-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathmock_tf2_test.py
118 lines (94 loc) · 4.04 KB
/
mock_tf2_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""For GPU usage testing purposes."""
import os
import numpy as np
from h2oaicore.models import CustomModel
from h2oaicore.models_utils import import_tensorflow
from h2oaicore.systemutils import ngpus_vis
class CustomTF2GPUCheck(CustomModel):
_regression = True
_binary = True
_multiclass = False # WIP
_is_reproducible = False
_can_use_gpu = True # if enabled, will use special job scheduler for GPUs
_get_gpu_lock = True # whether to lock GPUs for this model before fit and predict
_must_use_gpu = True # this recipe can only be used if have GPUs
_get_gpu_lock_vis = True # since always using gpu 0
_predict_on_same_gpus_as_fit = True # force predict to behave like fit, regardless of config.num_gpus_for_prediction
@staticmethod
def is_enabled():
return False # out of date for now, need to do e.g. tf 2.5 or some new iteration once it is released
def set_default_params(self,
accuracy=None, time_tolerance=None, interpretability=None,
**kwargs):
self.params = {}
@staticmethod
def acceptance_test_coverage_fraction():
return 0.05
def mutate_params(self,
**kwargs):
self.params = {}
def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
'''
Basic Multi GPU computation example using TensorFlow library.
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
assert ngpus_vis != 0, "Shouldn't be using/testing this recipe without GPUs"
'''
This tutorial requires your machine to have 1 GPU
"/cpu:0": The CPU of your machine.
"/gpu:0": The first GPU of your machine
'''
import numpy as np
tf = import_tensorflow(v1=False)
import datetime
# Processing Units logs
log_device_placement = True
# Num of multiplications to perform
n = 3
'''
Example: compute A^n + B^n on 2 GPUs
Results on 8 cores with 2 GTX-980:
* Single GPU computation time: 0:00:11.277449
* Multi GPU computation time: 0:00:07.131701
'''
# Create random large matrix
A = np.random.rand(10000, 10000).astype('float32')
B = np.random.rand(10000, 10000).astype('float32')
# Create a graph to store results
c1 = []
c2 = []
def matpow(M, n):
if n < 1: # Abstract cases where n < 1
return M
else:
return tf.matmul(M, matpow(M, n - 1))
'''
Single GPU computing
'''
with tf.device('/gpu:0'):
a = tf.placeholder(tf.float32, [10000, 10000])
b = tf.placeholder(tf.float32, [10000, 10000])
# Compute A^n and B^n and store results in c1
c1.append(matpow(a, n))
c1.append(matpow(b, n))
with tf.device('/gpu:0'):
sum = tf.add_n(c1) # Addition of all elements in c1, i.e. A^n + B^n
t1_1 = datetime.datetime.now()
with tf.Session(
config=tf.ConfigProto(log_device_placement=log_device_placement, allow_soft_placement=True)) as sess:
# Run the op.
sess.run(sum, {a: A, b: B})
t2_1 = datetime.datetime.now()
print("Single GPU computation time: " + str(t2_1 - t1_1))
self.set_model_properties(model=[1],
features=list(X.names),
importances=([1.0] * len(list(X.names))),
iterations=0)
def predict(self, X, **kwargs):
"""
Returns: dt.Frame, np.ndarray or pd.DataFrame, containing predictions (target values or class probabilities)
Shape: (K, c) where c = 1 for regression or binary classification, and c>=3 for multi-class problems.
"""
assert ngpus_vis != 0, "Shouldn't be using/testing this recipe without GPUs"
return np.random.randint(0, 2, (X.nrows, 1))