-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcryptweet.py
64 lines (43 loc) · 1.97 KB
/
cryptweet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tweepy
import json
import emoji
import transformers
from transformers import pipeline
sentimentmodel=pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
# authenticate the api key and token with twitter
from tweepy.auth import OAuthHandler
auth = OAuthHandler('tFASoDpMTkZJTX7QCGdITEDdb', 'lKldBouO8cZTQE4OanGSKKf4Ny3JUwljrE0RqgbD0oNJNheTvb')
auth.set_access_token('1405483945379074054-z5vq7rSsCqyaoCECPzq2Vo936cofhI', 'IJcXhKXNN95fDovl0VgdTPkbCQN7k1yn0YQhCOtJrTlMf')
api = tweepy.API(auth,wait_on_rate_limit=True)
# extract the tweets with the given keyword
def tweextractor(keyword):
tweet=[] #list to store tweets extracted
# search_tweets method extract atmost 100 tweets with given keyword
# use it with cursor to extract more than that in one go
# take 500 popular tweets and 500 recent tweets to keep consistency in the result
for i in tweepy.Cursor(api.search_tweets, keyword,tweet_mode="extended",lang='en',result_type='recent',count=100).items(500):
i = json.dumps(i._json)
i = json.loads(i)
if i['full_text'] not in tweet and len(i['full_text'])<200:
tweet.append(i['full_text'])
for i in tweepy.Cursor(api.search_tweets, keyword,tweet_mode="extended",lang='en',result_type='popular',count=100).items(500):
i = json.dumps(i._json)
i = json.loads(i)
if i['full_text'] not in tweet and len(i['full_text'])<200:
tweet.append(i['full_text'])
print(len(tweet),'tweets total tweets found')
return tweet
# method to take keyword and find overall sentiment
def sentimentanalyser(keyword):
tweets=tweextractor(keyword)
score=[]
mood=sentimentmodel(tweets)
for i in mood:
if i['label']=='POS':
score.append(i['score'])
elif i['label']=='NEG':
score.append(-i['score'])
sentiment=sum(score)/len(score)
if sentiment>0:
return 'Sentiment of public is positive with probability '+str(sentiment)
else:return 'Sentiment of public is negative with probability '+str(-sentiment)