-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathdetect_and_tracker.py
124 lines (101 loc) · 4.07 KB
/
detect_and_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# USAGE
# python object_tracker.py --prototxt deploy.prototxt --model res10_300x300_ssd_iter_140000.caffemodel
# import the necessary packages
from pyimagesearch.centroidtracker import CentroidTracker
import numpy as np
import argparse
from imutils import face_utils
import imutils
import time
import cv2
import dlib
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", default="deploy.prototxt",
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", default="res10_300x300_ssd_iter_140000.caffemodel",
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.8,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize our centroid tracker and frame dimensions
ct = CentroidTracker()
(H, W) = (None, None)
# init age and gender parameters
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
age_list=['(0, 2)','(4, 6)','(8, 12)','(15, 20)','(25, 32)','(38, 43)','(48, 53)','(60, 100)']
gender_list = ['Male', 'Female']
# load our serialized model from disk
print("[INFO] loading models...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
age_net = cv2.dnn.readNetFromCaffe(
"age_gender_models/deploy_age.prototxt",
"age_gender_models/age_net.caffemodel")
gender_net = cv2.dnn.readNetFromCaffe(
"age_gender_models/deploy_gender.prototxt",
"age_gender_models/gender_net.caffemodel")
# initialize the video stream and allow the camera sensor to warmup
print("[INFO] starting video stream...")
cap =cv2.VideoCapture(0)
# vs = VideoStream(src=0).start()
time.sleep(1.0)
font = cv2.FONT_HERSHEY_SIMPLEX
# loop over the frames from the video stream
person = 0
cnt = 0
while True:
# read the next frame from the video stream and resize it
ret,frame = cap.read()
img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = imutils.resize(frame, width=400)
if W is None or H is None:
(H, W) = frame.shape[:2]
detector = dlib.get_frontal_face_detector()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale image
rects = detector(gray, 0)
new_rects = []
for rect in rects:
(x, y, w, h) = face_utils.rect_to_bb(rect)
if y<0:
print("a")
continue
new_rects.append((x, y, x + w, y + h))
face_img = frame[y:y+h, x:x+w].copy()
blob2 = cv2.dnn.blobFromImage(face_img, 1, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
if cnt%10 == 0:
# Predict gender
gender_net.setInput(blob2)
gender_preds = gender_net.forward()
gender = gender_list[gender_preds[0].argmax()]
# Predict age
age_net.setInput(blob2)
age_preds = age_net.forward()
age = age_list[age_preds[0].argmax()]
overlay_text = "%s, %s" % (gender, age)
cv2.putText(frame, overlay_text ,(x,y), font, 1,(255,0,0),2,cv2.LINE_AA)
cv2.rectangle(frame, (x, y), (x+w, y+h),(0, 255, 0), 2)
save_frame = frame.copy()
# update our centroid tracker using the computed set of bounding
# box rectangles
objects = ct.update(new_rects)
# loop over the tracked objects
for (objectID, centroid) in objects.items():
# draw both the ID of the object and the centroid of the
# object on the output frame
text = "ID {}".format(objectID)
if(objectID>person):
cv2.imwrite('img/'+str(person)+'.jpg',save_frame)
person = person+1
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1)
# show the output frame
cv2.imshow("Frame", frame)
cnt += 1
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cap.release()
cv2.destroyAllWindows()