-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
195 lines (181 loc) · 6.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
import torch
from load_graph import Graph
import torch.nn.functional as F
from model import Recommender, STGCN
import time
import dgl
from functools import partial
from collections import defaultdict
import math
torch.cuda.set_device(0)
device = torch.device('cuda:0')
def edge_func(time0, edges):
rel_type = edges.data['type']
time = edges.data['time']
weight = edges.data['weight']
norm = edges.data['norm']
timedelta = torch.abs(time - time0) / 2
msk = rel_type < 3
timedelta[msk] = 0
timedelta = -timedelta.float()
time_weight = torch.exp(timedelta)
final_weight = weight * time_weight
final_weight = final_weight * (1 / norm)
return {'final_weight': final_weight}
def edge_func1(edges):
rel_type = edges.data['type']
time = edges.data['time']
weight = edges.data['weight']
norm = edges.data['norm']
final_weight = weight * (1 / norm)
return {'final_weight': final_weight}
def recallk(graph, model, dim=64, batch_size=1024, layers=2, samples=5, has_user_region=True):
k_list = [2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
# full rank recall
test_record = graph.time_test
g = graph.g
g.readonly()
pid2rid = torch.LongTensor(graph.pid2rid[['p', 'r']].values).cuda()
pid2indices = {}
for index, pid in enumerate(graph.pid2rid['p'].to_list()):
pid2indices[pid] = index
accuracy = defaultdict(int)
ndcg = defaultdict(float)
for t in range(0, 24, 2):
g.apply_edges(partial(edge_func, t))
sampler = dgl.contrib.sampling.NeighborSampler(
g,
batch_size,
samples,
layers,
seed_nodes=torch.arange(g.number_of_nodes()),
transition_prob='final_weight',
num_workers=16,
)
emb = torch.empty((g.number_of_nodes(), dim), device=device)
for nf in sampler:
nf.copy_from_parent(ctx=device)
batch_nids = nf.layer_parent_nid(-1).long()
h = model.infer(nf)
emb[batch_nids] = h
record_t = test_record[t]
pois_indices = np.array([pid2indices[i] for i in record_t[:, 1]]).reshape(-1, 1)
record_t = np.concatenate((record_t, pois_indices), 1)
tests = torch.from_numpy(record_t).cuda()
# test_batches = tests.split(batch_size)
for test in tests:
user = emb[test[0]]
if has_user_region:
user_region = emb[test[2]]
true_indices = test[4]
else:
true_indices = test[3]
pois = emb[pid2rid[:, 0]]
pois_region = emb[pid2rid[:, 1]]
if has_user_region:
scores = user * pois + 0.1 * user * pois_region + user_region * pois + user_region * pois_region
else:
scores = user * pois + user * pois_region
scores = scores.sum(1)
scores, indices = torch.sort(scores, descending=True)
position = (indices == true_indices).nonzero().item()
for k in k_list:
if position < k:
accuracy[k] += 1
ndcg[k] += 1 / math.log2(position+2)
for k in k_list:
accuracy[k] /= len(graph.test)
ndcg[k] /= len(graph.test)
print(accuracy)
print(ndcg)
def main(dataset):
batch_size = 1024
graph = Graph(dataset)
if dataset == 'meituan':
data_size = 6
has_user_region=True
else:
data_size = 5
has_user_region = False
g = graph.g
g.readonly()
embeddings = graph.embeddings
num_nodes = graph.g.number_of_nodes()
model = Recommender(STGCN(num_nodes, 64, 27, 2, None, embeddings))
model.cuda()
opt = torch.optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
model.train()
print('train neighbors')
for i in range(30):
total_loss = 0
g.apply_edges(edge_func1)
neighbors = graph.neighbors
neg_neighbors = np.random.choice(range(num_nodes), neighbors.shape[0], replace=True).reshape(-1, 1)
neighbors_data = np.concatenate((neighbors, neg_neighbors), axis=1)
data = torch.from_numpy(neighbors_data).cuda()
seed_nodes = data.reshape(-1)
batches = data.split(batch_size)
sampler = dgl.contrib.sampling.NeighborSampler(
g,
batch_size * 3,
5,
2,
seed_nodes=seed_nodes,
num_workers=11)
count = 0
for batch, nf in zip(batches, sampler):
nf.copy_from_parent(ctx=device)
batch_nid = nf.map_from_parent_nid(-1, batch.reshape(-1), True)
batch_nid = batch_nid.reshape(-1, 3).cuda()
loss = model.train_region(nf, batch_nid)
opt.zero_grad()
loss.backward()
total_loss += loss.item()
opt.step()
count += 1
print('loss', total_loss / count)
for epoch in range(300):
model.train()
begin = time.time()
total_loss = 0
count = 0
for t in range(0, 24, 2):
g.apply_edges(partial(edge_func, t))
pos = graph.time_train[t]
neg_pois = graph.pid2rid[['p', 'r']].sample(n=pos.shape[0], replace=True).to_numpy(copy=True)
data = np.concatenate((pos, neg_pois), axis=1)
data.astype(np.int)
data = torch.from_numpy(data).cuda()
seed_nodes = data.reshape(-1)
batches = data.split(batch_size)
sampler = dgl.contrib.sampling.NeighborSampler(
g,
batch_size * data_size,
5,
2,
seed_nodes=seed_nodes,
transition_prob='final_weight',
prefetch=False,
num_workers=11)
for batch, nf in zip(batches, sampler):
nf.copy_from_parent(ctx=device)
batch_nid = nf.map_from_parent_nid(-1, batch.reshape(-1), True)
batch_nid = batch_nid.reshape(-1, data_size).cuda()
loss = model(nf, batch_nid, has_user_region=has_user_region)
opt.zero_grad()
loss.backward()
total_loss += loss.item()
opt.step()
count += 1
print('epoch:{}, loss:{}, time:{}'.format(epoch, total_loss / count, time.time() - begin))
if epoch % 20 ==0 and epoch != 0:
model.eval()
with torch.no_grad():
recallk(graph, model, has_user_region=has_user_region)
model.eval()
with torch.no_grad():
recallk(graph, model, has_user_region=has_user_region)
if __name__ == "__main__":
dataset = 'meituan'
main(dataset)