forked from NVIDIAGameWorks/kaolin-wisp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
129 lines (113 loc) · 5.3 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import os
import sys
from setuptools import setup, find_packages, dist
import glob
import logging
import subprocess
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
PACKAGE_NAME = 'wisp'
DESCRIPTION = 'Kaolin-Wisp: A PyTorch library for performing research on neural fields'
URL = 'https://github.com/NVIDIAGameWorks/kaolin-wisp'
AUTHOR = 'Towaki Takikawa'
LICENSE = 'NVIDIA Source Code License'
version = '0.1.0'
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
if not torch.cuda.is_available():
if os.getenv('FORCE_CUDA', '0') == '1':
# From: https://github.com/NVIDIA/apex/blob/c4e85f7bf144cb0e368da96d339a6cbd9882cea5/setup.py
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
logging.warning(
"Torch did not find available GPUs on this system.\n"
"If your intention is to cross-compile, this is not an error.\n"
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n'
)
if os.getenv("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) == 11:
if int(bare_metal_minor) == 0:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
else:
logging.warning(
"Torch did not find available GPUs on this system.\n"
"This script will install only with CPU support and will have very limited features.\n"
'If your wish to cross-compile for GPU `export FORCE_CUDA=1` before running setup.py\n'
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n'
)
def get_extensions():
extra_compile_args = {'cxx': ['-O3']}
define_macros = []
include_dirs = []
extensions = []
sources = glob.glob('wisp/csrc/**/*.cpp', recursive=True)
if len(sources) == 0:
print("No source files found for extension, skipping extension compilation")
return None
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
define_macros += [("WITH_CUDA", None), ("THRUST_IGNORE_CUB_VERSION_CHECK", None)]
sources += glob.glob('wisp/csrc/**/*.cu', recursive=True)
extension = CUDAExtension
extra_compile_args.update({'nvcc': ['-O3']})
#include_dirs = get_include_dirs()
else:
assert(False, "CUDA is not available. Set FORCE_CUDA=1 for Docker builds")
extensions.append(
extension(
name='wisp._C',
sources=sources,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
#include_dirs=include_dirs
)
)
for ext in extensions:
ext.libraries = ['cudart_static' if x == 'cudart' else x
for x in ext.libraries]
return extensions
if __name__ == '__main__':
setup(
# Metadata
name=PACKAGE_NAME,
version=version,
author=AUTHOR,
description=DESCRIPTION,
url=URL,
license=LICENSE,
python_requires='>=3.8',
# Package info
packages=['wisp'] + find_packages(),
#package_dir={'':'wisp'},
include_package_data=True,
zip_safe=True,
ext_modules=get_extensions(),
cmdclass={
'build_ext': BuildExtension.with_options(no_python_abi_suffix=True)
}
)