-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathautogluon.py
216 lines (195 loc) · 8.02 KB
/
autogluon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""AutoGluon + RAPIDS"""
from h2oaicore.models_custom import CustomModel
class AutoGluonModel(CustomModel):
_regression = True
_binary = True
_multiclass = True
_display_name = "AutoGluon"
_description = "AutoGluon Model"
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
_mojo = False
_mutate_all = 'auto'
_can_handle_non_numeric = False
_datatable_in_out = True
_force_no_fork_isolation = False
_can_use_gpu = True
_can_use_multi_gpu = False
_get_gpu_lock_vis = True
_must_use_gpu = False
_booster_str = 'autogluon'
_supports_sample_weight = True
_supports_eval_set = True
_supports_missings = True
_used_return_params = True # so Optuna (non-GA) results passed back to individual scored params tables etc.
_average_return_params = True
# autogluon depends upon slightly different package versions than DAI has, or could work with xgboost but needs official xgboost <1.5
# so use isolated env
isolate_env = dict(pyversion="3.11", install_h2oaicore=False, install_datatable=True, cache_env=True,
cache_by_full_module_name=False, install_pip="latest",
modules_needed_by_name=['autogluon==0.3.1'])
@staticmethod
def is_enabled():
import os
# avoid testing until speed-up when used
return 'GIT_HASH' not in os.environ
@staticmethod
def acceptance_test_coverage_fraction():
import os
return 0.05 if 'GIT_HASH' in os.environ else 1.0
@staticmethod
def fit_static(X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
from autogluon.tabular import TabularDataset, TabularPredictor
from autogluon.tabular.models.knn.knn_rapids_model import KNNRapidsModel
from autogluon.tabular.models.lr.lr_rapids_model import LinearRapidsModel
num_classes = kwargs['num_classes']
if kwargs['verbose'] is not None and kwargs['verbose'] is True:
verbosity = 2
else:
verbosity = 0
labels = kwargs['labels']
num_gpus = kwargs['n_gpus']
accuracy = kwargs.get('accuracy', 10)
interpretability = kwargs.get('interpretability', 1)
is_acceptance = kwargs.get('IS_ACCEPTANCE', False)
is_backend_tuning = kwargs.get('IS_BACKEND_TUNING', False)
lb = None
if num_classes >= 2:
from sklearn.preprocessing import LabelEncoder
lb = LabelEncoder()
lb.fit(labels)
y = lb.transform(y)
label = '____TARGET_____'
import datatable as dt
y_dt = dt.Frame(y, names=[label])
if eval_set is not None:
valid_X = eval_set[0][0]
valid_y = eval_set[0][1]
if num_classes >= 2:
valid_y = lb.transform(valid_y)
valid_y_dt = dt.Frame(valid_y, names=[label])
assert X.shape[1] == valid_X.shape[1], "Bad shape to rbind: %s %s : %s %s" % (
X.shape, X.names, valid_X.shape, valid_X.names)
X = dt.rbind([X, valid_X])
y_dt = dt.rbind([y_dt, valid_y_dt])
sw = None
if sample_weight is not None:
sw = '____SAMPLE_WEIGHT_____'
sw_dt = dt.Frame(sample_weight, names=[sw])
if sample_weight_eval_set is not None:
swes_dt = dt.Frame(sample_weight_eval_set[0], names=[sw])
sw_dt = dt.rbind([sw_dt, swes_dt])
X = dt.cbind([X, y_dt, sw_dt])
else:
X = dt.cbind([X, y_dt])
X = X.to_pandas() # AutoGluon needs pandas, not numpy
eval_metric = AutoGluonModel.get_eval_metric(**kwargs)
time_limit = AutoGluonModel.get_time_limit(accuracy)
presets = AutoGluonModel.get_presets(accuracy, interpretability, is_acceptance, is_backend_tuning)
model = TabularPredictor(
label=label,
sample_weight=sw,
eval_metric=eval_metric,
verbosity=verbosity,
# learner_kwargs={'ignored_columns': ['id']}
)
n_jobs = kwargs.get('n_jobs', 4) or 4
hyperparameters = {
KNNRapidsModel: {},
LinearRapidsModel: {},
'RF': {},
'XGB': {'n_jobs': n_jobs, 'ag_args_fit': {'num_gpus': num_gpus, 'num_cpus': n_jobs}},
'CAT': {'thread_count': n_jobs, 'ag_args_fit': {'num_gpus': num_gpus, 'num_cpus': n_jobs}},
'GBM': [{}, {'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, 'GBMLarge'],
'NN': {'ag_args_fit': {'num_gpus': num_gpus, 'num_cpus': n_jobs}},
'FASTAI': {'ag_args_fit': {'num_gpus': num_gpus, 'num_cpus': n_jobs}},
}
kwargs_fit = dict(hyperparameters=hyperparameters)
if accuracy >= 5:
kwargs_fit.update(dict(presets=presets, time_limit=time_limit))
model.fit(X, **kwargs_fit)
print(model.leaderboard(silent=True))
return model
@staticmethod
def get_presets(accuracy, interpretability, is_acceptance, is_backend_tuning):
if is_acceptance or is_backend_tuning:
return 'medium_quality_faster_train'
if accuracy >= 8:
return 'best_quality'
elif accuracy >= 5:
return 'high_quality_fast_inference_only_refit'
elif accuracy >= 3:
return 'good_quality_faster_inference_only_refit'
elif accuracy >= 2:
return 'medium_quality_faster_train'
elif accuracy >= 1:
return 300
if interpretability >= 9:
return 'optimize_for_deployment'
return 'best_quality'
@staticmethod
def get_time_limit(accuracy):
if accuracy >= 8:
return None
elif accuracy >= 5:
return 7200
elif accuracy >= 3:
return 3600
elif accuracy >= 2:
return 1000
elif accuracy >= 1:
return 300
return None
@staticmethod
def get_eval_metric(**kwargs):
num_classes = kwargs['num_classes']
if kwargs['score_f_name'] is None:
if num_classes >= 2:
eval_metric = 'log_loss'
else:
eval_metric = 'root_mean_squared_error'
elif kwargs['score_f_name'].lower() == 'accuracy':
eval_metric = 'accuracy'
elif kwargs['score_f_name'].lower() == 'f1':
eval_metric = 'f1'
elif kwargs['score_f_name'].lower() == 'auc':
if num_classes == 2:
eval_metric = 'roc_auc'
else:
# roc_auc would hit: multiclass format is not supported
eval_metric = 'log_loss'
elif kwargs['score_f_name'].lower() == 'precision':
eval_metric = 'precision'
elif kwargs['score_f_name'].lower() == 'recall':
eval_metric = 'recall'
elif kwargs['score_f_name'].lower() == 'logloss':
eval_metric = 'log_loss'
elif kwargs['score_f_name'].lower() == 'macrof1':
eval_metric = 'f1_macro'
elif kwargs['score_f_name'].lower() == 'aucpr':
eval_metric = 'average_precision'
elif kwargs['score_f_name'].lower() == 'rmse':
eval_metric = 'root_mean_squared_error'
elif kwargs['score_f_name'].lower() == 'mae':
eval_metric = 'mean_absolute_error'
elif kwargs['score_f_name'].lower() == 'mse':
eval_metric = 'mean_squared_error'
elif kwargs['score_f_name'].lower() == 'r2':
eval_metric = 'r2'
else:
if num_classes >= 2:
eval_metric = 'log_loss'
else:
eval_metric = 'root_mean_squared_error'
return eval_metric
@staticmethod
def predict_static(model, X, **kwargs):
import datatable as dt
import pandas as pd
X = dt.Frame(X)
X = X.to_pandas()
num_classes = kwargs['num_classes']
if num_classes == 1:
preds = model.predict(X)
else:
preds = model.predict_proba(X)
return dt.Frame(pd.DataFrame(preds))