXmM59BOYXKPFSnIc0gM5hQBU3/S+HowiPM02z8bMWMwArwGlSjHYHsvhoe7tVoibeQcYIsJBklDZKMNtfpGFud84j1VJEgfwUiuW7EFP4XPCEqwQEyi5mysWJDBvQiz9UkUqO6gR9As9OGW95n0JorIwHejRdRmsQruI7gmyyuHiZlVojVFWjHS8bY0opNz3wE7sq6f208jU22UG9vma1rQLlVGRPx9BvpLpcc3FADiVWTOHiQ/x2W700c2rF5iu0uu3acvLWRaIKYi4ODU+dIaKVERoGDlJijmWnamGaMsYUNe25D9Gh4jp14oVOzRTYHeBkHbsyXZZZPE6KINmRENIf/WGrCdDhmou/XMp6xALci5WbE9CDxXMEqqWTMkoUtU8aocR4p6TN4qeJhxGHux2tw7kGydlWzHQtxy+9Mw1B0I0uiGTEWs7rNWXEZCk6sWYg/9NBDPPTQQ8ue09LSwrZt2xr+9txzz/GZz3yGb33rW7zyla8E4Ld+67d4xzvewb/+1/+aHTt28IlPfIL5+Xl+93d/l+bmZm6//XaefPJJfu3Xfm1JIV4ulymXywufJyYm/EejC6MJJRF6IDXB6WQKmEqDTC5DNYVaJVyoCS+Aa8jNOMK80YGPvDZ/MtzL8JczyIbcF84rIUFuSPBZssuKGo1dx12IugdCXypo6fQgZ7fFCIv42FlFhMbjaKykDa+BZSV3XoOU4n8D/HD4PIYscSsnM4aXBOlGo3QOxcvtt1Hq91tbusXOfXs/FJ65C8e/zuGWpAWB4UoK8th3EOMKzF9QwEVPbEMmrBLxEctgw4jmowuwike/VB+DiTpzuZmCZYKnhpfVihUs2BhBbgMQKyNzuKVqztsKk8xwnHnKVBaKg53E6+AfRiv9drwuoj3l5rT8JFmvzPK2CnRtOGVMIhofxhO4YPWCPAbFWgxmW7ifpRXanE2gVT1OxjQ15kipLXDKl4V/nML3WnsHMpb/n9DzW1hDuNq6byKmFm5gkUIrc2Fx81hn32QWvCkx8S9/+cts3bqVvr4+3vzmN/PLv/zLDAwMAPDwww/T29u7IMAB3vKWt1AoFHjkkUf44R/+YR5++GHe9KY30dzcvHDO2972Nv7lv/yXjI6O0tfXt+ieH/vYx/jIRz7SuENxqnUvXl/BTIwiTiPdBLMsjPpsphh5WqJ+t5xGEebNiK1luIZhgroN99s0h3O+g4h6FE+quhKo0ZhZmd2QojDADWgyLG1lF2JPBRyl3tibEQNYbCp7kIDpQNC+U2jdPInr61vwWOIY9bXkJnGL3NZcXL95+WZXMQHREz7fgq9iq/gwgtQFg22bKLxcylV9r80Cbw+99nIj6vUeFAgphPcGXTLqNkNjxbZqYb3RLbbA25Hg6Q1HN66qGMsfw3cQg41N6I3DA2bOmRPXVkvKBPNcpMoPoEDZKPIqfQffFfsmpJTuDL02h8fmtDgebf6vbkQpBTSWXWitWv2KUZzOzb25Wgx93tfWhFbvAKLSSrhnFu5rcZpS4MQpJTJKVBkh4xwS5G9CpfoPoL3YnsAVn1HqS9WsOONpdKKJginqIwexYyd27mziGthwIf72t7+dd73rXdxwww0cOXKEn/u5n+Ohhx7i4YcfplgscvbsWbZu3VrfiVKJ/v5+zp49C8DZs2e54YYb6s4ZGhpa+K2REP/whz/Mz/zMzyx8npiYYPfu3YtLGG9FsmMHkhunEI2MoyqDh9HqyVAVqWoN0hSyGqoklXfrXTpYafmWVwENezmLu21jFdBcWZe2ncD6Wz6AVEQLsYogJhfRGN4Qfh/Fg6XmvG3cZxt9s38rKJPjSLjKDryu+BQSnVYkxTJgJ6l3zpoqZmvPhJNFWcxzZk/lPbFedCALfAZ3/ZVxj8gPIMbXHv53PvrvZil+SzdTPcym2hK+z9D4FMLrfjQbreHcU0gd21xA5Ea1GD1hT7kVLewBNPbjKNhiap655GJf/6pUlVW02DWRYBToEYeMLWQ0IQW0hhcxng49G0AUNBx6vnbw5WpbvMri1FbzfXXhpZImEG13kLAfOLzwhNqWNEbgrAZ4aP6hLjRfZl3ZkaDV3oeg4S1hXVaoUGGWKhPUOE+24Af7Dlqhp/BY+VtCz0+wjgoDMTOoEutjanEUYrNFQ2gbLsTf8573LLy/8847ueuuu7jpppv48pe/zIMPPrjRt1toLS0ti2LvgCN3DM68DUEU9+Johx1odTwZvp9Bq2YOKGehmhRBiMftcrGxWAW0NJApPL5n38eI3ZUAP5ejv1bU0BKIR3D/qtUiNKSIideVRYSti1Y0pT14dusePIntMBJGlrE+h2OpDF5E9Gp2gH22tWhC3ntm4t2wCX1I1x8J73vD3Z8Lz30vEt5DSIMEz5lviIfdtGas0tiyRetbkaX3FXw78JvQcjFn6RxXU0R/uRZbdD2IhY8h6vhWeO0N59p5ZlWuAfGeREfcYpnd8Ad/F+PvxxEF9SJqakKVxvYi8fkZvPCpBZ421hqPPRgG/LOAywBilNtCb85itR8K/ENKvETKJAmzJGwjZZyUcTKmgjBfSSHKq5dbw6vFPt+MRuQvkC/C8PmDZExRY5oyc0xQpRhGt4xoOQn/MKP4IlqNF1m829+qmrFbYxB5u85eL9MC2fQUsxtvvJHBwUEOHz7Mgw8+yLZt2zh//nzdOdVqlZGRkYU4+rZt2zh37lzdOfZ5qVj7ki0OpFooZzviZBfwEFURKeYJotN+HAi7kMdxJdlWXgU0hGjepsyjhq5Es77Y+ziB2BSPYeqhU7HIbNzvWFUxh/XNSIx+EY3Ejcj2/QKyyifxKJohF8q4TWTs3mA0lo08jdsisfASe7ekljhC3xye8yvIiXcvYskPIrY7i4jKMAJTrB+9u74Ws2hzTFmUsRtZKGcRGhrkmNqFen4MZ7FXQ035pVv8lAaBnEEz+hK+I8t2BB2rovnZiuYmRr4voWDFxmohOqAeuLeCHhAHniZw5cpE2B5ERfMoKe08XrZ7zRbkii32LhlI0wRoLxYDL7CXAvuo8muIKm6mk7NkFKjwIm28mowZKnRTpZUqTaQUg+K73L3jeLgV1RrD60v8FcrAeVcYmc9i24plXCSllXlKTIdKEYYpu4h8BSmyyo3jGEu/pP0FLq8Tbcm26UL85MmTDA8Ps337dgBe+9rXMjY2xmOPPca9994LwBe/+EXSNOXVr371wjk///M/T6VSoalJCaaf//znOXDgQENX+rItViw7kHH0ReBjOJDtKbS+zYe1C6UPGKh1Y3M4LqHFgnpNJsAVaNZXe7VYYAx4iQX38hwvVl8s2n4MseebELTvAhJGncA70X5LJjKNLedd5uak6Yz+WwrXmoi+N73fgxQJWR3TewlF5tsRQb0MeGPo+S4kIg/jgJ18PvnlaTHcawIJ6teE9/8BPV8fGrOvoQh/Hz47K+bUXvFmPbN56UJVOJ5EDlSb/VmkSD6AFzHtYXHl/AaXtwE07c+mE5xITeOLjfpcyweezBcwjNiUCfYqDvEawel549JE80gJg1yb0tmPhR1SvknKEygePQMcpMYfUuVFmtnGTvYzx/PM0MIMTZQpUCEJ/VyOYqwP4IVlevB9+8rIlf5MuMbrkV/iWaCVNFBmGe36VkH7k4/iNGvTMYqP2+WE/W5WW7MQn5qa4vDhwwufjx07xpNPPkl/fz/9/f185CMf4d3vfjfbtm3jyJEj/OzP/iw333wzb3vb2wC47bbbePvb385P/uRP8vGPf5xKpcIHP/hB3vOe97Bjh3Kgf+zHfoyPfOQjvP/97+dDH/oQzzzzDL/xG7/Br//6r6/9CfOB1CNodXwM+akMJG3h5Z3hf3FQ9KprV4ugXqnl/U55bcieY+VlZGeZFW5o8w4kaN8M/AnK3H8FvrmQFcaILRdwNm+22pZwGJq9Azlm+pC+b5HsuNfS98fCXV6BWw9xyZjno9+eQwzyymiEthSMpAtIERpC43kasfAiEu4HcdtoC460uCr02WVbLJQu4JsHDaAZBT3prYgqXoEUL5PKSyhYcdjWjFVPWfZwt8UopnH5s4TrwmgaXKh04NVoZVd61rYhXpa55DpaDNLsRuNkKm8P8ljMA+cp0gM8TUqZFm6jmwNM8zgwRT/76eFpihyjk4wxspCLkYX1m62CaxmCxQI6Z3BvQAlZYL+CAmUPEReDScN82diU8QoA6sXi8NjVHRZaXVuzEH/00Ud54IEHFj4bmOy9730vv/M7v8NTTz3F7/3e7zE2NsaOHTt461vfyr/4F/+iLl79iU98gg9+8IM8+OCDFAoF3v3ud/Obv/mbC7/39PTwuc99jp/6qZ/i3nvvZXBwkF/8xV9cX454HKM4iZfoPoNSq/finH47LshHUXLmd/sMXxUtFtaNAkira6YKmGPeWM95NK37EC81nH4RMb1h6mPh4MLJsI67kb18EdlrvWhDoioeHQSvU1Ulo1bnG+hErr7/jmOHfyj07tHw3ZbwurmldlZqGXr+7UggPIrYdC308C58z63PowLDvWjJXNHlEMvV2KhbVqc1eN4gHsJ4AM30V9GT345KgCwjEmNDwEJzZqz2sDjTagw3m62PLL5FrJyaEM/XqHMA3IrG/Tpao/BDJ071BaR8HgKO08I/o5kepvgv9LGdl/MDHGSYcQ7yGl7HPBdo5gKdNDHPKNNMUKRKiWzhGZduFuTajYR0HOKoIK3JcCSGKakvXSVFIasbs+WgyN8L7D3Jsux74TkWtYmJCXp6eurBjpZ3VEI0chPCatRQILAFeDCBFzLR7RFknoxRb8Zdb1esxQVKLM2sD02xJQ4ZEn08HBO4XZziGa89SJDtQ7H1G5CeD4q+/QGyUoeQE89geucpMEUT83RSW1ABppG42wn8IdIQbwL+LRL0B1jYnatoWO8pVEgoXZKjrBk7tUwzpcfs0r34NiPDyNnfgVSPO4HfRWM7hOzU0eiwhMfLwjxMzuTjz7AYApIa4LATz9u/E0X7R9CTdyNV7TgKGLwPCaln8SqDoxADsmJvcy/iJ4bzEkBb55TxTCtLuhhmxYrMsZfEylrEIYu0wbExzXxSRhW7w91HEZM8iG+efYYCO+nlTnpoZTsD3MdreJxP0EGBm9hFHyW6qXKCQzzPEQ5zmmnmmKZKmXQZmjHEha3MbWEkbgd+PPTzceA/4ducvBzfm/0kmt8Z4hTVpXS+q6mNj4/T3d297v9vekz8ircFoHQC/QVtMl1I4B1t8B9noKMIv9ACj5e1ns8lcLEG4xlMZ5uzn8n1tu4Ww+TsvaGrDVlu7kcr42H1FmJXujkPuxAP3oZY/ysQb/4feDHdozh7UXJSxiwpyYK6cBoRySOI4fw04va/Hu66DQrboDQFxfNQsMp0qSoC5vGIOEOPsVMxaj7GTq1FmNuYlZF9cyPyQEwg8t+LwFRbkI16Anftmt1zWRPjbBDigmtxnRRDOi4kZGSeEkoZr39pFcYuIAk7Fm5QQhZ5CxqRBlCnRsbqNqQLPI+jKb+B3BUHkEw0z/AqakHFSpmxrEaBJ9jocc/DHW1F7EZjtwsJ92kSemmhj2bKVDhBlVEy2kg5zRizPMGzvIwBttDNbkaYZY4RalRImQ+W+NJ2UIyPseIds+HeX0fz9efhvL7weiycZzUxFg/w1Sq4N7JdG0K8ksBsEcaaoKOgef9EAbq7oCeBoz3whiqMlOHFeTg9D8NVmE5VhvV7IXDyPdJi96O9zlGPPzR2EOd+29KOIRKWQGMgoUPIyTqEXOnP4jCnN4X7PA80kVEIQjxhhmyhFODOcJVhZBmkwH1QOA9NB6E9geZRKE5DYV7Cppot2sujkGqnNpNZ+UrU600mzIMDx3HEcwteweqxcO4WJO7MeWWK0eJSPJvUTLbEhd1j3JmhwixVYSH+nEJaoX4ToxvCk82HJ9sdnq6GWZmy5OKko+gp81lrW8NlvxEucwgNzF6ky92B3DwTOCpyFd68K+PiNUFeQV6IETQ+b0QP+ChQpsge2tlFM8OMcYTXso8tjLGbEp/jBdoo0ME4LTSHfQumyCiTUAslZpcDQ8b4GdCq3Imvo4sIw/Bi+N7wDjP4XoSXjTKvqva9L8QzoFqE2WYYb4NSJ8xW4eQM7OuD23fDs1U4dhFO16CzGYZnYWQOpiswH6yl72raSFjsmM1yx3dPa2S15JPtYhdk/ISxdWNG3jRi4a9HLGMa2WYJEuhbwv9jRSGpg9nZt/bvbqAGSQJNVWhpgs5p6BiB9nFomdMmO7XUMyQCcqlQhlIFWlJoy2TQWbHQUjjVCoDUWHs1dmOVhvA/HwZlCHgk032+gOyfV4QnPIdY6OQa7nPJLTYOO/CCa73UV+A0OT0aXiczmEuhYkJ8DE8c7Ao9t9Krr0Yu9TP4ToQxeiI8pS2bEq4hmjHYidcv6kCG65dQrNysdQO+XZUg2bgZUiRDgKCj6EF70LikTPNtZnmJDoqc4Bn+GT9AM0W+QysDZMwywZeZ4zaK3EGJnaiyeT42vbgZZc7jCZ6WKGZqK3ipzXyNibju2rXVrgEhXoRaE5TbYaoHGID2Xpg7BmN74fHtMH4W0iGYbIbRAkyOBs9aBtWKhPh3ZTPhYqldjfLKY1/ud9dz5nX3RpC5pZ7IhHwN8dtdyLg6jlKrnkXs43bEykaQ7PCRsivMhyumiJFMAK1QaAqW2zh0z0LvDPRPQ/c0NM1DZyYr/BDiT91QGIXiJLRk0F7W/XYgNmpyq4zCrAkspNCMR8+5koBdYJUJTAfhVA3vCymM1XxP5oN4ERKzdS5LSk4+46kfaRnbkRw+gwzFXrRODahqxQvTDNIaZHOQTeCwcUOhGWy8itf7HsEDBw383tanKl7u602IYA6FvtyNjNYZJFu243GefEzkqmpGy5apDh6EGgO2UeJttPA0szxOiXnaGeBWeunkOJ/i28wxxS7a6CblC1Q5TZU7SWkjW9iFdnX9iItEjeMDafGIZurrL9pcfi8ki62vfe8LcYqQtkK1C2a3QLoTJlPo/NswuxMOnZSlXmyCQgHGT8JcIWjzNVlL2XebtRo7jc0hawmtjZyytkA2DvN6Odta4l6xhW6e2CJuzE0gnmzZqTU85ceidM7i03DP+eiK05A0QbEQalGkMFCB7fOwvaKQzWQqJF0PElInZLQXClCch9YKNFehoyaWugNF/zqRy3t7uFud3GKVqlgCaSKSnytCWoRKAWaSIG9SVRqu1WC+pmUwm3lY97JY4Ua6VrzLQrRH8N0/JtEmeFWk1cwgl0E3CoFVa5DOB/d1hmdjz+DotLO4L96qAKyQvGXZTlXgYZQKYcbju4FPoHIBfbjL/apmHfkgyzCi9nb0AJZO3E8Lr6bGt2hmlnfz/WzhML/H33CccSbJ2E+FN1KijQLDpDxPZQFTYRiW1fXFcOyF8HoGd5/HaAFLg7uy2R5Xul0DQrwEWSukPVAZguo2SGZgbgQuTik2WdoHWQmyC1Brg1oLpJ2QzgX08NVGIMthlu13q3BjZRMtodWm3ESYOWitjAlcVYJ86SDaupvp+5bK8xxyHh7DR2wIlWvpRTz5AnKWZ+TLNC7Aolmo8lEoQCkJOWwZbElhdw16K2L8LYizlZGvfh8kL0GhCpzT34eKMFCTHfQwkvdF5CHoAl4V+mqqQ17INhyyCMOUNkO1BbJmqDZBuQilTH1IypCVoTYvR1QllS67sajoZVoj5OEOJBD70EC8hODzP4GEeoaDB1r5/7P331GSneW9P/rZVdXVOUxPzjPKWSihgEUwMpKMbTjgn23Ax3DA2HDFsQ132VrY52cb+17DMT/j4xMc7rIxnGPjwDkEG4ENCIQEDEEyQhppNBpNzt3TOVXc+/7xfZ9639pdPR2me6YnPGvVqu6qXXu/8Ynf53mhkEgJj0qQhKGPEhLaY9RXZkmXW02RTfEkmpQb8acAZ5Hr/Br3+RH3v8U60sCMZUfWsT6kXV6HdkEVeDXQRoYRMqyii+vYRI6XeJZH+DcKjDNGwpXA0xS4jyZeTsK/or0V45N75tb9UJBn8bs1E/wdohrPTy/iYtLFIcRpgaQLkh5qZ/tWhlHiUBYBJX6AuMVxoARRJySGVl0uPrBGuTZmWdvit+usRJ0LIdRKR1zjrjVo0yDSvu0+VpR0cTfFTCM47SmNwvd24SKE8ENxa+HUbvwhs1eiVXAVUm163LXd+ASW6dG3gKFELhaeJRBCCWxIpA10uYf+i7v5TwFbICo7V3oX9CTQU4ViSbj3TveTHqRoXIkiuBvxqXSWRjcjAjh0Ubs4c9wJSQfErVDJyZ0eFal5KpNxiKdk0CaJc0gtNaWRhxnXMQO3HcLD6/cjpOEA8pSvQdrYiPt9JpFLoTY/k/iyjFPUB1Wq1O+hgGzNGVKyiD+sqwmB2d6IaqNegzTA7wBfQAsnSEZYfrLG+pzBi1w7E0Co/ogrgIQCT9JChUkG6Kef9TRxBK3HnwK2EvENyuzGlzEedncypXnubbJXlSVjBhcIXQRC3PxybfijyvbgE4dWoyTxexBndeZRMoV2qLl1zvUONIGdrvdogbZq8Irwx4OsRWbMLtTfG1BAr4C4XuiUDWPki9NXa91stdqSsIvZ4D2ifj8vgvJt/NjSrHJIcJ9EDta1KLS5GRlbrXh7zdJ9Gz/eNTQUQu1IyDwF/AdUHfBxJIxKyFv5IxANQaYbOtZDyySsiCAbwcZElx1Aq/QV+KMoepGHoAPNrGVeNXRehNZtt/vxKkh6odoJUV7yLppEXoJTkAzod0k4/mdbkBdRJw+hcRxFW3kLSu2yoP0W6o/qNp00SlC6mc1YFbJVtxhdx0xDmUkmhMZhjAZ7wn2+zrXxy2jB5JFQH8QfIV9ksQudLzKFysxJ1DlL3hwkoUiViJgSGRLG6afEKW4jSy/NtFCkHegn5qC7QwYNgQnv02TXzdKu0LsYfn6JjC4CIR6aIFchi3s9gjKNIQ7xRpQZXEUs/ArEaYfcPc61e9kkWqN6j01om1iKSAkt8lYkmja5l8UBr0Y5MBvd57ZRjNMsTiZwmOdsJejDatQmjysIWBVnFJ+dFsI3j5oBV0PP5wL9u8ayLJSZUH/0bwUZzM+7ZvShlTJOPUOaU+fzePN9B9IODqMk7GakNewCOiEehNIYTJVgXwW2RHBLIivnv+Jrh1hOu6HWTYDPiJsKlQrT+9Yj6b9NN0yagZ2QnERovtrk4JfEabhw2nkSKhILspnsZqvx586+Gh1i1Y6vhZtBLuxe/AFG4T1q90q8dZ6tTC8Yk9Zf0421hWFlARKkDFWQXWCuc5A3oIzGe5z6In0N2+b+Tg/YWSPbYIYAj9BKa8fqo0uHqTBFgZhxCkywk4TLiekn5jl84aUYYQ0Hqc/gPm2XZpXR51JwpydreWX4XARCPG3zvQztwgI+9eR/ItZ4M+IYTyC23YyPEzegRhsx/dgznts0VNe2Si9ytBpGOYNH3pYRe1+NbLbvIinyatT3t6A+Hsef4DSMTBpLsVl4MDqE1JkXtBmf3muWsJ0OVsxAKacYbWwwbKuUaU4CM4MNf2ThzQWOsQlhi9WV8dNoAtvYmiW01Bd4nCMlqHDbEAJmlfA1XN+Eirt9CeI3QDIJ5QI056A5gpHYo+UttNqHvLbgU99mbUsIFGvF1z0pIAj6KxC/tgdtcp+PBze3lK4GDwwDO2EORGjAxzP/vDGFgtXCtEN4hegq5N3YhPTtDe53afRdWqGylzW0UVi8kdloixb3ftKNz1oktK1izil8CX2DnBh42u4XJo2kNa849TprssE6mMWj0icxTVrzGFN0g5WlyjhVDpDQj7hGNz55b4J63HjDPbPEobPFobmu7nMXm79IhHgZ7aYfIrW9ALVoTgEN/oPuu8/jd7zF0RrYN+m5DReizefpNPs5k/lBwyoTVu+xF4UFDiPzaT3+jKMccryuRoUuPu+++yASBVeh4/wqyBfZgc9GXjgGIDT6WpGa0eXe293dDak6BoxmYCwLE81Q6ITKCtXpoNk10fAsB1y3WtwrvY/OQJDbLcxb0B/c3gzSeQUaTGc04dCMLyv3M8DvogF6wfXxOkh+CNkN0DYGrZPQlNE4bUYYrh3o/x9xQ2KMMsRTzzgM4aSsQcvBUN6rgb9DTporEVDsc0hgbkfLqw1fsi11W1v+oQPFvAImFuZVmCacU3OVDCI99JvuBv8P0rc/5V53uEEKMZv2kHS+ueG1VuMVk0kkfPN4zTIdww49zuBPKj2IdGpjE1X8AShhEr8tttA9ZdV8wrCRDVg4WGfNERhuJpsA7z+LSagQk1CliZhRYgokteU16Zo6Qn3Oy7Q9E0J7wLvqbAzSnpH5ysYo9Z6k3udMYfiyCQ+w62a6e3A+ZZcWly4CIR5GP4uII/QjFdqCbJsQtziBBGOP+90IDaWwza0BwNOcy+bWuFeIm5kXhTatlaqKkA90M3L4rnf9Wo+4VAFxlT34Iz62IK79EvBfgI8Bn3V9M/M27EQj18L8Wp1HS30Vkhur8Ed6jqChWR1Bfwb6XPfiFZCsF5CqZq0W0HSYM8KmKlSSzkABTmPL05n0aT/OnChcA2aVuWIu/C+kW+VdX64Hvg9JL8T7oDwBkyUoVSRndqEQ6zbgde7yYbRy+/HZVqHLchrDDJ05FoEBKRA7UGz5anej77trX4eW1+UIQFai3gihvqBaG1IDzcVvHhfrtllm5nE+7XawuS268dvvBmENvtjLQffAjWjbXoXQfv34kue2fVrR4uvFx7H70CJci8/lPo7XkEz3T1vjJsQt1zDvnpkN2t5IEIcDZrGQNupPQIuDATMFYJaMt8Wn0LqM8O4HkT9gJKlx1nDPmGdrxq1pc2L808akEx/jylGfcjEX2Rha9GkWZht4XgaVbRhzX3Xgj12yMKRlOoSr+6wlYtboIhHilgva4z7bgPxhlvS5CvnmvoffMTNUAbIFaHPb7l5pzjXFPDlXI0q70jPuwRHibvb5j6GDNsYRN74Mr9qaRd6OONdTwC/jj3PbRr1Zu3AKLTPbR+vdE9YjHplF6scaVM6+NStQVaUDyiuhulFVchnA75sOJNFuRWP4fQw46zf5GTQ//GkjXjmv24YagZVF60dTMIjWxeXu/1PINz4AUQ6qp6A4BhMFyZYKmuE+4H6EnepHM/wknveNkM5fT1EIFMsi7epG9/c30ekm30KTdC2yyK9EY7uThsF2m2cD4FuAZwWaria8kTuCzz4eCYapIYo+/NJ0b4t/r0YL54vuZp1467kPX+I0FOJ51yBLU1vnBmob8oR0onW1B62nI0zPtEwvivD/amp80l64tAXe4trTgy+GZm6pHrwn215GZ1WQw+k2VFrM2ytJ/bLhOjSbJMx23YzY2KC7aRta0GEtF5iZfxrjyQWv0Lth+zHtUpuRQvW0A7+6DciSQZPTgwyjyHVqNOj52XOtXyRC3DKCTbC1uO/W4KsBHcGfGm0mQIjowW/E9NyGnKuCL281iK8gMskC59aE+Lh7iKFGd7obgz+HyrSH69DOwH1mhZ1N0yjjI6qGbQ4TWhcmEW0pt7u7ZtAeNAvNktz+nfv7+4m+68woJ7m1FyazSLidQi50ENP+ScTw9routON9eDZNi0CLsu1CITSKj8FO4qHwe9H+d0wraYVqP5RHYbwI+QTykeqW9CDhbQGeGA8LmMCHX80DPCPZ2jNdbljP5kX3+Y3Ab6Kl9HmkLJk1GgyM8UwD3/eiXbQBbyxbW3e7bm/GlzsP4+MN25v2ZJiVasn6Zrlehz89rA/ttTE8VsLc6F2uYS2uMa9De/b1aNnbIl3hxuMInumHkim09OwVCu90iNR+Gw6YKRTr8Ceg/QBtwbWuP/14r8CCrMizQ/NujslGiwyakmWFGS5H3p9VeHTcQOqB6X1u82DxnAhfFsOMqjI+TGLG8oxKUdpw6kUTtdF9vwG5frJI0+1HCyuMAxnK5pIQXyQKuQFo9nqQCt6PVonBTptxkVrqkzuZeW43oAXYitx5h9CcXoE3PcMYz7xWfsg1VrgfvgwPw/qh+64VuXi6kIlnCbUm5C3uvRbF/icRFx9w97WwQqNg4NzJFO0WxDPN65lDiW0vudZ+07X4eKJqYC9NwXgCxb2QNd2jA42fAaz+zd20F58PbAI95eY955SO6Vqs1Dw2J4PvM2jIhyAeljt9qqTyp0kiPWAYDcck3jgzH1E/3p3e0FAJDYMKvtx0jOLKVbTsVyG97jPuu5fwllFo4if1ODmTSZuQcbsCycDL3fdfdW2zR6VzIE47hqZ/E4xf5G7QgdZG2l9vAxMuxi7XyGY39vtRffOjaGGOozVVdYOZ4I8tBu9RTlt8tvZCwW0u9HCfm0MsVCi2uJdtu03u2dcg1mTp7KFL+dzgphaHGi2aDe7vMh7O04nWoUF0TIFrBEoJlSMLTSSIvW/C17o3j5h5asw72lCQhwCSDohWQrIOD27JoNJ8/e7/XrTKh9yD0/DXpZ+wi0CIG0c1OFWZ+sMrbReW8PZNgyKT4SLsxMvKBMXj9qP5tLjOFXifYok5cq7TkSG9rJbYD5H7fxIdHvlG14iN7kGPusZY0P5BFFjsxZ8MZAHHCI9GndWea0ihumFQkDbgR5EgvwbxzOdRnPcAYvq9EVzeBIMRNLVC9jIoXQNF88X+F7zO9QxSftvwR1IaOGa5USiE7O9JfAhgDK2fKjWdMZmCalF9T2K/akfQ7E+5y01WWeg0DJs2ZBm2BYbdD1YgBroauAsdnN6BfPTfQHpiBxrrw8jKDRieySTjxyuRPrsZrconEWActFpLeN48whzrsIeKh8UKwjxwq9WSRs7ZlrXQgWErBpGguAwV3SkiS28nHufa6u6bo3aGDTm8UA69rAbDziKlyJShKepj2eHvLDa/Gm3TrcAfuOvuRBtjwn1udkVa6JyvFHoxuxDrsdiQeUm+j9L1Kmh8TMG1MU05RqMA5xH1QLIKLbhVkHTh3UEGjuzDS7zQs9EoaB81Q6ZD/1ePQrQeMl1Q3Q7RPkheRJvIXAor8QhJ6+zZ0bouAiEO9VqRcYMwcGKqXiV4hQEtpilorETSqYQ23TGElO1AmVzjTC+pNSvnSlPoojEYiZkdGbQbbkPi8U9QzOYgEo+d7trD+NS0A8gVFCNb6ZAbixN4Dn9mKr8J81EEbv4G4ptPIn65Dx/+agF+sgnaOiHaDC9eDqdiiGJ3YRGfwn8lqjna4pq6zFyL08iEkHnVbNmZ8hHhhzsAQcWOSRmg2Yz5EDc5ige+h6t1xuGw5W2T04YEmoV//gMa03E05tvdQy13KEiRipLpTqkx4J+Bn8WX2rRIUh6dhjaBdDEzsEII5YzttqUfjqWVRAj7FsagQ7e37VlzuU6gddWHxn67+3sQhRKuQpb5frSlsnjLPAnu3eHGpA1/EEvJfTeCxz9ZgZdQ+E8i97nFHn7UXf88Hqazxs1HN/IImLKQDj6fL2TtDrMEiqhf61Blu2NIoO9BVvo+lPo4gg9J5oCyu10EmSwkOQnzqBsymyDejMCxKyBpgaSC2EQgO7kAAJTFSURBVFs3Popqe842TmhY1Q4xaIJcK8QZyGUguwpyL4PS96HwgmuUxVFNKFjFBgv8nx1r/CIR4jAdh5yGZJwm+BQyBIvhdKGNuMld8zTeqsqiDd6FmI7N74Jcv6E5MopH1zcjoX0CH3y1+P5utMCqiBvlqD+MOXENMz9vH4t1nJ+NYqdr6RbXwk58eOsFpELciWK+UQxxBaIqlA9Aeb/rypVoL7wJMcsIMbs2pofwlyOFemOoh2VS18T1Lzv5Nk79pNFKnVOo1IShCQKzPMtokjLuQVejZTWABEofYqLmq09FloxVHXQ/fwx4N8oGM0zEcZQWdx1eBzNj2jzG1sTwvY4abd10/9Lu6/CG5lU4iD/bu8X184BrkDm5duKNKRu3lfgFbS7ZjWhLWmGciWDcjKsmeOFugnwUbd8nkbC6Awm1/4HW/D7kLLN0uHTSyPlKxj8raJzWAq9FYbJjaJEbKn0Qj1vowo9DVvI1E6uaYVMWkiwkzW5LlaBagNKTEEdISbsCxe/GEcMporkKXVi2XqLIaacR5LPQ2gRJHk1IBZJnoHTALd7XQnE32iA3upta8LAbX2nCFu7SMamLSIhDPfAAwl0RBbu+4XCH8t6ALy1oU16FmF8FbczvuXczO2yBztv1a+21EMAgUuNLyGS4yn3XilbrJrzQPoKHQxuCxFR68GbNJD6EsPB4eDr0WkL77xrg24g35tG+XOWuOQREZRgtw+QklEZg6iBUzTL6JnLttqNN/2N4XcZiiedDrDDGO3yMGdvSCxmzMftE8fBq4n8aXhrKq3npguaaNN3NCubk8WtzBdLnzHtktX9SypL92Y8vOXQNMqR68Z6Yp4F/whdey6Ot0oyv0p+2V8L32ufzMWjSi3EcKX+G5bwWeBdK94uQxfcKhLEYdR0qIA/bAbQGm913+9DCbkFeogkEL8m6jqetvdA7AFIImpGzbDfSfCI8Wn0SCbZrkdYzPMc+L3eyNd+CDxW8gLIihpBHogMPXn0ceCt1lRszkbOjIhVDqlYhG8Oq9cpsKXZAuU04m1KP5C0DaM6uQ3NqWSFDeJ5cc7g6jbs51sFF3Ql0bYbcFug7DIe/CoUjaszqt8JYC1S6IboXCp+F5DE8EAM8c1pakNtFJsSNEremktraSjPIaeGSkLOYHDRJ9FHkFrIwcw6ZIG9DZkkbC5zD0I84iQSz+eVMQ3wVEtZHXGNOItv3FOLExirNdjJuHZqGZtKGHV1Ya0M816BrTTMKvWbwzouvuBa2VmGkBKPjUBiAqN1dYLrWc4j5rnI/6MULmTCEv5yFOHhGHrp7Q8+MXRO6hmPFxhela3ZvQ25X8L5vMx6yeOVohjik3SqMEGxAAns/8H8h78sX8cXKXkS8+ka8N7XT3cM8+qFHIfQyhJixeffXlvcp18ejyNq9CRlNzyCB/B9cR55DruxXBf0O4xURHpiQQYUerYLRCD6Tcw3+cMAwBdKs+u34IjGt+APih919t7rnGNo6Bc2x93DZ2Puy3gbGO3vRAuhD47MejddxNA/XIs9bAGbLxD6k3g50RqpoGJVhVQWGhiHXDJP7IWmF4rfRvHe6H21Fythz+FoJoUJd85ZkoDOB1VVYW4LVBfjBF2BkECr9QBmaV0Lp/0D3vUqnKXwTMhWorkBcbyvSEsKw7NLNzkUpxC1EZtgX+x/8XgvBkLGNvW3k9cgI3oa41W60ESfQYlyHFkyb+3sX0znVnClkl6blTSCbpwufN15xnw1Rn9dmWmAjdcVMlXmzyBlbaoDacRSNP4COzdyKeJYhlv8NGR+tMQyWYHgCpgbxE1JG+bvP4nOt8+7GFsIPK5ycDxS6Vc0xYjFy8PqagbTCuN1iULj+TBCZk2aI+iVhet0MAtyUtSYEZO9Elvin8XJvLZr3HuQ1TvA1Vwbce7pITYz33tszrCnzgpJYPwqI61fQXhxCAvIYPs3rpBuLu9zvnkUCYItr8BXu82fQvj+AFMtOxAOeQq7hJ/AV4Ux4mAs51G4zSGm6GXmbtiJPgeFN97pB63EDVVKoKYohk0zPbgvnZGnFxRlQaI9YqDEBXon6/wQe7P1e95s9wCREBcnIfAxtifjIauDmNhhvgRf3Q74XKuMQ56F1G4yMIHkaoTlbD5Fzv9cNoA2iody7IuhNYF0Jtk7CxhHYOwFjZbdnu6BnvWLma26HXR+D6kqIelEMwMyWA0yvW7dgVPNp6aIT4ia8jYc2U89Hba8ZoLzGR0NLxnJ9JoF3IOBVH0LwdCCrMUFWeBVpmMMsUOCELNPglieQkA7Lb4Xu8Unq6z02eGjk7h26ee1xC+QAaUt8wrXweTwDzyP+aYx5X6LqZIMTMDwO1WGItkBibrXjeHizcalhJNRtPBdLyC0lhYHkDL4ebSv1epjVJTIzNoxyzONRIX+CwFpL8Id6GSOrpi6MU+8pCpU12ztTKGRyJZKTJqzX4Y73RlP2PL68wmRwz5V4NnfCdTmHD1/OO3JijbT0ojw+tPUCPqGjGWmbHchl0ISwAePAX6K19/9y/78Zxa7vRAL2euAf3HefAO5Fa/MoPn5gsXVTKMw5VsBnva5HisMkPi3qFLU67FERMlWd926ZH6EhGepdxq+WFVQk9DBZtu9qtBfW4zEJeTQufwPcRw10GI1Dtgj5iozk3qr63VlWeeKmKrSU4MbrYN8krLgWem6A3X8LpQHgEGRvgOrjaEzTA2R7Mw+0xbCiCutL0DwIe8bh5l5Y0wonu2EsgZFRuPvdcGw/dGyAeBzKieomV/uRIF+Ld8ecWahyNrqohHgIEm1D+7YDD/cC77gedy/DP5QTga9q6UEDSMDkUXg6RjHb5xBH2oGYQyviahPUe1bmRaF4DN3rtpUJPk+bcCnuH7qOQheEPSb0Zy5AoIf8Ko8/QGQvvkhTPpK3bByYiGAshvGSkyUFSE7g86oqaLObe9c4uplq5wOFoEizvq3AxRr3dwa/tobw8G7wgzqLIE/rCY3wc1UccC6Rq35maT/zc8LVWEJ7qMt9N4bmtstdsw3NfxtKPzuOdN0m1x7zhnXjhVEX3gIPh8GwjPMS4mGJiCq+aOMj7qHXuc8sT/wY8qw9g4+P/x8kdE65xv8N2ue9aOzG3DOeQFZlK42dXobnmMCjAi1KdhNyI/cjI6BPz4vGJMCaqtCceHiqJchCfd6KbY/Qe7EsKGQMBu4bQRHAK5C2l6BxHkZW+BFdF41CrgAtFeiK1e/1VThSgJURbG+Gtib4yc3wiWeg/Dxc9hqYfDUcfFQZH/kCTL3onmnrIhygmnBIoKkMHQU4VITdFWgdhJdthr4JWNEL97wKRg5Ccw/0bIPxnZBMQPUIPuRpAf5BtDjmjWieM100Qjzko+14gNVKNNSt7rq9aG67kZwexMmyBCoxxOYrHsAfoLDa3eh5tCi+iudcJ9yNs/h45IIodJiZNtEooBq+Ug+zQTAGkqMecBfGAOftw6xvhXU1Qft1NJLwzkSQRFCJfOGPIhrbmjVqkYBGIfy0i3nZmBunIRv3Zjzi1jTI69CCHEQMbQgJgmHEqcPA8GmUqhAtbgAyy2SDekstHMLkNPecidJOKbMGDddVdW1wKbv0It7ZhNINX4PAjt34yqrmsS67v4eQPWP1PsLY+JybbGNnsJCKa/AQXhvYhwbqWvd5P7LUh1FI7HnX0SEk4LNoDje7321BAt00mZcj5b0/1WhTOMfx1Z6tXVYUqow/JH4QnTE/IZnSWhXWqgexFTNiob5E/zAeLmK3XxZbJHTfWHjMPJYRPgpoe+TrwIRSGjNOkWmuQkcCV0Qwmmh9/WgOvpnA0VH45D/DWB62roSv/B4UK9B+BZRXQPIdNK/G89KhuCj4fDyBjiI05aBQhmMjOtDgQAnubYdkEC67Bh75Axjrh+ZboTKKVvj1aDEMo5kK05KWhi4aIW6KVivaCOvQXroCyeB2d10FYU668NZCFSGFq8ZlptCCswDekLuB/eA5vAt4GJ9/O1/VeJqFlASvOHVRaELN4D43LcZcEebKtcIZrdRbu7bQ5+mbC8NfVVQLfSoL2QxEOcWl4giqkRvXqrMKa4ONT81J3zR09Z4PFMbBW5Hk2ooW4U1oHp5C/e3DH+qxH29Oz1LNJfQwtaKlaPVwhvFZjlnqs2vOJEPPhj9EmJt+24NkYyditEU8qO1mdPTOIfzZKkVUVbcA/AseMnA5Hh5h9VPm3WZbiGGM3DwiMRIoTa4h17obb3EPPoQkZQW4B83bBnf9KxCCuoJc800oLv4N/BFz4Z63dlibDKHd5j4zx9oYtVhUNAm5IjRXJMBXI75VQvN8rWviZUjvtWis2Xu2XJaFwyqt+YG3lo7hC+2MogUwRq2kcjQJmTJkK7KdnkVTtDmBqQLsqsJUBgbHYF0v3NQMX68qTNfWDPEKmDgpAyKu4msfhIBFI3PNtkdwW6w5LgITJVjXDN9/CTZshcM7obUdJsYgmXKFYI67G27FF9IKDa3wQYtHF4UQNz5qxSla8aftPIqY3gfRBtiCDugcQvvVZJlZizGQhJyrgDil5fnH+KwtE4jziWtGqZdRKL/naz6FAtxAJT1oA3WgnVF2f5v5YwCcSU4bH52Jan6DDMRZiJogMgUiD0lOFnkSQ1LSq45LV4MbpcfgfCNbfCbER/Cemdvx8e8fQwyt1/1uN+IDY/i0/ga3NgHegbfUVqJpNjDuGvdIc0+HNUwWyuRNFtk9DJNXwfPh4+7vG4G7UYLkIXydmzGEX/xrFJJeiRSANchJMYyHEIzja73MWYdL673mxMqh9dbu/l+N95A8jyzFDe7B96M66/+ACjplEQjOoPZvwB+C2ILm0FD+tu9Dz5G1Y4r64j9BcDsqSXDlqgrT9iQS4NuQoRq7x5Tc+634MvLmXg8hVcti24San/XVPCMWezMPnIUfXEeiiv41ljSIdN6BMmyP4NkqbM/D2AQ88V143TVwsAJ9BSiOQlMBcl1QPgXJKNNLYtgayaJFeDzW4rwHoXC3ZKGtBXaW4MV9MHUK1l4F7bfDwe9AZh1a5c/hK/akR39pZuGiFOIGGDVATgvCEr4W7cWb8Z61IcRIxtw9ohhVAUqbHzlULIDE+yyt0tVc3NJhQLNRULMavOYbrzZO34KEiMVlr0RcfxeeA9izzFKxZy0k1TEjq7vqLP/IXMjtQLOEeI2ZDaPBzuJLlc5mcs2k4C7tnpkfmTIWSlpLSfo75Fd+JXLDjiJAzyGkWHXh60GnlTrq13U7HkhWdI+6Du8suhExPsuIqilZnJljI/y9/Z3Fe7rKaGo/79p6AOHG7kVe51vd9f8HLYPVaI/aPjTGbSC6bDAU85resMPhPsogpl1GeXC3oDnoR3Pys0hKPoLm40V8gfjNKND/OaT997trTzLz0XJ1Liqm7/MgfJKJoSnWePTgbYIrET/ajTzE17pxtEy1XuoMWaouhDVrkZx50um234y3NOEdhjpClF7oxgvS+5JY/W9DWRB3IiN5yD2sDHTEcHtOJyMeGoCOHERd0DcK4+OQGHbBBiYtX037GUcLtYpPg9ucEX9f2yJNYeu18NReGKtCbiVUxiDKQHIfcq21Bw9aWnTCRSXEjY9uQHNkGIcjqPLfy1BxCltTppi3UL/OPOey4K4L9holidBDtdcsDbSNbMFMe4Uaupk5dZB5Zt+AjTh95P7ucffpRir+duBLaBGbQG1lYfX8Q8Sne1ayCsXBevAnq1qMbLe795T7/dRp+pcG54Wei9DqShq8zgWZsmLj0YIEdR9akJcDD7tr34A4swWbLUQTRk8S/6c5WDqQLNrofrIFX3BtC9IVIjTFMd5SCysELJRsuENrfNh9txJ/HuBR17bEtc1i3+bsAQ3LhBuOAvJmH0bLwQT4GTc2XAeGXjfB/h0UT3slWqdPIP9tHkmPW10ji6ioU4RXhIeR8jWAFDJzpzfyJtmgzaCARonSyZrw56YMoTG8Go3ZUWpn5/AE2saWeNqKCo9lMpItDfPS4tRrjvsjvf0aAShPqxyGX5pn5DShszihruDgBL52TwXv2FoRw2syUChpP0RVeKlPbvVq0XlQ0zmLRrZ4J90Ne5FX/CDaVPfk4FNTUGqCnlbIN8PKy6BUgKQJsrfIOudZFF85wAJrbc+bLgohDvWGbjs+NbYH7b0T7v+/QozHeGla+6/dLYmgmpW/OHKmc22DxNTyeJJZpF/IiS2gGVirNf/YFFq9pmKHrrrZrNUQ0ZfD143OI+H5ElpzU4izjrrfncIXfZsvtzfr0zjQGvcCcaEuvAfA3JYv4EEvYSw+Sd3XNDLLtzFwnik8cfD7wLJZeHbAGZI9cxwtNEsvakfz8BwSDGYNGsAGvGlr7qOAQrycYWEj5LbejNbyS+7WERryTvf3CH4pLQaLCQV5wf3dhBTjGNXv6USu8jIe17QOCfSVeHD4Fa5Ph9z/SzJdxsAtRtuK9sMWNKgjaFCfRTGBJvwZSS1oYC3kdMh1KOO+t/DI6QL4c1AqQ/27GYkGy6KJkWxpx5+YMBH8tinjMSiRGQczJbOEfvdZDA5bcyGIshH+dFZsbKjMVJkxQyId8knw7GGju/fl7rOxCkxOwPEinMjoUKUxoBg73E3Fs+VpilWMBzDG+JDifUhAPFGE1c1SzAbHoXUC4jyUhyD3Kqi04X0FR/ESZbF22Mx00QjxcM0cQcN7JZqn/4As8N9B87XC/d+JMk3qhz6UInlI3KtmNptfphS8ZjCbbUeYn787uM12xHWNSVhprEH3sk7N5uYOXVRtaNe3I07540il3Y+Y2BiSAFXEwHbh43bzyZBoBOZah5SDNe67q1GA1PI2E8SN9uHxBOm1H45Xi7t3K/5EDbN4LeZWRgzVuIB5MJbWuzWdbPyt3WYyGxjyUTQm29G4D6I47PPItMoF9wms8NDZ0YY/m+9ZdCDJ99E6fxla6134KE8HHsaxWLjZ0LiyrpbxkZo3o9IJX3TtPY6mKouWQRsKad2G0q4LyO2esBhH88zQYAO7RWjDD6H12od3JzTjEYKWThGun368eyPCW3tn0Ni0gR6h+VyLeNaTwG+jYpFP4TMAbgJKGRjLCoMSteD3veV4Qn1Nggl8WQmYcW+YXp7efs3ue7OIs9QXcz4tNjZJvc9wid3DMk6NN0+5v08gFrOnBCcrcDTSFI4ChQQqCR5K1OhZoeIfuRsaaKOCbrAtpwHdncDB/VBY59C5+6C0E6/J5dyTh/ExlaWzHC4KIR5qc+aRziDZ9Quo5sML7hpLWdyCMsWscIkYSMg2bXeEZnMWH+iZQBJkFK9HpqRgaEp14qtA5VEQs4D3iVp+juWghrGlubiKE7yLvgu5Bb+JD/Zvdp990d3/ehqXJ5wrhWAug0Vvcn15reuXDdOwa9NafKqJgbkqwXNDhcfSdHrQFBjI4Yi79yqkMJxEk2icxRhxCJ6bN4X++5AacAn70zwqZSTEtyBN8RR+XCxQPIIqp8xiKofepSZ3m2bXrVb3vgJVET2Gpt8yn2wpZIJ7nSmbCaMYOdfsg647bcjZsx2FnU8gHTGHj4MX0K7a79o1jhSSHNNLuC8KS7QGmyIcpkCZhgNeMRyiXicP7xPO0SJ4fEKPewUPSNyElkgR+CM0jyUUdrgNRfWez0AlD9U2SLohWYEGdi2+rHcRsSbbbyPB5w0GOG1vdOG3nzn4juEF+jAeS2TJLwsdkjB8PubakeDZZr97VhV4IYbBGE5FtVo5WjfJLHq7zb+lDQ+4H44CbRHkE9hVUKpNnIfhIYhbIdMJxQMQDyBGNIlfvZaikF4wi0sXjRC3vTqFNkIfKhJUBP4rEtyn8AcYHUEM5yW81ykmQ1IXpepFHHkF2maT7k45tDMG8Ds6BbtuZK12oBW5zTXO0l8y7lEJ4n4r8dbqbClgpj534F18oB33dddBEOfc5q7dj6zimWTVbBRKlzzeQl6F0Fa78Qcf3IQ4wXgwBmZZhzE8u58NveXbrEFjc8Ddr9c96xp8AYAIX2VvxP1v4Ll57S1rUIg8tAaG/vpA1KQX3zBafLvQ4tuMvBKmrGxFFvgh97swPXEWDjiAhu0+NEQDSBf4KzQN1yFnzuh8ujxPMqtpCn8AmoFJd7t22TCsxwuGraiLX3NtvBkN2Sk80n2OwzD/BttNw3kKfcQ2paEXJ21BJqnXIpAJ8CLiLhaRuhUJ8GHXzJ9Ay+UUcqOP5mCqBcrdUF0L1RYk7VrwKXPmdTCL0/poY5FScENW1YO2X8b9rAfZF+1oy00h3bmJekfgmQxNODUEXTB2sdl9/hLaMmNJfVRjTtvcBtz+tgT8fKKTVig7j15Vxy8Wj0N5ECqm2UX4cnxhfsDSWeFwkQhx8IvAMho2IX5vG6QVDXcvEskJvsyyrICIKhmSGoxoFWI3G9ydTQ/tRkuqD1+Ky+DIKbRWGDc2AT2B/IxfB96Hdul/wQsdC+h3cNrUoxrZ+jEQTTsSfl9zn92F3LmHkG/OBO1hfPnfhe5AE7wbUFW7k65fz7i2rHXt+TH8yUJ56g8GCf3GZgasQMzIxu4pNAUrkPKzzj2nDLwaf3rrM65d7ak+zalfoc1rAcbQljU/j6l8gXaVlmxNeGWiA51kNYq4knlcRpAUTpugARlztEjBhOv6bmTo/zxC8P4rXo+qIkF6kvk5cuZKodU0jh+dI3gYwIC7ZjveNXsrchFfg6/ICd7VvmRCHOoFeYgaT3fsdIO1yI0KdYpJfGRtGOHpLkdQiivQuL4CjdFeYKgJJtpgMg+Vle6i77qb7UN9fK27eDPa6xk0OQ0C2aH/0bCxG/C+xi7k1DOzpg1fiMZC7qGjYiFDFY4H1FvmpizY9yZGQwzbnJ8Zejhtz0ZAk2tBUlaAvVqG6hTEWQT9B41IqO0tqt9oRroohHh6QwxTX6zM0OrdiKGMoXWdw9vXZTLE5EjqTMHN+HNGr0Es1BJ7OvFlmMJSFY7NhZZ4M1Kx+10jhpE13IvqN38TWcbX4A8O6Ge6q3sm5mIL0pDoVljibe4+e/CxQSs4EuNBOgtVJtM+wduQIC279g4jRvIR9/2/ozESJs1FVrjXCHL/206+DQ07yA+bRZZ+FU1wL76Ea4jwT8fdp/UjnChDH7aj1WLOPUM9uUodNWRa1cNrjeuAxriATAcDRPXhwwvD+NJbDbxx4dAaNmstEt7t+MrAGeBB9/8xPEjTDPylsBNC/hfuuwG8lzqLd6dbcMpAd2N4fdY8vUsPD8KPsSm8Rmmr+yxQuG3M8LCaNBvRlh1w165Cis53gVOJYuFjLVDKQ7WCFkYZKbvr0cR8ASmLB9DaXI9ffxbbD4R4iI3txR8l+3K0jNe5tr0D4Rma8dXD0zi/xRgT+7+MV/hCNhf6Pec9bWFYxDZaxT0xqSLgshPodbl7SYMfLj1dFEIcpoe8jO2O4kE+I8hCiZDlYPGmAhEVIpIaI29CSzeHttMGfJmKSffLl+EDT8PUpxs02CGt7idfRTvyKArYd+LLyX0DCXOTKXOJVVvHjdMPIf/XdjxA5xq0eW9Hav5hxClaXdMXwj3tuQXEkbe4/6919x1Hu7zNPc8E7W6mH+EYWuIWeliBXPJj+ImcQtPxEl4ZPopH25ulO4KXs9XUM9LjmWQgzkHSDLEF4nvxePBmvMYzgi98PkpdpZw4qa/YVcKj0cyo34vmxABHZk7MwInSa3oAOXG2otX4Dff5HYhfV91UGPi6URrzYlDaQ20CfZT6ZRv6NsKaJwYLNXDUFI1D0UtGZ4//npZMdhTwS7gDbRGDzaxAS3m3u2YqB8UcjFdUnCq5Gu0rK0AToyV7B8JgHEK57wn14btgD4RzZaUmDqCteId7/yX33eNom7Uie8P8keG8L3Row3aEL2MTpk4vighN36ASfmcrfCbGe3YXz0UlxEN3TBjyCDEsVbzxGYKcYyKSmj5q0aA83le1HrHRp/ASaytaym3B7xpMvDVurbvdMbRz9yDuuwGfezqIt9LmulZMiE+43zfjwzehu+17yB3djrj9Qjl9yL2HEWM4jGTfasQBfgwNydNol9+MUFCmuludBPCCNUSmn0Rjsw1BsWNkfe9GnO02NH6H3L2zKEC8Bq+1NeFDWcYdQg95EkGcgUqTUkiqK6Daiz/TMoNYaRVB7bvxBU5to7sVlCThYvLc2cxSqPeNpz0FMwyzTe04Pn5cRTVILFY4jBwg5hs6iY9XL1XELtxvoYc6rSeFTNm+azQMNpIXE4Xe/UnUfwN2deMr9ZqvbyIrIT6ZgVIEie23/cj/bus9i08ob0KxjJ1Mx6E4su1RQUpiK9pGeWTsvNbdqoJYiLnUDRDfOE13fhRCbJrR2m5x/590Y9WF14FDfN6irO+GN1kGmh4XkRCHesZi72N4lx7UY1jqcSyhJEkQs74W2TsnkPS4wv1qP5Iuve7vEerZFH512S4tICF7NV5Qb0Qr9gjixje4259ytwk5WyP3X/gc88tZM6ruPk341KYiPr0xFODzXavhQOeRhHkBX8S7ybXlRaSwNCEr1IS0WZ/G0cO+RWhIexD3yAI/jXSnXe7/VXgnyDYUjiggKdZLvfXb5O5r3MGEewTEEZSyUMhDsQOKK2FqHHlcxl0j2xDCYq/7UYv7/KRrvInVeLqJapKtkTcu7eafZZgNE5u4rjbjPU673fshNzxD1MeYl0o4hkw0vUzD99AJYhQz52G4oCn0tsR4RMYwPjJjayBEZNQC1xVkAKxH1eceQ/xlO1Lcb8Ery7NQDg/JidEK/y5iW9chIfo0vtLl910zQs+Lvc8nQmECvBmPjO/CW/wGF9rkxmQEPzYllo1jZcnoohLiMB3DEuMLhxmFjKMxg0vQUnkWmX0FfCauJVmM4Q8Vtt8k029jFtkY2lwl4EfdrSbRrkmQxZxBsqIDCWBbobYz0vcOX6E1bsIxwZ9taAmf5so2jpAGmM11N5i1WQzuO+iG6zJUj3gSX+XDfL2DeHxIWpW2e3bgS5N9Bo9AvxzJ12G8S+X7+GLiPe7Zz+OtbssMbMJb6S2u35VIJ7eMNcNoB4z1QnUNlJ5DEzTiHoB7wH5k0lztOmpOYStJlfh+mHLSMAbPnMc5jBHiuj2FP65y3F0ziA8hjTC9pPdS0kzdSetmM4WhL2QGPBdKh2ZLTIfCVHHQiwRiF66liEJLdyOF+dt4I8EchBa/MLdMA43Jnp1Dq9wyQVegSNwL7vnPoa17OfVsxpa6RQHD/oTu70YURtIM07oa6emGgL8MfxpsFz6r1doeEzlPqt0x3bPze4VddELcKGRe6ZBj42kN7R5zEj2Jls4m4AHkw/1zxCZHkbQwiy21Q9IBQwvIdyHuuxvNzqvcowaRL+spfFqIuYItmBjuanMphBpJaPXn8TnpFXypVxscC562US9Q54pMSft6210f97rnHsZb3O34ygyWWBoGQMOxsmTiDndfA8iNomnZjKxvU0JA5sCP4ctlmnchtMQ78XkrV7q+lyIYy8CpJuhvg2wXcD0MXyaEKs+hCfk39/B1eFthAz7NZIZo4CLxDxua0Gobx3tHw6k3+N18LKGlovSeS1vpBP+f32z2zCk0OsxJlXbgJKDTAG2PjyKJexRN+mEkATeiJXo1/lScELKTkqoh5zOMws1oG+7BwzuuRCrtShQrP4CEfRVvSeeoZyXhq5EwN9+nAR9Xo53W77qwH4+Z2Ih2oFGFiDIRFTIkZFw4NO3vSTPJ848uWiGeptNbJGk92KSP1QnaiOLf5sy0LVbAB3jDBJnAIjPBNIIXKIfwR4TuR7tnFK3cAXwVsgSfkhUig0L/WphnYdzQdoalm63AY7SqSI02QW7BpVndE1HqheLAlUQlkwzYNYFPqavgsWAFfDCrUV5ICM4bRgpPARWlmXTj1Iyg2LG75l5UVPol95zLENcx2HQOXymvBV+I5XogF6ktwxEcd5v/pHNIN18Fk5sRxNcQ6kMIUPAA4pphPbSFRgLnTuHUGGI3ZPSha9poObGstFs9bS+lrbeLlU7b/3ABGIj1WRSGs/y08P0GFKrb7641L1wDIR468oYQa6giM+UyFNl6BFnmd6HtWUTRMtAuMSgOQTOLTK/jH/bPbJQWxC4mkCDPI8faCeSUXIs8AJe5+x0ESiTkyVGimWpdkVhjkoZjt9f5iby4JMTnTKa1me+7FZl8oMXxrygmvg2ZiWuQNG5Du6ZBBLKRm9sEXSdauc+5a4bwCA5zgVkc11zizfgyir34FDHz6Jrgsjxzw2h1uqZ2IcF+DH+y0wDaLSHCqI7SEKWgxEOSQDWGpCofXyWWQA/BY6aqV4JXWilOM6dB9/llKNY34X53LfJWbHL9PIU/n/NxxLRMCaq4pna667vcGFSQsvRKfBGBlgT2DEEmD+1XwfgRVG5jLbK4e5C28C00/+dG1DSy1sLv7H25CUHTKe1lWL/QVWxLxP5ebn1YFhS6XCbROm5DNSFuRMv1EIqDTyDLfC/a75OcNo8vxrOpAcRC1iL910Rgzn33fXxFzBJiY734oNJKxBGP4Eu3juLzdqwroQu+GR/7fjmKwR/HV1Z+Df7013VErCNihCyTtDNFG5F7JbXqU8bLreNhkdjzS5CnI6mz0uOPP85P/uRPsmHDBqIo4nOf+1zd91EUNXx99KMfrV2zbdu2ad9/5CMfqbvPM888w7333ktLSwubN2/mD//wDxfWw0UjMx0NMWUmdIw3kwfxTPw7aJf04480aoASS4JbjeLTyw4gLfoHSJDvw2cvFRGXM11hC9Ifrkbu5DWuGZvw5yQblNOEfo97/gvutcs9Z8o9owOfDr0Cj2ip80jZFrPiJ534/C8z7zsgblUdyFIWpjK+SkSIRC9w+lQ2G6cpN6SHkBf7caTcrHPf70XW9io3Bre5e3YgrtGPF+I5/PFfMfIHDgAfB76YwN9U4KUirK9CZxl6mmD9dsjuwx9EfcpNznbXiCPUuxTOvpsujKaErsrl6DAMV5A5RXrR9Fnss5f6HI9QB7xEKQr3ySTeTW5YkWdRIaRHgR3IS5VOV4in39LsVnOEHUfczSzhZ911RbQFjyBWk8cfFdCN1uLlaKf0utdaxI5amF76IoyJX4e4yjPIB/aUe842/AlvEfAcCSUybKCDHN1kWEPEZhK2ubu14VNbLD3YUlbOv9U1b0t8YmKCm2++mXe+85286U1vmvb98ePH6/7/0pe+xLve9S7e/OY3133+e7/3e7z73e+u/d/Z2Vn7e3R0lNe97nXcd999/Pmf/znPPvss73znO+np6eGXfumX5tvkgBohieYaHbSlbD5d0+Z63Her8TlgB/FnCo3R+ADb1G3D1COrHwNe2CR4P2kOqa8r8UXjViMZehBfV9zUYFuTBfyRpN3u8zHXlRVIwO3HF5+7DW1+61a4w2YsgGJZodZg5xpIJqBagKgk9E2U+P6nKY14MrLhD80zq62ywf3f6v5/xrW1jLjEEXevUTyU24JtBmbrwwPdvouE/UgJJkYhrkJXByQD0HE1lLqhsgppW0eRE/EypLwZ2C3U7Jeb+Dz3ZBa4CfBO6lHHWTzOv4A/o8d203L0KpxzCq1xC4u1ub9zaPAO4BPvwQvvGVgUNAZQGma1hCA8dt0IXue3UrHr0Ny1Iz35AXfdd5EAXuMeO0Q9ZgO8ILdEF0Ofv4DOCepAuL1uZM/gXOgDdJJhFRHrKTOOPwjX4PrXoNXVQj0MLwzeLH+atxB/8MEHefDBB2f8ft26dXX/f/7zn+c1r3kNl112Wd3nnZ2d0641+tu//VtKpRIf//jHyefzXH/99Tz99NN87GMfm1GIF4tFikWPMR8dHQ2+tWUQZqoazWfiwiC2qbwWfArzxyfxuOA5lKoIg332iBBxbt0yHcSMXrPCR1FA6rUo53MPUnH3uGvMeRCiRNpR7PcqpDo/hnbkt/D+TMsrbccLtwwQ2Y2a8f5q06s78QVQLNg/6F4j1I4Sqh3RGvQNpqvhjcbIAGtWrAXEmMI0MVOoTSkyeMKU+40lEWSQ4tPi+t7mxuoZ5MnoBlorcHsWHi/C4EuQ6YDMCO6gYXfjlXgLPCxVcm6s8SWlmUL88+iirSBDHfcgPbIJOUQ60RTa9FkJJWNYthQuudYbkLGm0O6YwCvhocFgwehZahJAvSCP8ULccLdGhgYyV/l6tMV2I1byo0infsld24vmMdwx4byGOrtBVvrd7z+HoC8vR4rCJrLkyVOkgz66iVlLmTUoev+ia9H1eNekqRoh3un8UryXNCZ+8uRJHnnkET75yU9O++4jH/kIv//7v8+WLVt461vfyvvf/35yOTVnx44dvPKVrySfz9euv//++/nP//k/MzQ0xIoVK6bd78Mf/jAf+tCHGrTCLEZ7GXrMqh6YVAgDsqeLiYRYYGMx40yP4hloIsw2n4XCoCZMt0hNiDYjk2UV2iHG4QaAO1Hltw+jVb4JrUszjpvQTjmCh3c+DbwO+CeEz9uILzh3hPp65kB9+bQetH024FFyg8j8ncLXEbMGNHDumsAOg6J1RVeoD4oaY7J9V0j9LgyqhszKfmNoGdPHJl1zt7nfXYbc9Xn3/ckyFEahUIWxvepr9Rj++LX1rmEDwUNGOBvHEJ5VOh36LETWzaG7oRpoqOMs3rG0Ba2ip5GQvwWtItt14VK4QEZ3cSkNkAiTJOz7mOk2zCxk2ykEpoUgSmNPeaQ3HEPC+w2IldyFXO+nkH58FeIaL1BT82uOMmtSGOY3vfoWfH7QEDqJcoiITxNzkio5WpmimzKrkZqwzT3B9uNO16It7rOVSHsfx3vQzg9aUiH+yU9+ks7Ozmlu91/5lV/h1ltvpbe3l29/+9t88IMf5Pjx43zsYx8D4MSJE2zfvr3uN2vXrq1910iIf/CDH+QDH/hA7f/R0VE2b96Mptpcvq1IAzOubxNq5TGtziXMLshDszlt3ad3yDzZTCMPvz0i9D+OudfPokNSHkG1xP9v99s+tCbXu3u04hFPZaTOZtEuOoTAXP1IXV6LP/vawHUxqUa0ow2yEW2GXWgjrMTXCLsXjX+CPwjWBJ1zq5tr26xog7KavmVMqICfIuPiodci7XAxMkZmU2HWiFkhV6CA25tR4efnEXe5C9XyOV6G9RlY0QJjJcgMQS4L1RLSlJxgJ4NYyjBnp5zKWSQb01BJsjG38Q2RZ7Ms+0ZCfAua8uNIP70KLecSQhzk8FZ5CEO6RDNQ6L0y9hQK8fCaeVDI/UIAZbg8IqTeGy52D4rOfRd/0M1r8HAbC6GEsBtrmplKY+5+X0Ei+QHgR9COOwL8/0g4BGygiSEiDjLMCPso1lbabUgtPI741mZ352tRhL8t1QJrxfKmJRXiH//4x3nb295GS0tL3eehsL3pppvI5/P88i//Mh/+8Idpbm5O32ZO1NzcPMNvW/F1rnuQ5XQYLYfbkKPHfNTmgp9LxC1UdRv5F5copmLIdMtkGwXeizjbKffZHyK3+q34I9p6UZfHkPcItHs2408zsLyRzaiISgdCtVoQsgrEESShEDef9lbX38Noy/4QX73ubfiTPUaoO5rLrGLzzHe5l+FMBtzz17i+juIrO5grPeQmaWYF06fCOEMBH3BtRiC5F13XWpEwv8c9/1gV9g7DcBHKU5Bpg0wLxFZS5RheIZxiRpTQ+UjmIbFwhf3f5b43JcvCFiZdZ/B1p1HHnfhzaW4B/hpNw6+hMgmdSMCX0HI+hT/E6AIMViw+LQErSt/SxJ3pdOZSfyVS54+ioxmOo6UxhCzyy5H+fITG5pBtbcP99uHPl/9faKm9Ca2XvZhvLMcJqgwzQoUNVOhBK+wJtIjvQcr3qPv8RXwwJ52cufxpyYT4E088we7du/mHf/iHWa+98847qVQqHDhwgKuvvpp169Zx8uTJumvs/5ni6DNTB9Lr17pXLwqgbkcs5B7EyU/hS2OYBT0tn6oBnQMAxBTaBSW8Nb0GZT39PnKFjyPLcj+yso/hEeCjSJ+x9JLr3D23IyP6O2jY2vAcs5Z+EgWgNoMfmZJWRWPYi44PG8E73XrwdVidrzyKIJv4lLeV+DMX1+PPDp9w3/W7V0R9ndHwZZQW4mkyBG/kmvco0vM2Icnxr2gJrHPdGq3AWBaKBSgmUJmAJCynYgOUDs2c5+IlBACayVRFU7gN79UwJLR5JA2dNMMQhKhjy+sdcp/tRhGNx1GEZw3wfrxuZ6WW0gx/edMiAAmWMaW3YYxHnF+DTyu7Dc3n3fjc7hfwAaj0cjFTyYKWpxA3349YVy9yjJeRopeQYZAMw0BMBwk9RGRIagVrzd23H8mBn0ZWwVx4/fKkJRPif/VXf8Vtt93GzTffPOu1Tz/9NJlMhjVrZCLefffd/NZv/RblcpmmJvlUv/KVr3D11Vc3dKWfnrrxR9hvQF3+vxAkYq37/yp8pZOwmMsyYsIhksfiuRFSccfRyv4S8P9Fu+UwUoEtXR332yb3PoyEYxbF0UcRqLoVMepRfIBqiABgH6Hj9ywIfRnSo/8cH564B+ngoCMRDLsK4u6O/Ya6QA+ajk58BOSEu91tQbus/Zaub4jaRuN1urEMswBMzwBFBv4PUswPIyUdpDzEMRQqUIohLjplJnT8nQ4kGaVeYWMaaSHLgEKft0VO1rjPOvFC3ICTp5CpFCpX5tSa4faGPcy7nx5CgnoCRYeOulv/JbK4QrjD+SHA07GekOYJJFjmZFNexhdezCCBbdmb69F8fgrZDtfifaUdiNWEuycdE7etG7KO5zHHWkSFnMs5byWmlTLHEGOpID/PAXzd2QcQyG0PUiNDSN385uNc7u55C/Hx8XFeeuml2v/79+/n6aefpre3ly1bBPAfHR3l05/+NH/0R3807fc7duzgu9/9Lq95zWvo7Oxkx44dvP/97+fnf/7nawL6rW99Kx/60Id417vexcMPP8zOnTv5kz/5E/74j/94AV00N/kGJNXy+DOBngBejZbWt/GJLqH/eBlpaOYcSPCBxKP4oz1fRLmfD6LuNCHh04o/3joM+1tq1UtIzrahFXiju+aEex+mwbnWSeoiy2W7Dn+m5suQkB9C3g6r6j1Rb4q1oj0Vo90+ivbV8yj3PUIqex4PYzXD16ZoPjvE+KZVn8jia8dbAWhzGR/Ap+KNJzBVVdGauFGQsRGYAXxAORv8bb8LvT4LxFAsFRmnbMHrwpuRpO1B5pWtv6vRHObwUJHQpd6gS6H4sszAa5GNlMGX1l+DrK5n8frrMlR5UhQCNNJAAqgHEoSA2uXdq9ORzafpxP3ItngaLZNh9/1d+ITU40h5s+SRRkmZoTVuS8vs6ZN4F76em1CkQokiFVaiTT7gWmJlMP8JFYbtQCkpx/HuPeP7c1thIaDPWEYjOE5oEi72DM9biD/55JO85jWvqf1v8e23v/3tfOITnwDg7//+70mShLe85S3Tft/c3Mzf//3f87u/+7sUi0W2b9/O+9///ro4eXd3N1/+8pd56KGHuO2221i1ahW//du/vcAc8U5kVq1HnOgo4koHkQnaiQSROWnS4Ib50lyCsgugEOVhmVudqIjxPpS38UW0I57E+5+G8aBMQwNBvfDb7/4+jrjm02jFjSOBOkGA0QohLeN49/lt+CLMOWSdF5EQ34gPxh/Qbw3QZkI8j490WHw1co94DulfP4IEySl82Shzic+XTBkp4n2zJ/Ex31F8hqDFeWux3gSlys1G4fY2d54VxjFz1bIYQvj8MkicSitZPahpJxH8oRvpZruAd+MD3FV8oZFG+UKObAWVETPfhuyiK4G/QKtlC9q1GxG+sBlfk+Q0Kc3LgMLBy+MPzrTFBfWpFSGQ4Gz3Ko10OzMy7mDbpR+xlf1IxzNozsvxVaWtBtMo9cWpQwoFoPlLLaJmvrCYhAoxVSpUmSKpHUL1gnu/BQnvdsSXViGN1HwHpkbMbf+F2I588DJgn3klTKkJM/kWc4ajJJkTNzrvaHR0lO7ubpR8cAPiRDG+pmkVTeYh4D7gT/EnkQyhpWZJxfNh2OG7UdpttsAhNxBYi+uChfpXI+HXidbiJrQjuhDTPYk/HcyscJMrxlua3f0tHc34Swgmj3EuZAtir8HnhufxJy10uZtbnabtyLR+iRqoMDMJ+TJ0JYo7b8ZXfMiivfZ9d9svo2n5d8jiewJN2yl83fWFwpRDI9kiBKZK25TNA3VdT3bDFvwJy01oO7fhz3+1ugITeBF1jgW5yaB2tL62oqlejxTDKXxNm19F/PEQUrh2oqVwDM2b8cWAzEvfhS8weDlaKSfc6yQSAF1oqU/g4SAnqWf6Z06LJcxCAW6VhCy1dSv+lKESXks2IIGBVmbu0Zm3cibHr931zJy/Ye5Kh/t/BYqLW2GYy9Fcjrn3PvzxpQHkdcYWGHdt7LrOEJMjoRXvPmpFe+zH0GrK4l2MfWiVncAjf2cX5DbLpqLZbm7D+yRj/AnT9mpUmHJkZISuri4WSkuKTl8eZFx6AJlzw2gINyG3bxnVIbwKsQYbkrmad7aU0onKttTSbrOF+H8dhWroBB6pPoFW0DAefD+BP5fcYtvh7ghNoSlm9vSFzU0aNaLTPXwL2jA70abZhC8CcwSN7TD1BVDwu+Ek2j9XICU5QlPyZjRNh933e/H8bjGCoulswXQB5zDcPa8pC33R5g1aiaTiOBqXHmCSiGEiBoBBIkZqD02ISUjOnSgPObLleV2HSgFb6v8E8GfA7+CLBplVHm6DFIVOpTF8sTyQXtrhHmnBr2E8IxzD621nNjZLEck0TdtUlJV4K3scAT67UA+GkPjqI7Qn/ftii9xM8EpPju3rMKwz/8yK0KU+iZbPONLvLI1sF95hYyrMGPURstP1x1rVaPsnNeZlrkhTI1bgY4YZ5IkdQ/vRGOUEc813CNU08zCsRDu6He/YXI2vN28WOsymqs2PLgIhbiblKmQu7EJxkAG8e6sVSbr5VutJO1Ra8MHVJve9CTzzy1pweoGC3IRNAb9bJvCQXcv4KuFrGIZuTdsB4V41kFxaeDV0HITbdAIt1VEkZduR1+MkwiAkyAIfQ2bZKerPGU28wmAermNID7AKU19FVvofIEFRxFeQG5v/8DWksI/zBck1pNAaM/ujBXVwLdrqedTRVWRZRZY2MmSJ3IBIgJfdX0vggpvh82nPiNCayiGM4vfwqY0/hTIJCwjdvwo5X4p4qHkYXQpuHsY5x/BO5gJiqeZo6kKOl9j9PclcbaXTUaMoZtr9khZo87mv3cfCeC/ijwhpQXvEWHuHa0MIJNBsZ0hqelS6lSGSItTLZybjU2FYx8KGUJ8naAUU7EnzozBSZUrYCSQmLZBkkJQipz+88HQ083U2loZ9Ml5lMbgMWqBFfMprWHng9H0OrfAOJMA3IY63Bq3To2hk9yLh3hr0uxq8FoMuAiE+gSZqLcJJjqFNtB/4GVRGfyuSHg50NWeUYujftoLk3fgjyCK8TjqCr/qbNovnSbYuQ4FunNCYpfGD05VUNE46Z46ebsAUPjpln+1yP9yHLAxzkpnzLNAkQqO+HU3BZrQrvhh814zkXTvaNSN4L8RiS7dFuZexXqtdFbv/NyELoBmtu2GauIUW1tFEE01UKXCcDBHN5KhQqauKGepgZ9KyMOCTtj9Dva3meGlC03fKXXgMyaZDwM8jqbsPodJWork6Rf3cpMY1VAWn3GfGdgfwyYvG5BO8AA99OfOfLhPe6UimbZ4QmmWjP9c4Sqi8teOF+ADiByvwa+NK/P4wxKb9tkyGah2SwsyCUOSmWwkzrQ8T4M14x685f62iku1jC+tMcianeoWC3BJBDC8K9c6vM/RPNiBjLLaKDRAU5oGHrjd7zW2HhT42C4jFKEzQh/TaO4BXoAPkQDrvS+4pFlBbjP0MF4UQH0H60ATehTSFUOkmhL+MhnyM+mNDZxPgYfTHcLRr3DNWunvk8aecnWR6cvMC9LG0m3emKgnpUPzp7jfvBpgu3eReE+7zQfdu7GUIv2mgVuq2xsUTmEq8IyRBDpPL0I5I0JR8CfEcC4rOJXh2zihcG2tQqOF6/JFt33ffd9PKTTTxDCtYRztjTNFFRIk2YgpkmCRmgqQGT4CFbXwTL6EIMwsP/EqsMdSE2imyNU/jWrSMN+Mr630Vf3Dd1/GS5QRet5thfmwJhKhjQ6WYHyvBC3qLJ565ALdqPh14nHQer3RP4Y/aM2FWnuMTs2ihrsbHZN+DPFVfR4lzn0F1jvvxrDyPnYyXIUOOiDxJTeS2Uy9yzTQIWxn6ET2FCmUHPqxjRRmsxkMB2Y+l4HdnElaoZz+mj5vi2ChStbjbOFQT7elpsHLoz5jbirL2h0kbbSgKuBl//NEeNOK3I8zxDvzxKzRoyZnQRSDEh/HRtBVoMu/Bl5UYRz7APjywYS7SIcxU7HbXtiGmvdPdewPwE64Nnfj8m7AoyBmYksZ5YxoHzML3RSdjFaFAn0RLNYdPGHZCuxYkdbp3Uoa4DJUqTFZhOPEBtEmUnXYTyisaRIC2PYjDD7jrlqUQDzESJix68fl7L6AOtNHCu2lligq7WMktbKSbVjYTUaFIiXEyDBExRMKwu3uR+TO8ELERlruwGTEVK110rZxAtexm2n58Kz5IfQRxryvwlnfMvJSskIGHqONscI3FT5PUb+ZHoRPUvGYmzLrxDk9z8B/Dix3wFt3pVKiQxdtzOvGaz2Z0fm4RFSN4Jf5wA2VVR4yRJUOeqE7k9rrWnXAt3YamYBitpgzaEtNFbjrFoBVvbLyAvJJX4qv1mGgaoT6ksDDnbyioG0VWlnbrNrJ2ZsI+zJ3C3d2OZnAEbYdwDibR7K9E7KuKChidon5lnSldBEJ8FF8+4iW0kM29aXGRPNq0Q5z22NAahW6zVveZ4Wj/HR5JthZtzo0IVBehKbWSVoskhRZfjZ0jpVmwxf1CJ6C5lMPUGofIrk5ApQKFMoxUYUWsnx5D0/QS4lCdKKw4gIexGgpmsd3pi0Kh09ri4k8iPd20jwkSdrCR/5sMR1hHhdWMMUofLUxQoEgHMd14wFdoM8yVpaZjqs3Bd2vRTKxAKlcHgRqWwGQMxQrEMeLtZmG3o/l5Gi1n62YbAr0N4jnLHOYndH5adCdtsZ35LkkDztYiJbsHCbSTCLlnfMHUCVMfQmttLm51E1s5d+/9aGDa0WC+GeVMtiOMTgl4kQxRXf2jbrxO2wa1AzVN0WlxPbEW2i707TCnvFXrMXVuyrWnD6EPLkPqWwY5hvczPU58ZjNwdgT3TE9evKeGanoTsjOmUKBsGDkSb0U2xxSqF78Bf5BkhXqQ25nSRSDEJ6nXxPrx+VSm4/fjTUBDhs2mcYeRkS78aV4voth7jC/n+qRrw48BTRCdgmiEOqfKuVvhZ0hpFmt+/WbEgrrwx5Nm8CCTQ/q/PA5RBBNFSBKZfwYajfAGgXEwy1ufAZ48E4qX6ZeeJRpGXpm1aDwipNQMk7CfTXRRImKUH1Cmj+Mc4EaybCXDODFlYjZQDzmau/OvfpXmkcCuollJ8HV2LM5sjKkZSGKIK1DNQmKRETM/BpAJsgsJcvOQHMMXBpqnjmo7rjHq+Ewo3K9t+PKANheH0YI6hthtAbgdotWQ7MaH4uaqNcZoMA64Z/0bGmUrdHAdEuIfw7szKkRUyRDXhngFPkXpWXR29jrk57vVtX4bEsOhB6VQa2HofbB+mxJ9D95W7MHHygdcP3vwXsxl6fI652S+mSE047fgbYsvub9bUaXBBI10xr0PLWI7LgIhbg5Ii3WZuzcEsZSC11zhBmktdzNiAH1IcG9Hsa8ITdtWyNwI0U7INEMmB5ETeEkkARbGsc/L/WKWRxtiQWuRll9GjCqDxnjEXbMXaIHKiKRFpeplvFVNsJSvYXwFiQZJBGHMdyZ4wNkZ2rT7bgp5aTaimgU/RFGzXlpoZz+/T8JLrKDCFbSwhjaup8y95Pg8CScR47ZUHKu7kwJ7NyQLZoTqVDOCWl2PDGnwVl2Xu79Z/5VEU1KNoFKEeAwt5VPuglNo2b+AR52ZTncGOWBLMz+h56wbWd8bUUPvB/4WJbkXgPWQK0BmLVQPQjWvz6OsAwmcruU27y34wzX2IJd1O1oPJ5AV/CweODBIRJEsFZqIaSOhB82zZTL/V6TH5tydXof0J9seI+57y4eIpxkbHWiSLKH/OeTo/S5yofQgIX4EaWgteF65WHbj+U/hLNtrJfBapK7/Ef44i5UINv0dd10Pvo7UYq3zi0CIW6TNTAOzfo0NhqD/RhDu2SiDR19vQ1b3ZuSeusN9/3LgJci8ALkIOAnZSckx8CqdgSUXF6p5lsiUGmMWBuiaQpz/IPCT+PzYLmrFduIqxJNQiSQ5Ckw/6tJ2TTg2bnxCsJapaCEG1VyMYQLPYqBCZ6YwwmtRzQwam13AFBnytNFGH9/merbynzKvYIp/47E4ZicjnKDKA0QcRnCjLnwW4VxBMSEApwsvxm5Gq3TMteyIa+0oEgCr8edBT8ZQqjj3vem8k3gl63DQ1VDJWlahjlCYGUK7Hb8+/xKtyc1SsPPtQD/kqpDdBJVJp82UpNHM2CfjJ6Z52v83IX4wjOc9P0Q5egcwOH9EkYgyOWKaSWrx1NejE3LH8EO6ER+H3Yj3dU0XudZ3i+J2uV897757Es18K/CfkLpwOV61myHR/yKlMLxjmZQdaGRPooKup9DqejOav+8jX6+V9zmz9MjpdBEIcaiPJKa1yiT1miuF02kgmadQLGkAbZargDxEt0PuODSNQf4gZKpQnYQ1iTvWPPHYlhCGu1g5CEtOYfw3wscSNyG77zuoo4eRRVJyn1ulGvOTV6BalVBvNE0NTOkQsNWKPzHesMYmX8KhNfzt0g1tuM3HEYstoT5eR8RztLKCFfQwSZY+DvBYc5FdxZd4jn4GqfLjiCE8g9CtLczvoMRGAZ8IX8mgHVl4JspG8T4TK8Jh9YMmY4gqEMWQmDfW+HvYXYO3h26PZUWmaBro8grg75BQc1m9mS2QOwXV/dBxPbTmoZCDQgaK0Sz7MlTeht37Ze61Dlm+J5EA342E+zjeGzhJ5NLLciTkkRW3CSXD/jPaSbbDMkg4jCEVuXFtnZC3FfBFl0YQqO1517ZNaMX9BwRG2cn8eeLFQWZPmEW9CnH6A8jDZfiSUcTtzHtm3rSFJ+41potEiMP0BTkXh+Rs9zJGXUbbp9V9fgj4NHInx5B5Htp/BJqPQndG3DAfweoq9CS++NkI2l+WUr0Q3eKckdl97agjecRaRpHl8xy+TucIWt43IQfTKXdNCeKCv11IDcYgFFKGN+7BW60ZvJowioY2dEkv3dCGzHwc9S/rcn+ztPMa1jV1sD4/wbFymbHyAPuzZV7IDDIcV7m1Cb4dQ2dVDOK7wFqrFDEPMpHVjMZnK3Kh73F/7wK+icaoHa3WX0LuwFE0nlacIwrzhdIpjWk9eFmv2YRauCd6DJIRxH47oOVqaG6Byk4h+5r2wtpNOnp2NPH70lIhG/bR3GpWjcmqQFphpCxancPI1X7K/V3AgwmS2lCPAl9ADviVSNQ2o52zHc3bk/gzkOqbFPKpkntWDz4l9jUoun4MCfNN+KNIQuDtstTIzhnZDFuychXNrAn0N+FPK38Bjfo4XuG6ZIkvGp3pEJrbrIA24QvIbf5TaMvtphZvSg5B+2FInoH4BNySgYNlaK7A9YlmdRiPuTOGHe7BOdNMNtpSbsIQjV3Fnx486T6/DXkpWvBMwlneXE/9sQHufrOU9DcBZSCglfgT41fiK1ab/ZvO0rfhXZqoRehWtTGIISqQzXYT5Q5yKjlGLpfnyhUd7B7pZ6prhLFqmaYs3LkhYqovoVSByQQ64+C08nhubQ4R3obcWIGYjAH897rvDH99FKlWL0OF2TKkrP5QcIUKRSjMly3ZbJchaoXsSsitg8xKmOyDbBVu/3WY/BYc/RqMHYZcGVZkoKUEfVXIJlqX4b6c1mdL1ovRCI66i0bQSHfgy67uQ2xd2kFCiYQKFeKa98gs7/Xu1YsOKXwMKXfrEZfZj6LsqUgT9SV1MmiH9Lrnt7o22FOyaJ8+hwf9WlxkCelcsKwzoFCXzSFOl+ALFbW5vy1EZbbZCPW5T4tFF74QzwR/L5qF0Ai4VEHarHOh80ZgJ2Suh7YCZB6Dwl7ojWBVFQpV6Kr6Q7+uRl5Xy3Ax7/ScsztMiIbs2yg0o5ZqZ9gzO9xzLL3uAWT7NSH7rwV/fOla6v2y84u9GW7KrMgWxMhW4U9pvQp/JEsOHx9fhCz9WSj01Eh3TzIF4twwlXxCvrlEprfEVHuRrqYKuVUJ2WJCXIb81oTKFBQKssArJRitwlQZxuO5lx2BesTH0wipsBX4Y3zxmHZ8QtRuhKG+EtmJpzU4w+my5Rd+v2ys8nC/FiAZgPhRYDu0b4RKK7Q0w7H/CqOHIJmCriZYl4XXtsL/fgayBVgdO7QfczBQzRoH75HJo1EfoDGQoIpO4vIhDctkb8XvriOoeEgrYht97top0m7a0AqfwKe4bUZi/xNIwQ5R+8cQyC4mG+RxWg3/RZ3OkGXNtHaWqRPA9pVlApi6PoQv7BrjswUs72mxXelwMQjxvHsPF8SiwJRDt1mENqbFfSeAxyH7OmgegNZJ6C1DnEBxDEoxrKtqTz2P9vc299MVaJ+NusfMmt0R2ls5Tn9ucQjgW+ydEQ5sJ2It1yHRejvwFTRG9yDIxzF37SDzFafpeG+v+7yAInmT7skF14prkW3RggR8WIdrXk6OeZNt1SJEVciUiPMTJD05smszZDcl/PDJQQZPlqmugrt/LEt1qsqnd8PJIvzIFbC9HQ4ch4MDMDHhYtLMPlJhFHQEj2j/NrLiDKdtOcU34vPIv4g/lfW0+LQwJSCNgbK4eIgXPWfMOPSMTEHUL6Q5eyA+DitXSmhPHIbmImxbBaMDMNUPTwzCwChkYrg2CxNJffr0aSnGw/QNrRm6LcJ9GZMQ1xW8OYV2R4Si1j14236t680hZEIM0qiYc9ojNIQvOFVEKkEfcDURm4gYIkOBLDmy9JNxQtwO4klzjwVPZ7huZmNZNjzLQhmsp7BZBhUZoz73ybphRsNSwJwufCHejEYtT31OwBmbYbZBwmKCVvY+0QNzu6F5HFpHYGMkadPnqpTlEmoJwCeQMB9Cs32lu90xpkGR6+1sL84S8iS0kNTOFrWpNVS+Hb6yFNDh0L9ozMGes819th4t8SbX0R8gkRq67ea2WyN3lw5kcdumeQrveuzBg0+swOYU/pQhKz8T5iksDblxjhKSXEzcXKHcmWGsJYE8dLwKBj8L+weg+coqw6fg0BHYfDmsfA3sPwDHJ2FwUqn0cQ6S6qzRhtqTrcTOJPJGdKHVsQa5YwfxZ9BZTsELeLiVyapps2IMODxPw5BV4DmXZW6GzLgBhb6jNJ7R3s9sjhyrjaYg1wTNndDR6iqktsGPXA3/ehhWdcBVTdCXhYEJOFqSO6czgpOufJ1tr1m3UWg1pM3N8Hu9GoncLIqvjuHBm2X8sSkHEPsYYqb6R2ljI0ETYmDLk0AnGXaRY5wmRmhmhCbGqDBJhRJteE5nu3rB7DPEwObxR63b+gEvEUOWtbRuswXTTFARG2n7bin12AtfiK9CI2fhWIMpGx7tjIKigaVV0xSaqE1pdBCaqtBThpYibC/B5ZHU6PuB/4nk/nrETF6GuOgA9WHiaCajxwR4CzEdVOkipouYdpJaba4y2ubGfcaDzxdzWQXuSioI+bsJuRfWIHF7Fyp4M4hAb6fwMfK5FZRIW+GWhhMjx+Akwv6W3HXdCOG9AiXO7GTWUzKXiIS4T5ozVNsjCpHsm65tebb8Zo6u1VWGXihzaldC100w2QyPH4P2VTA0ACNDMJWDSkbg/dkoHb4eRWN1rXslKMhRQdjpMj75yKwH46PTrAdjws14DamIRxeO4QODVvF4hgKFIZrC1nUo6tLG/MKtGLtTEaIxLYCObljVBNuyUHwGfn4jfH43HB+Aa/Owuwq7SvDLOYETvorHh1njG1C9ou1nQjOeFrD1lBa5XWi3jFNfcc/yHoaRp2WUmVLzQ9XAxsGQInlgioiIPK20UKSNKTqYIscUMSViNKXmHQhLYs2bg4QC3NaNaZbt+MLwRTwadRR/9LApgsuMzHwxVa3R90upe1z4QvwW924nfQ1Tf5gYLIIgD3Uxs+8y1GCsUay0skwVymVZ3fcgY/SbSNZlkRTaiI+JOwq1O6tu2USGjMMex3RSZiUl1lBmNRV6qNKKij0UUr8OdcT5RFdPRyl3JSP4VJad6HCZuxE72I2PHMV47ObcMJthtq/JjBifJPMYmto9KPK3B7nS16FxG8bHF88eJW54EpJqlkqmBYolKivzTH1xjHi8xKpf6KDwfIVSNaEphkxZ7vOODTDZClNNUMq6NOU5ug5CtWoUjzR/CXkk7kWzMYVXfLJoNqrMoFqFE9CBLwuwEmlKCdLZ7EeD+CJg5n5234UKmR2jYx4SiymGBn2Y3bWwVRsIs6QKEyPQ2wpHyvBcEd66EoaG4WAMP9oFX59yIetEGtCV6FzUPA2FSaho2/8ml6SAJHXKSKM+NBK55kzcT72x2sgmaXxfEzP2brZ+joiYJjK0ME4XFXops5IKQ5SoIux6BU2hFWodDO46L7lqCSymfa9Ca2UVWpD9iHVswhfX7KOeZdkALUOan7BePP/fhS/EtyEOdRlaGH1IvljQIgzlLpjSmySCjBMTSQLVBEqJmMHzSMv8j0h+bUAh468job4On2kSQyapj3ab4tpKRJOrslymhyHaGCOmzBQZVqMc0Ii4VsP9GIqgGWtc7GCT9d1ERsjtv+qeez1ix2OIFVjUr7EjME3GJK2IZDeSHXk86jpBruEW9/5DfCXQDL7W9NKg0mdqtblT8lBthUIHJJMkx9pIToxCf8KpL5ch20SULxOvhEw1pnotFI5BtQJxRgJ8PvzLZsRgVbj/LTM/j7bFU2iNmdFjhtA0bHJoSVlRPktIuAt5lLLInF+JpvcYWmoj+BooMUSJv1ULvvxKGz5Bw4IzZtAbjmHhPqRARCYV7cdyGYZKMFaF/zkBKzPwshy0TKkBTaiu/wmE9OvER83K/s5hiNcid1bLMaIeUGmvmTwLITcxgW7lV8Ow8fyigyGjq6LDVjI0Ebnxr9JBzCYAqpTQ/lqPYu6W6WEV4uLUa9a5SK+dXnfzLYgHrkTpEm1Iyz6BeLcthDCofN5SlHrBHIAVs9KFL8S/igeAXos/4yCNNlgUWRZsySTyO62Y+DzwVyPk0AGkcf6W+/sAMlD/CS3iAkRl4Wnyibc6e4FeIjrJ0kITI+Q4SYUs4zTRTMQAWVrJsNm52Z9AIs6g7lNMZ9GLKcRNy0/wkbth992uoA3j1DvnpjsC0xSqBeZGXwNcg4ykZ90djqAt8g18EYw8cuh34aEHS4+XcYDDKA/ZNv1baYeOa6B4AlashK0J5E9BexdRrgLXJFReGiW6DSr7KsQTMZyQM2cucfA0he5Z+3vCfZfDW+LmkzlttMnwk3m89b0Wcfd9KIJyJdLV9rlrmpDu2Ik/lbcq5TSX+EI0WbTGtyM+PoYCMXm05gfRvI1xpj6kRPGICu5QlxLcloFvuUyRm2J4bwaOVlXaroJP8h3ACyIbXOrroVnNgha0sm3fhoLYSiGdruhQKMBtV4Wsvz7eGpG4lyg0XcOr64MsGaJajcUsqtm+0rWvD9kUQ2gYzONtddwMaW3pUrPKVls7VrigF23eFYjf/Rtyo21C6yfBH/A2ST2bWIax8dkpDBqFSL6RM77zhS/ETyHr9lZ8rX8zTWxHGTZtURdG4neheZitlM8apN5GCEW007WhCzELZwplStAUQ2siRrAOKa/riOglQxtN7CTiMONAGyWO0sZlJFxOkReJuYUKeVTD/Xokxk7hg+7mal/EPtfspxCiYwH+8eBzS6+ZG0wmdL1a9WuTIQNo2AbRUFqS2zAasxzq+fVInoTO+6X1zDnOlTi1owqwAUbXQXsXPPJNWNMJm7bCWJHkR9dCZoTo5b0kT5wgyU/BszFUIDFOOU+tIxQGoUA3z84o3kthILYZ3dahK6QdMeLL8AHZAgIg7EUW+JWIEW9yvx/Sw6KMIkvmkV/pnrMayccqPtq1zj3CiveEMfIFKWCh9Cuhu00kvo5pH1Cu6v9taEGdxB8NfiAYqMCjEHqHet37qPtJDx65fMANU7trzumKDoVNDQW4/94EtwmENFRzZkSBiX3zbpuCm0EqfztyOAwiJflG9/9LSPEbdv2xtLZZ2aetHetUNz6s2YGXZfuRYG9G9bLuddcOosVhaRbnlRC3uQnRfM3us0tCfHZ6ELn6/gEJ8Vfiz/g7hWE7Fj9Ianuogj9/WSqv3EcP4OVbEY+0WgUMQjTuhHgV2hLvfVoJZIgZoUovCevJcoSIDM10sYnVvJ1n2MEY36Jcs8LN/qyg7RlCuxabQvZqztw0c6kGr7mz43RIrReNRzNym5sFdBjlz27CnxZvTHWIs3kuU9DiuBvyWyF7GVS2wcQBGJ2C8UnYsgnuugXuux0Gnic5sgduiOFbJ2FVAicrjZKA50w2uqFVlwaQhe7dtM1W1x3jRa1oWZmbvAXtpx8gTcn0tOPu2nXUjm7KRDpCoDnxt9qGBIStkm1I6boSzaE5z8wCPCNMqu1N0B7sj71geTXwomtYCW2fAbR4+pDQCRxHoQu9FSmV6113D7hhuQIPDzAPfDrzbjZLdvp82GSEKQLmDzCHt2WmNEYUhB6EHqSEZJDe8krg99D09bphKLg+mFUeZnjMiQyZZx6aCTRYI+6B7wD+l2vMQTSYll6SAvqeP2SjbCjQVve5qXv7zvgJF74Q/x6a9NeiCglfRRKgjXoUzVKQmT5F6g+TPYFfmM+juNAwvsRPBaJJgZuaYgnxHrSm96Mt2UuV/Uywm1EmyXMVq/hx3sFneJI+/idVupA5dAPauEPuAf0sPS7b2JJZAtNtiNOIioYUOqOMYXYgL9zLkPL+dcQXmpHVMIHXm57Hn2Zqzpel9cqlcPRJF1RXwVQXjGyEyS9C1AUt7VDthQMJfGkSfngAogm4vgeap9TKGChUztiVGM7KvFG0oafWBLl5ja5D+6wX7ze+Bgn1AyiMZUKxClHklTETQ99HytflwF/gHWYWr9+A5OcI9WDlBXlSbFkaxNuU+bXIi9DnGmUK+JTr6ynq6maGcX1zS5t+cBkSdP3uJ7fjQe3WB1doeAHTGk6COfCNkbWg0TN8iqUHGKKgPrBsDgm70y6kTFXRKeeHgI+44fie+01L0Od5y1QT4ruRpnYMGVrH0Qa+F23u9wGPIK3hWNDtOT1spovOtvmeRvGswJ9isAEtuMfO+CkXvhA3aPIDwOOIu29EDGeYpQVK1Lnt8H7NGJ/obKdyWMAvp/+jolyOTbHWdCd6n0SCvIeYVZQYAHKUOcBhvsRf8QJ7iYhoYjVlKihSbBxq1L0PcnYgnqGNEaU+XxhFaMiOINnRiYbtS4hFHUY9uxXxgRzwr4hHWBT+jATAvFvrtPCkTdW+yl+HySegKYL81bD+Qej7R6iMQ2Ef9A3B6nZ4KQ/9TdCfhdEICpF+vwh8aEFu6EY3OIXkxQbkcu5D0qoXLTtjuv1o2TUBOWE9TBlLw1MmgY8Cb9GlPIe2xm14a3FRcvzDaA9oL55Ci8i0C5OD43jUX4DBDF3p3e4WK1y7f4Cs1158/fNW5Jbe6x4xwPyOlhWlEWJd7ild7k4b8DngloQ2gEbRdo93RZhnJnHtj1wbe9DYn0LydhD4MkqZ74Ag/s6cWw54BWoTYmQx0hbGkKa9E2WhjqHQjK21fjzUZtaxsff0gxOWWnWf3h5TV7tQHNWst9WoU2dOF74QX4NW6afQOrZwxCje07SUc2qSwky/Ml6NNWDiMXwl/cBXGMX1YK4V+KMjhQGP6QGGqVChyG52sp4r2cQbOchxBvky2nIW5VqBBiEs/rfEC7pmwQXPSVLv86DQE1pFVvgJVLV+DTrp6TDiAY8iFrYS6XEHWWB+64IoRKGOASchuQYd8jIOyX2Q5GDv56B6CvLXwZ5d0LoG8tfA/l0wmoGx6Gy5Dk5PYYDWoiQWmdmNP6hrFZItz7prNyGX6SFqyy5KPHvrRdthE/74gEPAwygp0azEViRIiizQAmzUH1OwzWNm2BXLxbP9WgxedXB9FxpAtWC2R3BdBAcqqox3HfLOH0Mse78bnjvwSSr2qLn3JVAM6XR33oAGeRXaDWvw+/skEc1O6NYjChKSmnerhPiKBb863JXbkf71HfxRuFNkKRJRIardqX6BNKAwvFh0g1FFNYCPIi1tLz4h/ln3uzxe/0jj9erGxHqSBo4R9HspsnJmolChaML7Uk+ihXYHOrrmzOnCF+L/D+Lsp1BvN6H1vwet1AmWnjmGSqAxwAzeCgi/C4JloRE/iFLKB5AguhqfzNVCljtYxR5iellBHyepcpQMG4jpRKxxFC0kQ/RZjGyJyDadBV/Tirv1eY5jHw5RDqkjT6JpvRMxxa8iS+EOJF9O4g2pERqVpTwbFKNNO4k/frIfSp+B8l0QVYG1MN4GySpo2gCHYyjGUEiUmmiNPhvOk9ORTYJZsKvxR3JvRdK3CrwL+V5X4ENFUO+RchPQjWLGO9ASWYtUnjuQWLoK73Y2N/SiURq+EWJT0tgw4/3BHEQZhQYyWchlNSwvVuFwRiD3IZSV9mbgP6Pd91W0d5tZiACHxtbdFjQBB9De/hxyN24i4gAJTWRZRULRvaSJWD108LIzhyzxHWjvbEGHtW4Hfo4m9pLlRbJMkKFI5IYkxhdlbQiJFIXJKyW8XHsa6R6vRwzuRveZNAZf6LGhIR1iAww0FgLH4NyVgAsrBnS5TpxAG+dbCNV85nThC/HVyLe6G81xP/KtnuKMK5BGqffTGphhQNLgnI0Em3vZ5ca87NIh6nWBFcDPs4I22omJaKKZYap0sJUMP8Yoz1Ctnel1HB8nW0LTzvaVhe1MMbZOhEpxA+Y4E9nQmfIyirbm1cGtvoOs8rcii7wVQUdGWfykutNTKB3akZVk9mSHWpI8B8nPAN+GsZ2QzUO8Aka+AwxBXIFqDHFy7gU41Au7ccRwO5D8GMCfNLMDBbdjd+1JaqUDoiokrkvGWqtIFE0i69tu/Zv6CUeRzr0WHxJZtDm0Ptm75XKF36dftndDwHEehsowUITODFyRgf4ivFDV+tvm+nIH/liE+VPoSrccjTXIErcU0ipwBxFNJHwb6KCZtWRJqDJClTFiF1AyB4Ttpy73lBNorFe47kodaOIALRylmVPkGaWJAlkqJCQ1AJ0lnYUgumAcTQGcQtthM7K+1yIt/Gok2Ffihf0kPgY2jU/YRGXceLS4VvfgS8BVkBYQc3ZLwNkiMRBAOxJCEVJNLVnvzOnCF+J7kNfpasQZ9uE9ygs0zcKoSyiLQ0VxRiYTenHS0n8GGsfzDEO/bgS2ELGOFtaQ4Q/YzxB5trOCXi5nnFam6CNDhWqdlmyJIUskzsJsClOKLT+ohEf/WLmpUDE+zX6yYTMeMIymtQt5KGxsVqJtvAepLEdZunN8Zycb3xw+mehK990W1+pngEMQd0GchepTkIwBExCV8IXSz5UfPaBQs5xA+kgOL4VfgQbdBPdefOhohBrCPkm8LjCBtqPlhN+FturXEMDtFneLU+6Vrt66aKNiwmEmxF9IzhhOmiFphbgdyu3QnUBhEC5rhSPj8GIF4himnMJyVSTxciLR+jw0w+1PTyG8sx3tAqmpObbSxq8R8Rxl/pmEK2kiRw93Mc5XqJJQJU+ZLFWXZFYlqR2mHCOvxy6UGTDintZBniHaOEU7J+iknw7GaKVEDp27ZqbGKTxXTGXBpz0eZhhf4QbiLcjF/gqEXTJ//gDTjzWvDZhx3xxeBWlGGmSPG5dJ/KEvHXj0/hxCAGdM5kpvcW1YhYIr3wd+AfiXRXnKhS/Ed6KxtDQvm9cYXxltjrsojLxYnm0YeTExOefIy2mem7j1mWTkrsskAigXgbta4HgVOqoJLVGVg5VxqkmFKglDHGeMKhPknZg+ilhfC9JCJ5hBrT1zMk3DwJhdyFjowpepMmi5QY1DH+ks+8k8EGY5ZF1vVuJDtFehsd+NWIrlj4cBhLMjDtNqh0HrepAJ8hPI2TqGBsUFBWJBFaEKydlXO2Ylc4dM4nlhEe0tSx3agybIulampkUlVQm20AI8hSxVw+0eRNVNM+6zY+7vQ/i4+JJFF2Yb6iBjKG6DYgYm26GwHSYq0L0GojzcUIaW/fDYEchVoZQRLrE/gm9X1JeCu9XcVenQ8jT38XE0Qn1AQoX/DzBAGxvo4hpWsJ0TfIYWRqky5aBtkYtpe+N4FI3pJNq6+whzxbP00MUovQyxihF6maSLEnnnSh9Fymg3vgoBTMuCD0NoxigzwKtQQP4VwCfRWrohuE1oLdVi48aNc0iRWYFPVrwSjXCL+7+KOEKb+7G5XJbSEjcKYzLX4pEfhks6c7rwhbgLO0QFYBKSigycTMHxyIrce7NtotB71sz0w3dC19QZR16c8K7moNwEk3lozsOKSOdLP53A5CT0VeGqqMpkqcR1lTwnq3mOJ6MMUWCSnBNalrBrJU7CVi0y2Z5qRbJqDTKPV6H9ncfX/RzAp/JAvftihsFKG4ImIq1nIE9uJ2JGY9Q7zwyFe/YoVDsMGXyIiAKwkojVxLQCCRFjJIyggYmpr1y+HHzpjkK38wS+eyP48gMJHpFmxQEDUFhokFn6tRXleQGflFhBxnwWWevjTD9Z7ayTGVdujUc5qGyCiaugKYFkCF6ahGwHTEzB2DHobYKXd8CJUdgR+2IvVTQ0C/OHWamXDU6ITtBMmYTDlHiRCjm6uYNxfkCGE7STI0PCBFM0oXE3nmUrbCK4e5aIElly5BmgjRF6mWIDw0RU2MAUe4m5Gm3uR1Fdt6P4HNrwzokfu9BT14zk6gmkAA7gFb97EZZpDF8AwhyIVbtZlvoCzJe713OuTa/HBwfsBuvxhXznCHNdEBA/FN6myMfIz/Qq/FnzZ04XvhA/4LBVFRVPyRQlxE0Ri2OvHM40laEAb0PrrVM/r7lvh9F660HM5mRwr3kJjyDslTSrSmehA0ZsIedgKobcGGRLsHOySnEiYXQqZrhUZrhaYCTJUiDjQu9p0MkSITNDK7wDDcxGJMiLyHu8Eu/RP4l3rVfQnrK+n0Y5NkPQ/rbQWQ4xeos6W4TubMJYplOodmSIaCLiKBkmyHCKiFYSphx6+EUSClScAE/q6skvQwoBCobsNtyDddtyx1J1RtLKmNlGk4iPt+F1PVNl0lHXsz+X1K9xF3KtVqE0CeOXwfDnob0NMn2wa0KXFLNytx9og8kKVKcgzsmrNv9MidAnXSGiSJ6YHD9Cif9NO1kSMhSYosIEx3mc1/MzDFOll5inOEiOEq1UnGvdixlTmgwtUyAiS9at0ZVMklBkkITtVGqHGB0DfgZByw+g/MID+FiZzVziUxJCT103vphLN3JGPY2M5h0o46ETbegRUvl4JlljxEi6EQBqBUqGGwD+EeUHHEDMqBVVHujAY+0tlzA1AyEw1/5vhI+Ydb5sk4y5Nl2BFIkv4AvZnhld8EI8M+CwVVXlXDdVIetWbxLX85mZMFYWdbEiVWZYFtF0lKkvQtKJL6aXwVuMc9qo9rBmVB+kF0pOU6hkYXgYVmyAtgL0D0PcD2OVmGJZHZpMKhTiDKUkXJpzMHPPlMLCRJ1okDYiz1EW+FNUlcmyYba73xnO7mTQf9swM5DJD3u3tCMD/BubqwbXnROmDxibjCiQJSFLmRyTNNFCTJmEhIiYHHkqTFFmigpFqpRIqJKco1Y3pHTGQRhHsmamXaahhhxQyN7s70nEry0c1Y2cxbZqw3j4OVFtQiEE2uQ5qB6H8Scgex2M7oYVr4bKLjixE9q2wIbtMiDiQzByCoaqUvrN2Ty/vmh1RxTJME6OIbLsp4etRBzhKl7GLvZTIkc7rQzwNK9gE3vZQ4FRClRoJ0cHCQWSaXXc/J6KiMgSkSehnSqrqNBJQh5p5M+hBMEvAL+OjmXch9SuQdTDCeq08lAQdrivhhGf+Angz1AopoDOkLgbHwdrd+MdAmRrZOZ6J3KjX+km6Y0IdbkSha7G8cmMM9SbC9d3Lvg7na0Qru2GWzQcTUPxnEQMcheC4HY0+uG86YIX4vkJaIlUf7yl6t4jKYYmAKbwzpW0szlthfdioDLJIyvxayULh1A4J4MYUD9eOZg1+hI+rF0PSzZAdSOU1kJ5AKJOKK+CljYoPw1xMzpjugmymZhKDJVyTDUJ19ZZEARpLbsHKcY5lE3RirTsIQRceSv+IIlOfAFtc9HOQmmmE6bqpCEr51oMZqiSISFPQjMVWinQSo4cEQUqtJAlIaHoxHiBKkViKsTLov2AZ2651MsEuUniULs6DZML5y4U6E3BT20phEr2OXOjQ/0YGOjYae4VoPJdiNbDeBfEETTfAvk2mFwPLz0PhRaYzMFkpt4zNPf+2KjJPZthhCb6aKedArvZxFa2kiNmM2MMMMwg+9nDIXZzDc3cSjPjRLRQ5ThJuoJsjefFQFTHjFqBjSS0o018ELmpJ1EpzN9HbuIbqS/KmqOm+VllHHvAKQRkWwP8uPv7EN4V04tiKSuRjO5iepm4JIcvETiIz93Z6H7wI0hgftm16eeR8mFlbFL5RWGXzd2fx5/gHFoNFh46rSsldFeN4mNNOaRctLqxPDO64IV4awW6IuhxQjsLXOHWk4X1hpGOFPIje2/kJd6ANzJPIWfSvcBX0NLeiAY2VA7m5Dazh4XW7CZItkuQJ8PAHkiuglK74ubx9yHqgegYlE9CXIakcpbtt9BCMwbXjgbsZWiAv4oGZj9av4NIuE+hvoZJs7NY4kYhA2xkzSwH4WfDkiemjYQuYrqp0E1Eu3Owx84qGiNmhJgRF+88N3H8BpQGhFg2T5iKa8FqyziYg3Qyj0nofTdvaYSP285q9JwtsoZlkYyoIMbQhTT3qvbk6CeBy6A4BtVtUGmRsl3OQTkD5UiKdxIvxKPgPTsRI1QpUABW0MFtrGEPT3CUw7yOK3iUPgoU6CCiQJVXkKODLM9RZZhkWkq8kVafkbnYjiPpamiUBEngjUjyrkfc8QeIC56mJI8x06q77H8hOPxmdAjCq90tXo084eOIb6TTgQBfw68VxeQtbvde4A/whaqbkddgE9MhrilXfyvesDfLewMexDCBFAuLBc2ImLXVa6savI+pF2/FnBld8EK8HZ0hsQ5fTdEs5SLy0DyHhx20UW/leSZcb2AexIPdpxCa9mV4J40h1y3yMqfSiqEQN41hHTAOyVF3891Q7oNyFrgVopViBplxSEYgmcRXmzoXHC90R30HVWTZgIR2H0riHgf+En8QTaOCMPOkRe1qGglrD5hzLMxTmNXbQ8JqquRRZfurMhmaIxiNYw4Da6KIk0lCU+IfucRBkNkpzdzADDOPRk+or6pjaEKr8DmLZ6XeApw5TXtZURWvpG7FY6VOURPw5augsBVK/ZAkPt3fKySNFvxsPfWCIWKciAKttHAjG9hAP2OU6KfCKCe4liYS4C7yNFNkDWXGKJMndtHzelu08ZNtFba6Tr4XxcIPIhDZerTBO6gvGTPDrNlHKxFY+3nEHL+D5O8D+IyxMeQZf44GG8HaZUrGfhRvtsX6F+5mn8bnab+EP7cv8LkGOKQaKNcYd4e75ZXukRYtOOXerSkzrvMQ3BrjkSAmjc6cLnghvgJhE7civtPi/jYh/n3khMmgubNhNsUqbWC2IVnUh5ZCD/5ggzxyKnUD30VZE7YGZpVPoTVri8kyJyZcQ5sRkzQ//UFIXgkcEHimZhk1Uq+XmkL/9RjyYll6URdKH7F414C7thsN0B6WRyaVjZsVqgm5XKM47yztDaezA+neFk7tiOC6ppiWDHyvAk0VyGUStmYgqkI5gXLsPThLnQgzI9niN+xQFmmxV6LF/wPUuWvQRurD4xtCxjsHk3NZCuuQwhgASH5ZgZsEjckgYjBF4AAU+iG7DRLnVkmqEUkSbvaQM8x1wLybNk8zPeSIOUrMAJ2MkKfAOAO8kmY2k+M6qnyLEm1UGCZ2ud2nG+uwDRXEdNpR3PsZtIlPIQb1JiQY/xsS7Nvd55ZlEaAZE2qFcWrems1oTb3gxuwViN99FVnlZhFZSkKdMDd4ZLO7oBmZVQa4+xa+LsYq96ogv30AHI2S6R5Q00k2oo37A9fW6/CgXPM8hTHyhoMagonN32ShhjOnC16I9yAhvgmV4+1EeuO1aBqfRYL3HlRwYj/1R1WGBpnpfO1o4DagZbDC/X3E3fN2pGgOMd2gOy2F7rohJLhbkbb6omtQC3IlgCpjDCOmsYulPZHtdBTu+XLwvhF5uMrAb6CqLLvxcP6bUXw85qyWc29IYeqLMRpz8YNHXtmGtX6ehtemHStNwS1e1QaXt0JrFh4fhb4EXtYMK5ugWILxCkxUoRArv/icDEuohTiMBisRr34a+Fn3eTtibn349ACz3M9GKu7ZonCND6INvx55m34cTfSTaI13ImbfAdUu3JnrGQdgybp4rmmLdvMQjnk6qaCGJJSpElOizDHGWEETQ5SIKNNClS4qfJECn0Ky5mp8glUx9YTpT7H2lNAmPo73V04gVzoIjdaN3+gnmXZeq1EYU7ZLrkFK/DYk/7vwzHIYXAZmg/ODbTIs1ShCC3DEDX4RH/PpcNe1Io5vmzkQ4qGiugY5GV7ClxceRCH/q9B6j5AuYNbdrNp2IxTP4tAFL8TNAlqBZMoX0NxsR+GWy5CQN+SrRVjSQCmbnzLiYfuQ4P4JvKv88+7al5BCWUXYjHkz4CRo0BTSRFaguT/irsmjo/tehld6Z1SvQ6dZI2clnLGICMM/k4jZt6MNsAf4H2ixr0JKye34Kh55/HHnjZqR1oAWW5qlXS0mmFrxnkEzPswrZijI05g0oSe64p4zmcBEAt/LwA9juL0TKjGsrcCdq+CZCRhIIIoEwMxVIOP4zDkR4o3CO0PISvkXtD7HUZGOH0Eu0Wdcp22c5pdHtXzJ1ril+FrmxXqk/Y+guqq78C7hfmRRTgCTWSjnFSCvCRiLTBt3CatMzBhsJSEhpkqFhILLYthHkXvIcgVZ7qTK31DgaXxYbwMyeEeCJ8zsAAs3dNXdYS/a0K3oDICM+/tJtFjW4qtqpapChvJryjXCwNrH8cCxLyPmeRO+iMAh6ksuxtY+06gm8f7Usrvp865td7mbjLvJqLobOyUjPGXKFPc2NKctaC3vxpcNfAIZTeuQZZ7gSw7PaqnZmEYspmZ7wQtxq/rZjQzYryMh+z00Z6MImPZdd30X9QZtuPYGEd7CwrsZ5GUxzNZrkXC31P55VXVNe7C6kXVjVTo7Udpj1jW+GbkTxtCCCopp1AuWTIOXUdzgtUAKFfdx/BnNxuQnkda9A23SSaS8n6SuJGet3TN5HJMGrzOhMDWuAylLve7V6fpgSlUTvvrYSPD8WdJMsxnIZaA5C3e0wJ4ydHRLYO8chdvXwM5+eK4VjpVhoAC5JshXIDsF0blCt4WWeAbN42E8+Hg/Wncx/kzYqxDffBFpyWOcm/DOvCi9wGagUG5U8BVbvo8/87oF9X8ICacmxDTGs1B0hR/iTki60IJrQQLluLuhme0GKmjMQXxT4lqK/ggxe6hwI1m+QFw7kM2m5ptoeZvMKTa8c6POhmVDp5D0quLhuyuDNvfj1YQwz4d6JcjA2uC9cE+72x1GQnQU8YcBfEWnugaH8WZ7QKe72CRvgo9Dj7nXZP3NTFkt4/PRn3a334SY/M14zMMNkv1shOQE9WdDzGmdL+5GuOCFuI3rBKrhcwfSG/uRcL8HyZK1aPr7Ur8PZdMo2mrrkD5qtUusOm4M/JS7Zi9eNs3ZEAkfZvK2H+E1xtCCGkJunRakOaxHlq5pqrV9EwYAmoKXaf5x8DDLlThtYGfubZ9wjw09ajchLXY7/ojzAbQpQi2boO+2OdKx6bl4HOdCoZBqQxxuHRrXte7/FqR4TCArE8Swrb+zxccjiDLQ2wyZHLR2wys74WARhksQZ+BLpyCbhcfHdf1ABjb1QGEk1cezLQRDQIjFJQfRnLwCfyZ0Czpk6D6kJZvmHKYELUHTzgx7GEKd00L8NANuci2Lr+pUwecy9yAj0Op7TERQiqDcAsV2KLVB0oQW13b3o8PIem1GC6+Peje7LbbpTQlT84x3NVOlgDzCN6Mp2oMP35qBMfv2sc6alOtzbTzintyEd7cU8QJ8mu/bdyXkEeANljy+7skuvAJkQElT8qfZGeEoWFxuDA8xDh9q7Sz7m4VOSuMBza4rz7s23YAMp58BVkL2Soi+BPGE8CtRUZ6zc7VNL3ghblW7vos8NSYPt6G5eQYfRVnLdFEWRl5MWbNBexLppPcjWbQZbcejSPkeoi7yMnchbutwAB+Af5W7mZUotL1zBB8KqlmzESSNfMQWLMjiF/wk/qiDWRMfZ2+/7SfQ5sujwT2INsp+pNBbOS4zOAwsFOFdW834MxvN29iE34+hx3GhTgRz51vMdyPirceR7/ENrj09aNjW4YfOyoeZopLiV6CpiLM69IIqbOmCrvXw/C4oOAVluAhNOXjfz8DffRVuugqO9kMuB8kAJMa8zlVsOUJr7gqknQ4hRrsKjdVBNIcGaBuhXvlaRCFueoWpp6FvKQx7VYP/G98hG7xCV0E1eDXQ0JKgP4a+b0P7teTeE7xnfDKCqTwUW6DcBckK94PLEdfoQNrQy90PT+Dhj5XgNX1PhuzCZFAJGZGrXBNOuV/3Un+eVwhfmZlCAZgg7Qy8u9yEZBgGCKttzKAEhWBt84a3UH/c6JB7N5fBadO40mAca1uGeiUo1Pxj/3OjHLLMKmh6JhB/PYSE+1PQ8lFI/lKeNcZ1u0we4smGdz8rNK/o+oc//GHuuOMOOjs7WbNmDW984xvZvXt33TWFQoGHHnqIlStX0tHRwZvf/GZOnjxZd82hQ4d4/etfT1tbG2vWrOHXf/3XqVQqddc89thj3HrrrTQ3N3PFFVfwiU98YkEdHMcfWmaYyVa0TTagrWPpZyeYbjnb9JfxCuQxNLe27Z9F63Af8iIeQnLVIi9zljGNXNJHkP//y2hhPeA6YJvhIP6ox5oHyyRhC3LPrcZLp6sQxOVKhAjY5G5ocbozQE2G+8k2X9H14xCeNx5FAzSE926Zwm9Wcbdr9gZkAXcjTrQJbyWbW3ehgL4waG1CfB3iUd9EGt5nkeAaAF6HLyXbE/x+hmdX0VSUc5C0wOo18OwU/MM+GE10dOVLJ2G8DL0b4bHjsOl2WelsgHIPVFshyVE7EGdhnQxFX5jPN4cbhpIxQfHAGK23HwDfxjO6a5DHpZczduw0IhO9YWXEHrQUVri/O9HyCRM16u9gGmIb2hsrEOde6RreQ31ZznQ8B2/8lfAh4H7EQI4hBfAkMBDBaAamclBqgUonGoxeFAsDBcyH3POvwEMgrTdh3Hw6hXrzONpWJ5Dlvde99rsmTeANixJznZqQA06iibeA4kn3OuUGYRwPgjhNEDF0ApoNccrdsh/vxRgJGtvQCg/bGE6KwcYn3A2seMEMGn8o4wto0PYAb0fTdAXiQQPQ8hXoaILmXbCxCzZ1iE11x9CezLTulpbmZYl/4xvf4KGHHuKOO+6gUqnwm7/5m7zuda/j+eefp729HYD3v//9PPLII3z605+mu7ub973vfbzpTW/iW9/6FgDVapXXv/71rFu3jm9/+9scP36cX/iFX6CpqYk/+IM/AGD//v28/vWv5z3veQ9/+7d/y6OPPsov/uIvsn79eu6///55dXAErY1tSDttQlMKWi+vRqJrH+JD6dCLLcMQVBnj66dP4YsMtuAjLxYGnnNMHKYLwWE8wzSUXCtaUBXX6GH8SWAloBpBYqyuGa+urEfSpwtx36IblZXuhyZRz9B/G/bBFHULS4VAMBPoFu81Dm16x0o0YSvRQA8jftfpvg+rgszPj+opdKe3onF8EV9MoIT0nMP4wuwr8Xze+jtDzDdB0zHlntPZAVEOTp2C0UnFvTNZKFVlqBXXwME9UOyB/FqYKjgclHGFeVnijYR36HgOcRAzDFw4l8ZYr0FgysfR8tmP1uob8DWuzaNaB0Q6M0oLcMMetuELalkzzcljeqT4f5S6g+3gdrTobIEO4/OHrJpHA5EXhlNMdjQc4gzEToujBW+yb0NxGgvKfR3FI8pI5Bao95w1VrjSdmjFXWlNCptqTuTQUzE3CjsbxvvSrQjfZ6B0/MNuG3YvvNW8WFHoO02P12luYO2wNd6NDIUdSEK2QfYINHVAx1FY0w5tG6FrAKoTUCjCWFWK+Vjil751ZakpSpJkwXpyf38/a9as4Rvf+AavfOUrGRkZYfXq1XzqU5/ip3/6pwF44YUXuPbaa9mxYwd33XUXX/rSl/iJn/gJjh07xtq1awH48z//cx5++GH6+/vJ5/M8/PDDPPLII+zcubP2rJ/7uZ9jeHiYf/mXf5lT20ZHR+nu7mYbEl0bEO8/4v4fRRrUaqRLHnevARqfPR2GBy0DyUTkGN5xbXqgsYQF8bCQY6XjixXEe0zQm5JZ41YZSPKISTUjiXM3Yhrrkd/gX5BJ+QAqUjyJrIMjSCWuaQTzbXk9NQpcGoW+TuOvhkBcgz+vwIyWF1BBiHH3ucU1JpCWZjG2+Qy2TWY3GpqjiG/eh7rfhRSH/agk3/8bKU5fcO14Fo/UNoBX2P0IsjnItwAZ1bzfcA0c2wNJAlfdIwt7chxyHbDhNXBktw7KmCrC4HMwuQ9KfYq/zf08lHC1NgXvxniN3YdYiAZsPcQLrEJzchkS1hvxTG8tOvh73I3hfgRqO473vM5PakzrjWEP29CKNuxhN74GjeFWhtA+HsZsw4gKWZKay6UHCc/V+IRl87VlqXcPhciWWfZD2vxK3AAm7WiQtiMNvAsN2F+4drTi865vRBxpP1rUh/BQtJnSN/w4zeRnSYvYM3OONMIRhO+n+Uk6DhJiXdKvM2/o3CgMqbVTCx1FzZDbDPG/QX4M1twEN98MK49DxwFoPoLq5g/B4CT0l6EvrmcJc1n2IyMjdHV1Lbj5ZxQTHxkZAaC3txeAp556inK5zH333Ve75pprrmHLli01Ib5jxw5uvPHGmgAHuP/++3nve9/Lc889xy233MKOHTvq7mHX/Nqv/dqMbSkWixSLxdr/o6OjescD+s3t1oS2bwlq5/GYNT1TDLtR5KWAl6sR9WnEZxQbsR/ZKijihXgGX1Ta+LCp1wlBLLwFMY6NSIXpBf43vsbwm/Hm7j7EKLrwNkxo5i6Qwk3YaM8bhUpLFo8WnED87MeQm/Zxd+1q19ztSFiMUO/ymE+TLb49gj8K2SILz6JqUZOubSfRgunCe0WGZ751zROdEUMo5mGoSZZ5tQw7/gkqRdXXbt8GU9dDcQVUe2B0JxQjqETznQETeQa3bEWir+IansH7DQ3iZGrnaYBI42jMm90t9qBTp8aQnNmNhHanG8NhvOw7Q2YcBodCHW89PpMxco8bQu7kJvdb7cWImCzVWjWP1SguA9oX/UiwjyJXw4vIL95Jve06i5U542YPpVcP8EXgr/FIKvMDdroe3ex+t4v5gApCw9aeGn63ePJwnncLdcowlcsidxYTMD1qEdbMvMieb969BOiHpi3QWoDCEchn4LYe2PqC9mb/MbjPgRtHizoWusW1Nx19X+puLFiIx3HMr/3ar/GKV7yCG264AYATJ06Qz+fp6empu3bt2rWcOHGidk0owO17++5014yOjjI1NUVraytp+vCHP8yHPvShaZ+b67xMfeaTsbIT+ME2djZT+CX02Fbxa7PR92e8BkPVOXTXhQ9La6111WIMUbYeMQ5DZxSQUP+q++yXEUN5irm47xZMsw2GPTJG/dyO3FnHUYnWLe67zSiF53nE0bvcu+EB5tsm62Yn3gu3H3gPEuzfwftqX0SW5l7qU/pOo6klqFhLrg3K3TDeCckmKB2D4oQuKGegmIMD35HrvOkOKBSgVIK4Iqt9bgsqFOAW8+3BL5YcWg/9SHkbRdJ21P0+JchDzdVScc1oXYMQu9vQuA/jj00vUQ+0PAOfYjri0eN6YI6AyxF0YT0SvwfwjgKPf8xQIUdMK0nNVzrs7rwBLaAn8a711yDXz1G8q2tegbEU1dQ5pPVU8DXIv+3ubcG+Fhpo5vN+Wvh+TimcwBa0LO1ljNgMlUnqz5+3IVhqsukpUdMYo+NQOQbRarGGda2w6QUYPggbCvCV4/DPVfipDFxRhXY3VRaECWXJUusjCxbiDz30EDt37uSb3/zmYrZnwfTBD36QD3zgA7X/R0dH2bx5cy0Ma3woFFEWbrZBDnGgp6NwUtLXLupkNdIaZmpIjdKCvBXYicyoNQjm/mmkzlSBx/CB3nbEsBqAeZaKwuZarvb1iKetdc064ppZRTmC1yGA1Qt4MG8S3Guuk2Djl8UXdCoiCfCi+/9KZKzdi4ZsCF+swhbMTLs0QYdcVKFSgsIElEeAHBRjyGyBuB+SLVDdDlwNxReg8BwkU4q3xacB+k4nG0gDFqxBSL0uJOraXAeG3XXdeCT0NI3Qf2zxQvBupwjN0e5gDFvxGQfzQ0/N2iNTS3pcryZdr76Flof5Ff4J7yFbD4wQMUFEgRwRLSS0ob2QRQDPa1AlorX4yhGnkHZitv2o+zvD/DSSUNM2zeZpd5/LkTK12vXkWtcr0xBDkNjZ9C0vMoUaWCe+DkM3mlBL+ZlAy9JcolAf4l5qMmMJdPR5AaIKVMfhmrXQPgzPHIbWIvzThFjVIbTG3ozHw66kHuZ3NrjogoT4+973Pr7whS/w+OOPs2nTptrn69ato1QqMTw8XGeNnzx5knXr1tWu+d73vld3P0Ovh9ekEe0nT56kq6uroRUO0NzcTHNz87TPTZc1r6BtRajfYlUWtl7OyrY6I9U6QQxqHT5wUEIm7S2IWT2HL1J8DshWeh6fsG8homNowgx2vNN9dxf1ae95PJJnrmQLw9TndiQhut13HcAvuDZV8CkoI3jwxGxx6gSSKsRFKI9DeS/ETlnIbIBoK1T3y+rOrofSI+pL1AKJyY7GGUYpskHM4t2065G2A0qEfBIBCHJ4KP4g9X7MBtafMThLtWimXq5BPTB4MVL/Uj2zKEcH/nyKr6MpyCIH9L8h9WUUj4dsJSJHhqw7G1tXjCDI8f3Af3eNfhEJ0mG8B8Mg0mHC+3xDTGYeFJDGudr15EfQQjsJ/LS774vII2YJ+fOJrC5DCm2JDqT0rXcvg+CU8IdO9KPpMV3pbMfGbZ0nkK1AFENTGaoVIc/XVOCZSa2vDLIljiAn4WdQ8MPq2YXRz6WmeT0jSRLe97738dnPfpavfe1rbN++ve772267jaamJh599NHaZ7t37+bQoUPcfffdANx99908++yz9PX11a75yle+QldXF9ddd13tmvAedo3dY74UwnjMxWZYsEXmN8uAbMUXEYMooODuAIJZ7wV+FDGrE8ic3Y0YRhqdfpYp1KgqSP50ow1/O9otLSitLh10MqDMfCh0FxtwLINClHvxBSj2oTDm4+7Z/Xi332xp9U5RSIoQj0mgUwCuhszLUepYM1S6ofSce/4UJJb7P+ccxTC40443eUwD+DZiMe9EQMfLkctjnbuunRlTqsJxslymESRnBtxrCI8HmzUlaO4U4qEsnHoA+Gf32EE0Ffa+z/X8FfgTrSV+I6KagnMPSrUsIIFtY7DLda4DZXBMMb0I83woHDhLKi8hiXUMoSZ3If/Bv6E92Y4G8xQNKjidXxRmnLTh00iLSBIeRcPRjWyKy9x7GxoGy9c6S05BoE5YNFcgX4WOSdhShNaSunI5UhKLSB/5DD6Vz+pchStmqZs/L9ProYce4lOf+hSf//zn6ezsrMWwu7u7aW1tpbu7m3e961184AMfoLe3l66uLv7jf/yP3H333dx1110AvO51r+O6667j3//7f88f/uEfcuLECf7Tf/pPPPTQQzVL+j3veQ///b//d37jN36Dd77znXzta1/jH//xH3nkkUcW3NHz1Bk1Twp97+OIAfXhyx+14hFIMb5u5pWIcR3hrGv+ocusggRkjHbLK1BN3D4kgwaAtyIj6iUaV6acb7NDHmtGlgHdLGW3D0kOSy8exh/gMNtQ2XQ4RSExxjYmwBuT7nUIEitsM4aHuM4rFGsxCXOnjyPXwiDe+l6LOOWX0FpY4zpogIAZBFYY2rG5SqcLpV+LQGknVBGP3jiBBPYkQniA9+afbNgc0xLNY/dXSJq0ILZsasIIUgdWuusPnkGH0u6eJuSIXYmkWJd71hAa+11oPiL8AjhHSvWZUKh5taKJyuNK0CJ9chXaF8+gin/P4ENHNk0LwbqcKbkpiyJorcJwIk55o+vGq13zdrjmg3w4Q4izptEMSz1z8xLif/ZnfwbAq1/96rrP//qv/5p3vOMdAPzxH/8xmUyGN7/5zRSLRe6//37+9E//tHZtNpvlC1/4Au9973u5++67aW9v5+1vfzu/93u/V7tm+/btPPLII7z//e/nT/7kT9i0aRN/+Zd/Oe8c8YuTjMPm0RIbxZ/icztib1WEHLvFfX4cMZbjnJPjxMJ4RwUvmA8ggdmG5M8eVPTGLFRzadeK3Czw2RaytL8LaNiszkYBP6x9eKzTXIcp9Kgm1CrgJvuQ/EiQJ7UdD+6ZpD4kOiuF8XCLLQwjTrrNNeAYAhc8iD9jbzP+qChDFc7SF+vv6TIOFpFCe/YY0uFOIRf6i+7zVtTzd6OgwQ/RCi+ToONBqiR1meSmsNqkbMHndH4HmYUdeLa8UL9uuMAMzGbAtg58fstxfOWYSfxCPE+tcKiPgzThMxes6mwR+Bra+4/jw1Vr3O/78GbtWWZHCRAn0jcS14UJ5LMZQ2rdm1El6Wdcs69COso+Zi13s6h0Rnniy5ksT/zio3DndCF1t919dhNalvsRi1uDTN/jSEIO4lFMc0ZTLU6TQ/jxOvwZC1UUBbjHff41/EElhxFXH6DeaFkImTve0mDCeDtMT+mbr54TZhk5IV7z95oRbJLKYjzzeoZZ4T0ofWo7AhB04wuLtAA/idbDV/AHVBaRVT5AfZ3Bc0+2NNrwmd1rUI82IIjmEXRmQQmJ4u+iFb4NOEJEP1nGaaFEDzEbkICuor6eQIvtGvf/ToRs3OeecABff/FMaieEk2/eEpNuEd5dY4pFGqNwnpEB2jrwOJde9x5i/CbQcr0RXwv7WeSQ2I+0tQnOKjsCH8rPoR10E+rSKL7681G0e1bhCzgeRivmBOqimUSno3OaJ36JliOl/Ld1KJEdiEGZq24Iaf5DeFP0TFJpzrDJZqwM4PPBx1DgqcM1E3xJLuOtc3Frz0YmLM3itpS+0F18JmAb62NoVoZV56wNhglYMKDHHpBDMe8mZCNMIcHUgtjOLfia+RESk4MLeeCSUxjxsCEzn8MW1Ms7kZu9H5+NOAJMklDCH9qpBfMC6vd9KGazG43XK/FH7W1HGmIILjsTi9h+Gy72MHpqn88jL/18IFNeDdA2grp0GK+M346cHxNoWRo0w4bmbMbEHdk2tFT2U0jV24CavguxplZUwPB5ZApZfsPZ9KFcEuIXJJnLzorfVPG5HCfd34fxyZmWExRmNp5lMuEZIp7LSA1uQjFwi5ONIoE+wowHJi2I0nHfRt+H7wuhtLIwU9rggoS33diEwU3ItLkcnWN7Cpk/v4KUuQyyPJ9luQqNsEdWIG4AqRyTqBcm/q5CPTyKrHNLHqigs7eTWuqWFb4ZRItrLZqIp917i7vLEH6BLQY7Tk9+Gn8Qfr+85mHRaBIN701IcN+CT53fx3Q02DkahlClmkKmTh6fsGnZp6uQD9NA0obJOJvIogtWiF+gUYI5ki3B8H8D85jkSPDmYBqnfw7I9I4IX6EnxiNZze1s1nqYi7zYqQVLjUZZkvuH4s6wEJ9C9sODyIawmO9vI+f0bXjIeagJLa8YbJhdYudlWBrPEHKOH0PLZgBZ4xbxkFoqIe7teSuY3Icv+VRCZuG4e2oowEOo0plSOPnp4g8XEM9K65RFFDy+CkG5L0fOjn2o9sM9yK1ueBMLJ51DnSZ0yo3j08ZWIM9PDx7dYEXm0hCduTT7TGXVBRsT37dvH5dffvm5bsYlukSX6BJdoks0Ix0+fLiu3sp86YK1xK2e+6FDhy4IgJtVoDt8+PAZgSCWC13qz/KmS/1Z3nSpP8uX5tqXJEkYGxtjw4YNZ/S8C1aIZzIKrHZ3d5/3iyKkrq6uS/1ZxnSpP8ubLvVnedOF1J+59GUxDMyzURXuEl2iS3SJLtElukRLQJeE+CW6RJfoEl2iS3Se0gUrxJubm/md3/mdhoeinI90qT/Lmy71Z3nTpf4sb7qQ+nO2+3LBotMv0SW6RJfoEl2iC50uWEv8El2iS3SJLtElutDpkhC/RJfoEl2iS3SJzlO6JMQv0SW6RJfoEl2i85QuCfFLdIku0SW6RJfoPKVLQvwSXaJLdIku0SU6T+mCFOL/43/8D7Zt20ZLSwt33nkn3/ve9851kxrShz/8Ye644w46OztZs2YNb3zjG9m9e3fdNa9+9auJoqju9Z73vKfumkOHDvH617+etrY21qxZw6//+q9Tqcx2iu3i0+/+7u9Oa+s111xT+75QKPDQQw+xcuVKOjo6ePOb38zJkyfr7rFc+gKwbdu2af2JooiHHnoIWP5z8/jjj/OTP/mTbNiwgSiK+NznPlf3fZIk/PZv/zbr16+ntbWV++67jz179tRdMzg4yNve9ja6urro6enhXe96F+Pj43XXPPPMM9x77720tLSwefNm/vAP//Cs96dcLvPwww9z44030t7ezoYNG/iFX/gFjh07VnePRnP6kY98ZNn1B+Ad73jHtLY+8MADddecL/MDNNxLURTx0Y9+tHbNcpmfufDmxeJnjz32GLfeeivNzc1cccUVfOITn5hfY5MLjP7+7/8+yefzycc//vHkueeeS9797ncnPT09ycmTJ89106bR/fffn/z1X/91snPnzuTpp59OfvzHfzzZsmVLMj4+XrvmVa96VfLud787OX78eO01MjJS+75SqSQ33HBDct999yU/+MEPki9+8YvJqlWrkg9+8INnvT+/8zu/k1x//fV1be3v7699/573vCfZvHlz8uijjyZPPvlkctdddyX33HPPsuxLkiRJX19fXV++8pWvJEDy9a9/PUmS5T83X/ziF5Pf+q3fSj7zmc8kQPLZz3627vuPfOQjSXd3d/K5z30u+eEPf5j81E/9VLJ9+/Zkamqqds0DDzyQ3Hzzzcl3vvOd5IknnkiuuOKK5C1veUvt+5GRkWTt2rXJ2972tmTnzp3J3/3d3yWtra3JX/zFX5zV/gwPDyf33Xdf8g//8A/JCy+8kOzYsSN5+ctfntx2221199i6dWvye7/3e3VzFu635dKfJEmSt7/97ckDDzxQ19bBwcG6a86X+UmSpK4fx48fTz7+8Y8nURQle/furV2zXOZnLrx5MfjZvn37kra2tuQDH/hA8vzzzyf/7b/9tySbzSb/8i//Mue2XnBC/OUvf3ny0EMP1f6vVqvJhg0bkg9/+MPnsFVzo76+vgRIvvGNb9Q+e9WrXpX86q/+6oy/+eIXv5hkMpnkxIkTtc/+7M/+LOnq6kqKxeJSNnca/c7v/E5y8803N/xueHg4aWpqSj796U/XPtu1a1cCJDt27EiSZHn1pRH96q/+anL55ZcncRwnSXJ+zU2aqcZxnKxbty756Ec/WvtseHg4aW5uTv7u7/4uSZIkef755xMg+f73v1+75ktf+lISRVFy9OjRJEmS5E//9E+TFStW1PXn4YcfTq6++uqz2p9G9L3vfS8BkoMHD9Y+27p1a/LHf/zHM/5mOfXn7W9/e/KGN7xhxt+c7/Pzhje8IfnRH/3Rus+W6/ykefNi8bPf+I3fSK6//vq6Z/3sz/5scv/998+5bReUO71UKvHUU09x33331T7LZDLcd9997Nix4xy2bG40MjIC+BPYjP72b/+WVatWccMNN/DBD36QycnJ2nc7duzgxhtvZO3atbXP7r//fkZHR3nuuefOTsMD2rNnDxs2bOCyyy7jbW97G4cOHQLgqaeeolwu183NNddcw5YtW2pzs9z6ElKpVOJv/uZveOc730kU+TOgz6e5CWn//v2cOHGibj66u7u588476+ajp6eH22+/vXbNfffdRyaT4bvf/W7tmle+8pXk8/naNffffz+7d+9maGjoLPWmMY2MjBBFET09PXWff+QjH2HlypXccsstfPSjH61zby63/jz22GOsWbOGq6++mve+970MDAzUtfV8nZ+TJ0/yyCOP8K53vWvad8txftK8ebH42Y4dO+ruYdfMR15dUKeYnTp1imq1WjdoAGvXruWFF144R62aG8VxzK/92q/xile8ghtuuKH2+Vvf+la2bt3Khg0beOaZZ3j44YfZvXs3n/nMZwA4ceJEw/7ad2eT7rzzTj7xiU9w9dVXc/z4cT70oQ9x7733snPnTk6cOEE+n5/GUNeuXVtr53LqS5o+97nPMTw8zDve8Y7aZ+fT3KTJnt+ofeF8rFmzpu77XC5Hb29v3TXbt2+fdg/7bsWKFUvS/tmoUCjw8MMP85a3vKXuJKlf+ZVf4dZbb6W3t5dvf/vbfPCDH+T48eN87GMfq7V5ufTngQce4E1vehPbt29n7969/OZv/iYPPvggO3bsIJvNntfz88lPfpLOzk7e9KY31X2+HOenEW9eLH420zWjo6NMTU3R2to6a/suKCF+PtNDDz3Ezp07+eY3v1n3+S/90i/V/r7xxhtZv349r33ta9m7dy+XX3752W7maenBBx+s/X3TTTdx5513snXrVv7xH/9xTotxOdNf/dVf8eCDD9ad/Xs+zc3FROVymZ/5mZ8hSRL+7M/+rO67D3zgA7W/b7rpJvL5PL/8y7/Mhz/84WVXt/vnfu7nan/feOON3HTTTVx++eU89thjvPa1rz2HLTtz+vjHP87b3vY2Wlpa6j5fjvMzE29eLnRBudNXrVpFNpudhhA8efIk69atO0etmp3e97738YUvfIGvf/3rbNq06bTX3nnnnQC89NJLAKxbt65hf+27c0k9PT1cddVVvPTSS6xbt45SqcTw8HDdNeHcLNe+HDx4kK9+9av84i/+4mmvO5/mxp5/ur2ybt06+vr66r6vVCoMDg4u2zkzAX7w4EG+8pWvzHqe85133kmlUuHAgQPA8utPSJdddhmrVq2qW1/n2/wAPPHEE+zevXvW/QTnfn5m4s2Lxc9muqarq2vOhs8FJcTz+Ty33XYbjz76aO2zOI559NFHufvuu89hyxpTkiS8733v47Of/Sxf+9rXprmJGtHTTz8NwPr16wG4++67efbZZ+s28/+/vfsJSWWP4gD+I9BJibTSTAwjSaI2/RGKgXBTCBEUraRFRYuC2pq0atMiXNUiIlqELVq4dVckKtE/QXGKKCTFkCAIBMuwSOp7FxeFefVu9z265bx3PuBGfzPO4cz8jo6/g4XJq7W19Y8c9+96eHhgiUSC6fV6ZrFYmEwmE+UmFouxVCpVzE2pxuJ2u1ltbS0bGBj45Tgp5aaxsZHV1dWJ8nF/f89CoZAoH5lMhkUikeIYv9/PXl9fix9YeJ5ne3t7LJ/PF8fs7u6y5ubmL79VWyjgl5eXzOfzsZqamg+3EQSBlZWVFW9Ll1I8f3V9fc3S6bTo/JJSfgo2NjaYxWJhbW1tH479rvx8NDd/1nzG87xoH4Ux/6he/bu1eqXL4/GA4zhsbm7i/PwcU1NTUKvVohWCpWJ6ehoqlQrBYFDUUpHL5QAA8XgcCwsLCIfDSCaT8Hq9MJlMsFqtxX0U2hhsNhsEQcD29ja0Wu23tGU5HA4Eg0Ekk0kcHBygr68PGo0Gt7e3AH62ZBiNRvj9foTDYfA8D57nSzKWgpeXFxiNRszNzYmel0JustksotEootEoGGNYWlpCNBotrtZ2uVxQq9Xwer04PT3F0NDQuy1mHR0dCIVC2N/fh9lsFrUwZTIZ6HQ6jI6O4uzsDB6PB0ql8o+0MP0qnufnZwwODqK+vh6CIIiup8JK4MPDQywvL0MQBCQSCWxtbUGr1WJsbKzk4slms5idncXR0RGSySR8Ph86OzthNpvx9PRU3IdU8lNwd3cHpVKJtbW1N9uXUn4+mpuBz5nPCi1mTqcTFxcXWF1dpRYzAFhZWYHRaIRcLkdXVxeOj4+/+5DexRh79+F2uwEAqVQKVqsV1dXV4DgOTU1NcDqdol5kALi6ukJ/fz8UCgU0Gg0cDgfy+fyXx2O326HX6yGXy2EwGGC32xGPx4uvPz4+YmZmBlVVVVAqlRgeHsbNzY1oH6USS8HOzg4YY4jFYqLnpZCbQCDw7vk1Pj4O4Geb2fz8PHQ6HTiOQ29v75s40+k0RkZGUFFRgcrKSkxMTCCbzYrGnJycoKenBxzHwWAwwOVyfXk8yWTyb6+nQl9/JBJBd3c3VCoVysvL0dLSgsXFRVFRLJV4crkcbDYbtFotZDIZGhoaMDk5+ebLiFTyU7C+vg6FQoFMJvNm+1LKz0dzM/B581kgEEB7ezvkcjlMJpPoPX4H/Z84IYQQIlH/qd/ECSGEkP8TKuKEEEKIRFERJ4QQQiSKijghhBAiUVTECSGEEImiIk4IIYRIFBVxQgghRKKoiBNCCCESRUWcEEIIkSgq4oQQQohEUREnhBBCJOoHrVG0O3gnSOwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sdata\\\n", + " .pl.render_points(size=0.01)\\\n", + " .pl.render_images(channel=[\"CD20\", \"CK\", \"CD3\"])\\\n", + " .pl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Further analyses\n", + "\n", + "- You can read [this tutorial](../spatial) on spatial statistic and geometric analysis.\n", + "- You can use [Squidpy](https://squidpy.readthedocs.io/en/latest/index.html) which operates on both the `SpatialData` object or the `AnnData` object, or use other tools of the `scverse` ecosystem such as [`Scanpy`](https://scanpy.readthedocs.io/en/stable/index.html).\n", + "- You can also try the CLI or the Snakemake pipeline of Sopa." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "sopa-hDHgkEug-py3.10", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/tutorials/api_usage.md b/docs/tutorials/api_usage.md deleted file mode 100644 index 66adb4f4..00000000 --- a/docs/tutorials/api_usage.md +++ /dev/null @@ -1,9 +0,0 @@ -Coming soon - - diff --git a/docs/tutorials/cli_usage.md b/docs/tutorials/cli_usage.md index 5a666140..b2559af3 100644 --- a/docs/tutorials/cli_usage.md +++ b/docs/tutorials/cli_usage.md @@ -254,9 +254,9 @@ If you have downloaded the Xenium Explorer, you can now open the results in the ## Geometric and spatial statistics -All functions to compute geometric and spatial statistics are detailed in the `sopa.stats` [API](../../api/stats). You can also read [this tutorial](../stats). +All functions to compute geometric and spatial statistics are detailed in the `sopa.spatial` [API](../../api/spatial). You can also read [this tutorial](../spatial). -## Further analysis +## Further analyses - If you are familiar with the [`spatialdata` library](https://github.com/scverse/spatialdata), you can directly use the `tuto.zarr` directory, corresponding to a `SpatialData` object: ```python @@ -264,5 +264,5 @@ import spatialdata sdata = spatialdata.read_zarr("tuto.zarr") ``` -- You can use [Squidpy](https://squidpy.readthedocs.io/en/latest/index.html) which operates on both the `SpatialData` object or the `AnnData` object, or use other tools of the `scverse` ecosystem such as [`scanpy`](https://scanpy.readthedocs.io/en/stable/index.html). +- You can use [Squidpy](https://squidpy.readthedocs.io/en/latest/index.html) which operates on both the `SpatialData` object or the `AnnData` object, or use other tools of the `scverse` ecosystem such as [`Scanpy`](https://scanpy.readthedocs.io/en/stable/index.html). - You can also use the file `tuto.explorer/adata.h5ad` if you prefer the `AnnData` object instead of the full `SpatialData` object. \ No newline at end of file diff --git a/mkdocs.yml b/mkdocs.yml index 5aaf25c7..13278f2f 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -14,13 +14,13 @@ nav: - Tutorials: - Snakemake pipeline: tutorials/snakemake.md - CLI usage: tutorials/cli_usage.md - - API usage: tutorials/api_usage.md - - Spatial statistics: tutorials/stats.md + - API usage: tutorials/api_usage.ipynb + - Spatial statistics: tutorials/spatial.ipynb - Align images (e.g. H&E): tutorials/align.md - Advanced segmentation: tutorials/advanced_segmentation.md - CLI: cli.md - API: - - sopa.stats: api/stats.md + - sopa.spatial: api/spatial.md - sopa.segmentation: - sopa.segmentation.shapes: api/segmentation/shapes.md - sopa.segmentation.aggregate: api/segmentation/aggregate.md @@ -44,6 +44,8 @@ nav: plugins: - search - mkdocstrings + - mkdocs-jupyter: + include_source: True markdown_extensions: - admonition - attr_list diff --git a/sopa/cli/patchify.py b/sopa/cli/patchify.py index fae84fba..3f2ff4b2 100644 --- a/sopa/cli/patchify.py +++ b/sopa/cli/patchify.py @@ -74,7 +74,6 @@ def baysor( from sopa._constants import SopaFiles, SopaKeys from sopa._sdata import get_key from sopa.io.standardize import read_zarr_standardized, sanity_check - from sopa.segmentation.baysor.prepare import copy_toml_config from sopa.segmentation.patching import Patches2D from .utils import _default_boundary_dir @@ -92,13 +91,9 @@ def baysor( df_key = get_key(sdata, "points") patches = Patches2D(sdata, df_key, patch_width_microns, patch_overlap_microns) valid_indices = patches.patchify_transcripts( - baysor_temp_dir, cell_key, unassigned_value, use_prior + baysor_temp_dir, cell_key, unassigned_value, use_prior, config, config_path ) - for i in range(len(patches)): - path = Path(baysor_temp_dir) / str(i) / SopaFiles.BAYSOR_CONFIG - copy_toml_config(path, config, config_path) - _save_cache(sdata_path, SopaFiles.PATCHES_DIRS_BAYSOR, "\n".join(map(str, valid_indices))) @@ -108,7 +103,7 @@ def _save_cache(sdata_path: str, filename: str, content: str): from sopa._constants import SopaFiles cache_file = Path(sdata_path) / SopaFiles.SOPA_CACHE_DIR / filename - cache_file.parent.mkdir(exist_ok=True) + cache_file.parent.mkdir(parents=True, exist_ok=True) with open(cache_file, "w") as f: f.write(content) diff --git a/sopa/io/__init__.py b/sopa/io/__init__.py index 3378e387..7c5e7be9 100644 --- a/sopa/io/__init__.py +++ b/sopa/io/__init__.py @@ -2,5 +2,6 @@ from .explorer import write from .standardize import write_standardized from .transcriptomics import merscope, xenium, cosmx +from .report import write_report from ..utils.data import blobs, uniform diff --git a/sopa/io/report/engine.py b/sopa/io/report/engine.py index 63b0d501..b5c41f3e 100644 --- a/sopa/io/report/engine.py +++ b/sopa/io/report/engine.py @@ -2,6 +2,7 @@ from io import BytesIO from typing import Optional +import matplotlib.pyplot as plt import seaborn as sns from matplotlib.figure import Figure @@ -228,6 +229,7 @@ def encod(self): self.make_figure_pretty() tmpfile = BytesIO() self.fig.savefig(tmpfile, format=self.extension, transparent=True, bbox_inches="tight") + plt.close() return base64.b64encode(tmpfile.getvalue()).decode("utf-8") def __str__(self) -> str: diff --git a/sopa/segmentation/__init__.py b/sopa/segmentation/__init__.py index e69de29b..032a662b 100644 --- a/sopa/segmentation/__init__.py +++ b/sopa/segmentation/__init__.py @@ -0,0 +1,4 @@ +from . import shapes, aggregate, methods, patching, stainings +from .patching import Patches2D, BaysorPatches +from .aggregate import Aggregator +from .stainings import StainingSegmentation diff --git a/sopa/segmentation/aggregate.py b/sopa/segmentation/aggregate.py index 4d5254c4..0fb6e0ef 100644 --- a/sopa/segmentation/aggregate.py +++ b/sopa/segmentation/aggregate.py @@ -107,11 +107,11 @@ def save_table(self): def update_table( self, - gene_column: str | None, - average_intensities: bool, - expand_radius_ratio: float, - min_transcripts: int, - min_intensity_ratio: float, + gene_column: str | None = None, + average_intensities: bool = True, + expand_radius_ratio: float = 0, + min_transcripts: int = 0, + min_intensity_ratio: float = 0, ): """Perform aggregation and update the spatialdata table diff --git a/sopa/segmentation/baysor/resolve.py b/sopa/segmentation/baysor/resolve.py index 604607c1..0233e99f 100644 --- a/sopa/segmentation/baysor/resolve.py +++ b/sopa/segmentation/baysor/resolve.py @@ -55,7 +55,7 @@ def read_baysor( def read_all_baysor_patches( baysor_temp_dir: str, min_area: float = 0, - patches_dirs: list[str] = None, + patches_dirs: list[str] | None = None, ) -> tuple[list[list[Polygon]], list[AnnData]]: if patches_dirs is None or not len(patches_dirs): patches_dirs = [subdir for subdir in Path(baysor_temp_dir).iterdir() if subdir.is_dir()] @@ -97,7 +97,7 @@ def resolve( sdata: SpatialData, baysor_temp_dir: str, gene_column: str, - patches_dirs: list[str], + patches_dirs: list[str] | None = None, min_area: float = 0, ): """Concatenate all the per-patch Baysor run and resolve the conflicts. Resulting cells boundaries are saved in the `SpatialData` object. diff --git a/sopa/segmentation/patching.py b/sopa/segmentation/patching.py index b601c1c8..352bed03 100644 --- a/sopa/segmentation/patching.py +++ b/sopa/segmentation/patching.py @@ -191,6 +191,8 @@ def patchify_transcripts( cell_key: str = None, unassigned_value: int | str = None, use_prior: bool = False, + config: dict = {}, + config_path: str | None = None, ) -> list[int]: """Patchification of the transcripts @@ -199,12 +201,14 @@ def patchify_transcripts( cell_key: Optional key of the transcript dataframe containing the cell IDs. This is useful if a prior segmentation has been run, assigning each transcript to a cell. unassigned_value: If `cell_key` has been provided, this corresponds to the value given in the 'cell ID' column for transcript that are not inside any cell. use_prior: Whether to use Cellpose as a prior segmentation for Baysor. If `True`, make sure you have already run Cellpose with Sopa, and no need to provide `cell_key` and `unassigned_value`. Note that, if you have MERFISH data, the prior has already been run, so just use `cell_key` and `unassigned_value`. + config: Dictionnary of baysor parameters + config_path: Path to the baysor config (you can also directly provide the argument via the `config` option) Returns: A list of patches indices. Each index correspond to the name of a subdirectory inside `baysor_temp_dir` """ return BaysorPatches(self, self.element).write( - baysor_temp_dir, cell_key, unassigned_value, use_prior + baysor_temp_dir, cell_key, unassigned_value, use_prior, config, config_path ) @@ -220,8 +224,13 @@ def write( cell_key: str = None, unassigned_value: int | str = None, use_prior: bool = False, + config: dict = {}, + config_path: str | None = None, ): + from sopa.segmentation.baysor.prepare import copy_toml_config + log.info("Writing sub-CSV for baysor") + self.baysor_temp_dir = Path(baysor_temp_dir) if cell_key is None: @@ -240,6 +249,10 @@ def write( with ProgressBar(): self.df.map_partitions(partial(self._query_points_partition, gdf), meta=()).compute() + for i in range(len(self.patches_2d)): + path = self.baysor_temp_dir / str(i) / SopaFiles.BAYSOR_CONFIG + copy_toml_config(path, config, config_path) + log.info(f"Patches saved in directory {baysor_temp_dir}") return list(self.valid_indices()) diff --git a/sopa/segmentation/shapes.py b/sopa/segmentation/shapes.py index c26ee429..5d57619f 100644 --- a/sopa/segmentation/shapes.py +++ b/sopa/segmentation/shapes.py @@ -150,6 +150,10 @@ def geometrize( """ max_cells = mask.max() + if max_cells == 0: + log.warn("No cell was returned by the segmentation") + return [] + cells = [_contours((mask == cell_id).astype("uint8")) for cell_id in range(1, max_cells + 1)] mean_radius = np.sqrt(np.array([cell.area for cell in cells]) / np.pi).mean() diff --git a/sopa/segmentation/stainings.py b/sopa/segmentation/stainings.py index a0ff88d1..cc0259da 100644 --- a/sopa/segmentation/stainings.py +++ b/sopa/segmentation/stainings.py @@ -127,7 +127,7 @@ def write_patch_cells(self, patch_dir: str, patch_index: int): gdf = gpd.GeoDataFrame(geometry=cells) patch_dir: Path = Path(patch_dir) - patch_dir.mkdir(exist_ok=True) + patch_dir.mkdir(parents=True, exist_ok=True) patch_file = patch_dir / f"{patch_index}.parquet" gdf.to_parquet(patch_file) diff --git a/tests/test_spatial_stats.py b/tests/test_spatial_stats.py index 344d1145..9d4bee04 100644 --- a/tests/test_spatial_stats.py +++ b/tests/test_spatial_stats.py @@ -4,7 +4,7 @@ from anndata import AnnData from sopa._constants import SopaKeys -from sopa.stats import ( +from sopa.spatial import ( cells_to_groups, geometrize_niches, mean_distance, From 49e4be6c5e47c7245719e9ec2cf8da35e69aa793 Mon Sep 17 00:00:00 2001 From: Blampey Quentin Date: Mon, 15 Jan 2024 15:49:07 +0100 Subject: [PATCH 8/8] release v1.0.2 --- CHANGELOG.md | 7 ++++++- pyproject.toml | 2 +- 2 files changed, 7 insertions(+), 2 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 6262a2a5..6550b5ed 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,13 +1,18 @@ -## [1.0.x] - tbd +## [1.0.2] - 2024-01-15 ### Fix - When geometries are `GeometryCollection`, convert them back to Polygons (#11) - Give `min_area` parameter to the right Baysor function in snakemake ### Added +- API tutorial +- `sopa.spatial` tutorial - Docstrings for the snakemake pipeline utils - Show right micron scale in the Xenium Explorer +### Changed +- `sopa.stats` is now called `sopa.spatial` + ## [1.0.1] - 2024-01-10 ### Added diff --git a/pyproject.toml b/pyproject.toml index 24928029..a84b1695 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "sopa" -version = "1.0.1" +version = "1.0.2" description = "Spatial-omics pipeline and analysis" documentation = "https://gustaveroussy.github.io/sopa" homepage = "https://gustaveroussy.github.io/sopa"